Sample records for acquired antimicrobial resistance

  1. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    PubMed

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes.

    PubMed

    Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F

    2017-08-01

    Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Antimicrobial Resistance in Hospital-Acquired Gram-Negative Bacterial Infections

    PubMed Central

    Mehrad, Borna; Clark, Nina M.; Zhanel, George G.

    2015-01-01

    Aerobic gram-negative bacilli, including the family of Enterobacteriaceae and non-lactose fermenting bacteria such as Pseudomonas and Acinetobacter species, are major causes of hospital-acquired infections. The rate of antibiotic resistance among these pathogens has accelerated dramatically in recent years and has reached pandemic scale. It is no longer uncommon to encounter gram-negative infections that are untreatable using conventional antibiotics in hospitalized patients. In this review, we provide a summary of the major classes of gram-negative bacilli and their key mechanisms of antimicrobial resistance, discuss approaches to the treatment of these difficult infections, and outline methods to slow the further spread of resistance mechanisms. PMID:25940252

  4. Antimicrobial resistance among Escherichia coli that cause childhood community-acquired urinary tract infections in Northern Italy.

    PubMed

    Caracciolo, Alessandra; Bettinelli, Alberto; Bonato, Claudio; Isimbaldi, Clementina; Tagliabue, Alessandro; Longoni, Laura; Bianchetti, Mario G

    2011-01-06

    Resistance rate of Escherichia coli against antimicrobials that are commonly prescribed in pediatric urinary tract infections is currently a matter of concern. The antimicrobial susceptibility patterns of uropathogenic Escherichia coli strains to the common antibimcrobials ampicillin, cotrimoxazole, coamoxyclav, ceftazidime, ceftriaxone, nitrofurantoin, and gentamycin were determined in 177 children aged from 2 to 36 months. They presented with their first symptomatic community acquired urinary tract infection at the Department of Pediatrics, San Leopoldo Mandic Hospital, Merate-Lecco. High rates of ampicillin (inpatients: 50%; outpatients: 52%) resistance were identified. The resistance for cotrimoxazole (inpatients: 22%; outpatients: 15%) and especially coamoxyclav (inpatients: 6%; outpatients: 10%) was less pronounced than that to ampicillin. No resistance or less than 1% of resistance was identified for ceftazidime, ceftriaxone, nitrofurantoin, and gentamycin both in inpatients and in outpatients. Italian children affected with a community acquired urinary tract infection are initially managed orally with coamoxyclav or parenterally with ceftriaxone. The results of the present retrospective analysis support this attitude. Parenteral ceftriaxone or an aminoglycoside should be considered for patients on antimicrobial prophylaxis or recently prescribed antimicrobials.

  5. Antimicrobial resistance among Escherichia coli that cause childhood community-acquired urinary tract infections in Northern Italy

    PubMed Central

    2011-01-01

    Abstracts Background Resistance rate of Escherichia coli against antimicrobials that are commonly prescribed in pediatric urinary tract infections is currently a matter of concern. Methods The antimicrobial susceptibility patterns of uropathogenic Escherichia coli strains to the common antibimcrobials ampicillin, cotrimoxazole, coamoxyclav, ceftazidime, ceftriaxone, nitrofurantoin, and gentamycin were determined in 177 children aged from 2 to 36 months. They presented with their first symptomatic community acquired urinary tract infection at the Department of Pediatrics, San Leopoldo Mandic Hospital, Merate-Lecco. Results High rates of ampicillin (inpatients: 50%; outpatients: 52%) resistance were identified. The resistance for cotrimoxazole (inpatients: 22%; outpatients: 15%) and especially coamoxyclav (inpatients: 6%; outpatients: 10%) was less pronounced than that to ampicillin. No resistance or less than 1% of resistance was identified for ceftazidime, ceftriaxone, nitrofurantoin, and gentamycin both in inpatients and in outpatients. Conclusions Italian children affected with a community acquired urinary tract infection are initially managed orally with coamoxyclav or parenterally with ceftriaxone. The results of the present retrospective analysis support this attitude. Parenteral ceftriaxone or an aminoglycoside should be considered for patients on antimicrobial prophylaxis or recently prescribed antimicrobials. PMID:21211026

  6. Antimicrobial resistance in Hispanic patients hospitalized in San Antonio, TX with community-acquired pneumonia.

    PubMed

    Restrepo, Marcos I; Velez, Maria I; Serna, Gloria; Anzueto, Antonio; Mortensen, Eric M

    2010-11-01

    Limited information is available on the antimicrobial resistance of patients with community-acquired pneumonia (CAP) depending on their ethnicity. Our aim was to compare the clinical characteristics, etiology, and microbiological resistance of Hispanic versus non-Hispanic white patients. A retrospective cohort of 601 patients with a diagnosis of CAP included 288 non-Hispanic whites and 313 Hispanics. Penicillin-resistant Streptococcus pneumoniae was more common among Hispanic patients (21.7% vs 0%; P=0.03) but there were no significant differences in macrolide-resistant S pneumoniae, drug-resistant S pneumoniae, or potential or actual multidrug-resistant pathogens (eg, drug-resistant S pneumoniae, methicillin-resistant Staphylococcus aureus, Pseudomonas spp., and Acinetobacter spp.). There were no differences among groups in length of hospital stay, intensive care unit (ICU) admission, or 30-day mortality. This study suggests that Hispanic patients with CAP have a higher rate of penicillin-resistant S pneumoniae, but no differences in antimicrobial resistance, 30-day mortality, ICU admission, or length of stay when compared with non-Hispanic white patients.

  7. Pneumococcal antimicrobial resistance: therapeutic strategy and management in community-acquired pneumonia.

    PubMed

    Aspa, Javier; Rajas, Olga; de Castro, Felipe Rodríguez

    2008-02-01

    Streptococcus pneumoniae has been consistently shown to represent the most frequent causative agent of community-acquired pneumonia (CAP) and pneumococcal antibiotic resistance towards different families of antibiotics continues to be a much-debated issue. Microbial resistance causes a great deal of confusion in choosing an empirical treatment for pneumonia and this makes it necessary to know which factors actually determine the real impact of antimicrobial resistance on the outcome of pneumococcal infections. Several different aspects have to be taken into account when analyzing this matter, such as the study design, the condition of the patient at the time of diagnosis, the choice of the initial antimicrobial regimen (combination or monotherapy) and the pharmacokinetic/pharmacodynamic variables of the chosen antibiotic. It is generally accepted that in the treatment of beta-lactam-resistant pneumococcal infections, the use of standard antipneumococcal beta-lactam agents is unlikely to impact negatively on the outcome of CAP when appropriate agents are given in sufficient doses. As a general rule, for infections with penicillin-sensitive strains, penicillin or an aminopenicillin in a standard dosage will be effective; in the cases of strains with intermediate resistance, beta-lactam agents are still considered appropriate treatment although higher dosages are recommended; finally, infections with isolates of high-level penicillin resistance should be treated with alternative agents such as the third-generation cephalosporins or the new antipneumococcal fluoroquinolones. In areas of high prevalence of high-level macrolide resistance, empirical monotherapy with a macrolide is not optimal for the treatment of hospitalised patients with moderate or moderately-severe CAP. Fluoroquinolones are considered to be excellent antibiotics in the treatment of pneumococcal CAP in adults, but their general recommendation has been withheld due to fears of a widespread development

  8. Evolution of amoxicillin/clavulanate in the treatment of adults with acute bacterial rhinosinusitis and community-acquired pneumonia in response to antimicrobial-resistance patterns.

    PubMed

    File, Thomas M; Benninger, Michael S; Jacobs, Michael R

    2004-06-01

    Current treatment guidelines for community-acquired respiratory tract infections no longer depend solely on the characteristics of the patient and the clinical syndrome, but on those of the offending pathogen, including presence and level of antimicrobial resistance. The most common respiratory tract pathogens known to cause acute bacterial rhinosinusitis (ABRS) and community-acquired pneumonia (CAP) include Streptococcus pneumoniae and Haemophilus influenzae. The prevalence of antimicrobial resistance, especially b-lactum and macrolide resistance, among S pneumoniae and H influenzae has increased dramatically during the past 2 decades, diminishing the activity of many older antimicrobials against resistant organisms. A pharmacokinetically enhanced formulation of amoxicillin/clavulanate has been developed to fulfill the need for an oral b-lactam antimicrobial that achieves a greater time that the serum drug concentration exceeds the minimum inhibitory concentration (T > MIC) of antimicrobials against pathogens than conventional formulations to improve activity against S pneumoniae with reduced susceptibility to penicillin. The b-lactamase inhibitor clavulanate allows for coverage of b-lactamase-producing pathogens, such as H influenzae and M catarrhalis. This article reviews the rationale for, and evolution of, oral amoxicillin clavulanate for ABRS and CAP

  9. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    PubMed

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.

  10. Antimicrobial resistance in Libya: 1970-2011.

    PubMed

    Ghenghesh, Khalifa Sifaw; Rahouma, Amal; Tawil, Khaled; Zorgani, Abdulaziz; Franka, Ezzedin

    2013-03-27

    Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed) search for the period 1970-2011 using the terms 'antibiotic resistance in Libya', 'antimicrobial resistance in Libya', 'tuberculosis in Libya', and 'primary and acquired resistance in Libya' in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54-68%) of methicillin-resistant Staphylococcus aureus (MRSA) were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA) or vancomycin-intermediate-resistant S. aureus (VISA) using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases) and acquired (i.e. retreatment cases) multidrug-resistant tuberculosis (MDR-TB) from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984-1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to tackle the problem in the future.

  11. Antimicrobial resistance in Libya: 1970-2011.

    PubMed

    Sifaw Ghenghesh, Khalifa; Rahouma, Amal; Tawil, Khaled; Zorgani, Abdulaziz; Franka, Ezzedin

    2013-01-01

    Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed) search for the period 1970-2011 using the terms 'antibiotic resistance in Libya', 'antimicrobial resistance in Libya', 'tuberculosis in Libya', and 'primary and acquired resistance in Libya' in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54-68%) of methicillin-resistant Staphylococcus aureus (MRSA) were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA) or vancomycin-intermediate-resistant S. aureus (VISA) using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases) and acquired (i.e. retreatment cases) multidrug-resistant tuberculosis (MDR-TB) from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984-1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to tackle the problem in the future.

  12. Antimicrobial resistance in Libya: 1970–2011

    PubMed Central

    Ghenghesh, Khalifa Sifaw; Rahouma, Amal; Tawil, Khaled; Zorgani, Abdulaziz; Franka, Ezzedin

    2013-01-01

    Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed) search for the period 1970–2011 using the terms ‘antibiotic resistance in Libya’, ‘antimicrobial resistance in Libya’, ‘tuberculosis in Libya’, and ‘primary and acquired resistance in Libya’ in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54–68%) of methicillin-resistant Staphylococcus aureus (MRSA) were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA) or vancomycin-intermediate-resistant S. aureus (VISA) using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases) and acquired (i.e. retreatment cases) multidrug-resistant tuberculosis (MDR-TB) from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984–1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to tackle the

  13. Antimicrobial resistance in the 21st century: a multifaceted challenge.

    PubMed

    Nolte, O

    2014-04-01

    Antimicrobial resistance, the ability of (pathogenic) bacteria to withstand the action of antibiotic drugs, has recently been rated of having an impact on humans similar to that of global climate change. Indeed, during the last years medicine has faced the development of highly resistant bacterial strains, which were, as a consequence of worldwide travel activity, dispersed all over the globe. This is even more astonishing if taking into account that antibiotics were introduced into human medicine not even hundred years ago. Resistance covers different principle aspects, natural resistance, acquired resistance and clinical resistance. In the modern microbiology laboratory, antimicrobial resistance is determined by measuring the susceptibility of micro-organisms in vitro in the presence of antimicrobials. However, since the efficacy of an antibiotic depends on its pharmacokinetic and pharmacodynamics properties, breakpoints are provided to translate minimal inhibitory concentration to categorical efficacy (i.e. susceptible or resistant). Resistance in one microorganism against one particular drug may drive treatment decisions of clinicians, thereby fostering selection pressure to resistance development against another antibiotic. Thereby, bacteria may acquire more and more resistance traits, ending up with multi-resistance. To this end, antimicrobial resistance becomes a public health concern, not only in terms of limited treatment options but also due to its economic burden. The current paper provides a summary of the main topics associated with antimicrobial resistance as an introduction to this special issue.

  14. [Diagnostics and antimicrobial therapy of severe community-acquired pneumonia].

    PubMed

    Sinopalnikov, A I; Zaitsev, A A

    2015-04-01

    In the current paper authors presented the latest information concerning etiology of severe community-acquired pneumonia. Most cases are caused by a relatively small number ofpathogenic bacterial and viral natures. The frequency of detection of various pathogens of severe community-acquired pneumonia may vary greatly depending on the region, season and clinical profile of patients, availability of relevant risk factors. Authors presented clinical characteristics of severe community-acquired pneumonia and comparative evaluation of a number of scales to assess the risk of adverse outcome of the disease. Diagnosis of severe community-acquired pneumonia includes the following: collecting of epidemiological history, identification of pneumonia, detection of sepsis and identification of multiple organ dysfunction syndrome, detection of acute respiratory failure, assessment of comorbidity. Authors gave recommendations concerning evaluation of the clinical manifestations of the disease, the use of instrumental and laboratory methods for diagnosis of severe community-acquired pneumonia. To select the mode of antimicrobial therapy is most important local monitoring antimicrobial resistance of pathogens. The main criteria for the effectiveness of treatment are to reduce body temperature, severe intoxication, respiratory and organ failure.

  15. Antimicrobial resistance and prudent drug use for Streptococcus suis.

    PubMed

    Varela, Norma P; Gadbois, Pierre; Thibault, Claude; Gottschalk, Marcelo; Dick, Paul; Wilson, Jeff

    2013-06-01

    This paper reviews information on antimicrobial resistance patterns and prudent use of antimicrobials to reduce the impact and spread of resistant Streptococcus suis strains. S. suis is an important pathogen in swine, which can cause significant economic loss. Prudent use of antimicrobials for S. suis is essential to preserve the therapeutic efficacy of broad-spectrum antimicrobials and to minimize selection of resistant S. suis strains. Resistance of S. suis to antimicrobials commonly used in swine, including lincosamides, macrolides, sulphonamides, and tetracycline, has been documented worldwide, with resistance in up to 85% of strains. Among antimicrobials examined, resistance of S. suis has been demonstrated to be relatively low for penicillin (0-27%), ampicillin (0.6-23%), and ceftiofur (0-23%). For penicillin, this result may be due in part to the unique mechanism by which resistance is acquired through modifications in the structure of penicillin-binding proteins. Recommendations to control S. suis infection include focused and careful choice and appropriate use of antimicrobials, together with preventive measures intended to improve swine management.

  16. Antimicrobial treatment failures in patients with community-acquired pneumonia: causes and prognostic implications.

    PubMed

    Arancibia, F; Ewig, S; Martinez, J A; Ruiz, M; Bauer, T; Marcos, M A; Mensa, J; Torres, A

    2000-07-01

    The aim of the study was to determine the causes and prognostic implications of antimicrobial treatment failures in patients with nonresponding and progressive life-threatening, community-acquired pneumonia. Forty-nine patients hospitalized with a presumptive diagnosis of community-acquired pneumonia during a 16-mo period, failure to respond to antimicrobial treatment, and documented repeated microbial investigation >/= 72 h after initiation of in-hospital antimicrobial treatment were recorded. A definite etiology of treatment failure could be established in 32 of 49 (65%) patients, and nine additional patients (18%) had a probable etiology. Treatment failures were mainly infectious in origin and included primary, persistent, and nosocomial infections (n = 10 [19%], 13 [24%], and 11 [20%] of causes, respectively). Definite but not probable persistent infections were mostly due to microbial resistance to the administered initial empiric antimicrobial treatment. Nosocomial infections were particularly frequent in patients with progressive pneumonia. Definite persistent infections and nosocomial infections had the highest associated mortality rates (75 and 88%, respectively). Nosocomial pneumonia was the only cause of treatment failure independently associated with death in multivariate analysis (RR, 16.7; 95% CI, 1.4 to 194.9; p = 0.03). We conclude that the detection of microbial resistance and the diagnosis of nosocomial pneumonia are the two major challenges in hospitalized patients with community-acquired pneumonia who do not respond to initial antimicrobial treatment. In order to establish these potentially life-threatening etiologies, a regular microbial reinvestigation seems mandatory for all patients presenting with antimicrobial treatment failures.

  17. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii From Patients With Hospital-acquired or Ventilator-associated Pneumonia in Vietnam.

    PubMed

    Biedenbach, Douglas J; Giao, Phan Trong; Hung Van, Pham; Su Minh Tuyet, Nguyen; Thi Thanh Nga, Tran; Phuong, Doan Mai; Vu Trung, Nguyen; Badal, Robert E

    2016-09-01

    Multidrug-resistant bacterial pathogens are becoming a significant problem worldwide. Acinetobacter baumannii and Pseudomonas aeruginosa are problematic multidrug-resistant pathogens. This multicenter study in Vietnam determined the level of resistance to antimicrobial agents used to treat A baumannii and P aeruginosa infections in this country. Five medical centers in Vietnam provided 529 P aeruginosa and 971 Acinetobacter species (904 A baumannii) isolates from patients with hospital-acquired or ventilator-associated pneumonia from 2012 to 2014. A central laboratory verified identification of the isolates and performed susceptibility testing using Clinical and Laboratory Standards Institute methods. Resistance to cephalosporins, β-lactam/β-lactamase inhibitors, carbapenems, and fluoroquinolones was >90% against A baumannii. Aminoglycosides had only slightly better activity, with amikacin resistance >80%. Only colistin (MIC90, ≤0.25 mg/L) and tigecycline (MIC90, 4 mg/L) had appreciable activity against A baumannii. Similar activity was observed among the β-lactams tested against P aeruginosa. Cefepime demonstrated the highest activity (60.1% susceptible), which was similar to doripenem (58.6% susceptible), the most active carbapenem tested. Amikacin was the most active aminoglycoside tested against P aeruginosa, with susceptibility of 81.7% compared with tobramycin (58.0%) and gentamicin (56.5%). Fluoroquinolones had limited activity against P aeruginosa with susceptibility to ciprofloxacin (55.0%). All P aeruginosa isolates had colistin MIC values ≤2 mg/L. The data from this 3-year longitudinal study in Vietnam demonstrate that 2 of the most common nonfermentative gram-negative pathogens associated with hospital-acquired and ventilator-associated pneumonia are significantly resistant to most of the available treatment options and require combination therapies unless new antimicrobial agents become available. Copyright © 2016. Published by Elsevier Inc.

  19. Surveillance for Travel and Domestically Acquired Multidrug-Resistant Human Shigella Infections-Pennsylvania, 2006-2014.

    PubMed

    Li, Yu Lung; Tewari, Deepanker; Yealy, Courtney C; Fardig, David; M'ikanatha, Nkuchia M

    2016-01-01

    Shigellosis is a leading cause of enteric infections in the United States. We compared antimicrobial resistance in Shigella infections related to overseas travel (travel-associated) and in those acquired domestically by analyzing antimicrobial resistance patterns, geographic distributions, and pulsed-field gel electrophoresis (PFGE) patterns. We tested samples (n = 204) from a collection of isolates recovered from patients in Pennsylvania between 2006 and 2014. Isolates were grouped into travel- and non-travel-associated categories. Eighty-one (79.4%) of the Shigella isolates acquired during international travel were resistant to multiple antibiotics compared to 53 (52.1%) of the infections transmitted in domestic settings. A majority (79.4%) of isolates associated with international travel demonstrated resistance to aminoglycosides and tetracyclines, whereas 47 (46.1%) of the infections acquired domestically were resistant to tetracycline. Almost all isolates (92.2%) transmitted in domestic settings were resistant to aminoglycosides, and 5 isolates from adult male patients were resistant to azithromycin, a drug often used for empiric treatment of severe shigellosis. Twenty (19.6%) isolates associated with illnesses acquired during overseas travel in 4 countries were resistant to quinolones. One S. sonnei PFGE pattern was traced to a multidrug-resistant isolate acquired overseas that had caused a multistate outbreak of shigellosis, suggesting global dissemination of a drug-resistant species. Resistance to certain drugs-for example, tetracycline-increased in both overseas- and domestic-acquired infections during the study period. The prevalence of resistance to macrolides (azithromycin) and third-generation cephalosporins (ceftriaxone) was less than 1%; however, efforts to better monitor changes in drug resistance over time combined with increased antimicrobial stewardship are essential at the local, national, and global levels.

  20. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    PubMed

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  1. Efflux pumps as antimicrobial resistance mechanisms.

    PubMed

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  2. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    PubMed

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  3. Antimicrobial use and antimicrobial resistance in food animals.

    PubMed

    Xiong, Wenguang; Sun, Yongxue; Zeng, Zhenling

    2018-05-25

    Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.

  4. Antimicrobial drug use and resistance in dogs

    PubMed Central

    Prescott, John F.; Hanna, W. J. Brad; Reid-Smith, Richard; Drost, Kelli

    2002-01-01

    Fifteen years (1984–1998) of records from a Veterinary Teaching Hospital were analyzed to determine whether antimicrobial drug resistance in coagulase-positive Staphylococcus spp. (S. aureus, S. intermedius) isolated from clinical infections in dogs has increased, and whether there has been a change in the species of bacteria isolated from urinary tract infections in dogs. In coagulase-positive Staphylococcus spp., a complex pattern showing both increases and decreases of resistance to different classes of antimicrobial drugs was observed, reflecting the changing use of different antimicrobial drug classes in the hospital over a similar period (1990–1999). In canine urinary tract infections identified from 1984 to 1998, an increase in the incidence of multiresistant Enterococcus spp. was apparent, with marginal increases also in incidence in Enterobacter spp. and in Pseudomonas aeruginosa, both of which, like Enterococcus spp., are innately antimicrobial-resistant bacteria. A survey of directors of veterinary teaching hospitals in Canada and the United States identified only 3 hospitals that had any policy on use of “last resort” antimicrobial drugs (amikacin, imipenem, vancomycin). Evidence is briefly reviewed that owners may be at risk when dogs are treated with antimicrobial drugs, as well as evidence that some resistant bacteria may be acquired by dogs as a result of antimicrobial drug use in agriculture. Based in part on gaps in our knowledge, recommendations are made on prudent use of antimicrobial drugs in companion animals, as well as on the need to develop science-based infection control programs in veterinary hospitals. PMID:11842592

  5. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica isolates in the United States: National Antimicrobial Resistance Monitoring System, 1996 to 2007.

    PubMed

    Crump, John A; Medalla, Felicita M; Joyce, Kevin W; Krueger, Amy L; Hoekstra, R Michael; Whichard, Jean M; Barzilay, Ezra J

    2011-03-01

    Nontyphoidal salmonellae (NTS) are important causes of community-acquired bloodstream infection. We describe patterns of antimicrobial resistance among invasive NTS in the United States. We compared bloodstream NTS isolates with those from stool submitted to the National Antimicrobial Resistance Monitoring System (NARMS) from 1996 to 2007. We describe antimicrobial resistance among invasive strains by serogroup and serotype. Of the 19,302 NTS isolates, 17,804 (92.2%) were from stool or blood. Of these, 1,050 (5.9%) were bloodstream isolates. The median ages (ranges) of patients with and without bacteremia were 36 (<1 to 97) years and 20 (<1 to 105) years, respectively (P < 0.001). Males (odds ratio [OR], 1.21; 95% confidence interval [CI], 1.06 to 1.38) and those ≥65 years of age were at greater risk for invasive disease. Salmonella enterica serotypes Enteritidis, Typhimurium, and Heidelberg were the most common serotypes isolated from blood; S. enterica serotypes Dublin, Sandiego, and Schwarzengrund were associated with the greatest risk for bloodstream isolation. Of invasive isolates, 208 (19.8%) were resistant to ampicillin, 117 (11.1%) to chloramphenicol, and 26 (2.5%) to trimethoprim-sulfamethoxazole; 28 (2.7%) isolates were resistant to nalidixic acid and 26 (2.5%) to ceftriaxone. Antimicrobial resistance to traditional agents is common. However, the occurrence of nalidixic acid and ceftriaxone resistance among invasive NTS is cause for clinical and public health vigilance.

  6. Efflux-mediated antimicrobial resistance.

    PubMed

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  7. Impact of ertapenem on antimicrobial resistance in a sentinel group of Gram-negative bacilli: a 6 year antimicrobial resistance surveillance study.

    PubMed

    Rodriguez-Osorio, Carlos A; Sanchez-Martinez, Cesar O; Araujo-Melendez, Javier; Criollo, Elia; Macias-Hernandez, Alejandro E; Ponce-de-Leon, Alfredo; Ponce-de-Leon, Sergio; Sifuentes-Osornio, Jose

    2015-03-01

    To determine the association between ertapenem and resistance of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii-calcoaceticus complex to different antimicrobials while adjusting for relevant hospital factors. This was a retrospective time-series study conducted at a tertiary care centre from September 2002 to August 2008. The specific impact of ertapenem on the resistance of these Gram-negative bacilli (GNB) was assessed by multiple linear regression analysis, adjusting for the average length of stay, rate of hospital-acquired infections and use of 10 other antimicrobials, including type 2 carbapenems. Unadjusted analyses revealed significant increases over the duration of the study in the number of GNB resistant to meropenem/imipenem among 1000 isolates each of E. coli (0.46 ± 0.22, P < 0.05), P. aeruginosa (6.26 ± 2.26, P < 0.05), K. pneumoniae (8.06 ± 1.50, P < 0.0005) and A. baumannii-calcoaceticus complex (25.39 ± 6.81, P < 0.0005). Increased resistance to cefepime (and other extended-spectrum cephalosporins) was observed in E. coli (9.55 ± 1.45, P < 0.0005) and K. pneumoniae (15.21 ± 2.42, P < 0.0005). A. baumannii-calcoaceticus complex showed increased resistance to all antimicrobials except amikacin. After controlling for confounders, ertapenem was not significantly associated (P > 0.05) with changes in resistance for any pathogen/antimicrobial combination. After controlling for confounders, ertapenem was not associated with changes in resistance in a group of sentinel GNB, although significant variations in resistance to different antimicrobials were observed in the unadjusted analyses. These results emphasize the importance of implementation of local resistance surveillance platforms and stewardship programmes to combat the global emergence and spread of antimicrobial resistance. © The Author 2014. Published by Oxford University Press on behalf of the

  8. Antimicrobial consumption, costs and resistance patterns: a two year prospective study in a Romanian intensive care unit.

    PubMed

    Axente, Carmen; Licker, Monica; Moldovan, Roxana; Hogea, Elena; Muntean, Delia; Horhat, Florin; Bedreag, Ovidiu; Sandesc, Dorel; Papurica, Marius; Dugaesescu, Dorina; Voicu, Mirela; Baditoiu, Luminita

    2017-05-22

    Due to the vulnerable nature of its patients, the wide use of invasive devices and broad-spectrum antimicrobials used, the intensive care unit (ICU) is often called the epicentre of infections. In the present study, we quantified the burden of hospital acquired pathology in a Romanian university hospital ICU, represented by antimicrobial agents consumption, costs and local resistance patterns, in order to identify multimodal interventional strategies. Between 1 st January 2012 and 31 st December 2013, a prospective study was conducted in the largest ICU of Western Romania. The study group was divided into four sub-samples: patients who only received prophylactic antibiotherapy, those with community-acquired infections, patients who developed hospital acquired infections and patients with community acquired infections complicated by hospital-acquired infections. The statistical analysis was performed using the EpiInfo version 3.5.4 and SPSS version 20. A total of 1596 subjects were enrolled in the study and the recorded consumption of antimicrobial agents was 1172.40 DDD/ 1000 patient-days. The presence of hospital acquired infections doubled the length of stay (6.70 days for patients with community-acquired infections versus 16.06/14.08 days for those with hospital-acquired infections), the number of antimicrobial treatment days (5.47 in sub-sample II versus 11.18/12.13 in sub-samples III/IV) and they increased by 4 times compared to uninfected patients. The perioperative prophylactic antibiotic treatment had an average length duration of 2.78 while the empirical antimicrobial therapy was 3.96 days in sample II and 4.75/4.85 days for the patients with hospital-acquired infections. The incidence density of resistant strains was 8.27/1000 patient-days for methicilin resistant Staphylococcus aureus, 7.88 for extended spectrum β-lactamase producing Klebsiella pneumoniae and 4.68/1000 patient-days for multidrug resistant Acinetobacter baumannii. Some of the most

  9. Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries

    PubMed Central

    Okeke, Iruka N.; Lamikanra, Adebayo

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  10. Antibacterial resistance patterns of pediatric community-acquired urinary infection: Overview.

    PubMed

    Konca, Capan; Tekin, Mehmet; Uckardes, Fatih; Akgun, Sadik; Almis, Habip; Bucak, Ibrahim Hakan; Genc, Yeliz; Turgut, Mehmet

    2017-03-01

    Urinary tract infection (UTI) is common in children. The aim of this study was therefor to construct a guide for the empirical antibiotic treatment of community-acquired UTI by investigating the etiology and antimicrobial resistance patterns of uropathogens and analyzing the epidemiological and clinical patient characteristics. A total of 158 children with positive urine culture were included in the study. Antibiotic susceptibility testing was performed with Vitek 2 Compact for 28 commonly used antimicrobials. Mean age was 3.36 ± 3.38 years (range, 45 days-15 years). Escherichia coli (60.1%), and Klebsiella spp. (16.5%) were the most common uropathogens. For all Gram-negative isolates, a high level of resistance was found against ampicillin/sulbactam (60.1%), trimethoprim/sulfamethoxazole (44.2%), cefazolin (36.2%), cefuroxime sodium (33.5%), and amoxicillin/clavulanate (31.5%). A low level of resistance was noted against cefepime (8.7%), ertapenem (4.6%), norfloxacin (1.3%), and meropenem (0.7%). There was no resistance against amikacin. There is high antibiotic resistance in children with UTI. The patterns of uropathogen antimicrobial resistance vary in susceptibility to antimicrobials depending on region and time. Thus, the trends of antibiotic susceptibility patterns should be analyzed periodically to select the appropriate regimen for UTI treatment. © 2016 Japan Pediatric Society.

  11. Antimicrobial Resistance among Invasive Nontyphoidal Salmonella enterica Isolates in the United States: National Antimicrobial Resistance Monitoring System, 1996 to 2007 ▿

    PubMed Central

    Crump, John A.; Medalla, Felicita M.; Joyce, Kevin W.; Krueger, Amy L.; Hoekstra, R. Michael; Whichard, Jean M.; Barzilay, Ezra J.

    2011-01-01

    Nontyphoidal salmonellae (NTS) are important causes of community-acquired bloodstream infection. We describe patterns of antimicrobial resistance among invasive NTS in the United States. We compared bloodstream NTS isolates with those from stool submitted to the National Antimicrobial Resistance Monitoring System (NARMS) from 1996 to 2007. We describe antimicrobial resistance among invasive strains by serogroup and serotype. Of the 19,302 NTS isolates, 17,804 (92.2%) were from stool or blood. Of these, 1,050 (5.9%) were bloodstream isolates. The median ages (ranges) of patients with and without bacteremia were 36 (<1 to 97) years and 20 (<1 to 105) years, respectively (P < 0.001). Males (odds ratio [OR], 1.21; 95% confidence interval [CI], 1.06 to 1.38) and those ≥65 years of age were at greater risk for invasive disease. Salmonella enterica serotypes Enteritidis, Typhimurium, and Heidelberg were the most common serotypes isolated from blood; S. enterica serotypes Dublin, Sandiego, and Schwarzengrund were associated with the greatest risk for bloodstream isolation. Of invasive isolates, 208 (19.8%) were resistant to ampicillin, 117 (11.1%) to chloramphenicol, and 26 (2.5%) to trimethoprim-sulfamethoxazole; 28 (2.7%) isolates were resistant to nalidixic acid and 26 (2.5%) to ceftriaxone. Antimicrobial resistance to traditional agents is common. However, the occurrence of nalidixic acid and ceftriaxone resistance among invasive NTS is cause for clinical and public health vigilance. PMID:21199924

  12. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain.

    PubMed

    Lozano, Carmen; Gonzalez-Barrio, David; Camacho, Maria Cruz; Lima-Barbero, Jose Francisco; de la Puente, Javier; Höfle, Ursula; Torres, Carmen

    2016-11-01

    The objectives were to evaluate the presence of vancomycin-resistant enterococci with acquired (VRE-a) and intrinsic (VRE-i) resistance mechanisms in fecal samples from different wild animals, and analyze their phenotypes and genotypes of antimicrobial resistance. A total of 348 cloacal/rectal samples from red-legged partridges (127), white storks (81), red kites (59), and wild boars (81) (June 2014/February 2015) were inoculated in Slanetz-Bartley agar supplemented with vancomycin (4 μg/mL). We investigated the susceptibility to 12 antimicrobials and the presence of 19 antimicrobial resistance and five virulence genes. In addition, we performed multilocus sequence typing, detection of IS16 and studied Tn1546 structure. One VRE-a isolate was identified in one wild boar. This isolate was identified as Enterococcus faecium, harbored vanA gene included into Tn1546 (truncated with IS1542/IS1216), and belonged to the new ST993. This isolate contained the erm(A), erm(B), tet(M), dfrG, and dfrK genes. Neither element IS16 nor the studied virulence genes were detected. Ninety-six VRE-i isolates were identified (89 Enterococcus gallinarum and seven Enterococcus casseliflavus), with the following prevalence: red kites (71.2 %), white storks (46.9 %), red-legged partridges (7.9 %), and wild boars (4.9 %). Most E. gallinarum isolates showed resistance to tetracycline (66.3 %) and/or erythromycin (46.1 %). High-level resistance to aminoglycosides was present among our VRE-i isolates: kanamycin (22.9 %), streptomycin (11.5 %), and gentamicin (9.4 %). In general, VRE-i isolates of red kites showed higher rates of resistance for non-glycopeptide agents than those of other animal species. The dissemination of acquired resistance mechanisms in natural environments could have implications in the global spread of resistance with public health implications.

  13. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Guideline recommendations and antimicrobial resistance: the need for a change.

    PubMed

    Elias, Christelle; Moja, Lorenzo; Mertz, Dominik; Loeb, Mark; Forte, Gilles; Magrini, Nicola

    2017-07-26

    Antimicrobial resistance has become a global burden for which inappropriate antimicrobial use is an important contributing factor. Any decisions on the selection of antibiotics use should consider their effects on antimicrobial resistance. The objective of this study was to assess the extent to which antibiotic prescribing guidelines have considered resistance patterns when making recommendations for five highly prevalent infectious syndromes. We used Medline searches complemented with extensive use of Web engine to identify guidelines on empirical treatment of community-acquired pneumonia, urinary tract infections, acute otitis media, rhinosinusitis and pharyngitis. We collected data on microbiology and resistance patterns and identified discrete pattern categories. We assessed the extent to which recommendations considered resistance, in addition to efficacy and safety, when recommending antibiotics. We identified 135 guidelines, which reported a total of 251 recommendations. Most (103/135, 79%) were from developed countries. Community-acquired pneumonia was the syndrome mostly represented (51, 39%). In only 16 (6.4%) recommendations, selection of empirical antibiotic was discussed in relation to resistance and specific microbiological data. In a further 69 (27.5%) recommendations, references were made in relation to resistance, but the attempt was inconsistent. Across syndromes, 12 patterns of resistance with implications on recommendations were observed. 50% to 75% of recommendations did not attempt to set recommendation in the context of these patterns. There is consistent evidence that guidelines on empirical antibiotic use did not routinely consider resistance in their recommendations. Decision-makers should analyse and report the extent of local resistance patterns to allow better decision-making. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  15. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans

    PubMed Central

    Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick

    2016-01-01

    In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. PMID:26613786

  16. Antimicrobial-resistant bacteria in wild game in Slovenia

    NASA Astrophysics Data System (ADS)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  17. Antimicrobial Use and Antimicrobial Resistance: A Population Perspective

    PubMed Central

    Samore, Matthew H.

    2002-01-01

    The need to stem the growing problem of antimicrobial resistance has prompted multiple, sometimes conflicting, calls for changes in the use of antimicrobial agents. One source of disagreement concerns the major mechanisms by which antibiotics select resistant strains. For infections like tuberculosis, in which resistance can emerge in treated hosts through mutation, prevention of antimicrobial resistance in individual hosts is a primary method of preventing the spread of resistant organisms in the community. By contrast, for many other important resistant pathogens, such as penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium resistance is mediated by the acquisition of genes or gene fragments by horizontal transfer; resistance in the treated host is a relatively rare event. For these organisms, indirect, population-level mechanisms of selection account for the increase in the prevalence of resistance. These mechanisms can operate even when treatment has a modest, or even negative, effect on an individual host’s colonization with resistant organisms. PMID:11971765

  18. Antimicrobial resistance trends in community-acquired respiratory tract pathogens in the Western Pacific Region and South Africa: report from the SENTRY antimicrobial surveillance program, (1998-1999) including an in vitro evaluation of BMS284756.

    PubMed

    Bell, J M; Turnidge, J D; Jones, R N

    2002-02-01

    From 1998 to 1999, a large number of community-acquired respiratory tract isolates of Streptococcus pneumoniae (n=566), Haemophilus influenzae (n=513) and Moraxella catarrhalis (n=228) were collected from 15 centres in Australia, Hong Kong, Japan, China, the Philippines, Singapore, South Africa and Taiwan through the SENTRY Antimicrobial Surveillance Program. Isolates were tested against 26 antimicrobial agents using the NCCLS-recommended methods. Overall, 40% of S. pneumoniae isolates were resistant to penicillin with 18% of strains having high-level resistance (MIC > or =2 mg/l). Rates of erythromycin and clindamycin resistance were 41 and 23%, respectively. Penicillin-resistant strains showed high rates of resistance to other antimicrobial agents: 96% to trimethoprim-sulphamethoxazole (TMP-SMX), 84% to tetracycline and 81% to erythromycin. A significant proportion of penicillin-susceptible strains was also resistant to erythromycin (21%), tetracycline (29%) and TMP-SMZ (26%). Small numbers of strains were resistant to levofloxacin (0.7%), trovafloxacin (0.4%) and grepafloxacin (1.3%) where as all strains remained uniformly susceptible to quinupristin/dalfopristin and BMS284756 (MIC(90), 0.06 mg/l), a new desfluoroquinolone. beta-lactamases were, produced by 20% H. influenzae isolates and only rare strains showed intrinsic resistance to amoxycillin. Other beta-lactam agents showed good activity with rates of resistance less than 2% and all isolates showed susceptibility to cefixime, ceftibuten, cefepime and cefotaxime. Rates of resistance to tetracycline and chloramphenicol were also relatively low at 3%. The majority (98%) of M. catarrhalis isolates was found to be beta-lactamase-positive and resistant to penicillins, however, resistance to erythromycin and tetracycline was also low at 1.8%. Both H. influenzae and M. catarrhalis isolates were uniformly susceptible to the new desfluoroquinolone and tested fluoroquinolones.

  19. Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines

    PubMed Central

    Venter, Henrietta; Henningsen, Michael L.; Begg, Stephanie L.

    2017-01-01

    The crisis of antimicrobial resistance (AMR) is one of the most serious issues facing us today. The scale of the problem is illustrated by the recent commitment of Heads of State at the UN to coordinate efforts to curb the spread of AMR infections. In this review, we explore the biochemistry behind the headlines of a few stories that were recently published in the public media. We focus on examples from three different issues related to AMR: (i) hospital-acquired infections, (ii) the spread of resistance through animals and/or the environment and (iii) the role of antimicrobial soaps and other products containing disinfectants in the dissemination of AMR. Although these stories stem from three very different settings, the underlying message in all of them is the same: there is a direct relationship between the use of antimicrobials and the development of resistance. In addition, one type of antimicrobial could select for cross-resistance to another type and/or for multidrug resistance. Therefore, we argue the case for increased stewardship to not only cover clinical use of antibiotics, but also the use of antimicrobials in agriculture and stewardship of our crucially important biocides such as chlorhexidine. PMID:28258225

  20. Antimicrobial stewardship: English Surveillance Programme for Antimicrobial Utilization and Resistance (ESPAUR).

    PubMed

    Ashiru-Oredope, Diane; Hopkins, Susan

    2013-11-01

    The clinical, public health and economic implications of antimicrobial resistance present a major threat to future healthcare. Antimicrobial use is a major driver of resistance, and antimicrobial stewardship programmes are increasingly being advocated as a means of improving the quality of prescribing. However, to increase their impact and assess their success, a better understanding of antimicrobial usage, both in primary and secondary care, and linkage with antimicrobial resistance data are required. In England, national summaries of primary care dispensing data are issued annually by the Health and Social Care Information Centre. However, there is currently no routine public reporting of antimicrobial usage in hospitals. In response to the threat posed by antimicrobial resistance, as highlighted in the Report of the Chief Medical Officer and on the request of the Department of Health, Public Health England has developed a new national programme, the English Surveillance Programme for Antimicrobial Utilization and Resistance (ESPAUR). The programme will bring together the elements of antimicrobial utilization and resistance surveillance in both primary and secondary care settings, alongside the development of quality measures and methods to monitor unintended outcomes of antimicrobial stewardship and both public and professional behaviour interventions. This article reports on the background to the programme development, the current oversight group membership and the public reporting structure.

  1. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance.

    PubMed

    Cantón, Rafael; Horcajada, Juan Pablo; Oliver, Antonio; Garbajosa, Patricia Ruiz; Vila, Jordi

    2013-09-01

    Hospitals are considered an excellent compartment for the selection of resistant and multi-drug resistant (MDR) bacteria. The overuse and misuse of antimicrobial agents are considered key points fuelling this situation. Antimicrobial stewardship programs have been designed for better use of these compounds to prevent the emergence of resistant microorganisms and to diminish the upward trend in resistance. Nevertheless, the relationship between antibiotic use and antimicrobial resistance is complex, and the desired objectives are difficult to reach. Various factors affecting this relationship have been advocated including, among others, antibiotic exposure and mutant selection windows, antimicrobial pharmacodynamics, the nature of the resistance (natural or acquired, including mutational and that associated with horizontal gene transfer) and the definition of resistance. Moreover, antimicrobial policies to promote better use of these drugs should be implemented not only in the hospital setting coupled with infection control programs, but also in the community, which should also include animal and environmental compartments. Within hospitals, the restriction of antimicrobials, cycling and mixing strategies and the use of combination therapies have been used to avoid resistance. Nevertheless, the results have not always been favorable and resistant bacteria have persisted despite the theoretical benefits of these strategies. Mathematical models as well as microbiological knowledge can explain this failure, which is mainly related to the current scenario involving MDR bacteria and overcoming the fitness associated with resistance. New antimicrobials, rapid diagnostic and antimicrobial susceptibility testing and biomarkers will be useful for future antimicrobial stewardship interventions. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  2. Anti-microbial resistance stratified by risk factor among Escherichia coli strains isolated from the urinary tract at a rural clinic in Central India.

    PubMed

    Chatterjee, B; Kulathinal, S; Bhargava, A; Jain, Y; Kataria, R

    2009-01-01

    The failure of empirical therapy is frequently observed, even in community-acquired urinary tract infections. We, therefore, conducted a prospective, clinic-based study in 2004-2005 to document anti-microbial resistance rates and correlate them with possible risk factors to assist empirical decision-making. Symptomatic patients with pyuria underwent urine culture. Isolates were identified using standard methods and anti-microbial resistance was determined by disk-diffusion. Ultrasonography was used to detect complicating factors. Patients were stratified by the presence of complicating factors and history of invasive procedures for comparison of resistance rates. STATISTICAL METHOD USED: Chi-square or Fisher exact tests, as appropriate. There were 156 E. coli isolates, of which 105 were community-acquired. Twenty-three community-acquired isolates were from patients with complicating factors while 82 were from patients without any. Fifty-one isolates were from patients who had recently undergone invasive procedures on the urinary tract. Thirty-two community-acquired isolates from reproductive-age women without apparent complicating factors had resistance rates of 50% or above against tetracyclines, Co-trimoxazole, aminopenicillins, Nalidixic acid, Ciprofloxacin and 1 st generation cephalosporins. Resistance rates were significantly higher among isolates from patients subjected to invasive procedures, except against Co-trimoxazole, tetracyclines and Amikacin. High rates of anti-microbial resistance in community-acquired uropathogens have made antimicrobial sensitivity testing necessary even in a rural, primary-care setting.

  3. CIPROFLOXACIN RESISTANCE PATTERN AMONG BACTERIA ISOLATED FROM PATIENTS WITH COMMUNITY-ACQUIRED URINARY TRACT INFECTION

    PubMed Central

    REIS, Ana Carolina Costa; SANTOS, Susana Regia da Silva; de SOUZA, Siane Campos; SALDANHA, Milena Góes; PITANGA, Thassila Nogueira; OLIVEIRA, Ricardo Riccio

    2016-01-01

    SUMMARY Objective: To identify the main bacterial species associated with community-acquired urinary tract infection (UTI) and to assess the pattern of ciprofloxacin susceptibility among bacteria isolated from urine cultures. Methods: We conducted a retrospective study in all the patients with community-acquired UTI seen in Santa Helena Laboratory, Camaçari, Bahia, Brazil during five years (2010-2014). All individuals who had a positive urine culture result were included in this study. Results: A total of 1,641 individuals met the inclusion criteria. Despite the fact that participants were female, we observed a higher rate of resistance to ciprofloxacin in males. The most frequent pathogens identified in urine samples were Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus. Antimicrobial resistance has been observed mainly for ampicillin, sulfamethoxazole + trimethoprim and ciprofloxacin. Moreover, E. coli has shown the highest rate of ciprofloxacin resistance, reaching 36% of ciprofloxacin resistant strains in 2014. Conclusion: The rate of bacterial resistance to ciprofloxacin observed in the studied population is much higher than expected, prompting the need for rational use of this antibiotic, especially in infections caused by E. coli. Prevention of bacterial resistance can be performed through control measures to limit the spread of resistant microorganisms and a rational use of antimicrobial policy. PMID:27410913

  4. Temporal trends and patterns in antimicrobial resistant Gram-negative bacteria implicated in intensive care unit-acquired infections: a cohort-based surveillance study in Istanbul, Turkey.

    PubMed

    Durdu, Bulent; Kritsotakis, Evangelos I; Lee, Andrew C K; Torun, Perihan; Hakyemez, Ismail N; Gultepe, Bilge; Aslan, Turan

    2018-05-08

    This study assessed trends and patterns in antimicrobial resistant intensive care unit (ICU)-acquired infections caused by Gram-negative bacteria (GNB) in Istanbul, Turkey. Bacterial culture and antibiotic susceptibility data were collected for all GNB causing nosocomial infections in five adult ICUs of a large university hospital during 2012-2015. Multi-resistance patterns were categorised as multidrug (MDR), extensively-drug (XDR) and pandrug (PDR)-resistance. Patterns and trends were assessed using seasonal decomposition and regression analyses. Of 991 pathogenic GNB recorded, most frequent were Acinetobacter baumannii (35%), Klebsiella species (27%), Pseudomonas aeruginosa (18%), Escherichia coli (7%) and Enterobacter species (4%). The overall infection rate decreased by 41% from 18.4 to 10.9 cases per 1000 patient-days in 2012 compared to 2015 (p <0.001), mostly representing decreases in bloodstream infections and pneumonias by A. baumannii and P. aeruginosa. XDR proportion in A.baumannii increased from 52% in 2012 to 72% in 2015, but only one isolate was colistin-resistant. Multi-resistance patterns remained stable in Klebsiella, with overall XDR and possible PDR proportions of 14% and 2%, respectively. A back-to-susceptibility trend was noted for P. aeruginosa in which the non-MDR proportion increased from 53% in 2012 to 71% in 2015. 88% of E.coli and 40% of Enterobacter isolates were MDR, but none was XDR. Antimicrobial resistance patterns in pathogenic GNB continuously change over time and may not reflect single-agent resistance trends. The proportionate amount of antimicrobial-resistant GNB may persist despite overall decreasing infection rates. Timely regional surveillance data are thus imperative for optimal infection control. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  5. Free-living Canada geese and antimicrobial resistance.

    PubMed

    Cole, Dana; Drum, David J V; Stalknecht, David E; White, David G; Lee, Margie D; Ayers, Sherry; Sobsey, Mark; Maurer, John J

    2005-06-01

    We describe antimicrobial resistance among Escherichia coli isolated from free-living Canada Geese in Georgia and North Carolina (USA). Resistance patterns are compared to those reported by the National Antimicrobial Resistance Monitoring System. Canada Geese may be vectors of antimicrobial resistance and resistance genes in agricultural environments.

  6. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans.

    PubMed

    Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick

    2016-04-01

    In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Antimicrobial resistance mechanisms among Campylobacter.

    PubMed

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  8. Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines.

    PubMed

    Venter, Henrietta; Henningsen, Michael L; Begg, Stephanie L

    2017-02-28

    The crisis of antimicrobial resistance (AMR) is one of the most serious issues facing us today. The scale of the problem is illustrated by the recent commitment of Heads of State at the UN to coordinate efforts to curb the spread of AMR infections. In this review, we explore the biochemistry behind the headlines of a few stories that were recently published in the public media. We focus on examples from three different issues related to AMR: (i) hospital-acquired infections, (ii) the spread of resistance through animals and/or the environment and (iii) the role of antimicrobial soaps and other products containing disinfectants in the dissemination of AMR. Although these stories stem from three very different settings, the underlying message in all of them is the same: there is a direct relationship between the use of antimicrobials and the development of resistance. In addition, one type of antimicrobial could select for cross-resistance to another type and/or for multidrug resistance. Therefore, we argue the case for increased stewardship to not only cover clinical use of antibiotics, but also the use of antimicrobials in agriculture and stewardship of our crucially important biocides such as chlorhexidine. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Molecular Detection of Antimicrobial Resistance

    PubMed Central

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  10. The US national antimicrobial resistance monitoring system.

    PubMed

    Gilbert, Jeffrey M; White, David G; McDermott, Patrick F

    2007-10-01

    The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.

  11. Antimicrobial Resistance in the Food Chain: A Review

    PubMed Central

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-01-01

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024

  12. Trend and seasonality of community-acquired Escherichia coli antimicrobial resistance and its dynamic relationship with antimicrobial use assessed by ARIMA models.

    PubMed

    Asencio Egea, María Ángeles; Huertas Vaquero, María; Carranza González, Rafael; Herráez Carrera, Óscar; Redondo González, Olga; Arias Arias, Ángel

    2017-12-04

    We studied the trend and seasonality of community-acquired Escherichia coli resistance and quantified its correlation with the previous use of certain antibiotics. A time series study of resistant community-acquired E. coli isolates and their association with antibiotic use was conducted in a Primary Health Care Area from 2008 to 2012. A Poisson regression model was constructed to estimate the trend and seasonality of E. coli resistance. A significant increasing trend in mean E. coli resistance to cephalosporins, aminoglycosides and nitrofurantoin was observed. Seasonal resistance to ciprofloxacin and amoxicillin-clavulanic acid was significantly higher in autumn-winter. There was a delay of 7, 10 and 12 months between the use of cotrimoxazole (P<0.038), fosfomycin (P<0.024) and amoxicillin-clavulanic acid (P<0.015), respectively, and the occurrence of E. coli resistance. An average delay of 10 months between the previous use of amoxicillin-clavulanic acid, cotrimoxazole and fosfomycin and the appearance of resistant community-acquired E. coli strains was detected. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. Antimicrobial resistance in Escherichia coli O157 and non-O157 recovered from feces of domestic farm animals in Northwestern Mexico

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) O157 and non-O157 is a matter of increasing concern. Inappropriate antimicrobial use in human and animal therapy has been associated with an acquired resistance in enteric microorganisms. The aim of the present study was to de...

  14. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste

    PubMed Central

    Durso, Lisa M.; Harhay, Dayna M.; Schmidt, John W.

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two “low impact” environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  15. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    PubMed

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences

  16. Antimicrobial Drug Use and Resistance in Europe

    PubMed Central

    van de Sande-Bruinsma, Nienke; Verloo, Didier; Tiemersma, Edine; Monen, Jos; Goossens, Herman; Ferech, Matus

    2008-01-01

    Our study confronts the use of antimicrobial agents in ambulatory care with the resistance trends of 2 major pathogens, Streptococcus pneumoniae and Escherichia coli, in 21 European countries in 2000–2005 and explores whether the notion that antimicrobial drug use determines resistance can be supported by surveillance data at national aggregation levels. The data obtained from the European Surveillance of Antimicrobial Consumption and the European Antimicrobial Resistance Surveillance System suggest that variation of consumption coincides with the occurrence of resistance at the country level. Linear regression analysis showed that the association between antimicrobial drug use and resistance was specific and robust for 2 of 3 compound pathogen combinations, stable over time, but not sensitive enough to explain all of the observed variations. Ecologic studies based on routine surveillance data indicate a relation between use and resistance and support interventions designed to reduce antimicrobial drug consumption at a national level in Europe. PMID:18976555

  17. Update on antimicrobial resistance.

    PubMed

    Weber, Carol J

    2005-02-01

    WHO experts believe that antimicrobial resistance is potentially containable, but the window of opportunity to control and eventually eliminate the most dangerous infectious diseases is closing. If we miss our opportunity, it may become very difficult and expensive--and in some cases impossible--to treat infectious diseases. WHO's global strategy to contain antimicrobial resistance requires a massive effort and an alliance among countries, governments, international organizations, drug manufacturers, and private and public health care sectors. If infectious diseases are fought wisely and widely by the international community, drug resistance can be controlled and lives saved.

  18. Antimicrobial Resistance Risks of Cholera Prophylaxis for United Nations Peacekeepers

    PubMed Central

    Lewnard, Joseph A.; Pitzer, Virginia E.; Cohen, Ted

    2017-01-01

    ABSTRACT More than 5 years after a United Nations peacekeeping battalion introduced cholera to Haiti, over 150,000 peacekeepers continue to be deployed annually from countries where cholera is endemic. The United Nations has thus far declined to provide antimicrobial chemoprophylaxis to peacekeepers, a policy based largely on concerns that the risks of drug resistance generation and spread would outweigh the potential benefits of preventing future cholera importations. In this study, we sought to better understand the relative benefits and risks of cholera chemoprophylaxis for peacekeepers in terms of antibiotic resistance. Using a stochastic model to quantify the potential impact of chemoprophylaxis on importation and transmission of drug-resistant and drug-sensitive Vibrio cholerae, we found that chemoprophylaxis would decrease the probability of cholera importation but would increase the expected number of drug-resistant infections if an importation event were to occur. Despite this potential increase, we found that at least 10 drug-sensitive infections would likely be averted per excess drug-resistant infection under a wide range of assumptions about the underlying prevalence of drug resistance and risk of acquired resistance. Given these findings, policymakers should reconsider whether the potential resistance risks of providing antimicrobial chemoprophylaxis to peacekeepers are sufficient to outweigh the anticipated benefits. PMID:28533237

  19. Antimicrobial Resistance Risks of Cholera Prophylaxis for United Nations Peacekeepers.

    PubMed

    Kunkel, Amber; Lewnard, Joseph A; Pitzer, Virginia E; Cohen, Ted

    2017-08-01

    More than 5 years after a United Nations peacekeeping battalion introduced cholera to Haiti, over 150,000 peacekeepers continue to be deployed annually from countries where cholera is endemic. The United Nations has thus far declined to provide antimicrobial chemoprophylaxis to peacekeepers, a policy based largely on concerns that the risks of drug resistance generation and spread would outweigh the potential benefits of preventing future cholera importations. In this study, we sought to better understand the relative benefits and risks of cholera chemoprophylaxis for peacekeepers in terms of antibiotic resistance. Using a stochastic model to quantify the potential impact of chemoprophylaxis on importation and transmission of drug-resistant and drug-sensitive Vibrio cholerae , we found that chemoprophylaxis would decrease the probability of cholera importation but would increase the expected number of drug-resistant infections if an importation event were to occur. Despite this potential increase, we found that at least 10 drug-sensitive infections would likely be averted per excess drug-resistant infection under a wide range of assumptions about the underlying prevalence of drug resistance and risk of acquired resistance. Given these findings, policymakers should reconsider whether the potential resistance risks of providing antimicrobial chemoprophylaxis to peacekeepers are sufficient to outweigh the anticipated benefits. Copyright © 2017 American Society for Microbiology.

  20. Antimicrobial Resistance in Asia: Current Epidemiology and Clinical Implications

    PubMed Central

    Kang, Cheol-In

    2013-01-01

    Antimicrobial resistance has become one of the most serious public health concerns worldwide. Although circumstances may vary by region or country, it is clear that some Asian countries are epicenters of resistance, having seen rapid increases in the prevalence of antimicrobial resistance of major bacterial pathogens. In these locations, however, the public health infrastructure to combat this problem is very poor. The prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA), macrolide-resistant Streptococcus pneumoniae, and multidrug-resistant enteric pathogens are very high due to the recent emergence of extremely drug-resistant gram-negative bacilli in Asia. Because antimicrobial options for these pathogens are extremely limited, infections caused by antimicrobial-resistant bacteria are often associated with inappropriate antimicrobial therapy and poor clinical outcomes. Physicians should be aware of the current epidemiological status of resistance and understand the appropriate use of antimicrobial agents in clinical practice. This review focuses on describing the epidemiology and clinical implications of antimicrobial-resistant bacterial infections in Asian countries. PMID:24265947

  1. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance.

    PubMed

    Yamamoto, Tatsuo; Nishiyama, Akihito; Takano, Tomomi; Yabe, Shizuka; Higuchi, Wataru; Razvina, Olga; Shi, Da

    2010-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is able to persist not only in hospitals (with a high level of antimicrobial agent use) but also in the community (with a low level of antimicrobial agent use). The former is called hospital-acquired MRSA (HA-MRSA) and the latter community-acquired MRSA (CA-MRSA). It is believed MRSA clones are generated from S. aureus through insertion of the staphylococcal cassette chromosome mec (SCCmec), and outbreaks occur as they spread. Several worldwide and regional clones have been identified, and their epidemiological, clinical, and genetic characteristics have been described. CA-MRSA is likely able to survive in the community because of suitable SCCmec types (type IV or V), a clone-specific colonization/infection nature, toxin profiles (including Pantone-Valentine leucocidin, PVL), and narrow drug resistance patterns. CA-MRSA infections are generally seen in healthy children or young athletes, with unexpected cases of diseases, and also in elderly inpatients, occasionally surprising clinicians used to HA-MRSA infections. CA-MRSA spreads within families and close-contact groups or even through public transport, demonstrating transmission cores. Re-infection (including multifocal infection) frequently occurs, if the cores are not sought out and properly eradicated. Recently, attention has been given to CA-MRSA (USA300), which originated in the US, and is growing as HA-MRSA and also as a worldwide clone. CA-MRSA infection in influenza season has increasingly been noted as well. MRSA is also found in farm and companion animals, and has occasionally transferred to humans. As such, the epidemiological, clinical, and genetic behavior of CA-MRSA, a growing threat, is focused on in this study.

  2. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat.

    PubMed

    Bortolaia, V; Espinosa-Gongora, C; Guardabassi, L

    2016-02-01

    Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human health risks associated with the occurrence of these opportunistic human pathogens on poultry meat with particular focus on the risk of food-borne transmission of antimicrobial resistance. In the absence of conclusive evidence of transmission, this risk was inferred using data from scientific articles and national reports on prevalence, bacterial load, antimicrobial resistance and clonal distribution of these three species on poultry meat. The risks associated with ingestion of antimicrobial-resistant enterococci of poultry origin comprise horizontal transfer of resistance genes and transmission of multidrug-resistant E. faecalis lineages such as sequence type ST16. Enterococcus faecium lineages occurring in poultry meat products are distantly related to those causing hospital-acquired infections but may act as donors of quinupristin/dalfopristin resistance and other resistance determinants of clinical interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin-producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Antimicrobial-resistant Invasive Escherichia coli, Spain

    PubMed Central

    Oteo, Jesús; Lázaro, Edurne; de Abajo, Francisco J.; Baquero, Fernando; Campos, José

    2005-01-01

    To address the public health problem of antimicrobial resistance, the European Union founded the European Antimicrobial Resistance Surveillance System. A network of 32 Spanish hospitals, serving ≈9.6 million persons, submitted antimicrobial-susceptibility data on 7,098 invasive Escherichia coli species (2001–2003). Resistance to ampicillin, cotrimoxazole, ciprofloxacin, gentamicin, and tobramycin was found at rates of 59.9%, 32.6%, 19.3%, 6.8%, and 5.3%, respectively. Resistance to multiple drugs increased from 13.8% in 2001 to 20.6% in 2003 (p <0.0001). Antimicrobial consumption data were obtained from the Spanish National Health System. In spite of decreased cephalosporin and β-lactam use, overall extended-spectrum β-lactamase production increased from 1.6% (2001) to 4.1% (2003) (p <0.0001), mainly due to the rising prevalence of cefotaximases. Resistance to ciprofloxacin significantly increased, mostly in community-onset infections, which coincided with a rise in community quinolone use. Cotrimoxazole resistance remained stable at ≈30%, even though its use was dramatically reduced. PMID:15829192

  5. Antimicrobial resistance issues in beef production

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance threats to human health as identified have been recognized as a critical global public health concern. Linkage of some threats to beef production is discussed. The relevance to beef production of recent government actions will be examined. Prominent antimicrobial resistance ...

  6. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste

    USDA-ARS?s Scientific Manuscript database

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal waste water treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact...

  7. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance

    PubMed Central

    Tate, Heather; Plumblee, Jodie R.; Dessai, Uday; Whichard, Jean M.; Thacker, Eileen L.; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R.; Griffin, Patricia M.; McDermott, Patrick F.

    2017-01-01

    Abstract Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated “One Health” approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats

  8. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance.

    PubMed

    Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F

    2017-10-01

    Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in

  9. SSTAR, a Stand-Alone Easy-To-Use Antimicrobial Resistance Gene Predictor.

    PubMed

    de Man, Tom J B; Limbago, Brandi M

    2016-01-01

    We present the easy-to-use Sequence Search Tool for Antimicrobial Resistance, SSTAR. It combines a locally executed BLASTN search against a customizable database with an intuitive graphical user interface for identifying antimicrobial resistance (AR) genes from genomic data. Although the database is initially populated from a public repository of acquired resistance determinants (i.e., ARG-ANNOT), it can be customized for particular pathogen groups and resistance mechanisms. For instance, outer membrane porin sequences associated with carbapenem resistance phenotypes can be added, and known intrinsic mechanisms can be included. Unique about this tool is the ability to easily detect putative new alleles and truncated versions of existing AR genes. Variants and potential new alleles are brought to the attention of the user for further investigation. For instance, SSTAR is able to identify modified or truncated versions of porins, which may be of great importance in carbapenemase-negative carbapenem-resistant Enterobacteriaceae. SSTAR is written in Java and is therefore platform independent and compatible with both Windows and Unix operating systems. SSTAR and its manual, which includes a simple installation guide, are freely available from https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-. IMPORTANCE Whole-genome sequencing (WGS) is quickly becoming a routine method for identifying genes associated with antimicrobial resistance (AR). However, for many microbiologists, the use and analysis of WGS data present a substantial challenge. We developed SSTAR, software with a graphical user interface that enables the identification of known AR genes from WGS and has the unique capacity to easily detect new variants of known AR genes, including truncated protein variants. Current software solutions do not notify the user when genes are truncated and, therefore, likely nonfunctional, which makes phenotype predictions less accurate. SSTAR

  10. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides.

    PubMed

    Lázár, Viktória; Martins, Ana; Spohn, Réka; Daruka, Lejla; Grézal, Gábor; Fekete, Gergely; Számel, Mónika; Jangir, Pramod K; Kintses, Bálint; Csörgő, Bálint; Nyerges, Ákos; Györkei, Ádám; Kincses, András; Dér, András; Walter, Fruzsina R; Deli, Mária A; Urbán, Edit; Hegedűs, Zsófia; Olajos, Gábor; Méhi, Orsolya; Bálint, Balázs; Nagy, István; Martinek, Tamás A; Papp, Balázs; Pál, Csaba

    2018-06-01

    Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.

  11. Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health.

    PubMed

    Asokan, G V; Kasimanickam, R K

    2013-01-01

    Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG). Five out of the total eight MDG's are strongly associated with the Emerging Infectious Diseases (EIDs). Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR). World Health Organization (WHO has identified AMR as 1 of the 3 greatest threats to global health. Until now, methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) have been observed in hospital-acquired infections. In India, within a span of three years, New Delhi metallo-β-lactamase prevalence has risen from three percent in hospitals to twenty- fifty percent and is found to be colistin resistant as well. Routine use of antimicrobials in animal husbandry accounts for more than 50% in tonnage of all antimicrobial production to promote growth and prophylaxis. This has consequences to human health and environmental contamination with a profound impact on the environmental microbiome, resulting in resistance. Antibiotic development is now considered a global health crisis. The average time required to receive regulatory approval is 7.2 years. Moreover, the clinical approval success is only 16%. To overcome resistance in antimicrobials, intersectoral partnerships among medical, veterinary, and environmental disciplines, with specific epidemiological, diagnostic, and therapeutic approaches are needed. Joint efforts under "One Health", beyond individual professional boundaries are required to stop antimicrobial resistance against zoonoses (EID) and reach the MDG.

  12. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain.

    PubMed

    Escolar, Cristina; Gómez, Diego; Del Carmen Rota García, María; Conchello, Pilar; Herrera, Antonio

    2017-06-01

    The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.

  13. Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis

    PubMed Central

    Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee

    2014-01-01

    Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101

  14. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis

    PubMed Central

    Hao, Haihong; Sander, Pascal; Iqbal, Zahid; Wang, Yulian; Cheng, Guyue; Yuan, Zonghui

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data, and risk assessment results of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in humans. From the selected examples, it was apparent from reviewing the published scientific literature that the ban on use of some antimicrobial agents (e.g., avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and did not mitigate the intended goal of minimizing antimicrobial resistance. The use of some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food animals may have an impact on the antimicrobial resistance in humans, but it was largely depended on the pattern of drug usage in different geographical regions. The epidemiological characteristics of resistant bacteria were closely related to molecular mechanisms involved in the development, fitness, and transmission of antimicrobial resistance. PMID:27803693

  15. Antimicrobial resistance of mastitis pathogens.

    PubMed

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur

  16. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain.

    PubMed

    Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro

    2011-07-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥ 4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC(50) > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae.

  17. Associations of antimicrobial use with antimicrobial resistance in Campylobacter coli from grow-finish pigs in Japan.

    PubMed

    Ozawa, M; Makita, K; Tamura, Y; Asai, T

    2012-10-01

    To determine associations between antimicrobial use and antimicrobial resistance in Campylobacter coli, 155 isolates were obtained from the feces of apparently healthy grow-finish pigs in Japan. In addition, data on the use of antibiotics collected through the national antimicrobial resistance monitoring system in Japan were used for the analysis. Logistic regression was used to identify risk factors to antimicrobial resistance in C. coli in pigs for the following antimicrobials: ampicillin, dihydrostreptomycin, erythromycin, oxytetracycline, chloramphenicol, and enrofloxacin. The data suggested the involvement of several different mechanisms of resistance selection. The statistical relationships were suggestive of co-selection; use of macrolides was associated with enrofloxacin resistance (OR=2.94; CI(95%): 0.997, 8.68) and use of tetracyclines was associated with chloramphenicol resistance (OR=2.37; CI(95%): 1.08, 5.19). The statistical relationships were suggestive of cross-resistance: use of macrolides was associated with erythromycin resistance (OR=9.36; CI(95%): 2.96, 29.62) and the use of phenicols was associated with chloramphenicol resistance (OR=11.83; CI(95%): 1.41, 99.44). These data showed that the use of antimicrobials in pigs selects for resistance in C. coli within and between classes of antimicrobials. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    PubMed

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  19. Leading Antimicrobial Drug-Resistant Diseases

    MedlinePlus

    ... can be life-threatening. Find Out More MedlinePlus: Antibiotic Resistance National Institute of Allergy and Infectious Diseases: Antibiotic Resistance Centers for Disease Control and Prevention: Antibiotic / Antimicrobial ...

  20. Trends in antimicrobial resistance and empiric antibiotic therapy of bloodstream infections at a general hospital in Mid-Norway: a prospective observational study.

    PubMed

    Mehl, Arne; Åsvold, Bjørn Olav; Kümmel, Angela; Lydersen, Stian; Paulsen, Julie; Haugan, Ingvild; Solligård, Erik; Damås, Jan Kristian; Harthug, Stig; Edna, Tom-Harald

    2017-02-02

    The occurrence of bloodstream infection (BSI) and antimicrobial resistance have been increasing in many countries. We studied trends in antimicrobial resistance and empiric antibiotic therapy at a medium-sized general hospital in Mid-Norway. Between 2002 and 2013, 1995 prospectively recorded episodes of BSI in 1719 patients aged 16-99 years were included. We analyzed the antimicrobial non-susceptibility according to place of acquisition, site of infection, microbe group, and time period. There were 934 community-acquired (CA), 787 health care-associated (HCA) and 274 hospital-acquired (HA) BSIs. The urinary tract was the most common site of infection. Escherichia coli was the most frequently isolated infective agent in all three places of acquisition. Second in frequency was Streptococcus pneumoniae in CA and Staphylococcus aureus in both HCA and HA. Of the BSI microbes, 3.5% were non-susceptible to the antimicrobial regimen recommended by the National Professional Guidelines for Use of Antibiotics in Hospitals, consisting of penicillin, gentamicin, and metronidazole (PGM). In contrast, 17.8% of the BSI microbes were non-susceptible to cefotaxime and 27.8% were non-susceptible to ceftazidime. Antimicrobial non-susceptibility differed by place of acquisition. For the PGM regimen, the proportions of non-susceptibility were 1.4% in CA, 4.8% in HCA, and 6.9% in HA-BSI (p < 0.001), and increasing proportions of non-susceptibility over time were observed in HA-BSI, 2.2% in 2002-2005, 6.2% in 2006-2009, and 11.7% in 2010-2013 (p = 0.026), mainly caused by inherently resistant microbes. We also observed increasing numbers of bacteria with acquired resistance, particularly E. coli producing ESBL or possessing gentamicin resistance, and these occurred predominantly in CA- and HCA-BSI. Generally, antimicrobial resistance was a far smaller problem in our BSI cohort than is reported from countries outside Scandinavia. In our cohort, appropriate empiric antibiotic

  1. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    PubMed

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  2. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use.

    PubMed

    Gibbons, J F; Boland, F; Egan, J; Fanning, S; Markey, B K; Leonard, F C

    2016-05-01

    Antimicrobial use and resistance in animal and food production are of concern to public health. The primary aims of this study were to determine the frequency of resistance to 12 antimicrobials in Escherichia coli isolates from 39 pig farms and to identify patterns of antimicrobial use on these farms. Further aims were to determine whether a categorization of farms based on the duration of in-feed antimicrobial use (long-term versus short-term) could predict the occurrence of resistance on these farms and to identify the usage of specific antimicrobial drugs associated with the occurrence of resistance. Escherichia coli were isolated from all production stages on these farms; susceptibility testing was carried out against a panel of antimicrobials. Antimicrobial prescribing data were collected, and farms were categorized as long term or short term based on these. Resistance frequencies and antimicrobial use were tabulated. Logistic regression models of resistance to each antimicrobial were constructed with stage of production, duration of antimicrobial use and the use of 5 antimicrobial classes included as explanatory variables in each model. The greatest frequencies of resistance were observed to tetracycline, trimethoprim/sulphamethoxazole and streptomycin with the highest levels of resistance observed in isolates from first-stage weaned pigs. Differences in the types of antimicrobial drugs used were noted between long-term and short-term use farms. Categorization of farms as long- or short-term use was sufficient to predict the likely occurrence of resistance to 3 antimicrobial classes and could provide an aid in the control of resistance in the food chain. Stage of production was a significant predictor variable in all models of resistance constructed and did not solely reflect antimicrobial use at each stage. Cross-selection and co-selection for resistance was evident in the models constructed, and the use of trimethoprim/sulphonamide drugs in particular was

  3. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance.

    PubMed

    Holman, Devin B; Chénier, Martin R

    2015-11-01

    Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

  4. Engineering Antimicrobials Refractory to Resistance

    USDA-ARS?s Scientific Manuscript database

    Multi-drug resistant superbugs are a persistent problem in modern health care, demonstrating the need for a new class of antimicrobials that can address this concern. Triple-acting peptidoglycan hydrolase fusions are a novel class of antimicrobials which have qualities well suited to avoiding resis...

  5. Analysis of Antimicrobial Resistance Genes Detected in MDR Salmonella enterica Serovar Typhimurium animal isolates from the National Antimicrobial Resistance Monitoring System

    USDA-ARS?s Scientific Manuscript database

    Background: The presence of Multi-Drug Resistant (MDR) Salmonella in food animals is concerning. To understand how antimicrobial resistance (AR) develops, the genetic elements responsible for MDR phenotypes in Salmonella animal isolates were investigated. National Antimicrobial Resistance Monitoring...

  6. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens

    PubMed Central

    Santajit, Sirijan; Indrawattana, Nitaya

    2016-01-01

    The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens. PMID:27274985

  7. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens.

    PubMed

    Santajit, Sirijan; Indrawattana, Nitaya

    2016-01-01

    The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens.

  8. Antimicrobial and disinfectant resistance of Escherichia coli isolated from giant pandas.

    PubMed

    Guo, L; Long, M; Huang, Y; Wu, G; Deng, W; Yang, X; Li, B; Meng, Y; Cheng, L; Fan, L; Zhang, H; Zou, L

    2015-07-01

    The study aims to demonstrate the antimicrobial and disinfectant resistance phenotypes and genotypes of Escherichia coli isolates obtained from giant pandas (Ailuropoda melanoleuca). Antimicrobial testing was performed according to the standard disk diffusion method. The minimal inhibitory concentrations (MICs) of disinfectants were determined using the agar dilution method. All isolates were screened for the presence of antimicrobial and disinfectant resistance genes and further analysed for genetic relatedness by pulse-field gel electrophoresis (PFGE). Results showed that 46·6% of the isolates were resistant to at least one antimicrobial. Escherichia coli isolates showed resistance to fewer antimicrobials as panda age increased. Among antimicrobial-resistant E. coli isolates, the antimicrobial resistance genes blaCTX-M (88·2%) and sul1 (92·3%) were most prevalent. The disinfectant resistance genes emrE, ydgE/ydgF, mdfA and sugE(c) were commonly present (68·2-98·9%), whereas qac and sugE(p) were relatively less prevalent (0-21·3%). The frequencies of resistance genes tended to be higher in E. coli isolated in December than in July, and PFGE profiles were also more diverse in isolates in December. The qacEΔ1 and sugE(p) genes were higher in adolescent pandas than in any other age groups. PFGE revealed that antimicrobial resistance correlated well with sampling time and habitat. This study demonstrated that antimicrobial and disinfectant resistance was common in giant panda-derived E. coli, and the antimicrobial resistance was associated with sampling time and habitat. Escherichia coli could serve as a critical vector in spreading disinfectant and antimicrobial resistance. This is the first study that demonstrated the phenotypic and genetic characterizations of antimicrobial and disinfectant resistance in E. coli isolates from more than 60 giant pandas. Frequent transfer of pandas to other cages may lead to the dissemination of antimicrobial resistance. The

  9. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance).

    PubMed

    Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  10. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance)

    PubMed Central

    Andrade, Leonardo N.; Siqueira, Thiago E. S.; Martinez, Roberto; Darini, Ana Lucia C.

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP) and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC) in Enterobacter cloacae Complex (EcC) (n = 27) and Enterobacter aerogenes (n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9) and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens. PMID:29628916

  11. Quantifying Antimicrobial Resistance at Veal Calf Farms

    PubMed Central

    Bosman, Angela B.; Wagenaar, Jaap; Stegeman, Arjan; Vernooij, Hans; Mevius, Dik

    2012-01-01

    This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s) by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution) and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p≤0.05). Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which 90 isolates are

  12. Advances in pharmacovigilance initiatives surrounding antimicrobial resistance-Indian perspective.

    PubMed

    Bairy, Laxminarayana Kurady; Nayak, Veena; A, Avinash; Kunder, Sushil Kiran

    2016-08-01

    In recent years the development of antimicrobial resistance has been accelerating, the discovery of new antimicrobial agents has slowed substantially in past decades. This review mainly focuses on the problem of antimicrobial resistance(AMR); the various contributor mechanisms, consequences and future of AMR. The review also highlights the irrational use of antimicrobials, improving their usage and problems associated with pharmacovigilance of antimicrobial resistance. Pharmacovigilance in the form of surveillance of antibiotic use is being done in 90% of the countries worldwide through the WHONET program developed by WHO. However, the data comes from a limited area of the globe. Data from every part of the world is required, so that there is geographical representation of every region. A major hurdle in quantifying the extent of antimicrobial resistance is the fact that there are several known microbes, that may turn out to be resistant to one or more of the several known antimicrobial agents. The global action plan initiated by WHO, if implemented successfully will definitely reduce AMR and will help in evaluating treatment interventions.

  13. Antimicrobial utilization and bacterial resistance at three different hospitals.

    PubMed

    Vlahović-Palcevski, V; Morović, M; Palcevski, G; Betica-Radić, L

    2001-01-01

    It has been generally recognized that the prevalence of bacterial resistance among bacteria is an unavoidable consequence of antibiotic use and is positively linked to the overall use of antibacterial drugs. The purpose of this study was to investigate the extent of antimicrobial usage and to evaluate the antimicrobial resistance at three different hospital settings in Croatia: a clinical hospital, a general hospital and a specialized clinic for infectious diseases. In this survey the antimicrobial drug consumption and antimicrobial susceptibility test results were analyzed for the first 6 months of 1997 in three different hospitals in Croatia: the University Hospital Center (UHC), Rijeka, the Clinic for Infectious Diseases 'Dr Fran Mihaljević', Zagreb and the Dubrovnik General Hospital. The data were collected from corresponding hospital pharmacy records and microbiology laboratories. Antimicrobial drug utilization was expressed in number of defined daily doses (DDDs) per 100 bed days. High antimicrobial utilization and high resistance rates were found in all three hospitals. At the Clinic for Infectious Diseases, the most frequently used antimicrobials where those of narrow spectrum while at the UHC Rijeka and the Dubrovnik General Hospital the broad spectrum antimicrobials were mostly used. The highest antimicrobial consumption was noted at the Susak locality of the UHC, Rijeka, where the highest resistance rates of bacteria to antimicrobials were also found. Results of this observational study indicate that attempts should be made to reduce the influence of factors that may lead to emergent resistance. The most effective approach to the prevention of transmission of multidrug-resistant pathogens is preventing the initial emergence of resistance. A rational and strict antibiotic policy is thus of great importance for the optimal use of these agents.

  14. Shigella species epidemiology and antimicrobial susceptibility: the implications of emerging azithromycin resistance for guiding treatment, guidelines and breakpoints.

    PubMed

    Brown, Jeremy D; Willcox, Simon J; Franklin, Neil; Hazelton, Briony; Howard, Peter; Reinten, Tracie; Sheppeard, Vicky; O'Sullivan, Matthew

    2017-11-01

    To examine antimicrobial susceptibility patterns and predictors of resistance among Shigella isolates in New South Wales (NSW), Australia during 2013-14 with emphasis on azithromycin. Cross-sectional analysis of all shigellosis cases (160) notified to public health authorities in NSW, Australia was performed. Among 160 Shigella isolates tested, 139 (86.9%) were susceptible to azithromycin, 104 (65.0%) to ciprofloxacin and 38 (23.7%) to co-trimoxazole. Ciprofloxacin resistance was 1.9 times more common in infections acquired in Australia compared with those acquired overseas, while azithromycin resistance was 8.5 times more common in males. We recommend ongoing reconsideration of guidelines for the treatment of shigellosis based on emerging resistance patterns. First-line therapy may need to be reconsidered based on local resistance rates due to common resistance to co-trimoxazole and ciprofloxacin. We recommend culture and susceptibility testing for suspected and proven shigellosis. Azithromycin susceptibility breakpoints for Shigella species may need to be species specific. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Characterization of antimicrobial resistant Escherichia coli isolated from processed bison carcasses.

    PubMed

    Li, Q; Sherwood, J S; Logue, C M

    2007-12-01

    To determine the phenotypic and genotypic antimicrobial susceptibility profiles of Escherichia coli from bison carcasses. The antimicrobial resistance of 138 E. coli isolates recovered from processed bison carcasses was determined by using the National Antimicrobial Resistance Monitoring System panels, polymerase chain reaction assays, plasmid analysis and conjugation studies. Resistance to 14 of the 16 antimicrobials was observed. Twenty-three (16.7%) isolates displayed resistance to at least one antimicrobial agent. The most prevalent resistances were to tetracycline (13.0%), sulfamethoxazole (7.9%) and streptomycin (5.8%). No resistance was observed to amikacin and ciprofloxacin. Further analysis of 23 antimicrobial-resistant E. coli isolates showed the presence of resistance genes corresponding to their phenotypic profiles. Results of conjugation studies carried out showed most isolates tested were able to transfer their resistance to recipients. This study indicated that multidrug-resistant E. coli isolates are present in bison. However, the resistance rate is lower than that reported in other meat species. The beneficial effects of antimicrobial-free feeding practice in bison may be promoting a reduction in the prevalence of antimicrobial resistance in commensal flora of bison.

  16. Amoxicillin/clavulanate potassium extended release tablets: a new antimicrobial for the treatment of acute bacterial sinusitis and community-acquired pneumonia.

    PubMed

    Benninger, Michael S

    2003-10-01

    Community-acquired bacterial respiratory tract infections are among the most common health disorders requiring medical care and are associated with substantial morbidity, mortality, and direct and indirect costs. Recent increases in the prevalence of antimicrobial resistance have resulted in reduced susceptibility of the most common respiratory tract bacterial pathogens to a number of antimicrobials. Amoxicillin/clavulanate potassium extended release (ER) tablets (Augmentin XR, GlaxoSmithKline) is a new formulation of amoxicillin/clavulanate that retains activity against betalactamase-producing organisms whilst increasing the activity against Streptococcus pneumoniae through elevated and sustained plasma amoxicillin concentrations. The bilayer tablet provides immediate release of clavulanate and both immediate and sustained release of amoxicillin to maintain therapeutic concentrations of amoxicillin over longer periods of the dosing interval. In clinical trials of acute bacterial sinusitis (ABS) and community-acquired pneumonia (CAP), amoxicillin/clavulanate ER was shown to have excellent bacteriological and clinical success rates, even in patients infected with antimicrobial-resistant pathogens, and was found to be generally well tolerated. Amoxicillin/clavulanate ER is approved in the US for the treatment of patients with ABS or CAP caused by beta-lactamase-producing pathogens (ie, Haemophilus influenzae, Moraxella catarrhalis, Haemophilus parainfluenzae, Klebsiella pneumoniae, or methicillin-susceptible Staphylococcus aureus) and S. pneumoniae with reduced susceptibility to penicillin (penicillin minimum inhibitory concentration = 2.0 microg/ml).

  17. Antimicrobial resistance: from global agenda to national strategic plan, Thailand.

    PubMed

    Tangcharoensathien, Viroj; Sattayawutthipong, Wanchai; Kanjanapimai, Sukhum; Kanpravidth, Wantanee; Brown, Richard; Sommanustweechai, Angkana

    2017-08-01

    In Thailand, antimicrobial resistance has formed a small component of national drug policies and strategies on emerging infectious diseases. However, poor coordination and a lack of national goals and monitoring and evaluation platforms have reduced the effectiveness of the corresponding national actions. On the basis of local evidence and with the strong participation of relevant stakeholders, the first national strategic plan on antimicrobial resistance has been developed in Thailand. Before the development of the plan, ineffective coordination meant that antimicrobial resistance profiles produced at sentinel hospitals were not used effectively for clinical decision-making. There was no integrated system for the surveillance of antimicrobial resistance, no system for monitoring consumption of antimicrobial drugs by humans, livestock and pets and little public awareness of antimicrobial resistance. In August 2016, the Thai government endorsed a national strategic plan on antimicrobial resistance that comprised six strategic actions and five targets. A national steering committee guides the plan's implementation and a module to assess the prevalence of household antibiotic use and antimicrobial resistance awareness has been embedded into the biennial national health survey. A national system for the surveillance of antimicrobial consumption has also been initiated. Strong political commitment, national ownership and adequate multisectoral institutional capacities will be essential for the effective implementation of the national plan. A robust monitoring and evaluation platform now contributes to evidence-based interventions. An integrated system for the surveillance of antimicrobial resistance still needs to be established.

  18. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    PubMed

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  19. Antimicrobial resistance of Listeria spp. recovered from processed bison.

    PubMed

    Li, Q; Sherwood, J S; Logue, C M

    2007-01-01

    The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.

  20. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    PubMed Central

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  1. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective.

    PubMed

    Aidara-Kane, A

    2012-04-01

    The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.

  2. A Novel Antimicrobial Coating Represses Biofilm and Virulence-Related Genes in Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Vaishampayan, Ankita; de Jong, Anne; Wight, Darren J.; Kok, Jan; Grohmann, Elisabeth

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has become an important cause of hospital-acquired infections worldwide. It is one of the most threatening pathogens due to its multi-drug resistance and strong biofilm-forming capacity. Thus, there is an urgent need for novel alternative strategies to combat bacterial infections. Recently, we demonstrated that a novel antimicrobial surface coating, AGXX®, consisting of micro-galvanic elements of the two noble metals, silver and ruthenium, surface-conditioned with ascorbic acid, efficiently inhibits MRSA growth. In this study, we demonstrated that the antimicrobial coating caused a significant reduction in biofilm formation (46%) of the clinical MRSA isolate, S. aureus 04-02981. To understand the molecular mechanism of the antimicrobial coating, we exposed S. aureus 04-02981 for different time-periods to the coating and investigated its molecular response via next-generation RNA-sequencing. A conventional antimicrobial silver coating served as a control. RNA-sequencing demonstrated down-regulation of many biofilm-associated genes and of genes related to virulence of S. aureus. The antimicrobial substance also down-regulated the two-component quorum-sensing system agr suggesting that it might interfere with quorum-sensing while diminishing biofilm formation in S. aureus 04-02981. PMID:29497410

  3. Trends towards Lower Antimicrobial Susceptibility and Characterization of Acquired Resistance among Clinical Isolates of Brachyspira hyodysenteriae in Spain ▿

    PubMed Central

    Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro

    2011-01-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC50 > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae. PMID:21555771

  4. Macrolide Resistance in Microorganisms at Antimicrobial-Free Swine Farms▿

    PubMed Central

    Zhou, Zhi; Raskin, Lutgarde; Zilles, Julie L.

    2009-01-01

    To investigate the relationship between agricultural antimicrobial use and resistance, a variety of methods for quantification of macrolide-lincosamide-streptogramin B (MLSB) resistance were applied to organic swine farm manure samples. Fluorescence in situ hybridization was used to indirectly quantify the specific rRNA methylation resulting in MLSB resistance. Using this method, an unexpectedly high prevalence of ribosomal methylation and, hence, predicted MLSB resistance was observed in manure samples from two swine finisher farms that reported no antimicrobial use (37.6% ± 6.3% and 40.5% ± 5.4%, respectively). A culture-based method targeting relatively abundant clostridia showed a lower but still unexpectedly high prevalence of resistance at both farms (27.7% ± 11.3% and 11.7% ± 8.6%, respectively), while the prevalence of resistance in cultured fecal streptococci was low at both farms (4.0%). These differences in the prevalence of resistance across microorganisms suggest the need for caution when extrapolating from data obtained with indicator organisms. A third antimicrobial-free swine farm, a breeder-to-finisher operation, had low levels of MLSB resistance in manure samples with all methods used (<9%). Tetracycline antimicrobials were detected in manure samples from one of the finisher farms and may provide a partial explanation for the high level of MLSB resistance. Taken together, these findings highlight the need for a more fundamental understanding of the relationship between antimicrobial use and the prevalence of antimicrobial resistance. PMID:19633121

  5. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance.

    PubMed

    Enioutina, Elena Yu; Teng, Lida; Fateeva, Tatyana V; Brown, Jessica C S; Job, Kathleen M; Bortnikova, Valentina V; Krepkova, Lubov V; Gubarev, Michael I; Sherwin, Catherine M T

    2017-11-01

    In the modern antimicrobial era, the rapid spread of resistance to antibiotics and introduction of new and mutating viruses is a global concern. Combating antimicrobial resistant microbes (AMR) requires coordinated international efforts that incorporate new conventional antibiotic development as well as development of alternative drugs with antimicrobial activity, management of existing antimicrobials, and rapid detection of AMR pathogens. Areas covered: This manuscript discusses some conventional strategies to control microbial resistance. The main purpose of the manuscript is to present information on specific herbal medicines that may serve as good treatment alternatives to conventional antimicrobials for infections sensitive to conventional as well as resistant strains of microorganisms. Expert commentary: Identification of potential new antimicrobials is challenging; however, one source for potential structurally diverse and complex antimicrobials are natural products. Natural products may have advantages over other post-germ theory antimicrobials. Many antimicrobial herbal medicines possess simultaneous antibacterial, antifungal, antiprotozoal and/or antiviral properties. Herbal products have the potential to boost host resistance to infections, particularly in immunocompromised patients. Antimicrobial broad-spectrum activity in conjunction with immunostimulatory properties may help to prevent microbial resistance to herbal medicine. As part of the efforts to broaden use of herbal medicines to treat microbial infections, pre-clinical and clinical testing guidelines of these compounds as a whole should be implemented to ensure consistency in formulation, efficacy and safety.

  6. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa.

  7. Effect of hospitalization and antimicrobial therapy on antimicrobial resistance of colonizing Staphylococcus epidermidis.

    PubMed

    Knauer, Ariane; Fladerer, Petra; Strempfl, Christina; Krause, Robert; Wenisch, Christoph

    2004-07-31

    Endogenous infections with multi-resistant S. epidermidis are among the leading causes of nosocomial infections. The effect of hospitalization and antimicrobial therapy on antimicrobial resistance of colonizing staphylococci was determined from swabs of the nose, hand, axilla and groin from 157 patients on one day. Hospitalization for >72 hours, compared with <72 hours, was associated with a higher percentage of isolates resistant to oxacillin (56% versus 19%), gentamicin (40% versus 15%), trimethoprim (36% versus 17%), clindamycin (56% versus 17%), and fusidic acid (20% versus 4%; p < 0.01 for all), but not to rifampicin (6% versus 1%) or fosfomycin (43% versus 34%, p > 0.05 for both). Concurrent antimicrobial therapy resulted in increased resistance to oxacillin (61% versus 28%), gentamicin (43% versus 20%), and clindamycin (60% versus 26%; p < 0.01 for all), but not to trimethoprim (39% versus 23%), fusidic acid (19% versus 9%), rifampicin (6% versus 3%), or fosfomycin (46% versus 38%, p > 0.05 for all). The increase in resistant isolates was not independent, since hospitalization and antimicrobial therapy were correlated (p < 0.001). After adjustment for potential risk factors such as diabetes mellitus, central venous catheters, and hemodialysis, the odds ratio for oxacillin resistance was 2.8-3.6. None of the risk factors showed statistically significant results, except for the presence of neoplastic disease, which had a significant interaction (P=0.035). The within-subgroup odds ratios for patients with and without neoplasm were 4.2 (95% CI, 2.3-5.7) and 2.1 (95% CI, 0.78-3.12), respectively. These results show that hospitalization for more than three days, with or without antimicrobial therapy, and the presence of neoplastic disease are associated with increased antimicrobial resistance in colonizing S. epidermidis.

  8. Public health risk of antimicrobial resistance transfer from companion animals.

    PubMed

    Pomba, Constança; Rantala, Merja; Greko, Christina; Baptiste, Keith Edward; Catry, Boudewijn; van Duijkeren, Engeline; Mateus, Ana; Moreno, Miguel A; Pyörälä, Satu; Ružauskas, Modestas; Sanders, Pascal; Teale, Christopher; Threlfall, E John; Kunsagi, Zoltan; Torren-Edo, Jordi; Jukes, Helen; Törneke, Karolina

    2017-04-01

    Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  9. Costs and length of stay associated with antimicrobial resistance in acute kidney injury patients with bloodstream infection.

    PubMed

    Vandijck, D M; Blot, S I; Decruyenaere, J M; Vanholder, R C; De Waele, J J; Lameire, N H; Claus, S; De Schuijmer, J; Dhondt, A W; Verschraegen, G; Hoste, E A

    2008-01-01

    Antimicrobial resistance negatively impacts on prognosis. Intensive care unit (ICU) patients, and particularly those with acute kidney injury (AKI), are at high risk for developing nosocomial bloodstream infections (BSI) due to multi-drug-resistant strains. Economic implications in terms of costs and length of stay (LOS) attributable to antimicrobial resistance are underevaluated. This study aimed to assess whether microbial susceptibility patterns affect costs and LOS in a well-defined cohort of ICU patients with AKI undergoing renal replacement therapy (RRT) who developed nosocomial BSI. Historical study (1995-2004) enrolling all adult RRT-dependent ICU patients with AKI and nosocomial BSI. Costs were considered as invoiced in the Belgian reimbursement system, and LOS was used as a surrogate marker for hospital resource allocation. Of the 1330 patients with AKI undergoing RRT, 92 had microbiologic evidence of nosocomial BSI (57/92, 62% due to a multi-drug-resistant microorganism). Main patient characteristics were equal in both groups. As compared to patients with antimicro-4 bial-susceptible BSI, patients with antimicrobial-resistant BSI were more likely to acquire Gram-positive infection (72.6% vs 25.5%, P<0.001). No differences were found neither in LOS (ICU before BSI, ICU, hospital before BSI, hospital, hospital after BSI, and time on RRT; all P>0.05) or hospital costs (all P>0.05) when comparing patients with antimicrobial-resistant vs antimicrobial-susceptible BSI. However, although not statistically significant, patients with BSI caused by resistant Gram-negative-, Candida-, or anaerobic bacteria incurred substantial higher costs than those without. In a cohort of ICU patients with AKI and nosocomial BSI undergoing RRT, patients with antimicrobial-resistant vs antimicrobial-susceptible Gram-positive BSI did not have longer hospital stays, or higher hospital costs. Patients with resistant "other" (i.e. Gram-negative, Candida, or anaerobic) BSI were found

  10. Sucralose Increases Antimicrobial Resistance and Stimulates Recovery of Escherichia coli Mutants.

    PubMed

    Qu, Yilin; Li, Rongyan; Jiang, Mingshan; Wang, Xiuhong

    2017-07-01

    Because of heavy use of antimicrobials, antimicrobial resistance in bacteria has become of great concern. The effect of some widely used food additives such as sucralose on bacteria in the gut and the environment has also drawn increasing attention. In this study, we investigated the interaction between antimicrobials and sucralose impacting antimicrobial resistance and mutation of Escherichia coli (E. coli). To examine antimicrobial resistance and mutation frequency, different subinhibitory concentrations of sucralose were added to cultures of E.coli BW25113 that were then treated with antimicrobials, oxolinic acid, or moxifloxacin. Then the E.coli were assayed for bacterial survival and recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Pre-treatment of E.coli BW25113 with 1/2 minimal inhibitory concentration (MIC) of sucralose increased the survival rate in oxolinic acid or moxifloxacin. A 1/3 MIC of sucralose increased rifampicin-resistant mutation rate of E.coli BW25113 after 72 h, while rifampicin-resistant mutation rate was increased when co-treated with 1/8 MIC, 1/4 MIC, 1/3 MIC sucralose, and oxolinic acid after 24 h. Sucralose can increase the antimicrobial resistance and mutation frequency of E.coli to some antimicrobials.

  11. Adaptive Resistance to Biocides in Salmonella enterica and Escherichia coli O157 and Cross-Resistance to Antimicrobial Agents

    PubMed Central

    Braoudaki, M.; Hilton, A. C.

    2004-01-01

    The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms. PMID:14715734

  12. Acinetobacter spp. Infections in Malaysia: A Review of Antimicrobial Resistance Trends, Mechanisms and Epidemiology

    PubMed Central

    Mohd. Rani, Farahiyah; A. Rahman, Nor Iza; Ismail, Salwani; Alattraqchi, Ahmed Ghazi; Cleary, David W.; Clarke, Stuart C.; Yeo, Chew Chieng

    2017-01-01

    Acinetobacter spp. are important nosocomial pathogens, in particular the Acinetobacter baumannii-calcoaceticus complex, which have become a global public health threat due to increasing resistance to carbapenems and almost all other antimicrobial compounds. High rates of resistance have been reported among countries in Southeast Asia, including Malaysia. In this review, we examine the antimicrobial resistance profiles of Acinetobacter spp. hospital isolates from Malaysia over a period of nearly three decades (1987–2016) with data obtained from various peer-reviewed publications as well as the Malaysian National Surveillance on Antibiotic Resistance (NSAR). NSAR data indicated that for most antimicrobial compounds, including carbapenems, the peak resistance rates were reached around 2008–2009 and thereafter, rates have remained fairly constant (e.g., 50–60% for carbapenems). Individual reports from various hospitals in Peninsular Malaysia do not always reflect the nationwide resistance rates and often showed higher rates of resistance. We also reviewed the epidemiology and mechanisms of resistance that have been investigated in Malaysian Acinetobacter spp. isolates, particularly carbapenem resistance and found that blaOXA-23 is the most prevalent acquired carbapenemase-encoding gene. From the very few published reports and whole genome sequences that are available, most of the Acinetobacter spp. isolates from Malaysia belonged to the Global Clone 2 (GC2) CC92 group with ST195 being the predominant sequence type. The quality of data and analysis in the national surveillance reports could be improved and more molecular epidemiology and genomics studies need to be carried out for further in-depth understanding of Malaysian Acinetobacter spp. isolates. PMID:29312188

  13. Acinetobacter spp. Infections in Malaysia: A Review of Antimicrobial Resistance Trends, Mechanisms and Epidemiology.

    PubMed

    Mohd Rani, Farahiyah; A Rahman, Nor Iza; Ismail, Salwani; Alattraqchi, Ahmed Ghazi; Cleary, David W; Clarke, Stuart C; Yeo, Chew Chieng

    2017-01-01

    Acinetobacter spp. are important nosocomial pathogens, in particular the Acinetobacter baumannii - calcoaceticus complex, which have become a global public health threat due to increasing resistance to carbapenems and almost all other antimicrobial compounds. High rates of resistance have been reported among countries in Southeast Asia, including Malaysia. In this review, we examine the antimicrobial resistance profiles of Acinetobacter spp. hospital isolates from Malaysia over a period of nearly three decades (1987-2016) with data obtained from various peer-reviewed publications as well as the Malaysian National Surveillance on Antibiotic Resistance (NSAR). NSAR data indicated that for most antimicrobial compounds, including carbapenems, the peak resistance rates were reached around 2008-2009 and thereafter, rates have remained fairly constant (e.g., 50-60% for carbapenems). Individual reports from various hospitals in Peninsular Malaysia do not always reflect the nationwide resistance rates and often showed higher rates of resistance. We also reviewed the epidemiology and mechanisms of resistance that have been investigated in Malaysian Acinetobacter spp. isolates, particularly carbapenem resistance and found that bla OXA-23 is the most prevalent acquired carbapenemase-encoding gene. From the very few published reports and whole genome sequences that are available, most of the Acinetobacter spp. isolates from Malaysia belonged to the Global Clone 2 (GC2) CC92 group with ST195 being the predominant sequence type. The quality of data and analysis in the national surveillance reports could be improved and more molecular epidemiology and genomics studies need to be carried out for further in-depth understanding of Malaysian Acinetobacter spp. isolates.

  14. [Antimicrobial resistance testing in clinical practice].

    PubMed

    Doi, Yohei

    2012-02-01

    Previously unrecognized or underrecognized antimicrobial resistant bacteria, including NDM-1-producing Enterobacteriaceae and multidrug-resistant Acinetobacter baumannii, were recently identified in health care facilities in Japan. Vigilance in the clinical microbiology laboratory for these organisms is the key to early recognition of their emergence. Many of these organisms can be confirmed or at least suspected through routine susceptibility testing, which can then be referred to reference laboratories for further phenotypic or genetic testing. Antimicrobial resistance testing plays a crucial role in patient management, infection control and monitoring of local as well as national and international epidemiology.

  15. Antimicrobial Resistance Surveillance among Intensive Care Units of a Tertiary Care Hospital in Southern India

    PubMed Central

    Moolchandani, Kailash; Deepashree, R; Sistla, Sujatha; Harish, BN; Mandal, Jharna

    2017-01-01

    Introduction Hospital Acquired Infections (HAIs) are the rising threat in the health care facilities across the globe. As most Intesive Care Unit (ICU) patients are frequently on broad spectrum antimicrobials, this induces selective antibiotic pressure which leads to development of Antimicrobial Resistance (AMR) among the microorganisms of ICUs. Aim To study the occurrence of different types of HAIs in patients admitted to various ICUs of JIPMER and the AMR pattern of the bacterial pathogens isolated from them. Materials and Methods The record based retrospective data of culture reports of the patients admitted to all the ICUs of JIPMER during the period from April 2015 to March 2016 were collected. A total of 3,090 isolates were obtained from the clinical specimens of 1,244 patients. Data on various factors like demographic characters, type of ICU, infecting organism, site of infection, type of HAI’s and AMR including co-resistance were collected and analysed using Microsoft Excel. Results Most common culture positive clinical specimen received was tracheal aspirate (29.9%) followed by exudate (22.7%). Acinetobacter spp from tracheal aspirate and Pseudomonas spp from blood specimens were the most common organisms isolated; whereas Escherichia coli was the predominant organism found in urine, exudate and sterile fluid specimens. About 22.2% infections were HAIs, out of which pneumonia (6.24%) was the most common. Analysis of antimicrobial susceptibility pattern revealed that most of Gram-Negative Bacilli (GNB) was Multi Drug Resistant (MDR) i.e., resistant to three or more class of antibiotics such as cephalosporins, carbapenems, aminoglycosides, tetracyclines and fluoroquinolones. The prevalence of Methicillin- resistant Staphylococcus aureus (MRSA) and Vancomycin- resistant Enterococci (VRE) were found to be 40.6% and 11.9% respectively. Conclusion The increasing trend AMR among the hospital acquired pathogens such as MDR-GNBs, MRSA and VRE pose a great threat

  16. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review.

    PubMed

    Giuliano, Christopher A; Rybak, Michael J

    2015-03-01

    Triclosan is a synthetic biocide found in many household products, including antimicrobial hand soap. Levels of triclosan have been found throughout the environment and in human urine, blood, and even breast milk. Increasing levels of exposure to triclosan have led to concerns over the development of resistance to triclosan and cross-resistance to other antimicrobials. We performed a literature search to assess whether the widespread use of triclosan displays a favorable benefit: risk ratio, defined by evaluation of triclosan's efficacy as an antimicrobial hand soap and its potential effect on the development of antimicrobial resistance. Data from laboratory-based studies regarding the efficacy of triclosan are conflicting, although well-designed studies suggest no significant difference in efficacy over nonantimicrobial soap. In addition, when triclosan was introduced in a community setting, no beneficial effects were observed on the reduction of infections over nonantimicrobial soap. Resistance to triclosan and cross-resistance to antimicrobials have been consistently demonstrated in laboratory settings, although overall resistance rates and cross-resistance rates in the community setting are low. Based on the available evidence, the risk of potential antimicrobial resistance outweighs the benefit of widespread triclosan use in antimicrobial soaps. © 2015 Pharmacotherapy Publications, Inc.

  17. Antimicrobial resistance pattern in a tertiary care hospital: An observational study

    PubMed Central

    Saravanan, Revathy; Raveendaran, Vinod

    2013-01-01

    , nitrofurantoin, gentamycin and doxycycline among the gram-negative bacteria. Macrolides, clindamycin, gentamycin, nitrofurantoin, vancomycin were the most sensitive antimicrobials against the gram-positive bacteria. Lack of knowledge on the consequences of inappropriate use of antibiotics was exhibited by 63% of subjects in our study. Conclusions: AMR was more with hospital acquired organisms and against commonly used antibiotics that are available since long period. Variation of resistance and sensitivity pattern with time and geographical location is identified. Periodic AMR monitoring and rotation of antibiotics are suggested to restrict further emergence of resistance. PMID:24808672

  18. Providing context: antimicrobial resistance from multiple environmental sources

    USDA-ARS?s Scientific Manuscript database

    Background: Animal agriculture has been identified as encouraging the spread of resistance due to the use of large quantities of antimicrobials for animal production purposes. When antimicrobial resistance (AMR) is reported in agricultural settings without comparison to other environments there is a...

  19. National Antimicrobial Resistance Monitoring System (NARMS) 2010 Report

    USDA-ARS?s Scientific Manuscript database

    In an effort to prospectively monitor the emergence of antimicrobial resistance in zoonotic pathogens, the National Antimicrobial Resistance Monitoring System (NARMS) was established in 1996 by the Food and Drug Administration’s Center for Veterinary Medicine in collaboration with the Centers for Di...

  20. Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China.

    PubMed

    Cheng, Vincent C C; Wong, Sally C Y; Ho, Pak-Leung; Yuen, Kwok-Yung

    2015-02-01

    Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for

  1. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine.

    PubMed

    Amachawadi, Raghavendra G; Giok, Felicia; Shi, Xiaorong; Soto, Jose; Narayanan, Sanjeev K; Tokach, Mike D; Apley, Mike D; Nagaraja, T G

    2018-04-03

    Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E

  2. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa

    PubMed Central

    Oglesby-Sherrouse, Amanda G.; Djapgne, Louise; Nguyen, Angela T.; Vasil, Adriana I.; Vasil, Michael L.

    2014-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment of such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, non-siderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by sub-inhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  3. Antimicrobial resistance: harmonisation of national antimicrobial resistance monitoring and surveillance programmes in animals and in animal-derived food.

    PubMed

    Franklin, A; Acar, J; Anthony, F; Gupta, R; Nicholls, T; Tamura, Y; Thompson, S; Threlfall, E J; Vose, D; van Vuuren, M; White, D G; Wegener, H C; Costarrica, M L

    2001-12-01

    A guideline on the harmonisation of national antimicrobial resistance monitoring and surveillance programmes in animals and animal-derived foods has been developed by the Ad hoc Group of experts on antimicrobial resistance of the Office International des Epizooties. The objective of the guideline is to allow the generation of comparable data from various national surveillance and monitoring systems in order to compare the situations in different regions or countries and to consolidate results at the national, regional and international level. Definitions of surveillance and monitoring are provided. National systems should be able to detect the emergence of resistance, and to determine the prevalence of resistant bacteria. The resulting data should be used in the assessment of risks to public health and should contribute to the establishment of a risk management policy. Specific factors identified for harmonisation include the animal species, food commodities, sampling plans, bacterial species, antimicrobials to be tested, laboratory methods, data reporting, database structure and the structure of reports.

  4. Travel-associated antimicrobial drug-resistant nontyphoidal Salmonellae, 2004-2009.

    PubMed

    Barlow, Russell S; Debess, Emilio E; Winthrop, Kevin L; Lapidus, Jodi A; Vega, Robert; Cieslak, Paul R

    2014-04-01

    To evaluate trends in and risk factors for acquisition of antimicrobial-drug resistant nontyphoidal Salmonella infections, we searched Oregon surveillance data for 2004-2009 for all culture-confirmed cases of salmonellosis. We defined clinically important resistance (CIR) as decreased susceptibility to ampicillin, ceftriaxone, ciprofloxacin, gentamicin, or trimethoprim/sulfamethoxazole. Of 2,153 cases, 2,127 (99%) nontyphoidal Salmonella isolates were obtained from a specific source (e.g., feces, urine, blood, or other normally sterile tissue) and had been tested for drug susceptibility. Among these, 347 (16%) isolates had CIR. The odds of acquiring CIR infection significantly increased each year. Hospitalization was more likely for patients with than without CIR infections. Among patients with isolates that had been tested, we analyzed data from 1,813 (84%) who were interviewed. Travel to eastern or Southeast Asia was associated with increased CIR. Isolates associated with outbreaks were less likely to have CIR. Future surveillance activities should evaluate resistance with respect to international travel.

  5. Engineering Antimicrobials that are Refractory to Resistance Development.

    USDA-ARS?s Scientific Manuscript database

    Multi-drug resistant pathogens are a serious problem in modern health care and there is a need for novel antimicrobials that are refractory to resistance development. Several US government agencies (FDA, CDC and NIH) recommend avoiding the use of broad range antimicrobials, a practice that is known...

  6. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2015-01-01

    Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.

  7. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review

    PubMed Central

    Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.

    2017-01-01

    Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to

  8. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    PubMed

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Opinions of clinical veterinarians at a US veterinary teaching hospital regarding antimicrobial use and antimicrobial-resistant infections.

    PubMed

    Jacob, Megan E; Hoppin, Jane A; Steers, Nicola; Davis, Jennifer L; Davidson, Gigi; Hansen, Bernie; Lunn, Katharine F; Murphy, K Marcia; Papich, Mark G

    2015-10-15

    To determine opinions of faculty members with clinical appointments, clinical veterinarians, residents, and interns at a US veterinary teaching hospital regarding antimicrobial use and antimicrobial-resistant infections. Cross-sectional survey. 71 veterinarians. An online questionnaire was sent to all veterinarians with clinical service responsibilities at the North Carolina State University veterinary teaching hospital (n = 167). The survey included 23 questions regarding demographic information, educational experiences, current prescribing practices, and personal opinions related to antimicrobial selection, antimicrobial use, restrictions on antimicrobial use, and antimicrobial resistance. Of the 167 veterinarians eligible to participate, 71 (43%) responded. When respondents were asked to rate their level of concern (very concerned = 1; not concerned = 5) about antimicrobial-resistant infections, most (41/70 [59%]) assigned a score of 1, with mean score for all respondents being 1.5. Most survey participants rated their immediate colleagues (mean score, 1.9) as more concerned than other veterinary medical professionals (mean score, 2.3) and their clients (mean score, 3.4). Fifty-nine of 67 (88%) respondents felt that antimicrobials were overprescribed at the hospital, and 32 of 69 (46%) respondents felt uncomfortable prescribing at least one class of antimicrobials (eg, carbapenems or glycopeptides) because of public health concerns. Findings indicated that veterinarians at this teaching hospital were concerned about antimicrobial resistance, thought antimicrobials were overprescribed, and supported restricting use of certain antimicrobial classes in companion animals. Findings may be useful in educating future veterinarians and altering prescribing habits and antimicrobial distribution systems in veterinary hospitals.

  10. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  11. Prevalence and genetic mechanisms of antimicrobial resistance in Staphylococcus species: A multicentre report of the indian council of medical research antimicrobial resistance surveillance network.

    PubMed

    Rajkumar, Sunanda; Sistla, Sujatha; Manoharan, Meerabai; Sugumar, Madhan; Nagasundaram, Niveditha; Parija, Subhash Chandra; Ray, Pallab; Bakthavatchalam, Yamuna Devi; Veeraraghavan, Balaji; Kapil, Arti; Walia, Kamini; Ohri, V C

    2017-01-01

    Routine surveillance of antimicrobial resistance (AMR) is an essential component of measures aimed to tackle the growing threat of resistant microbes in public health. This study presents a 1-year multicentre report on AMR in Staphylococcus species as part of Indian Council of Medical Research-AMR surveillance network. Staphylococcus species was routinely collected in the nodal and regional centres of the network and antimicrobial susceptibility testing was performed against a panel of antimicrobials. Minimum inhibitory concentration (MIC) values of vancomycin (VAN), daptomycin, tigecycline and linezolid (LNZ) against selected methicillin-resistant Staphylococcus aureus(MRSA) isolates were determined by E-test and MIC creep, if any, was determined. Resistant genotypes were determined by polymerase chain reaction for those isolates showing phenotypic resistance. The prevalence of MRSA was found to be range from moderate (21%) to high (45%) among the centres with an overall prevalence of 37.3%. High prevalence of resistance was observed with commonly used antimicrobials such as ciprofloxacin and erythromycin in all the centres. Resistance to LNZ was not encountered except for a single case. Full-blown resistance to VAN in S. aureus was not observed; however, a few VAN-intermediate S. aureus isolates were documented. The most common species of coagulase negative staphylococci (CoNS) identified was Staphylococcus haemolyticus and Staphylococcus epidermidis. Resistance among CoNS was relatively higher than S. aureus. Most phenotypically resistant organisms possessed the corresponding resistance genes. There were localised differences in the prevalence of resistance between the centres. The efficacy of the anti-MRSA antimicrobials was very high; however, almost all these antimicrobials showed evidence of creeping MIC.

  12. Antimicrobial resistance in Saudi Arabia

    PubMed Central

    Zowawi, Hosam M.

    2016-01-01

    Antimicrobial resistance (AMR) is increasingly being highlighted as an urgent public and animal health issue worldwide. This issue is well demonstrated in bacteria that are resistant to last-line antibiotics, suggesting a future with untreatable infections. International agencies have suggested combating strategies against AMR. Saudi Arabia has several challenges that can stimulate the emergence and spread of multidrug-resistant bacteria. Tackling these challenges need efforts from multiple sectors to successfully control the spread and emergence of AMR in the country. Actions should include active surveillance to monitor the emergence and spread of AMR. Infection prevention and control precautions should also be optimized to limit further spread. Raising awareness is essential to limit inappropriate antibiotics use, and the antibiotic stewardship programs in hospital settings, outpatients, and community pharmacies, should regulate the ongoing use of antimicrobials. PMID:27570847

  13. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk.

    PubMed

    Frey, Yvonne; Rodriguez, Joan Peña; Thomann, Andreas; Schwendener, Sybille; Perreten, Vincent

    2013-04-01

    Coagulase-negative staphylococci (CNS; n=417) were isolated from bovine milk and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nineteen different species were identified, and Staphylococcus xylosus, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus sciuri were the most prevalent species. Resistance to oxacillin (47.0% of the isolates), fusidic acid (33.8%), tiamulin (31.9%), penicillin (23.3%), tetracycline (15.8%), streptomycin (9.6%), erythromycin (7.0%), sulfonamides (5%), trimethoprim (4.3%), clindamycin (3.4%), kanamycin (2.4%), and gentamicin (2.4%) was detected. Resistance to oxacillin was attributed to the mecA gene in 9.7% of the oxacillin-resistant isolates. The remaining oxacillin-resistant CNS did not contain the mecC gene or mecA1 promoter mutations. The mecA gene was detected in Staphylococcus fleurettii, Staphylococcus epidermidis, Staph. haemolyticus, and Staph. xylosus. Resistance to tetracycline was attributed to the presence of tet(K) and tet(L), penicillin resistance to blaZ, streptomycin resistance to str and ant(6)-Ia, and erythromycin resistance to erm(C), erm(B), and msr. Resistance to tiamulin and fusidic acid could not be attributed to an acquired resistance gene. In total, 15.1% of the CNS isolates were multidrug resistant (i.e., resistant to 2 or more antimicrobials). The remaining CNS isolates were susceptible to antimicrobials commonly used in mastitis treatment. Methicillin-resistant CNS isolates were diverse, as determined by mecA gene sequence analysis, staphylococcal cassette chromosome mec typing, and pulsed-field gel electrophoresis. Arginine catabolic mobile element types 1 and 3 were detected in both methicillin-resistant and methicillin-susceptible Staph. epidermidis and were associated with sequence types ST59 and ST111. Because this study revealed the presence of multidrug-resistant CNS in a heterogeneous CNS population, we recommend antibiogram analysis

  14. Whole-Genome Sequencing for Detecting Antimicrobial Resistance in Nontyphoidal Salmonella

    PubMed Central

    Tyson, Gregory H.; Kabera, Claudine; Chen, Yuansha; Li, Cong; Folster, Jason P.; Ayers, Sherry L.; Lam, Claudia; Tate, Heather P.; Zhao, Shaohua

    2016-01-01

    Laboratory-based in vitro antimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidal Salmonella and correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred forty Salmonella of 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n = 59) in the 104 human isolates than in the 536 retail meat isolates (n = 36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum β-lactamases (ESBLs) (blaCTX-M1 and blaSHV2a) in retail meat isolates of Salmonella in the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidal Salmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations. PMID:27381390

  15. Diversity of plasmids and antimicrobial resistance genes in multidrug-resistant Escherichia coli isolated from healthy companion animals

    USDA-ARS?s Scientific Manuscript database

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of gene...

  16. Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China

    PubMed Central

    Cheng, Vincent CC; Wong, Sally CY; Ho, Pak-Leung; Yuen, Kwok-Yung

    2015-01-01

    Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for

  17. Core groups, antimicrobial resistance and rebound in gonorrhoea in North America.

    PubMed

    Chan, Christina H; McCabe, Caitlin J; Fisman, David N

    2012-04-01

    Genital tract infections caused by Neisseria gonorrhoeae are a major cause of sexually transmitted disease worldwide. Surveillance data suggest that incidence has increased in recent years after initially falling in the face of intensified control efforts. The authors sought to evaluate the potential contribution of antimicrobial resistance to such rebound and to identify optimal treatment strategies in the face of resistance using a mathematical model of gonorrhoea. The authors built risk-structured 'susceptible-infectious-susceptible' models with and without the possibility of antibiotic resistance and used these models as a platform for the evaluation of competing plausible treatment strategies, including changing antimicrobial choice when resistance prevalence surpassed fixed thresholds, random assignment of treatment and use of combination antimicrobial therapy. Absent antimicrobial resistance, strategies that focus on treatment of highest risk individuals (the so-called core group) result in collapse of disease transmission. When antimicrobial resistance exists, a focus on the core group causes rebound in incidence, with maximal dissemination of antibiotic resistance. Random assignment of antimicrobial treatment class outperformed the use of fixed resistance thresholds with respect to sustained reduction in gonorrhoea prevalence. Gonorrhoea control is achievable only when core groups are treated, but treatment of core groups maximises dissemination of antimicrobial-resistant strains. This paradox poses a great dilemma to the control and prevention of gonorrhoea and underlines the need for gonococcal vaccines.

  18. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    PubMed

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens.

    PubMed

    Lopes, E; Piçarra, S; Almeida, P L; de Lencastre, H; Aires-de-Sousa, M

    2018-06-25

    Multidrug-resistant bacteria pose a major threat to effective antibiotics and alternatives to fight multidrug-resistant pathogens are needed. We synthetized molybdenum oxide (MoO3) nanoparticles (NP) and determined their antibacterial activity against 39 isolates: (i) eight Staphylococcus aureus, including representatives of methicillin-resistant S. aureus epidemic clones; (ii) six enterococci, including vancomycin-resistant isolates; and (iii) 25 Gram-negative isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae), including extended spectrum beta-lactamases and carbapenemases producers. All isolates showed a MoO3 NP MIC of 700-800 mg l -1 . MoO3 NP produced a clear inhibition zone for S. aureus and all Gram-negative isolates at concentrations ≥25 mg ml -1 and ≥50 mg ml -1 for enterococci. When the NP solutions were adjusted to pH ~7, the biocidal activity was completely abolished. MoO3 NP create an acidic pH and show a universal antimicrobial activity against susceptible and resistant isolates belonging to the most relevant bacterial species responsible for hospital-acquired infections.

  20. The World Health Assembly resolution on antimicrobial resistance.

    PubMed

    Shallcross, Laura J; Davies, Sally C

    2014-11-01

    Antimicrobial resistance is a global problem that can only be tackled successfully through strengthened international partnerships. A concerted political, scientific and media campaign has garnered support for the recent World Health Assembly resolution on antimicrobial resistance, mandating the WHO to develop a global action plan. This resolution has the 'One Health' approach at its core, emphasizing collaboration across human and animal health sectors at the international, national and regional levels, coupled with strong leadership and the political will to act. Key themes are communication, prevention of infection, using knowledge to guide action, sustainability and optimizing the use of antimicrobial medicines and diagnostic devices. Implementation of the global action plan will require member states to make a commitment to developing national action plans and strengthening capacity, building on collaborations between the WHO, the World Organisation for Animal Health, the World Bank, Codex Alimentarius and the Transatlantic Task Force on Antimicrobial Resistance. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Antimicrobial resistance-a threat to the world's sustainable development.

    PubMed

    Jasovský, Dušan; Littmann, Jasper; Zorzet, Anna; Cars, Otto

    2016-08-01

    This commentary examines how specific sustainable development goals (SDGs) are affected by antimicrobial resistance and suggests how the issue can be better integrated into international policy processes. Moving beyond the importance of effective antibiotics for the treatment of acute infections and health care generally, we discuss how antimicrobial resistance also impacts on environmental, social, and economic targets in the SDG framework. The paper stresses the need for greater international collaboration and accountability distribution, and suggests steps towards a broader engagement of countries and United Nations agencies to foster global intersectoral action on antimicrobial resistance.

  2. Will new antimicrobials overcome resistance among Gram-negatives?

    PubMed

    Bassetti, Matteo; Ginocchio, Francesca; Mikulska, Małgorzata; Taramasso, Lucia; Giacobbe, Daniele Roberto

    2011-10-01

    The spread of resistance among Gram-positive and Gram-negative bacteria represents a growing challenge for the development of new antimicrobials. The pace of antibiotic drug development has slowed during the last decade and, especially for Gram-negatives, clinicians are facing a dramatic shortage in the availability of therapeutic options to face the emergency of the resistance problem throughout the world. In this alarming scenario, although there is a shortage of compounds reaching the market in the near future, antibiotic discovery remains one of the keys to successfully stem and maybe overcome the tide of resistance. Analogs of already known compounds and new agents belonging to completely new classes of antimicrobials are in early stages of development. Novel and promising anti-Gram-negative antimicrobials belong both to old (cephalosporins, carbapenems, β-lactamase inhibitors, monobactams, aminoglycosides, polymyxin analogues and tetracycline) and completely new antibacterial classes (boron-containing antibacterial protein synthesis inhibitors, bis-indoles, outer membrane synthesis inhibitors, antibiotics targeting novel sites of the 50S ribosomal subunit and antimicrobial peptides). However, all of these compounds are still far from being introduced into clinical practice. Therefore, infection control policies and optimization in the use of already existing molecules are still the most effective approaches to reduce the spread of resistance and preserve the activity of antimicrobials.

  3. Whole-Genome Sequencing for Detecting Antimicrobial Resistance in Nontyphoidal Salmonella.

    PubMed

    McDermott, Patrick F; Tyson, Gregory H; Kabera, Claudine; Chen, Yuansha; Li, Cong; Folster, Jason P; Ayers, Sherry L; Lam, Claudia; Tate, Heather P; Zhao, Shaohua

    2016-09-01

    Laboratory-based in vitro antimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidal Salmonella and correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred forty Salmonella of 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n = 59) in the 104 human isolates than in the 536 retail meat isolates (n = 36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum β-lactamases (ESBLs) (blaCTX-M1 and blaSHV2a) in retail meat isolates of Salmonella in the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidal Salmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Antimicrobial resistance among Salmonella isolates from hospitals in Rome.

    PubMed Central

    Falbo, V.; Caprioli, A.; Mondello, F.; Cacace, M. L.; Luzi, S.; Greco, D.

    1982-01-01

    The susceptibility to antimicrobial agents of 569 salmonella isolated collected in 1977-8 from patients in hospitals in Rome was tested. Fifty-nine per cent of all isolates were resistant to one or more antimicrobials. Resistance was most common to sulphathiazole, tetracycline, streptomycin, whereas colistin, gentamicin, tobramycin, trimethoprim-sulphamethoxazole and nalidixic acid were the most active in vitro. Multiple resistance was most frequently found in strains of Salmonella wien and S. typhimurium (94% and 38% respectively). A significant change in the resistance pattern of S. wien was observed between 1977 and 1978, with a significant increase of susceptibility to some antimicrobials in 1978. Twenty-one R-plasmids transmissible to E. coli K12 were derived from 46 resistant strains of S. typhimurum. PMID:7061839

  5. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs.

    PubMed

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene; Finster, Kai; Jensen, Vibeke F; Heuer, Ole E

    2007-10-01

    To study the occurrence of antimicrobial resistance among common bacterial pathogens from dogs and relate resistance patterns to data on consumption of antimicrobials. The antimicrobial susceptibility patterns of 201 Staphylococcus intermedius, 37 Streptococcus canis, 39 Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from VetStat, a national database for reporting antimicrobial prescriptions. The majority of the antimicrobials prescribed for dogs were broad-spectrum compounds, and extended-spectrum penicillins, cephalosporins and sulphonamides + trimethoprim together accounted for 81% of the total amount used for companion animals. Resistance to cephalosporins and amoxicillin with clavulanic acid was very low for all bacterial species examined, except for P. aeruginosa, and resistance to sulphonamides and trimethoprim was low for most species. Among the S. intermedius isolates, 60.2% were resistant to penicillin, 30.2% to fusidic acid and 27.9% to macrolides. Among E. coli isolates, the highest level of resistance was recorded for ampicillin, sulphonamides, trimethoprim, tetracyclines and streptomycin. Certain differences in resistance patterns between isolates from different sites or organs were noticed for E. coli, S. intermedius and Proteus isolates. This investigation provided data on occurrence of antimicrobial resistance in important pathogenic bacteria from dogs, which may be useful for the small animal practitioner. Resistance was low to the compounds that were most often used, but unfortunately, these compounds were broad-spectrum. Data on resistance and usage may form a background for the establishment of a set of recommendations for prudent use of antimicrobials for companion animals.

  6. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    PubMed Central

    Sanchez, Guillermo V.; Master, Ronald N.; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin. PMID:23260464

  7. Microbiology and antimicrobial susceptibility of otitis externa: a changing pattern of antimicrobial resistance.

    PubMed

    Heward, E; Cullen, M; Hobson, J

    2018-04-01

    Otitis externa is a common presentation to secondary care otolaryngology clinics. Despite this, few studies have investigated the microbiology and antimicrobial resistance of otitis externa. This study aimed to examine these issues. Analysis identified 302 swabs taken from 217 patients (100 male, 117 female), between 1 January 2015 and 30 March 2016, at our rapid access otolaryngology clinic. In total, 315 organisms were isolated; the most frequent was Pseudomonas aeruginosa (31.1 per cent), followed by candida species (22.9 per cent) and Staphylococcus aureus (11.7 per cent). P aeruginosa was sensitive to ciprofloxacin in 97.7 per cent of cases and to gentamicin in 78.4 per cent. Compared with studies worldwide, the relative proportions of different organisms causing otitis externa and the patterns of antimicrobial resistance differ. Increasing resistance of P aeruginosa to aminoglycosides demonstrates a changing pattern of antimicrobial resistance that has not been previously reported. Reassuringly, quinolone antibiotics remain highly effective when treating P aeruginosa.

  8. Pheno- and genotypic analysis of antimicrobial resistance properties of Yersinia ruckeri from fish.

    PubMed

    Huang, Yidan; Michael, Geovana Brenner; Becker, Roswitha; Kaspar, Heike; Mankertz, Joachim; Schwarz, Stefan; Runge, Martin; Steinhagen, Dieter

    2014-07-16

    Enteric red-mouth disease, caused by Yersinia ruckeri, is an important disease in rainbow trout aquaculture. Antimicrobial agents are frequently used in aquaculture, thereby causing a selective pressure on bacteria from aquatic organisms under which they may develop resistance to antimicrobial agents. In this study, the distribution of minimal inhibitory concentrations (MICs) of antimicrobial agents for 83 clinical and non-clinical epidemiologically unrelated Y. ruckeri isolates from north west Germany was determined. Antimicrobial susceptibility was conducted by broth microdilution at 22 ± 2°C for 24, 28 and 48 h. Incubation for 24h at 22 ± 2°C appeared to be suitable for susceptibility testing of Y. ruckeri. In contrast to other antimicrobial agents tested, enrofloxacin and nalidixic acid showed a bimodal distribution of MICs, with one subpopulation showing lower MICs for enrofloxacin (0.008-0.015 μg/mL) and nalidixic acid (0.25-0.5 μg/mL) and another subpopulation exhibiting elevated MICs of 0.06-0.25 and 8-64 μg/mL, respectively. Isolates showing elevated MICs revealed single amino acid substitutions in the quinolone resistance-determining region (QRDR) of the GyrA protein at positions 83 (Ser83-Arg or -Ile) or 87 (Asn87-Tyr), which raised the MIC values 8- to 32-fold for enrofloxacin or 32- to 128-fold for nalidixic acid. An isolate showing elevated MICs for sulfonamides and trimethoprim harbored a ∼ 8.9 kb plasmid, which carried the genes sul2, strB and a dfrA14 gene cassette integrated into the strA gene. These observations showed that Y. ruckeri isolates were able to develop mutations that reduce their susceptibility to (fluoro)quinolones and to acquire plasmid-borne resistance genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Antimicrobial resistance and small ruminant veterinary practice.

    PubMed

    Scott, Lisa C; Menzies, Paula I

    2011-03-01

    Antimicrobial resistance (AMR) is recognized as an emerging issue in the practice of veterinary medicine. Although little surveillance and research has been completed on the prevalence of AMR and associated risk factors in small ruminants, evidence of AMR is present in many countries. Furthermore, antimicrobial use (AMU) practices in sheep have been shown to be associated with increased resistance, highlighting the issue of prudent use of these drugs in many countries. Furthermore, AMU practices in sheep have been shown to be associated with increased resistance, highlighting the issue of prudent use of these drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Antimicrobial-Resistant Campylobacter in Organically and Conventionally Raised Layer Chickens.

    PubMed

    Kassem, Issmat I; Kehinde, Olugbenga; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Poultry is a major source of Campylobacter, which can cause foodborne bacterial gastroenteritis in humans. Additionally, poultry-associated Campylobacter can develop resistance to important antimicrobials, which increases the risk to public health. While broiler chickens have been the focus of many studies, the emergence of antimicrobial-resistant Campylobacter on layer farms has not received equal attention. However, the growing popularity of cage-free and organic layer farming necessitates a closer assessment of (1) the impact of these farming practices on the emergence of antimicrobial-resistant Campylobacter and (2) layers as a potential source for the transmission of these pathogens. Here, we showed that the prevalence of Campylobacter on organic and conventional layer farms was statistically similar (p > 0.05). However, the average number of Campylobacter jejuni-positive organically grown hens was lower (p < 0.05) in comparison to conventionally grown hens. Campylobacter isolated from both production systems carried antimicrobial resistance genes. The tet(O) and cmeB were the most frequently detected genes, while the occurrence of aph-3-1 and blaOXA-61 was significantly lower (p < 0.05). Farming practices appeared to have an effect on the antimicrobial resistance phenotype, because the isolates from organically grown hens on two farms (OF-2 and OF-3) exhibited significantly lower resistance (p < 0.05) to ciprofloxacin, erythromycin, and tylosin. However, on one of the sampled organic farms (OF-1), a relatively high number of antimicrobial-resistant Campylobacter were isolated. We conclude that organic farming can potentially impact the emergence of antimicrobial-resistant Campylobacter. Nevertheless, this impact should be regularly monitored to avoid potential relapses.

  11. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  12. [Neisseria gonorrhoeae: antimicrobial resistance and study of population dynamics. Situation in Barcelona in 2011].

    PubMed

    Serra-Pladevall, Judit; Barberá-Gracia, María Jesús; Roig-Carbajosa, Glòria; Juvé-Saumell, Rosa; Gonzalez-Lopez, Juan José; Bartolomé-Comas, Rosa; Andreu-Domingo, Antònia

    2013-11-01

    Due to the high rates of antimicrobial resistance to certain antibiotics, together with the emergence of Neisseria gonorrhoeae (NG) with reduced susceptibility and resistance to third-generation cephalosporins, gonococcal infection is becoming a public health problem. The objectives of the study were: To keep track of the antimicrobial susceptibility of NG strains obtained from January to August 2011. To study the population dynamics. The antimicrobial susceptibility was studied by disk-diffusion and E-test. The genotyping was performed by NG-MAST method. Of a total of 100strains studied, 59% showed intermediate sensitivity to penicillin and 9% were resistant. According to EUCAST, we detected 3gonococci with reduced susceptibility to ceftriaxone, 10 to cefixime and one with high-level resistance to both antibiotics (MIC 1.5μg/ml). MIC50 and MIC90 to cefixime were 0.016 and 0.125μg/ml, respectively, whereas to ceftriaxone they were <0.016 and 0.064μg/ml, respectively. Almost all (99%) of the strains were resistant to doxycycline, 53% to ciprofloxacin, 3% to azithromycin, and 1% to spectinomycin. The most prevalent ST was ST1407, predominantly associated to resistance or reduced sensitivity to cephalosporins or macrolides. NG has developed significant rates of resistance to various antibiotics. One strain has been detected with high level resistance to third generation cephalosporins, and several strains with reduced susceptibility. An increase in MIC50 and MIC90 to these antibiotics has also been observed. NG population structure remains stable and common to the rest of Europe, although two new ST (ST7226 and ST7227) have been identified that could be selected and acquire high levels of resistance to cephalosporins. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  13. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA.

    PubMed

    Harada, Dai; Nakaminami, Hidemasa; Miyajima, Eri; Sugiyama, Taku; Sasai, Nao; Kitamura, Yoshinobu; Tamura, Taku; Kawakubo, Takashi; Noguchi, Norihisa

    2018-07-01

    Recently, the dissemination of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) into hospitals has frequently been reported worldwide. Hospital-acquired MRSA (HA-MRSA) strains exhibit high-level resistance to multiple antimicrobial agents, whereas CA-MRSA strains are usually susceptible to non-β-lactams. Thus, it is predicted that the antibiogram of the HA-MRSA population would change along with the change in genotype of MRSA. Here, we investigated the changes in the MRSA population along with the MRSA antibiogram in a hospital between 2010 and 2016. Staphylococcal cassette chromosome (SCC) mec typing showed that the predominant HA-MRSA strains in the hospital dramatically changed from SCCmec type II, which is the major type of HA-MRSA, to SCCmec type IV, which is the major type of CA-MRSA. Multilocus sequence typing revealed that the predominant SCCmec type IV strain was a clonal complex (CC) 8 clone, which is mainly found among CA-MRSA. Furthermore, the CC1-SCCmec type IV (CC1-IV) clone significantly increased. Both the CC8-IV and CC1-IV clones exhibited high antimicrobial susceptibility. The antibiogram change of the HA-MRSA population was consistent with the antimicrobial susceptibilities and increased prevalence of the CC8-IV and CC1-IV clones. Our data reveal that the change in the genotypes of MRSA strains could impact the antibiogram of HA-MRSA population. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Antimicrobial Use and Resistance in Swine Waste Treatment Systems▿

    PubMed Central

    Jindal, Archana; Kocherginskaya, Svetlana; Mehboob, Asma; Robert, Matthew; Mackie, Roderick I.; Raskin, Lutgarde; Zilles, Julie L.

    2006-01-01

    Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLSB), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLSB resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLSB resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further. PMID:17041160

  15. Scoping review to identify potential non-antimicrobial interventions to mitigate antimicrobial resistance in commensal enteric bacteria in North American cattle production systems.

    PubMed

    Murphy, C P; Fajt, V R; Scott, H M; Foster, M J; Wickwire, P; McEwen, S A

    2016-01-01

    A scoping review was conducted to identify modifiable non-antimicrobial factors to reduce the occurrence of antimicrobial resistance in cattle populations. Searches were developed to retrieve peer-reviewed published studies in animal, human and in vitro microbial populations. Citations were retained when modifiable non-antimicrobial factors or interventions potentially associated with antimicrobial resistance were described. Studies described resistance in five bacterial genera, species or types, and 40 antimicrobials. Modifiable non-antimicrobial factors or interventions ranged widely in type, and the depth of evidence in animal populations was shallow. Specific associations between a factor or intervention with antimicrobial resistance in a population (e.g. associations between organic systems and tetracycline susceptibility in E. coli from cattle) were reported in a maximum of three studies. The identified non-antimicrobial factors or interventions were classified into 16 themes. Most reported associations between the non-antimicrobial modifiable factors or interventions and antimicrobial resistance were not statistically significant (P > 0·05 and a confidence interval including 1), but when significant, the results were not consistent in direction (increase or decrease in antimicrobial resistance) or magnitude. Research is needed to better understand the impacts of promising modifiable factors or interventions on the occurrence of antimicrobial resistance before any recommendations can be offered or adopted.

  16. National Antimicrobial Resistance Monitoring System (NARMS) Program

    USDA-ARS?s Scientific Manuscript database

    The National Antimicrobial Resistance Monitoring System (NARMS) – Enteric Bacteria is a national public health surveillance system in the United States that tracks changes in the susceptibility of certain enteric bacteria to antimicrobial agents of human and veterinary medical importance. The NARMS ...

  17. Travel-associated Antimicrobial Drug–Resistant Nontyphoidal Salmonellae, 2004–2009

    PubMed Central

    Barlow, Russell S.; Winthrop, Kevin L.; Lapidus, Jodi A.; Vega, Robert; Cieslak, Paul R.

    2014-01-01

    To evaluate trends in and risk factors for acquisition of antimicrobial-drug resistant nontyphoidal Salmonella infections, we searched Oregon surveillance data for 2004–2009 for all culture-confirmed cases of salmonellosis. We defined clinically important resistance (CIR) as decreased susceptibility to ampicillin, ceftriaxone, ciprofloxacin, gentamicin, or trimethoprim/sulfamethoxazole. Of 2,153 cases, 2,127 (99%) nontyphoidal Salmonella isolates were obtained from a specific source (e.g., feces, urine, blood, or other normally sterile tissue) and had been tested for drug susceptibility. Among these, 347 (16%) isolates had CIR. The odds of acquiring CIR infection significantly increased each year. Hospitalization was more likely for patients with than without CIR infections. Among patients with isolates that had been tested, we analyzed data from 1,813 (84%) who were interviewed. Travel to eastern or Southeast Asia was associated with increased CIR. Isolates associated with outbreaks were less likely to have CIR. Future surveillance activities should evaluate resistance with respect to international travel. PMID:24655581

  18. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda

    PubMed Central

    Afema, Josephine A.; Byarugaba, Denis K.; Shah, Devendra H.; Atukwase, Esther; Nambi, Maria; Sischo, William M.

    2016-01-01

    In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS) cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm–water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95%) while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR) were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be used to control

  19. Antimicrobial use in food and companion animals.

    PubMed

    Prescott, John F

    2008-12-01

    The vast literature on antimicrobial drug use in animals has expanded considerably recently as the antimicrobial resistance (AMR) crisis in human medicine leads to questions about all usage of antimicrobial drugs, including long-term usage in intensively managed food animals for growth promotion and disease prevention. Attention is also increasingly focusing on antimicrobial use and on bacterial resistance in companion animals, which are in intimate contact with the human population. They may share resistant bacteria with their owners, amplify resistant bacteria acquired from their owners, and act as a reservoir for human infection. Considerable effort is being made to describe the basis of AMR in bacterial pathogens of animals. Documentation of many aspects of use of antimicrobials in animals is, however, generally less developed and only a few countries can describe quantities of drugs used in animals to kg levels annually. In recent years, many national veterinary associations have produced 'prudent use guidelines' to try to improve antimicrobial drug use and decrease resistance, but the impact of guidelines is unknown. Within the evolving global movement for 'antimicrobial stewardship', there is considerable scope to improve many aspects of antimicrobial use in animals, including infection control and reduction of use, with a view to reducing resistance and its spread, and to preserving antimicrobial drugs for the future.

  20. Global Governance Mechanisms to Address Antimicrobial Resistance.

    PubMed

    Padiyara, Ponnu; Inoue, Hajime; Sprenger, Marc

    2018-01-01

    Since their discovery, antibiotics, and more broadly, antimicrobials, have been a cornerstone of modern medicine. But the overuse and misuse of these drugs have led to rising rates of antimicrobial resistance, which occurs when bacteria adapt in ways that render antibiotics ineffective. A world without effective antibiotics can have drastic impacts on population health, global development, and the global economy. As a global common good, antibiotic effectiveness is vulnerable to the tragedy of the commons, where a shared limited resource is overused by a community when each individual exploits the finite resource for their own benefit. A borderless threat like antimicrobial resistance requires global governance mechanisms to mitigate its emergence and spread, and it is the responsibility of all countries and relevant multilateral organizations. These mechanisms can be in the form of legally binding global governance mechanisms such as treaties and regulatory standards or nonbinding mechanisms such as political declarations, resolutions, or guidelines. In this article, we argue that while both are effective methods, the strong, swift, and coordinated action needed to address rising rates of antimicrobial resistance will be better served through legally binding governance mechanisms.

  1. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  2. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  3. Antimicrobial Susceptibility/Resistance of Streptococcus Pneumoniae

    PubMed Central

    Karcic, Emina; Aljicevic, Mufida; Bektas, Sabaheta; Karcic, Bekir

    2015-01-01

    Introduction: Pneumococcal infections are a major cause of morbidity and mortality worldwide, whose treatment is threatened with an increase in the number of strains resistant to antibiotic therapy. Goal: The main goal of this research was to investigate the presence of antimicrobial susceptibility/resistance of S. pneumoniae. Material and methods: Taken are swabs of the nose and nasopharynx, eye and ear. In vitro tests that were made in order to study the antimicrobial resistance of pneumococci are: disk diffusion method and E-test. Results: The resistance to inhibitors of cell wall synthesis was recorded at 39.17%, protein synthesis inhibitors 19.67%, folate antagonists 47.78% and quinolone in 1.11%. S. pneumoniae has shown drug resistance to erythromycin in 45%, clindamycin in 45%, chloramphenicol–0.56%, rifampicin–6.11%, tetracycline–4.67%, penicillin-G in 4.44%, oxacillin in 73.89%, ciprofloxacin in 1.11% and trimethoprim-sulfamethoxazole in 5.34% of cases. Conclusion: The highest resistance pneumococcus showed to erythromycin, clindamycin and trimethoprim-sulfamethoxazole and these should be avoided in the treatment. The least resistance pneumococcus showed to tetracycline, rifampicin, chloramphenicol, penicillin-G and ciprofloxacin. PMID:26236165

  4. Guidelines for antimicrobial prophylaxis.

    PubMed

    Nahata, M C

    1996-08-01

    Antimicrobials are frequently used to prevent infections. Principles of prophylaxis, and antimicrobial prophylaxis in surgery, tuberculosis, acquired immunodeficiency syndrome, influenza A, traveller's diarrhoea, malaria, recurrent otitis media, Haemophilus influenzae type b infection, pertussis, rheumatic fever, and urinary tract infection are described. Various strategies to improve the prophylactic use of antibiotics are discussed. Collaborative efforts among health care disciplines are needed to assure optimal antimicrobial prophylaxis. This should maximize efficacy and minimize adverse effects, the development of bacterial resistance and associated costs.

  5. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    PubMed

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    PubMed

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or <1.0, respectively. Eleven studies, describing 36 different trials, fulfilled the eligibility criteria and were finally assessed. An increase of AMR in E. coli was found in 10 out of 11 trials comparing AMR after with AMR prior to oral treatment and in 22 of the 25 trials comparing orally treated with untreated groups. Effects expressed as odds or prevalence ratios were highest for the use of aminoglycosides, quinolones and tetracycline. There was no clear association between the reported dosage and AMR towards tetracycline. Information on antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and

  7. The global threat of antimicrobial resistance: science for intervention

    PubMed Central

    Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.-M.; Segovia, C.; Sigauque, B.; Taconelli, E.; Wellington, E.; Vila, J.

    2015-01-01

    In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meeting brought together renowned experts representing the main stakeholders (i.e. policy makers, public health authorities, regulatory agencies, pharmaceutical companies and the scientific community at large) to review the global threat of antibiotic resistance and come up with a coordinated set of strategies to fight antimicrobial resistance in a multifaceted approach. We summarize the views of the B-Debate participants regarding the current situation of antimicrobial resistance in animals and the food chain, within the community and the healthcare setting as well as the role of the environment and the development of novel diagnostic and therapeutic strategies, providing expert recommendations to tackle the global threat of antimicrobial resistance. PMID:26029375

  8. Urinary tract infection in small outpatient children: the influence of age and gender on resistance to oral antimicrobials.

    PubMed

    Swerkersson, Svante; Jodal, Ulf; Åhrén, Christina; Hansson, Sverker

    2014-08-01

    Urinary tract infection (UTI) is a common bacterial disease in small children in which treatment with antimicrobials is used. The worldwide increase of bacterial resistance to these drugs is threatening the efficacy of such treatment and may increase the risk for long-term damage. The aim of this retrospective study was to analyse the development of resistance to oral antimicrobials over a 10-year period in an unselected outpatient population of small children with first-time UTI. The patient material included 494 boys and 512 girls below 2 years of age with community acquired symptomatic UTI. Escherichia coli bacteria were isolated in 96 % of girls and 89 % of boys (p < 0.0001). The overall resistance of E. coli was 14 % to trimethoprim and below 1 % to cefadroxil and nitrofurantoin. Over the 10-year period, the trimethoprim resistance of E. coli increased from 5 to 17 % but remained unchanged to cefadroxil and nitrofurantoin. E. coli resistance to trimethoprim was related to age: 11 % below and 19 % above 9 months (p < 0.01). The increase in resistance over time and with age was found only in girls. The increasing resistance of E. coli to trimethoprim makes this drug less suitable for empiric treatment of UTI. Young children with UTI seem predisposed to early development of resistance. Therefore, surveillance of resistance to antimicrobials with special regard to age and gender is recommended.

  9. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    PubMed Central

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  10. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms.

    PubMed

    Saini, V; McClure, J T; Scholl, D T; DeVries, T J; Barkema, H W

    2012-04-01

    Surveillance of antimicrobial use and resistance is needed to manage antimicrobial resistance in bacteria. In this study, data were collected on antimicrobial use and resistance in Staphylococcus aureus (n=562), isolated from intramammary infections and (sub)clinical mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and the Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Dairy producers were asked to deposit empty drug containers into specially provided receptacles, and antimicrobial drug use rate was calculated to quantify antimicrobial use. Minimum inhibitory concentrations were determined using the Sensititer bovine mastitis plate system (TREK Diagnostic Systems Inc., Cleveland, OH), containing antimicrobials commonly used for mastitis treatment and control. Multivariable logistic regression models were built to determine herd-level risk factors of penicillin, ampicillin, pirlimycin, penicillin-novobiocin combination, tetracycline and sulfadimethoxine resistance in Staph. aureus isolates. Intramammary administration of the penicillin-novobiocin combination for dry cow therapy was associated with penicillin and ampicillin resistance [odds ratio (OR): 2.17 and 3.10, respectively]. Systemic administration of penicillin was associated with penicillin resistance (OR: 1.63). Intramammary administration of pirlimycin for lactating cow mastitis treatment was associated with pirlimycin resistance as well (OR: 2.07). Average herd parity was associated with ampicillin and tetracycline resistance (OR: 3.88 and 0.02, respectively). Average herd size was also associated with tetracycline resistance (OR: 1.02). Dairy herds in the Maritime region had higher odds of penicillin and lower odds of ampicillin resistance than dairy herds in Québec (OR: 2.18 and 0.19, respectively). Alberta dairy herds had lower odds of ampicillin and sulfadimethoxine resistance than dairy herds in Québec (OR: 0.04 and 0.08, respectively

  11. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    PubMed Central

    Band, Victor I.; Weiss, David S.

    2014-01-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance. PMID:25927010

  12. Potential impact of antimicrobial resistance in wildlife, environment and human health

    PubMed Central

    Radhouani, Hajer; Silva, Nuno; Poeta, Patrícia; Torres, Carmen; Correia, Susana; Igrejas, Gilberto

    2014-01-01

    Given the significant spatial and temporal heterogeneity in antimicrobial resistance distribution and the factors that affect its evolution, dissemination, and persistence, it is important to highlight that antimicrobial resistance must be viewed as an ecological problem. Monitoring the resistance prevalence of indicator bacteria such as Escherichia coli and enterococci in wild animals makes it possible to show that wildlife has the potential to serve as an environmental reservoir and melting pot of bacterial resistance. These researchers address the issue of antimicrobial-resistant microorganism proliferation in the environment and the related potential human health and environmental impact. PMID:24550896

  13. Characterization of antimicrobial resistance of Vibrio parahaemolyticus from cultured sea cucumbers (Apostichopus japonicas).

    PubMed

    Jiang, Y; Yao, L; Li, F; Tan, Z; Zhai, Y; Wang, L

    2014-08-01

    This study was aimed to evaluate the antimicrobial resistance and molecular resistance mechanisms of 87 Vibrio parahaemolyticus isolates from cultured sea cucumbers (Apostichopus japonicus). The results showed that all isolates were resistant to ampicillin and cephazolin, fewer of them were resistant to streptomycin (43·7%), cefuroxime sodium (18·4%), tetracycline (4·6%), sulphamethoxazole/trimethoprim (2·3%) and four quinolones (2·3%). More than half (56·2%) of the isolates displayed multiple resistance to at least three antimicrobials. The resistance genes were detected in all antimicrobial-resistant isolates except two tetracycline-resistant isolates. Among all these tested resistance genes, blaTEM , sul2, strA and strB were predominant, and none of blaSHV , blaCTX-M , blaOXA , sul1, sul3, tetA, tetM and tetQ genes was detected. Point mutations were found in quinolone resistance-determining regions of gyrA and parC genes in quinolone-resistant isolates. All isolates harboured class 1 integrons but only one carried gene cassette without any resistance genes, and none of them was positive to class 2, 3 integrons and SXT constins. These results indicate that the antimicrobial-resistant V. parahaemolyticus isolates from sea cucumbers and resistance genes could be potential risks to public health or other environments. This study is the first report on characterization of antimicrobial resistance of Vibrio parahaemolyticus from sea cucumbers (Apostichopus japonicus). Our findings reveal a high level of resistance to some antimicrobials and prevalence of the resistance genes in V. parahaemolyticus isolates from sea cucumbers and underline the need for prudent use of antimicrobials in aquaculture to minimize the spread of antimicrobial-resistant V. parahaemolyticus. © 2014 The Society for Applied Microbiology.

  14. Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia.

    PubMed

    Donado-Godoy, Pilar; Byrne, Barbara A; León, Maribel; Castellanos, Ricardo; Vanegas, Consuelo; Coral, Adriana; Arevalo, Alejandra; Clavijo, Viviana; Vargas, Mercedes; Romero Zuñiga, Juan J; Tafur, McAllister; Pérez-Gutierrez, Enrique; Smith, Woutrina A

    2015-04-01

    As a step toward implementing the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), this study aimed to establish the baseline antimicrobial resistance patterns of Salmonella serovars, Escherichia coli, and Enterococcus spp. isolates in retail poultry meat from independent stores and from a main chain distributor center. MICs of the isolates were determined for antimicrobials used both in humans and animals, using an automated system. Salmonella serovars were isolated from 26% of the meat samples and E. coli from 83%, whereas Enterococcus faecalis and Enterococcus faecium were detected in 81 and 13% of the meat samples, respectively. A principal finding of concern in this study was that almost 98% of isolates tested were multidrug resistant. Ceftiofur, enrofloxacin, nalidixic acid, and tetracycline were the antimicrobials that showed the highest frequency of resistance among Salmonella and E. coli isolates. For enterococci, 61.5% of E. faecium isolates were found to be resistant to quinupristin-dalfopristin; this is significant because it is used to treat nosocomial infections when vancomycin resistance is present. Vancomycin resistance was detected in 4% of the E. faecalis isolates. The results of our study highlight the need for rapid implementation of an integrated program for surveillance of antimicrobial resistance by the Colombian authorities in order to monitor trends, raise awareness, and help promote practices to safeguard later generation antimicrobial agents.

  15. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    PubMed

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  16. Analysis of antimicrobial resistance mechanisms in MDR bacteria by microarray and high-throughput sequencing

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance in pathogenic bacteria is a major concern in human and animal health. The National Antimicrobial Resistance Monitoring System (NARMS) was designed by the CDC, FDA, and USDA to monitor antimicrobial resistance in the U.S. The Bacterial Epidemiology and Antimicrobial Resistanc...

  17. Antimicrobial resistance incidence and risk factors among Helicobacter pylori-infected persons, United States.

    PubMed

    Duck, William M; Sobel, Jeremy; Pruckler, Janet M; Song, Qunsheng; Swerdlow, David; Friedman, Cindy; Sulka, Alana; Swaminathan, Balasubra; Taylor, Tom; Hoekstra, Mike; Griffin, Patricia; Smoot, Duane; Peek, Rick; Metz, David C; Bloom, Peter B; Goldschmidt, Steven; Parsonnet, Julie; Triadafilopoulos, George; Perez-Perez, Guillermo I; Vakil, Nimish; Ernst, Peter; Czinn, Steve; Dunne, Donald; Gold, Ben D

    2004-06-01

    Helicobacter pylori is the primary cause of peptic ulcer disease and an etiologic agent in the development of gastric cancer. H. pylori infection is curable with regimens of multiple antimicrobial agents, and antimicrobial resistance is a leading cause of treatment failure. The Helicobacter pylori Antimicrobial Resistance Monitoring Program (HARP) is a prospective, multicenter U.S. network that tracks national incidence rates of H. pylori antimicrobial resistance. Of 347 clinical H. pylori isolates collected from December 1998 through 2002, 101 (29.1%) were resistant to one antimicrobial agent, and 17 (5%) were resistant to two or more antimicrobial agents. Eighty-seven (25.1%) isolates were resistant to metronidazole, 45 (12.9%) to clarithromycin, and 3 (0.9%) to amoxicillin. On multivariate analysis, black race was the only significant risk factor (p < 0.01, hazard ratio 2.04) for infection with a resistant H. pylori strain. Formulating pretreatment screening strategies or providing alternative therapeutic regimens for high-risk populations may be important for future clinical practice.

  18. Antimicrobial Resistance Incidence and Risk Factors among Helicobacter pylori–Infected Persons, United States

    PubMed Central

    Sobel, Jeremy; Pruckler, Janet M.; Song, Qunsheng; Swerdlow, David; Friedman, Cindy; Sulka, Alana; Swaminathan, Balasubra; Taylor, Tom; Hoekstra, Mike; Griffin, Patricia; Smoot, Duane; Peek, Rick; Metz, David C.; Bloom, Peter B.; Goldschmid, Steven; Parsonnet, Julie; Triadafilopoulos, George; Perez-Perez, Guillermo I.; Vakil, Nimish; Ernst, Peter; Czinn, Steve; Dunne, Donald; Gold, Ben D.

    2004-01-01

    Helicobacter pylori is the primary cause of peptic ulcer disease and an etiologic agent in the development of gastric cancer. H. pylori infection is curable with regimens of multiple antimicrobial agents, and antimicrobial resistance is a leading cause of treatment failure. The Helicobacter pylori Antimicrobial Resistance Monitoring Program (HARP) is a prospective, multicenter U.S. network that tracks national incidence rates of H. pylori antimicrobial resistance. Of 347 clinical H. pylori isolates collected from December 1998 through 2002, 101 (29.1%) were resistant to one antimicrobial agent, and 17 (5%) were resistant to two or more antimicrobial agents. Eighty-seven (25.1%) isolates were resistant to metronidazole, 45 (12.9%) to clarithromycin, and 3 (0.9%) to amoxicillin. On multivariate analysis, black race was the only significant risk factor (p < 0.01, hazard ratio 2.04) for infection with a resistant H. pylori strain. Formulating pretreatment screening strategies or providing alternative therapeutic regimens for high-risk populations may be important for future clinical practice. PMID:15207062

  19. Isolation, Virulence, and Antimicrobial Resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin Sensitive Staphylococcus aureus (MSSA) Strains from Oklahoma Retail Poultry Meats.

    PubMed

    Abdalrahman, Lubna S; Stanley, Adriana; Wells, Harrington; Fakhr, Mohamed K

    2015-05-29

    Staphylococcus aureus is one the top five pathogens causing domestically acquired foodborne illness in the U.S. Only a few studies are available related to the prevalence of S. aureus and MRSA in the U.S. retail poultry industry. The objectives of this study were to determine the prevalence of S. aureus (MSSA and MRSA) in retail chicken and turkey meats sold in Tulsa, Oklahoma and to characterize the recovered strains for their antimicrobial resistance and possession of toxin genes. A total of 167 (114 chicken and 53 turkey) retail poultry samples were used in this study. The chicken samples included 61 organic samples while the rest of the poultry samples were conventional. The overall prevalence of S. aureus was 57/106 (53.8%) in the conventional poultry samples and 25/61 (41%) in the organic ones. Prevalence in the turkey samples (64.2%) was higher than in the chicken ones (42.1%). Prevalence of S. aureus did not vary much between conventional (43.4%) and organic chicken samples (41%). Two chicken samples 2/114 (1.8%) were positive for MRSA. PFGE identified the two MRSA isolates as belonging to PFGE type USA300 (from conventional chicken) and USA 500 (from organic chicken) which are community acquired CA-MRSA suggesting a human based source of contamination. MLST and spa typing also supported this conclusion. A total of 168 Staphylococcus aureus isolates (101 chicken isolates and 67 turkey isolates) were screened for their antimicrobial susceptibility against 16 antimicrobials and their possession of 18 different toxin genes. Multidrug resistance was higher in the turkey isolates compared to the chicken ones and the percentage of resistance to most of the antimicrobials tested was also higher among the turkey isolates. The hemolysin hla and hld genes, enterotoxins seg and sei, and leucocidins lukE-lukD were more prevalent in the chicken isolates. The PVL gene lukS-lukF was detected only in chicken isolates including the MRSA ones. In conclusion, S. aureus is

  20. Antimicrobial resistant gonorrhea in Atlanta: 1988-2006.

    PubMed

    Dionne-Odom, Jodie; Tambe, Pradnya; Yee, Eileen; Weinstock, Hillard; del Rio, Carlos

    2011-08-01

    Gonococcal isolates (n = 4336) were collected from men with urethritis at the Fulton County STD Clinic between 1988 and 2006. Antimicrobial susceptibility was performed by agar dilution. Increasing numbers of isolates from men who have sex with men and with fluoroquinolone resistance were noted. New antimicrobials effective against gonorrhea are urgently needed.

  1. 76 FR 16795 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ....fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm , http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm062630.htm , http://www.fda.gov/AnimalVeterinary/Safety...

  2. Food Production and Antimicrobial Resistance – The Next 100 Years

    USDA-ARS?s Scientific Manuscript database

    Production of food is complex and ensuring the safety of food for human consumption provides serious challenges. Since 1996 the U.S. has conducted surveillance on food borne and commensal antimicrobial resistance bacteria through the National Antimicrobial Resistance Monitoring System - Enteric Bac...

  3. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review

    PubMed Central

    Nhung, Nguyen T.; Cuong, Nguyen V.; Thwaites, Guy; Carrique-Mas, Juan

    2016-01-01

    Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR). We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU) and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS), Escherichia coli (E. coli), and Campylobacter spp. (mainly from Vietnam and Thailand), Enterococcus spp. (Malaysia), and methicillin-resistant Staphylococcus aureus (MRSA) (Thailand). However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI) guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam) indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons). The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region. PMID:27827853

  4. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter.

    PubMed

    Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E

    2017-01-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4-94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia's reputation

  5. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter

    PubMed Central

    McMillan, Kate E.; Duffy, Lesley L.; Fegan, Narelle; Jordan, David; Mellor, Glen E.

    2017-01-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4–94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia

  6. Clostridium difficile Infection and Patient-Specific Antimicrobial Resistance Testing Reveals a High Metronidazole Resistance Rate.

    PubMed

    Barkin, Jodie A; Sussman, Daniel A; Fifadara, Nimita; Barkin, Jamie S

    2017-04-01

    Clostridium difficile (CD) infection (CDI) causes marked morbidity and mortality, accounting for large healthcare expenditures annually. Current CDI treatment guidelines focus on clinical markers of patient severity to determine the preferred antibiotic regimen of metronidazole versus vancomycin. The antimicrobial resistance patterns for patients with CD are currently unknown. The aim of this study was to define the antimicrobial resistance patterns for CD. This study included all patients with stools sent for CD testing to a private laboratory (DRG Laboratory, Alpharetta, Georgia) in a 6-month period from across the USA. Patient data was de-identified, with only age, gender, and zip-code available per laboratory protocol. All samples underwent PCR testing followed by hybridization for CD toxin regions A and B. Only patients with CD-positive PCR were analyzed. Antimicrobial resistance testing using stool genomic DNA evaluated presence of imidazole- and vancomycin-resistant genes using multiplex PCR gene detection. Of 2743, 288 (10.5%) stool samples were positive for CD. Six were excluded per protocol. Of 282, 193 (69.4%) were women, and average age was 49.4 ± 18.7 years. Of 282, 62 were PCR positive for toxins A and B, 160 for toxin A positive alone, and 60 for toxin B positive alone. Antimicrobial resistance testing revealed 134/282 (47.5%) patients resistant to imidazole, 17 (6.1%) resistant to vancomycin, and 9 (3.2%) resistant to imidazole and vancomycin. CD-positive patients with presence of imidazole-resistant genes from stool DNA extract was a common phenomenon, while vancomycin resistance was uncommon. Similar to treatment of other infections, antimicrobial resistance testing should play a role in CDI clinical decision-making algorithms to enable more expedited and cost-effective delivery of patient care.

  7. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

    PubMed Central

    Talebiyan, Reza; Kheradmand, Mehdi; Khamesipour, Faham; Rabiee-Faradonbeh, Mohammad

    2014-01-01

    Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Doxycycline (16.98%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), Ciprofloxacin (7.55%), and Gentamicin (5.66%). This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances. PMID:25548716

  8. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran.

    PubMed

    Talebiyan, Reza; Kheradmand, Mehdi; Khamesipour, Faham; Rabiee-Faradonbeh, Mohammad

    2014-01-01

    Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Doxycycline (16.98%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), Ciprofloxacin (7.55%), and Gentamicin (5.66%). This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances.

  9. Antimicrobial resistant Salmonella enterica and Escherichia coli recovered from dairy operations

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance has become a major public health concern and animal agriculture is often implicated as a source of resistant bacteria. The primary objective of this study was to determine prevalence of antimicrobial resistance in Salmonella and E. coli from healthy animals on dairy farms i...

  10. Non-Escherichia coli versus Escherichia coli community-acquired urinary tract infections in children hospitalized in a tertiary center: relative frequency, risk factors, antimicrobial resistance and outcome.

    PubMed

    Marcus, Nir; Ashkenazi, Shai; Yaari, Arnon; Samra, Zmira; Livni, Gilat

    2005-07-01

    Currently hospitalization for children with urinary tract infections (UTIs) is reserved for severe or complicated cases. Changes may have taken place in the characteristics and causative uropathogens of hospital-treated community-acquired UTI. To study children hospitalized in a tertiary center with community-acquired UTI, compare Escherichia coli and non-E. coli UTI, define predictors for non-E. coli UTI and elucidate the appropriate therapeutic approach. A prospective clinical and laboratory study from 2001 through 2002 in a tertiary pediatric medical center. Patients were divided by results of the urine culture into E. coli and non-E. coli UTI groups, which were compared. Of 175 episodes of culture-proved UTI, 70 (40%) were caused by non-E. coli pathogens. Non-E. coli UTI was more commonly found in children who were male (P = 0.005), who had underlying renal abnormalities (P = 0.0085) and who had received antibiotic therapy in the prior month (P = 0.0009). Non-E. coli uropathogens were often resistant to antibiotics usually recommended for initial therapy for UTI, including cephalosporins and aminoglycosides; 19% were initially treated with inappropriate empiric intravenous antibiotics (compared with 2% for E. coli UTI, P = 0.0001), with a longer hospitalization. Current treatment routines are often inappropriate for hospitalized children with non-E. coli UTI, which is relatively common in this population. The defined risk factors associated with non-E. coli UTIs and its antimicrobial resistance patterns should be considered to improve empiric antibiotic therapy for these infections.

  11. Antimicrobial resistance and management of invasive Salmonella disease.

    PubMed

    Kariuki, Samuel; Gordon, Melita A; Feasey, Nicholas; Parry, Christopher M

    2015-06-19

    Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20-30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50-75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. Copyright © 2015. Published by Elsevier Ltd.

  12. Antimicrobial resistance and management of invasive Salmonella disease

    PubMed Central

    Kariuki, Samuel; Gordon, Melita A.; Feasey, Nicholas; Parry, Christopher M

    2015-01-01

    Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20–30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50–75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. PMID:25912288

  13. Surveillance of antimicrobial resistance in Lebanese hospitals: retrospective nationwide compiled data.

    PubMed

    Chamoun, Kamal; Farah, Maya; Araj, Georges; Daoud, Ziad; Moghnieh, Rima; Salameh, Pascale; Saade, Danielle; Mokhbat, Jacques; Abboud, Emme; Hamze, Monzer; Abboud, Edmond; Jisr, Tamima; Haddad, Antoine; Feghali, Rita; Azar, Nadim; El-Zaatari, Mohammad; Chedid, Marwan; Haddad, Christian; Zouain Dib Nehme, Mireille; Barakat, Angelique; Husni, Rola

    2016-05-01

    Antimicrobial resistance is closely linked to antimicrobial use and is a growing concern worldwide. Antimicrobial resistance increases healthcare costs substantially in many countries, including Lebanon. National data from Lebanon have, in the most part, been limited to a few academic hospitals. The Lebanese Society of Infectious Diseases conducted a retrospective study to better describe the antimicrobial susceptibility patterns of bacterial isolates in Lebanon. Data were based on records retrieved from the bacteriology laboratories of 16 different Lebanese hospitals between January 2011 and December 2013. The susceptibility results of a total 20684 Gram-positive and 55594 Gram-negative bacteria were analyzed. The prevalence rate of methicillin-resistant Staphylococcus aureus was 27.6% and of vancomycin-resistant Enterococcus spp was 1%. Streptococcus pneumoniae had susceptibilities of 46% to oxacillin, 63% to erythromycin, and 98% to levofloxacin. Streptococcus pyogenes had susceptibilities of 94% to erythromycin and 95% to clindamycin. The mean ampicillin susceptibility of Haemophilus influenzae, Salmonella spp, and Shigella spp isolates was 79%, 81.3%, and 62.2%, respectively. The extended-spectrum beta-lactamase production rate for Escherichia coli was 32.3% and for Klebsiella spp was 29.2%. Acinetobacter spp showed high resistance to most antimicrobials, with low resistance to colistin (17.1%). Pseudomonas spp susceptibilities to piperacillin-tazobactam and imipenem were lower than 80% (79.7% and 72.8%, respectively). This study provides population-specific data that are valuable in guiding antimicrobial use in Lebanon and neighbouring countries and will help in the establishment of a surveillance system for antimicrobial resistance following the implementation of a nationwide standardization of laboratory methods and data entry. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Travel to Asia and traveller's diarrhoea with antibiotic treatment are independent risk factors for acquiring ciprofloxacin-resistant and extended spectrum β-lactamase-producing Enterobacteriaceae-a prospective cohort study.

    PubMed

    Reuland, E A; Sonder, G J B; Stolte, I; Al Naiemi, N; Koek, A; Linde, G B; van de Laar, T J W; Vandenbroucke-Grauls, C M J E; van Dam, A P

    2016-08-01

    Travel to (sub)tropical countries is a well-known risk factor for acquiring resistant bacterial strains, which is especially of significance for travellers from countries with low resistance rates. In this study we investigated the rate of and risk factors for travel-related acquisition of extended spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E), ciprofloxacin-resistant Enterobacteriaceae (CIPR-E) and carbapenem-resistant Enterobacteriaceae. Data before and after travel were collected from 445 participants. Swabs were cultured with an enrichment broth and sub-cultured on selective agar plates for ESBL detection, and on plates with a ciprofloxacin disc. ESBL production was confirmed with the double-disc synergy test. Species identification and susceptibility testing were performed with the Vitek-2 system. All isolates were subjected to ertapenem Etest. ESBL and carbapenemase genes were characterized by PCR and sequencing. Twenty-seven out of 445 travellers (6.1%) already had ESBL-producing strains and 45 of 445 (10.1%) travellers had strains resistant to ciprofloxacin before travel. Ninety-eight out of 418 (23.4%) travellers acquired ESBL-E and 130 of 400 (32.5%) travellers acquired a ciprofloxacin-resistant strain. Of the 98 ESBL-E, predominantly Escherichia coli and predominantly blaCTX-M-15, 56% (55/98) were resistant to gentamicin, ciprofloxacin and co-trimoxazole. Multivariate analysis showed that Asia was a high-risk area for ESBL-E as well as CIPR-E acquisition. Travellers with diarrhoea combined with antimicrobial use were significantly at higher risk for acquisition of resistant strains. Only one carbapenemase-producing isolate was acquired, isolated from a participant after visiting Egypt. In conclusion, travelling to Asia and diarrhoea combined with antimicrobial use are important risk factors for acquiring ESBL-E and CIPR-E. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

  15. SCC mec typing and antimicrobial resistance of methicillin-resistant Staphylococcus aureus (MRSA) from pigs of Northeast India.

    PubMed

    Rajkhowa, S; Sarma, D K; Pegu, S R

    2016-12-01

    Staphylococcus aureus is one of the most important pathogens of both humans and animal. Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that causes serious infections both in hospitals and communities due to its multidrug resistance tendency. This study was undertaken to characterize the MRSA isolates from pigs and to determine the antimicrobial resistance of these isolates. Forty nine MRSA strains (one strain per positive pig) isolated from pigs of Northeast India were characterized by SCCmec typing and antimicrobial resistance. The overall prevalence of MRSA was 7.02 % with the highest prevalence recorded in pigs aged 1-3 months (P = 0.001) and in nasal samples (P = 0.005). Two SCC mec types (type III and V) were found in Indian pigs with predominance of type V. All isolates were resistant to penicillin. Seventeen resistance groups were observed where 87.75 % isolates showed multidrug resistance (showed resistance to three or more classes of antimicrobials). The most predominant resistance pattern observed was Oxytetracycline + Penicillin + Sulfadiazine + Tetracycline accounting 12.24 % of the isolates. The present study contributes to the understanding of characteristics and antimicrobial resistance of porcine MRSA isolates which in turn will help in devising strategy for the control of this pathogen. Findings of the study also throw light on multidrug resistance MRSA and emphasize the need for judicious use of antimicrobials in animal practice.

  16. Inferring the interaction structure of resistance to antimicrobials.

    PubMed

    Zawack, Kelson; Love, Will; Lanzas, Cristina; Booth, James G; Gröhn, Yrjö T

    2018-04-01

    The growth of antimicrobial resistance presents a significant threat to human and animal health. Of particular concern is multi-drug resistance, as this increases the chances an infection will be untreatable by any antibiotic. In order to understand multi-drug resistance, it is essential to understand the association between drug resistances. Pairwise associations characterize the connectivity between resistances and are useful in making decisions about courses of treatment, or the design of drug cocktails. Higher-order associations, interactions, which tie together groups of drugs can suggest commonalities in resistance mechanism and lead to their identification. To capture interactions, we apply log-linear models of contingency tables to analyze publically available data on the resistance of Escheresia coli isolated from chicken and turkey meat by the National Antimicrobial Resistance Monitoring System. Standard large sample and conditional exact testing approaches for assessing significance of parameters in these models breakdown due to structured patterns inherent to antimicrobial resistance. To address this, we adopt a Bayesian approach which reveals that E. coli resistance associations can be broken into two subnetworks. The first subnetwork is characterized by a hierarchy of β-lactams which is consistent across the chicken and turkey datasets. Tier one in this hierarchy is a near equivalency between amoxicillin-clavulanic acid, ceftriaxone and cefoxitin. Susceptibility to tier one then implies susceptibility to ceftiofur. The second subnetwork is characterized by more complex interactions between a variety of drug classes that vary between the chicken and turkey datasets. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus.

    PubMed

    Samuelsen, Orjan; Haukland, Hanne H; Jenssen, Håvard; Krämer, Manuela; Sandvik, Kjersti; Ulvatne, Hilde; Vorland, Lars H

    2005-06-20

    This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.

  18. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    PubMed

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [The environment as a reservoir for antimicrobial resistance : A growing problem for public health?

    PubMed

    Westphal-Settele, Kathi; Konradi, Sabine; Balzer, Frederike; Schönfeld, Jens; Schmithausen, Ricarda

    2018-05-01

    Antimicrobial resistance (AMR) is a threat to public and animal health on the global scale. The origin of the genes associated with resistance has long been unknown. Recently, there is a growing body of evidence demonstrating that environmental bacteria are resistant to a multitude of antibiotic substances and that this environmental reservoir of AMR is still growing. The analysis of the genomes of bacterial pathogens indicates that they have acquired their resistance profiles by incorporating different genetic elements through horizontal gene transfer. The ancestors of pathogenic bacteria, as well as the origin of resistance determinants, lay most likely in the environmental microbiota. Indeed, there is some evidence that at least some clinically relevant resistance genes have originated in environmental bacterial species. Thus, feasible measures are required to reduce the risks posed by AMR genes and resistant bacteria that occur in the environment. It has been shown that a concurrence of factors, such as high concentrations of antibiotics or heavy metals used as biocides and high bacterial densities, promote development and spread of antimicrobial resistance. For this purpose, it is essential to restrict the use of antibiotics for the treatment of livestock and humans to medical necessity, as well as to reduce the application of biocides and heavy metals in animal husbandry. Moreover, it is important to further develop sanitary measures at the interface between the environment and clinical settings or livestock farming.

  20. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    PubMed

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  1. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections.

    PubMed

    Warnke, Patrick H; Becker, Stephan T; Podschun, Rainer; Sivananthan, Sureshan; Springer, Ingo N; Russo, Paul A J; Wiltfang, Joerg; Fickenscher, Helmut; Sherry, Eugene

    2009-10-01

    Hospital-acquired infections and antibiotic-resistant bacteria continue to be major health concerns worldwide. Particularly problematic is methicillin-resistant Staphylococcus aureus (MRSA) and its ability to cause severe soft tissue, bone or implant infections. First used by the Australian Aborigines, Tea tree oil and Eucalyptus oil (and several other essential oils) have each demonstrated promising efficacy against several bacteria and have been used clinically against multi-resistant strains. Several common and hospital-acquired bacterial and yeast isolates (6 Staphylococcus strains including MRSA, 4 Streptococcus strains and 3 Candida strains including Candida krusei) were tested for their susceptibility for Eucalyptus, Tea tree, Thyme white, Lavender, Lemon, Lemongrass, Cinnamon, Grapefruit, Clove Bud, Sandalwood, Peppermint, Kunzea and Sage oil with the agar diffusion test. Olive oil, Paraffin oil, Ethanol (70%), Povidone iodine, Chlorhexidine and hydrogen peroxide (H(2)O(2)) served as controls. Large prevailing effective zones of inhibition were observed for Thyme white, Lemon, Lemongrass and Cinnamon oil. The other oils also showed considerable efficacy. Remarkably, almost all tested oils demonstrated efficacy against hospital-acquired isolates and reference strains, whereas Olive and Paraffin oil from the control group produced no inhibition. As proven in vitro, essential oils represent a cheap and effective antiseptic topical treatment option even for antibiotic-resistant strains as MRSA and antimycotic-resistant Candida species.

  2. 76 FR 37356 - 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... animal and retail sampling methods for the National Antimicrobial Resistance Monitoring System (NARMS... Web site at http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/National...] 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public Meeting...

  3. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de; Mueller, Christa; Harms, Katrin S.

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associatedmore » with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.« less

  4. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors

    PubMed Central

    Woods, Emily C.; McBride, Shonna M.

    2017-01-01

    Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. PMID:28153747

  5. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    PubMed

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-07

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.

  6. Antimicrobial Resistant Gonorrhea in Atlanta: 1988 – 2006

    PubMed Central

    Dionne-Odom, Jodie; Tambe, Pradnya; Yee, Eileen; Weinstock, Hillard; del Rio, Carlos

    2011-01-01

    Gonococcal isolates (n = 4336) were collected from men with urethritis at the Fulton County STD Clinic from 1988 – 2006. Antimicrobial susceptibility was performed by agar dilution. Increasing numbers of isolates from MSM and with fluoroquinolone resistance were noted. New antimicrobials effective against gonorrhea are urgently needed. PMID:21844728

  7. Antimicrobial resistance among Salmonella enterica serovar Infantis from broiler carcasses in Serbia

    NASA Astrophysics Data System (ADS)

    Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V.

    2017-09-01

    This study aimed to investigate antimicrobial resistance of Salmonella Infantis isolates from poultry carcasses in Serbia. A total of 48 Salmonella isolates were examined for antimicrobial resistance. A panel of 10 antibiotics was selected for testing. Isolates showed resistance to sulfamethoxazole, ceftazidime and cefotaxime (100%). However, the highest number of Salmonella Infantis isolates were sensitive to chloramphenicol. The usage of antibiotics in food producing animals could result in antimicrobial resistance pathogenic bacteria especially Salmonella spp. in poultry, which may be transmitted to humans through the food chain and increase risk of treatment failures.

  8. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes

    PubMed Central

    Argudín, Maria Angeles; Deplano, Ariane; Meghraoui, Alaeddine; Dodémont, Magali; Heinrichs, Amelie; Denis, Olivier; Nonhoff, Claire; Roisin, Sandrine

    2017-01-01

    Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world. PMID:28587316

  9. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance, a Novel Antimicrobial Resistance Multilocus Typing Scheme for Tracking Global Dissemination of N. gonorrhoeae Strains.

    PubMed

    Demczuk, W; Sidhu, S; Unemo, M; Whiley, D M; Allen, V G; Dillon, J R; Cole, M; Seah, C; Trembizki, E; Trees, D L; Kersh, E N; Abrams, A J; de Vries, H J C; van Dam, A P; Medina, I; Bharat, A; Mulvey, M R; Van Domselaar, G; Martin, I

    2017-05-01

    A curated Web-based user-friendly sequence typing tool based on antimicrobial resistance determinants in Neisseria gonorrhoeae was developed and is publicly accessible (https://ngstar.canada.ca). The N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) molecular typing scheme uses the DNA sequences of 7 genes ( penA , mtrR , porB , ponA , gyrA , parC , and 23S rRNA) associated with resistance to β-lactam antimicrobials, macrolides, or fluoroquinolones. NG-STAR uses the entire penA sequence, combining the historical nomenclature for penA types I to XXXVIII with novel nucleotide sequence designations; the full mtrR sequence and a portion of its promoter region; portions of ponA , porB , gyrA , and parC ; and 23S rRNA sequences. NG-STAR grouped 768 isolates into 139 sequence types (STs) ( n = 660) consisting of 29 clonal complexes (CCs) having a maximum of a single-locus variation, and 76 NG-STAR STs ( n = 109) were identified as unrelated singletons. NG-STAR had a high Simpson's diversity index value of 96.5% (95% confidence interval [CI] = 0.959 to 0.969). The most common STs were NG-STAR ST-90 ( n = 100; 13.0%), ST-42 and ST-91 ( n = 45; 5.9%), ST-64 ( n = 44; 5.72%), and ST-139 ( n = 42; 5.5%). Decreased susceptibility to azithromycin was associated with NG-STAR ST-58, ST-61, ST-64, ST-79, ST-91, and ST-139 ( n = 156; 92.3%); decreased susceptibility to cephalosporins was associated with NG-STAR ST-90, ST-91, and ST-97 ( n = 162; 94.2%); and ciprofloxacin resistance was associated with NG-STAR ST-26, ST-90, ST-91, ST-97, ST-150, and ST-158 ( n = 196; 98.0%). All isolates of NG-STAR ST-42, ST-43, ST-63, ST-81, and ST-160 ( n = 106) were susceptible to all four antimicrobials. The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains. © Crown copyright 2017.

  10. Antimicrobial Resistance Among Nontyphoidal Salmonella Isolated From Blood in the United States, 2003-2013.

    PubMed

    Angelo, Kristina M; Reynolds, Jared; Karp, Beth E; Hoekstra, Robert Michael; Scheel, Christina M; Friedman, Cindy

    2016-11-15

     Salmonella causes an estimated 100 000 antimicrobial-resistant infections annually in the United States. Salmonella antimicrobial resistance may result in bacteremia and poor outcomes. We describe antimicrobial resistance among nontyphoidal Salmonella blood isolates, using data from the National Antimicrobial Resistance Monitoring System.  Human nontyphoidal Salmonella isolates from 2003 to 2013 were classified as fully susceptible, resistant to ≥1 antimicrobial agent, or resistant to a first-line agent. Logistic regression was used to compare resistance patterns, serotypes, and patient characteristics for Salmonella isolated from blood versus stool and to determine resistance trends over time.  Approximately 20% of blood isolates had antimicrobial resistance to a first-line treatment agent. Bacteremia was associated with male sex, age ≥65 years, and specific serotypes. Blood isolates were more likely to be resistant to ≥1 agent for serotypes Enteritidis, Javiana, Panama, and Typhimurium. Blood isolates were most commonly resistant to tetracycline (19%), and more likely resistant to a first-line agent (odds ratio, 1.81; 95% confidence interval, 1.56-2.11) than stool isolates. Ceftriaxone resistance increased in blood isolates from 2003 to 2013 (odd ratio, 1.12; 95% confidence interval, 1.02-1.22).  Resistance to first-line treatment agents in patients with Salmonella bacteremia is a concern for public health and for informing clinical decisions. Judicious antimicrobial use is crucial to limit resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Antimicrobial resistance in Neisseria gonorrhoeae in China: a meta-analysis.

    PubMed

    Chen, Yawen; Gong, Yanhong; Yang, Tingting; Song, Xingyue; Li, Jing; Gan, Yong; Yin, Xiaoxv; Lu, Zuxun

    2016-03-03

    Neisseria gonorrhoeae (N. gonorrhoeae) resistance to antimicrobial has been a major concern in China, and epidemiological data on N. gonorrhoeae resistance are not well understood. This meta-analysis was aimed at summarizing the evidence on N. gonorrhoeae resistance to penicillin, tetracycline, ciprofloxacin, ceftriaxone and spectinomycin in China. Two researchers independently searched five databases to identify studies on N. gonorrhoeae resistance to antimicrobials from the databases' inception to November 7, 2014. A random-effects model was used to estimate the antimicrobial resistance rates and their corresponding 95% confidence intervals (CIs). Publication bias was assessed with the Begg rank correlation test and the Egger test. We included 127 studies in our synthesis reporting antimicrobial resistance. Our analyses demonstrated that N. gonorrhoeae resistance to penicillin and tetracycline respectively increased from 74.41% (95% CI: 64.1-84.7%) and 68.3% (95% CI: 58.7-78.0%) in 2000 to 84.2% (95% CI: 79.7-88.8%) and 82.4% (95% CI: 79.9-84.7%) in 2012. N. gonorrhoeae resistance to ciprofloxacin experienced a steady increase from 12.7% (95% CI, 8.6-16.7%) in 1995 and reached 93.8% (95% CI: 91.9-95.7%) in 2003. N. gonorrhoeae resistance to ceftriaxone was 1.7% (95% CI: 0.5-5.7%) before 1995 and 0.5% (95% CI: 0.2-1.4%) in 2012, and N. gonorrhoeae resistance to spectinomycin was less than 2% from 1995 to 2012. N. gonorrhoeae resistance rates to penicillin, tetracycline and ciprofloxacin were high in China. Ceftriaxone and spectinomycin remained effective therapy for the treatment of gonorrhea. It is essential to strengthen N. gonorrhoeae resistance surveillance and update treatment guidelines timely.

  12. Antimicrobial Resistance in Agriculture

    PubMed Central

    Thanner, Sophie; Drissner, David

    2016-01-01

    ABSTRACT In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans. PMID:27094336

  13. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003-2012.

    PubMed

    Brown, A C; Grass, J E; Richardson, L C; Nisler, A L; Bicknese, A S; Gould, L H

    2017-03-01

    Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0·05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0·01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections.

  14. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.

    PubMed

    LaRock, Christopher N; Nizet, Victor

    2015-11-01

    Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils.

    PubMed

    Zouhir, Abdelmajid; Jridi, Taoufik; Nefzi, Adel; Ben Hamida, Jeannette; Sebei, Khaled

    2016-12-01

    Drug-resistant bacterial infections cause considerable patient mortality and morbidity. The annual frequency of deaths from methicillin-resistant Staphylococcus aureus (MRSA) has surpassed those caused by human immunodeficiency virus/acquired immune deficiency syndrome. The antimicrobial peptides (AMPs), plant essential oils (EOs) and their combinations have proven to be quite effective in killing a wide selection of bacterial pathogens including MRSA. This review summarizes the studies in the use of AMPs, plant EOs and their combinations for coping with MRSA bacteria, and to formulate new prospects for future studies on this topic. The sources of scientific literature such as PubMed, library search, Google Scholar, Science Direct and electronic databases such as 'The Antimicrobial Peptide Database', 'Collection of Anti-Microbial Peptides' and 'YADAMP'. Physicochemical data of anti-MRSA peptides were determined by Scientific DataBase Maker software. Of the 118 peptides, 88 exhibited an activity against MRSA with the highest activity of minimum inhibitory concentration values. Various plant EOs have been effective against MRSA. Remarkably, lemongrass EOs completely inhibited all MRSA growth on the plate. Lemon myrtle, Mountain savory, Cinnamon bark and Melissa EOs showed a significant inhibition. Several of these AMPs, EOs and their combinations were effective against MRSA. Their activities have implications for the development of new drugs for medical use.

  16. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach.

    PubMed

    Vogwill, Tom; MacLean, R Craig

    2015-03-01

    The evolution of antibiotic resistance carries a fitness cost, expressed in terms of reduced competitive ability in the absence of antibiotics. This cost plays a key role in the dynamics of resistance by generating selection against resistance when bacteria encounter an antibiotic-free environment. Previous work has shown that the cost of resistance is highly variable, but the underlying causes remain poorly understood. Here, we use a meta-analysis of the published resistance literature to determine how the genetic basis of resistance influences its cost. We find that on average chromosomal resistance mutations carry a larger cost than acquiring resistance via a plasmid. This may explain why resistance often evolves by plasmid acquisition. Second, we find that the cost of plasmid acquisition increases with the breadth of its resistance range. This suggests a potentially important limit on the evolution of extensive multidrug resistance via plasmids. We also find that epistasis can significantly alter the cost of mutational resistance. Overall, our study shows that the cost of antimicrobial resistance can be partially explained by its genetic basis. It also highlights both the danger associated with plasmidborne resistance and the need to understand why resistance plasmids carry a relatively low cost.

  17. The increasing importance of community-acquired methicillin-resistant Staphylococcus aureus infections.

    PubMed

    Agostino, Jason W; Ferguson, John K; Eastwood, Keith; Kirk, Martyn D

    2017-11-06

    To identify groups at risk of methicillin-resistant Staphylococcus aureus (MRSA) infection, patterns of antimicrobial resistance, and the proportion of patients with MRSA infections but no history of recent hospitalisation. Case series of 39 231 patients with S. aureus isolates from specimens processed by the Hunter New England Local Health District (HNELHD) public pathology provider during 2008-2014. Proportion of MRSA infections among people with S. aureus isolates; antimicrobial susceptibility of MRSA isolates; origin of MRSA infections (community- or health care-associated); demographic factors associated with community-associated MRSA infections. There were 71 736 S. aureus-positive specimens during the study period and MRSA was isolated from 19.3% of first positive specimens. Most patients (56.9%) from whom MRSA was isolated had not been admitted to a public hospital in the past year. Multiple regression identified that patients with community-associated MRSA were more likely to be younger (under 40), Indigenous Australians (odds ratio [OR], 2.6; 95% CI, 2.3-2.8), or a resident of an aged care facility (OR, 4.7; 95% CI, 3.8-5.8). The proportion of MRSA isolates that included the dominant multi-resistant strain (AUS-2/3-like) declined from 29.6% to 3.4% during the study period (P < 0.001), as did the rates of hospital origin MRSA in two of the major hospitals in the region. The prevalence of MRSA in the HNELHD region decreased during the study period, and was predominantly acquired in the community, particularly by young people, Indigenous Australians, and residents of aged care facilities. While the dominance of the multi-resistant strain decreased, new strategies for controlling infections in the community are needed to reduce the prevalence of non-multi-resistant strains.

  18. Community acquired methicillin resistant Staphylococcus aureus pneumonia: an update for the emergency and intensive care physician.

    PubMed

    Karampela, I; Poulakou, G; Dimopoulos, G

    2012-08-01

    Pneumonia caused by community-acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) among individuals without healthcare-associated (HA) risk factors was first recognized a decade ago. CA-MRSA has now been established as a pathogen responsible for rapidly progressive, frequently fatal disease manifesting as necrotizing pneumonia, severe sepsis and necrotizing fasciitis. The frequency of occurrence, risk factors, and optimal treatment of CA-MRSA pneumonia remain unclear and vary significantly across countries. CA-MRSA is resistant to β-lactam antimicrobials due to the acquisition of novel methicillin resistance genetic cassettes. Additionally many CA-MRSA strains produce Panton-Valentine leukocidin (PVL), due to which they probably exceed the virulence of hospital-acquired MRSA isolates (HA-MRSA). CA-MRSA pneumonia requires early suspicion -especially in young otherwise healthy individuals with rapidly evolving clinical picture presenting with cavitary consolidation, bilateral infiltrates, pleural effusion and hemoptysis. Prompt hospitalization and aggressive treatment with intravenous antibiotics is warranted to improve outcomes. Therapeutic approach for severe CA-MRSA infections and particularly pneumonia is generally the same as that for invasive HA-MRSA infections. New anti-MRSA agents and possible combinations are of great importance to be evaluated in the future.

  19. Antimicrobial susceptibility, risk factors and prevalence of bla cefotaximase, temoneira, and sulfhydryl variable genes among Escherichia coli in community-acquired pediatric urinary tract infection.

    PubMed

    Nisha, Kallyadan V; Veena, Shetty A; Rathika, Shenoy D; Vijaya, Shenoy M; Avinash, Shetty K

    2017-01-01

    The emergence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli has become an important challenge among pediatric patients with community-acquired urinary tract infection (UTI). The aim of this study was to assess the antimicrobial susceptibility patterns, associated risk factors and to survey the frequency of bla cefotaximase (CTX-M), bla temoneira (TEM), and bla sulfhydryl variable (SHV) genotypes in ESBL-producing E. coli isolated from children with community-acquired UTI. This was a prospective study conducted from November 2012 to March 2016 in a tertiary care center. E. coli isolated in urine cultures from children aged ≤18 years was identified and confirmed for ESBL production. ESBL-positive strains were screened for ESBL encoding genes. Chi-square test and Fisher's exact test were used to compare the difference in antibiotic susceptibility with respect to ESBL positive and negative, and binary logistic regression was used to identify the risk factors associated with ESBL production. Among 523 E. coli isolates, 196 (37.5%) were ESBL positive, >90% were resistant to cephalosporins, and 56% were resistant to fluoroquinolones. Least resistance was observed for imipenem, netilmicin, and nitrofurantoin (2%, 8.6%, 15.3%). Association between ESBL production and drug resistance was significant for ceftazidime ( P < 0.001), cefixime ( P < 0.001), cefotaxime ( P = 0.010), ceftazidime-clavulanic acid ( P < 0.001), levofloxacin ( P = 0.037), and gentamicin ( P = 0.047) compared to non-ESBL E. coli . CTX-M gene was the most prevalent (87.5%), followed by TEM (68.4%) and SHV (3.1%). Previous history of UTI and intake of antibiotics were the common risk factors. ESBL-producing E. coli from community-acquired pediatric UTI carries more than one type of beta-lactamase coding genes correlating their increased antibiotic resistance. Aggressive infection control policy, routine screening for detecting ESBL isolates in clinical samples, and antimicrobial

  20. Antimicrobial resistance of Salmonella and E. coli from Pennsylvania dairy herds

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance in bacterial pathogens is an increasing public health concern. The objective of this study was to examine antimicrobial resistance in Salmonella and E. coli isolates from Pennsylvania dairy herds. Manure composite samples were collected from 76 farms: on each farm one sample...

  1. Associations between anti-microbial resistance phenotypes, anti-microbial resistance genotypes and virulence genes of Escherichia coli isolates from Pakistan and China.

    PubMed

    Yaqoob, M; Wang, L P; Wang, S; Hussain, S; Memon, J; Kashif, J; Lu, C-P

    2013-10-01

    The objective of this study was to determine the association between phenotypic resistance, genotypic resistance and virulence genes of Escherichia coli isolates in Jiangsu province, China and Punjab province Pakistan. A total of 62 E. coli isolates were characterized for phenotypic resistance, genotypic resistance and virulence factor genes. The anti-microbial resistance phenotype and genotypes in relation to virulence factor genes were assessed by statistical analysis. Of 20 tested virulence genes, twelve were found and eight were not found in any isolates. sitA and TspE4C2 were the most prevalent virulence genes. Of the 13 anti-microbial agents tested, resistance to ampicillin, sulphonamide and tetracycline was the most frequent. All isolates were multiresistant, and 74% were resistant to trimethoprim and sulphamethaxazole. Phenotypically, tetracycline-, cefotaxime- and trimethoprim-resistant isolates had increased virulence factors as compared with susceptible isolates. Genotypically, resistant genes Tem, ctx-M, Tet, Sul 1, dhfr1, Cat2 and flo-R showed the association with the virulence genes. Almost all classes of anti-microbial-resistant genes have a high association with virulence. Resistant isolates have more virulent genes than the susceptible isolates. © 2012 Blackwell Verlag GmbH.

  2. Addressing Antimicrobial Resistance: An Overview of Priority Actions to Prevent Suboptimal Antimicrobial Use in Food-Animal Production

    PubMed Central

    Lhermie, Guillaume; Gröhn, Yrjö T.; Raboisson, Didier

    2017-01-01

    The growing concern regarding emergence of bacteria resistant to antimicrobials and their potential for transmission to humans via animal production has led various authorities worldwide to implement measures to decrease antimicrobial use (AMU) in livestock production. These measures are influenced by those implemented in human medicine, and emphasize the importance of antimicrobial stewardship, surveillance, infection prevention and control and research. In food producing animals, unlike human medicine, antimicrobials are used to control diseases which cause economic losses. This major difference may explain the failure of the public policies implemented to control antimicrobial usage. Here we first review the specific factors influencing AMU across the farm animal sector and highlighting the farmers’ decision-making process of AMU. We then discuss the efficiency of existing regulations implemented by policy makers, and assess the need for alternative strategies, such as substitution between antimicrobials and other measures for infectious disease control. We also discuss the interests of regulating antimicrobial prices. Finally, we emphasize the value of optimizing antimicrobial regimens, and developing veterinary precision medicine to achieve clinical efficacy in animals while limiting negative impacts on public health. The fight against antimicrobial resistance requires both a reduction and an optimization of antimicrobial consumption. The set of actions currently implemented by policy makers does not adequately address the economic interests of farmers’ use of antimicrobials. PMID:28111568

  3. Pneumonia acquired in the community through drug-resistant Streptococcus pneumoniae.

    PubMed

    Ewig, S; Ruiz, M; Torres, A; Marco, F; Martinez, J A; Sanchez, M; Mensa, J

    1999-06-01

    The aim of the study was to determine the incidence of and risk factors for drug resistance of Streptococcus pneumoniae, and its impact on the outcome among hospitalized patients of pneumococcal pneumonia acquired in the community. Consecutive patients with culture-proven pneumococcal pneumonia were prospectively studied with regard to the incidence of pneumococcal drug resistance, potential risk factors, and in-hospital outcome variables. A total of 101 patients were studied. Drug resistance to penicillin, cephalosporin, or a macrolide drug was found in pneumococci from 52 of the 101 (52%) patients; 49% of these isolates were resistant to penicillin (16% intermediate resistance, 33% high resistance), 31% to cephalosporin (22% intermediate and 9% high resistance), and 27% to a macrolide drug. In immunocompetent patients, age > 65 yr was significantly associated with resistance to cephalosporin (odds ratio [OR]: 5.0; 95% confidence interval [CI]: 1.3 to 18.8, p = 0. 01), and with the presence of > 2 comorbidities with resistance to penicillin (OR: 4.7; 95% CI: 1.2 to 19.1; p < 0.05). In immunosuppressed patients, bacteremia was inversely associated with resistance to penicillin and cephalosporin (OR: 0.04; 95% CI: 0.003 to 0.45; p < 0.005; and OR: 0.46; 95% CI: 0.23 to 0.93; p < 0.05, respectively). Length of hospital stay, severity of pneumonia, and complications were not significantly affected by drug resistance. Mortality was 15% in patients with any drug resistance, as compared with 6% in those without resistance. However, any drug resistance was not significantly associated with death (relative risk [RR]: 2. 5; 95% CI: 0.7 to 8.9; p = 0.14). Moreover, attributable mortality in the presence of discordant antimicrobial treatment was 12%, as compared with 10% (RR: 1.2; 95% CI: 0.3 to 5.3; p = 0.67) in the absence of such treatment. We conclude that the incidence of drug-resistant pneumococci was high. Risk factors for drug resistance included advanced age

  4. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages.

    PubMed

    Wimalarathna, Helen M L; Richardson, Judith F; Lawson, Andy J; Elson, Richard; Meldrum, Richard; Little, Christine L; Maiden, Martin C J; McCarthy, Noel D; Sheppard, Samuel K

    2013-07-15

    Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004-5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition. Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains. These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.

  5. Evaluation of antimicrobial susceptibilities and virulence factors of Staphylococcus aureus strains isolated from community-acquired and health-care associated pediatric infections.

    PubMed

    Karbuz, Adem; Karahan, Zeynep Ceren; Aldemir-Kocabaş, Bilge; Tekeli, Alper; Özdemir, Halil; Güriz, Haluk; Gökdemir, Refik; İnce, Erdal; Çiftçi, Ergin

    2017-01-01

    Karbuz A, Karahan ZC, Aldemir-Kocabaş B, Tekeli A, Özdemir H, Güriz H, Gökdemir R, İnce E, Çiftçi E. Evaluation of antimicrobial susceptibilities and virulence factors of Staphylococcus aureus strains isolated from community-acquired and health-care associated pediatric infections. Turk J Pediatr 2017; 59: 395-403. The aim of this study was to investigate the enterotoxins and Panton-Valentine leukocidin (PVL) gene as virulence factor, identification if antimicrobial sensitivity patterns, agr (accessory gene regulator) types and sequence types and in resistant cases to obtain SCCmec (staphylococcal cassette chromosome mec) gene types which will be helpful to decide empirical therapy and future health politics for S. aureus species. Total of 150 isolates of S. aureus were isolated from the cultures of the child patients in January 2011 and December 2012. In this study, the penicillin resistance was observed as 93.8%. PVL and mecA was detected positive in 8.7% and in 6% of all S. aureus strains, respectively. Two MRSA (methicillin resistant S.aureus) strains were detected as SCCmec type III and SCCmec type V and five MRSA strains were detected as SCCmec type IV. SET-I and SET-G were the most common detected enterotoxins. In both community-associated and healthcare-associated MRSA strains, agr type 1 was detected most commonly. The most common sequence types were ST737 in 13 patients than ST22 in eight patients and ST121 in six patients. This study highlights a necessity to review the cause of small changes in the structural genes in order to determine whether it is a cause or outcome; community-acquired and healthcare associated strains overlap.

  6. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-02-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.

  7. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates

    PubMed Central

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-01-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Large-scale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuberculosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk. PMID:28222842

  8. Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals.

    PubMed

    Wallmann, Jürgen

    2006-06-01

    Facing the problem of development and spreading of bacterial resistance, preventive strategies are considered the most appropriate means to counteract. The establishment of corresponding management options relies on scientifically defensible efforts to obtain objective data on the prevalence of bacterial resistance in healthy and diseased livestock. Additionally, detailed statistics are needed on the overall amount of antimicrobial agents dispensed in Germany. The collection of valid data on the prevalence of resistance requires representative and cross-sectional studies. The German national antimicrobial resistance monitoring of the Federal Office of Consumer Protection and Food Safety (BVL) determines the current quantitative resistance level of life-stock pathogens, in order to permit the evaluation and surveillance of the distribution of resistances on a valid basis. Essential key features determining the design of these studies comprise (1) a statistically valid sampling program. This incorporates regional differences in animal population density, (2) the avoidance of "copy strains", (3) testing of no more than two bacterial strains belonging to one species per herd, (4) testing only if no antimicrobial therapy preceded sample collection, and (5) the use of standardized methods [e.g. microdilution broth method to determine the minimal inhibitory concentration (MIC)]. The analysis and interpretation of this data permits reliable identification and definition of epidemiological characteristics of resistance and its development in animal associated bacteria, such as geographically and time wise differentiated profiles on its prevalence, the emergence of unknown phenotypes of resistance and an assessment of the threat resistant bacteria from animals pose for humans. In applied antimicrobial therapy, the data can serve as a decision guidance in choosing the antimicrobial agent most adapted to the prevailing epidemiological situation. The susceptibility testing

  9. Antimicrobial resistance, infection control and planning for pandemics: the importance of knowledge transfer in healthcare resilience and emergency planning.

    PubMed

    Cole, Jennifer

    Over the last 70 years, the efficacy, ready availability and relatively low cost of antimicrobial drugs - medicines that kill microorganisms such as bacteria and viruses or inhibit their multiplication, growth and pathogenic action - has led to their considerable overuse. It is estimated that nearly 50 per cent of all antimicrobial use in hospitals is unnecessary or inappropriate1 while in neonatal care, the figure is even higher, with infection confirmed in only five per cent of neonates treated with antibiotics.2 The more antimicrobials are used, the faster the microorganisms they target evolve into new, resistant strains, a natural process of evolution that threatens to undermine the tremendous life-saving potential of these drugs. Antimicrobial resistance (AMR) is a growing concern not only for the healthcare sector3 but also, increasingly, for security and resilience. Pandemic influenza, comparable only to 'Catastrophic terrorist attacks' at the top of the UK's National Risk Register4 may well result from the emergence of a strain that cannot be treated effectively with currently available drugs or from one that quickly develops resistance to the stockpiled countermeasures. Multidrug-resistant tuberculosis impacts on immigration policy, methicillin-resistant Staphylococcus aureus (MRSA), a major cause of hospital-acquired infections is an ongoing challenge for the health sector and the increase in drug-resistant strains of malaria is problematic both in its own right and as an additional consequence of climate change. AMR places a significant burden on international governments and tackling it requires changes to thinking across a number of government departments. In 2011, the Transatlantic Taskforce on Antimicrobial Resistance (TATFAR) published Recommendations for future collaboration between the US and EU1 and both the EU and the UK's Department of Health have recently developed new AMR strategies and Action Plans. This paper will explore the cross

  10. Role of Nutrients and Phyto-compounds in the Modulation of Antimicrobial Resistance.

    PubMed

    Harakeh, Steve; Khan, Imran; Almasaudi, Saad B; Azhar, Esam I; Al-Jaouni, Soad; Niedzweicki, Aleksandra

    2017-01-01

    Antimicrobial resistance is quickly spreading and has become a major public health problem worldwide. If this issue is not resolved, it may cause a shift back to the pre-antibiotics era and infectious disease will again be a serious problem, especially in developing countries. Since the discovery of antibiotics, bacterial resistance has emerged, enabling certain bacteria to withstand antibiotic action. The emergence of antibiotic resistance is fueled by excessive and improper use of antimicrobial agents, especially in developing countries. For this reason, alternatives to or modifications of current treatment methods have been sought. The aim of this review is to highlight the possible synergies of various agents that can augment antibiotic activities. A structured literature search was conducted using only papers that have been published in PubMed with the focus on the agents that are likely to modulate antimicrobial resistance. In this review, data was retrieved from the literature regarding the possible synergies that exist between commercially available antimicrobial drugs with agents of interest. The papers included were summarized and analyzed, critiqued and compared for their contents using a conceptual frame-work. In total, one hundred and twenty six papers were reviewed. The number of papers that dealt with the different topics included are as follows (): emergence of antimicrobial resistance (22), bioactive phyto-compounds (36) (phytobiologics, and phytochemicals), Antioxidants (40) (N-acetylcysteine, Ambroxol, Ascorbic acid, Glutathione and vitamin E), Peptide synergies (14) (Synthetic cationic α-helical AMPs, CopA3, Alafosfalin, PMAP-36, Phosphonopeptide L-norvalyl-L-1-aminoethylphosphonic acid and norcardicin-A), nano-antibiotics (10), drug-compound interactions (4).This review addressed the new strategies using the above compounds in the modulation of antimicrobial resistance to avoid issues related to resistance of bacteria to antibiotics. The

  11. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  12. Antimicrobial Resistance Gene Transfer in Drug Resistant Acinetobacter Species

    USDA-ARS?s Scientific Manuscript database

    Abstract: Antibiotic resistance is rapidly developing into one of the most formidable challenges for healthcare providers and researchers alike. To combat the rapid evolution of resistance, it will be important to uncover different mechanisms that bacteria use to acquire drug resistance genes. Acine...

  13. The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance.

    PubMed

    Pettigrew, Melinda M; Johnson, J Kristie; Harris, Anthony D

    2016-05-01

    Hospital-acquired infections are increasing in frequency due to multidrug resistant organisms (MDROs), and the spread of MDROs has eroded our ability to treat infections. Health care professionals cannot rely solely on traditional infection control measures and antimicrobial stewardship to prevent MDRO transmission. We review research on the microbiota as a target for infection control interventions. We performed a literature review of key research findings related to the microbiota as a target for infection control interventions. These data are summarized and used to outline challenges, opportunities, and unanswered questions in the field. The healthy microbiota provides protective functions including colonization resistance, which refers to the microbiota's ability to prevent colonization and/or expansion of pathogens. Antibiotic use and other exposures in hospitalized patients are associated with disruptions of the microbiota that may reduce colonization resistance and select for antibiotic resistance. Novel methods to exploit protective mechanisms provided by an intact microbiota may provide the key to preventing the spread of MDROs in the health care setting. Research on the microbiota as a target for infection control has been limited. Epidemiologic studies will facilitate progress toward the goal of manipulating the microbiota for control of MDROs in the health care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments.

    PubMed

    Fukuda, Akira; Usui, Masaru; Okamura, Masashi; Dong-Liang, Hu; Tamura, Yutaka

    2018-04-30

    Flies play an important role as vectors in the transmission of antimicrobial-resistant bacteria (ARB) and are hypothesized to transfer ARB between internal and external livestock housing areas. The aim of this study was to understand the role that flies may play in the maintenance of ARB in the farm environment. We first evaluated the fate of ingested antimicrobial-resistant Escherichia coli harboring a plasmid containing antimicrobial-resistance genes (ARGs) throughout the housefly (Musca domestica) life cycle, from adult to the subsequent F1 generation. Antimicrobial-resistant E. coli was isolated from different life cycle stages and ARG carriage quantified. The ingested E. coli persisted throughout the fly life cycle, and ARG carriage was maintained at a constant level in the housefly microbiota. To clarify the transmission of ARB from flies to livestock, 30-day-old chickens were inoculated with maggots containing antimicrobial-resistant E. coli. Based on the quantification of bacteria isolated from cecal samples, antimicrobial-resistant E. coli persisted in these chickens for at least 16 days. These results suggest that flies act as a reservoir of ARB throughout their life cycle and may therefore be involved in the maintenance and circulation of ARB in the farm environment.

  15. Perceptions of antimicrobial usage, antimicrobial resistance and policy measures to reduce antimicrobial usage in convenient samples of Belgian, French, German, Swedish and Swiss pig farmers.

    PubMed

    Visschers, V H M; Backhans, A; Collineau, L; Iten, D; Loesken, S; Postma, M; Belloc, C; Dewulf, J; Emanuelson, U; Beilage, E Grosse; Siegrist, M; Sjölund, M; Stärk, K D C

    2015-04-01

    We conducted a survey among convenient samples of pig farmers (N=281) in Belgium, France, Germany, Sweden and Switzerland. We identified some significant differences among the five investigated countries (independent variable) regarding farmers' antimicrobial usage compared to their own country and worries related to pig farming (dependent variables), but most of the differences were rather small. In general, farmers perceived their own antimicrobial usage to be lower than that of their peers in the same country and lower than or similar to that of farmers from other countries. This may be a consequence of our convenience sample, resulting in self-selection of highly motivated farmers. Farmers were significantly more worried about financial/legal issues than about antimicrobial resistance. They believed that a reduction in revenues for slaughter pigs treated with a large amount of antimicrobials would have the most impact on reduced antimicrobial usage in their country. Further, farmers who were more worried about antimicrobial resistance and who estimated their own antimicrobial usage as lower than their fellow countrymen, perceived more impact from policy measures on the reduction of antimicrobials. Our results indicated that the same policy measures can be applied to reduce antimicrobial usage in pig farming in all five countries. Moreover, it seems worthwhile to increase pig farmers' awareness of the threat of antimicrobial resistance and its relation to antimicrobial usage; not only because pig farmers appeared little worried about antimicrobial usage but also because it affected farmers' perception of policy measures to reduce antimicrobial usage. Our samples were not representative for the national pig farmer populations. Further research is therefore needed to examine to what extent our findings can be generalised to these populations and to farmers in other countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed Central

    Tyson, G. H.; Chen, Y.; Li, C.; Mukherjee, S.; Young, S.; Lam, C.; Folster, J. P.; Whichard, J. M.; McDermott, P. F.

    2015-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2′)-If, aph(2″)-Ig, aph(2″)-Ih, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ie-aph(2″)-If, aac(6′)-Im, aadE, sat4, ant(6′), aad9, aph(3′)-Ic, and aph(3′)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  17. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    PubMed

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-15

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Antimicrobial resistance surveillance in the AFHSC-GEIS network

    PubMed Central

    2011-01-01

    International infectious disease surveillance has been conducted by the United States (U.S.) Department of Defense (DoD) for many years and has been consolidated within the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) since 1998. This includes activities that monitor the presence of antimicrobial resistance among pathogens. AFHSC-GEIS partners work within DoD military treatment facilities and collaborate with host-nation civilian and military clinics, hospitals and university systems. The goals of these activities are to foster military force health protection and medical diplomacy. Surveillance activities include both community-acquired and health care-associated infections and have promoted the development of surveillance networks, centers of excellence and referral laboratories. Information technology applications have been utilized increasingly to aid in DoD-wide global surveillance for diseases significant to force health protection and global public health. This section documents the accomplishments and activities of the network through AFHSC-GEIS partners in 2009. PMID:21388568

  19. Antimicrobial resistance surveillance in the AFHSC-GEIS network.

    PubMed

    Meyer, William G; Pavlin, Julie A; Hospenthal, Duane; Murray, Clinton K; Jerke, Kurt; Hawksworth, Anthony; Metzgar, David; Myers, Todd; Walsh, Douglas; Wu, Max; Ergas, Rosa; Chukwuma, Uzo; Tobias, Steven; Klena, John; Nakhla, Isabelle; Talaat, Maha; Maves, Ryan; Ellis, Michael; Wortmann, Glenn; Blazes, David L; Lindler, Luther

    2011-03-04

    International infectious disease surveillance has been conducted by the United States (U.S.) Department of Defense (DoD) for many years and has been consolidated within the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) since 1998. This includes activities that monitor the presence of antimicrobial resistance among pathogens. AFHSC-GEIS partners work within DoD military treatment facilities and collaborate with host-nation civilian and military clinics, hospitals and university systems. The goals of these activities are to foster military force health protection and medical diplomacy. Surveillance activities include both community-acquired and health care-associated infections and have promoted the development of surveillance networks, centers of excellence and referral laboratories. Information technology applications have been utilized increasingly to aid in DoD-wide global surveillance for diseases significant to force health protection and global public health. This section documents the accomplishments and activities of the network through AFHSC-GEIS partners in 2009.

  20. Impact of raised without antibiotics practices on occurrences of antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    Background: The increasing occurrence of antimicrobial-resistant human infections has been attributed to the use of antimicrobials in a variety of applications including food-animal production. "Raised without antibiotics" (RWA) meat production has been offered as a practice to reduce antimicrobial-...

  1. Phenotypic and genotypic anti-microbial resistance profiles of campylobacters from untreated feedlot cattle and their environment.

    PubMed

    Minihan, D; Whyte, P; O'mahony, M; Cowley, D; O'halloran, F; Corcoran, D; Fanning, S; Collins, J D

    2006-05-01

    Anti-microbial resistance is an emerging public health issue. Farmed animals may act as reservoirs and potential sources of anti-microbial resistant Campylobacters. The aim of this study was to investigate the anti-microbial resistance profile of cattle and environmental Campylobacter isolates from normal untreated feedlot cattle, the role of the gyrA Thr-86-Ile mutation in ciprofloxacin-resistant Campylobacter jejuni isolates and the involvement of the tripartite CmeABC efflux system for multi-resistant C. jejuni isolates. The phenotypic anti-microbial resistance testing was carried out on 500 Campylobacter isolates (445 cattle isolates and 55 environmental isolates). In general, there was a higher level of anti-microbial resistance for the environmental isolates compared with the animal isolates, 45% of the animal isolates were resistant to one or more of the seven anti-microbials compared with 84% of the environmental isolates. The combined cattle and environmental Campylobacters had 34 (6.8%) isolates resistant to three or more of the seven anti-microbials tested on all isolates and 11 (2.2%) isolates were resistant to the seven anti-microbials. There was a substantial level of ciprofloxacin-resistant Campylobacters in both animal (8.5%) and environmental (21.8%) isolates. The gyrA Thr-86-Ile mutation was only present in five of 22 ciprofloxacin-resistant C. jejuni isolates investigated. No multi-drug-resistant associated mutation was detected in the CmeB or the CmeR regions investigated. In conclusion, our study observed a substantial level of Campylobacter anti-microbial resistance, highlighting the need for an active anti-microbial surveillance program for food animals in Ireland and the importance of the chosen sampling point can have on the findings of such a program.

  2. ANTIMICROBIAL RESISTANCE IN SALMONELLA ISOLATES RECOVERED FROM EGGS

    USDA-ARS?s Scientific Manuscript database

    Background: Antimicrobial resistance is of global concern and first emerged in bacteria shortly after the introduction of penicillin. It is common to see resistance develop after new compounds (regardless of class) are released. However many factors influence the persistence and transmission of r...

  3. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    PubMed

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Antimicrobial resistance and the standards of the World Organisation for Animal Health.

    PubMed

    Orand, J P

    2012-04-01

    Antimicrobial resistance and the use of antimicrobial agents in veterinary medicine are complex issues that are currently a source of major international concern. It is therefore essential for the World Organisation for Animal Health (OIE) to consider this issue, while at the same time continuing to address the problem of zoonotic diseases. That is why the OIE has included objectives for veterinary drugs, especially antimicrobials, in its Strategic Plan. The OIE plays an active part in discussions on this subject in conjunction with other international organisations working in this field, such as the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO). Furthermore, the OIE has adopted guidelines both for defining harmonised methodologies for antimicrobial resistance surveillance and monitoring and for helping countries to conduct a risk analysis tailored to their situation and to take appropriate management measures. The OIE has included this issue in its programme of assistance to countries by offering them structural enhancement tools: the Tool for the Evaluation of Performance of Veterinary Services (O1E PVS Tool), PVS Gap Analysis, veterinary legislation support, and training for veterinary national focal points, with the aid of its Collaborating Centres for veterinary medicinal products. Only by mobilising all countries to improve the quality of antimicrobials, to introduce antimicrobial resistance surveillance and to implement measures for the responsible and prudent use of antimicrobials, will it be possible to halt the spread of antimicrobial resistance.

  5. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms.

    PubMed

    Liljebjelke, Karen A; Hofacre, Charles L; White, David G; Ayers, Sherry; Lee, Margie D; Maurer, John J

    2017-01-01

    Salmonella remains the leading cause of foodborne illness in the United States, and the dissemination of drug-resistant Salmonellae through the food chain has important implications for treatment failure of salmonellosis. We investigated the ecology of Salmonella in integrated broiler production in order to understand the flow of antibiotic susceptible and resistant strains within this system. Data were analyzed from a retrospective study focused on antimicrobial resistant Salmonella recovered from commercial broiler chicken farms conducted during the initial years of the US FDA's foray into retail meat surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). Sixty-three percentage of Salmonella were pan-susceptible to a panel of 19 antimicrobials used by the NARMS program. Twenty-five antimicrobial resistance phenotypes were observed in Salmonella isolated from two broiler chicken farms. However, Salmonella displaying resistance to streptomycin, alone, and in combination with other antibiotics was the most prevalent (36.3%) antimicrobial resistance phenotype observed. Resistance to streptomycin and sulfadimethoxine appeared to be linked to the transposon, Tn 21 . Combinations of resistance against streptomycin, gentamicin, sulfadimethoxine, trimethoprim, and tetracycline were observed for a variety of Salmonella enterica serovars and genetic types as defined by pulsed-field gel electrophoresis. There were within and between farm differences in the antibiotic susceptibilities of Salmonella and some of these differences were linked to specific serovars. However, farm differences were not linked to antibiotic usage. Analysis of the temporal and spatial distribution of the endemic Salmonella serovars on these farms suggests that preventing vertical transmission of antibiotic-resistant Salmonella would reduce carcass contamination with antibiotic-resistant Salmonella and subsequently human risk exposure.

  6. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms

    PubMed Central

    Liljebjelke, Karen A.; Hofacre, Charles L.; White, David G.; Ayers, Sherry; Lee, Margie D.; Maurer, John J.

    2017-01-01

    Salmonella remains the leading cause of foodborne illness in the United States, and the dissemination of drug-resistant Salmonellae through the food chain has important implications for treatment failure of salmonellosis. We investigated the ecology of Salmonella in integrated broiler production in order to understand the flow of antibiotic susceptible and resistant strains within this system. Data were analyzed from a retrospective study focused on antimicrobial resistant Salmonella recovered from commercial broiler chicken farms conducted during the initial years of the US FDA’s foray into retail meat surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). Sixty-three percentage of Salmonella were pan-susceptible to a panel of 19 antimicrobials used by the NARMS program. Twenty-five antimicrobial resistance phenotypes were observed in Salmonella isolated from two broiler chicken farms. However, Salmonella displaying resistance to streptomycin, alone, and in combination with other antibiotics was the most prevalent (36.3%) antimicrobial resistance phenotype observed. Resistance to streptomycin and sulfadimethoxine appeared to be linked to the transposon, Tn21. Combinations of resistance against streptomycin, gentamicin, sulfadimethoxine, trimethoprim, and tetracycline were observed for a variety of Salmonella enterica serovars and genetic types as defined by pulsed-field gel electrophoresis. There were within and between farm differences in the antibiotic susceptibilities of Salmonella and some of these differences were linked to specific serovars. However, farm differences were not linked to antibiotic usage. Analysis of the temporal and spatial distribution of the endemic Salmonella serovars on these farms suggests that preventing vertical transmission of antibiotic-resistant Salmonella would reduce carcass contamination with antibiotic-resistant Salmonella and subsequently human risk exposure. PMID:28691011

  7. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003–2012

    PubMed Central

    BROWN, A. C.; GRASS, J. E.; RICHARDSON, L. C.; NISLER, A. L.; BICKNESE, A. S.; GOULD, L. H.

    2016-01-01

    SUMMARY Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0.05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0.01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections. PMID:27919296

  8. The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance.

    PubMed

    Lesho, Emil P; Waterman, Paige E; Chukwuma, Uzo; McAuliffe, Kathryn; Neumann, Charlotte; Julius, Michael D; Crouch, Helen; Chandrasekera, Ruvani; English, Judith F; Clifford, Robert J; Kester, Kent E

    2014-08-01

    Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Antimicrobial resistance among Campylobacter strains, United States, 1997-2001.

    PubMed

    Gupta, Amita; Nelson, Jennifer M; Barrett, Timothy J; Tauxe, Robert V; Rossiter, Shannon P; Friedman, Cindy R; Joyce, Kevin W; Smith, Kirk E; Jones, Timothy F; Hawkins, Marguerite A; Shiferaw, Belershacew; Beebe, James L; Vugia, Duc J; Rabatsky-Ehr, Terry; Benson, James A; Root, Timothy P; Angulo, Frederick J

    2004-06-01

    We summarize antimicrobial resistance surveillance data in human and chicken isolates of Campylobacter. Isolates were from a sentinel county study from 1989 through 1990 and from nine state health departments participating in National Antimicrobial Resistance Monitoring System for enteric bacteria (NARMS) from 1997 through 2001. None of the 297 C. jejuni or C. coli isolates tested from 1989 through 1990 was ciprofloxacin-resistant. From 1997 through 2001, a total of 1,553 human Campylobacter isolates were characterized: 1,471 (95%) were C. jejuni, 63 (4%) were C. coli, and 19 (1%) were other Campylobacter species. The prevalence of ciprofloxacin-resistant Campylobacter was 13% (28 of 217) in 1997 and 19% (75 of 384) in 2001; erythromycin resistance was 2% (4 of 217) in 1997 and 2% (8 of 384) in 2001. Ciprofloxacin-resistant Campylobacter was isolated from 10% of 180 chicken products purchased from grocery stores in three states in 1999. Ciprofloxacin resistance has emerged among Campylobacter since 1990 and has increased in prevalence since 1997.

  10. Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future

    PubMed Central

    Unemo, Magnus

    2014-01-01

    SUMMARY Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  11. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    PubMed

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. [Etiology of urinary tract infections and antimicrobial susceptibility of urinary pathogens].

    PubMed

    Correia, Carlos; Costa, Elísio; Peres, António; Alves, Madalena; Pombo, Graça; Estevinho, Letícia

    2007-01-01

    With the objective of knowing the common etiological agents in urinary infection and comparing its antimicrobial susceptibility in nosocomial and community-acquired urinary infections, we analyse all the urine bacteriological exams from the Serviço de Patologia Clínica do Centro Hospitalar do Nordeste, EPE - Unidade Hospitalar de Bragança, during a two years period (April 2004 to March 2006). During this period, 4018 urine bacteriological exams were made. The cultural exam was positive in 572 samples (144 from nosocomial infections and 428 from community-acquired urinary infections). The Escherichia coli was the more isolated strain (68,4 %), followed by Klebsiella spp (7,9%), Pseudomonas aeruginosa (6,1%) and Proteus mirabilis (5,2%). Concerning to antimicrobial susceptibility, Escherichia coli and Klebsiella spp showed a high resistance to the antimicrobials Amoxicillin, Piperacillin, Cephalothin, Ceftazidim and Quinolones. For Enterobacteriaceae Imipenem, Amikacin and Netilmicin were the antimicrobials with more level of susceptibility. Imipenem and Amikacin were the more efficient antimicrobials against Pseudomonas aeruginosa. Concerning to the susceptibility for the same etiological agent, in nosocomial and community-acquired urinary infections, we founded statistical significant differences in the antimicrobials Ticarcillin-clavulanic acid and Collistin for Pseudomonas aeruginosa and in the group of antimicrobials from Quinolones for the Proteus mirabilis. In the other identified agents there were no statistical significant differences for antimicrobials. This study it allows making use of data necessary for the knowledge of etiologic urinary infection agents in Bragança and provides the information about the antimicrobials resistance, which were necessary to initiate an adequate empirical treatment and to elaborate treatment guides.

  13. The prevalence of antimicrobial-resistant Escherichia coli in sympatric wild rodents varies by season and host.

    PubMed

    Williams, N J; Sherlock, C; Jones, T R; Clough, H E; Telfer, S E; Begon, M; French, N; Hart, C A; Bennett, M

    2011-04-01

      To investigate the prevalence and temporal patterns of antimicrobial resistance in wild rodents with no apparent exposure to antimicrobials.   Two sympatric populations of bank voles and wood mice were trapped and individually monitored over a 2- year period for faecal carriage of antimicrobial-resistant Escherichia coli. High prevalences of ampicillin-, chloramphenicol-, tetracycline- and trimethoprim-resistant E. coli were observed. A markedly higher prevalence of antimicrobial-resistant E. coli was found in wood mice than in bank voles, with the prevalence in both increasing over time. Superimposed on this trend was a seasonal cycle with a peak prevalence of resistant E. coli in mice in early- to mid-summer and in voles in late summer and early autumn.   These sympatric rodent species had no obvious contact with antimicrobials, and the difference in resistance profiles between rodent species and seasons suggests that factors present in their environment are unlikely to be drivers of such resistance.   These findings suggest that rodents may represent a reservoir of antimicrobial-resistant bacteria, transmissible to livestock and man. Furthermore, such findings have implications for human and veterinary medicine regarding antimicrobial usage and subsequent selection of antimicrobial-resistant organisms. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  14. Salmonella and antimicrobial resistance in an animal-based agriculture river system.

    PubMed

    Palhares, Julio Cesar Pascale; Kich, Jalusa D; Bessa, Marjo C; Biesus, Luiza L; Berno, Lais G; Triques, Nelise J

    2014-02-15

    The aim of this study was to examine the Salmonella serovars and antimicrobial resistance within an animal-based agriculture river system. The study area consisted of a 1,345 ha upper part of Pinhal catchment. A total of 384 samples were collected in four years of monitoring. Salmonella was isolated from 241 samples (62.7%), resulting in 324 isolates. The highest number of Salmonella sp. occurred in samples associated with sites with high stoking density animal unit per hectare. It was possible to demonstrate the variability of serovars in the study area: 30 different serovars were found and at least 11 per monitoring site. Thirty-three potentially related isolates were genotyped by PFGE, one major clone was observed in serovar Typhimurium, which occurred in animal feces (swine and bovine), and different sites and samplings proving the cross-contamination and persistence of this specific clone. Among 180 isolates submitted to an antimicrobial susceptibility test, 50.5% were susceptible to all 21 antimicrobials tested and 54 different profiles were found. In the current study, 49.5% of the tested isolates were resistant to at least one antimicrobial, and multi-resistance occurred in 18% of isolates. Results indicate a close interaction between animal-based agriculture, Salmonella, and antimicrobial resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Antimicrobial resistance of Staphylococcus species isolated from Lebanese dairy-based products.

    PubMed

    Zouhairi, O; Saleh, I; Alwan, N; Toufeili, I; Barbour, E; Harakeh, S

    2012-12-04

    The study evaluated the antimicrobial resistance of molecularly characterized strains of Staphylococcus aureus and S. saprophyticus isolated from 3 Lebanese dairy-based food products that are sometimes consumed raw: kishk, shanklish and baladi cheese. Suspected Staphylococcus isolates were identified initially using standard biochemical tests, then strains that were confirmed by polymerase chain reaction (29 S. aureus and 17 S. saprophyticus) were evaluated for their susceptibility to different antimicrobials. The highest levels of contamination with staphylococci were in baladi cheese. Resistance rates ranged from 67% to gentamicin to 94% to oxacillin and clindamycin. The results suggest that these locally made dairy-based foods may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus spp.

  16. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    NASA Astrophysics Data System (ADS)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  17. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    PubMed

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  18. The antimicrobial resistance containment and surveillance approach--a public health tool.

    PubMed Central

    Simonsen, Gunnar S.; Tapsall, John W.; Allegranzi, Benedetta; Talbot, Elizabeth A.; Lazzari, Stefano

    2004-01-01

    Antimicrobial drug resistance (AMR) is widely recognized as a global public health threat because it endangers the effectiveness of treatment of infectious diseases. In 2001 WHO issued the Global Strategy for Containment of Antimicrobial Resistance, but it has proved difficult to translate the recommendations of the Global Strategy into effective public health actions. The purpose of the Antimicrobial Resistance Containment and Surveillance (ARCS) approach is to facilitate the formulation of public health programmes and the mobilization of human and financial resources for the containment of AMR. The ARCS approach highlights the fundamental link between rational drug use and containment of AMR. Clinical management of human and animal infections should be improved through better disease control and prevention, high quality diagnostic testing, appropriate treatment regimens and consumer health education. At the same time, systems for supplying antimicrobial drugs should include appropriate regulations, lists of essential drugs, and functional mechanisms for the approval and delivery of drugs. Containment of AMR is defined in the ARCS approach as the continuous application of this package of core interventions. Surveillance of the extent and trends of antimicrobial resistance as well as the supply, selection and use of antimicrobial drugs should be established to monitor the process and outcome of containment of AMR. The ARCS approach is represented in the ARCS diagram (Fig. 2) which provides a simplified, but comprehensive illustration of the complex problem of containment and monitoring of AMR. PMID:15654407

  19. Solithromycin for the treatment of community-acquired bacterial pneumonia.

    PubMed

    Viasus, Diego; Ramos, Oscar; Ramos, Leidy; Simonetti, Antonella F; Carratalà, Jordi

    2017-01-01

    Community-acquired pneumonia is a major public health problem worldwide. In recent years, there has been an increase in the frequency of resistance to the antimicrobials such as β-lactams or macrolides which have habitually been used against the causative pathogens. Solithromycin, a next-generation macrolide, is the first fluoroketolide with activity against most of the frequently isolated bacteria in community-acquired pneumonia, including typical and atypical bacteria as well as macrolide-resistant Streptococcus pneumoniae. Areas covered: A detailed assessment of the literature relating to the antimicrobial activity, pharmacokinetic/pharmacodynamic properties, efficacy, tolerability and safety of solithromycin for the treatment of community-acquired bacterial pneumonia Expert commentary: Recent randomized controlled phase II/III trials have demonstrated the equivalent efficacy of oral and intravenous solithromycin compared with fluoroquinolones in patients with lower mild-to-moderate respiratory infections, and have shown that systemic adverse events are comparable between solithromycin and alternative treatments. However, studies of larger populations which are able to identify infrequent adverse events are now needed to confirm these findings. On balance, current data supports solithromycin as a promising therapy for empirical treatment in adults with community-acquired bacterial pneumonia.

  20. Enhancing US-Japan Cooperation to Combat Antimicrobial Resistance

    PubMed Central

    2014-01-01

    The Global Health Security Agenda (GHSA) is aimed at preventing, detecting, and responding to infectious disease threats. To move toward these goals, the United States has committed to partner with at least 30 countries around the world. One of the objectives of the GHSA includes “[p]reventing the emergence and spread of antimicrobial drug resistant organisms.” Antimicrobial resistance (AMR) has become a growing global health security problem, with inappropriate use of antimicrobial medications in humans and animals and a lack of new antimicrobial medications contributing to this problem. While AMR is a growing global concern, working on it regionally can make this multifaceted problem more manageable. The United States and Japan, both world leaders in the life sciences, are close allies that have established cooperative programs in medical research and global health that can be used to work on combating AMR and advance the GHSA. Although the United States and Japan have cooperated on health issues in the past, their cooperation on the growing problem of AMR has been limited. Their existing networks, cooperative programs, and close relationships can and should be used to work on combating this expanding problem. PMID:25470465

  1. Antimicrobial resistance problems in typhoid fever

    NASA Astrophysics Data System (ADS)

    Saragih, R. H.; Purba, G. C. F.

    2018-03-01

    Typhoid fever (enteric fever) remains a burden in developing countries and a major health problem in Southern and Southeastern Asia. Salmonella typhi (S. typhi), the causative agent of typhoid fever, is a gram-negative, motile, rod-shaped, facultative anaerobe and solely a human pathogen with no animal reservoir. Infection of S. typhi can cause fever, abdominal pain and many worsenonspecific symptoms, including gastrointestinal symptoms suchas nausea, vomiting, constipation, and diarrhea. Chloramphenicol, ampicillin,and cotrimoxazole were the first-recommended antibiotics in treating typhoid fever. In the last two decades though, these three traditional drugs started to show resistance and developed multidrug resistance (MDR) S. typhi strains. In many parts of the world, the changing modes ofpresentation and the development of MDR have made typhoid fever increasingly difficult to treat.The use of first-line antimicrobials had been recommended to be fluoroquinolone as a replacement. However, this wassoonfollowedbyreportsof isolates ofS. typhi showing resistancetofluoroquinolones as well. These antimicrobial resistance problems in typhoid fever have been an alarming situation ever since and need to be taken seriously or else typhoid fever will no longer be taken care completely by administering antibiotics.

  2. Antimicrobial resistance: A global emerging threat to public health systems.

    PubMed

    Ferri, Maurizio; Ranucci, Elena; Romagnoli, Paola; Giaccone, Valerio

    2017-09-02

    Antimicrobial resistance (AMR) became in the last two decades a global threat to public health systems in the world. Since the antibiotic era, with the discovery of the first antibiotics that provided consistent health benefits to human medicine, the misuse and abuse of antimicrobials in veterinary and human medicine have accelerated the growing worldwide phenomenon of AMR. This article presents an extensive overview of the epidemiology of AMR, with a focus on the link between food producing-animals and humans and on the legal framework and policies currently implemented at the EU level and globally. The ways of responding to the AMR challenges foresee an array of measures that include: designing more effective preventive measures at farm level to reduce the use of antimicrobials; development of novel antimicrobials; strengthening of AMR surveillance system in animal and human populations; better knowledge of the ecology of resistant bacteria and resistant genes; increased awareness of stakeholders on the prudent use of antibiotics in animal productions and clinical arena; and the public health and environmental consequences of AMR. Based on the global nature of AMR and considering that bacterial resistance does not recognize barriers and can spread to people and the environment, the article ends with specific recommendations structured around a holistic approach and targeted to different stakeholders.

  3. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine slurry

    USDA-ARS?s Scientific Manuscript database

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine ...

  4. Antimicrobial resistance trends among Salmonella isolates obtained from horses in the northeastern United States (2001-2013).

    PubMed

    Cummings, Kevin J; Perkins, Gillian A; Khatibzadeh, Sarah M; Warnick, Lorin D; Aprea, Victor A; Altier, Craig

    2016-05-01

    OBJECTIVE To describe the antimicrobial resistance patterns of Salmonella isolates obtained from horses in the northeastern United States and to identify trends in resistance to select antimicrobials over time. SAMPLE 462 Salmonella isolates from horses. PROCEDURES Retrospective data were collected for all Salmonella isolates obtained from equine specimens that were submitted to the Cornell University Animal Health Diagnostic Center between January 1, 2001, and December 31, 2013. Temporal trends in the prevalence of resistant Salmonella isolates were investigated for each of 13 antimicrobials by use of the Cochran-Armitage trend test. RESULTS The prevalence of resistant isolates varied among antimicrobials and ranged from 0% (imipenem) to 51.5% (chloramphenicol). During the observation period, the prevalence of resistant isolates decreased significantly for amoxicillin-clavulanic acid, ampicillin, cefazolin, cefoxitin, ceftiofur, chloramphenicol, and tetracycline and remained negligible for amikacin and enrofloxacin. Of the 337 isolates for which the susceptibility to all 13 antimicrobials was determined, 138 (40.9%) were pansusceptible and 192 (57.0%) were multidrug resistant (resistant to ≥ 3 antimicrobial classes). The most common serovar isolated was Salmonella Newport, and although the annual prevalence of that serovar decreased significantly over time, that decrease had only a minimal effect on the observed antimicrobial resistance trends. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that current antimicrobial use in horses is not promoting the emergence and dissemination of antimicrobial-resistant Salmonella strains in the region served by the laboratory.

  5. Systemic acquired resistance: turning local infection into global defense.

    PubMed

    Fu, Zheng Qing; Dong, Xinnian

    2013-01-01

    Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.

  6. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  7. Antimicrobial resistance of Shigella spp. from humans in Shanghai, China, 2004-2011.

    PubMed

    Zhang, Jianmin; Jin, Huiming; Hu, Jiayu; Yuan, Zhengan; Shi, Weimin; Yang, Xiaowei; Xu, Xuebin; Meng, Jianghong

    2014-03-01

    A retrospective study conducted on patients with diarrhea in Shanghai, China from 2004-2011, indicated that of 77,600 samples collected, 1,635 (2.1%) tested positive for Shigella. Species isolated included S. sonnei (1,066, 65.1%), S. flexneri (569, 34.7%), and S. boydii (3, 0.2%). Most of the Shigella isolates were found to be resistant to streptomycin (98.7%), trimethoprim (98.0%), ampicillin (92.1%), and nalidixic acid (91.7%). Additionally, many isolates were resistant to tetracycline (86.9%), trimethoprim + sulfamethoxazole (80.1%), sulfisoxazole (76.8%) and gentamicin (55.5%). Approximately 80% of the isolates were resistant to at least eight antimicrobial agents, 14% to at least ten antimicrobials tested and 10 isolates to fourteen antimicrobials, including sulfonamides, fluoroquinolones, tetracyclines, aminoglycosides and β-lactamases. Importantly, co-resistance to fluoroquinolones and the third- and fourth-generation cephalosporins was also identified. The high levels of resistance to antimicrobial agents commonly used in clinical medicine presents a great challenge to treating patients with shigellosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

    PubMed Central

    Yazdankhah, Siamak; Rudi, Knut; Bernhoft, Aksel

    2014-01-01

    Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin). Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers). Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria. PMID:25317117

  9. Antimicrobial Resistance Control Strategies: A Coordinated Research Initiative Experience in the Asia Pacific Region.

    PubMed

    Lapierre, Lisette; Asenjo, Gabriela; Vergara, Constanza; Cornejo, Javiera

    2017-05-01

    The objective was to gather information on the status of antimicrobial surveillance in the Asia Pacific region and suggest control strategies. Twenty-one economies of the Asia Pacific region participated in this initiative. A survey was conducted on antimicrobial use and surveillance throughout the region. A workshop was carried out to create awareness about the issue and discuss the implementation of control strategies. Based on the survey results and workshop conclusions, it can be established that there is better understanding of the implications of antimicrobial resistance in the human medicine area. Only few economies take actions to control antimicrobial resistance on a veterinary/agricultural level. To confront antimicrobial resistance, it is critical to raise awareness; cooperation between all countries is needed to apply international standards, to be able to have harmonized public policies. Countries must align and improve their systems for surveillance and monitoring of antimicrobial resistance in human, animals, and the environment.

  10. Coagulase-Positive Staphylococcus: Prevalence and Antimicrobial Resistance.

    PubMed

    Beça, Nuno; Bessa, Lucinda Janete; Mendes, Ângelo; Santos, Joana; Leite-Martins, Liliana; Matos, Augusto J F; da Costa, Paulo Martins

    2015-01-01

    Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius . The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype.

  11. Propionibacterium acnes and antimicrobial resistance in acne.

    PubMed

    Dessinioti, Clio; Katsambas, Andreas

    The human commensal bacterium Propionibacterium acnes (P. acnes) resides in the pilosebaceous duct of the skin. It has been long implicated in the pathogenesis of acne, although its exact role in the development of inflammatory acne lesions and in the formation of the microcomedo in the early stages of acne remains controversial. The worldwide prevalence of antibiotic-resistant P. acnes is increasing, with rates varying in different parts of the world. The reason for the difference in the antibiotic resistance patterns of P. acnes among different countries is not clear, although it may be attributed to different antibiotic prescribing habits, concomitant use of topical agents (retinoids, benzoyl peroxide, or other antibiotics), varying methods of bacterial sampling, or even different P. acnes populations. Although the relative abundances of P. acnes may be similar among patients with acne and individuals without acne, P. acnes populations and the presence of P. acnes biofilms differ, with different potential virulence properties and antimicrobial resistance patterns. Implications of the use of antibiotics and of antimicrobial resistance in patients with acne include the decreased efficacy of antibiotic treatments for acne, and the possible emergence of other resistant bacterial species via selective pressure by antibiotic use. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: a 10-year study.

    PubMed

    Mladenovic-Antic, S; Kocic, B; Velickovic-Radovanovic, R; Dinic, M; Petrovic, J; Randjelovic, G; Mitic, R

    2016-10-01

    Antimicrobial resistance is one of the greatest threats to human health. One of the most important factors leading to the emergence of resistant bacteria is overuse of antibiotics. The purpose of this study was to investigate the correlation between antimicrobial usage and bacterial resistance of Pseudomonas aeruginosa (P. aeruginosa) over a 10-year period in the Clinical Center Niš, one of the biggest tertiary care hospitals in Serbia. We focused on possible relationships between the consumption of carbapenems and beta-lactam antibiotics and the rates of resistance of P. aeruginosa to carbapenems. We recorded utilization of antibiotics expressed as defined daily doses per 100 bed days (DBD). Bacterial resistance was reported as the percentage of resistant isolates (percentage of all resistant and intermediate resistant strains) among all tested isolates. A significant increasing trend in resistance was seen in imipenem (P < 0·05, Spearman ρ = 0·758) and meropenem (P < 0·05, ρ = 0·745). We found a significant correlation between aminoglycoside consumption and resistance to amikacin (P < 0·01, Pearson r = 0·837) and gentamicin (P < 0·01, Pearson r = 0·827). The correlation between the consumption of carbapenems and resistance to imipenem in P. aeruginosa shows significance (P < 0·01, Pearson r = 0·795), whereas resistance to meropenem showed a trend towards significance (P > 0·05, Pearson r = 0·607). We found a very good correlation between the use of all beta-lactam and P. aeruginosa resistance to carbapenems (P < 0·01, Pearson r = 0·847 for imipenem and P < 0·05, Pearson r = 0·668 for meropenem). Our data demonstrated a significant increase in antimicrobial resistance to carbapenems, significant correlations between the consumption of antibiotics, especially carbapenems and beta-lactams, and rates of antimicrobial resistance of P. aeruginosa to imipenem and meropenem. © 2016 John Wiley & Sons Ltd.

  13. Antimicrobial resistance among Enterobacteriaceae in South America: history, current dissemination status and associated socioeconomic factors.

    PubMed

    Bonelli, Raquel Regina; Moreira, Beatriz Meurer; Picão, Renata Cristina

    2014-04-01

    South America exhibits some of the higher rates of antimicrobial resistance in Enterobactericeae worldwide. This continent includes 12 independent countries with huge socioeconomic differences, where the ample access to antimicrobials, including counterfeit ones, coexists with ineffective health systems and sanitation problems, favoring the emergence and dissemination of resistant strains. This work presents a literature review concerning the evolution and current status of antimicrobial resistance threats found among Enterobacteriaceae in South America. Resistance to β-lactams, fluoroquinolones and aminoglycosides was emphasized along with description of key epidemiological studies that highlight the success of specific resistance determinants in different parts of the continent. In addition, a discussion regarding political and socioeconomic factors possibly related to the dissemination of antimicrobial resistant strains in clinical settings and at the community is presented. Finally, in order to assess the possible sources of resistant bacteria, we compile the current knowledge about the occurrence of antimicrobial resistance in isolates in South American' food, food-producing animals and off-hospitals environments. By addressing that intensive intercontinental commerce and tourism neutralizes the protective effect of geographic barriers, we provide arguments reinforcing that globally integrated efforts are needed to decelerate the emergence and dissemination of antimicrobial resistant strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea.

    PubMed

    Kim, Boram; Hur, Jin; Lee, Ji Yeong; Choi, Yoonyoung; Lee, John Hwa

    2016-09-01

    Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PP). Serotypes and antimicrobial resistance patterns in APP isolates from pigs in Korea were examined. Sixty-five APP isolates were genetically serotyped using standard and multiplex PCR (polymerase chain reaction). Antimicrobial susceptibilities were tested using the standardized disk-agar method. PCR was used to detect β-lactam, gentamicin and tetracycline-resistance genes. The random amplified polymorphic DNA (RAPD) patterns were determined by PCR. Korean pigs predominantly carried APP serotypes 1 and 5. Among 65 isolates, one isolate was sensitive to all 12 antimicrobials tested in this study. Sixty-two isolates was resistant to tetracycline and 53 isolates carried one or five genes including tet(B), tet(A), tet(H), tet(M)/tet(O), tet(C), tet(G) and/or tet(L)-1 markers. Among 64 strains, 9% and 26.6% were resistance to 10 and three or more antimicrobials, respectively. Thirteen different antimicrobial resistance patterns were observed and RAPD analysis revealed a separation of the isolates into two clusters: cluster II (6 strains resistant to 10 antimicrobials) and cluster I (the other 59 strains). Results show that APP serotypes 1 and 5 are the most common in Korea, and multi-drug resistant strains are prevalent. RAPD analysis demonstrated that six isolates resistant to 10 antimicrobials belonged to the same cluster.

  15. Overview of antimicrobial options for Mycoplasma pneumoniae pneumonia: focus on macrolide resistance.

    PubMed

    Cao, Bin; Qu, Jiu-Xin; Yin, Yu-Dong; Eldere, Johan Van

    2017-07-01

    Community-acquired pneumonia (CAP) is a common infectious disease affecting children and adults of any age. Mycoplasma pneumoniae has emerged as leading causative agent of CAP in some region, and the abrupt increasing resistance to macrolide that widely used for management of M. pneumoniae has reached to the level that it often leads to treatment failures. We aim to discuss the drivers for development of macrolide-resistant M. pneumoniae, antimicrobial stewardship and also the potential treatment options for patients infected with macrolide-resistant M. pneumonia. The articles in English and Chinese published in Pubmed and in Asian medical journals were selected for the review. M. pneumoniae can develop macrolide resistance by point mutations in the 23S rRNA gene. Inappropriate and overuse of macrolides for respiratory tract infections may induce the resistance rapidly. A number of countries have introduced the stewardship program for restricting the use of macrolide. Tetracyclines and fluoroquinolones are highly effective for macrolide-resistant strains, which may be the substitute in the region of high prevalence of macrolide-resistant M. pneumoniae. The problem of macrolide resistant M. pneumonia is emerging. Antibiotic stewardship is needed to inhibit the inappropriate use of macrolide and new antibiotics with a more acceptable safety profile for all ages need to be explored. © 2015 John Wiley & Sons Ltd.

  16. Antimicrobial resistance and genetic profiling of Escherichia coli from a commercial beef packing plant.

    PubMed

    Aslam, Mueen; Service, Cara

    2006-07-01

    The objective of this study was to investigate the extent of antimicrobial resistance and to genetically characterize resistant Escherichia coli recovered from a commercial beef packing plant. E. coli isolates were recovered by a hydrophobic grid membrane filtration method by direct plating on SD-39 medium. A total of 284 isolates comprising 71, 36, 55, 52, and 70 isolates from animal hides, washed carcasses, conveyers, beef trimmings, and ground beef, respectively, were analyzed. The susceptibility of E. coli isolates to 15 antimicrobial agents was evaluated with an automated broth microdilution system, and the genetic characterization of these isolates was performed by the random amplified polymorphic DNA (RAPD) method. Of the 284 E. coli isolates, 56% were sensitive to all 15 antimicrobial agents. Resistance to tetracycline, ampicillin, and streptomycin was observed in 38, 9, and 6% of the isolates, respectively. Resistance to one or more antimicrobial agents was observed in 51% of the E. coli isolates recovered from the hides but in only 25% of the E. coli from the washed carcasses. Resistance to one or more antimicrobial agents was observed in 49, 50, and 37% of the isolates recovered from conveyers, beef trimmings, and ground beef, respectively. The RAPD pattern data showed that the majority of resistant E. coli isolates were genetically diverse. Only a few RAPD types of resistant strains were shared among various sample sources. The results of this study suggest that antimicrobial-resistant E. coli isolates were prevalent during all stages of commercial beef processing and that considerably higher numbers of resistant E. coli were present on conveyers, beef trimmings, and ground beef than on dressed carcasses. This stresses the need for improving hygienic conditions during all stages of commercial beef processing and meatpacking to avoid the risks of transfer of antimicrobial-resistant bacteria to humans.

  17. High mortality among patients infected with hypervirulent antimicrobial-resistant capsular type K1 Klebsiella pneumoniae strains in Taiwan.

    PubMed

    Lin, Yi-Tsung; Cheng, Yi-Hsiang; Juan, Chih-Han; Wu, Ping-Feng; Huang, Yi-Wei; Chou, Sheng-Hua; Yang, Tsuey-Ching; Wang, Fu-Der

    2018-06-12

    Capsular type K1 Klebsiella pneumoniae, highly virulent strains which are common in Asian countries, can cause pyogenic infections. These hypervirulent strains are usually susceptible to most antimicrobials, except for ampicillin. Little is known regarding the clinical and molecular characteristics of antimicrobial-resistant K1 K. pneumoniae strains. This retrospective study evaluated patients infected with capsular type K1 K. pneumoniae strains in a Taiwanese medical centre between April 2013 and March 2016. Antimicrobial-resistant strains were defined based on non-susceptibility to antimicrobial agents except ampicillin. We compared the clinical outcome of patients infected with and without antimicrobial-resistant strains. The in vivo virulence, genetic relatedness, and resistance mechanisms of these hypervirulent antimicrobial-resistant strains were also investigated. A total of 182 capsular type K1 K. pneumoniae strains were identified, including 18 antimicrobial-resistant strains. The 28-day mortality rate among the 18 cases caused by antimicrobial-resistant strains was significantly higher than that among 164 cases caused by antimicrobial-sensitive strains (50% vs. 10.4%, p < 0.001). Infection with antimicrobial-resistant strain independently increased the 28-day mortality risk. Most antimicrobial -resistant strains were not clonally related, and they exhibited high in vivo virulence in a mouse lethality experiment. The major resistance mechanisms involved the presence of β-lactamases and the overexpression of efflux pumps. In conclusion, hypervirulent antimicrobial-resistant capsular type K1 K. pneumoniae strains can predispose to a fatal outcome. These strains may represent an emerging threat to public health in Taiwan. Copyright © 2018. Published by Elsevier B.V.

  18. New antimicrobial combinations: substituted chalcones- oxacillin against methicillin resistant Staphylococcus aureus.

    PubMed

    Talia, Juan Manuel; Debattista, Nora Beatriz; Pappano, Nora Beatriz

    2011-04-01

    Staphylococcus aureus, the most virulent Staphylococcus species, is also the prevalent pathogen isolated from hospitalized patients and the second most common from patients in outpatient settings. In general, bacteria have the genetic ability to transmit and acquire resistance to drugs, which are utilized as therapeutic agents. Related studies of antimicrobial activity indicate that crude extracts containing flavonoids, triterpenes and steroids have showed significative activity against several Staphylococcus aureus strains. Combination effects between flavonoids and antibiotics also have been reported. The aim of the present work was to investigate in vitro synergism between several chalcones substituted in combination with oxacillin, an antibiotic used conventionally against S. aureus ATCC 43 300 that is resistant to meticillin, using the kinetic turbidimetric method developed earlier. The results were satisfactory for all assayed combinations and in accordance with the mechanism of bacteriostatic inhibition previously proposed, except for 2´,4´-dihydroxy-3´-methoxychalcone - oxacillin. The best combination was 2´,3´-dihydroxychalcone -oxacillin (MIC: 11.2 µg/mL). Further investigations are needed to characterize the interaction mechanism with antibiotics. Thus, chalcones - oxacillin combination could lead to the development of new antibiotics against methicillin resistant S. aureus infection.

  19. Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.

    PubMed

    Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An

    2011-09-01

    A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.

  20. Antimicrobial resistance of F4+ Escherichia coli isolated from Swine in Italy.

    PubMed

    Luppi, A; Bonilauri, P; Dottori, M; Gherpelli, Y; Biasi, G; Merialdi, G; Maioli, G; Martelli, P

    2015-02-01

    Four-hundred and forty-two F4+ pathogenic Escherichia coli were isolated in a period of 10 years (2002-2011), from pigs that were suffering from diarrhoea belonging to Italian swine herds. The strains were analysed for their susceptibility to 12 antimicrobials using the disc diffusion method. During the study period, a statistically significant proportion of isolates resistant to enrofloxacin (14.5-89.3%), marbofloxacin (5.4-60.7%), flumequine (49.1-92.9%), danofloxacin (21.6-80%), florfenicol (9.8-64.3%), thiamphenicol (50-92%) and cefquinome (3.8-44%) was recorded. An increase in resistance (not statistically significant) to gentamicin (63.6-85.7%), apramycin (61.8-82.1%), trimethoprim-sulphamethoxazole (75-89.3%), tetracycline (97-100%) and erythromycin (92.4-100%) was also observed. Based on antimicrobial multiresistance, the strains were collected into three groups: I. resistant to 2-5 antimicrobials; II. resistant to 6-8 antimicrobials; III. resistant to 9-12 antimicrobials. The number of isolates belonging to the first group showed a statistically significant decrease (P < 0.05; R(2)  = 0.896; r = -0.9608), while the isolates belonging to the second and third groups showed a statistically significant increase in resistance (P < 0.05; R(2)  = 0.753; r = 0.8890 and P < 0.05; R(2)  = 0.727; r = 0.8701, respectively) over the period of study. The results of this study suggest the need for continued monitoring of the development of resistance. © 2013 Blackwell Verlag GmbH.

  1. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host

    PubMed Central

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-01-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of ‘arming the enemy’: bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the ‘arming the enemy’ hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts. PMID:25469169

  2. Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms.

    PubMed

    Saini, V; McClure, J T; Léger, D; Keefe, G P; Scholl, D T; Morck, D W; Barkema, H W

    2012-08-01

    Monitoring of antimicrobial resistance (AMR) in bacteria has clinical and public health significance. The present study determined prevalence of AMR in common mastitis pathogens Staphylococcus aureus, including methicillin-resistant Staph. aureus (MRSA; n=1,810), Escherichia coli (n=394), and Klebsiella species (n=139), including extended-spectrum β-lactamase (ESBL)-producing E. coli and Klebsiella species, isolated from milk samples on 89 dairy farms in 6 Canadian provinces. Minimum inhibitory concentrations (MIC) were determined using the Sensititer bovine mastitis plate (Trek Diagnostic Systems Inc., Cleveland, OH) and a National Antimicrobial Resistance Monitoring System gram-negative panel containing antimicrobials commonly used for mastitis treatment and control. Denim blue chromogenic agar and real-time PCR were used to screen and confirm MRSA, respectively. Resistance proportion estimates ranged from 0% for cephalothin and oxacillin to 8.8% for penicillin in Staph. aureus isolates, and 15% of the resistant Staph. aureus isolates were multidrug resistant. One MRSA isolate was confirmed (prevalence: 0.05%). Resistance proportion estimates ranged from 0% for ceftriaxone and ciprofloxacin to 14.8% for tetracycline in E. coli, and 0% for amikacin, ceftiofur, ciprofloxacin, and nalidixic acid to 18.6% for tetracycline in Klebsiella species isolates. Further, 62.8 and 55% of the resistant E. coli and Klebsiella species isolates were multidrug resistant, respectively. Resistance to >5 and >2 antimicrobials was most common in E. coli and Klebsiella species isolates, respectively, and no ESBL producers were found. Prevalence of AMR in bovine mastitis pathogens was low. Most gram-negative udder pathogens were multidrug resistant; MRSA was rarely found, and ESBL E. coli and Klebsiella species isolates were absent in Canadian milk samples. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    PubMed

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.

  4. Antimicrobial Resistance in Non-Typhoidal Salmonella from Humans, Retail Meats and Food Animals: 2002-2007

    USDA-ARS?s Scientific Manuscript database

    Background. The National Antimicrobial Resistance Monitor System (NARMS) tracks antimicrobial susceptibility in enteric bacteria from humans, retail meats and food animals. We analyzed changes in ceftiofur resistance (TioR), nalidixic acid resistance (NalR) and multidrug resistance (MDR-AmpC, define...

  5. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia.

    PubMed

    Shilangale, Renatus P; Di Giannatale, Elisabetta; Chimwamurombe, Percy M; Kaaya, Godwin P

    2012-01-01

    The occurrence of Salmonella is a global challenge in the public health and food production sectors. Our study investigated the prevalence, serovar and antimicrobial susceptibility of strains of Salmonella serovars isolated from animal feed (meat-and-bone and blood meal) samples from two commercial abattoirs in Namibia. A total of 650 samples (n=650) were examined for the presence of Salmonella. Results showed that 10.9% (n=71) were positive for Salmonella. Of the Salmonella serovars isolated, S. Chester was the most commonly isolated serovar (19.7%), followed by S. Schwarzengrund at 12.7%. From the Salmonella isolates, 19.7% (n=14) were resistant to one or more of the antimicrobials (nalidixic acid, trimethoprim-sulfamethoxazole, sulfisoxazole, streptomycin and/or tetracycline), whereas 80.3% (n=57) were susceptible to all 16 antimicrobials tested. Resistance to sulfisoxazole and the trimethroprimsuflamethoxazole combination were the most common. The resistant isolates belonged to ten different Salmonella serovars. The susceptibility of most of the Salmonella isolated to the antimicrobials tested indicates that anti-microbial resistance is not as common and extensive in Namibia as has been reported in many other countries. It also appears that there is a range of antimicrobials available that are effective in managing Salmonella infections in Namibia. However, there is some evidence that resistance is developing and this will need further monitoring to ensure it does not become a problem.

  6. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations.

    PubMed

    Varma, Jay K; Molbak, Kåre; Barrett, Timothy J; Beebe, James L; Jones, Timothy F; Rabatsky-Ehr, Therese; Smith, Kirk E; Vugia, Duc J; Chang, Hwa-Gan H; Angulo, Frederick J

    2005-02-15

    Nontyphoidal Salmonella is a leading cause of foodborne illness. Few studies have explored the health consequences of antimicrobial-resistant Salmonella. The National Antimicrobial Resistance Monitoring System (NARMS) performs susceptibility testing on nontyphoidal Salmonella isolates. The Foodborne Diseases Active Surveillance Network (FoodNet) ascertains outcomes for patients with culture-confirmed Salmonella infection, in 9 states, each of which participates in NARMS. We analyzed the frequency of bloodstream infection and hospitalization among patients with resistant infections. Isolates defined as resistant to a clinically important agent were resistant to 1 or more of the following agents: ampicillin, ceftriaxone, ciprofloxacin, gentamicin, and/or trimethoprim-sulfamethoxazole. During 1996-2001, NARMS received 7370 serotyped, nontyphoidal Salmonella isolates from blood or stool. Bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted odds ratio [OR], 1.6; 95% confidence interval [CI], 1.2-2.1), compared with patients with pansusceptible infection. During 1996-2001, FoodNet staff ascertained outcomes for 1415 patients who had isolates tested in NARMS. Hospitalization with bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted OR, 3.1; 95% CI, 1.4-6.6), compared with patients with pansusceptible infection. Patients with antimicrobial-resistant nontyphoidal Salmonella infection were more likely to have bloodstream infection and to be hospitalized than were patients with pansusceptible infection. Mitigation of antimicrobial resistance in Salmonella will likely benefit human health.

  7. Prevalence and antimicrobial resistance in Escherichia coli from food animals in Lagos, Nigeria

    USDA-ARS?s Scientific Manuscript database

    Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing animals fr...

  8. Screening for Antimicrobial Resistance Genes and Virulence Factors via Genome Sequencing▿†

    PubMed Central

    Bennedsen, Mads; Stuer-Lauridsen, Birgitte; Danielsen, Morten; Johansen, Eric

    2011-01-01

    Second-generation genome sequencing and alignment of the resulting reads to in silico genomes containing antimicrobial resistance and virulence factor genes were used to screen for undesirable genes in 28 strains which could be used in human nutrition. No virulence factor genes were detected, while several isolates contained antimicrobial resistance genes. PMID:21335393

  9. Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review.

    PubMed

    Oloso, Nurudeen Olalekan; Fagbo, Shamsudeen; Garbati, Musa; Olonitola, Steve O; Awosanya, Emmanuel Jolaoluwa; Aworh, Mabel Kamweli; Adamu, Helen; Odetokun, Ismail Ayoade; Fasina, Folorunso Oludayo

    2018-06-17

    Antimicrobial resistance (AMR) has emerged as a global health threat, which has elicited a high-level political declaration at the United Nations General Assembly, 2016. In response, member countries agreed to pay greater attention to the surveillance and implementation of antimicrobial stewardship. The Nigeria Centre for Disease Control called for a review of AMR in Nigeria using a “One Health approach”. As anecdotal evidence suggests that food animal health and production rely heavily on antimicrobials, it becomes imperative to understand AMR trends in food animals and the environment. We reviewed previous studies to curate data and evaluate the contributions of food animals and the environment (2000⁻2016) to the AMR burden in Nigeria using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart focused on three areas: Antimicrobial resistance, residues, and antiseptics studies. Only one of the 48 antimicrobial studies did not report multidrug resistance. At least 18 bacterial spp. were found to be resistant to various locally available antimicrobials. All 16 residue studies reported high levels of drug residues either in the form of prevalence or concentration above the recommended international limit. Fourteen different “resistotypes” were found in some commonly used antiseptics. High levels of residues and AMR were found in food animals destined for the human food chain. High levels of residues and antimicrobials discharged into environments sustain the AMR pool. These had evolved into potential public health challenges that need attention. These findings constitute public health threats for Nigeria’s teeming population and require attention.

  10. Predictors of Antimicrobial Resistance among Pathogens Causing Urinary Tract Infection in Children

    PubMed Central

    Shaikh, Nader; Hoberman, Alejandro; Keren, Ron; Ivanova, Anastasia; Gotman, Nathan; Chesney, Russell W.; Carpenter, Myra A.; Moxey-Mims, Marva; Wald, Ellen R.

    2015-01-01

    Objective To determine which children with urinary tract infection (UTI) are likely to have pathogens resistant to narrow-spectrum antimicrobials. Study design Children, 2 to 71 months of age (n=769) enrolled in the RIVUR or CUTIE studies were included. We used logistic regression models to test the associations between demographic and clinical characteristics and resistance to narrow-spectrum antimicrobials. Results Of the included patients, 91% were female and 76% had vesicoureteral reflux. The risk of resistance to narrow-spectrum antibiotics in uncircumcised males was approximately 3 times that of females (OR=3.1; 95% CI: 1.4—6.7); in children with bladder bowel dysfunction (BBD) the risk was 2 times that of children with normal function (OR=2.2; 95% CI: 1.2—4.1). Children who had received one course of antibiotics during the past 6 months also had higher odds of harboring resistant organisms (OR=1.6; 95% CI: 1.1—2.3). Hispanic children had higher odds of harboring pathogens resistant to some narrow-spectrum antimicrobials. Conclusions Uncircumcised males, Hispanic children, children with BBD, and children who received one course of antibiotics in the past 6 months were more likely to have a UTI caused by pathogens resistant to one or more narrow-spectrum antimicrobials. PMID:26794472

  11. Prevalence of quinolone resistance mechanisms in Enterobacteriaceae producing acquired AmpC β-lactamases and/or carbapenemases in Spain.

    PubMed

    Machuca, Jesús; Agüero, Jesús; Miró, Elisenda; Conejo, María Del Carmen; Oteo, Jesús; Bou, Germán; González-López, Juan José; Oliver, Antonio; Navarro, Ferran; Pascual, Álvaro; Martínez-Martínez, Luis

    2017-10-01

    Quinolone resistance in Enterobacteriaceae species has increased over the past few years, and is significantly associated to beta-lactam resistance. The aim of this study was to evaluate the prevalence of chromosomal- and plasmid-mediated quinolone resistance in acquired AmpC β-lactamase and/or carbapenemase-producing Enterobacteriaceae isolates. The presence of chromosomal- and plasmid-mediated quinolone resistance mechanisms [mutations in the quinolone resistance determining region (QRDR) of gyrA and parC and qnr, aac(6')-Ib-cr and qepA genes] was evaluated in 289 isolates of acquired AmpC β-lactamase- and/or carbapenemase-producing Enterobacteriaceae collected between February and July 2009 in 35 Spanish hospitals. Plasmid mediated quinolone resistance (PMQR) genes were detected in 92 isolates (31.8%), qnr genes were detected in 83 isolates (28.7%), and the aac(6')-Ib-cr gene was detected in 20 isolates (7%). qnrB4 gene was the most prevalent qnr gene detected (20%), associated, in most cases, with DHA-1. Only 14.6% of isolates showed no mutations in gyrA or parC with a ciprofloxacin MIC of 0.5mg/L or higher, whereas PMQR genes were detected in 90% of such isolates. qnrB4 gene was the most prevalent PMQR gene detected, and was significantly associated with acquired AmpC β-lactamase DHA-1. PMQR determinants in association with other chromosomal-mediated quinolone resistance mechanisms, different to mutations in gyrA and parC (increased energy-dependent efflux, altered lipopolysaccharide or porin loss), could lead to ciprofloxacin MIC values that exceed breakpoints established by the main international committees to define clinical antimicrobial susceptibility breakpoints. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Evaluation of antimicrobial resistance phenotypes for predicting multidrug-resistant Salmonella recovered from retail meats and humans in the United States.

    PubMed

    Whichard, Jean M; Medalla, Felicita; Hoekstra, Robert M; McDermott, Patrick F; Joyce, Kevin; Chiller, Tom; Barrett, Timothy J; White, David G

    2010-03-01

    Although multidrug-resistant (MDR) non-Typhi Salmonella (NTS) strains are a concern in food production, determining resistance to multiple antimicrobial agents at slaughter or processing may be impractical. Single antimicrobial resistance results for predicting multidrug resistance are desirable. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were used to determine each antimicrobial agent's ability to predict MDR phenotypes of human health significance: ACSSuT (resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline) in NTS isolates, and MDR-AmpC-SN (resistance to ACSSuT, additional resistance to amoxicillin-clavulanate and to ceftiofur, and decreased susceptibility [MIC >= 2 microg/ml] to ceftriaxone) in NTS serotype Newport. The U.S. National Antimicrobial Resistance Monitoring System determined MICs to 15 or more antimicrobial agents for 9,955 NTS isolates from humans from 1999 to 2004 and 689 NTS isolates from retail meat from 2002 to 2004. A total of 847 (8.5%) human and 26 (3.8%) retail NTS isolates were ACSSuT; 995 (10.0%) human and 16 (2.3%) retail isolates were serotype Newport. Among Salmonella Newport, 204 (20.5%) human and 9 (56.3%) retail isolates were MDR-AmpC-SN. Chloramphenicol resistance provided the highest PPVs for ACSSuT among human (90.5%; 95% confidence interval, 88.4 to 92.3) and retail NTS isolates (96.3%; 95% confidence interval, 81.0 to 99.9). Resistance to ceftiofur and to amoxicillin-clavulanate and decreased susceptibility to ceftriaxone provided the highest PPVs (97.1, 98.1, and 98.6%, respectively) for MDR-AmpC-SN from humans. High PPVs for these agents applied to retail meat MDR-AmpC-SN, but isolate numbers were lower. Variations in MIC results may complicate ceftriaxone's predictive utility. Selecting specific antimicrobial resistance offers practical alternatives for predicting MDR phenotypes. Chloramphenicol resistance works best for ACSSu

  13. Eight-Year Surveillance of Antimicrobial Resistance among Enterobacter Cloacae Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Zhang, Man; Wang, Ailin; Xu, Jiancheng; Yuan, Ye

    This study was to investigate the antimicrobial resistance of Enterobacter cloacae isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 683 strains of Enterobacter cloacae were collected from sputum 410 (60.0%), secretions and pus 105 (15.4%), urine 69 (10.1%) during the past 8 years. No Enterobacter cloacae was resistant to imipenem and meropenem in the First Bethune Hospital. The antimicrobial resistance of Enterobacter cloacae had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from b eing transmitted.

  14. [The role of infection prevention in the control of antimicrobial resistance : Any avoided infection contributes to the reduction of antibiotic use].

    PubMed

    Mielke, Martin

    2018-05-01

    Clinically relevant infections are the primary indication for the use of antimicrobial agents in human medicine. Consequently, the prevention of infections is the fundament of all measures to rationally reduce the use of antibiotics. A prevented infection must not be treated. For the prevention of several community-acquired infections, vaccines are available. In addition, several infections may be prevented on the basis of knowledge and responsible behavior. However, the prevention of nosocomial infections depends mainly on the responsibility of third parties in the context of medical procedures. Effective preventive measures are described in guidelines carefully prepared by the commission for hospital hygiene and infection prevention in Germany. The consequent implementation of these guidelines contributes to patient safety and the prevention of the spread of multidrug-resistant bacteria. Highly cost-effective measures are a high degree of compliance with the rules for hand hygiene, perioperative antiseptic measures, and guidelines for the use of perioperative antimicrobial prophylaxis. The documentation of decreasing or low rates of infections and antimicrobial resistance helps to verify the success of preventive measures.

  15. The Global Challenge of Antimicrobial Resistance: Insights from Economic Analysis

    PubMed Central

    Eggleston, Karen; Zhang, Ruifang; Zeckhauser, Richard J.

    2010-01-01

    The prevalence of antimicrobial resistance (AR) limits the therapeutic options for treatment of infections, and increases the social benefit from disease prevention. Like an environmental resource, antimicrobials require stewardship. The effectiveness of an antimicrobial agent is a global public good. We argue for greater use of economic analysis as an input to policy discussion about AR, including for understanding the incentives underlying health behaviors that spawn AR, and to supplement other methods of tracing the evolution of AR internationally. We also discuss integrating antimicrobial stewardship into global health governance. PMID:20948953

  16. Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance

    PubMed Central

    Kumar, Mayur; Curtis, Anthony

    2018-01-01

    Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance. PMID:29342903

  17. Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance.

    PubMed

    Kumar, Mayur; Curtis, Anthony; Hoskins, Clare

    2018-01-14

    Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance.

  18. A collaborative initiative for the containment of antimicrobial resistance in Mexico.

    PubMed

    Zaidi, Mussaret B; Dreser, Anahi; Figueroa, Inda Marcela

    2015-04-01

    Antimicrobial resistance exacts worldwide an increasingly significant clinical and economic toll. Despite the international calls for urgent action, antimicrobial use and resistance have been low on the Mexican government's policy agenda. In early 2010, a multidisciplinary group of experts launched a national initiative for containment of antimicrobial resistance that was endorsed by major medical, veterinary and public health institutions. The initiative called for seven priority actions including the creation of an ad hoc intersectoral advisory group, a requirement that human and veterinary antibiotics be dispensed only with prescription, and the establishment of effective surveillance systems. A consensus document was disseminated among key decision-makers at the ministries of Health and Agriculture and the legislature. The Ministry of Health (MoH) enacted a decree effective as of August 2010, which enforced the regulations that required medical prescriptions for the sale of human antibiotics. While the information disseminated by the MoH did focus on the dangers of self-medication, it failed to highlight the inherent perils of antibiotic resistance or the consequences of antibiotic use in food-animals. Following the decree, there was a surge of medical offices controlled by retail pharmacies. In the veterinary sector, voluntary guidelines were developed for good husbandry practices, including antibiotic use in food animals; five antimicrobials for use in food-animals were banned. No intersectoral advisory group or surveillance systems were established. This study describes a bottom-top approach in Mexico for the development of a national strategy to improve antibiotic use and contain antimicrobial resistance. Its experiences suggest that, in countries such as Mexico that lack strong regulatory systems and surveillance capacities, a more systemic approach is warranted. Future efforts should begin with early involvement of key stakeholders and informing policy

  19. Antimicrobial resistance and virulence factors in Escherichia coli from swedish dairy calves

    PubMed Central

    2012-01-01

    Background In Sweden, knowledge about the role of enteropathogenic Escherichia coli in neonatal calf diarrhea and the occurrence of antimicrobial resistance in E. coli from young calves is largely unknown. This has therapeutic concern and such knowledge is also required for prudent use of antimicrobials. Methods In a case control study Esherichia coli isolated from faecal samples from dairy calves were phenotyped by biochemical fingerprinting and analyzed for virulence genes by PCR. Antimicrobial susceptibility was tested by determination of minimum inhibitory concentration (MIC). Farm management data were collected and Fisher's exact test and univariable and multivariable logistic regression analysis were performed. Results Of 95 E. coli tested for antimicrobial susceptibility 61% were resistant to one or more substances and 28% were multi-resistant. The virulence gene F5 (K99) was not found in any isolate. In total, 21 out of 40 of the investigated virulence genes were not detected or rarely detected. The virulence genes espP, irp, and fyuA were more common in resistant E. coli than in fully susceptible isolates (P < 0.05). The virulence gene terZ was associated with calf diarrhea (P ≤ 0.01). The participating 85 herds had a median herd size of 80 lactating cows. Herds with calf diarrhea problems were larger (> 55 cows; P < 0.001), had higher calf mortality (P ≤ 0.01) and calf group feeders were more in use (P < 0.05), compared to herds without calf diarrhea problems. There was no association between calf diarrhea and diversity of enteric E. coli. Conclusions Antimicrobial resistance was common in E. coli from pre-weaned dairy calves, occurring particularly in calves from herds experiencing calf diarrhea problems. The results indicate that more factors than use of antimicrobials influence the epidemiology of resistant E. coli. Enteropathogenic E. coli seems to be an uncommon cause of neonatal calf diarrhea in Swedish dairy herds. In practice, calf diarrhea

  20. Antimicrobial resistance and virulence factors in Escherichia coli from Swedish dairy calves.

    PubMed

    de Verdier, Kerstin; Nyman, Ann; Greko, Christina; Bengtsson, Björn

    2012-01-26

    In Sweden, knowledge about the role of enteropathogenic Escherichia coli in neonatal calf diarrhea and the occurrence of antimicrobial resistance in E. coli from young calves is largely unknown. This has therapeutic concern and such knowledge is also required for prudent use of antimicrobials. In a case control study Esherichia coli isolated from faecal samples from dairy calves were phenotyped by biochemical fingerprinting and analyzed for virulence genes by PCR. Antimicrobial susceptibility was tested by determination of minimum inhibitory concentration (MIC). Farm management data were collected and Fisher's exact test and univariable and multivariable logistic regression analysis were performed. Of 95 E. coli tested for antimicrobial susceptibility 61% were resistant to one or more substances and 28% were multi-resistant. The virulence gene F5 (K99) was not found in any isolate. In total, 21 out of 40 of the investigated virulence genes were not detected or rarely detected. The virulence genes espP, irp, and fyuA were more common in resistant E. coli than in fully susceptible isolates (P < 0.05). The virulence gene terZ was associated with calf diarrhea (P ≤ 0.01).The participating 85 herds had a median herd size of 80 lactating cows. Herds with calf diarrhea problems were larger (> 55 cows; P < 0.001), had higher calf mortality (P ≤ 0.01) and calf group feeders were more in use (P < 0.05), compared to herds without calf diarrhea problems.There was no association between calf diarrhea and diversity of enteric E. coli. Antimicrobial resistance was common in E. coli from pre-weaned dairy calves, occurring particularly in calves from herds experiencing calf diarrhea problems. The results indicate that more factors than use of antimicrobials influence the epidemiology of resistant E. coli.Enteropathogenic E. coli seems to be an uncommon cause of neonatal calf diarrhea in Swedish dairy herds. In practice, calf diarrhea should be regarded holistically in a context

  1. Antimicrobial Resistance in Salmonella Isolates Recovered from Slaughter Cattle

    USDA-ARS?s Scientific Manuscript database

    *Background*: Antimicrobial resistance is of global concern and first emerged in bacteria shortly after the introduction of penicillin. It is common to see resistance develop after new compounds (regardless of class) are released. However many factors influence the persistence and transmission of r...

  2. Estimated Incidence of Antimicrobial Drug-Resistant Nontyphoidal Salmonella Infections, United States, 2004-2012.

    PubMed

    Medalla, Felicita; Gu, Weidong; Mahon, Barbara E; Judd, Michael; Folster, Jason; Griffin, Patricia M; Hoekstra, Robert M

    2016-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004-2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted.

  3. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis.

    PubMed

    Sherrard, Laura J; Tunney, Michael M; Elborn, J Stuart

    2014-08-23

    Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains' pathogenicity complexity.

    PubMed

    Pereira, Monalessa Fábia; Rossi, Ciro César; Seide, Larissa Eler; Martins Filho, Sebastião; Dolinski, Cláudia de Melo; Bazzolli, Denise Mara Soares

    2018-05-07

    Porcine pleuropneumonia is an important cause of lowered productivity and economic loss in the pig industry worldwide, associated primarily with Actinobacillus pleuropneumoniae infection. Its colonization and persistence within the upper respiratory tract of affected pigs depends upon interactions between a number of genetically controlled virulence factors, such as pore-forming repeats-in-toxin exoproteins, biofilm formation, and antimicrobial resistance. This study investigated correlations between biofilm-forming capacity, antimicrobial resistance, and virulence of A. pleuropneumoniae obtained from clinical outbreaks of disease, using a Galleria mellonella alternative infection model. Results suggest that virulence is diverse amongst the 21 strains of A. pleuropneumoniae examined and biofilm formation correlated with genetic control of antimicrobial resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Acquired resistance to chlorhexidine - is it time to establish an 'antiseptic stewardship' initiative?

    PubMed

    Kampf, G

    2016-11-01

    Chlorhexidine digluconate (CHG) is an antimicrobial agent used for different types of applications in hand hygiene, skin antisepsis, oral care, and patient washing. Increasing use raises concern regarding development of acquired bacterial resistance. Published data from clinical isolates with CHG minimum inhibitory concentrations (MICs) were reviewed and compared to epidemiological cut-off values to determine resistance. CHG resistance is rarely found in Escherichia coli, Salmonella spp., Staphylococcus aureus or coagulase-negative staphylococci. In Enterobacter spp., Pseudomonas spp., Proteus spp., Providencia spp. and Enterococcus spp., however, isolates are more often CHG resistant. CHG resistance may be detected in multi-resistant isolates such as extremely drug-resistant Klebsiella pneumoniae. Isolates with a higher MIC are often less susceptible to CHG for disinfection. Although cross-resistance to antibiotics remains controversial, some studies indicate that the overall exposure to CHG increases the risk for resistance to some antibiotic agents. Resistance to CHG has resulted in numerous outbreaks and healthcare-associated infections. On an average intensive care unit, most of the CHG exposure would be explained by hand hygiene agents when liquid soaps or alcohol-based hand rubs contain CHG. Exposure to sub-lethal CHG concentration may enhance resistance in Acinetobacter spp., K. pneumoniae, and Pseudomonas spp., all species well known for emerging antibiotic resistance. In order to reduce additional selection pressure in nosocomial pathogens it seems to make sense to restrict the valuable agent CHG to those indications with a clear patient benefit and to eliminate it from applications without any benefit or with a doubtful benefit. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. Analysis of antimicrobial resistance genes in Aeromonas spp. isolated from cultured freshwater animals in China.

    PubMed

    Deng, Yu-Ting; Wu, Ya-Li; Tan, Al-Ping; Huang, Yu-Ping; Jiang, Lan; Xue, Hui-Juan; Wang, Wei-Li; Luo, Li; Zhao, Fei

    2014-08-01

    The development of resistance to antimicrobials used in aquatic animals is an increasing concern for aquaculture and public health. To monitor the occurrence of antimicrobial resistance and resistance genes in Aeromonas, a total of 106 isolates were collected from cultured freshwater animals in China from 1995 to 2012. Antimicrobial susceptibilities were determined by the disk diffusion method. The highest resistance percentage occurred with ampicillin, rifampin, streptomycin, and nalidixic acid. Most strains were sensitive to fluoroquinolones, doxycycline, cefotaxime, chloramphenicol, and amikacin. The isolates from turtle samples had the highest levels of resistance to 11 of the 12 tested antimicrobials when compared with those from fish or shrimp. Polymerase chain reaction and DNA sequence results showed that all trimethoprim/sulfamethoxazole-resistant strains contained sul1, and 37.0% were positive for tetA in tetracycline-resistant strains. ant(3″)-Ia was identified in 13 (24.5%) streptomycin-resistant strains. Plasmid-borne quinolone resistance genes were detected in five Aeromonas hydrophila (4.7%), two of which carried qnrS2, while the other three strains harbored aac(6')-Ib-cr. Two cefotaxime-resistant A. hydrophila were positive for bla(TEM-1) and bla(CTX-M-3). To our knowledge, this is the first report characterizing antimicrobial resistance in Aeromonas isolated from cultured freshwater animals in China, and providing resistance information of pathogen in Chinese aquaculture.

  7. Mapping educational opportunities for healthcare workers on antimicrobial resistance and stewardship around the world.

    PubMed

    Rogers Van Katwyk, Susan; Jones, Sara L; Hoffman, Steven J

    2018-02-05

    Antimicrobial resistance is an important global issue facing society. Healthcare workers need to be engaged in solving this problem, as advocates for rational antimicrobial use, stewards of sustainable effectiveness, and educators of their patients. To fulfill this role, healthcare workers need access to training and educational resources on antimicrobial resistance. To better understand the resources available to healthcare workers, we undertook a global environmental scan of educational programs and resources targeting healthcare workers on the topic of antimicrobial resistance and antimicrobial stewardship. Programs were identified through contact with key experts, web searching, and academic literature searching. We summarized programs in tabular form, including participating organizations, region, and intended audience. We developed a coding system to classify programs by program type and participating organization type, assigning multiple codes as necessary and creating summary charts for program types, organization types, and intended audience to illustrate the breadth of available resources. We identified 94 educational initiatives related to antimicrobial resistance and antimicrobial stewardship, which represent a diverse array of programs including courses, workshops, conferences, guidelines, public outreach materials, and online-resource websites. These resources were developed by a combination of government bodies, professional societies, universities, non-profit and community organizations, hospitals and healthcare centers, and insurance companies and industry. Most programs either targeted healthcare workers collectively or specifically targeted physicians. A smaller number of programs were aimed at other healthcare worker groups including pharmacists, nurses, midwives, and healthcare students. Our environmental scan shows that there are many organizations working to develop and share educational resources for healthcare workers on antimicrobial

  8. Paramedical staffs knowledge and attitudes towards antimicrobial resistance in Dire Dawa, Ethiopia: a cross sectional study.

    PubMed

    Tafa, Belay; Endale, Adugna; Bekele, Desalegn

    2017-09-19

    The continuing emergence, development and spread of pathogenic organisms that are resistant to antimicrobials are a cause of increasing concern. The control of antimicrobial resistance requires knowledge of factors causing antimicrobial resistance, good attitudes towards the intervention strategies as well as changes in antibiotic prescribing behavior of health workers. Hence, this study was aimed to assess paramedical staffs' knowledge and attitudes towards antimicrobial resistance and their antibiotics prescription practices in Dire Dawa, Ethiopia. A cross-sectional survey was conducted among paramedical staffs working in hospitals and health centers. A total of 218 paramedical staffs were participated and a self-administered questionnaire was used to collect data. Data was analyzed using SPSS version 20. Chi square/Fisher's exact tests were used for comparison of data and a p value of less than 0.05 was considered statistically significant. Out of the total, 137 (62.8%) of paramedical staffs had good knowledge on the factors causing antimicrobial resistance. The most common causes of antimicrobial resistance reported were patients' poor adherence (96.5%), self prescription (95%), and empiric choice of antibiotics (94.5%). In general, more than 80% of the respondents had positive attitudes towards the antimicrobials resistance intervention strategies. Relatively less proportion of participants recognized that antimicrobial resistance as a problem in their local institutions. The most perceived driving forces for unnecessary antibiotics prescriptions were treatment failure (67.7%) and patient push (53.3%). The majority, 76.9% of the prescribers mentioned that standard treatment guidelines were available in their institutions though only 15.7% of them reported referring the guidelines on the daily basis. Among the prescribers, 85.8% never attended formal trainings on antibiotics prescriptions. As this study generated important information on knowledge and attitudes

  9. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    NASA Astrophysics Data System (ADS)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  10. Rapid assessment of antimicrobial resistance prevalence using a Lot Quality Assurance sampling approach.

    PubMed

    van Leth, Frank; den Heijer, Casper; Beerepoot, Mariëlle; Stobberingh, Ellen; Geerlings, Suzanne; Schultsz, Constance

    2017-04-01

    Increasing antimicrobial resistance (AMR) requires rapid surveillance tools, such as Lot Quality Assurance Sampling (LQAS). LQAS classifies AMR as high or low based on set parameters. We compared classifications with the underlying true AMR prevalence using data on 1335 Escherichia coli isolates from surveys of community-acquired urinary tract infection in women, by assessing operating curves, sensitivity and specificity. Sensitivity and specificity of any set of LQAS parameters was above 99% and between 79 and 90%, respectively. Operating curves showed high concordance of the LQAS classification with true AMR prevalence estimates. LQAS-based AMR surveillance is a feasible approach that provides timely and locally relevant estimates, and the necessary information to formulate and evaluate guidelines for empirical treatment.

  11. Antibiotic Stewardship Initiatives as Part of the UK 5-Year Antimicrobial Resistance Strategy

    PubMed Central

    Johnson, Alan P.; Ashiru-Oredope, Diane; Beech, Elizabeth

    2015-01-01

    Antibiotic use is a major driver for the emergence and spread of antibiotic resistance. Antimicrobial stewardship programmes aim to improve antibiotic prescribing with the objectives of optimizing clinical outcomes while at the same time minimizing unintended consequences such as adverse effects and the selection of antibiotic resistance. In 2013, a five-year national strategy for tackling antimicrobial resistance was published in the UK. The overarching goal of the strategy is to slow the development and spread of resistance and to this end it has three strategic aims, namely to improve knowledge and understanding of resistance, to conserve and steward the effectiveness of existing treatments and to stimulate the development of new antibiotics, diagnostics and novel therapies. This article reviews the antimicrobial stewardship activities included in the strategy and describes their implementation and evaluation. PMID:27025636

  12. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment.

    PubMed

    Gómez, Diego; Azón, Ester; Marco, Noelia; Carramiñana, Juan J; Rota, Carmina; Ariño, Agustín; Yangüela, Javier

    2014-09-01

    A total of 336 Listeria isolates from ready-to-eat (RTE) meat products and meat-processing environments, consisting of 206 Listeria monocytogenes, and 130 Listeria innocua isolates, were characterized by disc diffusion assay and minimum inhibitory concentration (MIC) values for antimicrobial susceptibility against twenty antimicrobials. Resistance to one or two antimicrobials was observed in 71 L. monocytogenes isolates (34.5%), and 56 L. innocua isolates (43.1%). Multidrug resistance was identified in 24 Listeria isolates, 18 belonging to L. innocua (13.9%) and 6 to L. monocytogenes (2.9%). Oxacillin resistance was the most common resistance phenotype and was identified in 100% Listeria isolates. A medium prevalence of resistance to clindamycin (39.3% isolates) and low incidence of resistance to tetracycline (3.9% isolates) were also detected. Listeria isolates from RTE meat products displayed higher overall antimicrobial resistance (31.3%) than those from the environment (13.4%). All the strains assayed were sensitive to the preferred antibiotics used to treat listeriosis. Results showed that although antimicrobial resistance in L. monocytogenes still occurs at a low prevalence, L. innocua can form a reservoir of resistance genes which may transfer between bacterial species, including transference to organisms capable of causing disease in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health.

    PubMed

    Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H

    2013-07-01

    The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Control of Antimicrobial Resistance Requires an Ethical Approach

    PubMed Central

    Parsonage, Ben; Hagglund, Philip K.; Keogh, Lloyd; Wheelhouse, Nick; Brown, Richard E.; Dancer, Stephanie J.

    2017-01-01

    Ethical behavior encompasses actions that benefit both self and society. This means that tackling antimicrobial resistance (AMR) becomes an ethical obligation, because the prospect of declining anti-infectives affects everyone. Without preventive action, loss of drugs that have saved lives over the past century, will condemn ourselves, people we know, and people we don’t know, to unacceptable risk of untreatable infection. Policies aimed at extending antimicrobial life should be considered within an ethical framework, in order to balance the choice, range, and quality of drugs against stewardship activities. Conserving availability and effectiveness for future use should not compromise today’s patients. Practices such as antimicrobial prophylaxis for healthy people ‘at risk’ should receive full debate. There are additional ethical considerations for AMR involving veterinary care, agriculture, and relevant bio-industries. Restrictions for farmers potentially threaten the quality and quantity of food production with economic consequences. Antibiotics for companion animals do not necessarily spare those used for humans. While low-income countries cannot afford much-needed drugs, pharmaceutical companies are reluctant to develop novel agents for short-term return only. Public demand encourages over-the-counter, internet, black market, and counterfeit drugs, all of which compromise international control. Prescribers themselves require educational support to balance therapeutic choice against collateral damage to both body and environment. Predicted mortality due to AMR provides justification for international co-operation, commitment and investment to support surveillance and stewardship along with development of novel antimicrobial drugs. Ethical arguments for, and against, control of antimicrobial resistance strategies are presented and discussed in this review. PMID:29163414

  15. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    PubMed Central

    Beceiro, Alejandro; Tomás, María

    2013-01-01

    SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414

  16. The Intersection Between Colonization Resistance, Antimicrobial Stewardship, and Clostridium difficile.

    PubMed

    Rosa, Rossana; Donskey, Curtis J; Munoz-Price, L Silvia

    2018-06-07

    Colonization resistance refers to the innate defense provided by the indigenous microbiota against colonization by pathogenic organisms. We aim to describe how this line of defense is deployed against Clostridium difficile and what the implications are for interventions directed by Antimicrobial Stewardship Programs. The indigenous microbiota provides colonization resistance through depletion of nutrients, prevention of access to adherence sites within the gut mucosa, production of inhibitory substances, and stimulation of the host's immune system. The ability to quantify colonization resistance could provide information regarding periods of maximal vulnerability to colonization with pathogens and also allow the identification of mechanisms of restoration of colonization resistance. Methods utilized to determine the composition of the gut microbiota include sequencing technologies and measurement of concentration of specific bacterial metabolites. Use of innovations in the quantification of colonization resistance can expand the role of Antimicrobial Stewardship from prevention of disruption of the indigenous microbiota to restoration of colonization resistance.

  17. Predictors of Antimicrobial Resistance among Pathogens Causing Urinary Tract Infection in Children.

    PubMed

    Shaikh, Nader; Hoberman, Alejandro; Keren, Ron; Ivanova, Anastasia; Gotman, Nathan; Chesney, Russell W; Carpenter, Myra A; Moxey-Mims, Marva; Wald, Ellen R

    2016-04-01

    To determine which children with urinary tract infection are likely to have pathogens resistant to narrow-spectrum antimicrobials. Children, 2-71 months of age (n = 769) enrolled in the Randomized Intervention for Children with Vesicoureteral Reflux or Careful Urinary Tract Infection Evaluation studies were included. We used logistic regression models to test the associations between demographic and clinical characteristics and resistance to narrow-spectrum antimicrobials. Of the included patients, 91% were female and 76% had vesicoureteral reflux. The risk of resistance to narrow-spectrum antibiotics in uncircumcised males was approximately 3 times that of females (OR 3.1; 95% CI 1.4-6.7); in children with bladder bowel dysfunction, the risk was 2 times that of children with normal function (OR 2.2; 95% CI 1.2-4.1). Children who had received 1 course of antibiotics during the past 6 months also had higher odds of harboring resistant organisms (OR 1.6; 95% CI 1.1-2.3). Hispanic children had higher odds of harboring pathogens resistant to some narrow-spectrum antimicrobials. Uncircumcised males, Hispanic children, children with bladder bowel dysfunction, and children who received 1 course of antibiotics in the past 6 months were more likely to have a urinary tract infection caused by pathogens resistant to 1 or more narrow-spectrum antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Use of antimicrobials in veterinary medicine and mechanisms of resistance.

    PubMed

    Schwarz, S; Chaslus-Dancla, E

    2001-01-01

    This review deals with the application of antimicrobial agents in veterinary medicine and food animal production and the possible consequences arising from the widespread and multipurpose use of antimicrobials. The various mechanisms that bacteria have developed to escape the inhibitory effects of the antimicrobials most frequently used in the veterinary field are reported in detail. Resistance of bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, beta-lactam antibiotics, aminoglycosides, sulfonamides, trimethoprim, fluoroquinolones and chloramphenicol/florfenicol is described with regard to enzymatic inactivation, decreased intracellular drug accumulation and modification/protection/replacement of the target sites. In addition, basic information is given about mobile genetic elements which carry the respective resistance genes, such as plasmids, transposons, and gene cassettes/integrons, and their ways of spreading via conjugation, mobilisation, transduction, and transformation.

  19. Antimicrobial resistance in Escherichia coli isolates from food animals, animal food products and companion animals in China.

    PubMed

    Lei, Tao; Tian, Wei; He, Liu; Huang, Xian-Hui; Sun, Yong-Xue; Deng, Yu-Ting; Sun, Yan; Lv, Dian-Hong; Wu, Cong-Ming; Huang, Liang-Zong; Shen, Jian-Zhong; Liu, Jian-Hua

    2010-11-20

    One thousand and thirty Escherichia coli isolates from food animals, animals-derived foods, and companion animals between 2007 and 2008 in Southern China were used to investigate their antimicrobial susceptibility to 14 different antimicrobials by the standard agar dilution method. More than 70% of isolates showed resistance to tetracycline, trimethoprim-sulphamethoxazole, nalidixic acid, and ampicillin. In general, resistance was less frequent in companion animal isolates vs food animals isolates, but cephalosporin and amikacin resistance was more frequent in companion animal isolates, 42.6% to 56.2% vs 14.1% to 24.3%, and 28.5% vs 18.8%, respectively, which was most likely due to the common use of these antimicrobials as treatment in pet animals. Fluoroquinolones resistance was high in all animal isolates (>50%). Food products showed lowest resistance among isolates from these three resources. PFGE analysis indicated that a majority of multidrug-resistant E. coli isolates showed unique, unrelated PFGE profiles and were unlikely to be the spread of a specific clone. This study provides useful information about the prevalence of antimicrobial resistance in E. coli isolated from animals and food products in China and provided evidence of the linkage of the use of antimicrobials in animals and its selection of antimicrobial resistance in bacterial isolates. The data from this study further warns the prudent use of antimicrobials in food and pet animals to reduce the risks of transmission of antimicrobial resistance zoonotic pathogen to humans. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi

    This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  1. Keeping track of antimicrobial resistance for Neisseria gonorrhoeae in Auckland, New Zealand: past, present and future considerations.

    PubMed

    McAuliffe, Gary; Smith, Marian; Brokenshire, Mike; Forster, Rose; Reid, Murray; Roberts, Sally

    2018-06-22

    Neisseria gonorrhoeae (NG) has developed resistance to a wide range of antimicrobials. Population level data is essential to determine empiric treatment regimes. We sought to identify antimicrobial resistance patterns for NG in the Auckland region from 2008-2016, and review the utility of current methods of antimicrobial resistance testing. Antimicrobial susceptibilities and demographic data from NG isolates derived from patients attending the Auckland Regional Sexual Health Service and Auckland City Hospital were analysed to determine resistance rates and trends over time. Antimicrobial susceptibility testing was performed by agar dilution using Clinical and Laboratory Standards Institute (CLSI) interpretation criteria. Results for 2,302 isolates from 1,941 patients were analysed. While ciprofloxacin resistance increased between 2008 and 2011, resistance rates for all antibiotics declined from 2013-2016. In 2016, 22% (53) of isolates were resistant to ciprofloxacin, 7% (17) to penicillin, 31% (76) to tetracycline and 0.8% (2) exhibited decreased susceptibility to ceftriaxone. Ceftriaxone is still suitable as a component of gonorrhoea treatment in our region but resistance to other agents prohibits their use for empiric treatment regimens. Current methods of detecting antimicrobial resistance for NG needed to be updated so that they are fit for purpose.

  2. Phenotypical and Genotypical Antimicrobial Resistance of Coagulase-negative staphylococci Isolated from Cow Mastitis.

    PubMed

    Klimiene, I; Virgailis, M; Pavilonis, A; Siugzdiniene, R; Mockeliunas, R; Ruzauskas, M

    2016-09-01

    The objectives of this study were to determine the prevalence and antimicrobial resistance of coagulase-negative staphylococci (CNS) isolated from dairy cows with subclinical mastitis. Antimicrobial resistance in staphylococci were evaluated by breakpoint values specific to the species (EU-CAST). The presence of resistance-encoding genes was detected by multiplex PCR. A total of 191 CNS isolates were obtained. The CNS isolates were typically resistant to penicillin (67.4%), tetracyc-line (18.9%), and erythromycin (13.7%). CNS isolates (78.0%) were resistant to at least one antimicrobial compound, and 22.0% were multiresistant. The multiresistant isolates were predominantly Staphylococcus chromogenes (28.6%), Staphylococcus warneri (19%) and Staphylococcus haemolyticus (14.3%). According to MIC pattern data, multiresistant isolates showed the highest resistance (p<0.05) rates to penicillin (85.7%), tetracycline (66.7%), and erythromycin (48.2%), but all of them were sensitive to daptomycin, oxacillin, qiunupristin/dalfopristin, and vancomycin. S. chromogenes (9.5%), S. haemolyticus (4.8%), and S. capitis ss capitis (2.4%) strains were resistant to methicillin; their resistance to oxacillin and penicillin was more than 8 mg/l. A high rate of resistance to penicillin was linked to a blaZ gene found in 66.6% of the isolated multiresistant CNS strains. Resistance to tetracycline via the tetK (38.1%) gene and penicillin via the mecA (23.8%) gene were detected less frequently. Gene msrAB was responsible for macrolides and lincosamides resistance and detected in 28.6% of the CNS isolates. Antimicrobial resistance genes were identified more frequently in S. epidermidis, S. chromogenes, and S. warneri.

  3. Genetic diversity and antimicrobial resistance pattern of Salmonella enterica serovar Enteritidis clinical isolates in Thailand.

    PubMed

    Utrarachkij, Fuangfa; Nakajima, Chie; Siripanichgon, Kanokrat; Changkaew, Kanjana; Thongpanich, Yuwanda; Pornraungwong, Srirat; Suthienkul, Orasa; Suzuki, Yasuhiko

    2016-04-01

    To trace the history of antimicrobial resistance in Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) circulating in Thailand, we characterised clinical isolates obtained during 2004-2007. Antimicrobial resistance profiles, multi-locus variable number tandem repeat analysis (MLVA) types and 3 representative virulence determinants (spvA, sodCI and sopE) were established from SE isolates (n = 192) collected from stool and blood of patients throughout Thailand during the period 2004-2007. Resistance was found in SE against 10 out of 11 antimicrobials studied. The highest resistance ratios were observed for nalidixic acid (83.2%), ciprofloxacin (51.1%) and ampicillin (50.5%), and 25.5% were multidrug resistant. Based on five polymorphic tandem repeat loci analysis, MLVA identified 20 distinct types with three closely related predominant types. A significant increase of AMP resistance from 2004 to 2006 was strongly correlated with that of a MLVA type, 5-5-11-7-3. The usage of antimicrobials in human medicine or farm settings might act as selective pressures and cause the spread of resistant strains. Hence, a strict policy on antimicrobial usage needs to be implemented to achieve the control of resistant SE in Thailand. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Antimicrobial resistance in Campylobacter spp isolated from broiler flocks

    PubMed Central

    Kuana, Suzete Lora; dos Santos, Luciana Ruschel; Rodrigues, Laura Beatriz; Borsoi, Anderlise; Moraes, Hamilton Luis do Souza; Salle, Carlos Tadeu Pippi; do Nascimento, Vladimir Pinheiro

    2008-01-01

    The aim of this study was to assess the antimicrobial susceptibility of 62 Campylobacter spp. strains obtained from broiler flocks using the agar diffusion method. The Campylobacter spp strains were isolated from 22 flocks aged between 3 and 5 weeks of life, isolated from cloacae swabs, stools and cecal droppings in the farm and from the carcass rinsing in the slaughterhouse. Campylobacter spp strains were tested on Mueller-Hilton (MH) agar (27 samples) and MH plus TTC agar (35 samples). The antimicrobial susceptibility test revealed a 62.5% resistance to at least one drug, especially to enrofloxacin (71%), neomycin (50%), lincomycin (50%), tetracycline (43%), penicillin (42%), ceftiofur (33%) amoxicillin (27%), spiramycin (20%), ampicillin (18%) and norfloxacin (14%), whereas a lower percentage of strains was resistant to erythromycin (10%) and doxycycline (10%). All strains were sensitive to gentamicin and lincomycin-spectinomycin and 80% of them to colistin. These results indicate that it is necessary to reduce the use of antimicrobials in veterinary and human medicine. PMID:24031299

  5. Antimicrobial resistance surveillance in the genomic age.

    PubMed

    McArthur, Andrew G; Tsang, Kara K

    2017-01-01

    The loss of effective antimicrobials is reducing our ability to protect the global population from infectious disease. However, the field of antibiotic drug discovery and the public health monitoring of antimicrobial resistance (AMR) is beginning to exploit the power of genome and metagenome sequencing. The creation of novel AMR bioinformatics tools and databases and their continued development will advance our understanding of the molecular mechanisms and threat severity of antibiotic resistance, while simultaneously improving our ability to accurately predict and screen for antibiotic resistance genes within environmental, agricultural, and clinical settings. To do so, efforts must be focused toward exploiting the advancements of genome sequencing and information technology. Currently, AMR bioinformatics software and databases reflect different scopes and functions, each with its own strengths and weaknesses. A review of the available tools reveals common approaches and reference data but also reveals gaps in our curated data, models, algorithms, and data-sharing tools that must be addressed to conquer the limitations and areas of unmet need within the AMR research field before DNA sequencing can be fully exploited for AMR surveillance and improved clinical outcomes. © 2016 New York Academy of Sciences.

  6. Resistance of Staphylococcus aureus to antimicrobial agents in Ethiopia: a meta-analysis.

    PubMed

    Deyno, Serawit; Fekadu, Sintayehu; Astatkie, Ayalew

    2017-01-01

    Emergence of antimicrobial resistance by Staphylococcus aureus has limited treatment options against its infections. The purpose of this study was to determine the pooled prevalence of resistance to different antimicrobial agents by S. aureus in Ethiopia. Web-based search was conducted in the databases of PubMed, Google Scholar, Hinari, Scopus and the Directory of Open Access Journals (DOAJ) to identify potentially eligible published studies. Required data were extracted and entered into Excel spread sheet. Statistical analyses were performed using Stata version 13.0. The metaprop Stata command was used to pool prevalence values. Twenty-one separate meta-analysis were done to estimate the pooled prevalence of the resistance of S. aureus to twenty-one different antimicrobial agents. Heterogeneity among the studies was assessed using the I 2 statistic and chi-square test. Publication bias was assessed using Egger's test. Because of significant heterogeneity amongst the studies, the random effects model was used to pool prevalence values. The electronic database search yielded 1317 studies among which 45 studies met our inclusion criteria. Our analyses demonstrated very high level of resistance to amoxicillin (77% [95% confidence interval (CI): 68%, 0.85%]), penicillin (76% [95% CI: 67%, 84%]), ampicillin (75% [95% CI: 65%, 85%]), tetracycline (62% [95% CI: 55%, 68%]), methicillin (47% [95% CI: 33%, 61%]), cotrimoxaziole (47% [95% CI: 40%, 55%]), doxycycline (43% [95% CI: 26%, 60%]), and erythromycin (41% [95% CI: 29%, 54%]). Relatively low prevalence of resistance was observed with kanamycin (14% [95% CI: 5%, 25%]) and ciprofloxacin (19% [95% CI: 13%, 26%]). The resistance level to vancomycin is 11% 995% CI: (4%, 20%). High heterogeneity was observed for each of the meta-analysis performed (I 2 ranging from 79.36% to 95.93%; all p -values ≤0.01). Eggers' test did not show a significant publication bias for all antimicrobial agents except for erythromycin and

  7. Prevalence, molecular and antimicrobial resistance of Salmonella isolated from sausages in Meknes, Morocco.

    PubMed

    Ed-Dra, Abdelaziz; Filali, Fouzia Rhazi; Karraouan, Bouchra; El Allaoui, Abdellah; Aboulkacem, Amal; Bouchrif, Brahim

    2017-04-01

    Salmonella is among the most important food borne pathogens worldwide contaminating a wide range of animal products including meat products. The aims of this study go through two steps: The first step is to estimate the proportion of sausages products contaminated with Salmonella in Meknes city (Morocco), which were collected from various shopping sites: butchery, street vendors, supermarket and souk (Weekly market combines the population of the small villages around Meknes city). The second one is to identify serovars, to determine the antimicrobials resistance patterns of isolates and to detect the invA and spvC genes. 34 (21.79%) Salmonella were isolated, recovered 4 serogroups and 12 serotypes. The most prevalent serotypes were Salmonella Corvallis (23.53%) and Salmonella Kentucky (17.65%). All Salmonella isolates were tested for their susceptibility to 18 selected antimicrobials agents, of which 100% were resistant to at least one antimicrobial, 85.30% (29/34) were resistant to two or more antimicrobials and 44.12% (15/34) were resistant to at least three antimicrobials. All Salmonella are resistant to ampicillin, 76.47% to streptomycin, 20.59% to sulfonamides, 17.65% to Tetracycline and 11.77% to Ofloxacin. The "ACSSuT" penta-resistance pattern was observed in tow of the Salmonella Typhimurium strains. In addition, this study showed that all Salmonella strains (34) were positive for invasion gene invA and negative for the virulence gene spvC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Attitudes and perceptions regarding antimicrobial use and resistance among medical students in Central China.

    PubMed

    Yang, Kun; Wu, Dongfang; Tan, Fei; Shi, Shaojun; Guo, Xianxi; Min, Qing; Zhang, Xiaolian; Cheng, Hong

    2016-01-01

    Senior medical students, who are future doctors, should be prepared to use antimicrobials appropriately and will be important partners in antimicrobial stewardship. This survey was designed to investigate the attitudes and perceptions of senior medical students regarding antimicrobial use and resistance. We performed a multi-center survey involving a questionnaire handed out to all fourth year medical students from five representative teaching hospitals in Central China. The survey was completed within 1 month (October to November, 2015). Antimicrobial stewardship programs were taught in all of the teaching hospitals, yet only part of the respondents took part in it. A total of 611 out of 728 students completed our survey. The majority of the respondents (92 %) believed that inappropriate use of antimicrobials causes antimicrobial resistance and agreed with the importance of a strong knowledge of antimicrobials in their medical careers. Most students (67 %) rated their education concerning antimicrobial use and resistance as useful or very useful, but only 25 % recalled having courses on this subject. The overall mean number of correct answers on a section of 11 knowledge questions was 3.78 (standard deviation 1.57, P value for score between hospitals <0.001). We should make an effort to optimize curriculum system in Chinese institutions, and this may contribute to making our future doctors better prepared for antimicrobial stewardship and prudent antimicrobial prescribing.

  9. Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase.

    PubMed

    Alonso, C A; González-Barrio, D; Tenorio, Carmen; Ruiz-Fons, F; Torres, C

    2016-04-01

    Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16-blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Changes of Antimicrobial Resistance among Staphylococcus Aureus Isolated in 8 Consecutive Years in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zhou, Qi; Yang, Chunguang; Yao, Hanxin; Xu, Jiancheng

    This study was to investigate the antimicrobial resistance of Staphylococcus aureus isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1469 strains of Staphylococcus aureus were collected from sputum 705 (18.0%), secretions 206 (14.0%), pus 177 (12.0%) during the past 8 years. The rates of methicillin-resistant Staphylococcus aureus (MRSA) were between 50.8% and 83.3% during the past 8 years, respectively. In recent 8 years, the antimicrobial resistance of Staphylococcus aureus had increased. Monitoring the antimicrobial resistance to Staphylococcus aureus should be strengthened. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  11. Antimicrobial resistance, serotypes, and virulence factors of Streptococcus suis isolates from diseased pigs.

    PubMed

    Li, Lu-Lu; Liao, Xiao-Ping; Sun, Jian; Yang, Yu-Rong; Liu, Bao-Tao; Yang, Shou-Shen; Zhao, Dong-Hao; Liu, Ya-Hong

    2012-07-01

    Streptococcus suis isolates from diseased pigs were examined for susceptibility to nine antimicrobials, possession of virulence-associated factors (VFs), and distribution of serotypes. The association between antimicrobial resistance (AMR) and serotypes as well as VFs was subsequently assessed. Among the isolates investigated, serotype 2 (66.04%) was mostly prevalent, followed by serotypes 1 (23.27%), 9 (1.26%), and 7 (0.63%), whereas 14 isolates were untypable by the polymerase chain reaction typing method used. Analysis with pulsed-field gel electrophoresis revealed the isolates had diverse DNA macrorestriction patterns. The frequency of antimicrobial resistance among the S. suis isolates was higher than that reported from other countries. It is notable that multiple antimicrobial resistance (three or more antimicrobials) was observed with 98.73% of the S. suis isolates, and the dominant resistance phenotype was erythromycin-tilmicosin-clindamycin-chloramphenicol-levofloxacin-ceftiofur-kanamycin-tetracycline-penicillin (35.85%). The most prevalent VFs were those encoded by muramidase-released protein (61.64%), followed by suilysin (56.60%) and extracellular factor (46.54%). Presence of VFs and the possession of certain AMR phenotypes were significantly associated as determined by statistical analysis. Together, these findings indicate that the clinical S. suis isolates obtained from diseased pigs in China are genetically diverse, are resistant to multiple antibiotics of clinical importance, and carry known virulence factors.

  12. Prevalence and antimicrobial resistance in Escherichia coli from food and animals in Lagos, Nigeria

    USDA-ARS?s Scientific Manuscript database

    Background Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing ...

  13. Narrow grass hedges reduce tylosin and associated antimicrobial resistance genes in agricultural runoff

    USDA-ARS?s Scientific Manuscript database

    Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...

  14. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh

    PubMed Central

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-01-01

    Purpose This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. Methodology The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007–2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al. Clin Infect Dis 2012;55:S232–S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Results Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. Conclusion In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes. PMID:28945190

  15. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh.

    PubMed

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-10-01

    This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.

  16. Antimicrobial Resistance among Campylobacter Strains, United States, 1997–2001

    PubMed Central

    Nelson, Jennifer M.; Barrett, Timothy J.; Tauxe, Robert V.; Rossiter, Shannon P.; Friedman, Cindy R.; Joyce, Kevin W.; Smith, Kirk E.; Jones, Timothy F.; Hawkins, Marguerite A.; Shiferaw, Beletshachew; Beebe, James L.; Vugia, Duc J.; Rabatsky-Ehr, Terry; Benson, James A.; Root, Timothy P.; Angulo, Frederick J.

    2004-01-01

    We summarize antimicrobial resistance surveillance data in human and chicken isolates of Campylobacter. Isolates were from a sentinel county study from 1989 through 1990 and from nine state health departments participating in National Antimicrobial Resistance Monitoring System for enteric bacteria (NARMS) from 1997 through 2001. None of the 297 C. jejuni or C. coli isolates tested from 1989 through 1990 was ciprofloxacin-resistant. From 1997 through 2001, a total of 1,553 human Campylobacter isolates were characterized: 1,471 (95%) were C. jejuni, 63 (4%) were C. coli, and 19 (1%) were other Campylobacter species. The prevalence of ciprofloxacin-resistant Campylobacter was 13% (28 of 217) in 1997 and 19% (75 of 384) in 2001; erythromycin resistance was 2% (4 of 217) in 1997 and 2% (8 of 384) in 2001. Ciprofloxacin-resistant Campylobacter was isolated from 10% of 180 chicken products purchased from grocery stores in three states in 1999. Ciprofloxacin resistance has emerged among Campylobacter since 1990 and has increased in prevalence since 1997. PMID:15207064

  17. Antimicrobial resistance trends among Salmonella isolates obtained from dairy cattle in the northeastern United States, 2004-2011.

    PubMed

    Cummings, Kevin J; Perkins, Gillian A; Khatibzadeh, Sarah M; Warnick, Lorin D; Altier, Craig

    2013-04-01

    Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform public policy regarding appropriate antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Salmonella isolates from dairy cattle in the northeastern United States and to identify trends in resistance to various antimicrobial agents over time. Data were collected retrospectively for all bovine Salmonella isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. Temporal trends in the prevalence of resistant Salmonella were investigated for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 2745 bovine Salmonella isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 0% (amikacin, ciprofloxacin, and nalidixic acid) to 72.0% (sulfadimethoxine). There was evidence of a significantly decreasing trend in prevalence of resistance to most agents: amoxicillin/clavulanic acid (AUG), ampicillin (AMP), cefoxitin (FOX), ceftiofur (TIO), ceftriaxone (AXO), chloramphenicol (CHL), chlortetracycline (CTET), florfenicol (FFN), kanamycin (KAN), neomycin (NEO), oxytetracycline (OXY), spectinomycin (SPE), streptomycin (STR), sulfadimethoxine (SDM), sulfisoxazole (FIS), and tetracycline (TET). Among the 265 isolates that were tested using the National Antimicrobial Resistance Monitoring System (NARMS) panel, the most common resistance patterns were pansusceptible (54.0%), AUG-AMP-FOX-TIO-AXO-CHL-KAN-STR-FIS-TET (18.1%), and AUG-AMP-FOX-TIO-AXO-CHL-STR-FIS-TET (12.1%). Increasing prevalence of S. enterica serovar Cerro over the course of the study period presumably had an impact on the observed resistance trends. Nevertheless, these results do not support the notion that the current level of antimicrobial

  18. New antimicrobial combinations: substituted chalcones- oxacillin against methicillin resistant Staphylococcus aureus

    PubMed Central

    Talia, Juan Manuel; Debattista, Nora Beatriz; Pappano, Nora Beatriz

    2011-01-01

    Staphylococcus aureus, the most virulent Staphylococcus species, is also the prevalent pathogen isolated from hospitalized patients and the second most common from patients in outpatient settings. In general, bacteria have the genetic ability to transmit and acquire resistance to drugs, which are utilized as therapeutic agents. Related studies of antimicrobial activity indicate that crude extracts containing flavonoids, triterpenes and steroids have showed significative activity against several Staphylococcus aureus strains. Combination effects between flavonoids and antibiotics also have been reported. The aim of the present work was to investigate in vitro synergism between several chalcones substituted in combination with oxacillin, an antibiotic used conventionally against S. aureus ATCC 43 300 that is resistant to meticillin, using the kinetic turbidimetric method developed earlier. The results were satisfactory for all assayed combinations and in accordance with the mechanism of bacteriostatic inhibition previously proposed, except for 2´,4´-dihydroxy-3´-methoxychalcone – oxacillin. The best combination was 2´,3´-dihydroxychalcone -oxacillin (MIC: 11.2 µg/mL). Further investigations are needed to characterize the interaction mechanism with antibiotics. Thus, chalcones – oxacillin combination could lead to the development of new antibiotics against methicillin resistant S. aureus infection. PMID:24031657

  19. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture

    PubMed Central

    Maherchandani, Sunil; Shringi, B. N.; Kashyap, Sudhir Kumar

    2018-01-01

    ABSTRACT Aims: Multiple antimicrobial resistance in Escherichia coli of wild vertebrates is a global concern with scarce assessments on the subject from developing countries that have high human-wild species interactions. We studied the ecology of E. coli in a wintering population of Egyptian Vultures in India to understand temporal changes in both E. coli strains and patterns of antimicrobial resistance. Methods and Results: We ribotyped E. coli strains and assessed antimicrobial resistance from wintering vultures at a highly synanthropic carcass dump in north-west India. Both E. coli occurence (90.32%) and resistance to multiple antimicrobials (71.43%) were very high. Clear temporal patterns were apparent. Diversity of strains changed and homogenized at the end of the Vultures’ wintering period, while the resistance pattern showed significantly difference inter-annually, as well as between arrival and departing individuals within a wintering cycle. Significance of study: The carcass dump environment altered both E. coli strains and multiple antimicrobial resistance in migratory Egyptian Vultures within a season. Long-distance migratory species could therefore disseminate resistant E. coli strains across broad geographical scales rendering regional mitigation strategies to control multiple antimicrobial resistance in bacteria ineffective. PMID:29755700

  20. Role of shellfish hatchery as a reservoir of antimicrobial resistant bacteria.

    PubMed

    Miranda, Claudio D; Rojas, Rodrigo; Garrido, Marcela; Geisse, Julieta; González, Gerardo

    2013-09-15

    The main aim of this study was to determine the occurrence of resistant bacteria in florfenicol-treated and untreated scallop larval cultures from a commercial hatchery and to characterize some selected florfenicol-resistant strains. Larval cultures from untreated and treated rearing tanks exhibited percentages of copiotrophic bacteria resistant to florfenicol ranging from 0.03% to 10.67% and 0.49-18.34%, respectively, whereas florfenicol resistance among oligotrophic bacteria varied from 1.44% to 35.50% and 3.62-95.71%, from untreated and treated larvae, respectively. Florfenicol resistant microbiota from reared scallop larvae mainly belonged to the Pseudomonas and Pseudoalteromonas genus and were mainly resistant to florfenicol, chloramphenicol, streptomycin and co-trimoxazole. This is the first study reporting antimicrobial resistant bacteria associated to a shellfish hatchery and the results suggest that a continuous surveillance of antimicrobial resistance even in absence of antibacterial therapy is urgently required to evaluate potential undesirable consequences on the surrounding environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Antimicrobial Stewardship Programs: Appropriate Measures and Metrics to Study their Impact.

    PubMed

    Morris, Andrew M

    Antimicrobial stewardship is a new field that struggles to find the right balance between meaningful and useful metrics to study the impact of antimicrobial stewardship programs (ASPs). ASP metrics primarily measure antimicrobial use, although microbiological resistance and clinical outcomes are also important measures of the impact an ASP has on a hospital and its patient population. Antimicrobial measures looking at consumption are the most commonly used measures, and are focused on defined daily doses, days of therapy, and costs, usually standardized per 1,000 patient-days. Each measure provides slightly different information, with their own upsides and downfalls. Point prevalence measurement of antimicrobial use is an increasingly used approach to understanding consumption that does not entirely rely on sophisticated electronic information systems, and is also replicable. Appropriateness measures hold appeal and promise, but have not been developed to the degree that makes them useful and widely applicable. The primary reason why antimicrobial stewardship is necessary is the growth of antimicrobial resistance. Accordingly, antimicrobial resistance is an important metric of the impact of an ASP. The most common approach to measuring resistance for ASP purposes is to report rates of common or important community- or nosocomial-acquired antimicrobial-resistant organisms, such as methicillin-resistant Staphylococcus aureus and Clostridium difficile. Such an approach is dependent on detection methods, community rates of resistance, and co-interventions, and therefore may not be the most accurate or reflective measure of antimicrobial stewardship interventions. Development of an index to reflect the net burden of resistance holds theoretical promise, but has yet to be realized. Finally, programs must consider patient outcome measures. Mortality is the most objective and reliable method, but has several drawbacks. Disease- or organism-specific mortality, or cure, are

  2. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans

    PubMed Central

    Miles, Tricia D; McLaughlin, Wayne; Brown, Paul D

    2006-01-01

    Background Antimicrobial usage is considered the most important factor promoting the emergence, selection and dissemination of antimicrobial-resistant microorganisms in both veterinary and human medicine. The aim of this study was to investigate the prevalence and genetic basis of tetracycline resistance in faecal Escherichia coli isolates from healthy broiler chickens and compare these data with isolates obtained from hospitalized patients in Jamaica. Results Eighty-two E. coli strains isolated from faecal samples of broiler chickens and urine and wound specimens of hospitalized patients were analyzed by agar disc diffusion to determine their susceptibility patterns to 11 antimicrobial agents. Tetracycline resistance determinants were investigated by plasmid profiling, transformations, and amplification of plasmid-borne resistance genes. Tetracycline resistance occurred at a frequency of 82.4% in avian isolates compared to 43.8% in human isolates. In addition, among avian isolates there was a trend towards higher resistance frequencies to kanamycin and nalidixic acid (p < 0.05), while a greater percentage of human isolates were resistant to chloramphenicol and gentamicin (p < 0.05). Multiple drug resistance was found in isolates from both sources and was usually associated with tetracycline resistance. Tetracycline-resistant isolates from both avian and human sources contained one or several plasmids, which were transmissible by transformation of chemically-competent E. coli. Tetracycline resistance was mediated by efflux genes tetB and/or tetD. Conclusion The present study highlights the prevalence of multiple drug resistant E. coli among healthy broiler chickens in Jamaica, possibly associated with expression of tetracycline resistance. While there did not appear to be a common source for multiple drug resistance in the strains from avian or human origin, the genes encoding resistance are similar. These results suggest that genes are disseminated in the

  3. Antibiotic resistance genes and residual antimicrobials in cattle feedlot surface soil

    USDA-ARS?s Scientific Manuscript database

    Antibiotic residues and resistant bacteria in cattle feedlot manure may impact antibiotic resistance in the environment. This study investigated common antimicrobials (tetracyclines and monensin) and associated resistance genes in cattle feedlot soils over time. Animal diets and other feedlot soil...

  4. Antimicrobial resistance trends among Escherichia coli isolates obtained from dairy cattle in the northeastern United States, 2004-2011.

    PubMed

    Cummings, Kevin J; Aprea, Victor A; Altier, Craig

    2014-01-01

    Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform risk analyses and guide public policy regarding antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Escherichia coli isolates from dairy cattle in the northeastern United States and to identify trends in resistance to selected antimicrobial agents over time. We collected data retrospectively for all bovine E. coli isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. We investigated temporal trends in the prevalence of resistant E. coli for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 3373 bovine E. coli isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 2.7% (enrofloxacin) to 91.3% (oxytetracycline). There was evidence of a significantly decreasing trend in prevalence of resistance to several agents: chlortetracycline, florfenicol, neomycin, oxytetracycline, spectinomycin, and trimethoprim/sulfamethoxazole. However, a significantly increasing trend in prevalence of resistance to enrofloxacin was also evident. These results do not support the idea that current antimicrobial use practices on dairy operations are driving a general increase in the emergence and dissemination of drug-resistant E. coli in the region served by the laboratory. However, resistance to some drugs remained consistently high during the study period, and increasing resistance to enrofloxacin is a key area of concern.

  5. Prevalence and Antimicrobial Resistance of Vibrio parahaemolyticus Isolated from Raw Shellfish in Poland.

    PubMed

    Lopatek, Magdalena; Wieczorek, Kinga; Osek, Jacek

    2015-05-01

    Vibrio parahaemolyticus is a marine bacterium recognized as an important cause of gastroenteritis in humans consuming contaminated shellfish. In recent years, increasing resistance to ampicillin and aminoglycosides has been observed among V. parahaemolyticus isolates. However, the first-line antimicrobials such as tetracyclines and fluoroquinolones remained highly effective against these bacteria. The aim of this study was to evaluate the occurrence of V. parahaemolyticus in live bivalve molluscs available on the Polish market and to determine the antimicrobial resistance of the recovered isolates. A total of 400 shellfish samples (mussels, oysters, clams, and scallops) from 2009 to 2012 were tested using the International Organization for Standardization standard 21872-1 method and PCR for the species-specific toxR gene. Antimicrobial susceptibility of the isolates was determined using a microbroth dilution method. V. parahaemolyticus was identified in 70 (17.5%) of the 400 samples, and the toxR gene was confirmed in 64 (91.4%) of these isolates. Most of the isolates were recovered from clams (31 isolates; 48.4% prevalence) followed by mussels (17 isolates; 26.6% prevalence). More V. parahaemolyticus-positive samples were found between May and September (22.7% prevalence) than between October and April (11.4% prevalence). Antibiotic profiling revealed that most isolates were resistant to ampicillin (56 isolates; 87.5%) and to streptomycin (45 isolates; 70.3%), but all of them were susceptible to tetracycline and chloramphenicol. Forty-one isolates (64.1%) were resistant to two or more antimicrobials; however, only one isolate (1.6%) was resistant to three antimicrobial classes. The antimicrobials used in treatment of human V. parahaemolyticus infection had high efficacy against the bacterial isolates tested. This study is the first concerning antibiotic resistance of V. parahaemolyticus isolates in Poland, and the results obtained indicate that these bacteria may

  6. Estimated Incidence of Antimicrobial Drug–Resistant Nontyphoidal Salmonella Infections, United States, 2004–2012

    PubMed Central

    Gu, Weidong; Mahon, Barbara E.; Judd, Michael; Folster, Jason; Griffin, Patricia M.; Hoekstra, Robert M.

    2017-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004–2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted. PMID:27983506

  7. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage.

    PubMed

    Haakensen, Monique; Vickers, David M; Ziola, Barry

    2009-09-07

    Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  8. Proper context: Comparison studies demonstrate that United States food-animal production antimicrobial uses have minimal impact on antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    In the United States (US) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses "substantially drive" antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comparison...

  9. Tetracycline improved the efficiency of other antimicrobials against Gram-negative multidrug-resistant bacteria.

    PubMed

    Mawabo, Isabelle K; Noumedem, Jaurès A K; Kuiate, Jules R; Kuete, Victor

    2015-01-01

    Treatment of infectious diseases with antimicrobials constituted a great achievement in the history of medicine. Unfortunately, the emergence of resistant strains of bacteria to all classes of antimicrobials limited their efficacy. The present study was aimed at evaluating the effect of combinations of antibiotics on multi-drug resistant Gram-negative (MDRGN) bacteria. A liquid micro-broth dilution method was used to evaluate the antibacterial activity of 10 different classes of antimicrobials on 20 bacterial strains belonging to six different species. The antimicrobials were associated with phenylalanine β-naphthylamide (PAβN), an efflux pump inhibitor, and with other antimicrobials at their sub-inhibitory concentrations. The effectiveness of each combination was monitored using the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC). Most of the antimicrobials tested showed low antibacterial activity with a MIC value of 128 mg/L on a majority of the bacterial strains, justifying their multidrug-resistant (MDR) profile. Synergistic effects were mostly observed (FIC≤0.5) when ampicillin (AMP), cloxacillin (CLX), erythromycin (ERY), chloramphenicol (CHL), kanamycin (KAN) and streptomycin (STR) were combined with tetracycline (TET) at the sub-inhibitory concentration of MIC/5 or MIC/10. The results of the present work suggest that the association of several antimicrobials with TET could improve the fight against MDRGN bacterial species. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  10. Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens.

    PubMed

    Pogue, J M; Kaye, K S; Cohen, D A; Marchaim, D

    2015-04-01

    The past decade has brought a significant rise in antimicrobial resistance, and the ESKAPE pathogens have become a significant threat to public health. Three epidemiological features that negatively impact patients, which are consistently seen with the ESKAPE pathogens, are the following: 1) there has been a rise in incidence of these organisms as causative human pathogens, 2) there has been a significant increase in antimicrobial resistance in these bacterial species, and 3) the infections caused by these resistant strains are associated with worse outcomes when compared with infections caused by their susceptible counterparts. Significant delays in time to appropriate antimicrobial therapy of up to 5 days have been reported in infections due to these organisms and this is the strongest predictor of mortality with ESKAPE pathogens, particular in critically ill patients, where every hour delay has an incremental survival disadvantage for patients. Strategies to decrease these delays are urgently needed. Although routine broad-spectrum empiric coverage for these organisms would ideally limit this delay, agents with activity against these organisms are sometimes less effective, have significant toxicity risk, and their use can result in the development of resistance. Therefore, strategies to optimize therapy, although limiting unnecessary use of broad-spectrum antimicrobials, are urgently needed. This review will discuss potential strategies to optimize empiric therapy in the age of multi-drug resistance, the limitations of these strategies, and will discuss future directions and opportunities. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Genotypic and Phenotypic Characterization of Antimicrobial-Resistant Escherichia coli from Farm-Raised Diarrheic Sika Deer in Northeastern China

    PubMed Central

    Li, Rui; He, Liang; Hao, Lili; Wang, Qi; Zhou, Yu; Jiang, Hongchen

    2013-01-01

    In China, overuse and/or abuse of antimicrobials are common in stockbreeding, which possess high risks of antimicrobial-resistant contaminations. The serogroups, major virulence genes, and antimicrobial resistant patterns of the antimicrobial-resistant Escherichia coli (E. coli) were investigated in the feces of diarrheic farm-raised sika deer from 50 farms in three Northeastern provinces of China. A total of 220 E. coli isolates were obtained and characterized. Twenty-eight O serogroups were identified from the obtained E. coli isolates with O2, O26, O128, O142 and O154 being dominant. Nearly all the isolates were resistant to at least four of the tested antimicrobials. More than 90% of the E. coli isolates carried at least one of the tested virulence genes. About 85% of the E. coli isolates carried one or more antimicrobial-resistant genes responsible for resistant phenotypes of sulfonamides, streptomycin/spectionomycin or tetracycline. The antimicrobial resistant level and pathogenic group occurrences of the obtained E. coli isolates were higher than that of livestock and wild animals reported in some developed countries. Thus, the fecal-carrying antimicrobial-resistant E. coli from the farm-raised sika deer is potentially a significant contamination source for freshwater systems and food chain, and may pose great health risks for human and animals in Northeastern China. PMID:24039919

  12. Antimicrobial resistance mechanisms and potential synthetic treatments.

    PubMed

    Ali, Junaid; Rafiq, Qasim A; Ratcliffe, Elizabeth

    2018-04-01

    Since the discovery of antibiotics by Sir Alexander Fleming they have been used throughout medicine and play a vital role in combating microorganisms. However, with their vast use, development of resistance has become more prevalent and their use is currently under threat. Antibiotic resistance poses a global threat to human and animal health, with many bacterial species having developed some form of resistance and in some cases within a year of first exposure to antimicrobial agents. This review aims to examine some of the mechanisms behind resistance. Additionally, re-engineering organisms, re-sensitizing bacteria to antibiotics and gene-editing techniques such as the clustered regularly interspaced short palindromic repeats-Cas9 system are providing novel approaches to combat bacterial resistance. To that extent, we have reviewed some of these novel and innovative technologies.

  13. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    PubMed

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  14. Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces.

    PubMed

    Urbaniak, C; Sielaff, A Checinska; Frey, K G; Allen, J E; Singh, N; Jaing, C; Wheeler, K; Venkateswaran, K

    2018-01-16

    Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS "resistome' was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq ™ and metagenomics. Disc diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq ™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. This information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.

  15. Integrating Hospital-Acquired Lessons into Community Health Practice: Optimizing Antimicrobial Use in Bangalore

    ERIC Educational Resources Information Center

    Biswas, Rakesh; Dineshan, Vineeth; Narasimhamurthy, N. S.; Kasthuri, A. S.

    2007-01-01

    Introduction: Even as antimicrobial resistance is a serious public health concern worldwide, the uncertainties of diagnosis and treatment of fever strongly influence community practitioners toward prescribing antibiotics. To help community practitioners resolve their diagnostic questions and reduce the unnecessary use of antibiotics for viral…

  16. Antimicrobial Resistance Genes in Pigeons from Public Parks in Costa Rica.

    PubMed

    Blanco-Peña, K; Esperón, F; Torres-Mejía, A M; de la Torre, A; de la Cruz, E; Jiménez-Soto, M

    2017-11-01

    Antimicrobial resistance is known to be an emerging problem, but the extent of the issue remains incomplete. The aim of this study was to determine the presence or absence of nine resistance genes (bla TEM , catI, mecA, qnrS, sulI, sulII, tet(A), tet(Q), vanA) in the faeces of 141 pigeons from four urban parks in Alajuela, Guadalupe, Tres Ríos and San José in Costa Rica. The genes were identified by real-time PCR directly from enema samples. About 30% of the samples were positive for genes catI and sulI; between 13% and 17% were positive for qnrS, sulII, tet(A) and tet(Q); and 4% were positive for bla TEM . The mecA and vanA genes were not detected. The average of antimicrobial resistance genes detected per pigeon was 2. Eight different patterns of resistance were identified, without differences in the sampling areas, being the most common pattern 2 (sulII positive samples). During rainy season, the genes more frequently found were sulI and tet(A). In conclusion, the urban inhabiting pigeons tested are currently carrying antimicrobial resistance genes, potentially acting as reservoirs of resistant bacteria and vectors to humans. To the authors' knowledge, this is the first study carried out on direct detection of resistance genes in the digestive metagenomes of pigeons. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  17. Characterization of Salmonella Typhimurium of animal origin obtained from the National Antimicrobial Resistance Monitoring System.

    PubMed

    Zhao, S; Fedorka-Cray, P J; Friedman, S; McDermott, P F; Walker, R D; Qaiyumi, S; Foley, S L; Hubert, S K; Ayers, S; English, L; Dargatz, D A; Salamone, B; White, D G

    2005-01-01

    Salmonella Typhimurium remains one of the most common causes of salmonellosis in animals and humans in the United States. The emergence of multi-drug resistant Salmonella reduces the therapeutic options in cases of invasive infections, and has been shown to be associated with an increased burden of illness. In this study, 588 S. Typhimurium (including var. Copenhagen) isolates obtained from either animal diagnostic specimens (n = 199) or food animals after slaughter/processing (n = 389) were examined for antimicrobial susceptibility, presence of class-1 integrons, and characterized using pulsed-field gel electrophoresis and phage typing. Seventy-six percent (448/588) of isolates were resistant to at least one antimicrobial. Salmonella isolates displayed resistance most often to streptomycin (63%), tetracycline (61%), ampicillin (61%), and to a lesser extent, chloramphenicol (36%), ceftiofur (15%), gentamicin (9%), and nalidixic acid (4%), with more resistance observed among diagnostic isolates. Salmonella recovered from turkeys (n = 38) exhibited the highest rates of resistance, with 92% of isolates resistant to least one antimicrobial, and 58% resistant to > or =10 antimicrobials. Class 1 integrons were present in 51% of all isolates. Five integron associated resistance genes (aadA, aadB, pse-1, oxa-2 and dhfr) were identified. A total of 311 PFGE patterns were generated using XbaI, indicating a genetically diverse population. The largest PFGE cluster contained 146 isolates, including DT104 isolates obtained from all seven animal species. Results demonstrated a varied spectrum of antimicrobial resistance, including several multidrug resistant clonal groups, among S. Typhimurium and S. Typhimurium var. Copenhagen isolates recovered from both diagnostic and slaughter/processing samples.

  18. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    PubMed

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  19. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production.

    PubMed

    Mattiello, Samara P; Drescher, Guilherme; Barth, Valdir C; Ferreira, Carlos A S; Oliveira, Sílvia D

    2015-11-01

    Antimicrobial resistance profiles and presence of resistance determinants and integrons were evaluated in Salmonella enterica strains from Brazilian poultry. The analysis of 203 isolates showed that those from the poultry environment (88 isolates) were significantly more resistant to antimicrobials than isolates from other sources, particularly those isolated from poultry by-product meal (106 isolates). Thirty-seven isolates were resistant to at least three antimicrobial classes. Class 1 integrons were detected in 26 isolates, and the analysis of the variable region between the 5' conserved segment (CS) and 3' CS of each class 1 integron-positive isolate showed that 13 contained a typical 3' CS and 14 contained an atypical 3' CS. One Salmonella Senftenberg isolate harbored two class 1 integrons, showing both typical and atypical 3' CSs. The highest percentage of resistance was found to sulfonamides, and sul genes were detected in the majority of the resistant isolates. Aminoglycoside resistance was detected in 50 isolates, and aadA and aadB were present in 28 and 32 isolates, respectively. In addition, strA and strB were detected in 78.1 and 65.6% isolates resistant to streptomycin, respectively. Twenty-one isolates presented reduced susceptibility to β-lactams and harbored bla(TEM), bla(CMY), and/or bla(CTX-M). Forty isolates showed reduced susceptibility to tetracycline, and most presented tet genes. These results highlight the importance of the environment as a reservoir of resistant Salmonella, which may enable the persistence of resistance determinants in the poultry production chain, contributing, therefore, to the debate regarding the impacts that antimicrobial use in animal production may exert in human health.

  20. Antimicrobial synergy between carprofen and doxycycline against methicillin-resistant Staphylococcus pseudintermedius ST71.

    PubMed

    Brochmann, Rikke Prejh; Helmfrid, Alexandra; Jana, Bimal; Magnowska, Zofia; Guardabassi, Luca

    2016-06-24

    New therapeutic strategies are needed to face the rapid spread of multidrug-resistant staphylococci in veterinary medicine. The objective of this study was to identify synergies between antimicrobial and non-antimicrobial drugs commonly used in companion animals as a possible strategy to restore antimicrobial susceptibility in methicillin-resistant Staphylococcus pseudintermedius (MRSP). A total of 216 antimicrobial/non-antimicrobial drug combinations were screened by disk diffusion using a clinical MRSP sequence type (ST) 71 strain resistant to all six antimicrobials tested (ampicillin, ciprofloxacin, clindamycin, doxycycline, oxacillin and trimethoprim/sulfamethoxazole). The most promising drug combination (doxycycline-carprofen) was further assessed by checkerboard testing extended to four additional MRSP strains belonging to ST71 or ST68, and by growth inhibition experiments. Seven non-antimicrobial drugs (bromhexine, acepromazine, amitriptyline, clomipramine, carprofen, fluoxetine and ketoconazole) displayed minimum inhibitory concentrations (MICs) ranging between 32 and >4096 mg/L, and enhanced antimicrobial activity of one or more antimicrobials. Secondary screening by checkerboard assay revealed a synergistic antimicrobial effect between carprofen and doxycycline, with the sum of the fractional inhibitory concentration indexes (ΣFICI) ranging between 0.3 and 0.5 depending on drug concentration. Checkerboard testing of multiple MRSP strains revealed a clear association between synergy and carriage of tetK, which is a typical feature of MRSP ST71. An increased growth inhibition was observed when MRSP ST71 cells in exponential phase were exposed to 0.5/32 mg/L of doxycycline/carprofen compared to individual drug exposure. Carprofen restores in vitro susceptibility to doxycycline in S. pseudintermedius strains carrying tetK such as MRSP ST71. Further research is warranted to elucidate the molecular mechanism behind the identified synergy and its linkage to

  1. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production.

    PubMed

    Yu, Zhongyi; Gunn, Lynda; Wall, Patrick; Fanning, Séamus

    2017-06-01

    Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Studies performed in the proper context suggest that antimicrobial use during swine and cattle production minimally impact antimicrobial resistance

    USDA-ARS?s Scientific Manuscript database

    In the United States (U.S.) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses are the primary source of antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comp...

  3. Understanding the contribution of environmental factors in the spread of antimicrobial resistance.

    PubMed

    Fletcher, Stephanie

    2015-07-01

    The overuse and abuse of antibiotics have contributed to the global epidemic of antibiotic resistance. Current evidence suggests that widespread dependency on antibiotics and complex interactions between human health, animal husbandry and veterinary medicine, have contributed to the propagation and spread of resistant organisms. The lack of information on pathogens of major public health importance, limited surveillance, and paucity of standards for a harmonised and coordinated approach, further complicates the issue. Despite the widespread nature of antimicrobial resistance, limited focus has been placed on the role of environmental factors in propagating resistance. There are limited studies that examine the role of the environment, specifically water, sanitation and hygiene factors that contribute to the development of resistant pathogens. Understanding these elements is necessary to identify any modifiable interactions to reduce or interrupt the spread of resistance from the environment into clinical settings. This paper discusses some environmental issues that contribute to antimicrobial resistance, including soil related factors, animal husbandry and waste management, potable and wastewater, and food safety, with examples drawn mainly from the Asian region. The discussion concludes that some of the common issues are often overlooked and whilst there are numerous opportunities for environmental factors to contribute to the growing burden of antimicrobial resistance, a renewed focus on innovative and traditional environmental approaches is needed to tackle the problem.

  4. Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP.

    PubMed

    Colombo, Arnaldo L; Janini, Mario; Salomão, Reinaldo; Medeiros, Eduardo A S; Wey, Sergio B; Pignatari, Antonio C C

    2009-09-01

    Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.

  5. Contamination of Canadian private drinking water sources with antimicrobial resistant Escherichia coli.

    PubMed

    Coleman, Brenda L; Louie, Marie; Salvadori, Marina I; McEwen, Scott A; Neumann, Norman; Sibley, Kristen; Irwin, Rebecca J; Jamieson, Frances B; Daignault, Danielle; Majury, Anna; Braithwaite, Shannon; Crago, Bryanne; McGeer, Allison J

    2013-06-01

    Surface and ground water across the world, including North America, is contaminated with bacteria resistant to antibiotics. The consumption of water contaminated with antimicrobial resistant Escherichia coli (E. coli) has been associated with the carriage of resistant E. coli in people who drink it. To describe the proportion of drinking water samples submitted from private sources for bacteriological testing that were contaminated with E. coli resistant to antibiotics and to determine risk factors for the contamination of these water sources with resistant and multi-class resistant E. coli. Water samples submitted for bacteriological testing in Ontario and Alberta Canada were tested for E. coli contamination, with a portion of the positive isolates tested for antimicrobial resistance. Households were invited to complete questionnaires to determine putative risk factors for well contamination. Using multinomial logistic regression, the risk of contamination with E. coli resistant to one or two classes of antibiotics compared to susceptible E. coli was higher for shore wells than drilled wells (odds ratio [OR] 2.8) and higher for farms housing chickens or turkeys (OR 3.0) than properties without poultry. The risk of contamination with multi-class resistant E. coli (3 or more classes) was higher if the properties housed swine (OR 5.5) or cattle (OR 2.2) than properties without these livestock and higher if the wells were located in gravel (OR 2.4) or clay (OR 2.1) than in loam. Housing livestock on the property, using a shore well, and having a well located in gravel or clay soil increases the risk of having antimicrobial resistant E. coli in E. coli contaminated wells. To reduce the incidence of water borne disease and the transmission of antimicrobial resistant bacteria, owners of private wells need to take measures to prevent contamination of their drinking water, routinely test their wells for contamination, and use treatments that eliminate bacteria. Copyright

  6. Campylobacter Antimicrobial Drug Resistance among Humans, Broiler Chickens, and Pigs, France

    PubMed Central

    Prouzet-Mauléon, Valérie; Kempf, Isabelle; Lehours, Philippe; Labadi, Leila; Camou, Christine; Denis, Martine; de Valk, Henriette; Desenclos, Jean-Claude; Mégraud, Francis

    2007-01-01

    We describe isolates from human Campylobacter infection in the French population and the isolates' antimicrobial drug resistance patterns since 1986 and compare the trends with those of isolates from broiler chickens and pigs from 1999 to 2004. Among 5,685 human Campylobacter isolates, 76.2% were C. jejuni, 17.2% C. coli, and 5.0% C. fetus. Resistance to nalidixic acid increased from 8.2% in 1990 to 26.3% in 2004 (p<10-3), and resistance to ampicillin was high over time. Nalidixic acid resistance was greater for C. coli (21.3%) than for C. jejuni (14.9%, p<10-3). C. jejuni resistance to ciprofloxacin in broilers decreased from 31.7% in 2002 to 9.0% in 2004 (p = 0.02). The patterns of resistance to quinolones and fluoroquinolones were similar between 1999 and 2004 in human and broiler isolates for C. jejuni. These results suggest a potential benefit of a regulation policy limiting use of antimicrobial drugs in food animals. PMID:17479889

  7. Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds

    PubMed Central

    Nobrega, Diego B.; Naushad, Sohail; Naqvi, S. Ali; Condas, Larissa A. Z.; Saini, Vineet; Kastelic, John P.; Luby, Christopher; De Buck, Jeroen; Barkema, Herman W.

    2018-01-01

    Emergence and spread of antimicrobial resistance is a major concern for the dairy industry worldwide. Objectives were to determine: (1) phenotypic and genotypic prevalence of drug-specific resistance for 25 species of non-aureus staphylococci, and (2) associations between presence of resistance determinants and antimicrobial resistance. Broth micro-dilution was used to determine resistance profiles for 1,702 isolates from 89 dairy herds. Additionally, 405 isolates were sequenced to screen for resistance determinants. Antimicrobial resistance was clearly species-dependent. Resistance to quinupristin/dalfopristin was common in Staphylococcus gallinarum (prevalence of 98%), whereas S. cohnii and S. arlettae were frequently resistant to erythromycin (prevalence of 63 and 100%, respectively). Prevalence of resistance was 10% against β-lactams and tetracyclines. In contrast, resistance to antimicrobials critically important for human medicine, namely vancomycin, fluoroquinolones, linezolid and daptomycin, was uncommon (< 1%). Genes encoding multidrug-resistance efflux pumps and resistance-associated residues in deducted amino acid sequences of the folP gene were the most frequent mechanisms of resistance, regardless of species. The estimated prevalence of the mecA gene was 17% for S. epidermidis. Several genes, including blaZ, mecA, fexA, erm, mphC, msrA, and tet were associated with drug-specific resistance, whereas other elements were not. There were specific residues in gyrB for all isolates of species intrinsically resistant to novobiocin. This study provided consensus protein sequences of key elements previously associated with resistance for 25 species of non-aureus staphylococci from dairy cattle. These results will be important for evaluating effects of interventions in antimicrobial use in Canadian dairy herds. PMID:29503642

  8. Ethical conflicts in public health research and practice: antimicrobial resistance and the ethics of drug development.

    PubMed

    Aiello, Allison E; King, Nicholas B; Foxman, B

    2006-11-01

    Since the 1960s, scientists and pharmaceutical representatives have called for the advancement and development of new antimicrobial drugs to combat infectious diseases. In January 2005, Senate Majority Leader Bill Frist (R-TN), MD, introduced a biopreparedness bill that included provisions for patent extensions and tax incentives to stimulate industry research on new antimicrobials. Although government stimulus for private development of new antimicrobials is important, it does not resolve long-standing conflicts of interest between private entities and society. Rising rates of antimicrobial resistance have only exacerbated these conflicts. We used methicillin-resistant Staphylococcus aureus as a case study for reviewing these problems, and we have suggested alternative approaches that may halt the vicious cycle of resistance and obsolescence generated by the current model of antimicrobial production.

  9. Distribution of virulence determinants among antimicrobial-resistant and antimicrobial-susceptible Escherichia coli implicated in urinary tract infections.

    PubMed

    Stephenson, Sam; Brown, P D

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) rely on the correlation of virulence expression with antimicrobial resistance to persist and cause severe urinary tract infections (UTIs). We assessed the virulence pattern and prevalence among UPEC strains susceptible and resistant to multiple antimicrobial classes. A total of 174 non-duplicate UPEC strains from patients with clinically significant UTIs were analysed for susceptibility to aminoglycoside, antifolate, cephalosporin, nitrofuran and quinolone antibiotics for the production of extended-spectrum β-lactamases and for the presence of six virulence determinants encoding adhesins (afimbrial, Type 1 fimbriae, P and S-fimbriae) and toxins (cytotoxic necrotising factor and haemolysin). Relatively high resistance rates to nalidixic acid, ciprofloxacin, cephalothin and trimethoprim-sulfamethoxazole (82%, 78%, 62% and 59%, respectively) were observed. Fourteen distinct patterns were identified for the virulence determinants such as afaBC, cnfI, fimH, hylA, papEF and sfaDE. The toxin gene, cnfI (75.3%), was the second most prevalent marker to the adhesin, fimH (97.1%). The significant association of sfaDE/hylA (P < 0.01) among antimicrobial resistant and susceptible strains was also observed notwithstanding an overall greater occurrence of virulence factors among the latter. This study provides a snapshot of UPEC complexity in Jamaica and highlights the significant clonal heterogeneity among strains. Such outcomes emphasise the need for evidence-based strategies in the effective management and control of UTIs.

  10. Antimicrobial resistance in Gram-positive bacteria from Timorese River Buffalo (Bubalus bubalis) skin microbiota.

    PubMed

    Oliveira, Manuela; Monteiro, José L; Rana, Sílvia; Vilela, Cristina L

    2010-06-01

    The Timorese River Buffalo (Bubalus bubalis) plays a major role in the East Timor economy, as it is an important source of animal protein in human nutrition. They are widely spread throughout the country and are in direct contact with the populations. In spite of this proximity, information on their microbiota is scarce. This work aimed at characterizing the skin microbiota of the East Timorese River Buffalo and its antimicrobial resistance profile. Skin swab samples were taken from 46 animals in surveys conducted in three farms located in "Suco de Nairete", Lospalos district, during July and August 2006. Bacteria were isolated and identified according to conventional microbiological procedures. A total of 456 isolates were obtained, including Gram-positive (n = 243) and Gram-negative (n = 213) bacteria. Due to their importance as potential pathogens and as vehicles for antimicrobial resistance transmission, Gram-positive cocci (n = 27) and bacilli (n = 77) isolates were further characterized, and their antimicrobial resistance profile determined by the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. This study shows the high bacterial diversity of B. bubalis skin microbiota, representing an important first step towards understanding its importance and epidemiologic role in animal health. It also points out the potential role of these animals as vectors of antimicrobial resistant bacteria dissemination and the importance of antimicrobial resistance monitoring in developing countries.

  11. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review

    PubMed Central

    Chandra, Harish; Bishnoi, Parul; Yadav, Archana; Patni, Babita; Mishra, Abhay Prakash; Nautiyal, Anant Ram

    2017-01-01

    Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes. PMID:28394295

  12. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    PubMed

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened

  13. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions.

    PubMed

    Watts, Joy E M; Schreier, Harold J; Lanska, Lauma; Hale, Michelle S

    2017-06-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens-singularly or in combination. These systems have been designated as "genetic hotspots" for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  14. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    PubMed Central

    Cantas, L.; Shah, Syed Q. A.; Cavaco, L. M.; Manaia, C. M.; Walsh, F.; Popowska, M.; Garelick, H.; Bürgmann, H.; Sørum, H.

    2013-01-01

    The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs. PMID:23675371

  15. Antimicrobial effects of lysophosphatidylcholine on methicillin-resistant Staphylococcus aureus.

    PubMed

    Miyazaki, Haruko; Midorikawa, Naoko; Fujimoto, Saki; Miyoshi, Natsumi; Yoshida, Hideto; Matsumoto, Tetsuya

    2017-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important health care-associated and community-associated pathogen and causes a large number of infections worldwide. For the purpose of application to topical treatment of MRSA infection, we examined the antimicrobial effects of lysophosphatidylcholine (LPC) on MRSA strains. We also investigated the combination effect of LPC and gentamicin on MRSA growth. The LPC minimum inhibitory concentrations (MIC) for Gram-positive ( S. aureus, Staphylococcus epidermidis , and Streptococcus pneumoniae ) and Gram-negative ( Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae , and Pseudomonas aeruginosa ) bacteria were measured by the broth microdilution method. The mechanism of LPC-mediated MRSA killing was investigated by membrane permeability analysis with DiSC3(5) fluorescence and growth curve analysis. Lastly, the effects of LPC on gentamicin-induced bactericidal activity were determined in combination treatment studies with 15 gentamicin-resistant MRSA isolates from the skin, nose, or ears. The LPC MIC for Gram-positive bacteria varied between 32 µg/ml and >2048 µg/ml, whereas that for all Gram-negative bacteria was >2048 µg/ml. Consistently, membrane permeability analysis showed that LPC was substantially more effective in inducing membrane permeability in Gram-positive bacteria than in Gram-negative counterparts. Growth curve analysis in cotreatment studies demonstrated that LPC has intrinsic bactericidal effects and can also potentiate gentamicin sensitivity in resistant MRSA strains. Our study demonstrates that LPC exhibits intrinsic antimicrobial effects and can enhance the antimicrobial effects of gentamicin for resistant MRSA strains, suggesting that LPC may be a beneficial additive in topical antibiotics for superficial skin infections.

  16. High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002.

    PubMed

    Sivapalasingam, Sumathi; Nelson, Jennifer M; Joyce, Kevin; Hoekstra, Mike; Angulo, Frederick J; Mintz, Eric D

    2006-01-01

    Shigella spp. infect approximately 450,000 persons annually in the United States, resulting in over 6,000 hospitalizations. Since 1999, the National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria has tested every 10th Shigella isolate from 16 state or local public health laboratories for susceptibility to 15 antimicrobial agents. From 1999 to 2002, NARMS tested 1,604 isolates. Among 1,598 isolates identified to species level, 1,278 (80%) were Shigella sonnei, 295 (18%) were Shigella flexneri, 18 (1%) were Shigella boydii, and 7 (0.4%) were Shigella dysenteriae. Overall, 1,251 (78%) were resistant to ampicillin and 744 (46%) were resistant to trimethoprim-sulfamethoxazole (TMP-SMX). Prevalence of TMP-SMX- or ampicillin- and TMP-SMX-resistant Shigella sonnei isolates varied by geographic region, with lower rates in the South and Midwest regions (TMP-SMX resistance, 27% and 30%, respectively; ampicillin and TMP-SMX resistance, 25% and 22%, respectively) and higher rates in the East and West regions (TMP-SMX resistance, 66% and 80%, respectively; ampicillin and TMP-SMX resistance, 54% and 65%, respectively). Nineteen isolates (1%) were resistant to nalidixic acid (1% of S. sonnei and 2% of S. flexneri isolates); 12 (63%) of these isolates had decreased susceptibility to ciprofloxacin. One S. flexneri isolate was resistant to ciprofloxacin. All isolates were susceptible to ceftriaxone. Since 1986, resistance to ampicillin and TMP-SMX has dramatically increased. Shigella isolates in the United States remain susceptible to ciprofloxacin and ceftriaxone.

  17. High Prevalence of Antimicrobial Resistance among Shigella Isolates in the United States Tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002

    PubMed Central

    Sivapalasingam, Sumathi; Nelson, Jennifer M.; Joyce, Kevin; Hoekstra, Mike; Angulo, Frederick J.; Mintz, Eric D.

    2006-01-01

    Shigella spp. infect approximately 450,000 persons annually in the United States, resulting in over 6,000 hospitalizations. Since 1999, the National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria has tested every 10th Shigella isolate from 16 state or local public health laboratories for susceptibility to 15 antimicrobial agents. From 1999 to 2002, NARMS tested 1,604 isolates. Among 1,598 isolates identified to species level, 1,278 (80%) were Shigella sonnei, 295 (18%) were Shigella flexneri, 18 (1%) were Shigella boydii, and 7 (0.4%) were Shigella dysenteriae. Overall, 1,251 (78%) were resistant to ampicillin and 744 (46%) were resistant to trimethoprim-sulfamethoxazole (TMP-SMX). Prevalence of TMP-SMX- or ampicillin- and TMP-SMX-resistant Shigella sonnei isolates varied by geographic region, with lower rates in the South and Midwest regions (TMP-SMX resistance, 27% and 30%, respectively; ampicillin and TMP-SMX resistance, 25% and 22%, respectively) and higher rates in the East and West regions (TMP-SMX resistance, 66% and 80%, respectively; ampicillin and TMP-SMX resistance, 54% and 65%, respectively). Nineteen isolates (1%) were resistant to nalidixic acid (1% of S. sonnei and 2% of S. flexneri isolates); 12 (63%) of these isolates had decreased susceptibility to ciprofloxacin. One S. flexneri isolate was resistant to ciprofloxacin. All isolates were susceptible to ceftriaxone. Since 1986, resistance to ampicillin and TMP-SMX has dramatically increased. Shigella isolates in the United States remain susceptible to ciprofloxacin and ceftriaxone. PMID:16377666

  18. Antibiotic resistance genes and residual antimicrobials in cattle feedlot surface soil

    USDA-ARS?s Scientific Manuscript database

    Cattle feedlot soils receive manure containing both antibiotic residues and antibiotic resistant bacteria. The fates of these constituents are largely unknown with potentially serious consequences for increased antibiotic resistance in the environment. Determine if common antimicrobials (tetracycl...

  19. Thiadiazolidinones: A New Class of Alanine Racemase Inhibitors with Antimicrobial Activity against Methicillin- Resistant S. aureus

    PubMed Central

    Ciustea, Mihai; Mootien, Sara; Rosato, Adriana E.; Perez, Oriana; Cirillo, Pier; Yeung, Kacheong R.; Ledizet, Michel; Cynamon, Michael H.; Aristoff, Paul A.; Koski, Raymond A.; Kaplan, Paul A.; Anthony, Karen G.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen and a major cause of hospital-acquired infections. New antibacterial agents that have not been compromised by bacterial resistance are needed to treat MRSA-related infections. We chose the S. aureus cell wall synthesis enzyme, alanine racemase (Alr) as the target for a high-throughput screening effort to obtain novel enzyme inhibitors, which inhibit bacterial growth. Among the ‘hits’ identified was a thiadiazolidinone with chemical properties attractive for lead development. This study evaluated the mode of action, antimicrobial activities, and mammalian cell cytotoxicity of the thiadiazolidinone family in order to assess its potential for development as a therapeutic agent against MRSA. The thiadiazolidones inhibited Alr activity with 50% inhibitory concentrations (IC50) ranging from 0. 36 – 6. 4 μM, and they appear to inhibit the enzyme irreversibly. The series inhibited the growth of S. aureus, including MRSA strains, with minimal inhibitory concentrations (MICs) ranging from 6. 25–100 μg/mL. The antimicrobial activity showed selectivity against Gram-positive bacteria and fungi, but not Gram-negative bacteria. The series inhibited human HeLa cell proliferation. Lead development centering on the thiadiazolidinone series would require additional medicinal chemistry efforts to enhance the antibacterial activity and minimize mammalian cell toxicity. PMID:22146584

  20. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs.

    PubMed

    Dayao, Dae; Gibson, J S; Blackall, P J; Turni, C

    2016-07-01

    To identify genes associated with the observed antimicrobial resistance in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Isolates with known phenotypic resistance to β-lactams, macrolides and tetracycline were screened for the presence of antimicrobial resistance genes. A total of 68 A. pleuropneumoniae, 62 H. parasuis and 20 P. multocida isolates exhibiting phenotypic antimicrobial resistance (A. pleuropneumoniae and P. multocida) or elevated minimal inhibitory concentrations (MICs) (H. parasuis) to any of the following antimicrobial agents - ampicillin, erythromycin, penicillin, tetracycline, tilmicosin and tulathromycin - were screened for a total of 19 associated antimicrobial resistance genes (ARGs) by PCR. The gene bla ROB-1 was found in all ampicillin- and penicillin-resistant isolates, but none harboured the bla TEM-1 gene. The tetB gene was found in 76% (74/97) of tetracycline-resistant isolates, 49/53 A. pleuropneumoniae, 17/30 H. parasuis and 8/14 P. multocida. One A. pleuropneumoniae isolate harboured the tetH gene, but none of the 97 isolates had tetA, tetC, tetD, tetE, tetL, tetM or tetO. A total of 92 isolates were screened for the presence of macrolide resistance genes. None was found to have ermA, ermB, ermC, erm42, mphE, mefA, msrA or msrE. The current study has provided a genetic explanation for the resistance or elevated MIC of the majority of isolates of Australian porcine respiratory pathogens to ampicillin, penicillin and tetracycline. However, the macrolide resistance observed by phenotypic testing remains genetically unexplained and further studies are required. © 2016 Australian Veterinary Association.

  1. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago.

    PubMed

    Akpaka, Patrick E; Roberts, Rashida; Monecke, Stefan

    Staphylococcus aureus continues to pose major public health challenges in many areas because of antibiotic resistance problems. In the Caribbean, especially Trinidad and Tobago, the challenge is not different. This study was performed to evaluate the antimicrobial resistance gene prevalence among S. aureus isolates in Trinidad and Tobago. Standard and molecular microbiological methods, including the Microscan automated system, DNA microarray and multi locus sequence typing (MLST) analysis, were performed on 309 clinical S. aureus isolates recovered from patients who were treated at three of the country's main health institutions. S. aureus exhibited susceptibilities ≥80% to eleven of the 19 antimicrobials tested against it, and these belong to the most commonly used and available antibiotics in the country. While the antibiotic to which it was most susceptible of the commonly used antibiotics was trimethoprim/sulfamethoxazole, the antibiotics to which it was least susceptible or most resistant to were ampicillin and penicillin. S. aureus isolates from the pediatric ward produced the greatest rate of susceptibility among the isolates recovered from patients admitted into hospitals, while isolates from Accident and Emergency rooms displayed the greatest susceptibilities among patients from the community. S. aureus isolates from the country did not harbor acquired resistant genes targeting clindamycin/macrolides (ermB), linezolid (cfr) or vancomycin (vanA). The blaZ gene, which is the most common beta lactam (Penicillinase) resistance mechanism for S. aureus, was observed in 88.7% of the methicillin susceptible S. aureus, while methicillin resistance mediated by the mec gene was present in 13.6%. Most of the resistance markers found in MRSA isolates were significantly associated with the ST239-MRSA-III strain in this study, and all isolates that belonged to the USA300 strain, which additionally encoded both the PVL gene and ACME cluster, belonged to CC8. Several

  2. Antimicrobial Resistance and Spread of Class 1 Integrons among Salmonella Serotypes

    PubMed Central

    Guerra, Beatriz; Soto, Sara; Cal, Santiago; Mendoza, M. Carmen

    2000-01-01

    The resistance profiles, for 15 antimicrobial agents, of 333 Salmonella strains representing the most frequent nontyphoidal serotypes, isolated between 1989 and 1998 in a Spanish region, and 9 reference strains were analyzed. All strains were susceptible to amikacin, ceftazidime, ciprofloxacin, and imipenem, and 31% were susceptible to all antimicrobials tested. The most frequent types of resistance were to sulfadiazine, tetracycline, streptomycin, spectinomycin, ampicillin, and chloramphenicol (ranging from 46 to 22%); 13% were resistant to these six drugs. This multidrug resistance pattern was found alone or together with other resistance types within serotypes Typhimurium (45%), Panama (23%), and Virchow (4%). Each isolate was also screened for the presence of class 1 integrons and selected resistance genes therein; seven variable regions which carried one (aadA1a, aadA2, or pse-1) or two (dfrA14-aadA1a, dfrA1-aadA1a, oxa1-aadA1a, or sat1-aadA1a) resistance genes were found in integrons. PMID:10898692

  3. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated from conventional and organic vegetables.

    PubMed

    Kim, Sara; Woo, Gun-Jo

    2014-10-01

    To compare the characteristics and to identify the epidemiological relationships of Escherichia coli isolated from organic and conventional vegetables, the antimicrobial resistance and genetic properties of E. coli were investigated from 2010 to 2011. E. coli was isolated from 1 of 111 (0.9%) organic vegetables and from 20 of 225 (8.9%) conventional vegetables. The majority of strains were isolated from the surrounding farming environment (n=27/150 vs. 49/97 in organic vs. conventional samples). The majority of the vegetable strains were isolated from the surrounding farming environments. E. coli isolated from organic vegetables showed very low antimicrobial resistance rates except for cephalothin, ranging from 0% to 17.9%, while the resistance rates to cephalothin (71%) were extremely high in both groups. E. coli isolates expressed various resistance genes, which most commonly included blaTEM, tet(A), strA, strB, and qnrS. However, none of the isolates harbored tet(D), tet(E), tet(K), tet(L), tet(M), or qnrA. The transferability of tet gene, tet(A), and tet(B) was identified in tetracycline-resistant E. coli, and the genetic relationship was confirmed in a few cases from different sources. With regard to the lower antimicrobial resistance found in organic produce, this production mode seems able to considerably reduce the selection of antimicrobial-resistant bacteria on vegetables.

  4. Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbaniak, C.; Sielaff, A. Checinska; Frey, K. G.

    Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Discmore » diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. Lastly, this information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.« less

  5. Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces

    DOE PAGES

    Urbaniak, C.; Sielaff, A. Checinska; Frey, K. G.; ...

    2018-01-16

    Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Discmore » diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. Lastly, this information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.« less

  6. Antimicrobial resistance of Enterococcus isolates in Turkey: A meta-analysis of current studies.

    PubMed

    Kilbas, Imdat; Ciftci, Ihsan Hakki

    2018-03-01

    In this study, a meta-analysis of Enterococcus isolates collected in 2000-2015 in Turkey and their susceptibility/resistance to antibiotics, clinical indications for initial drug treatment, and identification of alternative treatments was conducted. The meta-analysis examined antibiotic susceptibility/resistance in Enterococcus spp. isolates. The study was planned and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Statements on antimicrobial resistance were grouped according to the antimicrobial stewardship programme (ASP). The mean resistance rates of Enterococcus faecalis to vancomycin (VAN) and linezolid (LNZ) were 1.0±2.2% and 1.9±2.6%, respectively, whereas the mean resistance rates of Enterococcus faecium to VAN and LNZ were 10.3±11.3% and 2.4±0%, respectively. This study is the first meta-analysis of the resistance of clinical Enterococcus isolates in Turkey to antimicrobial agents, which is a major problem stemming from the excessive usage of antibiotics. The development of antibiotic resistance in Turkey has changed over time. To support the practice of evidence-based medicine, more notifications about Enterococcus resistance status are needed, especially notifications following ASP rules. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  7. MICROBIOLOGICAL ASSESSMENT OF LETTUCE SALADS AND ANTIMICROBIAL RESISTANCE OF STAPHYLOCOCCUS SPP.

    PubMed

    Guimarães César, Josi; Madruga Peres, Andriele; Pereira das Neves, Caroline; Tupiniquim Freitas de Abreu, Érica; Fagundes de Mello, Jozi; Nunes Moreira, Ângela; Lameiro Rodrigues, Kelly

    2015-11-01

    self-service restaurants in which food is served ready to be consumed are liable to have some products contaminated by pathogenic microorganisms causing food-transmitted diseases. evaluates the microbiological quality of lettuce salads in restaurants in Pelotas RS Brazil by counts of thermo-tolerant coliforms, E. coli, Staphylococcus spp. and detection of Salmonella spp. Antimicrobial resistance of Staphylococcus spp. isolates are also assessed. thirty-six samples of lettuce salads were collected from nine restaurants and thermotolerant coliforms, Escherichia coli and Staphylococcus spp. were quantified, coupled to a research on Salmonella spp., following methodology by the Bacteriological Analytical Manual. Staphylococcus spp. isolates underwent antimicrobial resistance test by the disc-diffusion method. results showed that 61.1% of the salad samples contained more thermotolerant coliforms than allowed by Brazilian legislation and E. coli was confirmed in 5.6% of the samples. Positive and negative coagulase Staphylococcus occurred respectively in 5.6% and 77.8% of isolates, but no sample had Salmonella spp. Further, 56.7% of the thirty isolates of Staphylococcus spp. tested were resistant to penicillin; 46.7% to oxacillin; 26.7% to erythromycin and 23.3% were multi- resistant. inadequate quality of the salad was due to pathogenic microorganisms, while Staphylococcus spp. isolates had a high percentage of antimicrobial resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms

    PubMed Central

    Monsma, David J; Cherba, David M; Eugster, Emily E; Dylewski, Dawna L; Davidson, Paula T; Peterson, Chelsea A; Borgman, Andrew S; Winn, Mary E; Dykema, Karl J; Webb, Craig P; MacKeigan, Jeffrey P; Duesbery, Nicholas S; Nickoloff, Brian J; Monks, Noel R

    2015-01-01

    Variable clinical responses, tumor heterogeneity, and drug resistance reduce long-term survival outcomes for metastatic melanoma patients. To guide and accelerate drug development, we characterized tumor responses for five melanoma patient derived xenograft models treated with Vemurafenib. Three BRAFV600E models showed acquired drug resistance, one BRAFV600E model had a complete and durable response, and a BRAFV600V model was expectedly unresponsive. In progressing tumors, a variety of resistance mechanisms to BRAF inhibition were uncovered, including mutant BRAF alternative splicing, NRAS mutation, COT (MAP3K8) overexpression, and increased mutant BRAF gene amplification and copy number. The resistance mechanisms among the patient derived xenograft models were similar to the resistance pathways identified in clinical specimens from patients progressing on BRAF inhibitor therapy. In addition, there was both inter- and intra-patient heterogeneity in resistance mechanisms, accompanied by heterogeneous pERK expression immunostaining profiles. MEK monotherapy of Vemurafenib-resistant tumors caused toxicity and acquired drug resistance. However, tumors were eradicated when Vemurafenib was combined the MEK inhibitor. The diversity of drug responses among the xenograft models; the distinct mechanisms of resistance; and the ability to overcome resistance by the addition of a MEK inhibitor provide a scheduling rationale for clinical trials of next-generation drug combinations. PMID:26101714

  9. Antimicrobial resistance in diarrheagenic Escherichia coli from ready-to-eat foods.

    PubMed

    Lima, Cíntia Matos; Souza, Ingrid Evelyn Gomes Lima; Dos Santos Alves, Taila; Leite, Clícia Capibaribe; Evangelista-Barreto, Norma Suely; de Castro Almeida, Rogeria Comastri

    2017-10-01

    Certain subgroups of Escherichia coli have congenital or acquired virulence properties that allow them to cause a wide spectrum of disease. The aim of this study was to investigate the occurrence of diarrheagenic E. coli strains in ready-to-eat (RTE) foods produced in institutional, commercial and hotel restaurants in Salvador, Brazil. The presence of virulent isolates and antimicrobial resistance were evaluated. Four hundred forty-six samples were collected and grouped into cereals and vegetables, meat-based preparations, cooked salads, raw salads, garnishes, soups and sauces, desserts and juices. E. coli were detected using the most probable number method, the presence of virulence factors in isolates was determined by polymerase chain reaction (PCR) assays, and antibiotic resistance was analyzed using the disc diffusion method. In total, 15 isolates (3.1%) of E. coli were recovered; raw salads had the highest detection rate, 1.4%, followed by cooked salads, 0.8%; meat-based preparations, 0.4%; and cereals and vegetables, 0.4%. PCR assays showed that none of the isolates had the virulence genes cnf1, cnf2, eae , sta, lt1, stx1, stx2 or cdtB . The isolates showed resistance to nine antibiotics of the 15 tested, and the highest levels of resistance were found for sulfamethoxazole/trimethoprim, tetracycline, ampicillin, and chloramphenicol (13.3% of isolates for each antibiotic). One isolate from cooked salad had plasmid-mediated multidrug resistance to tetracycline, trimethoprim/sulfamethoxazole, ampicillin and chloramphenicol. These results suggest that RTE foods, especially raw salads, can be reservoirs of E. coli and facilitate the spread of antibiotic resistance genes to the gastrointestinal microbiota of humans.

  10. Antimicrobial strategy for severe community-acquired legionnaires' disease: a multicentre retrospective observational study.

    PubMed

    Cecchini, Jérôme; Tuffet, Samuel; Sonneville, Romain; Fartoukh, Muriel; Mayaux, Julien; Roux, Damien; Kouatchet, Achille; Boissier, Florence; Tchir, Martial; Thyrault, Martial; Maury, Eric; Jochmans, Sebastien; Mekontso Dessap, Armand; Brun-Buisson, Christian; de Prost, Nicolas

    2017-05-01

    Legionnaires' disease (LD) is an important cause of community-acquired pneumonia with high mortality rates in the most severe cases. To evaluate the effect of antimicrobial strategy on ICU mortality. Retrospective, observational study including patients admitted to 10 ICUs for severe community-acquired LD over a 10 year period (2005-15) and receiving an active therapy within 48 h of admission . Patients were stratified according to the antibiotic strategy administered: (i) fluoroquinolone-based versus non-fluoroquinolone-based therapy; and (ii) monotherapy versus combination therapy. The primary endpoint was in-ICU mortality. A multivariable Cox model and propensity score analyses were used. Two hundred and eleven patients with severe LD were included. A fluoroquinolone-based and a combination therapy were administered to 159 (75%) and 123 (58%) patients, respectively. One hundred and forty-six patients (69%) developed acute respiratory distress syndrome and 54 (26%) died in the ICU. In-ICU mortality was lower in the fluoroquinolone-based than in the non-fluoroquinolone-based group (21% versus 39%, P  =   0.01), and in the combination therapy than in the monotherapy group (20% versus 34%, P  =   0.02). In multivariable analysis, a fluoroquinolone-based therapy, but not a combination therapy, was associated with a reduced risk of mortality [HR = 0.41, 95% CI 0.19-0.89; P  =   0.02]. Patients with severe LD receiving a fluoroquinolone-based antimicrobial regimen in the early course of management had a lower in-ICU mortality, which persisted after adjusting for significant covariates. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure

    PubMed Central

    Baker, Stephen; Duy, Pham Thanh; Nga, Tran Vu Thieu; Dung, Tran Thi Ngoc; Phat, Voong Vinh; Chau, Tran Thuy; Turner, A Keith; Farrar, Jeremy; Boni, Maciej F

    2013-01-01

    Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced. DOI: http://dx.doi.org/10.7554/eLife.01229.001 PMID:24327559

  12. Out-of-pocket health expenditures and antimicrobial resistance in low- and middle-income countries

    PubMed Central

    Alsan, Marcella; Schoemaker, Lena; Eggleston, Karen; Kammili, Nagamani; Kolli, Prasanthi; Bhattacharya, Jay

    2015-01-01

    Background The decreasing effectiveness of antimicrobial agents is a growing global public health concern. Low- and middle-income countries (LMIC) are vulnerable to the loss of antimicrobial efficacy given their high burden of infectious disease and the cost of treating resistant organisms. Methods We analyzed data from the World Health Organization’s Antibacterial Resistance Global Surveillance Report. We investigated the importance of out-of-pocket spending and copayment requirements for public sector medications on the level of bacterial resistance among LMIC, adjusting for environmental factors purported to be predictors of resistance, such as sanitation, animal husbandry and poverty as well as other structural components of the health sector. Findings Out-of-pocket health expenditures were the only factor demonstrating a statistically significant relationship with antimicrobial resistance. A ten point increase in the percentage of health expenditures that were out-of-pocket was associated with a 3·2 percentage point increase in resistant isolates [95% CI, 1·17 to 5·15, p-value=0·002]. This relationship was driven by countries requiring copayments for medications in the public health sector. Among these countries, moving from the 20th to 80th percentile of out-of-pocket health expenditures was associated with an increase in resistant bacterial isolates from 17·76 [95%CI 12·54 to 22·97] to 36·27 percentage points [95% CI 31·16 to 41·38]. Interpretation Out-of-pocket health expenditures were strongly correlated with antimicrobial resistance among LMIC. This relationship was driven by countries that require copayments on medications in the public sector. Our findings suggest cost-sharing of antimicrobials in the public sector may drive demand to the private sector where supply-side incentives to overprescribe are likely heightened and quality assurance less standardized. PMID:26164481

  13. Strategies for achieving global collective action on antimicrobial resistance

    PubMed Central

    Caleo, Grazia M; Daulaire, Nils; Elbe, Stefan; Matsoso, Precious; Mossialos, Elias; Rizvi, Zain; Røttingen, John-Arne

    2015-01-01

    Abstract Global governance and market failures mean that it is not possible to ensure access to antimicrobial medicines of sustainable effectiveness. Many people work to overcome these failures, but their institutions and initiatives are insufficiently coordinated, led and financed. Options for promoting global collective action on antimicrobial access and effectiveness include building institutions, crafting incentives and mobilizing interests. No single option is sufficient to tackle all the challenges associated with antimicrobial resistance. Promising institutional options include monitored milestones and an inter-agency task force. A global pooled fund could be used to craft incentives and a special representative nominated as an interest mobilizer. There are three policy components to the problem of antimicrobials – ensuring access, conservation and innovation. To address all three components, the right mix of options needs to be matched with an effective forum and may need to be supported by an international legal framework. PMID:26668439

  14. Impact of Feed Supplementation with Antimicrobial Agents on Growth Performance of Broiler Chickens, Clostridium perfringens and Enterococcus Counts, and Antibiotic Resistance Phenotypes and Distribution of Antimicrobial Resistance Determinants in Escherichia coli Isolates▿

    PubMed Central

    Diarra, Moussa S.; Silversides, Fred G.; Diarrassouba, Fatoumata; Pritchard, Jane; Masson, Luke; Brousseau, Roland; Bonnet, Claudie; Delaquis, Pascal; Bach, Susan; Skura, Brent J.; Topp, Edward

    2007-01-01

    The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), blaTEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for blaCMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler

  15. A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease.

    PubMed

    DeDonder, K D; Apley, M D

    2015-12-01

    The objective of this paper was to perform a critical review of the literature as it pertains to the current status of antimicrobial resistance in pathogens associated with bovine respiratory disease (BRD) in beef cattle and to provide a concise yet informative narrative on the most relevant publications available. As such, the scientific literature contained in PubMed, AGRICOLA, and CAB were searched in February of 2014 for articles related to susceptibility testing of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni from cases of BRD. Titles and abstracts were read and 105 articles that were relevant to the subject of BRD antibiotic resistance were attained for further review. After the application of exclusion criterion (publications must have originated from North America, be in English, adhere to standards set forth by the Clinical and Laboratory Standards Institute, and be concerning antimicrobial resistance in BRD in beef cattle), 16 articles remained and are the focus of this publication. Due to the disparate data from the few studies that investigate susceptibility testing of BRD pathogens, a quantitative assessment or meta-analysis was not performed on the studies presented in this review. However, considering diagnostic lab data, there appears to be a clear trend of a decrease in susceptibility of the three major BRD pathogens to the antimicrobials used commonly for treatment and control of BRD. Studies performing sensitivity testing on healthy cattle report much lower resistance, but it remains unclear if this is because of a true lack of resistance mechanisms, or if the isolates do contain quiescent genes for resistance that are only phenotypically expressed following the administration of an antimicrobial for either treatment or control of BRD. Future research to address this question of genotype and phenotypic expression before and after antimicrobial administration will further advance our knowledge in this area.

  16. Antimicrobial Resistance in Escherichia coli Recovered from Feedlot Cattle and Associations with Antimicrobial Use

    PubMed Central

    Benedict, Katharine M.; Gow, Sheryl P.; McAllister, Tim A.; Booker, Calvin W.; Hannon, Sherry J.; Checkley, Sylvia L.; Noyes, Noelle R.; Morley, Paul S.

    2015-01-01

    The objectives of this study were to estimate the prevalence of antimicrobial resistance (AMR) and to investigate the associations between exposures to antimicrobial drugs (AMDs) and AMR in fecal non-type specific Escherichia coli (NTSEC) recovered from a large population of feedlot cattle. Two-stage random sampling was used to select individually identified cattle for enrollment, which were sampled at arrival and then a second time later in the feeding period. Advanced regression techniques were used to estimate resistance prevalences, and to investigate associations between AMD exposures in enrolled cattle and penmates and AMR identified in NTSEC recovered from the second sample set. Resistance was most commonly detected to tetracycline, streptomycin, and sulfisoxazole, and was rarely identified for critically important AMDs. All cattle were exposed to AMDs in feed, and 45% were treated parenterally. While resistance prevalence generally increased during the feeding period, most AMD exposures were not significantly associated with AMR outcomes. Exposures of enrolled cattle to tetracycline were associated with increased resistance to tetracycline and trimethoprim sulfa, while beta-lactam exposures were associated with decreased likelihood of detecting streptomycin resistance. Pen-level AMD exposure measures were not associated with resistance outcomes. These findings suggest that tetracycline treatment of feedlot cattle can be associated with modest increases in risk for recovery of resistant NTSEC, but the numerous treatments with an advanced macrolide (tulathromycin) were not associated with detectable increases in resistance in NTSEC. All cattle were exposed to in-feed treatments of tetracycline and this could limit the ability to identify the full impact of these exposures, but these exposures varied for enrolled cattle varied, providing an opportunity to evaluate a dose response. While AMD exposures were not associated with detectably increased risks for

  17. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan.

    PubMed

    Asai, Tetsuo; Hiki, Mototaka; Ozawa, Manao; Koike, Ryoji; Eguchi, Kaoru; Kawanishi, Michiko; Kojima, Akemi; Endoh, Yuuko S; Hamamoto, Shuichi; Sakai, Masato; Sekiya, Tatsuro

    2014-03-01

    Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.

  18. Antimicrobial Drug-Resistant Shiga Toxin-Producing Escherichia coli Infections, Michigan, USA.

    PubMed

    Mukherjee, Sanjana; Mosci, Rebekah E; Anderson, Chase M; Snyder, Brian A; Collins, James; Rudrik, James T; Manning, Shannon D

    2017-09-01

    High frequencies of antimicrobial drug resistance were observed in O157 and non-O157 Shiga toxin-producing E. coli strains recovered from patients in Michigan during 2010-2014. Resistance was more common in non-O157 strains and independently associated with hospitalization, indicating that resistance could contribute to more severe disease outcomes.

  19. [Etiology and antimicrobial resistance profile of urinary tract infection in children, Valdivia 2012].

    PubMed

    Herrera, Carolina; Navarro, Diego; Täger, Marlis

    2014-12-01

    Since initial antibiotic treatment in patients with urinary tract infection (UTI) is empiric, is very important to know the local epidemiology to make the correct therapeutical decisions. Determinate local features of antimicrobial resistance in pediatric patients with UTI. Retrospective review of urine culture tests of children under 15 years old, obtained in a pediatric emergency department in Valdivia, between february and december 2012. Escherichia coli showed high percentage of resistance to ampicillin (44,8%) and first generation cephalosporin (36%). A well understanding of local antimicrobial resistance profile is useful to a correct empiric treatment.

  20. [Resistance of urinary tract pathogens and the choice of antimicrobial therapy: deceptive simplicity].

    PubMed

    Rafalskiy, V V; Dovgan, E V

    2017-07-01

    Urinary tract infection (UTI) is one of the most common reasons for prescribing antibiotics in outpatient and inpatient settings. One of the main criteria for selecting antimicrobial drugs for treating UTI is data on the antibiotic resistance of uropathogens. The article discusses the difficulties in interpreting the results of antimicrobial sensitivity testing of uropathogens and the impact of antibiotic resistance of uropathogens on the clinical effectiveness of managing UTI.

  1. 76 FR 14402 - Draft Action Plan-A Public Health Action Plan To Combat Antimicrobial Resistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ...-2011-0002] Draft Action Plan--A Public Health Action Plan To Combat Antimicrobial Resistance AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (DHHS). ACTION... requesting public comment on the draft A Public Health Action Plan to Combat Antimicrobial Resistance. HHS...

  2. Herd-level relationship between antimicrobial use and presence or absence of antimicrobial resistance in gram-negative bovine mastitis pathogens on Canadian dairy farms.

    PubMed

    Saini, Vineet; McClure, J T; Scholl, Daniel T; DeVries, Trevor J; Barkema, Herman W

    2013-08-01

    Concurrent data on antimicrobial use (AMU) and resistance are needed to contain antimicrobial resistance (AMR) in bacteria. The present study examined a herd-level association between AMU and AMR in Escherichia coli (n=394) and Klebsiella species (n=139) isolated from bovine intramammary infections and mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Antimicrobial use data were collected using inventory of empty antimicrobial containers and antimicrobial drug use rate was calculated to quantify herd-level AMU. Minimum inhibitory concentrations (MIC) were determined using Sensititre National Antimicrobial Resistance Monitoring System (NARMS) gram-negative MIC plate (Trek Diagnostic Systems Inc., Cleveland, OH). Isolates were classified as susceptible, intermediate, or resistant. Intermediate and resistant category isolates were combined to form an AMR category, and multivariable logistic regression models were built to determine herd-level odds of AMR to tetracycline, ampicillin, cefoxitin, chloramphenicol, trimethoprim-sulfamethoxazole combination, sulfisoxazole, streptomycin and kanamycin in E. coli isolates. In the case of Klebsiella species isolates, logistic regression models were built for tetracycline and sulfisoxazole; however, no associations between AMU and AMR in Klebsiella species were observed. Ampicillin-intermediate or -resistant E. coli isolates were associated with herds that used intramammarily administered cloxacillin, penicillin-novobiocin combination, and cephapirin used for dry cow therapy [odds ratios (OR)=26, 32, and 189, respectively], and intramammary ceftiofur administered for lactating cow therapy and systemically administered penicillin (OR=162 and 2.7, respectively). Use of systemically administered penicillin on a dairy farm was associated with tetracycline and streptomycin-intermediate or -resistant E. coli isolates (OR=5

  3. Demonstration of Antimicrobial Corrosion-Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC

  4. Colistin Heteroresistance in Enterobacter cloacae Is Associated with Cross-Resistance to the Host Antimicrobial Lysozyme

    PubMed Central

    Napier, Brooke A.; Band, Victor

    2014-01-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system. PMID:24982068

  5. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland).

    PubMed

    Giebułtowicz, Joanna; Tyski, Stefan; Wolinowska, Renata; Grzybowska, Wanda; Zaręba, Tomasz; Drobniewska, Agata; Wroczyński, Piotr; Nałęcz-Jawecki, Grzegorz

    2018-02-01

    Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes.

  6. Antimicrobial resistance in patients with urinary tract infections and the impact on empiric therapy in Serbia.

    PubMed

    Zec, Simon; Despotovic, Aleksa; Spurnic-Radovanovic, Aleksandra; Milosevic, Ivana; Jovanovic, Milica; Pelemis, Mijomir; Stevanovic, Goran

    2016-10-31

    Surveillance of antimicrobial resistance is essential in establishing treatment guidelines for urinary tract infections. The aim of this pilot study was to analyse resistance rates of pathogens, across different demographics and determine whether adjustments in empiric therapy should be considered for different age and gender groups. A 5-year retrospective study included 256 patients hospitalised, under the initial diagnosis of Fever of Unknown Origin who were then subsequently diagnosed with a urinary tract infection at the Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia. Patients were evaluated using demographic, clinical, and antimicrobial resistance data with appropriate statistical analysis including ANOVA significance testing, univariate, and multivariate analysis. Resistance rates were above the threshold of 20% for the majority of the antimicrobials tested, the only exception being carbapenems. Amikacin, cefepime, and norfloxacin were agents that could be effectively used as empiric therapy in younger adults with resistance rates of 4.2, 8.0, and 10.0%, respectively. Moderate resistance rates of 17.4% for amikacin and 19.1% for cefepime were observed in the age group 35-64 years. High resistance rates were observed for all antimicrobials among patients 65 years and over. Among male patients, resistance rates to most antimicrobials were high. In female patients, amikacin and cefepime had resistance rates less than 20%. Younger age presented as a negative risk factor for infection by a multi-drug resistant pathogen. Age and gender demonstrated to be significant factors for determining proper empiric therapy; large-scale studies from Serbia are needed to solidify these findings.

  7. Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis.

    PubMed

    Daneman, Nick; Sarwar, Syed; Fowler, Robert A; Cuthbertson, Brian H

    2013-04-01

    Many meta-analyses have shown reductions in infection rates and mortality associated with the use of selective digestive decontamination (SDD) or selective oropharyngeal decontamination (SOD) in intensive care units (ICUs). These interventions have not been widely implemented because of concerns that their use could lead to the development of antimicrobial resistance in pathogens. We aimed to assess the effect of SDD and SOD on antimicrobial resistance rates in patients in ICUs. We did a systematic review of the effect of SDD and SOD on the rates of colonisation or infection with antimicrobial-resistant pathogens in patients who were critically ill. We searched for studies using Medline, Embase, and Cochrane databases, with no limits by language, date of publication, study design, or study quality. We included all studies of selective decontamination that involved prophylactic application of topical non-absorbable antimicrobials to the stomach or oropharynx of patients in ICUs, with or without additional systemic antimicrobials. We excluded studies of interventions that used only antiseptic or biocide agents such as chlorhexidine, unless antimicrobials were also included in the regimen. We used the Mantel-Haenszel model with random effects to calculate pooled odds ratios. We analysed 64 unique studies of SDD and SOD in ICUs, of which 47 were randomised controlled trials and 35 included data for the detection of antimicrobial resistance. When comparing data for patients in intervention groups (those who received SDD or SOD) versus data for those in control groups (who received no intervention), we identified no difference in the prevalence of colonisation or infection with Gram-positive antimicrobial-resistant pathogens of interest, including meticillin-resistant Staphylococcus aureus (odds ratio 1·46, 95% CI 0·90-2·37) and vancomycin-resistant enterococci (0·63, 0·39-1·02). Among Gram-negative bacilli, we detected no difference in aminoglycoside-resistance (0

  8. Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics

    PubMed Central

    2011-01-01

    Background Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (n = 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S-rRNA. Results The concentrations of 16S-rRNA in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of 16S-rRNA differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of tet(B), tet(C), sul1, sul2, erm(A) tended to increase, and decline thereafter, whereas tet(M) and tet(W) gradually declined over 175 days. At day 7, the concentration of erm(X) was greatest in feces from cattle fed tylosin, compared to all other treatments. Conclusion The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations

  9. Growing Problem of Multidrug-Resistant Enteric Pathogens in Africa

    PubMed Central

    Aboderin, Oladiipo A.; Byarugaba, Denis K.; Ojo, Kayode K.; Opintan, Japheth A.

    2007-01-01

    Control of fecal–orally transmitted pathogens is inadequate in many developing countries, in particular, in sub-Saharan Africa. Acquired resistance to antimicrobial drugs is becoming more prevalent among Vibrio cholerae, Salmonella enteritidis, diarrheagenic Escherichia coli, and other pathogens in this region. The poor, who experience most of the infections caused by these organisms, bear the brunt of extended illness and exacerbated proportion of deaths brought about by resistance. Improved antimicrobial drug stewardship is an often cited, but inadequately implemented, intervention for resistance control. Resistance containment also requires improvements in infectious disease control, access to and quality assurance of antimicrobial agents, as well as diagnostic facilities. Structural improvements along these lines will also enhance disease prevention and control as well as rational antimicrobial drug use. Additionally, more research is needed to identify low-cost, high-impact interventions for resistance control. PMID:18217545

  10. Antimicrobial effects of lysophosphatidylcholine on methicillin-resistant Staphylococcus aureus

    PubMed Central

    Miyazaki, Haruko; Midorikawa, Naoko; Fujimoto, Saki; Miyoshi, Natsumi; Yoshida, Hideto; Matsumoto, Tetsuya

    2017-01-01

    Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is an important health care-associated and community-associated pathogen and causes a large number of infections worldwide. For the purpose of application to topical treatment of MRSA infection, we examined the antimicrobial effects of lysophosphatidylcholine (LPC) on MRSA strains. We also investigated the combination effect of LPC and gentamicin on MRSA growth. Methods: The LPC minimum inhibitory concentrations (MIC) for Gram-positive (S. aureus, Staphylococcus epidermidis, and Streptococcus pneumoniae) and Gram-negative (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa) bacteria were measured by the broth microdilution method. The mechanism of LPC-mediated MRSA killing was investigated by membrane permeability analysis with DiSC3(5) fluorescence and growth curve analysis. Lastly, the effects of LPC on gentamicin-induced bactericidal activity were determined in combination treatment studies with 15 gentamicin-resistant MRSA isolates from the skin, nose, or ears. Results: The LPC MIC for Gram-positive bacteria varied between 32 µg/ml and >2048 µg/ml, whereas that for all Gram-negative bacteria was >2048 µg/ml. Consistently, membrane permeability analysis showed that LPC was substantially more effective in inducing membrane permeability in Gram-positive bacteria than in Gram-negative counterparts. Growth curve analysis in cotreatment studies demonstrated that LPC has intrinsic bactericidal effects and can also potentiate gentamicin sensitivity in resistant MRSA strains. Conclusions: Our study demonstrates that LPC exhibits intrinsic antimicrobial effects and can enhance the antimicrobial effects of gentamicin for resistant MRSA strains, suggesting that LPC may be a beneficial additive in topical antibiotics for superficial skin infections. PMID:28748087

  11. Detection of Rare Antimicrobial Resistance Profiles by Active and Passive Surveillance Approaches

    PubMed Central

    Mather, Alison E.; Reeve, Richard; Mellor, Dominic J.; Matthews, Louise; Reid-Smith, Richard J.; Haydon, Daniel T.; Reid, Stuart W. J.

    2016-01-01

    Antimicrobial resistance (AMR) surveillance systems are generally not specifically designed to detect emerging resistances and usually focus primarily on resistance to individual drugs. Evaluating the diversity of resistance, using ecological metrics, allows the assessment of sampling protocols with regard to the detection of rare phenotypes, comprising combinations of resistances. Surveillance data of phenotypic AMR of Canadian poultry Salmonella Heidelberg and swine Salmonella Typhimurium var. 5- were used to contrast active (representative isolates derived from healthy animals) and passive (diagnostic isolates) surveillance and assess their suitability for detecting emerging resistance patterns. Although in both datasets the prevalences of resistance to individual antimicrobials were not significantly different between the two surveillance systems, analysis of the diversity of entire resistance phenotypes demonstrated that passive surveillance of diagnostic isolates detected more unique phenotypes. Whilst the most appropriate surveillance method will depend on the relevant objectives, under the conditions of this study, passive surveillance of diagnostic isolates was more effective for the detection of rare and therefore potentially emerging resistance phenotypes. PMID:27391966

  12. Antimicrobials in small-scale urban pig farming in a lower middle-income country - arbitrary use and high resistance levels.

    PubMed

    Ström, G; Boqvist, S; Albihn, A; Fernström, L-L; Andersson Djurfeldt, A; Sokerya, S; Sothyra, T; Magnusson, U

    2018-01-01

    Administration of antimicrobials to food-producing animals is regarded as a major contributor to the overall emergence of resistance in bacteria worldwide. However, few data are available on global antimicrobial use and resistance (AMR) in livestock, especially from low- and middle-income countries. We conducted a structured survey of 91 small-scale pig farms in the urban and peri-urban areas of Phnom Penh, Cambodia, to assess the farmers' knowledge, attitudes and practices related to antimicrobial use in their pig production. Commensal Escherichia coli was isolated from three healthy pigs from each farm ( n  = 261) and susceptibility testing was performed against 14 antimicrobials, using broth microdilution. Univariable logistic regression and generalized linear mixed models were used to investigate potential associations between farm characteristics, management factors and resistance to different types of antimicrobials. We found a widespread and arbitrary use of antimicrobials, often based on the farmer's own judgment. Around 66% of the farmers reported frequently self-adjusting treatment duration and dosage, and 45% had not heard about the term 'antimicrobial resistance'. The antimicrobials most commonly mentioned or kept by the farmers were amoxicillin, tylosin, gentamicin and colistin. Around 37% used a feed concentrate that contained antimicrobials, while antimicrobials for humans were used as a last-line treatment by 10% of the farmers. Commensal E. coli exhibited high prevalence of resistance to several antimicrobials considered to be of critical importance for human medicine, including ampicillin, ciprofloxacin and colistin, and multidrug-resistance was found in 79% of the samples. Higher prevalence of resistance was observed on farms that administered prophylactic antimicrobials and on farms that treated the entire group or herd in the event of disease. The widespread and arbitrary use of antimicrobials in pig farming in Cambodia is highly worrisome

  13. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy.

    PubMed

    Volkova, Victoriya V; KuKanich, Butch; Riviere, Jim E

    2016-11-01

    Antimicrobial drug use in food animals is associated with an elevation in relative abundance of bacteria resistant to the drug among the animal enteric bacteria. Some of these bacteria are potential foodborne pathogens. Evidence suggests that at least in the enteric nontype-specific Escherichia coli, after treatment the resistance abundance reverts to the background pre-treatment levels, without further interventions. We hypothesize that it is possible to define the distribution of the time period after treatment within which resistance to the administered drug, and possibly other drugs in case of coselection, in fecal bacteria of the treated animals returns to the background pre-treatment levels. Furthermore, it is possible that a novel resistance mitigation strategy for microbiological food safety could be developed based on this resistance reversion phenomenon. The strategy would be conceptually similar to existing antimicrobial drug withdrawal periods, which is a well-established and accepted mitigation strategy for avoiding violative drug residues in the edible products from the treated animals. For developing resistance-relevant withdrawals, a mathematical framework can be used to join the necessary pharmacological, microbiological, and animal production components to project the distributions of the post-treatment resistance reversion periods in the production animal populations for major antimicrobial drug classes in use. The framework can also help guide design of empirical studies into the resistance-relevant withdrawal periods and development of mitigation approaches to reduce the treatment-associated elevation of resistance in animal enteric bacteria. We outline this framework, schematically and through exemplar equations, and how its components could be formulated.

  14. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions

    PubMed Central

    Watts, Joy E. M.; Schreier, Harold J.; Lanska, Lauma; Hale, Michelle S.

    2017-01-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination. These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health. PMID:28587172

  15. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    PubMed

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  16. Antimicrobial Resistance Percentages of Salmonella and Shigella in Seafood Imported to Jordan: Higher Percentages and More Diverse Profiles in Shigella.

    PubMed

    Obaidat, Mohammad M; Bani Salman, Alaa E

    2017-03-01

    This study determined the prevalence and antimicrobial resistance of human-specific ( Shigella spp.) and zoonotic ( Salmonella enterica ) foodborne pathogens in internationally traded seafood. Sixty-four Salmonella and 61 Shigella isolates were obtained from 330 imported fresh fish samples from Egypt, Yemen, and India. The pathogens were isolated on selective media, confirmed by PCR, and tested for antimicrobial resistance. Approximately 79 and 98% of the Salmonella and Shigella isolates, respectively, exhibited resistance to at least one antimicrobial, and 8 and 49% exhibited multidrug resistance (resistance to three or more antimicrobial classes). Generally, Salmonella exhibited high resistance to amoxicillin-clavulanic acid, cephalothin, streptomycin, and ampicillin; very low resistance to kanamycin, tetracycline, gentamicin, chloramphenicol, nalidixic acid, sulfamethoxazole-trimethoprim, and ciprofloxacin; and no resistance to ceftriaxone. Meanwhile, Shigella spp. exhibited high resistance to tetracycline, amoxicillin-clavulanic acid, cephalothin, streptomycin, and ampicillin; low resistance to kanamycin, nalidixic acid, sulfamethoxazole-trimethoprim, and ceftriaxone; and very low resistance to gentamicin and ciprofloxacin. Salmonella isolates exhibited 14 resistance profiles, Shigella isolates 42. This study is novel in showing that a human-specific pathogen has higher antimicrobial resistance percentages and more diverse profiles than a zoonotic pathogen. Thus, the impact of antimicrobial use in humans is as significant as, if not more significant than, it is in animals in spreading antibiotic resistance through food. This study also demonstrates that locally derived antimicrobial resistance can spread and pose a public health risk worldwide through seafood trade and that high resistance would make a possible outbreak difficult to control. So, capacity building and monitoring harvest water areas are encouraged in fish producing countries.

  17. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    PubMed

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights

  18. Antimicrobial Resistance in Nontyphoidal Salmonella Isolated from Human and Poultry-Related Samples in Brazil: 20-Year Meta-Analysis.

    PubMed

    Voss-Rech, Daiane; Potter, Luciana; Vaz, Clarissa Silveira Luiz; Pereira, Daniela Isabel Brayer; Sangioni, Luís Antonio; Vargas, Águeda Castagna; de Avila Botton, Sônia

    2017-02-01

    Nontyphoidal Salmonella are one of the leading causes of foodborne diseases in the world. As poultry products are recognized as main sources of human salmonellosis, nontyphoidal Salmonella control has become a global issue for the poultry industry. The increasing antimicrobial resistance in poultry-related nontyphoidal Salmonella serovars is a global matter of concern. By monitoring the evolution of antimicrobial resistance, alternative treatments can be identified and possible restrictions in the treatment of systemic human salmonellosis foreseen. A meta-analysis was conducted to assess the profile and temporal evolution of the antimicrobial resistance of nontyphoidal Salmonella of poultry and human origin in Brazil, isolated in the period from 1995 to 2014. Four databases were researched; twenty-nine articles met the eligibility criteria and were included in the meta-analysis. In the nontyphoidal isolates of poultry origin, the highest levels of antimicrobial resistance were verified for sulfonamides (44.3%), nalidixic acid (42.5%), and tetracycline (35.5%). In the human-origin isolates, the resistance occurred mainly for sulfonamides (46.4%), tetracycline (36.9%), and ampicillin (23.6%). Twenty-two articles described results of antimicrobial resistance specifically for Salmonella Enteritidis, also enabling the individual meta-analysis of this serovar. For most antimicrobials, the resistance levels of Salmonella Enteritidis were lower than those found when considering all the nontyphoidal serovars. In the poultry-origin isolates, a quadratic temporal distribution was observed, with reduced resistance to streptomycin in Salmonella Enteritidis and in all nontyphoidal serovars, and a linear increase of resistance to nalidixic acid in Salmonella Enteritidis. In the human-origin isolates, a linear increase was identified in the resistance to nalidixic acid in Salmonella Enteritidis and in all the nontyphoidal isolates, and to gentamicin in Salmonella Enteritidis

  19. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    PubMed Central

    Siber, George R.

    2016-01-01

    ABSTRACT There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR). Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR. PMID:27273824

  20. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    PubMed

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  1. Molecular characterization and antimicrobial resistance of Salmonella enterica from swine slaughtered in two different types of Philippine abattoir.

    PubMed

    Calayag, Alyzza Marie B; Paclibare, Phyllis Anne P; Santos, Pauline Dianne M; Bautista, Corinne Aimee C; Rivera, Windell L

    2017-08-01

    Salmonella enterica is a well-known pathogen commonly acquired from the consumption of contaminated food. It has been estimated to affect millions of humans and cause hundreds of thousands of deaths per year globally. Pork, one of the most commonly consumed meats worldwide, has been identified as one of the main sources of human salmonellosis. In this study, we aimed to detect and characterize S. enterica from slaughtered swine and generate antimicrobial resistance profiles of select isolates. Tonsils and jejunum with mesenteric lymph nodes (MLN) were collected from a total of 240 swine from eight abattoirs (five accredited and three locally registered abattoirs) across Metro Manila. S. enterica were isolated using conventional culture methods and confirmed by PCR amplification of the invA gene. Isolates were further characterized based on somatic antigen by multiplex PCR. We report that there is no significant difference (P = 0.42) between the incidences of S. enterica in swine slaughtered in accredited (44.0%) and in locally registered abattoirs (46.7%). Most samples were contaminated with S. enterica under serogroup O:3,10. Antimicrobial susceptibility testing of 183 isolates using the VITEK ® 2 system revealed high resistance to ampicillin (67.8%) and trimethoprim/sulfamethoxazole (80.3%). Multidrug-resistance was found in 124 (67.8%) isolates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Serratia marcescens resistance profile and its susceptibility to photodynamic antimicrobial chemotherapy.

    PubMed

    Parente, Ticiana Mont Alverne Lopes; Rebouças, Emanuela de Lima; Santos, Vitor Coutinho Vieira Dos; Barbosa, Francisco Cesar Barroso; Zanin, Iriana Carla Junqueira

    2016-06-01

    Some authors have reported the antimicrobial action of photodynamic antimicrobial chemotherapy (PACT) on bacteria related to nosocomial infections but there are few studies evaluating PACT on Serratia marcescens grown as planktonic cultures or as biofilms. The purpose of this study was to analyze the S. marcescens resistance profile and its susceptibility to PACT. Initially, 55 S. marcescens strains isolated from environmental, oral and extra-oral infections were tested by antimicrobial resistance to cefotaxime (CTX), imipenem (IPM), ciprofloxacin (CIP), tobramycin (TOB) and doxycycline (DOX) using E-test(®). Following, isolates grown as planktonic cultures or biofilms were submitted to PACT using the association of a light-emitting diode and toluidine blue (TBO). The E-test(®) results demonstrated intermediated sensitive strains to CTX, IMP, TOB, and DOX; and resistant strains to CTX, TOB, DOX and CIP. Also, CTX and IMP demonstrated variation when CLSI 2007 and CLSI 2015 were compared. Planktonic cultures and biofilms submitted to PACT demonstrated counts varying from 10(11) to 10(7) for planktonic cultures and 10(10) to 10(7) for biofilms. There were no statistical differences in the results when planktonic cultures and biofilms were compared. Increase in the profile of S. marcescens resistance was observed when CLSI 2007 and CLSI 2015 were compared. Also, IMP remains as the drug with lower rate of resistance. Additionally, both S. marcescens planktonic cultures and early biofilms are susceptible to PACT under tested conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparison of pathogens and their antimicrobial resistance patterns in paediatric, adult and elderly patients in Canadian hospitals.

    PubMed

    Adam, Heather J; Baxter, Melanie R; Davidson, Ross J; Rubinstein, Ethan; Fanella, Sergio; Karlowsky, James A; Lagacé-Wiens, Philippe R S; Hoban, Daryl J; Zhanel, George G

    2013-05-01

    The purpose of this study was to describe the association between age groups and antimicrobial resistance in the most commonly identified pathogens in Canadian hospitals. Between 2007 and 2011, 27,123 clinically significant isolates, comprising 3580 isolates from children ≤ 18 years old, 12,119 isolates from adults 19-64 years old and 11,424 isolates from elderly patients aged ≥ 65 years old, were collected as part of the CANWARD surveillance study from tertiary-care centres across Canada. Antimicrobial susceptibility testing was performed according to CLSI guidelines. A multifactorial logistic regression model was used to determine the impact of demographic factors, including age groups, on antimicrobial resistance. Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae and Pseudomonas aeruginosa were in the top five organisms for all of the age groups. The proportions of S. aureus that were methicillin resistant, enterococci that were vancomycin resistant and E. coli that produced extended-spectrum β-lactamases were 11.2%, 0.7% and 1.0% for children, 22.8%, 4.6% and 4.3% for adults, and 28.0%, 3.8% and 4.9% for the elderly, respectively. Notable age-related differences in antimicrobial resistance patterns included the following: significantly less methicillin, clindamycin, clarithromycin and trimethoprim/sulfamethoxazole resistance in S. aureus from children; for E. coli, higher cefazolin and ciprofloxacin resistance in the elderly and less ceftriaxone, ciprofloxacin and gentamicin resistance in isolates from children; more S. pneumoniae isolates with penicillin MICs >1 mg/L in children; and for P. aeruginosa, higher resistance rates for meropenem, ciprofloxacin and levofloxacin in adults. The assessment of antimicrobial susceptibility patterns by age group revealed that resistance rates are often higher in the older age groups; however, considerable variability in age-specific resistance trends for different pathogen-antimicrobial combinations

  4. Antimicrobial resistance in coagulase-positive staphylococci isolated from companion animals in Australia: A one year study.

    PubMed

    Saputra, Sugiyono; Jordan, David; Worthing, Kate A; Norris, Jacqueline M; Wong, Hui S; Abraham, Rebecca; Trott, Darren J; Abraham, Sam

    2017-01-01

    Methicillin-resistant coagulase-positive staphylococci (CoPS) have become increasingly recognised as opportunistic pathogens that limit therapeutic options in companion animals. The frequency of methicillin resistance amongst clinical isolates on an Australia-wide level is unknown. This study determined antimicrobial susceptibility patterns for CoPS isolated from clinical infections in companion animals (dogs, cats and horses) as part of the first nation-wide survey on antimicrobial resistance in animal pathogens in Australia for a one-year period (January 2013 to January 2014). Clinical Staphylococcus spp. isolates (n = 888) obtained from 22 veterinary diagnostic laboratories were identified by MALDI-TOF mass spectrometry and subjected to antimicrobial susceptibility testing for 16 antimicrobials, representing 12 antimicrobial classes. Potential risk factors associated with methicillin resistance in Staphylococcus pseudintermedius isolates from dogs were analysed based on demographic factors and clinical history, including gender, age, previous antimicrobial treatment, chronic and/or recurrent diseases and site of infections. The most commonly identified CoPS were S. pseudintermedius (70.8%; dogs n = 616, cats n = 13) and S. aureus (13.2%, horses n = 53, dogs n = 47 and cats n = 17). Overall, the frequency of methicillin resistance among S. pseudintermedius (MRSP) and S. aureus (MRSA) was 11.8% and 12.8%, respectively. MRSP isolates were strongly associated with resistance to fluoroquinolones (OR 287; 95%CI 91.2-1144.8) and clindamycin (OR 105.2, 95%CI 48.5-231.9). MRSA isolates from dogs and cats were also more likely to be resistant to fluoroquinolones (OR 5.4, 95%CI 0.6-252.1), whereas MRSA from horses were more likely to be resistant to rifampicin. In multivariate analysis, MRSP-positive status was significantly associated with particular infection sites, including surgical (OR 8.8; 95%CI 3.74-20.7), and skin and soft tissue (OR 3.9; 95%CI 1.97-7.51). S

  5. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

    PubMed Central

    Singh, Shriti; Singh, Santosh Kumar; Chowdhury, Indrajit; Singh, Rajesh

    2017-01-01

    A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms. PMID:28553416

  6. Frequency, Antimicrobial Resistance and Genetic Diversity of Klebsiella pneumoniae in Food Samples

    PubMed Central

    Pang, Zhizhao; Qin, Tian; Ren, Hongyu; Pan, Zhuo; Zhou, Jikun

    2016-01-01

    This study aimed to assess the frequency of Klebsiella pneumoniae in food samples and to detect antibiotic resistance phenotypes, antimicrobial resistance genes and the molecular subtypes of the recovered isolates. A total of 998 food samples were collected, and 99 (9.9%) K. pneumoniae strains were isolated; the frequencies were 8.2% (4/49) in fresh raw seafood, 13.8% (26/188) in fresh raw chicken, 11.4% (34/297) in frozen raw food and 7.5% (35/464) in cooked food samples. Antimicrobial resistance was observed against 16 antimicrobials. The highest resistance rate was observed for ampicillin (92.3%), followed by tetracycline (31.3%), trimethoprim-sulfamethoxazole (18.2%), and chloramphenicol (10.1%). Two K. pneumoniae strains were identified as extended-spectrum β-lactamase (ESBL)–one strain had three beta-lactamases genes (blaSHV, blaCTX-M-1, and blaCTX-M-10) and one had only the blaSHV gene. Nineteen multidrug-resistant (MDR) strains were detected; the percentage of MDR strains in fresh raw chicken samples was significantly higher than in other sample types (P<0.05). Six of the 18 trimethoprim-sulfamethoxazole-resistant strains carried the folate pathway inhibitor gene (dhfr). Four isolates were screened by PCR for quinolone resistance genes; aac(6’)-Ib-cr, qnrB, qnrA and qnrS were detected. In addition, gyrA gene mutations such as T247A (Ser83Ile), C248T (Ser83Phe), and A260C (Asp87Ala) and a parC C240T (Ser80Ile) mutation were identified. Five isolates were screened for aminoglycosides resistance genes; aacA4, aacC2, and aadA1 were detected. Pulsed-field gel electrophoresis-based subtyping identified 91 different patterns. Our results indicate that food, especially fresh raw chicken, is a reservoir of antimicrobial-resistant K. pneumoniae, and the potential health risks posed by such strains should not be underestimated. Our results demonstrated high prevalence, antibiotic resistance rate and genetic diversity of K. pneumoniae in food in China. Improved

  7. Prevalence and Antimicrobial Resistance of Campylobacter Isolated from Dressed Beef Carcasses and Raw Milk in Tanzania

    PubMed Central

    Kashoma, Isaac P.; Kassem, Issmat I.; John, Julius; Kessy, Beda M.; Gebreyes, Wondwossen; Kazwala, Rudovick R.

    2016-01-01

    Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter. PMID:26153978

  8. Prevalence and Antimicrobial Resistance of Campylobacter Isolated from Dressed Beef Carcasses and Raw Milk in Tanzania.

    PubMed

    Kashoma, Isaac P; Kassem, Issmat I; John, Julius; Kessy, Beda M; Gebreyes, Wondwossen; Kazwala, Rudovick R; Rajashekara, Gireesh

    2016-01-01

    Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter.

  9. Use of and microbial resistance to antibiotics in China: a path to reducing antimicrobial resistance.

    PubMed

    Cui, Dan; Liu, Xinliang; Hawkey, Peter; Li, Hao; Wang, Quan; Mao, Zongfu; Sun, Jing

    2017-12-01

    We analyzed China's current use of and microbial resistance to antibiotics, and possible means of reducing antimicrobial resistance. Interventions like executive orders within clinical settings and educational approach with vertical approaches rather than an integrated strategy to curb the use of antimicrobials remain limited. An underlying problem is the system of incentives that has resulted in the intensification of inappropriate use by health professionals and patients. There is an urgent need to explore the relationship between financial and non-financial incentives for providers and patients, to eliminate inappropriate incentives. China's national health reforms have created an opportunity to contain inappropriate use of antibiotics through more comprehensive and integrated strategies. Containment of microbial resistance may be achieved by strengthening surveillance at national, regional and hospital levels; eliminating detrimental incentives within the health system; and changing prescribing behaviors to a wider health systems approach, to achieve long-term, equitable and sustainable results and coordinate stakeholders' actions through transparent sharing of information.

  10. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health

    PubMed Central

    Holt, Kathryn E.; Wertheim, Heiman; Zadoks, Ruth N.; Baker, Stephen; Whitehouse, Chris A.; Dance, David; Jenney, Adam; Connor, Thomas R.; Hsu, Li Yang; Severin, Juliëtte; Brisse, Sylvain; Cao, Hanwei; Wilksch, Jonathan; Gorrie, Claire; Schultz, Mark B.; Edwards, David J.; Nguyen, Kinh Van; Nguyen, Trung Vu; Dao, Trinh Tuyet; Mensink, Martijn; Minh, Vien Le; Nhu, Nguyen Thi Khanh; Schultsz, Constance; Kuntaman, Kuntaman; Newton, Paul N.; Moore, Catrin E.; Strugnell, Richard A.; Thomson, Nicholas R.

    2015-01-01

    Klebsiella pneumoniae is now recognized as an urgent threat to human health because of the emergence of multidrug-resistant strains associated with hospital outbreaks and hypervirulent strains associated with severe community-acquired infections. K. pneumoniae is ubiquitous in the environment and can colonize and infect both plants and animals. However, little is known about the population structure of K. pneumoniae, so it is difficult to recognize or understand the emergence of clinically important clones within this highly genetically diverse species. Here we present a detailed genomic framework for K. pneumoniae based on whole-genome sequencing of more than 300 human and animal isolates spanning four continents. Our data provide genome-wide support for the splitting of K. pneumoniae into three distinct species, KpI (K. pneumoniae), KpII (K. quasipneumoniae), and KpIII (K. variicola). Further, for K. pneumoniae (KpI), the entity most frequently associated with human infection, we show the existence of >150 deeply branching lineages including numerous multidrug-resistant or hypervirulent clones. We show K. pneumoniae has a large accessory genome approaching 30,000 protein-coding genes, including a number of virulence functions that are significantly associated with invasive community-acquired disease in humans. In our dataset, antimicrobial resistance genes were common among human carriage isolates and hospital-acquired infections, which generally lacked the genes associated with invasive disease. The convergence of virulence and resistance genes potentially could lead to the emergence of untreatable invasive K. pneumoniae infections; our data provide the whole-genome framework against which to track the emergence of such threats. PMID:26100894

  11. Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options

    PubMed Central

    Wang, Jianghui; Wong, Emily S. W.; Whitley, Jane C.; Li, Jian; Stringer, Jessica M.; Short, Kirsty R.; Renfree, Marilyn B.

    2011-01-01

    Background To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens. PMID:21912615

  12. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    PubMed

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  13. Canadian integrated program for antimicrobial resistance surveillance: Retail food highlights, 2003-2012.

    PubMed

    Avery, B P; Parmley, E J; Reid-Smith, R J; Daignault, D; Finley, R L; Irwin, R J

    2014-11-07

    The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) is a collaborative, integrated program designed to track antimicrobial resistance (AMR) among enteric bacteria isolated from various livestock commodities along the food-producing continuum ("farm to fork") and in humans. To provide a summary of the prevalence and trends in AMR among select bacteria isolated from raw, fresh chicken, pork, and beef in 2012 at the retail food level and to link these data with other findings from CIPARS. Meat samples were collected from randomly selected geographic areas across Canada weighted by population for subsequent isolation of bacteria and interpretation of the associated AMR profiles. Salmonella, Campylobacter and generic Escherichia coli ( E. coli ) were tested in chicken, and E. coli was tested in beef and pork. Data were analyzed for 2012 and temporal and regional trends were examined between 2003 and 2012 by province/region. Overall, resistance levels to Salmonella in retail chicken varied widely by region and year. For example, ceftiofur resistance to Salmonella in retail chicken was significantly lower in 2012 than in 2004 in Ontario and in Québec; however, among all regions sampled, resistance was significantly higher in 2012 compared to 2006. Across all regions sampled, resistance to Campylobacter in retail chicken was relatively low in 2012 (<16%) with the exception of tetracycline resistance. In 2012, ciprofloxacin resistance to Campylobacter in chicken declined in British Columbia but significantly increased in Ontario, compared to 2011. In 2012, β-lactam resistance to E. coli in retail beef remained low (≤1%) and was also relatively low comparable to previous years in pork. In Canada, as is the case worldwide, there is evidence of resistance to medically important antimicrobials among bacteria from retail meats. Resistance among organisms isolated from poultry, beef, and pork at the retail food level is characterized by wide

  14. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    PubMed

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014-2016: Study for monitoring antimicrobial resistance trend report.

    PubMed

    Veeraraghavan, Balaji; Jesudason, Mark Ranjan; Prakasah, John Antony Jude; Anandan, Shalini; Sahni, Rani Diana; Pragasam, Agila Kumari; Bakthavatchalam, Yamuna Devi; Selvakumar, Rajesh Joseph; Dhole, T N; Rodrigues, Camilla; Roy, Indranil; Joshi, Sangeetha; Chaudhuri, Bhaskar Narayan; Chitnis, D S

    2018-01-01

    The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR) in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014-2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205) followed by 25% of Klebsiella pneumoniae (n = 676) and 11% of Pseudomonas aeruginosa (n = 308). Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL)-positive isolates were ranged from 66%-77% in E. coli to 61%-72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that carbapenems, amikacin and colistin continue to be the best agents available to

  16. Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs).

    PubMed

    Giuriatti, Jéssica; Stefani, Lenita Moura; Brisola, Maiara Cristina; Crecencio, Regiane Boaretto; Bitner, Dinael Simão; Faria, Gláucia Amorim

    2017-08-01

    The objective of this study was to evaluate the phenotypic and genotypic profile of antimicrobial susceptibility and the possible involvement of extended spectrum beta-lactamases (ESBLs) in the resistance profile of Salmonella Heidelberg (SH) isolated from chicken meat. We used 18 SH isolates from chicken meat produced in 2013 in the state of Paraná, Southern Brazil. The isolates were submitted to disk-diffusion tests and from these results it was possible to determine the number of isolates considered multiresistant and the index of multiple antimicrobial resistance (IRMA) against ten antimicrobials routinely used in human and veterinary medicine. It was considered multidrug resistant the isolate that showed resistance to three or more classes of antibiotics. Another test performed was the disc-approximation in order to investigate interposed zones of inhibition, indicative of ESBLs production. In the isolates that presented multidrug resistance (18/18), a search of resistance genes involved in the production of ESBLs was performed using PCR: blaCMY-2, blaSHV-1, blaTEM-1, blaCTX-M2, blaOXA-1, blaPSE-1 and AmpC. The overall antimicrobial resistance was 80.55%. The highest levels of resistance were observed for nalidixic acid and ceftiofur (100%). The most commonly resistance pattern found (42.1%) was A (penicillin-cephalosporin-quinolone-tetracycline). The results were negative for ghost zone formation, indicative of ESBLs. However, PCR technique was able to detect resistance genes via ESBLs where the blaTEM-1 gene showed the highest amplification (83.33%), and the second most prevalent genes were blaCMY-2 (38.88%) and AmpC gene (38.88%). The blaOXA-1 and blaPSE-1 genes were not detected. These results are certainly of concern since SH is becoming more prevalent in the South of Brazil and able to cause severe disease in immune compromised individuals, showing high antimicrobial resistance to those drugs routinely used in the treatment and control of human and

  17. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    PubMed

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  18. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    PubMed Central

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo; Toft, Nils; Matthews, Louise

    2014-01-01

    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma concentration profiles of tetracycline. All dosing regimens result in a clear growth advantage for resistant strains. Short treatment duration was found to be preferable, since it allowed less time for resistant strains to outcompete the susceptible ones. Dosing frequency appeared to be ineffective at reducing the resistance levels. The number of competing strains had no apparent effect on the resistance level during treatment, but possession of fewer strains reduced the time to reach equilibrium after the end of treatment. To sum up, epidemiological parameters may have more profound influence on growth dynamics than dosing regimens and should be considered when designing improved treatment protocols. PMID:25547361

  19. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China.

    PubMed

    Ding, Yuexia; Zhao, Junli; He, Xiuling; Li, Man; Guan, Hong; Zhang, Ziying; Li, Peifeng

    2016-01-01

    Mastitis is the most expensive disease in the dairy cattle industry and results in decreased reproductive performance. Streptococcus, especially Streptococcus agalactiae, possesses a variety of virulence factors that contribute to pathogenicity. Streptococcus isolated from mastitis was tested to assess the prevalence of antimicrobial resistance and distribution of antibiotic resistance- and virulence-related genes. Eighty-one Streptococcus isolates were phenotypically characterized for antimicrobial resistance against 15 antibiotics by determining minimum inhibitory concentrations (MIC) using a micro-dilution method. Resistance- and virulence-related genes were detected by PCR. High percentage of resistance to β-lactams, along with tetracycline and erythromycin, was found. Resistance to three or more of seven antimicrobial agents was observed at 88.9%, with penicillin-tetracycline-erythromycin-clindamycin as the major profile in Streptococcus isolates. Resistant genes were detected by PCR, the result showed that 86.4, 86.4, 81.5, and 38.3% of isolates were mainly carrying the pbp2b, tetL, tetM, and ermB genes, respectively. Nine virulence genes were investigated. Genes cyl, glnA, cfb, hylB, and scaA were found to be in 50% of isolates, while 3.7, 21, and 4.9% of isolates were positive for bca, lmb, and scpB, genes, respectively. None of the isolates carried the bac gene. This study suggests the need for prudent use of antimicrobial agents in veterinary clinical medicine to avoid the increase and dissemination of antimicrobial resistance arising from the use of antimicrobial drugs in animals.

  20. Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).

    PubMed

    Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping

    2017-09-01

    Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.

  1. The prevalence of antimicrobial-resistant Escherichia coli in two species of invasive alien mammals in Japan.

    PubMed

    Nakamura, Ichiro; Obi, Takeshi; Sakemi, Yoko; Nakayama, Ayano; Miyazaki, Kei; Ogura, Go; Tamaki, Masanobu; Oka, Tatsuzo; Takase, Kozo; Miyamoto, Atsushi; Kawamoto, Yasuhiro

    2011-08-01

    The prevalence of antimicrobial resistance in 128 Escherichia coli isolates was investigated in two species of invasive alien mammals (IAMs): the small Asian mongoose (SAM) and Japanese weasel (JW). The SAM is found on the main island of Okinawa, Japan, where a large number of livestock is available, and the JW is present on a small island, where is isolated from the main island, and have a small number of livestock. We focused on the two IAMs, inhabiting under the different environments, and compared their prevalence of antimicrobial-resistant E. coli. In the comparison of the frequencies of antimicrobial-resistant E. coli isolates between the SAM and JW, JW showed significantly higher prevalence of resistance against three drugs, ampicillin, chlortetracycline and nalidixic acid, compared with SAM's test results (P<0.05). The bla(TEM) gene and the aph1 gene were detected in 35 subjects (91%) of ampicillin-resistant isolates and 6 subjects (100%) of kanamycin-resistant isolates, respectively. The tet (A) gene was detected in 62 subjects (46%) of CTC-resistant isolates, and the tet (B) gene was detected in 25 subjects (8%) of those in IAM. The present results suggest that some IAMs were the carrier of antimicrobial-resistant bacteria and their genes, and the frequencies of these resistances were different between two IAM species.

  2. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    PubMed

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  3. Antimicrobial resistance profiles of Enterococcus faecalis and Enterococcus faecium isolated from artisanal food of animal origin in Argentina.

    PubMed

    Delpech, Gastón; Pourcel, Gisela; Schell, Celia; De Luca, María; Basualdo, Juan; Bernstein, Judith; Grenovero, Silvia; Sparo, Mónica

    2012-10-01

    Enterococci are part of the indigenous microbiota of human gastrointestinal tract and food of animal origin. Enterococci inhabiting non-human reservoirs play a critical role in the acquisition and dissemination of antimicrobial resistance determinants. The aim of this work was to investigate the antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium strains recovered from artisanal food of animal origin. Samples of goat cheese (n = 42), cow cheese (n = 40), artisanal salami (n = 30), and minced meat for the manufacture of hamburgers (n = 60) were analyzed. Phenotypic and genotypic tests for species-level identification of the recovered isolates were carried out. Minimum inhibitory concentration (MIC) study for in vitro quantitative antimicrobial resistance assessment was performed, and 71 E. faecalis and 22 E. faecium were isolated. The recovered enterococci showed different multi-drug resistance patterns that included tretracycline, erythromycin, ciprofloxacin, linezolid, penicillin, ampicillin, vancomycin, teicoplanin, gentamicin (high-level resistance), and streptomycin (high-level resistance). VanA-type E. faecium were detected. β-lactamase activity was not observed. Artisanal foods of animal origin act as a non-human reservoir of E. faecalis and E. faecuim strains, expressing multi-resistance to antimicrobials. In conclusion, the implementation of a continuous antimicrobial resistance surveillance in enterococci isolated from artisanal food of animal origin is important.

  4. Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review.

    PubMed

    McCrackin, M A; Helke, Kristi L; Galloway, Ashley M; Poole, Ann Z; Salgado, Cassandra D; Marriott, Bernadette P

    2016-10-02

    Controversy continues concerning antimicrobial use in food animals and its relationship to drug-resistant infections in humans. We systematically reviewed published literature for evidence of a relationship between antimicrobial use in agricultural animals and drug-resistant foodborne campylobacteriosis in humans. Based on publications from the United States (U.S.), Canada and Denmark from 2010 to July 2014, 195 articles were retained for abstract review, 50 met study criteria for full article review with 36 retained for which data are presented. Two publications reported increase in macrolide resistance of Campylobacter coli isolated from feces of swine receiving macrolides in feed, and one of these described similar findings for tetracyclines and fluoroquinolones. A study in growing turkeys demonstrated increased macrolide resistance associated with therapeutic dosing with Tylan® in drinking water. One publication linked tetracycline-resistant C. jejuni clone SA in raw cow's milk to a foodborne outbreak in humans. No studies that identified farm antimicrobial use also traced antimicrobial-resistant Campylobacter from farm to fork. Recent literature confirms that on farm antibiotic selection pressure can increase colonization of animals with drug-resistant Campylobacter spp. but is inadequately detailed to establish a causal relationship between use of antimicrobials in agricultural animals and prevalence of drug-resistant foodborne campylobacteriosis in humans.

  5. Prevalence and antimicrobial resistance of Enterococcus species of food animal origin from Beijing and Shandong Province, China.

    PubMed

    Liu, Y; Liu, K; Lai, J; Wu, C; Shen, J; Wang, Y

    2013-02-01

    To evaluate the prevalence and antimicrobial resistance of Enterococcus species from chickens and pigs in Beijing and Shandong Province, China. Swab samples were collected from four farms in Beijing and two in Shandong Province in 2009 and tested for Enterococcus. Minimum inhibitory concentrations of antimicrobial agents were determined using broth microdilution or agar screening methods. A total of 453 Enterococcus isolates were recovered, belonging to six different Enterococcus species. All isolates were sensitive to vancomycin. Resistance to tetracycline (92.5%), amikacin (89.4%), erythromycin (72.8%) and rifampin (58.1%), and high-level streptomycin resistance (HLSR, 50.3%) were prevalent, while resistance to penicillins (7.9% to penicillin and 4.2% to ampicillin) was rare. The resistance rates to phenicols (chloramphenicol and florfenicol) and enrofloxacin, and high-level gentamicin resistance (HLGR) were approximately 30%. The vast majority of the Enterococcus isolates were classified as multidrug-resistant organisms. Resistance of Enterococcus sp. to most antimicrobials was more prevalent in China than in European or other Asian countries. Our findings reveal a high level of antimicrobial resistance in Enterococcus isolates from food animals in China and underline the need for prudent use of antibiotics in chicken and pig production to minimize the spread of antibiotic-resistant enterococci. © 2012 The Society for Applied Microbiology.

  6. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia.

    PubMed

    Beyene, Takele; Hayishe, Halefom; Gizaw, Fikru; Beyi, Ashenafi Feyisa; Abunna, Fufa; Mammo, Bedaso; Ayana, Dinka; Waktole, Hika; Abdi, Reta Duguma

    2017-04-28

    Staphylococcus species cause mastitis and wound infection in livestock and food poisoning in humans through ingestion of contaminated foods, including meat and dairy products. They are evolving pathogens in that they readily acquire drug resistance, and multiple drug-resistant (MDR) isolates are increasing in human and veterinary healthcare. Therefore, this study was conducted to evaluate the prevalence of Staphylococci and their drug resistance in dairy farms and abattoir settings of Addis Ababa. In this cross-sectional study, 193 samples of milk, meat, equipment and humans working in the dairy farms and abattoir were collected (dairy farms = 72 and abattoir sources = 121). Staphylococcus isolation and identification at the species level was done according to ISO-6888-3 using biochemical characteristics. An antimicrobial susceptibility test was conducted for 43 of the isolates using 15 antimicrobial agents commonly used for humans and livestock by the Kirby Bauer disk diffusion method following CLSI guidelines. Staphylococcus organism were isolated from 92 (47.7%) of the total 193 samples, 50% in the dairy farms and 46.3% in the abattoir. The isolated species were S. aureus (n = 31; 16.1%), S. intermedius (n = 21; 10.9%), S. hyicus (n = 16; 8.3%), and coagulase negative Staphylococcus (CNS) (n = 24; 12.4%). Gentamycin was effective drug as all isolates (n = 43; 100%) were susceptible to it and followed by kanamycin (n = 39; 90.7%). However, the majority of the isolates showed resistance to penicillin-G (95.3%), nalidixic acid (88.4%), cloxacillin (79.1%), vancomycin (65.1%) and cefoxitin (55.8%). Of the 15 S. aureus tested for drug susceptibility, 73.3% of them were phenotypically resistant to vancomycin (VRSA) and all of the 15 isolates showed multi-drug resistance (MDR) to >3 drugs. Also, all of the tested CNS (100%), S. hyicus (100%) and the majority of S. intermedius isolates (88.9%) developed MDR. Alarmingly, the Staphylococcus isolates

  7. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis.

    PubMed

    Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg

    2016-01-01

    Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.

  8. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    PubMed

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Antimicrobial resistance monitoring in Neisseria gonorrhoeae and strategic use of funds from the Global Fund to set up a systematic Moroccan gonococcal antimicrobial surveillance programme.

    PubMed

    Hançali, Amina; Ndowa, Francis; Bellaji, Bahija; Bennani, Aziza; Kettani, Amina; Charof, Reda; El Aouad, Rajae

    2013-12-01

    The aims of this study were to assess antimicrobial resistance in Neisseria gonorrhoeae infections and update the treatment in the national guidelines for the syndromic management of sexually transmitted infections in Morocco. 171 men complaining of urethral discharge were recruited from basic health services during 2009. Urethral swab samples were collected and N gonorrhoeae identification was performed by culture. Antimicrobial susceptibility testing was performed using the Etest method and the antimicrobial agents tested were ciprofloxacin, penicillin, spectinomycin, tetracycline, ceftriaxone and cefixime. A total of 72 isolates were examined. Significant resistance to tetracycline (92.8%) and ciprofloxacin (86.8%), which was used as first-line treatment in gonococcal infections, was noted. No resistance to spectinomycin, ceftriaxone or cefixime was detected in all the isolates. Following these results the Ministry of Health of Morocco replaced ciprofloxacin and introduced ceftriaxone 250 mg as a single dose in the treatment of gonococcal infections. Using funds from the Global Fund to Fight AIDS, Tuberculosis and Malaria (the Global Fund), a surveillance programme was set up for antimicrobial resistance testing in N gonorrhoeae.

  10. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria.

    PubMed

    Wu, Xiaozhe; Li, Zhan; Li, Xiaolu; Tian, Yaomei; Fan, Yingzi; Yu, Chaoheng; Zhou, Bailing; Liu, Yi; Xiang, Rong; Yang, Li

    2017-01-01

    Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs) and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT)-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001) and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin) on clinical bacterial strains ( Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii , and Escherichia coli ). The AZT-resistance genes ( ermA, ermB, ermC, mefA , and msrA ) were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L). When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7-AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus strain synergistically affected by DP7-AZT showed no noteworthy morphological changes, suggesting that a molecular-level mechanism plays an important role in the synergistic action of DP7-AZT. AMP DP7 plus the antibiotic AZT or VAN is more effective, especially against highly antibiotic-resistant strains.

  11. Novel Imidazoline Antimicrobial Scaffold That Inhibits DNA Replication with Activity against Mycobacteria and Drug Resistant Gram-Positive Cocci

    PubMed Central

    2015-01-01

    Bacterial antimicrobial resistance is an escalating public health threat, yet the current antimicrobial pipeline remains alarmingly depleted, making the development of new antimicrobials an urgent need. Here, we identify a novel, potent, imidazoline antimicrobial compound, SKI-356313, with bactericidal activity against Mycobacterium tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine models of Streptococcus pneumoniae and MRSA infection and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole genome sequencing, and a novel target ID approach using real time imaging of core macromolecular biosynthesis, we show that SKI-356313 inhibits DNA replication and displaces the replisome from the bacterial nucleoid. These results identify a new antimicrobial scaffold with a novel mechanism of action and potential therapeutic utility against nonreplicating M. tuberculosis and antibiotic resistant Gram-positive cocci. PMID:25222597

  12. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  13. Increased Resistance to Multiple Antimicrobials and Altered Resistance Gene Expression in CMY-2-Positive Salmonella enterica following a Simulated Patient Treatment with Ceftriaxone

    PubMed Central

    Hamilton, Russell D.; Hulsebus, Holly J.; Akbar, Samina

    2012-01-01

    Salmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasive Salmonella enterica infection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). The blaCMY-2 gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasive Salmonella enterica infections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized that blaCMY-2-positive Salmonella enterica would exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatment in vitro. Seven Salmonella enterica strains survived a simulated patient treatment in vitro and, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because the blaCMY-2 genes are commonly located on large, multidrug-resistant plasmids, increased expression of the blaCMY-2 gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, including blaCMY-2 and floR in S. enterica serovar Typhimurium and S. enterica serovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both

  14. Quantitative Assessment of Combination Antimicrobial Therapy against Multidrug-Resistant Acinetobacter baumannii▿

    PubMed Central

    Lim, Tze-Peng; Ledesma, Kimberly R.; Chang, Kai-Tai; Hou, Jing-Guo; Kwa, Andrea L.; Nikolaou, Michael; Quinn, John P.; Prince, Randall A.; Tam, Vincent H.

    2008-01-01

    Treatment of multidrug-resistant bacterial infections poses a therapeutic challenge to clinicians; combination therapy is often the only viable option for multidrug-resistant infections. A quantitative method was developed to assess the combined killing abilities of antimicrobial agents. Time-kill studies (TKS) were performed using a multidrug-resistant clinical isolate of Acinetobacter baumannii with escalating concentrations of cefepime (0 to 512 mg/liter), amikacin (0 to 256 mg/liter), and levofloxacin (0 to 64 mg/liter). The bacterial burden data in single and combined (two of the three agents with clinically achievable concentrations in serum) TKS at 24 h were mathematically modeled to provide an objective basis for comparing various antimicrobial agent combinations. Synergy and antagonism were defined as interaction indices of <1 and >1, respectively. A hollow-fiber infection model (HFIM) simulating various clinical (fluctuating concentrations over time) dosing exposures was used to selectively validate our quantitative assessment of the combined killing effect. Model fits in all single-agent TKS were satisfactory (r2 > 0.97). An enhanced combined overall killing effect was seen in the cefepime-amikacin combination (interactive index, 0.698; 95% confidence interval [CI], 0.675 to 0.722) and the cefepime-levofloxacin combination (interactive index, 0.929; 95% CI, 0.903 to 0.956), but no significant difference in the combined overall killing effect for the levofloxacin-amikacin combination was observed (interactive index, 0.994; 95% CI, 0.982 to 1.005). These assessments were consistent with observations in HFIM validation studies. Our method could be used to objectively rank the combined killing activities of two antimicrobial agents when used together against a multidrug-resistant A. baumannii isolate. It may offer better insights into the effectiveness of various antimicrobial combinations and warrants further investigations. PMID:18505848

  15. Antimicrobial stewardship through telemedicine and its impact on multi-drug resistance.

    PubMed

    Dos Santos, Rodrigo P; Dalmora, Camila H; Lukasewicz, Stephani A; Carvalho, Otávio; Deutschendorf, Caroline; Lima, Raquel; Leitzke, Tiago; Correa, Nilson C; Gambetta, Marcelo V

    2018-01-01

    Introduction Telemedicine technologies are increasingly being incorporated into infectious disease practice. We aimed to demonstrate the impact of antimicrobial stewardship through telemedicine on bacterial resistance rates. Methods We conducted a quasi-experimental study in a 220-bed hospital in southern Brazil. An antimicrobial stewardship program incorporating the use of telemedicine was implemented. Resistance and antimicrobial consumption rates were determined and analysed using a segmented regression model. Results After the intervention, the rate of appropriate antimicrobial prescription increased from 51.4% at baseline to 81.4%. Significant reductions in the consumption of fluoroquinolones (level change, β = -0.80; P < 0.01; trend change, β = -0.01; P = 0.98), first-generation cephalosporins (level change, β = -0.91; P < 0.01; trend change, β = +0.01; P = 0.96), vancomycin (level change, β = -0.47; P = 0.04; trend change, β = +0.17; P = 0.66) and polymyxins (level change, β = -0.15; P = 0.56; trend change, β = -1.75; P < 0.01) were identified. There was an increase in the consumption of amoxicillin + clavulanate (level change, β = +0.84; P < 0.01; trend change, β = +0.14; P = 0.41) and cefuroxime (level change, β = +0.21; P = 0.17; trend change, β = +0.66; P = 0.02). A significant decrease in the rate of carbapenem-resistant Acinetobacter spp. isolation (level change, β = +0.66; P = 0.01; trend change, β = -1.26; P < 0.01) was observed. Conclusions Telemedicine, which provides a tool for decision support and immediate access to experienced specialists, can promote better antibiotic selection and reductions in bacterial resistance.

  16. Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli

    PubMed Central

    Aperce, C. C.; Amachawadi, R.; Van Bibber-Krueger, C. L.; Nagaraja, T. G.; Scott, H. M.; Vinasco-Torre, J.; Drouillard, J. S.

    2016-01-01

    The pool of antimicrobial resistance determinants in the environment and in the gut flora of cattle is a serious public health concern. In addition to being a source of human exposure, these bacteria can transfer antibiotic resistance determinants to pathogenic bacteria and endanger the future of antimicrobial therapy. The occurrence of antimicrobial resistance genes on mobile genetic elements, such as plasmids, facilitates spread of resistance. Recent work has shown in vitro anti-plasmid activity of menthol, a plant-based compound with the potential to be used as a feed additive to beneficially alter ruminal fermentation. The present study aimed to determine if menthol supplementation in diets of feedlot cattle decreases the prevalence of multidrug-resistant bacteria in feces. Menthol was included in diets of steers at 0.3% of diet dry matter. Fecal samples were collected weekly for 4 weeks and analyzed for total coliforms counts, antimicrobial susceptibilities, and the prevalence of tet genes in E. coli isolates. Results revealed no effect of menthol supplementation on total coliforms counts or prevalence of E. coli resistant to amoxicillin, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, and sulfamethoxazole; however, 30 days of menthol addition to steer diets increased the prevalence of tetracycline-resistant E. coli (P < 0.02). Although the mechanism by which menthol exerts its effects remains unclear, results of our study suggest that menthol may have an impact on antimicrobial resistance in gut bacteria. PMID:28030622

  17. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    PubMed

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. The role of drinking water in the transmission of antimicrobial-resistant E. coli.

    PubMed

    Coleman, B L; Salvadori, M I; McGeer, A J; Sibley, K A; Neumann, N F; Bondy, S J; Gutmanis, I A; McEwen, S A; Lavoie, M; Strong, D; Johnson, I; Jamieson, F B; Louie, M

    2012-04-01

    To determine whether drinking water contaminated with antimicrobial-resistant E. coli is associated with the carriage of resistant E. coli, selected households sending water samples to Ontario and Alberta laboratories in 2005-2006 were asked to participate in a cross-sectional study. Household members aged ≥12 years were asked to complete a questionnaire and to submit a rectal swab. In 878 individuals, 41% carried a resistant strain of E. coli and 28% carried a multidrug-resistant strain. The risk of carriage of resistant E. coli was 1·26 times higher for users of water contaminated with resistant E. coli. Other risk factors included international travel [prevalence ratio (PR) 1·33], having a child in nappies (PR 1·33), being male (PR 1·33), and frequent handling of raw red meats (PR 1·10). Protecting private water sources (e.g. by improving systems to test and treat them) may help slow the emergence of antimicrobial resistance in E. coli.

  19. The effect of conventional wastewater treatment on the levels of antimicrobial-resistant bacteria in effluent: a meta-analysis of current studies.

    PubMed

    Harris, Suvi; Cormican, Martin; Cummins, Enda

    2012-12-01

    Antimicrobial agents in the environment are a cause for concern. Antimicrobial drug residues and their metabolites reach the aquatic and terrestrial environment primarily through wastewater treatment plants (WWTP). In addition to the potential direct negative health and environmental effects, there is potential for the development of antimicrobial-resistant bacteria. Residue levels below the minimum inhibitory concentration for a bacterial species can be important in selection of resistance. There is uncertainty associated with resistance formation during WWTP processing. A meta-analysis study was carried out to analyse the effect of WWTP processing on the levels of antimicrobial-resistant bacteria within bacterial populations. An analysis of publications relating to multiple antimicrobial-resistant (MAR) bacteria (n = 61), single antimicrobial-resistant (SAR) E. coli (n = 81) and quinolone/fluoroquinolone-resistant (FR) bacteria (n = 19) was carried out. The odds-ratio (OR) of MAR (OR = 1.60, p < 0.01), SAR (OR = 1.33, p < 0.01) and FR (OR = 1.19, p < 0.01) bacteria was determined. The results infer that WWTP processing results in an increase in the proportion of resistant bacteria in effluent, even though the overall bacterial population may have reduced (i.e. a reduction in total bacterial numbers but an increase in the percentage of resistant bacteria). The results support the need for further research into the development of antimicrobial-resistant strains and possible selective pressures operating in WWTPs.

  20. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria.

    PubMed

    Palaniappan, Kavitha; Holley, Richard A

    2010-06-15

    Plant-derived antibacterial compounds may be of value as a novel means for controlling antibiotic resistant zoonotic pathogens which contaminate food animals and their products. Individual activity of natural antimicrobials (eugenol, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate (AIT)) and activity when paired with an antibiotic was studied using broth microdilution and checkerboard methods. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interactions between the inhibitors. Bacteria tested were chosen because of their resistance to at least one antibiotic which had a known genetic basis. Substantial susceptibility of these bacteria toward the natural antimicrobials and a considerable reduction in the minimum inhibitory concentrations (MIC's) of the antibiotics were noted when paired combinations of antimicrobial and antibiotic were used. In the interaction study, thymol and carvacrol were found to be highly effective in reducing the resistance of Salmonella Typhimurium SGI 1 (tet A) to ampicillin, tetracycline, penicillin, bacitracin, erythromycin and novobiocin (FIC<0.4) and resistance of Streptococcus pyogenes ermB to erythromycin (FIC<0.5). With Escherichia coli N00 666, thymol and cinnamaldehyde were found to have a similar effect (FIC<0.4) in reducing the MIC's of ampicillin, tetracycline, penicillin, erythromycin and novobiocin. Carvacrol, thymol (FIC<0.3) and cinnamaldehyde (FIC<0.4) were effective against Staphylococcus aureus blaZ and in reducing the MIC's of ampicillin, penicillin and bacitracin. Allyl isothiocyanate (AIT) was effective in reducing the MIC of erythromycin (FIC<0.3) when tested against S. pyogenes. Fewer combinations were found to be synergistic when the decrease in viable population (log DP) was calculated. Together, fractional inhibitory concentrations < or = 0.5 and log DP<-1 indicated synergistic action between four natural antimicrobials and as many as three antibiotics

  1. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    PubMed

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  2. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria.

    PubMed

    Li, Wenyi; Tailhades, Julien; O'Brien-Simpson, Neil M; Separovic, Frances; Otvos, Laszlo; Hossain, M Akhter; Wade, John D

    2014-10-01

    The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.

  3. Prevalence and Antimicrobial Resistance of Salmonella Isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar.

    PubMed

    Moe, Aung Zaw; Paulsen, Peter; Pichpol, Duangporn; Fries, Reinhard; Irsigler, Herlinde; Baumann, Maximilian P O; Oo, Kyaw Naing

    2017-06-01

    A cross-sectional investigation was conducted concerning prevalence, antimicrobial resistance, multidrug resistance patterns, and serovar diversity of Salmonella in chicken meat sold at retail in Yangon, Myanmar. The 141 chicken meat samples were collected at 141 retail markets in the Yangon Region, Myanmar, 1 November 2014 to 31 March 2015. Information on hygienic practices (potential risk factors) was retrieved via checklists. Salmonella was isolated and identified according to International Organization for Standardization methods (ISO 6579:2002) with minor modifications. Twelve antimicrobial agents belonging to eight pharmacological groups were used for antimicrobial susceptibility testing (disk diffusion method). Salmonella was recovered from 138 (97.9%) of the 141 samples. The isolates were most frequently resistant to trimethoprim-sulfamethoxazole (70.3% of isolates), tetracycline (54.3%), streptomycin (49.3%), and ampicillin (47.1%). Resistance was also found to chloramphenicol (29.7%), amoxicillin-clavulanic acid (17.4%), ciprofloxacin (9.4%), tobramycin (8.7%), gentamicin (8%), cefazolin (7.2%), lincomycin-spectinomycin (5.8%), and norfloxacin (0.7%). Among the 138 Salmonella isolates, 72 (52.2%) were resistant to three or more antimicrobial agents. Twenty-four serovars were identified among the 138 Salmonella-positive samples; serovars Albany, Kentucky, Braenderup, and Indiana were found in 38, 11, 10, and 8% of samples, respectively. None of the potential risk factors were significantly related to Salmonella contamination of chicken carcasses. This study provides new information regarding prevalence and antimicrobial resistance and Salmonella serovar diversity in retail markets in Yangon, Myanmar.

  4. Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance.

    PubMed

    Pieren, Michel; Tigges, Marcel

    2012-10-01

    Alarming facts about the occurrence and spreading of multiple antibiotic resistant bacteria have caught the attention of global surveillance authorities and public media. The demand for novel effective antimicrobial drugs is high and on the rise while, at the same time, the supply of fresh 'magic bullets' is drying up. This review summarizes examples of recent strategies for development of adjunctive antibiotic therapies that overcome microbial resistance and thus rejuvenate the existing arsenal of drugs. Recent studies have demonstrated the potential of compounds that inhibit the action of the repressor protein implicated in ethionamide resistance, thus stimulating activation of the drug and thereby restoring the activity of the antibiotic for treatment of Mycobacterium tuberculosis. Such specific interference with regulators or signal transduction mechanisms involved in antibiotic resistance or virulence provides a new toolbox for novel combinations of antimicrobial drugs with adjuvant molecules lacking intrinsic antibiotic activity. In addition to the development of new antibiotics and vaccination initiatives this strategy of restoring or potentiating the activity of existing antibiotics may help to postpone the day when antibiotics are no longer generally efficacious. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Antimicrobial resistance in coagulase-positive staphylococci isolated from companion animals in Australia: A one year study

    PubMed Central

    Saputra, Sugiyono; Jordan, David; Worthing, Kate A.; Norris, Jacqueline M.; Wong, Hui S.; Abraham, Rebecca

    2017-01-01

    Methicillin-resistant coagulase-positive staphylococci (CoPS) have become increasingly recognised as opportunistic pathogens that limit therapeutic options in companion animals. The frequency of methicillin resistance amongst clinical isolates on an Australia-wide level is unknown. This study determined antimicrobial susceptibility patterns for CoPS isolated from clinical infections in companion animals (dogs, cats and horses) as part of the first nation-wide survey on antimicrobial resistance in animal pathogens in Australia for a one-year period (January 2013 to January 2014). Clinical Staphylococcus spp. isolates (n = 888) obtained from 22 veterinary diagnostic laboratories were identified by MALDI-TOF mass spectrometry and subjected to antimicrobial susceptibility testing for 16 antimicrobials, representing 12 antimicrobial classes. Potential risk factors associated with methicillin resistance in Staphylococcus pseudintermedius isolates from dogs were analysed based on demographic factors and clinical history, including gender, age, previous antimicrobial treatment, chronic and/or recurrent diseases and site of infections. The most commonly identified CoPS were S. pseudintermedius (70.8%; dogs n = 616, cats n = 13) and S. aureus (13.2%, horses n = 53, dogs n = 47 and cats n = 17). Overall, the frequency of methicillin resistance among S. pseudintermedius (MRSP) and S. aureus (MRSA) was 11.8% and 12.8%, respectively. MRSP isolates were strongly associated with resistance to fluoroquinolones (OR 287; 95%CI 91.2–1144.8) and clindamycin (OR 105.2, 95%CI 48.5–231.9). MRSA isolates from dogs and cats were also more likely to be resistant to fluoroquinolones (OR 5.4, 95%CI 0.6–252.1), whereas MRSA from horses were more likely to be resistant to rifampicin. In multivariate analysis, MRSP-positive status was significantly associated with particular infection sites, including surgical (OR 8.8; 95%CI 3.74–20.7), and skin and soft tissue (OR 3.9; 95%CI 1.97–7

  6. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage.

    PubMed

    Wesgate, Rebecca; Grasha, Pierre; Maillard, Jean-Yves

    2016-04-01

    In this study we assessed the propensity of biocide exposure in the development of antimicrobial resistance in bacteria. Our protocol is based on reporting changes in established antimicrobial susceptibility profiles in biocides and antibiotics after during use exposure to a product. The during use exposure reflects worse conditions of product use during application. It differs from the term low concentration, which usually reflects a concentration below the minimal inhibitory concentration, but not necessarily a concentration that occurs in practice. Our results showed that exposure to triclosan (0.0004%) was associated with a high risk of developing resistance and cross-resistance in Staphylococcus aureus and Escherichia coli. This was not observed with exposure to chlorhexidine (0.00005%) or a hydrogen peroxide-based biocidal product (in during use conditions). Interestingly, exposure to a low concentration of hydrogen peroxide (0.001%) carried a risk of emerging resistance to antibiotics if the presence of the oxidizing agent was maintained. We observed a number of unstable clinical resistances to antibiotics after exposure to the cationic biocide and oxidizing agent, notably to tobramycin and ticarcillin-clavulanic acid. Using a decision tree based on the change in antimicrobial susceptibility test results, we were able to provide information on the effect of biocide exposure on the development of bacterial resistance to antimicrobials. Such information should address the call from the U.S. Food and Drug Administration and European Union Biocidal Products Regulation for manufacturers to provide information on antimicrobial resistance and cross-resistance in bacteria after the use of their product. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Prevalence of antimicrobial drug resistant bacteria carried by in- and outpatients attending a secondary care hospital in Zambia.

    PubMed

    Nagelkerke, Marjolijn M B; Sikwewa, Kapembwa; Makowa, Dennis; de Vries, Irene; Chisi, Simon; Dorigo-Zetsma, J Wendelien

    2017-08-10

    Antimicrobial resistance is an increasing global health problem. Very little data on resistance patterns of pathogenic bacteria in low-income countries exist. The aim of this study was to measure the prevalence of antimicrobial drug resistant bacteria carried by in- and outpatients in the resource constraint setting of a secondary care hospital in Zambia. Nasal and rectal samples from 50 in- and 50 outpatients were collected. Patients were randomly selected and informed consent was obtained. Nasal samples were tested for the presence of methicillin-resistant Staphylococcus aureus (MRSA), and rectal samples for Gram-negative rods (family of Enterobacteriaceae) non-susceptible to gentamicin, ciprofloxacin and ceftriaxone. Additionally, E-tests were performed on ceftriaxone-resistant Enterobacteriaceae to detect extended-spectrum β-lactamases (ESBLs). 14% of inpatients carried S. aureus, and 18% of outpatients. No MRSA was found. 90% of inpatients and 48% of outpatients carried one or more Enterobacteriaceae strains (75% Escherichia coli and Klebsiella pneumonia) resistant to gentamicin, ciprofloxacin and/or ceftriaxone (p < 0.001). Among inpatients gentamicin resistance was most prevalent (in 78%), whereas among outpatients ciprofloxacin resistance prevailed (in 38%). All ceftriaxone-resistant Enterobacteriaceae were ESBL-positive; these were present in 52% of inpatients versus 12% of outpatients (p < 0.001). We conclude it is feasible to perform basic microbiological procedures in the hospital laboratory in a low-income country and generate data on antimicrobial susceptibility. The high prevalence of antimicrobial drug resistant Enterobacteriaceae carried by in- and outpatients is worrisome. In order to slow down antimicrobial resistance, surveillance data on local susceptibility patterns of bacteria are a prerequisite to generate guidelines for antimicrobial therapy, to guide in individual patient treatment and to support implementation of infection control

  8. Refugees and antimicrobial resistance: A systematic review.

    PubMed

    de Smalen, Allard Willem; Ghorab, Hatem; Abd El Ghany, Moataz; Hill-Cawthorne, Grant A

    There is a large increase in the numbers of refugees and asylum seekers worldwide and a lack of data on the carriage of antimicrobial resistance in refugee/asylum seeking groups. This article aims to identify the impact of refugees and asylum seekers on the acquisition and transmission of antimicrobial resistance (AMR) through a literature search. The databases Embase, Medline, Pubmed, and Web of Science Core Collection were utilised and covered all articles before the 1st of October 2016. In total, 577 articles were identified, and studies were eligible if they met the selection criteria, including observational study design, English language, and AMR strains reported in absolute numbers. In total, 17 articles met the criteria, the majority were from the European region. Articles fitting the selection criteria exclusively reported AMR in bacterial species including Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumonia, K. oxytoca, Shigella spp., Staphylococcus aureus, Enterococcus faecium, and Acinetobacter baumannii. The analyses indicated that a high percentage of AMR strains, have been circulating among refugees and asylum seekers. The displacement of refugees and asylum seekers seem to play a key role in the transmission of AMR. Therefore, improved AMR control measures are essential. A knowledge gap was identified; further research is strongly recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In vitro bacterial isolate susceptibility to empirically selected antimicrobials in 111 dogs with bacterial pneumonia.

    PubMed

    Proulx, Alexandre; Hume, Daniel Z; Drobatz, Kenneth J; Reineke, Erica L

    2014-01-01

    To determine the proportion of airway bacterial isolates resistant to both empirically selected and recently administered antimicrobials, and to assess the impact of inappropriate initial empiric antimicrobials selection on length of hospital stay and survival to discharge in dogs with bacterial pneumonia. Retrospective study. University veterinary teaching hospital. One hundred and eleven dogs with a clinical diagnosis of bacterial pneumonia that had aerobic bacterial culture and susceptibility testing performed from a tracheal wash sample. None. Overall, 26% (29/111) of the dogs had at least 1 bacterial isolate that was resistant to empirically selected antimicrobials. In dogs with a history of antimicrobial administration within the preceding 4 weeks, a high incidence (57.4%, 31/54) of in vitro bacterial resistance to those antimicrobials was found: 64.7% (11/17) in the community-acquired pneumonia group, 55.2% (16/29) in the aspiration pneumonia group, and 50.0% (4/8) in the other causes of bacterial pneumonia group. No statistically significant association was found between bacterial isolate resistance to empirically selected antimicrobials and length of hospital stay or mortality. The high proportion of in vitro airway bacterial resistance to empiric antimicrobials would suggest that airway sampling for bacterial culture and susceptibility testing may be helpful in guiding antimicrobial therapy and recently administered antimicrobials should be avoided when empirically selecting antimicrobials. Although no relationship was found between inappropriate initial empiric antimicrobial selection and length of hospital stay or mortality, future prospective studies using standardized airway-sampling techniques, treatment modalities, and stratification of disease severity based on objective values, such as arterial blood gas analysis in all dogs with pneumonia, would be needed to determine if a clinical effect of in vitro bacterial resistance to empirically

  10. An empirical comparison of isolate-based and sample-based definitions of antimicrobial resistance and their effect on estimates of prevalence.

    PubMed

    Humphry, R W; Evans, J; Webster, C; Tongue, S C; Innocent, G T; Gunn, G J

    2018-02-01

    Antimicrobial resistance is primarily a problem in human medicine but there are unquantified links of transmission in both directions between animal and human populations. Quantitative assessment of the costs and benefits of reduced antimicrobial usage in livestock requires robust quantification of transmission of resistance between animals, the environment and the human population. This in turn requires appropriate measurement of resistance. To tackle this we selected two different methods for determining whether a sample is resistant - one based on screening a sample, the other on testing individual isolates. Our overall objective was to explore the differences arising from choice of measurement. A literature search demonstrated the widespread use of testing of individual isolates. The first aim of this study was to compare, quantitatively, sample level and isolate level screening. Cattle or sheep faecal samples (n=41) submitted for routine parasitology were tested for antimicrobial resistance in two ways: (1) "streak" direct culture onto plates containing the antimicrobial of interest; (2) determination of minimum inhibitory concentration (MIC) of 8-10 isolates per sample compared to published MIC thresholds. Two antibiotics (ampicillin and nalidixic acid) were tested. With ampicillin, direct culture resulted in more than double the number of resistant samples than the MIC method based on eight individual isolates. The second aim of this study was to demonstrate the utility of the observed relationship between these two measures of antimicrobial resistance to re-estimate the prevalence of antimicrobial resistance from a previous study, in which we had used "streak" cultures. Boot-strap methods were used to estimate the proportion of samples that would have tested resistant in the historic study, had we used the isolate-based MIC method instead. Our boot-strap results indicate that our estimates of prevalence of antimicrobial resistance would have been

  11. Translational research strategy: an essential approach to fight the spread of antimicrobial resistance.

    PubMed

    Tacconelli, Evelina; Peschel, Andreas; Autenrieth, Ingo B

    2014-11-01

    Translation research strategy in infectious diseases, combining the results from basic research with patient-orientated research, aims to bridge the gap between laboratory findings and clinical infectious disease practice to improve disease management. In an era of increasing antimicrobial resistance, there are four main areas of clinical and scientific uncertainty that need to be urgently addressed by translational research: (i) early diagnosis of antibiotic-resistant infections and the appropriateness of empirical antibiotic therapy; (ii) the identification of reservoirs of antibiotic-resistant pathogens; (iii) the development of new antibiotics with lower propensities to evoke resistance; and (iv) the development of new non-antibiotic drugs to be used in the prevention of the spread of resistant bacterial strains. Strict European collaboration among major stakeholders is therefore essential. Appropriate educational tools to train a new generation of scientists with regard to a multifaceted approach to antimicrobial resistance research should be developed. Key areas include the support and implementation of European networks focused on translational research and related education activities, making potential therapeutics more attractive to investors and helping academic investigators to determine whether new molecules can be developed with clinical applicability. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia.

    PubMed

    Eguale, Tadesse; Gebreyes, Wondwossen A; Asrat, Daniel; Alemayehu, Haile; Gunn, John S; Engidawork, Ephrem

    2015-11-04

    Non-typhoidal Salmonella (NTS) is an important public health problem worldwide. Consumption of animal-derived food products and direct and/or indirect contact with animals are the major routes of acquiring infection with NTS. Published information, particularly on the serotype distribution of NTS among human patients with gastroenteritis and associated risk factors, is scarce in Ethiopia. This study investigated the prevalence, risk factors, serotype distribution and antimicrobial susceptibility of Salmonella species among diarrheic out-patients attending health centers in Addis Ababa and patients with various gastrointestinal complaints at Tikur Anbessa Specialized Hospital (TASH). Stool samples were cultured for Salmonella species according to the WHO Global Foodborne Infections Network laboratory protocol. Salmonella serotyping was conducted using slide agglutination and microplate agglutination techniques. Antibiotic susceptibility testing was performed using the disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. A total of 59 (6.2 %) stool samples, out of 957 were culture positive for Salmonella species. Fifty-five (7.2 %) of 765 diarrheic patients from health centers and 4 (2.1 %) of 192 patients from TASH were culture positive for Salmonella species. Multivariable logistic regression analysis after adjusting for all other variables revealed statistically significant association of Salmonella infection with consumption of raw vegetables (OR = 1.91, 95 % CI = 1.29-2.83, χ(2) = 4.74, p = 0.025) and symptom of watery diarrhea (OR = 3.3, 95 % CI = 1.23-8.88, χ(2) = 10.54, p = 0.005). Eleven serotypes were detected, and the most prominent were S. Typhimurium (37.3 %), S. Virchow (34 %), and S. Kottbus (10.2 %). Other serotypes were S. Miami, S. Kentucky, S. Newport, S. Enteritidis, S. Braenderup, S. Saintpaul, S. Concord and S. V:ROUGH-O. Resistance to three or more antimicrobials was detected in 27 (40.3 %) of the

  13. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012.

    PubMed

    Love, William J; Zawack, Kelson A; Booth, James G; Grӧhn, Yrjo T; Lanzas, Cristina

    2016-11-01

    Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics

  14. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance.

    PubMed

    Horcajada, J P; Shaw, E; Padilla, B; Pintado, V; Calbo, E; Benito, N; Gamallo, R; Gozalo, M; Rodríguez-Baño, J

    2013-10-01

    The clinical and microbiological characteristics of community-onset healthcare-associated (HCA) bacteraemia of urinary source are not well defined. We conducted a prospective cohort study at eight tertiary-care hospitals in Spain, from October 2010 to June 2011. All consecutive adult patients hospitalized with bacteraemic urinary tract infection (BUTI) were included. HCA-BUTI episodes were compared with community-acquired (CA) and hospital-acquired (HA) BUTI. A logistic regression analysis was performed to identify 30-day mortality risk factors. We included 667 episodes of BUTI (246 HCA, 279 CA and 142 HA). Differences between HCA-BUTI and CA-BUTI were female gender (40% vs 69%, p <0.001), McCabe score II-III (48% vs 14%, p <0.001), Pitt score ≥2 (40% vs 31%, p 0.03), isolation of extended spectrum β-lactamase-producing Enterobacteriaciae (13% vs 5%, p <0.001), median hospital stay (9 vs 7 days, p 0.03), inappropriate empirical antimicrobial therapy (21% vs 13%, p 0.02) and mortality (11.4% vs 3.9%, p 0.001). Pseudomonas aeruginosa was more frequently isolated in HA-BUTI (16%) than in HCA-BUTI (4%, p <0.001). Independent factors for mortality were age (OR 1.04; 95% CI 1.01-1.07), McCabe score II-III (OR 3.2; 95% CI 1.8-5.5), Pitt score ≥2 (OR 3.2 (1.8-5.5) and HA-BUTI OR 3.4 (1.2-9.0)). Patients with HCA-BUTI are a specific group with significant clinical and microbiological differences from patients with CA-BUTI, and some similarities with patients with HA-BUTI. Mortality was associated with patient condition, the severity of infection and hospital acquisition. © 2012 The Authors Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  15. Nasal Carriage in Vietnamese Children of Streptococcus pneumoniae Resistant to Multiple Antimicrobial Agents

    PubMed Central

    Parry, Christopher M.; Diep, To Song; Wain, John; Hoa, Nguyen Thi Tuyet; Gainsborough, Mary; Nga, Diem; Davies, Catrin; Phu, Nguyen Hoan; Hien, Tran Tinh; White, Nicholas J.; Farrar, Jeremy J.

    2000-01-01

    Resistance to antimicrobial agents in Streptococcus pneumoniae is increasing rapidly in many Asian countries. There is little recent information concerning resistance levels in Vietnam. A prospective study of pneumococcal carriage in 911 urban and rural Vietnamese children, of whom 44% were nasal carriers, was performed. Carriage was more common in children <5 years old than in those ≥5 years old (192 of 389 [49.4%] versus 212 of 522 [40.6%]; P, 0.01). A total of 136 of 399 isolates (34%) had intermediate susceptibility to penicillin (MIC, 0.1 to 1 mg/liter), and 76 of 399 isolates (19%) showed resistance (MIC, >1.0 mg/liter). A total of 54 of 399 isolates (13%) had intermediate susceptibility to ceftriaxone, and 3 of 399 isolates (1%) were resistant. Penicillin resistance was 21.7 (95% confidence interval, 7.0 to 67.6) times more common in urban than in rural children (35 versus 2%; P, <0.001). More than 40% of isolates from urban children were also resistant to erythromycin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Penicillin resistance was independently associated with an urban location when the age of the child was controlled for. Multidrug resistance (resistance to three or more antimicrobial agent groups) was present in 32% of isolates overall but in 39% of isolates with intermediate susceptibility to penicillin and 86% of isolates with penicillin resistance. The predominant serotypes of the S. pneumoniae isolates were 19, 23, 14, 6, and 18. Almost half of the penicillin-resistant isolates serotyped were serotype 23, and these isolates were often multidrug resistant. This study suggests that resistance to penicillin and other antimicrobial agents is common in carriage isolates of S. pneumoniae from children in Vietnam. PMID:10681307

  16. [Surveillance of Antimicrobial Resistant Esherichia coli by Rectal Swab Method--Annual Change of Prevalence of Quinolone-resistant and ESBL Producing Strains from 2009 to 2013].

    PubMed

    Nasu, Yoshitsugu; Sako, Shinichi; Yano, Tomofumi; Kosaka, Noriko

    2015-09-01

    Although most of commonly used antimicrobial agents had been susceptible to Esherichia coli, recently there are a lot of reports concerning about community-acquired infection caused by resistant E. coli. The aim of this study is to define the prevalence of resistant E. coli in normal flora colonization by the rectal swab method. From June 2009 to December 2013, 251 male patients (50-85 year-old, median 68) planned to transrectal prostate biopsy participated in this study. Stools stuck on the glove at the digital examination were provided for culture specimen. Identification of E. coli and determination of MIC was performed by MicroScan WalkAway40plus (Siemens). Isolated E. coli were deemed quinolone-resistant strains when their MIC of levofloxacine was 4 μg/mL or above according to the breakpoint MIC by the CLSI criteria. ESBL producing ability was determined by the double disk method used by CVA contained ESBL definition disc (Eikenkagaku). Of the 251 study patients, 224 patients had positive cultures of E. coli. Twenty-four patients had quinolone-resistant strains and 9 patients had ESBL producing strains. The prevalence of quinolone-resistant strains in 2009, 2010, 2011, 2012 and 2013 were 5.9% (2 out of 34 strains), 13.5% (5 out of 37 strains), 12.5% (4 out of 32 strains), 9.0% (6 out of 67) and 13.0% (7 out of 54 strains), respectively. The prevalence of ESBL producing strains in 2009, 2010, 2011, 2012 and 2013 were 0% (0 out of 34 strains), 5.4% (2 out of 37 strains), 3.1% (1 out of 32 strains), 3.0% (2 out of 67 strains) and 7.4% (4 out of 54 strains), respectively. In 2013, the prevalence of antimicrobial resistant E. coli, both quinolone-resistant and ESBL producing strains, were increasing. We have to pay a close attention to the increase of resistant E. coli.

  17. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  18. Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G

    2018-04-02

    Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.

  19. Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G

    2019-03-01

    Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.

  20. Characterization of antimicrobial resistance and quinolone resistance factors in high-level ciprofloxacin-resistant Enterococcus faecalis and Enterococcus faecium isolates obtained from fresh produce and fecal samples of patients.

    PubMed

    Kim, Min-Chan; Woo, Gun-Jo

    2017-07-01

    The emergence of fluoroquinolone-resistant enterococci is worldwide. Antimicrobial resistance was characterized and the effect of quinolone-resistance factors was analyzed in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from fresh produce and fecal samples of patients. Among the 81 ciprofloxacin-resistant Enterococcus isolates, 46 showed high levels of ciprofloxacin resistance, resistance to other quinolone antibiotics, and multidrug resistance profiles. The virulence factors esp and hyl were identified in 27 (58.7%) and 25 (54.3%) of isolates, respectively. Sequence type analysis showed that 35 strains of HLCR E. faecium were clonal complex 17. Eleven strains of HLCR E. faecalis were confirmed as sequence type (ST) 28, ST 64 and ST 125. Quinolone resistance-determining region mutation was identified in HLCR Enterococcus isolates; with serine being changed in gyrA83, gyrA87 and parC80. This result shows that gyrA and parC mutations could be important factors for high-level resistance to fluoroquinolones. No significant differences were observed in antimicrobial resistance patterns and genetic characteristics among the isolates from fresh produce and fecal samples. Therefore, good agricultural practices in farming and continuous monitoring of patients, food and the environment for Enterococcus spp. should be performed to prevent antimicrobial resistance and enable reduction of resistance rates. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Dana Cole, Georgia Division of Public Health, Notifiable Disease Section, Department of Human Resources, 2 Peachtree Free-living Canada Geese and Antimicrobial Resistance

    PubMed Central

    Cole, Dana; Drum, David J.V.; Stallknecht, David E.; White, David G.; Lee, Margie D.; Ayers, Sherry; Sobsey, Mark; Maurer, John J.

    2005-01-01

    We describe antimicrobial resistance among Escherichia coli isolated from free-living Canada Geese in Georgia and North Carolina (USA). Resistance patterns are compared to those reported by the National Antimicrobial Resistance Monitoring System. Canada Geese may be vectors of antimicrobial resistance and resistance genes in agricultural environments. PMID:15963291

  2. A Decade-Long Commitment to Antimicrobial Resistance Surveillance in Portugal

    PubMed Central

    Marinho, Catarina M.; Santos, Tiago; Gonçalves, Alexandre; Poeta, Patrícia; Igrejas, Gilberto

    2016-01-01

    Antimicrobial resistance (AMR) is a worldwide problem with serious health and economic repercussions. Since the 1940s, underuse, overuse, and misuse of antibiotics have had a significant environmental downside. Large amounts of antibiotics not fully metabolized after use in human and veterinary medicine, and other applications, are annually released into the environment. The result has been the development and dissemination of antibiotic-resistant bacteria due to many years of selective pressure. Surveillance of AMR provides important information that helps in monitoring and understanding how resistance mechanisms develop and disseminate within different environments. Surveillance data is needed to inform clinical therapy decisions, to guide policy proposals, and to assess the impact of action plans to fight AMR. The Functional Genomics and Proteomics Unit, based at the University of Trás-os-Montes and Alto Douro in Vila Real, Portugal, has recently completed 10 years of research surveying AMR in bacteria, mainly commensal indicator bacteria such as enterococci and Escherichia coli from the microbiota of different animals. Samples from more than 75 different sources have been accessed, from humans to food-producing animals, pets, and wild animals. The typical microbiological workflow involved phenotypic studies followed by molecular approaches. Throughout the decade, 4,017 samples were collected and over 5,000 bacterial isolates obtained. High levels of AMR to several antimicrobial classes have been reported, including to β-lactams, glycopeptides, tetracyclines, aminoglycosides, sulphonamides, and quinolones. Multi-resistant strains, some relevant to human and veterinary medicine like extended-spectrum β-lactamase-producing E. coli and vancomycin-resistant enterococci, have been repeatedly isolated even in non-synanthropic animal species. Of particular relevance are reports of AMR bacteria in wildlife from natural reserves and endangered species. Future work

  3. Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese.

    PubMed

    Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2018-02-01

    Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.

  4. Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab

    PubMed Central

    Brand, Toni M; Dunn, Emily F; Iida, Mari; Myers, Rebecca A; Kostopoulos, Kellie T; Li, Chunrong; Peet, Chimera R

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical success; however, many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in the activation of EGFR, HER2 and HER3 receptors as well as increased signaling through the MAP K and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared with vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increased rates of apoptosis. The work presented herein suggests that (1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and (2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing rationale

  5. Principles of Antibiotic Management of Community-Acquired Pneumonia.

    PubMed

    Bender, Michael T; Niederman, Michael S

    2016-12-01

    Community-acquired pneumonia (CAP) encompasses a broad spectrum of disease severity and may require outpatient, inpatient, or intensive care management. Successful treatment hinges on expedient delivery of appropriate antibiotic therapy tailored to both the likely offending pathogens and the severity of disease. This review summarizes key principles in starting treatment and provides recommended empiric therapy regimens for each site of care. In addition, we discuss the antimicrobial and anti-inflammatory role macrolides play in CAP, as well as specific information for managing individual CAP pathogens such as community-acquired methicillin-resistant Staphylococcus aureus and drug-resistant Streptococcus pneumoniae . We also examine several novel antibiotics being developed for CAP and review the evidence guiding duration of therapy and current best practices for the transition of hospitalized patients from intravenous antibiotics to oral therapy. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Phenotypical resistance correlation networks for 10 non-typhoidal Salmonella subpopulations in an active antimicrobial surveillance programme.

    PubMed

    Love, W J; Zawack, K A; Booth, J G; Gröhn, Y T; Lanzas, C

    2018-06-01

    Antimicrobials play a critical role in treating cases of invasive non-typhoidal salmonellosis (iNTS) and other diseases, but efficacy is hindered by resistant pathogens. Selection for phenotypical resistance may occur via several mechanisms. The current study aims to identify correlations that would allow indirect selection of increased resistance to ceftriaxone, ciprofloxacin and azithromycin to improve antimicrobial stewardship. These are medically important antibiotics for treating iNTS, but these resistances persist in non-Typhi Salmonella serotypes even though they are not licensed for use in US food animals. A set of 2875 Salmonella enterica isolates collected from animal sources by the National Antimicrobial Resistance Monitoring System were stratified in to 10 subpopulations based on serotype and host species. Collateral resistances in each subpopulation were estimated as network models of minimum inhibitory concentration partial correlations. Ceftriaxone sensitivity was correlated with other β-lactam resistances, and less commonly resistances to tetracycline, trimethoprim-sulfamethoxazole or kanamycin. Azithromycin resistance was frequently correlated with chloramphenicol resistance. Indirect selection for ciprofloxacin resistance via collateral selection appears unlikely. Density of the ACSSuT subgraph resistance aligned well with the phenotypical frequency. The current study identifies several important resistances in iNTS serotypes and further research is needed to identify the causative genetic correlations.

  7. Antibiotic stewardship in community-acquired pneumonia.

    PubMed

    Viasus, Diego; Vecino-Moreno, Milly; De La Hoz, Juan M; Carratalà, Jordi

    2017-04-01

    Community-acquired pneumonia (CAP) continues to be associated with significant mortality and morbidity. As with other infectious diseases, in recent years there has been a marked increase in resistance to the antibiotics commonly used against the pathogens that cause CAP. Antimicrobial stewardship denotes coordinated interventions to improve and measure the appropriate use of antibiotics by encouraging the selection of optimal drug regimens. Areas covered: Several elements can be applied to antibiotic stewardship strategies for CAP in order to maintain or improve patient outcomes. In this regard, antibiotic de-escalation, duration of antibiotic treatment, adherence to CAP guidelines recommendations about empirical treatment, and switching from intravenous to oral antibiotic therapy may each be relevant in this context. Antimicrobial stewardship strategies, such as prospective audit with intervention and feedback, clinical pathways, and dedicated multidisciplinary teams, that have included some of these elements have demonstrated improvements in antimicrobial use for CAP without negatively affecting clinical outcomes. Expert commentary: Although there are a limited number of randomized clinical studies addressing antimicrobial stewardship strategies in CAP, there is evidence that antibiotic stewardship initiatives can be securely applied, providing benefits to both healthcare systems and patients.

  8. Cationic Antimicrobial Peptide Resistance Mechanisms of Streptococcal Pathogens

    PubMed Central

    LaRock, Christopher N.; Nizet, Victor

    2015-01-01

    Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. PMID:25701232

  9. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    PubMed

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    PubMed Central

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (MRSA). Cell-bound BS from both L. jensenii and L. rhamnosus were extracted and isolated. The surface activities of crude BS samples were evaluated using an oil spreading assay. The antimicrobial, anti-adhesive and anti-biofilm activities of both BS against the above mentioned MDR pathogens were determined. Results Surface activities for both BS ranged from 6.25 to 25 mg/ml with clear zones observed between 7 and 11 cm. BS of both L. jensenii and L. rhamnosus showed antimicrobial activities against A. baumannii, E. coli and S. aureus at 25-50 mg/ml. Anti-adhesive and anti-biofilm activities were also observed for the aforementioned pathogens between 25 and 50 mg/ml. Finally, analysis by electron microscope indicated that the BS caused membrane damage for A. baumannii and pronounced cell wall damage in S. aureus. Conclusion Our results indicate that BS isolated from two Lactobacilli strains has antibacterial properties against MDR strains of A. baumannii, E. coli and MRSA. Both BS also displayed anti-adhesive and anti-biofilm abilities against A. baumannii, E. coli and S. aureus. Together, these capabilities may open up possibilities for BS as an alternative therapeutic approach for the prevention and/or treatment of hospital-acquired infections. PMID:25124936

  11. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    PubMed

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  12. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China.

    PubMed

    Zhu, Yuanting; Lai, Haimei; Zou, Likou; Yin, Sheng; Wang, Chengtao; Han, Xinfeng; Xia, Xiaolong; Hu, Kaidi; He, Li; Zhou, Kang; Chen, Shujuan; Ao, Xiaolin; Liu, Shuliang

    2017-10-16

    A total of 189 Salmonella isolates were recovered from 627 samples which were collected from cecal contents of broilers, chicken carcasses, chicken meat after cutting step and frozen broiler chicken products along the slaughtering process at a slaughterhouse in Sichuan province of China. The Salmonella isolates were subjected to antimicrobial susceptibility testing to 10 categories of antimicrobial agents using the Kirby-Bauer disk diffusion method. Those antibiotics-resistant isolates were further investigated for the occurrence of resistance genes, the presence of class 1 integron as well as the associated gene cassettes, and the mutations within the gyrA and parC genes. Consequently, the prevalence of Salmonella was 30.14% (47.96% for cecal content, 18.78% for chicken carcasses, 31.33% for cutting meat and 14.00% for frozen meat, respectively). The predominant serotypes were S. Typhimurium (15.34%) and S. Enteritidis (69.84%). High resistance rates to the following drugs were observed: nalidixic acid (99.5%), ampicillin (87.8%), tetracycline (51.9%), ciprofloxacin (48.7%), trimethoprim/sulfamethoxazole (48.1%), and spectinomycin (34.4%). Antimicrobial resistance profiling showed that 60.8% of isolates were multidrug resistant (MDR), and MDR strains increased from 44.7% to 78.6% along the slaughtering line. 94.6% (n=157) of beta-lactam-resistant isolates harbored at least one resistance gene of bla TEM or bla CTX-M . The relatively low prevalence of aminoglycoside resistance genes (aac(3)-II, aac(3)-IV, and ant(2″)-I) was found in 49 (66.2%) of antibiotic-resistant isolates. The tetracycline resistance genes (tet(A), tet(B), tet(C), and tet(G) and sulfonamide resistance genes (sul1, sul2, and sul3) were identified in 84 (85.7%) and 89 (97.8%) antibiotic-resistant isolates respectively. floR was identified in 44 (97.8%) florfenicol-resistant isolates. Class 1 integron was detected in 37.4% (n=43) of the MDR isolates. Two different gene cassettes, bla OXA-30 -aad

  13. ABCB1 as predominant resistance mechanism in cells with acquired SNS-032 resistance

    PubMed Central

    Rothweiler, Florian; Voges, Yvonne; Balónová, Barbora; Blight, Barry A.; Cinatl, Jindrich

    2016-01-01

    The CDK inhibitor SNS-032 had previously exerted promising anti-neuroblastoma activity via CDK7 and 9 inhibition. ABCB1 expression was identified as major determinant of SNS-032 resistance. Here, we investigated the role of ABCB1 in acquired SNS-032 resistance. In contrast to ABCB1-expressing UKF-NB-3 sub-lines resistant to other ABCB1 substrates, SNS-032-adapted UKF-NB-3 (UKF-NB-3rSNS- 032300nM) cells remained sensitive to the non-ABCB1 substrate cisplatin and were completely re-sensitized to cytotoxic ABCB1 substrates by ABCB1 inhibition. Moreover, UKF-NB-3rSNS-032300nM cells remained similarly sensitive to CDK7 and 9 inhibition as UKF-NB-3 cells. In contrast, SHEPrSNS-0322000nM, the SNS-032-resistant sub-line of the neuroblastoma cell line SHEP, displayed low level SNS-032 resistance also when ABCB1 was inhibited. This discrepancy may be explained by the higher SNS-032 concentrations that were used to establish SHEPrSNS-0322000nM cells, since SHEP cells intrinsically express ABCB1 and are less sensitive to SNS-032 (IC50 912 nM) than UKF-NB-3 cells (IC50 153 nM). In conclusion, we show that ABCB1 expression represents the primary (sometimes exclusive) resistance mechanism in neuroblastoma cells with acquired resistance to SNS-032. Thus, ABCB1 inhibitors may increase the SNS-032 efficacy in ABCB1-expressing cells and prolong or avoid resistance formation. PMID:27517323

  14. Development of a DNA microarray to detect antimicrobial resistance genes identified in the national center for biotechnology information database

    USDA-ARS?s Scientific Manuscript database

    High density genotyping techniques are needed for investigating antimicrobial resistance especially in the case of multi-drug resistant (MDR) isolates. To achieve this all antimicrobial resistance genes in the NCBI Genbank database were identified by key word searches of sequence annotations and the...

  15. Antimicrobial Resistance Determinants in Acinetobacter baumannii Isolates Taken from Military Treatment Facilities

    PubMed Central

    Leski, Tomasz A.; Stockelman, Michael G.; Craft, David W.; Zurawski, Daniel V.; Kirkup, Benjamin C.; Vora, Gary J.

    2014-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii infections are of particular concern within medical treatment facilities, yet the gene assemblages that give rise to this phenotype remain poorly characterized. In this study, we tested 97 clinical A. baumannii isolates collected from military treatment facilities (MTFs) from 2003 to 2009 by using a molecular epidemiological approach that enabled for the simultaneous screening of 236 antimicrobial resistance genes. Overall, 80% of the isolates were found to be MDR, each strain harbored between one and 17 resistant determinants, and a total of 52 unique resistance determinants or gene families were detected which are known to confer resistance to β-lactam (e.g., blaGES-11, blaTEM, blaOXA-58), aminoglycoside (e.g., aphA1, aacC1, armA), macrolide (msrA, msrB), tetracycline [e.g., tet(A), tet(B), tet(39)], phenicol (e.g., cmlA4, catA1, cat4), quaternary amine (qacE, qacEΔ1), streptothricin (sat2), sulfonamide (sul1, sul2), and diaminopyrimidine (dfrA1, dfrA7, dfrA19) antimicrobial compounds. Importantly, 91% of the isolates harbored blaOXA-51-like carbapenemase genes (including six new variants), 40% harbored the blaOXA-23 carbapenemase gene, and 89% contained a variety of aminoglycoside resistance determinants with up to six unique determinants identified per strain. Many of the resistance determinants were found in potentially mobile gene cassettes; 45% and 7% of the isolates contained class 1 and class 2 integrons, respectively. Combined, the results demonstrate a facile approach that supports a more complete understanding of the genetic underpinnings of antimicrobial resistance to better assess the load, transmission, and evolution of MDR in MTF-associated A. baumannii. PMID:24247131

  16. Microbiological Trends and Antimicrobial Resistance in Peritoneal Dialysis-Related Peritonitis, 2005 to 2014.

    PubMed

    Zelenitsky, Sheryl A; Howarth, Jacy; Lagacé-Wiens, Philippe; Sathianathan, Christie; Ariano, Robert; Davis, Christine; Verrelli, Mauro

    2017-01-01

    ♦ BACKGROUND: Information related to the microbiology of peritonitis is critical to the optimal management of patients receiving peritoneal dialysis (PD). The goal was to characterize the microbiological etiology and antimicrobial susceptibilities of PD-related peritonitis (PDRP) from 2005 to 2014, inclusive. ♦ METHODS: The distribution of organisms in culture-positive PDRP was described for new episodes and relapse infections, and further detailed for monomicrobial and polymicrobial peritonitis. Annual and overall rates of PDRP were also characterized. Antimicrobial susceptibility rates were calculated for the most common and significant organisms. ♦ RESULTS: We identified 539 episodes of PDRP including 501 new and 38 relapse infections. New episodes of peritonitis were associated with a single organism in 85% of cases, and 44% of those involved staphylococci. Polymicrobial PDRP was more likely to involve gram-negative organisms, observed in 58% versus 24% of monomicrobial infections. Antimicrobial resistance was relatively stable from 2005 to 2014. Methicillin resistance was present in 57% of Staphylococcus epidermidis and 20% of other coagulase-negative staphylococci. Methicillin-resistant Staphylococcus aureus (MRSA) accounted for only 11% of S. aureus peritonitis compared with 2% in our previous study of PDRP from 1991 to 1998. Ciprofloxacin resistance in Escherichia coli increased from 3% in our previous study to 24% in 2005 - 2014. ♦ CONCLUSIONS: This study characterizes important differences in the distribution of organisms in new episodes of PDRP and relapse infections, as well as monomicrobial versus polymicrobial peritonitis. It also shows relatively stable rates of antimicrobial resistance from 2005 to 2014, but some increases compared with our previous study. Copyright © 2017 International Society for Peritoneal Dialysis.

  17. Causative Organisms and Associated Antimicrobial Resistance in Healthcare-Associated, Central Line-Associated Bloodstream Infections From Oncology Settings, 2009-2012.

    PubMed

    See, Isaac; Freifeld, Alison G; Magill, Shelley S

    2016-05-15

    Recent antimicrobial resistance data are lacking from inpatient oncology settings to guide infection prophylaxis and treatment recommendations. We describe central line-associated bloodstream infection (CLABSI) pathogens and antimicrobial resistance patterns reported from oncology locations to the Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN). CLABSI data reported to NHSN from 2009 to 2012 from adult inpatient oncology locations were compared to data from nononcology adult locations within the same hospitals. Pathogen profile, antimicrobial resistance rates, and CLABSI incidence rates per 1000 central line-days were calculated. CLABSI incidence rates were compared using Poisson regression. During 2009-2012, 4654 CLABSIs were reported to NHSN from 299 adult oncology units. The most common organisms causing CLABSI in oncology locations were coagulase-negative staphylococci (16.9%), Escherichia coli (11.8%), and Enterococcus faecium (11.4%). Fluoroquinolone resistance was more common among E. coli CLABSI in oncology than nononcology locations (56.5% vs 41.5% of isolates tested; P < .0001) and increased significantly from 2009-2010 to 2011-2012 (49.5% vs 60.4%; P = .01). Furthermore, rates of CLABSI were significantly higher in oncology compared to nononcology locations for fluoroquinolone-resistant E. coli (rate ratio, 7.37; 95% confidence interval [CI], 6.20-8.76) and vancomycin-resistant E. faecium (rate ratio, 2.27, 95% CI, 2.03-2.53). However, resistance rates for some organisms, such as Klebsiella species and Pseudomonas aeruginosa, were lower in oncology than in nononcology locations. Antimicrobial-resistant E. coli and E. faecium have become significant pathogens in oncology. Practices for antimicrobial prophylaxis and empiric antimicrobial therapy should be regularly assessed in conjunction with contemporary antimicrobial resistance data. Published by Oxford University Press for the Infectious Diseases Society of

  18. A multicenter surveillance of antimicrobial resistance in Serratia marcescens in Taiwan.

    PubMed

    Liou, Bo-Huang; Duh, Ruay-Wang; Lin, Yi-Tsung; Lauderdale, Tsai-Ling Yang; Fung, Chang-Phone

    2014-10-01

    Serratia marcescens is an important nosocomial pathogen and the characteristic property of resistance conferred by extended-spectrum beta-lactamase or a novel AmpC cephalosporinase was not unusual in Taiwan. This study investigated the trends in antimicrobial resistance in S. marcescens from a nationwide surveillance in Taiwan. S. marcescens isolates were collected biennially between 2002 and 2010 from medical centers and regional hospitals throughout Taiwan, as part of the Taiwan Surveillance of Antimicrobial Resistance program. Minimal inhibitory concentrations were determined by the Clinical and Laboratory Standards Institute reference broth microdilution method. A total of 403 nonduplicate S. marcescens isolates were collected, mostly from respiratory samples (157, 39.0%), followed by the urinary tract samples (90, 22.3%). Overall, 99.3% isolates were susceptible to imipenem, 93.8% to ceftazidime, 89.2% to minocycline, 87.8% to amikacin, 86.8% to cefepime, 82.9% to aztreonam, 73.2% to ceftriaxone, 72.7% to levofloxacin, 63.8% to ciprofloxacin, 60.8% to trimethoprim/sulfamethoxazole (TMP/SMX), and 59.6% to gentamicin. A significantly increased susceptibility rate after 2004 was observed for the following antibiotics: amikacin (73.8% vs. 97.1%), gentamicin (40.0% vs. 72.4%), ciprofloxacin (53.8% vs. 70.4%), ceftriaxone (53.8% vs. 86.0%), cefepime (74.4% vs. 95.1%), aztreonam (72.5% vs. 89.7%), and TMP/SMX (41.3% vs. 73.7%). In this 8-year study, the susceptibility of S. marcescens to ceftazidime and imipenem remained consistently high in Taiwan. S. marcescens isolates demonstrated relatively higher resistance to ciprofloxacin and levofloxacin, and therefore continued surveillance of antimicrobial resistance, especially for fluoroquinolone, is warranted. Copyright © 2013. Published by Elsevier B.V.

  19. Public health significance of antimicrobial-resistant gram-negative bacteria in raw bulk tank milk.

    PubMed

    Straley, B A; Donaldson, S C; Hedge, N V; Sawant, A A; Srinivasan, V; Oliver, S P; Jayarao, B M

    2006-01-01

    The dairy farm environment and animals on the farm serve as important reservoirs of pathogenic and commensal bacteria that could potentially gain access to milk in the bulk tank via several pathways. Pathogenic gram-negative bacteria can gain access to bulk tank milk from infected mammary glands, contaminated udders and milking machines, and/or from the dairy farm environment. Contaminated raw milk when consumed by humans or fed to animals on the farm can result in gastroenteric infections in humans and animals and also provide an opportunity for organisms to colonize the farm environment. This scenario becomes much more complicated when pathogenic bacteria such as Salmonella, Shiga toxin-producing Escherichia coli, and commensal gram-negative enteric bacteria encode for antimicrobial resistance determinants. In recent years, the role of commensal bacteria as reservoirs of genetic determinants for antimicrobial resistance has come under closer scrutiny. Commensal bacteria in bulk tank milk can be a significant reservoir of antimicrobial determinants. Raw milk consumption can result in exposure to antimicrobial-resistant commensal gram-negative bacteria. This paper examines the prevalence and role of commensal gram-negative enteric bacteria in bulk tank milk and their public health significance.

  20. Handling a community-acquired methicillin-resistant Staphylococcus aureus outbreak: emerging data.

    PubMed

    Elston, Dirk M

    2008-08-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CAMRSA) strains continue to emerge as important causes of sepsis, folliculitis, skin abscesses, necrotizing pneumonitis, empyema, and bone and joint infections. Community-acquired methicillin-resistant S aureus often affects young, previously healthy individuals, including athletes and children in day care. Drainage remains the most important intervention for an abscess. The most common CAMRSA strains in the United States, Canada, and Europe remain sensitive to sulfonamides and tetracycline. Rates of clindamycin resistance vary widely geographically, and physicians should be familiar with their local antibiogram data. Multidrug-resistant strains of CAMRSA are emerging, and the routine addition of antibiotics such as tetracycline to animal feed is contributing to the emergence of resistance. Recurrence and spread of infection can be reduced by addressing the carrier state. Strategies for treatment and elimination of staphylococcal carriage are discussed.