Sample records for acquired cloud cover

  1. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  2. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean

  3. Shuttle landing facility cloud cover study: Climatological analysis and two tenths cloud cover rule evaluation

    NASA Technical Reports Server (NTRS)

    Atchison, Michael K.; Schumann, Robin; Taylor, Greg; Warburton, John; Wheeler, Mark; Yersavich, Ann

    1993-01-01

    The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings at the Kennedy Space Center (KSC) states: 'for scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time (approximately 90 minutes before landing time)'. This rule was designed to protect against a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after the de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) developed and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Landing Facility for a five-year (1986-1990) period. The data indicate the best time to land the shuttle at KSC is during the summer while the worst time is during the winter. The analysis also shows the highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 UTC time periods. The worst time of the day to land a shuttle is near sunrise and during the afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations has shown that there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct., 700 mb northerly wind category, 1500 UTC category, and 1600 UTC category there is some evidence that the 0.2 cloud cover rule may be overly conservative. This possibility requires further investigation. As a result of these analyses, the AMU developed nomograms to help the Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (CCFF) forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future work will include updating the two tenths database, further analysis of the data for several categorizations, and developing a proof of concept artificial neural network to provide forecast guidance of weather constraint violations for shuttle

  4. Cloud cover models derived from satellite radiation measurements

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1979-01-01

    Using daily measurement of day and night infrared and incoming and absorbed solar radiation obtained from a TIROS satellite over a period of approximately 45 months, and integrated over 2.5 degree latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four three-month periods, estimates a and b of the two parameters of the best-fit beta distribution were obtained for each grid location. The (a,b) plane was divided into a number of regions. All the geographical locations whose (a,b) estimates were in the same region in the (a,b) plane were said to have the same cloud cover type for that season. For each season, the world was thus divided into separate cloud cover types. Using estimates of mean cloud cover for each season, the world was again divided into separate cloud cover types. The process was repeated for standard deviations. Thus for each season, three separate cloud cover models were obtained using the criteria of shape of frequency distribution, mean cloud cover, and variability of cloud cover. The cloud cover statistics were derived from once-a-day, near-local-noon satellite radiation measurements.

  5. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  6. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  7. Methods for Cloud Cover Estimation

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Huning, J. R.; Smith, J. H.; Logan, T. L.

    1984-01-01

    Several methods for cloud cover estimation are described relevant to assessing the performance of a ground-based network of solar observatories. The methods rely on ground and satellite data sources and provide meteorological or climatological information. One means of acquiring long-term observations of solar oscillations is the establishment of a ground-based network of solar observatories. Criteria for station site selection are: gross cloudiness, accurate transparency information, and seeing. Alternative methods for computing this duty cycle are discussed. The cycle, or alternatively a time history of solar visibility from the network, can then be input to a model to determine the effect of duty cycle on derived solar seismology parameters. Cloudiness from space is studied to examine various means by which the duty cycle might be computed. Cloudiness, and to some extent transparency, can potentially be estimated from satellite data.

  8. Some new worldwide cloud-cover models

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1981-01-01

    Using daily measurements of day and night infrared, and incoming and absorbed solar radiation obtained from a Tiros satellite over a period of approximately 45 months, and integrated over 2.5 deg latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four 3-month periods, for each grid location, estimates a and b of the two parameters of the best-fit beta distribution were obtained. The (a, b) plane was divided into a number of regions. All the geographical locations whose (a, b) estimates were in the same region in the (a, b) plane were said to have the same cloud cover type for that season. For each season, the world is thus divided into separate cloud-cover types.

  9. Smoke and Pollution Aerosol Effect on Cloud Cover

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  10. The beta distribution: A statistical model for world cloud cover

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.

  11. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  12. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  13. Possible external sources of terrestrial cloud cover variability: the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona

    2014-05-01

    Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.

  14. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1995-01-01

    Ten years of nighttime weather observations from the Northern Hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 deg, light from a partial moon at higher elevation, or twilight from the sun less than 9 deg bvelow the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. The diurnal cycles of total cloud cover we obtain are compared with those of the International Satellite Cloud Climatology Project (ISCCP) for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed 10 years (1982-91) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog, and precipitation. The global average cloud cover (average of day and night) is about 2% higher if the moonlight criterion is imposed than if all observations are used. The difference is greater in winter than in summer, because of the fewer hours of darkness in summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-91 is found to be 55% for Northern Hemisphere land, 53% for Southern Hemisphere land, 66% for

  15. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Lohmann, Ulrike

    2003-08-01

    The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.

  16. A new NASA/MSFC mission analysis global cloud cover data base

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jeffries, W. R., III

    1985-01-01

    A global cloud cover data set, derived from the USAF 3D NEPH Analysis, was developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter - total sky cover - separated in time by 3 or 6 hr intervals and in space by approximately 50 n.mi. Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover. The data are arranged in both quarterly and monthly formats. The data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere from 1972 through 1977 less 1976. For the Southern Hemisphere, there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added. To validate the data base, the percent frequency of or = 0.3 and or = 0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement. Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere. The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. No adjustments are required to account for cloud continuity.

  17. Cloud cover estimation optical package: New facility, algorithms and techniques

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail

    2017-02-01

    Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.

  18. A portable low-cost 3D point cloud acquiring method based on structure light

    NASA Astrophysics Data System (ADS)

    Gui, Li; Zheng, Shunyi; Huang, Xia; Zhao, Like; Ma, Hao; Ge, Chao; Tang, Qiuxia

    2018-03-01

    A fast and low-cost method of acquiring 3D point cloud data is proposed in this paper, which can solve the problems of lack of texture information and low efficiency of acquiring point cloud data with only one pair of cheap cameras and projector. Firstly, we put forward a scene adaptive design method of random encoding pattern, that is, a coding pattern is projected onto the target surface in order to form texture information, which is favorable for image matching. Subsequently, we design an efficient dense matching algorithm that fits the projected texture. After the optimization of global algorithm and multi-kernel parallel development with the fusion of hardware and software, a fast acquisition system of point-cloud data is accomplished. Through the evaluation of point cloud accuracy, the results show that point cloud acquired by the method proposed in this paper has higher precision. What`s more, the scanning speed meets the demand of dynamic occasion and has better practical application value.

  19. Comparasion of Cloud Cover restituted by POLDER and MODIS

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part

  20. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.

  1. Correlation between atmospheric electric fields and cloud cover using a field mill and cloud observation data

    NASA Astrophysics Data System (ADS)

    Nakamori, Kota; Suzuki, Yasuki; Ohya, Hiroyo; Takano, Toshiaki; Kawamura, Yohei; Nakata, Hiroyuki; Yamashita, Kozo

    2017-04-01

    It is known that lightning and precipitations of rain droplets generated from thunderclouds are a generator of global atmospheric electric circuit. In the fair weather, the atmospheric electric fields (AEF) are downward (positive), while they are upward (negative) during lightning and precipitations. However, the correlations between the AEF, and the cloud parameters such as cloud cover, weather phenomenon, have been not revealed quantitatively yet. In this study, we investigate the correlations between the AEF and the cloud parameters, weather phenomenon using a field mill, the 95 GHz-FALCON (FMCW Radar for Cloud Observations)-I and all-sky camera observations. In this study, we installed a Boltek field mill on the roof of our building in Chiba University, Japan, (Geographic coordinate: 35.63 degree N, 140.10 degree E, the sea level: 55 m) on the first June, 2016. The sampling time of the AEF is 0.5 s. On the other hand, the FALCON-I has observed the cloud parameters far from about 76 m of the field mill throughout 24 hours every day. The vertical cloud profiles and the Doppler velocity of cloud particles can be derived by the FALCON-I with high distance resolutions (48.8 m) (Takano et al., 2010). In addition, the images of the clouds and precipitations are recorded with 30-s sampling by an all-sky camera using a CCD camera on the same roof during 05:00-22:00 LT every day. The distance between the field mill and the all-sky camera is 3.75 m. During 08:30 UT - 10:30 UT, on 4 July, 2016, we found the variation of the AEF due to the approach of thundercloud. The variation consisted of two patterns. One was slow variation due to the movement of thunderclouds, and the other was rapid variation associated with lightning discharges. As for the movement of thunderclouds, the AEF increased when the anvil was located over the field mill, which was opposite direction of the previous studies. This change might be due to the positive charges in the upper anvil more than 14 km

  2. Observational evidence for cloud cover enhancement over western European forests

    PubMed Central

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840

  3. Observational evidence for cloud cover enhancement over western European forests.

    PubMed

    Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-11

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

  4. Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Gebelein, Jennifer

    1999-01-01

    This report is produced in accordance with the requirements outlined in the NASA Research Grant NAG9-1032 titled "Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery". This grant funds the Remote Sensing Research Unit of the University of California, Santa Barbara. This document summarizes the research progress and accomplishments to date and describes current on-going research activities. Even though this grant has technically expired, in a contractual sense, work continues on this project. Therefore, this summary will include all work done through and 5 May 1999. The principal goal of this effort is to test the accuracy of a sub-regional portion of an AVHRR-based land cover product. Land cover mapped to three different classification systems, in the southwestern United States, have been subjected to two specific accuracy assessments. One assessment utilizing astronaut acquired photography, and a second assessment employing Landsat Thematic Mapper imagery, augmented in some cases, high aerial photography. Validation of these three land cover products has proceeded using a stratified sampling methodology. We believe this research will provide an important initial test of the potential use of imagery acquired from Shuttle and ultimately the International Space Station (ISS) for the operational validation of the Moderate Resolution Imaging Spectrometer (MODIS) land cover products.

  5. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  6. Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature

    NASA Astrophysics Data System (ADS)

    Grimbacher, T.; Schmid, W.

    2003-04-01

    Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar

  7. A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide

    2015-04-01

    Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of

  8. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: to develop suitable validation data sets to evaluate the effectiveness of the ISCCP operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers: and to compare synoptic cloud data from a control run experiment of the Goddard Institute for Space Studies (GISS) climate model 2 with typical observed synoptic cloud patterns. Current investigations underway are listed and the progress made to date is summarized.

  9. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  10. Application and Evaluation of an Explicit Prognostic Cloud-Cover Scheme in GRAPES Global Forecast System

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan; Liu, Qijun; Zhao, Chuanfeng; Shen, Xueshun; Wang, Yuan; Jiang, Jonathan H.; Li, Zhe; Yung, Yuk

    2018-03-01

    An explicit prognostic cloud-cover scheme (PROGCS) is implemented into the Global/Regional Assimilation and Prediction System (GRAPES) for global middle-range numerical weather predication system (GRAPES_GFS) to improve the model performance in simulating cloud cover and radiation. Unlike the previous diagnostic cloud-cover scheme (DIAGCS), PROGCS considers the formation and dissipation of cloud cover by physically connecting it to the cumulus convection and large-scale stratiform condensation processes. Our simulation results show that clouds in mid-high latitudes arise mainly from large-scale stratiform condensation processes, while cumulus convection and large-scale condensation processes jointly determine cloud cover in low latitudes. Compared with DIAGCS, PROGCS captures more consistent vertical distributions of cloud cover with the observations from Atmospheric Radiation Measurements (ARM) program at the Southern Great Plains (SGP) site and simulates more realistic diurnal cycle of marine stratocumulus with the ERA-Interim reanalysis data. The low, high, and total cloud covers that are determined via PROGCS appear to be more realistic than those simulated via DIAGCS when both are compared with satellite retrievals though the former maintains slight negative biases. In addition, the simulations of outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from PROGCS runs have been considerably improved as well, resulting in less biases in radiative heating rates at heights below 850 hPa and above 400 hPa of GRAPES_GFS. Our results indicate that a prognostic method of cloud-cover calculation has significant advantage over the conventional diagnostic one, and it should be adopted in both weather and climate simulation and forecast.

  11. Antarctica Cloud Cover for October 2003 from GLAS Satellite Lidar Profiling

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hart, W. D.

    2005-01-01

    Seeing clouds in polar regions has been a problem for the imagers used on satellites. Both clouds and snow and ice are white, which makes clouds over snow hard to see. And for thermal infrared imaging both the surface and the clouds cold. The Geoscience Laser Altimeter System (GLAS) launched in 2003 gives an entirely new way to see clouds from space. Pulses of laser light scatter from clouds giving a signal that is separated in time from the signal from the surface. The scattering from clouds is thus a sensitive and direct measure of the presence and height of clouds. The GLAS instrument orbits over Antarctica 16 times a day. All of the cloud observations for October 2003 were summarized and compared to the results from the MODIS imager for the same month. There are two basic cloud types that are observed, low stratus with tops below 3 km and high cirrus form clouds with cloud top altitude and thickness tending at 12 km and 1.3 km respectively. The average cloud cover varies from over 93 % for ocean and coastal regions to an average of 40% over the East Antarctic plateau and 60-90% over West Antarctica. When the GLAS monthly average cloud fractions are compared to the MODIS cloud fraction data product, differences in the amount of cloud cover are as much as 40% over the continent. The results will be used to improve the way clouds are detected from the imager observations. These measurements give a much improved understanding of distribution of clouds over Antarctica and may show how they are changing as a result of global warming.

  12. Extension of four-dimensional atmospheric models. [and cloud cover data bank

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Lisa, A. S.; Tung, S. L.

    1975-01-01

    The cloud data bank, the 4-D atmospheric model, and a set of computer programs designed to simulate meteorological conditions for any location above the earth are described in turns of space vehicle design and simulation of vehicle reentry trajectories. Topics discussed include: the relationship between satellite and surface observed cloud cover using LANDSAT 1 photographs and including the effects of cloud shadows; extension of the 4-D model to the altitude of 52 km; and addition of the u and v wind components to the 4-D model of means and variances at 1 km levels from the surface to 25 km. Results of the cloud cover analysis are presented along with the stratospheric model and the tropospheric wind profiles.

  13. Retrieval of cloud cover parameters from multispectral satellite images

    NASA Technical Reports Server (NTRS)

    Arking, A.; Childs, J. D.

    1985-01-01

    A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.

  14. Atlantic Multidecadal Oscillation footprint on global high cloud cover

    NASA Astrophysics Data System (ADS)

    Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela

    2017-12-01

    Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.

  15. Rise in the frequency of cloud cover in LANDSAT data for the period 1973 to 1981. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Mendonca, F. J.; Neto, G. C.

    1983-01-01

    Percentages of cloud cover in LANDSAT imagery were used to calculate the cloud cover monthly average statistic for each LANDSAT scene in Brazil, during the period of 1973 to 1981. The average monthly cloud cover and the monthly minimum cloud cover were also calculated for the regions of north, northeast, central west, southeast and south, separately.

  16. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  17. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  18. Cloud Cover

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  19. Study and Application on Cloud Covered Rate for Agroclimatical Distribution Using In Guangxi Based on Modis Data

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua

    Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.

  20. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  1. Cloud cover and horizontal plane eye damaging solar UV exposures.

    PubMed

    Parisi, A V; Downs, N

    2004-11-01

    The spectral UV and the cloud cover were measured at intervals of 5 min with an integrated cloud and spectral UV measurement system at a sub-tropical Southern Hemisphere site for a 6-month period and solar zenith angle (SZA) range of 4.7 degrees to approximately 80 degrees . The solar UV spectra were recorded between 280 nm and 400 nm in 0.5 nm increments and weighted with the action spectra for photokeratitis and cataracts in order to investigate the effect of cloud cover on the horizontal plane biologically damaging UV irradiances for cataracts (UVBE(cat)) and photokeratitis (UVBE(pker)). Eighty five percent of the recorded spectra produced a measured irradiance to a cloud free irradiance ratio of 0.6 and higher while 76% produced a ratio of 0.8 and higher. Empirical non-linear expressions as a function of SZA have been developed for all sky conditions to allow the evaluation of the biologically damaging UV irradiances for photokeratitis and cataracts from a knowledge of the unweighted UV irradiances.

  2. Trends and uncertainties in U.S. cloud cover from weather stations and satellite data

    NASA Astrophysics Data System (ADS)

    Free, M. P.; Sun, B.; Yoo, H. L.

    2014-12-01

    Cloud cover data from ground-based weather observers can be an important source of climate information, but the record of such observations in the U.S. is disrupted by the introduction of automated observing systems and other artificial shifts that interfere with our ability to assess changes in cloudiness at climate time scales. A new dataset using 54 National Weather Service (NWS) and 101 military stations that continued to make human-augmented cloud observations after the 1990s has been adjusted using statistical changepoint detection and visual scrutiny. The adjustments substantially reduce the trends in U.S. mean total cloud cover while increasing the agreement between the cloud cover time series and those of physically related climate variables such as diurnal temperature range and number of precipitation days. For 1949-2009, the adjusted time series give a trend in U.S. mean total cloud of 0.11 ± 0.22 %/decade for the military data, 0.55 ± 0.24 %/decade for the NWS data, and 0.31 ± 0.22 %/decade for the combined dataset. These trends are less than half those in the original data. For 1976-2004, the original data give a significant increase but the adjusted data show an insignificant trend of -0.17 (military stations) to 0.66 %/decade (NWS stations). The differences between the two sets of station data illustrate the uncertainties in the U.S. cloud cover record. We compare the adjusted station data to cloud cover time series extracted from several satellite datasets: ISCCP (International Satellite Cloud Climatology Project), PATMOS-x (AVHRR Pathfinder Atmospheres Extended) and CLARA-a1 (CM SAF cLoud Albedo and RAdiation), and the recently developed PATMOS-x diurnally corrected dataset. Like the station data, satellite cloud cover time series may contain inhomogeneities due to changes in the observing systems and problems with retrieval algorithms. Overall we find good agreement between interannual variability in most of the satellite data and that in our

  3. Monthly and Seasonal Cloud Cover Patterns at the Manila Observatory (14.64°N, 121.08°E)

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Lagrosas, N.; Caballa, K.

    2014-12-01

    A ground based sky imaging system was developed at the Manila Observatory in 2012 to measure cloud occurrence and to analyse seasonal variation of cloud cover over Metro Manila. Ground-based cloud occurrence measurements provide more reliable results compared to satellite observations. Also, cloud occurrence data aid in the analysis of radiation budget in the atmosphere. In this study, a GoPro Hero 2 with almost 180o field of view is employed to take pictures of the atmosphere. These pictures are taken continuously, having a temporal resolution of 1min. Atmospheric images from April 2012 to June 2013 (excluding the months of September, October, and November 2012) were processed to determine cloud cover. Cloud cover in an image is measured as the ratio of the number of pixels with clouds present in them to the total number of pixels. The cloud cover values were then averaged over each month to know its monthly and seasonal variation. In Metro Manila, the dry season occurs in the months of November to May of the next year, while the wet season occurs in the months of June to October of the same year. Fig 1 shows the measured monthly variation of cloud cover. No data was collected during the months of September (wherein the camera was used for the 7SEAS field campaign), October, and November 2012 (due to maintenance and repairs). Results show that there is high cloud cover during the wet season months (80% on average) while there is low cloud cover during the dry season months (62% on average). The lowest average cloud cover for a wet season month occurred in June 2012 (73%) while the highest average cloud cover for a wet season month occurred in June 2013 (86%). The variations in cloud cover average in this season is relatively smaller compared to that of the dry season wherein the lowest average cloud cover in a month was during April 2012 (38%) while the highest average cloud cover in a month was during January 2013 (77%); minimum and maximum averages being 39

  4. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.

    2010-01-01

    The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.

  5. Atmospheric Soundings from AIRS/AMSU in Partial Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2005-01-01

    Simultaneous use of AIRS/AMSU-A observations allow for the determination of accurate atmospheric soundings under partial cloud cover conditions. The methodology involves the determination of the radiances AIRS would have seen if the AIRS fields of view were clear, called clear column radiances, and use of these radiances to infer the atmospheric and surface conditions giving rise to these clear column radiances. Susskind et al. demonstrate via simulation that accurate temperature soundings and clear column radiances can be derived from AIRS/AMSU-A observations in cases of up to 80% partial cloud cover, with only a small degradation in accuracy compared to that obtained in clear scenes. Susskind and Atlas show that these findings hold for real AIRS/AMSU-A soundings as well. For data assimilation purposes, this small degradation in accuracy is more than offset by a significant increase in spatial coverage (roughly 50% of global cases were accepted, compared to 3.6% of the global cases being diagnosed as clear), and assimilation of AIRS temperature soundings in partially cloudy conditions resulted in a larger improvement in forecast skill than when AIRS soundings were assimilated only under clear conditions. Alternatively, derived AIRS clear column radiances under partial cloud cover could also be used for data assimilation purposes. Further improvements in AIRS sounding methodology have been made since the results shown in Susskind and Atlas . A new version of the AIRS/AMSU-A retrieval algorithm, Version 4.0, was delivered to the Goddard DAAC in February 2005 for production of AIRS derived products, including clear column radiances. The major improvement in the Version 4.0 retrieval algorithm is with regard to a more flexible, parameter dependent, quality control. Results are shown of the accuracy and spatial distribution of temperature-moisture profiles and clear column radiances derived from AIRS/AMSU-A as a function of fractional cloud cover using the Version 4

  6. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  7. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is

  8. Statistical analysis of multivariate atmospheric variables. [cloud cover

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.

    1979-01-01

    Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.

  9. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Maslanik, J. A.; Key, J. R.

    1987-01-01

    A definition is undertaken of the spectral and spatial characteristics of clouds and surface conditions in the polar regions, and to the creation of calibrated, geometrically correct data sets suitable for quantitative analysis. Ways are explored in which this information can be applied to cloud classifications as new methods or as extensions to existing classification schemes. A methodology is developed that uses automated techniques to merge Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel Microwave Radiometer (SMMR) data, and to apply first-order calibration and zenith angle corrections to the AVHRR imagery. Cloud cover and surface types are manually interpreted, and manual methods are used to define relatively pure training areas to describe the textural and multispectral characteristics of clouds over several surface conditions. The effects of viewing angle and bidirectional reflectance differences are studied for several classes, and the effectiveness of some key components of existing classification schemes is tested.

  10. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

    PubMed Central

    Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.

    2017-01-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014

  11. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    PubMed

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  12. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  13. Cloud cover archiving on a global scale - A discussion of principles

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.; Hughes, N. A.; Wilson, M.

    1981-01-01

    Monitoring of climatic variability and climate modeling both require a reliable global cloud data set. Examination is made of the temporal and spatial variability of cloudiness in light of recommendations made by GARP in 1975 (and updated by JOC in 1978 and 1980) for cloud data archiving. An examination of the methods of comparing cloud cover frequency curves suggests that the use of the beta distribution not only facilitates objective comparison, but also reduces overall storage requirements. A specific study of the only current global cloud climatology (the U.S. Air Force's 3-dimensional nephanalysis) over the United Kingdom indicates that discussion of methods of validating satellite-based data sets is urgently required.

  14. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J.

    1989-01-01

    The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.

  15. Automated Visibility & Cloud Cover Measurements with a Solid State Imaging System

    DTIC Science & Technology

    1989-03-01

    GL-TR-89-0061 SIO Ref. 89-7 MPL-U-26/89 AUTOMATED VISIBILITY & CLOUD COVER MEASUREMENTS WITH A SOLID-STATE IMAGING SYSTEM C) to N4 R. W. Johnson W. S...include Security Classification) Automated Visibility & Cloud Measurements With A Solid State Imaging System 12. PERSONAL AUTHOR(S) Richard W. Johnson...based imaging systems , their ics and control algorithms, thus they ar.L discussed sepa- initial deployment and the preliminary application of rately

  16. THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Line, Michael R.; Parmentier, Vivien, E-mail: mrline@ucsc.edu

    2016-03-20

    We model the impact of nonuniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1–1.7 μm). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the “patchy cloud-high mean molecular weight” degeneracy exists. We also explore the degeneracy ofmore » nonuniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud-free high mean molecular weight warm Neptune that both cloud-free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key finding is that the HST WFC3 transit transmission spectra of two well-observed objects, the hot Jupiter HD 189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼100 ppm residual in the ingress and egress of the transit light curves, provided that the transit timing is known to seconds.« less

  17. Enhancement of Cloud Cover and Suppression of Nocturnal Drizzle in Stratocumulus Polluted by Haze

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ ship-track measurements that show no average change in cloud water relative to the surrounding clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. Our simulations also show that increases in cloud water from drizzle suppression (by increasing droplet concentrations) are favored at night or at extremely low droplet concentrations.

  18. The Influence of Cloud Field Uniformity on Observed Cloud Amount

    NASA Astrophysics Data System (ADS)

    Riley, E.; Kleiss, J.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.

    2017-12-01

    Two ground-based measurements of cloud amount include cloud fraction (CF) obtained from time series of zenith-pointing radar-lidar observations and fractional sky cover (FSC) acquired from a Total Sky Imager (TSI). In comparison with the radars and lidars, the TSI has a considerably larger field of view (FOV 100° vs. 0.2°) and therefore is expected to have a different sensitivity to inhomogeneity in a cloud field. Radiative transfer calculations based on cloud properties retrieved from narrow-FOV overhead cloud observations may differ from shortwave and longwave flux observations due to spatial variability in local cloud cover. This bias will impede radiative closure for sampling reasons rather than the accuracy of cloud microphysics retrievals or radiative transfer calculations. Furthermore, the comparison between observed and modeled cloud amount from large eddy simulations (LES) models may be affected by cloud field inhomogeneity. The main goal of our study is to estimate the anticipated impact of cloud field inhomogeneity on the level of agreement between CF and FSC. We focus on shallow cumulus clouds observed at the U.S. Department of Energy Atmospheric Radiation Measurement Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Our analysis identifies cloud field inhomogeneity using a novel metric that quantifies the spatial and temporal uniformity of FSC over 100-degree FOV TSI images. We demonstrate that (1) large differences between CF and FSC are partly attributable to increases in inhomogeneity and (2) using the uniformity metric can provide a meaningful assessment of uncertainties in observed cloud amount to aide in comparing ground-based measurements to radiative transfer or LES model outputs at SGP.

  19. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  20. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors

    DOE PAGES

    Qu, Xin; Hall, Alex; Klein, Stephen A.; ...

    2015-09-28

    Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less

  1. U.S. Cloud Cover Five Day Flip-Flop

    NASA Image and Video Library

    2013-11-22

    In autumn, cloud cover over the continental United States changes dramatically every few days, as these two remarkably opposite midday views show. In five days, clouds seemed to flip-flop over the U.S. These images were captured by NOAA's GOES-East satellite at 1745 UTC/12:45 p.m. EST on November 18 and 22, 2013. The images were created by Dennis Chesters of the NASA GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Seasonal Change in Titan's Cloud Activity

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Brown, M. E.; Roe, H. G.

    2006-12-01

    We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006 and will acquire data on ~50 additional nights between September and December 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk- integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 &2000) who found rapidly varying clouds covering ~0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  3. Intra-annual variability of cloud cover over the Mediterranean region based on NCEP/NCAR, MODIS and ECAD data sets

    NASA Astrophysics Data System (ADS)

    Ioannidis, Eleftherios; Lolis, Christos J.; Papadimas, Christos D.; Hatzianastassiou, Nikolaos; Bartzokas, Aristides

    2017-04-01

    The seasonal variability of total cloud cover in the Mediterranean region is examined for the period 1948-2014 using a multivariate statistical methodology. The data used consist of: i) daily gridded (1.875°x1.905°) values of total cloud cover over the broader Mediterranean region for the 66-year period 1948-2014, obtained from NCEP/NCAR Reanalysis data set, ii) daily gridded (1°x1°) values of total cloud cover for the period 2003-2014 obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) satellite data set and iii) daily station cloud cover data for the period 2003-2014 obtained from the European Climate Assessment & Dataset (ECA&D). At first, the multivariate statistical method of Factor Analysis (S-mode) with varimax rotation is applied as a dimensionality reduction tool on the mean day to day intra-annual variation of NCEP/NCAR cloud cover for the period 1948-2014. According to the results, three main modes of intra-annual variation of cloud cover are found. The first mode is characterized by a winter maximum and a summer minimum and prevails mainly over the sea; a weak see-saw teleconnection over the Alps represents the opposite intra-annual marching. The second mode presents maxima in early autumn and late spring, and minima in late summer and winter, and prevails over the SW Europe and NW Africa inland regions. The third mode shows a maximum in June and a minimum in October and prevails over the eastern part of central Europe. Next, the mean day to day intra-annual variation of NCEP/NCAR cloud cover over the core regions of the above factors is calculated for the entire period 1948-2014 and the three 22-year sub-periods 1948-70, 1970-92 and 1992-2014. A comparison is carried out between each of the three sub-periods and the total period in order to reveal possible long-term changes in seasonal march of total cloud cover. The results show that cloud cover was reduced above all regions during the last 22-year sub-period 1992

  4. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation

  5. Road Signs Detection and Recognition Utilizing Images and 3d Point Cloud Acquired by Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.

    2016-06-01

    High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.

  6. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  7. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  8. NASA Sees Hurricane Arthur's Cloud-Covered Eye

    NASA Image and Video Library

    2014-07-03

    This visible image of Tropical Storm Arthur was taken by the MODIS instrument aboard NASA's Aqua satellite on July 2 at 18:50 UTC (2:50 p.m. EDT). A cloud-covered eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/content/goddard/arthur-atlantic/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Validation of On-board Cloud Cover Assessment Using EO-1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Miller, Jerry; Griffin, Michael; Burke, Hsiao-hua

    2003-01-01

    The purpose of this NASA Earth Science Technology Office funded effort was to flight validate an on-board cloud detection algorithm and to determine the performance that can be achieved with a Mongoose V flight computer. This validation was performed on the EO-1 satellite, which is operational, by uploading new flight code to perform the cloud detection. The algorithm was developed by MIT/Lincoln Lab and is based on the use of the Hyperion hyperspectral instrument using selected spectral bands from 0.4 to 2.5 microns. The Technology Readiness Level (TRL) of this technology at the beginning of the task was level 5 and was TRL 6 upon completion. In the final validation, an 8 second (0.75 Gbytes) Hyperion image was processed on-board and assessed for percentage cloud cover within 30 minutes. It was expected to take many hours and perhaps a day considering that the Mongoose V is only a 6-8 MIP machine in performance. To accomplish this test, the image taken had to have level 0 and level 1 processing performed on-board before the cloud algorithm was applied. For almost all of the ground test cases and all of the flight cases, the cloud assessment was within 5% of the correct value and in most cases within 1-2%.

  10. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  11. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011

    NASA Astrophysics Data System (ADS)

    Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili

    2013-01-01

    Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.

  12. Evaluating the feasibility of global climate models to simulate cloud cover effect controlled by Marine Stratocumulus regime transitions

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Muelmenstaedt, Johannes; Rosenfeld, Daniel; Quaas, Johannes

    2017-04-01

    Marine stratocumulus clouds (MSC) occur in two main cloud regimes of open and closed cells that differ significantly by their cloud cover. Closed cells gradually get cleansed of high CCN concentrations in a process that involves initiation of drizzle that breaks the full cloud cover into open cells. The drizzle creates downdrafts that organize the convection along converging gust fronts, which in turn produce stronger updrafts that can sustain more cloud water that compensates the depletion of the cloud water by the rain. In addition, having stronger updrafts allow the clouds to grow relatively deep before rain starts to deplete its cloud water. Therefore, lower droplet concentrations and stronger rain would lead to lower cloud fraction, but not necessary also to lower liquid water path (LWP). The fundamental relationships between these key variables derived from global climate model (GCM) simulations are analyzed with respect to observations in order to determine whether the GCM parameterizations can represent well the governing physical mechanisms upon MSC regime transitions. The results are used to evaluate the feasibility of GCM's for estimating aerosol cloud-mediated radiative forcing upon MSC regime transitions, which are responsible for the largest aerosol cloud-mediated radiative forcing.

  13. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.

    PubMed

    Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng

    2018-01-18

    Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

  14. New optical package and algorithms for accurate estimation and interactive recording of the cloud cover information over land and sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey; Gulev, Sergey

    2014-05-01

    Cloud fraction is a critical parameter for the accurate estimation of short-wave and long-wave radiation - one of the most important surface fluxes over sea and land. Massive estimates of the total cloud cover as well as cloud amount for different layers of clouds are available from visual observations, satellite measurements and reanalyses. However, these data are subject of different uncertainties and need continuous validation against highly accurate in-situ measurements. Sky imaging with high resolution fish eye camera provides an excellent opportunity for collecting cloud cover data supplemented with additional characteristics hardly available from routine visual observations (e.g. structure of cloud cover under broken cloud conditions, parameters of distribution of cloud dimensions). We present operational automatic observational package which is based on fish eye camera taking sky images with high resolution (up to 1Hz) in time and a spatial resolution of 968x648px. This spatial resolution has been justified as an optimal by several sensitivity experiments. For the use of the package at research vessel when the horizontal positioning becomes critical, a special extension of the hardware and software to the package has been developed. These modules provide the explicit detection of the optimal moment for shooting. For the post processing of sky images we developed a software realizing the algorithm of the filtering of sunburn effect in case of small and moderate could cover and broken cloud conditions. The same algorithm accurately quantifies the cloud fraction by analyzing color mixture for each point and introducing the so-called "grayness rate index" for every pixel. The accuracy of the algorithm has been tested using the data collected during several campaigns in 2005-2011 in the North Atlantic Ocean. The collection of images included more than 3000 images for different cloud conditions supplied with observations of standard parameters. The system is

  15. Filling of Cloud-Induced Gaps for Land Use and Land Cover Classifications Around Refugee Camps

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Hagensieker, Ron; Hochschild, Volker

    2016-08-01

    Clouds cover is one of the main constraints in the field of optical remote sensing. Especially the use of multispectral imagery is affected by either fully obscured data or parts of the image which remain unusable. This study compares four algorithms for the filling of cloud induced gaps in classified land cover products based on Markov Random Fields (MRF), Random Forest (RF), Closest Spectral Fit (CSF) operators. They are tested on a classified image of Sentinel-2 where artificial clouds are filled by information derived from a scene of Sentinel-1. The approaches rely on different mathematical principles and therefore produced results varying in both pattern and quality. Overall accuracies for the filled areas range from 57 to 64 %. Best results are achieved by CSF, however some classes (e.g. sands and grassland) remain critical through all approaches.

  16. Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Riveiro, Belén; Martínez-Sánchez, Joaquín; Arias, Pedro

    2016-04-01

    Nowadays, mobile laser scanning has become a valid technology for infrastructure inspection. This technology permits collecting accurate 3D point clouds of urban and road environments and the geometric and semantic analysis of data became an active research topic in the last years. This paper focuses on the detection of vertical traffic signs in 3D point clouds acquired by a LYNX Mobile Mapper system, comprised of laser scanning and RGB cameras. Each traffic sign is automatically detected in the LiDAR point cloud, and its main geometric parameters can be automatically extracted, therefore aiding the inventory process. Furthermore, the 3D position of traffic signs are reprojected on the 2D images, which are spatially and temporally synced with the point cloud. Image analysis allows for recognizing the traffic sign semantics using machine learning approaches. The presented method was tested in road and urban scenarios in Galicia (Spain). The recall results for traffic sign detection are close to 98%, and existing false positives can be easily filtered after point cloud projection. Finally, the lack of a large, publicly available Spanish traffic sign database is pointed out.

  17. Winter sky brightness and cloud cover at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Yang, Yi; Fu, Jianning; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel M.; Riddle, Reed; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Tothill, Nicholas F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2013-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.

  18. Winter sky brightness & cloud cover over Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Moore, A. M.; Fu, J.; Ashley, M.; Cui, X.; Feng, L.; Gong, X.; Hu, Z.; Laurence, J.; LuongVan, D.; Riddle, R. L.; Shang, Z.; Sims, G.; Storey, J.; Tothill, N.; Travouillon, T.; Wang, L.; Yang, H.; Yang, J.; Zhou, X.; Zhu, Z.; Burton, M. G.

    2014-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical Observatories. The Gattini DomeA project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fish-eye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R), however, the absence of tracking systems, together with the ultra large field of view 85 degrees) and strong distortion have driven us to seek a unique way to build our data reduction pipeline. We present here the first measurements of sky brightness in the photometric B, V, and R band, cloud cover statistics measured during the 2009 winter season and an estimate of the transparency. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based location. A ~0.2 magnitude agreement of our simultaneous test at Palomar Observatory with NSBM(National Sky Brightness Monitor), as well as an 0.04 magnitude photometric accuracy for typical 6th magnitude stars limited by the instrument design, indicating we obtained reasonable results based on our ~7mm effective aperture fish-eye lens.

  19. Cloud classification in polar regions using AVHRR textural and spectral signatures

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Weger, R. C.; Christopher, S. A.; Kuo, K. S.; Carsey, F. D.

    1990-01-01

    Arctic clouds and ice-covered surfaces are classified on the basis of textural and spectral features obtained with AVHRR 1.1-km spatial resolution imagery over the Beaufort Sea during May-October, 1989. Scenes were acquired about every 5 days, for a total of 38 cases. A list comprising 20 arctic-surface and cloud classes is compiled using spectral measures defined by Garand (1988).

  20. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  1. Effects of Varying Cloud Cover on Springtime Runoff in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.

    2017-12-01

    This study investigates how cloud cover modifies snowmelt-runoff processes in Sierra Nevada watersheds during dry and wet periods. We use two of the California Department of Water Resources' (DWR's) quasi-operational models of the Tuolumne and Merced River basins developed from the USGS Precipitation-Runoff Modeling System (PRMS) hydrologic modeling system. Model simulations are conducted after a validated optimization of model performance in simulating recent (1996-2014) historical variability in the Tuolumne and Merced basins using solar radiation (Qsi) derived from Geostationary Operational Environmental Satellite (GOES) remote sensing. Specifically, the questions we address are: 1) how sensitive are snowmelt and runoff in the Tuolumne and Merced River basins to Qsi variability associated with cloud cover variations?, and 2) does this sensitivity change in dry vs. wet years? To address these question, we conduct two experiments, where: E1) theoretical clear-sky Qsi is used as an input to PRMS, and E2) the annual harmonic cycle of Qsi is used as an input to PRMS. The resulting hydrographs from these experiments exhibit changes in peak streamflow timing by several days to a few weeks and smaller streamflow variability when compared to the actual flows and the original simulations. For E1, despite some variations, this pattern persists when the result is evaluated for dry-year and wet-year subsets, reflecting the consistently higher Qsi input available. For E2, the hydrograph shows a later spring-summer streamflow peak in the dry-year subset when compared to the original simulations, indicating the relative importance of the modulating effect of cloud cover on snowmelt-runoff in drier years.

  2. Predicting the temporal and spatial probability of orographic cloud cover in the Luquillo Experimental Forest in Puerto Rico using generalized linear (mixed) models.

    Treesearch

    Wei Wu; Charlesb Hall; Lianjun Zhang

    2006-01-01

    We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as “the percentage of the area covered by clouds in each pixel on the map” in this paper) at any hour and any place is a function of three topographic variables...

  3. The effects of moon illumination, moon angle, cloud cover, and sky glow on night vision goggle flight performance

    NASA Astrophysics Data System (ADS)

    Loro, Stephen Lee

    This study was designed to examine moon illumination, moon angle, cloud cover, sky glow, and Night Vision Goggle (NVG) flight performance to determine possible effects. The research was a causal-comparative design. The sample consisted of 194 Fort Rucker Initial Entry Rotary Wing NVG flight students being observed by 69 NVG Instructor Pilots. The students participated in NVG flight training from September 1992 through January 1993. Data were collected using a questionnaire. Observations were analyzed using a Kruskal-Wallis one-way analysis of variance and a Wilcox matched pairs signed-ranks test for difference. Correlations were analyzed using Pearson's r. The analyses results indicated that performance at high moon illumination levels is superior to zero moon illumination, and in most task maneuvers, superior to >0%--50% moon illumination. No differences were found in performance at moon illumination levels above 50%. Moon angle had no effect on night vision goggle flight performance. Cloud cover and sky glow have selective effects on different maneuvers. For most task maneuvers, cloud cover does not affect performance. Overcast cloud cover had a significant effect on seven of the 14 task maneuvers. Sky glow did not affect eight out of 14 task maneuvers at any level of sky glow.

  4. Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Tan, Saichun; Shi, Guangyu

    2018-02-01

    Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%-16.64%) than daytime (12.74%-14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%-31.07%) and smallest in summer (4.46%-6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.

  5. Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2013-04-01

    Cloud cover is one of the major factors that determine the radiation budget and the climate system of the Earth. Moreover, the response of clouds has always been an important source of uncertainty in global climate models. Visual surface observations of clouds have been conducted at the National Observatory of Athens (NOA) since the mid 19th century. The historical archive of cloud reports at NOA since 1860 has been digitized and updated, spanning now a period of one and a half century. Mean monthly values of total cloud cover were derived by averaging subdaily observations of cloud cover (3 observations/day). Changes in observational practice (e.g. from 1/10 to 1/8 units) were considered, however, subjective measures of cloud cover from trained observers introduces some kind of uncertainty in the time series. Data before 1884 were considered unreliable, so the analysis was restricted to the series from 1884 to 2012. The time series of total cloud cover at NOA is validated and correlated with historical time series of other (physically related) variables such as the total sunshine duration as well as DTR (Diurnal Temperature Range) which are independently measured. Trend analysis was performed on the mean annual and seasonal series of total cloud cover from 1884-2012. The mean annual values show a marked temporal variability with sub periods of decreasing and increasing tendencies, however, the overall linear trend is positive and statistically significant (p <0.001) amounting to +2% per decade and implying a total increase of almost 25% for the whole analysed period. These results are in agreement qualitatively with the trends reported in other studies worldwide, especially concerning the period before the mid 20th century. On a seasonal basis, spring and summer series present outstanding positive long term trends, while in winter and autumn total cloud cover reveals also positive but less pronounced long term trends Additionally, an evaluation of cloud cover and

  6. Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Loeb, Norman G.; Minnis, Patrick; Francis, Jennifer A.; Charlock, Thomas P.; Rutan, David A.; Clothiaux, Eugene E.; Sun-Mack, Szedung

    2006-10-01

    The daytime cloud fraction derived by the Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm using Moderate Resolution Imaging Spectroradiometer (MODIS) radiances over the Arctic from March 2000 through February 2004 increases at a rate of 0.047 per decade. The trend is significant at an 80% confidence level. The corresponding top-of-atmosphere (TOA) shortwave irradiances derived from CERES radiance measurements show less significant trend during this period. These results suggest that the influence of reduced Arctic sea ice cover on TOA reflected shortwave radiation is reduced by the presence of clouds and possibly compensated by the increase in cloud cover. The cloud fraction and TOA reflected shortwave irradiance over the Antarctic show no significant trend during the same period.

  7. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  8. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  9. Assessing the consistency of UAV-derived point clouds and images acquired at different altitudes

    NASA Astrophysics Data System (ADS)

    Ozcan, O.

    2016-12-01

    Unmanned Aerial Vehicles (UAVs) offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and satellite remote sensing system. Nowadays, UAVs that bridge the gap between the satellite scale and field scale applications were initiated to be used in various application areas to acquire hyperspatial and high temporal resolution imageries due to working capacity and acquiring in a short span of time with regard to conventional photogrammetry methods. UAVs have been used for various fields such as for the creation of 3-D earth models, production of high resolution orthophotos, network planning, field monitoring and agricultural lands as well. Thus, geometric accuracy of orthophotos and volumetric accuracy of point clouds are of capital importance for land surveying applications. Correspondingly, Structure from Motion (SfM) photogrammetry, which is frequently used in conjunction with UAV, recently appeared in environmental sciences as an impressive tool allowing for the creation of 3-D models from unstructured imagery. In this study, it was aimed to reveal the spatial accuracy of the images acquired from integrated digital camera and the volumetric accuracy of Digital Surface Models (DSMs) which were derived from UAV flight plans at different altitudes using SfM methodology. Low-altitude multispectral overlapping aerial photography was collected at the altitudes of 30 to 100 meters and georeferenced with RTK-GPS ground control points. These altitudes allow hyperspatial imagery with the resolutions of 1-5 cm depending upon the sensor being used. Preliminary results revealed that the vertical comparison of UAV-derived point clouds with respect to GPS measurements pointed out an average distance at cm-level. Larger values are found in areas where instantaneous changes in surface are present.

  10. Mobile Laser Scanning along Dieppe coastal cliffs: reliability of the acquired point clouds applied to rockfall assessments

    NASA Astrophysics Data System (ADS)

    Michoud, Clément; Carrea, Dario; Augereau, Emmanuel; Cancouët, Romain; Costa, Stéphane; Davidson, Robert; Delacourt, Chirstophe; Derron, Marc-Henri; Jaboyedoff, Michel; Letortu, Pauline; Maquaire, Olivier

    2013-04-01

    Dieppe coastal cliffs, in Normandy, France, are mainly formed by sub-horizontal deposits of chalk and flintstone. Largely destabilized by an intense weathering and the Channel sea erosion, small and large rockfalls are regularly observed and contribute to retrogressive cliff processes. During autumn 2012, cliff and intertidal topographies have been acquired with a Terrestrial Laser Scanner (TLS) and a Mobile Laser Scanner (MLS), coupled with seafloor bathymetries realized with a multibeam echosounder (MBES). MLS is a recent development of laser scanning based on the same theoretical principles of aerial LiDAR, but using smaller, cheaper and portable devices. The MLS system, which is composed by an accurate dynamic positioning and orientation (INS) devices and a long range LiDAR, is mounted on a marine vessel; it is then possible to quickly acquire in motion georeferenced LiDAR point clouds with a resolution of about 15 cm. For example, it takes about 1 h to scan of shoreline of 2 km long. MLS is becoming a promising technique supporting erosion and rockfall assessments along the shores of lakes, fjords or seas. In this study, the MLS system used to acquire cliffs and intertidal areas of the Cap d'Ailly was composed by the INS Applanix POS-MV 320 V4 and the LiDAR Optech Ilirs LR. On the same day, three MLS scans with large overlaps (J1, J21 and J3) have been performed at ranges from 600 m at 4 knots (low tide) up to 200 m at 2.2 knots (up tide) with a calm sea at 2.5 Beaufort (small wavelets). Mean scan resolutions go from 26 cm for far scan (J1) to about 8.1 cm for close scan (J3). Moreover, one TLS point cloud on this test site has been acquired with a mean resolution of about 2.3 cm, using a Riegl LMS Z390i. In order to quantify the reliability of the methodology, comparisons between scans have been realized with the software Polyworks™, calculating shortest distances between points of one cloud and the interpolated surface of the reference point cloud. A Mat

  11. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  12. Development of the Landsat Data Continuity Mission Cloud Cover Assessment Algorithms

    USGS Publications Warehouse

    Scaramuzza, Pat; Bouchard, M.A.; Dwyer, John L.

    2012-01-01

    The upcoming launch of the Operational Land Imager (OLI) will start the next era of the Landsat program. However, the Automated Cloud-Cover Assessment (CCA) (ACCA) algorithm used on Landsat 7 requires a thermal band and is thus not suited for OLI. There will be a thermal instrument on the Landsat Data Continuity Mission (LDCM)-the Thermal Infrared Sensor-which may not be available during all OLI collections. This illustrates a need for CCA for LDCM in the absence of thermal data. To research possibilities for full-resolution OLI cloud assessment, a global data set of 207 Landsat 7 scenes with manually generated cloud masks was created. It was used to evaluate the ACCA algorithm, showing that the algorithm correctly classified 79.9% of a standard test subset of 3.95 109 pixels. The data set was also used to develop and validate two successor algorithms for use with OLI data-one derived from an off-the-shelf machine learning package and one based on ACCA but enhanced by a simple neural network. These comprehensive CCA algorithms were shown to correctly classify pixels as cloudy or clear 88.5% and 89.7% of the time, respectively.

  13. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  14. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE PAGES

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...

    2017-04-26

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  15. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate

  16. Spatial and temporal patterns of cloud cover and fog inundation in coastal California: Ecological implications

    USGS Publications Warehouse

    Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.

    2016-01-01

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.

  17. Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Lemmon, Mark T.; Rafkin, Scot C. R.; Francis, Raymond; Pla-Garcia, Jorge; de la Torre Juárez, Manuel; Bean, Keri; Kass, David; Haberle, Robert; Newman, Claire; Mischna, Michael; Vasavada, Ashwin; Rennó, Nilton; Bell, Jim; Calef, Fred; Cantor, Bruce; Mcconnochie, Timothy H.; Harri, Ari-Matti; Genzer, Maria; Wong, Michael; Smith, Michael D.; Javier Martín-Torres, F.; Zorzano, María-Paz; Kemppinen, Osku; McCullough, Emily

    2015-05-01

    We report on the first 360 sols (LS 150° to 5°), representing just over half a Martian year, of atmospheric monitoring movies acquired using the NavCam imager from the Mars Science Laboratory (MSL) Rover Curiosity. Such movies reveal faint clouds that are difficult to discern in single images. The data set acquired was divided into two different classifications depending upon the orientation and intent of the observation. Up to sol 360, 73 Zenith movies and 79 Supra-Horizon movies have been acquired and time-variable features could be discerned in 25 of each. The data set from MSL is compared to similar observations made by the Surface Stereo Imager (SSI) onboard the Phoenix Lander and suggests a much drier environment at Gale Crater (4.6°S) during this season than was observed in Green Valley (68.2°N) as would be expected based on latitude and the global water cycle. The optical depth of the variable component of clouds seen in images with features are up to 0.047 ± 0.009 with a granularity to the features observed which averages 3.8°. MCS also observes clouds during the same period of comparable optical depth at 30 and 50 km that would suggest a cloud spacing of 2.0 to 3.3 km. Multiple motions visible in atmospheric movies support the presence of two distinct layers of clouds. At Gale Crater, these clouds are likely caused by atmospheric waves given the regular spacing of features observed in many Zenith movies and decreased spacing towards the horizon in sunset movies consistent with clouds forming at a constant elevation. Reanalysis of Phoenix data in the light of the NavCam equatorial dataset suggests that clouds may have been more frequent in the earlier portion of the Phoenix mission than was previously thought.

  18. Brute Force Matching Between Camera Shots and Synthetic Images from Point Clouds

    NASA Astrophysics Data System (ADS)

    Boerner, R.; Kröhnert, M.

    2016-06-01

    3D point clouds, acquired by state-of-the-art terrestrial laser scanning techniques (TLS), provide spatial information about accuracies up to several millimetres. Unfortunately, common TLS data has no spectral information about the covered scene. However, the matching of TLS data with images is important for monoplotting purposes and point cloud colouration. Well-established methods solve this issue by matching of close range images and point cloud data by fitting optical camera systems on top of laser scanners or rather using ground control points. The approach addressed in this paper aims for the matching of 2D image and 3D point cloud data from a freely moving camera within an environment covered by a large 3D point cloud, e.g. a 3D city model. The key advantage of the free movement affects augmented reality applications or real time measurements. Therefore, a so-called real image, captured by a smartphone camera, has to be matched with a so-called synthetic image which consists of reverse projected 3D point cloud data to a synthetic projection centre whose exterior orientation parameters match the parameters of the image, assuming an ideal distortion free camera.

  19. Thirty Years of Cloud Cover Patterns from Satellite Data: Fog in California's Central Valley and Coast

    NASA Astrophysics Data System (ADS)

    Waller, E.; Baldocchi, D. D.

    2012-12-01

    In an effort to assess long term trends in winter fog in the Central Valley of California, custom maps of daily cloud cover from an approximately 30 year record of AVHRR (1981-1999) and MODIS (2000-2012) satellite data were generated. Spatial rules were then used to differentiate between fog and general cloud cover. Differences among the sensors (e.g., spectral content, spatial resolution, overpass time) presented problems of consistency, but concurrent climate station data were used to resolve systematic differences in products, and to confirm long term trends. The frequency and extent of Central Valley ("Tule") fog appear to have some periodic oscillation, but also appear to be on the decline, especially in the Sacramento Valley and in the "shoulder" months of November and February. These results may have strong implications for growers of fruit and nut trees in the Central Valley dependent on winter chill hours that are augmented by the foggy daytime conditions. Conclusions about long term trends in fog are limited to daytime patterns, as results are primarily derived from reflectance-based products. Similar analyses of daytime cloud cover are performed on other areas of concern, such as the coastal fog belt of California. Large area and long term patterns here appear to have periodic oscillation similar to that for the Central Valley. However, the relatively coarse spatial resolution of the AVHRR LTDR (Long Term Data Record) data (~5-km) may be limiting for fine-scale analysis of trends.

  20. Satellite remote sensing of particulate matter air quality: the cloud-cover problem.

    PubMed

    Christopher, Sundar A; Gupta, Pawan

    2010-05-01

    Satellite assessments of particulate matter (PM) air quality that use solar reflectance methods are dependent on availability of clear sky; in other words, mass concentrations of PM less than 2.5 microm in aerodynamic diameter (PM2.5) cannot be estimated from satellite observations under cloudy conditions or bright surfaces such as snow/ice. Whereas most ground monitors measure PM2.5 concentrations on an hourly basis regardless of cloud conditions, space-borne sensors can only estimate daytime PM2.5 in cloud-free conditions, therefore introducing a bias. In this study, an estimate of this clear-sky bias is provided from monthly to yearly time scales over the continental United States. One year of the Moderate Resolution Imaging Spectroradiometer (MODIS) 550-nm aerosol optical depth (AOD) retrievals from Terra and Aqua satellites, collocated with 371 U.S. Environmental Protection Agency (EPA) ground monitors, have been analyzed. The results indicate that the mean differences between PM2.5 reported by ground monitors and PM2.5 calculated from ground monitors during the satellite overpass times during cloud-free conditions are less than +/- 2.5 microg m(-3), although this value varies by season and location. The mean differences are not significant as calculated by t tests (alpha = 0.05). On the basis of this analysis, it is concluded that for the continental United States, cloud cover is not a major problem for inferring monthly to yearly PM2.5 from space-borne sensors.

  1. An A-Train Climatology of Extratropical Cyclone Clouds

    NASA Technical Reports Server (NTRS)

    Posselt, Derek J.; van den Heever, Susan C.; Booth, James F.; Del Genio, Anthony D.; Kahn, Brian; Bauer, Mike

    2016-01-01

    Extratropical cyclones (ETCs) are the main purveyors of precipitation in the mid-latitudes, especially in winter, and have a significant radiative impact through the clouds they generate. However, general circulation models (GCMs) have trouble representing precipitation and clouds in ETCs, and this might partly explain why current GCMs disagree on to the evolution of these systems in a warming climate. Collectively, the A-train observations of MODIS, CloudSat, CALIPSO, AIRS and AMSR-E have given us a unique perspective on ETCs: over the past 10 years these observations have allowed us to construct a climatology of clouds and precipitation associated with these storms. This has proved very useful for model evaluation as well in studies aimed at improving understanding of moist processes in these dynamically active conditions. Using the A-train observational suite and an objective cyclone and front identification algorithm we have constructed cyclone centric datasets that consist of an observation-based characterization of clouds and precipitation in ETCs and their sensitivity to large scale environments. In this presentation, we will summarize the advances in our knowledge of the climatological properties of cloud and precipitation in ETCs acquired with this unique dataset. In particular, we will present what we have learned about southern ocean ETCs, for which the A-train observations have filled a gap in this data sparse region. In addition, CloudSat and CALIPSO have for the first time provided information on the vertical distribution of clouds in ETCs and across warm and cold fronts. We will also discuss how these observations have helped identify key areas for improvement in moist processes in recent GCMs. Recently, we have begun to explore the interaction between aerosol and cloud cover in ETCs using MODIS, CloudSat and CALIPSO. We will show how aerosols are climatologically distributed within northern hemisphere ETCs, and how this relates to cloud cover.

  2. Coupled retrieval of water cloud and above-cloud aerosol properties using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, F.; van Harten, G.; Diner, D. J.; Rheingans, B. E.; Tosca, M.; Seidel, F. C.; Bull, M. A.; Tkatcheva, I. N.; McDuffie, J. L.; Garay, M. J.; Davis, A. B.; Jovanovic, V. M.; Brian, C.; Alexandrov, M. D.; Hostetler, C. A.; Ferrare, R. A.; Burton, S. P.

    2017-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (*denotes polarimetric bands). In sweep mode, georectified images cover an area of 80-100 km (along track) by 10-25 km (across track) between ±66° off nadir, with a map-projected spatial resolution of 25 meters. An efficient and flexible retrieval algorithm has been developed using AirMSPI polarimetric bands for simultaneous retrieval of cloud and above-cloud aerosol microphysical properties. We design a three-step retrieval approach, namely 1) estimating effective droplet size distribution using polarimetric cloudbow observations and using it as initial guess for Step 2; 2) combining water cloud and aerosol above cloud retrieval by fitting polarimetric signals at all scattering angles (e.g. from 80° to 180°); and 3) constructing a lookup table of radiance for a set of cloud optical depth grids using aerosol and cloud information retrieved from Step 2 and then estimating pixel-scale cloud optical depth based on 1D radiative transfer (RT) theory by fitting the AirMSPI radiance. Retrieval uncertainty is formulated by accounting for instrumental errors and constraints imposed on spectral variations of aerosol and cloud droplet optical properties. As the forward RT model, a hybrid approach is developed to combine the computational strengths of Markov-chain and adding-doubling methods to model polarized RT in a coupled aerosol, Rayleigh and cloud system. Our retrieval approach is tested using 134 AirMSPI datasets acquired during NASA ORACLES field campaign in 09/2016, with low to high aerosol loadings. For validation, the retrieved aerosol optical depths and cloud-top heights are compared to coincident High Spectral Resolution Lidar-2 (HSRL-2) data, and the droplet size parameters including effective radius and

  3. Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Piazzolla, S.

    2002-01-01

    Cloud opacity is one of the main atmospheric physical phenomena that can jeopardize the successful completion of an optical link between a spacecraft and a ground station. Hence, the site location chosen for a telescope used for optical communications must rely on knowledge of weather and cloud cover statistics for the geographical area where the telescope itself is located.

  4. Point Cloud Management Through the Realization of the Intelligent Cloud Viewer Software

    NASA Astrophysics Data System (ADS)

    Costantino, D.; Angelini, M. G.; Settembrini, F.

    2017-05-01

    The paper presents a software dedicated to the elaboration of point clouds, called Intelligent Cloud Viewer (ICV), made in-house by AESEI software (Spin-Off of Politecnico di Bari), allowing to view point cloud of several tens of millions of points, also on of "no" very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc), maths (BLAS, EIGEN), computational geometry (CGAL, Computational Geometry Algorithms Library), registration and advanced algorithms for point clouds (PCL, Point Cloud Library), advanced data structures (BOOST, Basic Object Oriented Supporting Tools), etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (Terrestrial Laser Scanner) data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (Above Ground Level) and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.

  5. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  6. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  7. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  8. Comparisons of cloud cover evaluated from LANDSAT imagery and meteorological stations across the British Isles

    NASA Technical Reports Server (NTRS)

    Barrett, E. C. (Principal Investigator); Grant, C. K.

    1976-01-01

    The author has identified the following significant results. This stage of the study has confirmed the initial supposition that LANDSAT data could be analyzed to provide useful data on cloud amount, and that useful light would be thrown thereby on the performance of the ground observer of this aspect of the state of the sky. This study, in comparison with previous studies of a similar nature using data from meteorological satellites, has benefited greatly from the much higher resolution data provided by LANDSAT. This has permitted consideration of not only the overall performance of the surface observer in estimating total cloud cover, but also his performance under different sky conditions.

  9. Dissipation of Titans north polar cloud at northern spring equinox

    USGS Publications Warehouse

    Le, Mouelic S.; Rannou, P.; Rodriguez, S.; Sotin, Christophe; Griffith, C.A.; Le, Corre L.; Barnes, J.W.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.; Tobie, G.

    2012-01-01

    Saturns Moon Titan has a thick atmosphere with a meteorological cycle. We report on the evolution of the giant cloud system covering its north pole using observations acquired by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. A radiative transfer model in spherical geometry shows that the clouds are found at an altitude between 30 and 65 km. We also show that the polar cloud system vanished progressively as Titan approached equinox in August 2009, revealing at optical wavelengths the underlying sea known as Kraken Mare. This decrease of activity suggests that the north-polar downwelling has begun to shut off. Such a scenario is compared with the Titan global circulation model of Rannou et al. (2006), which predicts a decrease of cloud coverage in northern latitudes at the same period of time. ?? 2011 Elsevier Ltd. All rights reserved.

  10. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    NASA Technical Reports Server (NTRS)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  11. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  12. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  13. Seasonal Change in Titan's Cloud Activity Observed with IRTF/SpeX

    NASA Astrophysics Data System (ADS)

    Schaller, Emily L.; Brown, M. E.; Roe, H. G.

    2006-09-01

    We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk-integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 & 2000) who found rapidly varying clouds covering 0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  14. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  15. Gravity Waves Ripple over Marine Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this natural-color image from the Multi-angle Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar to the ripples that occur when a pebble is thrown into a still pond, such 'gravity waves' sometimes appear when the relatively stable and stratified air masses associated with stratocumulus cloud layers are disturbed by a vertical trigger from the underlying terrain, or by a thunderstorm updraft or some other vertical wind shear. The stratocumulus cellular clouds that underlie the wave feature are associated with sinking air that is strongly cooled at the level of the cloud-tops -- such clouds are common over mid-latitude oceans when the air is unperturbed by cyclonic or frontal activity. This image is centered over the Indian Ocean (at about 38.9o South, 80.6o East), and was acquired on October 29, 2003.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20545. The image covers an area of 245 kilometers x 378 kilometers, and uses data from blocks 121 to 122 within World Reference System-2 path 134.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites.

    PubMed

    Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y

    2018-03-08

    Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites.

  17. Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites

    PubMed Central

    Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y

    2018-01-01

    Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites. PMID:29518062

  18. Comparison View of Mars Cloud Cover

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These color and black and white pictures of Mars were taken by NASA's Hubble Space Telescope just two weeks after Earth made its closest approach to the Red Planet during the 1997 opposition. When the Hubble pictures were taken Mars was at a distance of 62 million miles (100 million kilometers) and the resolution at the center of the disk is 13.5 miles/pixel (22 kilometers/pixel). Both images were made with the Wide Field and Planetary Camera 2. The color composite (left image) is constructed from three images taken in red (673 nanometers), green (502 nm) and blue (410 nm) light. The right image, in blue light only, brings out details in the cloud structure and is remarkably similar to weather satellite pictures taken of Earth. A planetary-scale wave curls around the north pole, similar in behavior to high latitude cold fronts which descend over North America and Europe during springtime.

    The picture was taken when Mars was near aphelion, its farthest point from the Sun. The faint sunlight results in cold atmospheric conditions which stimulate the formation of water ice clouds. The clouds themselves further reduce atmospheric temperatures. Atmospheric heating, resulting when sunlight is absorbed by the dust, is reduced when ice forms around the dust particles and causes the dust to gravitationally settle to the ground.

    These images of Mars are centered at approximately 94 degrees longitude and 23 degrees N latitude (oriented with north up). The four largest Tharsis Montes (massive extinct volcanoes) are visible as dark spots extending through the clouds. The vast canyon system, Valles Marineris, stretches across the eastern (lower right) half of the image; the Pathfinder landing site is near the eastern edge of the image. It is early summer in the northern hemisphere, and the North polar cap has retreated to about 80 degrees N latitude; the 'residual' summer cap, which is composed of water ice, is about one-third the size of the 'seasonal' winter cap, which

  19. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  20. COMPARISON VIEW OF MARS CLOUD COVER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These color and black and white pictures of Mars were taken by NASA's Hubble Space Telescope just two weeks after Earth made its closest approach to the Red Planet during the 1997 opposition. When the Hubble pictures were taken Mars was at a distance of 62 million miles (100 million kilometers) and the resolution at the center of the disk is 13.5 miles/pixel (22 kilometers/pixel). Both images were made with the Wide Field and Planetary Camera 2. The color composite (left image) is constructed from three images taken in red (673 nanometers), green (502 nm) and blue (410 nm) light. The right image, in blue light only, brings out details in the cloud structure and is remarkably similar to weather satellite pictures taken of Earth. A planetary-scale wave curls around the north pole, similar in behavior to high latitude cold fronts which descend over North America and Europe during springtime. The picture was taken when Mars was near aphelion, its farthest point from the Sun. The faint sunlight results in cold atmospheric conditions which stimulate the formation of water ice clouds. The clouds themselves further reduce atmospheric temperatures. Atmospheric heating, resulting when sunlight is absorbed by the dust, is reduced when ice forms around the dust particles and causes the dust to gravitationally settle to the ground. These images of Mars are centered at approximately 94 degrees longitude and 23 degrees N latitude (oriented with north up). The four largest Tharsis Montes (massive extinct volcanoes) are visible as dark spots extending through the clouds. The vast canyon system, Valles Marineris, stretches across the eastern (lower right) half of the image; the Pathfinder landing site is near the eastern edge of the image. It is early summer in the northern hemisphere, and the North polar cap has retreated to about 80 degrees N latitude; the 'residual' summer cap, which is composed of water ice, is about one-third the size of the 'seasonal' winter cap, which

  1. The Clouds of Isidore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    of viewing angle as well as the height field. Note that over the short distances (2.2 kilometers) that the local albedo product is generated, values can be greater than 1.0 due to contributions from cloud sides. Areas where albedo could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 14669. The panels cover an area of about 380 kilometers x 704 kilometers, and utilize data from blocks 70 to 79within World Reference System-2 path 17.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. A Satellite Survey of Cloud Cover and Water Vapor in the Southwestern USA and Northern Mexico

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Avila, R.; Erasmus, A.; Djorgovski, S. G.; Walker, A. R.; Blum, R.

    2017-03-01

    Cloud cover and water vapor conditions in the southwestern USA and northern Mexico were surveyed as a preparatory work for the Thirty Meter Telescope (TMT) in situ site testing program. Although the telescope site is already selected, the TMT site testing team decided to make public these results for its usefulness for the community. Using 58 months of meteorological satellite observations between 1993 July and 1999 September, different atmospheric parameters were quantified from data of the 10.7 μm and of 6.7 μm windows. In particular, cloud cover and water vapor conditions were identified in preferred areas. As a result of the aerial analysis, 15 sites of existing and potential telescope were selected, compared, and ranked in terms of their observing quality. The clearest sites are located along the spine of the Baja peninsula and into southern California on mountain peaks above the temperature inversion layer. A steep gradient of cloudiness was observed along the coast where coastal cloud and fog are trapped below the inversion layer. Moving from west to east over the continent, a significant increase in cloudiness was observed. The analysis shows that San Pedro Mártir, San Gorgonio Mountain and San Jacinto Peak have the largest fraction of clear sky conditions (˜74%). The site with the optimal combination of clear skies and low precipitable water vapor is Boundary Peak, Nevada. An approach based in satellite data provided a reliable method for sites comparison.

  3. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  4. Improving rainfall estimation from commercial microwave links using METEOSAT SEVIRI cloud cover information

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald

    2017-04-01

    The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies

  5. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei

    2017-08-01

    Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.

  6. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2013-09-30

    Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...how changes in sea ice and sea surface conditions in the SIZ affect changes in cloud properties and cover . • Determine the role additional atmospheric...REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the

  7. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  8. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high

  9. SatCam: A mobile application for coordinated ground/satellite observation of clouds and validation of satellite-derived cloud mask products.

    NASA Astrophysics Data System (ADS)

    Gumley, L.; Parker, D.; Flynn, B.; Holz, R.; Marais, W.

    2011-12-01

    SatCam is an application for iOS devices that allows users to collect observations of local cloud and surface conditions in coordination with an overpass of the Terra, Aqua, or NPP satellites. SatCam allows users to acquire images of sky conditions and ground conditions at their location anywhere in the world using the built-in iPhone or iPod Touch camera at the same time that the satellite is passing overhead and viewing their location. Immediately after the sky and ground observations are acquired, the application asks the user to rate the level of cloudiness in the sky (Completely Clear, Mostly Clear, Partly Cloudy, Overcast). For the ground observation, the user selects their assessment of the surface conditions (Urban, Green Vegetation, Brown Vegetation, Desert, Snow, Water). The sky condition and surface condition selections are stored along with the date, time, and geographic location for the images, and the images are uploaded to a central server. When the MODIS (Terra and Aqua) or VIIRS (NPP) imagery acquired over the user location becomes available, a MODIS or VIIRS true color image centered at the user's location is delivered back to the SatCam application on the user's iOS device. SSEC also proposes to develop a community driven SatCam website where users can share their observations and assessments of satellite cloud products in a collaborative environment. SSEC is developing a server side data analysis system to ingest the SatCam user observations, apply quality control, analyze the sky images for cloud cover, and collocate the observations with MODIS and VIIRS satellite products (e.g., cloud mask). For each observation that is collocated with a satellite observation, the server will determine whether the user scored a "hit", meaning their sky observation and sky assessment matched the automated cloud mask obtained from the satellite observation. The hit rate will be an objective assessment of the accuracy of the user's sky observations. Users with

  10. Amoco unit acquires two blocks covering 2. 7 million acres in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-12

    This paper reports that an Amoco Production Co. unit has signed the first agreement by a western company for conventional petroleum exploration rights in Poland. The agreement between Amoco Poland Ltd. and Poland's Ministry of Environmental Protection, Natural Resources, and Forestry calls for Amoco to make an initial $20 million investment to conduct seismic surveys and drill wildcats on two blocks. Block A is a 1,695,750 acre spread southwest of Warsaw in the heart of the Polish trough. Block B covers about 979,000 acres southeast of Lublin on the Polish-Ukrainian border. The state has an option to acquire as muchmore » as 30% interest in future hydrocarbon development.« less

  11. Do Clouds Save the Great Barrier Reef? Satellite Imagery Elucidates the Cloud-SST Relationship at the Local Scale

    PubMed Central

    Leahy, Susannah M.; Kingsford, Michael J.; Steinberg, Craig R.

    2013-01-01

    Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an “ocean thermostat” and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs. PMID:23894649

  12. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  13. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  14. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia

    NASA Astrophysics Data System (ADS)

    Dale Guthrie, R.

    2001-01-01

    To account for the vastness of the northern arid steppes during Glacial episodes, I propose the proximate key variable was simply frequent clear skies. This hitherto under-emphasized point is the hub which best explains many questions. Low maritime cloud cover best accounts for today's tundra, and in a related way, the cloudy Polar Front accounts for the whole of the taiga. Even during Glacial maxima, the proximity of the sea to the Bering isthmus created intermittent maritime cloud cover. This regional cloud cover produced an ecological interruption, or buckle, of the arid steppe belt. While this Beringian mesic buckle did not serve as an intercontinental ecological barrier to most steppe-adapted species, it does seem to have limited the distributions of woolly rhinos, camels, American kiangs, short-faced bears, badgers, and some others. At the beginning of the Holocene, this narrow refugium seems to have been a source of some mesic-adapted species which colonized westward into the now tundra vegetation of northern Asia and eastward into northern North America. This Holocene expansion from a limited and regional Pleistocene refugium created our present misconceptions about Beringia. The mid-strait mesic ecological conditions were the exception to the more extensive, arid-adapted, communities of the Mammoth Steppe.

  15. Satellite Studies of Cirrus Clouds for Project Fire

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Examine global cloud climatologies for evidence of human caused changes in cloud cover and their effect on the Earth's heat budget through radiative processes. Quantify climatological changes in global cloud cover and estimate their effect on the Earth's heat budget. Improve our knowledge of global cloud cover and its changes through the merging of several satellite data sets.

  16. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar

  17. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a

  18. Covered Stent Grafts for Acquired Arterial Venous Fistulas: A Case Series.

    PubMed

    Sarac, Timur P; Vargas, Lina; Kashyap, Vikram; Cardella, Jonathan; Chaar, Cassius Ochoa

    2018-01-01

    Stent grafts have become the preferred method for treating abdominal aortic aneurysms (AAAs) but also have utility in treating other vasculopathies. In 2005, peripheral stent grafts were approved for treating superficial femoral artery occlusive disease. This report describes our experience using covered stent grafts to treat acquired arterial venous fistulae (aAVF). We reviewed the records of patients treated for aAVF with covered stent grafts. Eleven patients had 12 limbs treated with a stent graft. The data collected included presenting symptoms, mechanism of injury, vessel location, stent graft used for therapy, and patency. Eleven patients underwent successful treatment of 12 aAVF with a peripheral stent grafts. The average age was 55.6 (18-87), and there were 4 women and 7 men. The mechanisms of injuries were heart catheterization in 5 patients, penetrating trauma in 3 patients, and orthopedic injury in 3 patients. Five of the patients had concurrent pseudoaneurysms. Self-expanding expanded polytetrafluoroethelene (ePTFE) stent grafts were used in 8 patients, and balloon-expandable ePTFE stent grafts were used in 3 patients. Primary patency at 2 years is 100%, with all patients having significant relief of symptoms. Peripheral stent grafts are a useful tool for treating aAVF, with excellent patency. They provide a valuable minimally invasive approach to this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Clouds over the summertime Sahara: an evaluation of Met Office retrievals from Meteosat Second Generation using airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Kealy, John C.; Marenco, Franco; Marsham, John H.; Garcia-Carreras, Luis; Francis, Pete N.; Cooke, Michael C.; Hocking, James

    2017-05-01

    Novel methods of cloud detection are applied to airborne remote sensing observations from the unique Fennec aircraft dataset, to evaluate the Met Office-derived products on cloud properties over the Sahara based on the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellite. Two cloud mask configurations are considered, as well as the retrievals of cloud-top height (CTH), and these products are compared to airborne cloud remote sensing products acquired during the Fennec campaign in June 2011 and June 2012. Most detected clouds (67 % of the total) have a horizontal extent that is smaller than a SEVIRI pixel (3 km × 3 km). We show that, when partially cloud-contaminated pixels are included, a match between the SEVIRI and aircraft datasets is found in 80 ± 8 % of the pixels. Moreover, under clear skies the datasets are shown to agree for more than 90 % of the pixels. The mean cloud field, derived from the satellite cloud mask acquired during the Fennec flights, shows that areas of high surface albedo and orography are preferred sites for Saharan cloud cover, consistent with published theories. Cloud-top height retrievals however show large discrepancies over the region, which are ascribed to limiting factors such as the cloud horizontal extent, the derived effective cloud amount, and the absorption by mineral dust. The results of the CTH analysis presented here may also have further-reaching implications for the techniques employed by other satellite applications facilities across the world.

  20. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  1. Arsia Mons Spiral Cloud

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  3. Clouds and the Near-Earth Environment: Possible Links

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Voiculescu, Mirela; Dragomir, Carmelia

    2015-12-01

    Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009). Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  4. High-resolution stochastic downscaling of climate models: simulating wind advection, cloud cover and precipitation

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Burlando, Paolo

    2015-04-01

    A new stochastic approach to generate wind advection, cloud cover and precipitation fields is presented with the aim of formulating a space-time weather generator characterized by fields with high spatial and temporal resolution (e.g., 1 km x 1 km and 5 min). Its use is suitable for stochastic downscaling of climate scenarios in the context of hydrological, ecological and geomorphological applications. The approach is based on concepts from the Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.), the Space-Time Realizations of Areal Precipitation model (STREAP) introduced by Paschalis et al. (2013, Water Resour. Res.), and the High-Resolution Synoptically conditioned Weather Generator (HiReS-WG) presented by Peleg and Morin (2014, Water Resour. Res.). Advection fields are generated on the basis of the 500 hPa u and v wind direction variables derived from global or regional climate models. The advection velocity and direction are parameterized using Kappa and von Mises distributions respectively. A random Gaussian fields is generated using a fast Fourier transform to preserve the spatial correlation of advection. The cloud cover area, total precipitation area and mean advection of the field are coupled using a multi-autoregressive model. The approach is relatively parsimonious in terms of computational demand and, in the context of climate change, allows generating many stochastic realizations of current and projected climate in a fast and efficient way. A preliminary test of the approach is presented with reference to a case study in a complex orography terrain in the Swiss Alps.

  5. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less

  6. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  7. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  8. The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James

    2014-05-01

    In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in

  9. Cloud Radiative Effect in dependence on Cloud Type

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2015-04-01

    Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be

  10. Distinguishing Clouds from Ice over the East Siberian Sea, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.

    The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and ice appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow areas, whereas land, sea ice, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark area surrounded by an expanse of fast ice. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. Areas where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. Pack ice containing numerous fragmented ice floes surrounds the fast ice, and narrow areas of open ocean are visible.

    The East Siberian Sea is part of the Arctic Ocean and is ice-covered most of the year. The New Siberian Islands are almost always covered by snow and ice, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the ice between the island and the

  11. An Automated Algorithm for Producing Land Cover Information from Landsat Surface Reflectance Data Acquired Between 1984 and Present

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Holen, C.; Dittmeier, R.; Wika, S.; Steinwand, D.; Dahal, D.; Tolk, B.; Quenzer, R.; Nelson, K.; Wylie, B. K.; Coan, M.

    2015-12-01

    Multi-year land cover mapping from remotely sensed data poses challenges. Producing land cover products at spatial and temporal scales required for assessing longer-term trends in land cover change are typically a resource-limited process. A recently developed approach utilizes open source software libraries to automatically generate datasets, decision tree classifications, and data products while requiring minimal user interaction. Users are only required to supply coordinates for an area of interest, land cover from an existing source such as National Land Cover Database and percent slope from a digital terrain model for the same area of interest, two target acquisition year-day windows, and the years of interest between 1984 and present. The algorithm queries the Landsat archive for Landsat data intersecting the area and dates of interest. Cloud-free pixels meeting the user's criteria are mosaicked to create composite images for training the classifiers and applying the classifiers. Stratification of training data is determined by the user and redefined during an iterative process of reviewing classifiers and resulting predictions. The algorithm outputs include yearly land cover raster format data, graphics, and supporting databases for further analysis. Additional analytical tools are also incorporated into the automated land cover system and enable statistical analysis after data are generated. Applications tested include the impact of land cover change and water permanence. For example, land cover conversions in areas where shrubland and grassland were replaced by shale oil pads during hydrofracking of the Bakken Formation were quantified. Analytical analysis of spatial and temporal changes in surface water included identifying wetlands in the Prairie Pothole Region of North Dakota with potential connectivity to ground water, indicating subsurface permeability and geochemistry.

  12. Image processing methods in two and three dimensions used to animate remotely sensed data. [cloud cover

    NASA Technical Reports Server (NTRS)

    Hussey, K. J.; Hall, J. R.; Mortensen, R. A.

    1986-01-01

    Image processing methods and software used to animate nonimaging remotely sensed data on cloud cover are described. Three FORTRAN programs were written in the VICAR2/TAE image processing domain to perform 3D perspective rendering, to interactively select parameters controlling the projection, and to interpolate parameter sets for animation images between key frames. Operation of the 3D programs and transferring the images to film is automated using executive control language and custom hardware to link the computer and camera.

  13. Cloud Forecast Simulation Model.

    DTIC Science & Technology

    1981-10-01

    creasing the kurtosis of the distribution, i.e., making it more negative (more platykurtic ). Case (a) might be the distribution of forecast cloud cover be...fore smoothing, and (b) might be the distribution after smoothing. Character- istically, smoothing makes cloud cover distributions less platykurtic ...19, this effect of smoothing can be described in terms of making the smoothed distribu- tion less platykurtic than the unsmoothed distribution

  14. On the existence of tropical anvil clouds

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  15. Deep Clouds

    NASA Image and Video Library

    2008-05-27

    Bright puffs and ribbons of cloud drift lazily through Saturn's murky skies. In contrast to the bold red, orange and white clouds of Jupiter, Saturn's clouds are overlain by a thick layer of haze. The visible cloud tops on Saturn are deeper in its atmosphere due to the planet's cooler temperatures. This view looks toward the unilluminated side of the rings from about 18 degrees above the ringplane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft wide-angle camera on April 15, 2008 at a distance of approximately 1.5 million kilometers (906,000 miles) from Saturn. Image scale is 84 kilometers (52 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA09910

  16. ASTER cloud coverage reassessment using MODIS cloud mask products

    NASA Astrophysics Data System (ADS)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  17. Development of a climatological data base to help forecast cloud cover conditions for shuttle landings at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Atchison, M. Kevin

    1993-01-01

    The Space Shuttle is an extremely weather sensitive vehicle with very restrictive constraints for both launches and landings. The most important difference between Shuttle and normal aircraft landings is that the Shuttle has no go-around capability once it begins its decent into the earth's atmosphere. The de-orbit burn decision is generally made approximately 90 minutes before landing requiring a forecast with little room for error. Because of the Shuttle's rapid re-entry to earth, the pilot must be able to see all runway and visual navigation aids from high altitude to land the Shuttle. In addition, the heat resistant tiles which are used to protect the Shuttle during its re-entry into the earth's atmosphere are extremely sensitive to any type of precipitation. Extensive damage to these tiles could occur if the Shuttle passes through any cloud that contains precipitation size particles. To help guard against changing weather conditions or any type of weather problems that might occur prior to landing, flight rules have been developed as guidelines for all landings. Although the rules vary depending on the location of the landing (Kennedy Space Center or Edwards AFB), length of mission, and weight of vehicle, most of the rules can be condensed into 4 major groupings. These are: (1) Cloud ceilings should not be less than 3048 m (10,000 feet), (2) Visibility should not be less than 13 km (7 nm), (3) Cross-wind no greater than 5-8 m/s (10-15 knots); and (4) No showers or thunderstorms at or within 56 km (30 nm) of the Shuttle Landing Facility. This study consisted of developing a climatological database of the Shuttle Landing Facility (SLF) surface observations and performing an analysis of observed conditions one and two hours subsequent to given conditions at the SLF to help analyze the 0.2 cloud cover rule. Particular emphasis was placed on Shuttle landing weather violations and the amounts of cloud cover below 3048 m (10,000 ft.). This analysis has helped to

  18. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  19. Clouds at CTIO and the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Jr., Eric

    An understanding of the weather patters at Cerro-Tololo Inter-American (CTIO) Observatory, the observing site for the Dark Energy Survey (DES), is important for assessing the efciency of DES operations in using observing time and for planning future operations. CTIO has maintained records of cloud-cover by quarters of nights since 1975. A comparison between these cloud records in the 2013-2014 DES observing season (DES year 1) and achieved observing efciency and exposure quality allows the DES collaboration to make better use of the historical records in survey planning. Plots and tables here relate human recorded cloud-cover to collection of good DESmore » data, show the variation of typical cloud-cover by month, and evaluate the relationship between the El Niño weather pattern and cloud-cover at CTIO.« less

  20. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  1. Saharan Dust as a Causal Factor of Significant Cloud Cover Along the Saharan Air Layer in the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas

    2016-01-01

    The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.

  2. Effective cloud optical depth and enhancement effects for broken liquid water clouds in Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Marín, M. J.; Serrano, D.; Utrillas, M. P.; Núñez, M.; Martínez-Lozano, J. A.

    2017-10-01

    Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011-2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UVER) and the broadband ranges. Afterwards a statistical analysis of τ has shown that the maximum value is much lower than for overcast skies and there is more discrepancy between the two spectral ranges regarding the results for overcast skies. In order to validate these results the effective cloud optical depth has been correlated with several transmission factors, giving similar fit parameters to those obtained for overcast skies except for the clearness index in the UVER range. As our method is not applicable for partly cloudy skies with the visible Sun, the enhancement of radiation caused by clouds when the Sun is visible has been studied. Results show that the average enhancement CMF values are the same for both ranges although enhancement is more frequent for low cloud cover in the UVER and medium-high cloud cover in the broadband range and it does not depend on the solar zenith angle.

  3. Analyzing the Effect of Intraseasonal Meteorological Variability and Land Cover on Aerosol-Cloud Interactions During the Amazonian Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    pasture is not correlated with aerosol loading, supporting the assumption that temporal variation of column water vapor is primarily a function of the larger-scale meteorology. However, a difference in the response of cloud fraction to increasing AOD is observed between forest and pasture. This suggests that dissimilarities between other meteorological factors, such as atmospheric stability, are likely to have an impact on aerosol-cloud correlations between different land-cover types.

  4. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  5. STS-56 view of freeflying SPARTAN-201 backdropped against heavy cloud cover

    NASA Image and Video Library

    1993-04-17

    STS056-90-034 (8-17 April 1993) --- Backdropped against heavy cloud cover over the Mediterranean Sea, the SPARTAN-201 satellite was captured on 70mm by crewmembers aboard the Space Shuttle Discovery. SPARTAN is a free-flying payload designed to study the solar wind and part of the sun's corona. The project was conceived in the late 1970s to take advantage of the opportunity offered by the Space Shuttle to provide more observation time for the increasingly more sophisticated experiments than the five to ten minutes provided by sounding rocket flights. On the mission's third day, Astronaut Ellen Ochoa, Mission Specialist, used the remote manipulator system (RMS) to lift the satellite from its support structure on Discovery and release it in space. The reusable craft was later recaptured and returned to Earth with the crew. Note the tip of Discovery's vertical stabilizer at frame's edge.

  6. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  7. Effects of Digitization and JPEG Compression on Land Cover Classification Using Astronaut-Acquired Orbital Photographs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene

    2000-01-01

    Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.

  8. Cloud Spirals and Outflow in Tropical Storm Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes.

    Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the

  9. Multi-layer Clouds Over the South Indian Ocean

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The complex structure and beauty of polar clouds are highlighted by these images acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean, to the north of Enderbyland, East Antarctica.

    The image at left was created by overlying a natural-color view from MISR's downward-pointing (nadir) camera with a color-coded stereo height field. MISR retrieves heights by a pattern recognition algorithm that utilizes multiple view angles to derive cloud height and motion. The opacity of the height field was then reduced until the field appears as a translucent wash over the natural-color image. The resulting purple, cyan and green hues of this aesthetic display indicate low, medium or high altitudes, respectively, with heights ranging from less than 2 kilometers (purple) to about 8 kilometers (green). In the lower right corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds.

    The right-hand panel is a natural-color image from MISR's 70-degree backward viewing camera. This camera looks backwards along the path of Terra's flight, and in the southern hemisphere the Sun is in front of this camera. This perspective causes the cloud-tops to be brightly outlined by the sun behind them, and enhances the shadows cast by clouds with significant vertical structure. An oblique observation angle also enhances the reflection of light by atmospheric particles, and accentuates the appearance of polar clouds. The dark ocean and sea ice that were apparent through the cirrus clouds at the bottom right corner of the nadir image are overwhelmed by the brightness of these clouds at the oblique view.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude

  10. Optical Algorithm for Cloud Shadow Detection Over Water

    DTIC Science & Technology

    2013-02-01

    REPORT DATE (DD-MM-YYYY) 05-02-2013 2. REPORT TYPE Journal Article 3. DATES COVERED (From ■ To) 4. TITLE AND SUBTITLE Optical Algorithm for Cloud...particularly over humid tropical regions. Throughout the year, about two-thirds of the Earth’s surface is always covered by clouds [1]. The problem...V. Khlopenkov and A. P. Trishchenko, "SPARC: New cloud, snow , cloud shadow detection scheme for historical I-km AVHHR data over Canada," / Atmos

  11. Cloud Height Maps for Hurricanes Frances and Ivan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    acquired, clouds within Frances and Ivan had attained altitudes of 15 kilometers and 16 kilometers above sea level, respectively. The height fields pictured here are uncorrected for the effects of cloud motion. Wind-corrected heights (which have higher accuracy but sparser spatial coverage) are within about 1 kilometer of the heights shown here.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 25081 and 25094. The panels cover an area of 380 kilometers x 924 kilometers, and utilize data from within blocks 65 to 87 within World Reference System-2 paths 14 and 222, respectively.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California In

  12. MODIS Views Variations in Cloud Types

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS image, centered over the Great Lakes region in North America, shows a variety of cloud types. The clouds at the top of the image, colored pink, are cold, high-level snow and ice clouds, while the neon green clouds are lower-level water clouds. Because different cloud types reflect and emit radiant energy differently, scientists can use MODIS' unique data set to measure the sizes of cloud particles and distinguish between water, snow, and ice clouds. This scene was acquired on Feb. 24, 2000, and is a red, green, blue composite of bands 1, 6, and 31 (0.66, 1.6, and 11.0 microns, respectively). Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  13. A Cut in the Clouds

    NASA Image and Video Library

    2017-12-08

    Like a ship carving its way through the sea, the South Georgia and South Sandwich Islands parted the clouds. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image on February 2, 2017. The ripples in the clouds are known as gravity waves. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response #nasagoddard

  14. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity

    NASA Astrophysics Data System (ADS)

    Rune Karlsen, Stein; Anderson, Helen B.; van der Wal, René; Bremset Hansen, Brage

    2018-02-01

    Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000-2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000-2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R 2 = 0.51 and 0.44, respectively). The commonly used ‘maximum NDVI’ plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.

  15. Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests

    NASA Technical Reports Server (NTRS)

    Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.

    2010-01-01

    Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.

  16. How to model moon signals using 2-dimensional Gaussian function: Classroom activity for measuring nighttime cloud cover

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2016-12-01

    used for quantifying cloud cover as captured by ordinary cameras (Gacal et al, 2016). Cloud cover can be defined as the ratio of number of pixels whose values exceeds 0.07 and the total number of pixels. In this particular image, cloud cover value is 0.67.

  17. The Cloud Detection and Ultraviolet Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.; Loh, Eugene C.; Krizmanic, John F.; Sokolsky, Pierre; Streitmatter, Robert E.

    2004-01-01

    In this paper we describe a new balloon instrument - CLUE - which is designed to monitor ultraviolet (uv) nightglow levels and determine cloud cover and cloud heights with a CO2 slicing technique. The CO2 slicing technique is based on the MODIS instrument on NASA's Aqua and Terra spacecraft. CLUE will provide higher spatial resolution (0.5 km) and correlations between the uv and the cloud cover.

  18. On the response of MODIS cloud coverage to global mean surface air temperature

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Kahn, Brian H.; Fetzer, Eric J.; Wong, Sun; Frey, Richard; Meyer, Kerry G.

    2017-01-01

    The global surface temperature change (ΔTs) mediated cloud cover response is directly related to cloud-climate feedback. Using satellite remote sensing data to relate cloud and climate requires a well-calibrated, stable, and consistent long-term cloud data record. The Collection 5.1 (C5) Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations have been widely used for this purpose. However, the MODIS data quality varies greatly with the surface type, spectral region, cloud type, and time periods of study, which calls for additional caution when applying such data to studies on cloud cover temporal trends and variability. Using 15 years of cloud observations made by Terra and Aqua MODIS, we analyze the ΔTs-mediated cloud cover response for different cloud types by linearly regressing the monthly anomaly of cloud cover (ΔC) with the monthly anomaly of global Ts. The Collection 6 (C6) Aqua data exhibit a similar cloud response to the long-term counterpart simulated by advanced climate models. A robust increase in altitude with increasing ΔTs is found for high clouds, while a robust decrease of ΔC is noticed for optically thick low clouds. The large differences between C5 and C6 results are from improvements in calibration and cloud retrieval algorithms. The large positive cloud cover responses with data after 2010 and the strong sensitivity to time period obtained from the Terra (C5 and C6) data are likely due to calibration drift that has not been corrected, suggesting that the previous estimate of the short-term cloud cover response from the these data should be revisited.

  19. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  20. Distributed MRI reconstruction using Gadgetron-based cloud computing.

    PubMed

    Xue, Hui; Inati, Souheil; Sørensen, Thomas Sangild; Kellman, Peter; Hansen, Michael S

    2015-03-01

    To expand the open source Gadgetron reconstruction framework to support distributed computing and to demonstrate that a multinode version of the Gadgetron can be used to provide nonlinear reconstruction with clinically acceptable latency. The Gadgetron framework was extended with new software components that enable an arbitrary number of Gadgetron instances to collaborate on a reconstruction task. This cloud-enabled version of the Gadgetron was deployed on three different distributed computing platforms ranging from a heterogeneous collection of commodity computers to the commercial Amazon Elastic Compute Cloud. The Gadgetron cloud was used to provide nonlinear, compressed sensing reconstruction on a clinical scanner with low reconstruction latency (eg, cardiac and neuroimaging applications). The proposed setup was able to handle acquisition and 11 -SPIRiT reconstruction of nine high temporal resolution real-time, cardiac short axis cine acquisitions, covering the ventricles for functional evaluation, in under 1 min. A three-dimensional high-resolution brain acquisition with 1 mm(3) isotropic pixel size was acquired and reconstructed with nonlinear reconstruction in less than 5 min. A distributed computing enabled Gadgetron provides a scalable way to improve reconstruction performance using commodity cluster computing. Nonlinear, compressed sensing reconstruction can be deployed clinically with low image reconstruction latency. © 2014 Wiley Periodicals, Inc.

  1. Cloud Detection by Fusing Multi-Scale Convolutional Features

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  2. Sensitivity of the southern West African mean atmospheric state to variations in low-level cloud cover as simulated by ICON

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Knippertz, Peter; Fink, Andreas

    2017-04-01

    This contribution presents first results of numerical sensitivity experiments that are carried out in the framework of the project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa). DACCIWA aims to investigate the impact of the drastic increase in anthropogenic emissions in West Africa on the local weather and climate, for example through cloud-aerosol interactions or impacts on radiation and stability. DACCIWA organised a major international field campaign in West Africa in June-July 2016 and involves a wide range of modelling activities. Several studies have shown - and first results of the DACCIWA campaign confirm - that extensive ultra-low stratus clouds form in the southern parts of West Africa (8°W-8°E, 5-10°N) at night in connection with strong nocturnal low-level jets. The clouds persist long after sunrise and have therefore a substantial impact on the surface radiation budget and consequently on the diurnal evolution of the daytime, convectively mixed boundary layer. The objective of this study is to investigate the sensitivity of the West African monsoon system and its diurnal cycle to the radiative effects of these low clouds. The study is based on a series of daily 5-day sensitivity simulations using ICON, the operational numerical weather prediction model of the German Weather Service during the months July - September 2006. In these simulations, low clouds are made transparent, by artificially lowering the optical thickness information passed on to the model's radiation scheme. Results reveal a noticeable influence of the low-level cloud cover on the atmospheric mean state of our region of interest and beyond. Also the diurnal development of the convective boundary layer is influenced by the cloud modification. In the transparent-cloud experiments, the cloud deck tends to break up later in the day and is shifted to a higher altitude, thereby causing a short-lived intensification around 11 LT. The average rainfall patterns are

  3. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE PAGES

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations.more » Cloud-J is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  4. Waves on White: Ice or Clouds?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    snow or ice-covered surfaces is important in order to adequately characterize the radiation balance of the polar regions. However, detecting clouds using spaceborne detectors over snow and ice surfaces is notoriously difficult, because the surface may often be as bright and as cold as the overlying clouds, and because polar atmospheric temperature inversions sometimes mean that clouds are warmer than the underlying snow or ice surface. The Angular Signature Cloud Mask (ASCM) was developed based on the Band-Differenced Angular Signature (BDAS) approach, introduced by Di Girolamo and Davies (1994) and updated for MISR application by Di Girolamo and Wilson (2003). BDAS uses both spectral and angular changes in reflectivity to distinguish clouds from the background, and the ASCM calculates the difference between the 446 and 866 nanometer reflectances at MISR's two most oblique cameras that view forward-scattered light. New land thresholds for the ASCM are planned for delivery later this year.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. This image area covers about 277 kilometers by 421 kilometers in the interior of the East Antarctic ice sheet. These data products were generated from a portion of the imagery acquired during Terra orbit 26584 and utilize data from within blocks 159 to 161 within World Reference System-2 path 63.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Apollo 7 Mission,Clouds

    NASA Image and Video Library

    1968-10-11

    Apollo 7,Cumulus,alto-cumulus,cirrus clouds. Very high oblique. Cloud Cover 50%. Original film magazine was labeled S. Camera Data: Hasselblad 500-C; Lens: Zeiss Planar,F/2.8,80mm; Film Type: Kodak SO-121,Aerial Ektachrome; Filter: Wratten 2A. Flight Date: October 11-12. 1968.

  6. Multi-layer Clouds Over the South Indian Ocean

    NASA Image and Video Library

    2003-05-07

    The complex structure and beauty of polar clouds are highlighted by these images acquired by NASA Terra spacecraft on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean,

  7. 350 Year Cloud Reconstruction Deduced from Northeast Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, A.; Sammarco, P. W.; Mikolajewicz, U.; Jury, M.; Zanchettin, D.

    2014-12-01

    Clouds are a major factor influencing the global climate and its response to external forcing through their implications for the global hydrological cycle, and hence for the planetary radiative budget. Clouds also contribute to regional climates and their variability through, e.g., the changes they induce in regional precipitation patterns. There have been very few studies of decadal and longer-term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data are too short to unambiguously discern any temporal trends in cloud cover. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Skeletons of scleractinian corals are considered to provide among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, d13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover for the northeastern Caribbean region. Using this proxy we have been able to

  8. Procedures for gathering ground truth information for a supervised approach to a computer-implemented land cover classification of LANDSAT-acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1978-01-01

    Procedures for gathering ground truth information for a supervised approach to a computer-implemented land cover classification of LANDSAT acquired multispectral scanner data are provided in a step by step manner. Criteria for determining size, number, uniformity, and predominant land cover of training sample sites are established. Suggestions are made for the organization and orientation of field team personnel, the procedures used in the field, and the format of the forms to be used. Estimates are made of the probable expenditures in time and costs. Examples of ground truth forms and definitions and criteria of major land cover categories are provided in appendixes.

  9. UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery

    USGS Publications Warehouse

    Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel

    2017-01-01

    The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.

  10. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  11. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE PAGES

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 %more » errors using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  12. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models

    PubMed Central

    Nuijens, Louise

    2016-01-01

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925

  13. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models.

    PubMed

    Medeiros, Brian; Nuijens, Louise

    2016-05-31

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.

  14. Detection of long duration cloud contamination in hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.

    2012-04-01

    NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.

  15. The Citizen CATE Experiment: Techniques to Determine Totality Coverage and Clouded Data Removal.

    NASA Astrophysics Data System (ADS)

    McKay, Myles A.; Ursache, Andrei; Penn, Matthew; Citizen CATE Experiment 2017 Team

    2018-01-01

    August 21, 2017, the Citizen Continental-America Telescopic Eclipse(CATE) Experiment observed the 2017 total solar eclipse using a network of 68 identical telescopes and camera systems along the path of totality. The result from the observation was over 90% of all sites collected totality data on the day of the eclipse. Since the volunteers had to remove the solar filter manually, there is an uncertainty between the time of totality and data acquired during totality. Some sites also experienced cloudy weather which obscured the eclipse in some of the exposures but had small breaks in the clouds during the observation, collecting clear totality data. Before we can process and analyze the eclipse data, we must carefully determine which frames cover the time of totality for each site and remove exposures with clouds blocking the FOV. In this poster, we will discuss the techniques we used to determine the extent of totality from each location using the logged GPS data and the removal of totality exposure with clouds.

  16. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  17. Trends and variability of cloud fraction cover in the Arctic, 1982-2009

    NASA Astrophysics Data System (ADS)

    Boccolari, Mauro; Parmiggiani, Flavio

    2018-05-01

    Climatology, trends and variability of cloud fraction cover (CFC) data over the Arctic (north of 70°N), were analysed over the 1982-2009 period. Data, available from the Climate Monitoring Satellite Application Facility (CM SAF), are derived from satellite measurements by AVHRR. Climatological means confirm permanent high CFC values over the Atlantic sector during all the year and during summer over the eastern Arctic Ocean. Lower values are found in the rest of the analysed area especially over Greenland and the Canadian Archipelago, nearly continuously during all the months. These results are confirmed by CFC trends and variability. Statistically significant trends were found during all the months over the Greenland Sea, particularly during the winter season (negative, less than -5 % dec -1) and over the Beaufort Sea in spring (positive, more than +5 % dec -1). CFC variability, investigated by the Empirical Orthogonal Functions, shows a substantial "non-variability" in the Northern Atlantic Ocean. Statistically significant correlations between CFC principal components elements and both the Pacific Decadal Oscillation index and Pacific North America patterns are found.

  18. Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting

    2017-09-01

    Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.

  19. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    1997-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect local and regional climate and air quality. Clouds play a significant role in this relationship. Using GOES images, we found that in a 63-day period (5 July-5 September 1996) there were zero days which were clear for the entire daylight period. Days which are cloud-free in the morning become partly cloudy with small cumulus clouds in the afternoon in response to solar heating. This result casts doubt on the applicability of California-style air quality models which run in perpetual clear skies. Days which are clear in the morning have higher ozone than those which are cloudy in the morning. Using the RAMS model, we found that urbanization increases the skin surface temperature by about 1.0-1.5 C on average under cloudy conditions, with an extreme of +3.5 C. Clouds cool the surface due to their shading effect by 1.5-2.0 C on average, with an extreme of 5.0 C. RAMS simulates well the building stage of the cumulus cloud field, but does poorly in the decaying phase. Next year's work: doing a detailed cloud climatology and developing improved RAMS cloud simulations.

  20. Cloud Statistics and Discrimination in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice

  1. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  2. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    NASA Astrophysics Data System (ADS)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  3. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    NASA Astrophysics Data System (ADS)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  4. Use of satellite data in runoff forecasting in the heavily forested, cloud-covered Pacific Northwest. [Upper Snake, Boise, Dworshak, Libby and Hungry Horse River Basins

    NASA Technical Reports Server (NTRS)

    Dillard, J. P.; Orwig, C. F. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Satellite-derived snow cover data improves forecasts of stream flow but not at a statistically significant amount and should not be used exclusively because of persistent cloud cover. Based upon reconstruction runs, satellite data can be used to augment snow-flight data in the Upper Snake, Boise, Dworshak, and Hungry Horse basins. Satellite data does not compare well with aerial snow-flight data in the Libby basin.

  5. On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs

    DOE PAGES

    McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...

    2016-05-06

    In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less

  6. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    USGS Publications Warehouse

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering

  7. Can Clouds replace Grids? Will Clouds replace Grids?

    NASA Astrophysics Data System (ADS)

    Shiers, J. D.

    2010-04-01

    The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.

  8. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  9. Volcanic Plume from Mt. Unzen, Dust Cloud, cloud Vortices

    NASA Image and Video Library

    1991-12-01

    Stable, south flowing air over the western Pacific Ocean (26.0N, 131.0E) is disturbed by islands south of Korea, resulting in sinuous clouds known as von Karman vortices. The smoke plume from Japan's Mount Unzen Volcano on Kyushu, is visible just west of the large cloud mass and extending southward. A very large, purple tinged dust pall, originating in Mongolia, can be seen on the Earth's Limb, covering eastern China and extending into the East China Sea.

  10. Cloud and surface textural features in polar regions

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  11. Geologic Mapping and Mineral Resource Assessment of the Healy and Talkeetna Mountains Quadrangles, Alaska Using Minimal Cloud- and Snow-Cover ASTER Data

    USGS Publications Warehouse

    Hubbard, Bernard E.; Rowan1, Lawrence C.; Dusel-Bacon, Cynthia; Eppinger, Robert G.

    2007-01-01

    On July 8, 2003, ASTER acquired satellite imagery of a 60 km-wide swath of parts of two 1:250,000 Alaska quadrangles, under favorable conditions of minimal cloud- and snow-cover. Rocks from eight different lithotectonic terranes are exposed within the swath of data, several of which define permissive tracts for various mineral deposit types such as: volcanic-hosted massive sulfides (VMS) and porphyry copper and molybdenum. Representative rock samples collected from 13 different lithologic units from the Bonnifield mining district within the Yukon-Tanana terrane (YTT), plus hydrothermally altered VMS material from the Red Mountain prospect, were analyzed to produce a spectral library spanning the VNIR-SWIR (0.4 - 2.5 ?m) through the TIR (8.1 - 11.7 ?m). Comparison of the five-band ASTER TIR emissivity and decorrelation stretch data to available geologic maps indicates that rocks from the YTT display the greatest range and diversity of silica composition of the mapped terranes, ranging from mafic rocks to silicic quartzites. The nine-band ASTER VNIR-SWIR reflectance data and spectral matched-filter processing were used to map several lithologic sequences characterized by distinct suites of minerals that exhibit diagnostic spectral features (e.g. chlorite, epidote, amphibole and other ferrous-iron bearing minerals); other sequences were distinguished by their weathering characteristics and associated hydroxyl- and ferric-iron minerals, such as illite, smectite, and hematite. Smectite, kaolinite, opaline silica, jarosite and/or other ferric iron minerals defined narrow (< 250 m diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation- or snow-cover, or were too small to be resolved.

  12. Clouds on Neptune: Motions, Evolution, and Structure

    NASA Technical Reports Server (NTRS)

    Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)

    2001-01-01

    The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.

  13. Lightweight Electronic Camera for Research on Clouds

    NASA Technical Reports Server (NTRS)

    Lawson, Paul

    2006-01-01

    "Micro-CPI" (wherein "CPI" signifies "cloud-particle imager") is the name of a small, lightweight electronic camera that has been proposed for use in research on clouds. It would acquire and digitize high-resolution (3- m-pixel) images of ice particles and water drops at a rate up to 1,000 particles (and/or drops) per second.

  14. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  15. Effects of cloud cover and meteorology in estimating ground-level air pollution using MAIAC AOD in the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Liu, Y.

    2017-12-01

    Satellite aerosol optical depth (AOD) has been used to assess fine particulate matter (PM2.5) pollution worldwide. However, non-random missing AOD due to cloud cover or high surface reflectance can cause up to 80% data loss and bias model-estimated spatial and temporal trends of PM2.5. Previous studies filled the data gap largely by spatial smoothing which ignored the impact of cloud cover and meteorology on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a flexible Multiple Imputation (MI) method that combines cloud fraction, elevation, humidity, temperature, and spatiotemporal trends to impute the missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 were 0.81 and 0.73 (for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. This method provides reliable PM2.5 predictions with complete coverage at high resolution. By including all the pixels of all days into model development, this method corrected the sampling bias in satellite-driven air pollution modelling due to non-random missingness in AOD. Comparing with previously reported gap-filling methods, the MI method has the strength of not relying on ground PM2.5 measurements, therefore allows the prediction of historical PM2.5 levels prior to the establishment of regular ground monitoring networks.

  16. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  17. Preparatory studies of zero-g cloud drop coalescence experiment

    NASA Technical Reports Server (NTRS)

    Telford, J. W.; Keck, T. S.

    1979-01-01

    Experiments to be performed in a weightless environment in order to study collision and coalescence processes of cloud droplets are described. Rain formation in warm clouds, formation of larger cloud drops, ice and water collision processes, and precipitation in supercooled clouds are among the topics covered.

  18. Snow Cover Mapping and Ice Avalanche Monitoring from the Satellite Data of the Sentinels

    NASA Astrophysics Data System (ADS)

    Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q.

    2018-04-01

    In order to monitor ice avalanches efficiently under disaster emergency conditions, a snow cover mapping method based on the satellite data of the Sentinels is proposed, in which the coherence and backscattering coefficient image of Synthetic Aperture Radar (SAR) data (Sentinel-1) is combined with the atmospheric correction result of multispectral data (Sentinel-2). The coherence image of the Sentinel-1 data could be segmented by a certain threshold to map snow cover, with the water bodies extracted from the backscattering coefficient image and removed from the coherence segment result. A snow confidence map from Sentinel-2 was used to map the snow cover, in which the confidence values of the snow cover were relatively high. The method can make full use of the acquired SAR image and multispectral image under emergency conditions, and the application potential of Sentinel data in the field of snow cover mapping is exploited. The monitoring frequency can be ensured because the areas obscured by thick clouds are remedied in the monitoring results. The Kappa coefficient of the monitoring results is 0.946, and the data processing time is less than 2 h, which meet the requirements of disaster emergency monitoring.

  19. Assessing the accuracy of MISR and MISR-simulated cloud top heights using CloudSat- and CALIPSO-retrieved hydrometeor profiles

    NASA Astrophysics Data System (ADS)

    Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally

    2017-03-01

    Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.

  20. Classification by Using Multispectral Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  1. Strategies for cloud-top phase determination: differentiation between thin cirrus clouds and snow in manual (ground truth) analyses

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Etherton, Brian J.; Topping, Phillip C.

    1996-12-01

    Quantitative assessments on the performance of automated cloud analysis algorithms require the creation of highly accurate, manual cloud, no cloud (CNC) images from multispectral meteorological satellite data. In general, the methodology to create ground truth analyses for the evaluation of cloud detection algorithms is relatively straightforward. However, when focus shifts toward quantifying the performance of automated cloud classification algorithms, the task of creating ground truth images becomes much more complicated since these CNC analyses must differentiate between water and ice cloud tops while ensuring that inaccuracies in automated cloud detection are not propagated into the results of the cloud classification algorithm. The process of creating these ground truth CNC analyses may become particularly difficult when little or no spectral signature is evident between a cloud and its background, as appears to be the case when thin cirrus is present over snow-covered surfaces. In this paper, procedures are described that enhance the researcher's ability to manually interpret and differentiate between thin cirrus clouds and snow-covered surfaces in daytime AVHRR imagery. The methodology uses data in up to six AVHRR spectral bands, including an additional band derived from the daytime 3.7 micron channel, which has proven invaluable for the manual discrimination between thin cirrus clouds and snow. It is concluded that while the 1.6 micron channel remains essential to differentiate between thin ice clouds and snow. However, this capability that may be lost if the 3.7 micron data switches to a nighttime-only transmission with the launch of future NOAA satellites.

  2. Time-cumulated visible and infrared histograms used as descriptor of cloud cover

    NASA Technical Reports Server (NTRS)

    Seze, G.; Rossow, W.

    1987-01-01

    To study the statistical behavior of clouds for different climate regimes, the spatial and temporal stability of VIS-IR bidimensional histograms is tested. Also, the effect of data sampling and averaging on the histogram shapes is considered; in particular the sampling strategy used by the International Satellite Cloud Climatology Project is tested.

  3. Military clouds: utilization of cloud computing systems at the battlefield

    NASA Astrophysics Data System (ADS)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  4. Point clouds segmentation as base for as-built BIM creation

    NASA Astrophysics Data System (ADS)

    Macher, H.; Landes, T.; Grussenmeyer, P.

    2015-08-01

    In this paper, a three steps segmentation approach is proposed in order to create 3D models from point clouds acquired by TLS inside buildings. The three scales of segmentation are floors, rooms and planes composing the rooms. First, floor segmentation is performed based on analysis of point distribution along Z axis. Then, for each floor, room segmentation is achieved considering a slice of point cloud at ceiling level. Finally, planes are segmented for each room, and planes corresponding to ceilings and floors are identified. Results of each step are analysed and potential improvements are proposed. Based on segmented point clouds, the creation of as-built BIM is considered in a future work section. Not only the classification of planes into several categories is proposed, but the potential use of point clouds acquired outside buildings is also considered.

  5. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  6. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    NASA Astrophysics Data System (ADS)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  7. Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data

    NASA Technical Reports Server (NTRS)

    Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil

    2004-01-01

    Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.

  8. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.

    2018-01-01

    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  9. Seasonal and interannual variations in the influence of cloud cover variability on snowpack and streamflow in the western U.S.

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.

    2016-12-01

    Solar radiation (S) is a key driver of snowmelt and water fluxes, but its effect varies depending on time of year and also upon the hydrological character (e.g., dry or wet) of a given year. In this study, we use remote sensed S to quantify cloudiness variability and its effects on snowmelt and streamflow across mountain basins in the western U.S. We utilize 20 years (1996-2015) of NASA/NOAA GOES-derived cloud albedo (αcloud) at 4-km daily samples to estimate S over relatively fine spatial and temporal resolution during Feb-Jul when snowmelt is most active. Daily snow water equivalent (SWE) records from >200 CDEC and SNOTEL locations, along with daily stream discharge (Q) from USGS HCDN records are used to compute day-to-day changes (dSWE and dQ). Multivariate linear regression models of dSWE and dQ are constructed for each month, wherein αcloud from several days prior up to the concurrent day are the predictors. In Feb-May, the results show predominantly negative correlations between αcloud and dSWE, confirming the cloud-shading effect in preserving snowpack and reducing runoff. The influence of cloudiness variability on snowpack, denoted by the coefficient of determination (R2) between the measured and modeled dSWE, amounts 4%-73% over Feb-Jul, averaging 20% in the northwest and 26% in the southwest. The dQ case exhibits similar patterns, but lower explained variance. In Jun-Jul, most locations in both dSWE and dQ cases display positive correlation but with diminished R2, presumably reflecting the drying effect of summertime. In comparing dry and wet years, the R2 is somewhat higher in dry years, suggesting that the importance of cloud cover and the associated solar insolation variability is higher in cases with greater influence from other hydrological factors, including heavy precipitation events and fluctuations associated with a higher snowpack.

  10. Estimation of cloud optical thickness by processing SEVIRI images and implementing a semi analytical cloud property retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Pandey, P.; De Ridder, K.; van Lipzig, N.

    2009-04-01

    Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of

  11. Stratus Cloud Radiative Effects from Cloud Processed Bimodal CCN Distributions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2016-12-01

    Inability to understand cloud processes is a large component of climate uncertainty. Increases in cloud condensation nuclei (CCN) concentrations are known to increase cloud droplet number concentrations (Nc). This aerosol-cloud interaction (ACI) produces greater Nc at smaller sizes, which brightens clouds. A lesser understood ACI is cloud processing of CCN. This improves CCN that then more easily activate at lower cloud supersaturations (S). Bimodal CCN distributions thus ensue from these evaporated cloud droplets. Hudson et al. (2015) related CCN bimodality to Nc. In stratus clouds, bimodal CCN created greater Nc whereas in cumulus less Nc. Thus, CCN distribution shape influences cloud properties; microphysics and radiative properties. Measured uni- and bimodal CCN distributions were input into an adiabatic droplet growth model using various specified vertical wind speeds (W). Bimodal CCN produced greater Nc (Fig. 1a) and smaller mean diameters (MD; Fig. 1b) at lower W typical of stratus clouds (<70 cm/s). Improved CCN (low critical S) were more easily activated at the lower S of stratus from low W, thus, creating greater Nc. Competition for condensate thus reduced MD and drizzle. At greater W, typical of cumulus clouds (>70 cm/s), bimodal CCN made lower Nc with larger MD thus enhancing drizzle whereas unimodal CCN made greater Nc with smaller MD, thus reducing drizzle. Thus, theoretical predictions of Nc and MD for uni- and bimodal CCN agree with the sense of the observations. Radiative effects were determined using a cloud grown to a 250-meter thickness. Bimodal CCN at low W reduced cloud effective radius (re), made greater cloud optical thickness (COT), and made greater cloud albedo (Fig. 1c). At very low W changes were as much as +9% for albedo, +17% for COT, and -12% for re. Stratus clouds typically have low W and cover large areas. Thus, these changes in cloud radiative properties at low W impact climate. Stratus cloud susceptibility to CCN distribution thus

  12. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  13. Students as Ground Observers for Satellite Cloud Retrieval Validation

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Costulis, P. Kay; Young, David F.; Rogerson, Tina M.

    2004-01-01

    The Students' Cloud Observations On-Line (S'COOL) Project was initiated in 1997 to obtain student observations of clouds coinciding with the overpass of the Clouds and the Earth's Radiant Energy System (CERES) instruments on NASA's Earth Observing System satellites. Over the past seven years we have accumulated more than 9,000 cases worldwide where student observations are available within 15 minutes of a CERES observation. This paper reports on comparisons between the student and satellite data as one facet of the validation of the CERES cloud retrievals. Available comparisons include cloud cover, cloud height, cloud layering, and cloud visual opacity. The large volume of comparisons allows some assessment of the impact of surface cover, such as snow and ice, reported by the students. The S'COOL observation database, accessible via the Internet at http://scool.larc.nasa.gov, contains over 32,000 student observations and is growing by over 700 observations each month. Some of these observations may be useful for assessment of other satellite cloud products. In particular, some observing sites have been making hourly observations of clouds during the school day to learn about the diurnal cycle of cloudiness.

  14. Bigdata Driven Cloud Security: A Survey

    NASA Astrophysics Data System (ADS)

    Raja, K.; Hanifa, Sabibullah Mohamed

    2017-08-01

    Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.

  15. Improved cloud parameterization for Arctic climate simulations based on satellite data

    NASA Astrophysics Data System (ADS)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in

  16. Cloud cover classification through simultaneous ground-based measurements of solar and infrared radiation

    NASA Astrophysics Data System (ADS)

    Orsini, Antonio; Tomasi, Claudio; Calzolari, Francescopiero; Nardino, Marianna; Cacciari, Alessandra; Georgiadis, Teodoro

    2002-04-01

    Simultaneous measurements of downwelling short-wave solar irradiance and incoming total radiation flux were performed at the Reeves Nevè glacier station (1200 m MSL) in Antarctica on 41 days from late November 1994 to early January 1995, employing the upward sensors of an albedometer and a pyrradiometer. The downwelling short-wave radiation measurements were analysed following the Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132] procedure for classifying clouds, using the 50-min running mean values of standard deviation and the ratio of scaled observed to scaled clear-sky irradiance. Comparing these measurements with the Duchon and O'Malley rectangular boundaries and the local human observations of clouds collected on 17 days of the campaign, we found that the Duchon and O'Malley classification method obtained a success rate of 93% for cirrus and only 25% for cumulus. New decision criteria were established for some polar cloud classes providing success rates of 94% for cirrus, 67% for cirrostratus and altostratus, and 33% for cumulus and altocumulus. The ratios of the downwelling short-wave irradiance measured for cloudy-sky conditions to that calculated for clear-sky conditions were analysed in terms of the Kasten and Czeplak [Sol. Energy 24 (1980) 177] formula together with simultaneous human observations of cloudiness, to determine the empirical relationship curves providing reliable estimates of cloudiness for each of the three above-mentioned cloud classes. Using these cloudiness estimates, the downwelling long-wave radiation measurements (obtained as differences between the downward fluxes of total and short-wave radiation) were examined to evaluate the downwelling long-wave radiation flux normalised to totally overcast sky conditions. Calculations of the long-wave radiation flux were performed with the MODTRAN 3.7 code [Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., Shettle, E.P., Berk, A., Bernstein, L.S., Robertson, D.C., Acharya, P

  17. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An

  18. Dynamic resource allocation engine for cloud-based real-time video transcoding in mobile cloud computing environments

    NASA Astrophysics Data System (ADS)

    Adedayo, Bada; Wang, Qi; Alcaraz Calero, Jose M.; Grecos, Christos

    2015-02-01

    The recent explosion in video-related Internet traffic has been driven by the widespread use of smart mobile devices, particularly smartphones with advanced cameras that are able to record high-quality videos. Although many of these devices offer the facility to record videos at different spatial and temporal resolutions, primarily with local storage considerations in mind, most users only ever use the highest quality settings. The vast majority of these devices are optimised for compressing the acquired video using a single built-in codec and have neither the computational resources nor battery reserves to transcode the video to alternative formats. This paper proposes a new low-complexity dynamic resource allocation engine for cloud-based video transcoding services that are both scalable and capable of being delivered in real-time. Firstly, through extensive experimentation, we establish resource requirement benchmarks for a wide range of transcoding tasks. The set of tasks investigated covers the most widely used input formats (encoder type, resolution, amount of motion and frame rate) associated with mobile devices and the most popular output formats derived from a comprehensive set of use cases, e.g. a mobile news reporter directly transmitting videos to the TV audience of various video format requirements, with minimal usage of resources both at the reporter's end and at the cloud infrastructure end for transcoding services.

  19. Modelling the Effects of Temperature and Cloud Cover Change on Mountain Permafrost Distribution, Northwest Canada

    NASA Astrophysics Data System (ADS)

    Bonnaventure, P. P.; Lewkowicz, A. G.

    2008-12-01

    Spatial models of permafrost probability for three study areas in northwest Canada between 59°N and 61°N were perturbed to investigate climate change impacts. The models are empirical-statistical in nature, based on basal temperature of snow (BTS) measurements in winter, and summer ground-truthing of the presence or absence of frozen ground. Predictions of BTS values are made using independent variables of elevation and potential incoming solar radiation (PISR), both derived from a 30 m DEM. These are then transformed into the probability of the presence or absence of permafrost through logistic regression. Under present climate conditions, permafrost percentages in the study areas are 44% for Haines Summit, British Columbia, 38% for Wolf Creek, Yukon, and 69% for part of the Ruby Range, Yukon (Bonnaventure and Lewkowicz, 2008; Lewkowicz and Bonaventure, 2008). Scenarios of air temperature change from -2K (approximating Neoglacial conditions) to +5K (possible within the next century according to the IPCC) were examined for the three sites. Manipulations were carried out by lowering or raising the terrain within the DEM assuming a mean environmental lapse rate of 6.5K/km. Under a -2K scenario, permafrost extent increased by 22-43% in the three study areas. Under a +5K warming, permafrost essentially disappeared in Haines Summit and Wolf Creek, while in the Ruby Range less than 12% of the area remained perennially frozen. It should be emphasized that these model predictions are for equilibrium conditions which might not be attained for several decades or longer in areas of cold permafrost. Cloud cover changes of -10% to +10% were examined through adjusting the partitioning of direct beam and diffuse radiation in the PISR input field. Changes to permafrost extent were small, ranging from -2% to -4% for greater cloudiness with changes of the opposite magnitude for less cloud. The results show that air temperature change has a much greater potential to affect mountain

  20. Diurnal and Seasonal Cloud Base Patterns Highlight Small-Mountain Tropical Cloud Forest Vulnerability

    NASA Astrophysics Data System (ADS)

    Van Beusekom, A.; Gonzalez, G.; Scholl, M. A.

    2016-12-01

    The degree to which cloud immersion sustains tropical montane cloud forests (TMCFs) during rainless periods and the amount these clouds are affected by urban areas is not well understood, as cloud base is rarely quantified near mountains. We found that a healthy small-mountain TMCF in Puerto Rico had lowest cloud base during the mid-summer dry season. In addition, we observed that cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons, based on 2.5 years of direct and 16 years of indirect observations. The low clouds during dry season appear to be explained by proximity to the oceanic cloud system where lower clouds are seasonally invariant in altitude and cover; along with orographic lifting and trade-wind control over cloud formation. These results suggest that climate change impacts on small-mountain TMCFs may not be limited to the dry season; changes in regional-scale patterns that cause drought periods during the wet seasons will likely have higher cloud base, and thus may threaten cloud water support to sensitive mountain ecosystems. Strong El Niño's can cause drought in Puerto Rico; we will report results from the summer of 2015 that examined El Niño effects on cloud base altitudes. Looking at regionally collected airport cloud data, we see indicators that diurnal urban effects may already be raising the low cloud bases.

  1. Tharsis Limb Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of Tharsis Limb Cloud

    7 September 2005 This composite of red and blue Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired on 6 July 2005 shows an isolated water ice cloud extending more than 30 kilometers (more than 18 miles) above the martian surface. Clouds such as this are common in late spring over the terrain located southwest of the Arsia Mons volcano. Arsia Mons is the dark, oval feature near the limb, just to the left of the 'T' in the 'Tharsis Montes' label. The dark, nearly circular feature above the 'S' in 'Tharsis' is the volcano, Pavonis Mons, and the other dark circular feature, above and to the right of 's' in 'Montes,' is Ascraeus Mons. Illumination is from the left/lower left.

    Season: Northern Autumn/Southern Spring

  2. Automated detection of cloud and cloud-shadow in single-date Landsat imagery using neural networks and spatial post-processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael J.; Hayes, Daniel J

    2014-01-01

    Use of Landsat data to answer ecological questions is contingent on the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, \\textsc{sparcs}: Spacial Procedures for Automated Removal of Cloud and Shadow. The method uses neural networks to determine cloud, cloud-shadow, water, snow/ice, and clear-sky membership of each pixel in a Landsat scene, and then applies a set of procedures to enforce spatial rules. In a comparison to FMask, a high-quality cloud and cloud-shadow classification algorithm currently available, \\textsc{sparcs} performs favorably, with similar omission errors for cloudsmore » (0.8% and 0.9%, respectively), substantially lower omission error for cloud-shadow (8.3% and 1.1%), and fewer errors of commission (7.8% and 5.0%). Additionally, textsc{sparcs} provides a measure of uncertainty in its classification that can be exploited by other processes that use the cloud and cloud-shadow detection. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of algorithms detecting vegetation change.« less

  3. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  4. Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties

    DTIC Science & Technology

    2013-09-30

    such as MODIS . APPROACH 1. Task and acquire high resolution panchromatic and multispectral optical (e.g. Quickbird, Worldview, National Assets...does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4...cloud cover , an excessive percentage of the imagery acquired over drifting sites was cloud covered , and the vendor did not delay acquisitions or

  5. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  6. Providing Diurnal Sky Cover Data at ARM Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebe, Dimitri I.

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizingmore » the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.« less

  7. Cloud effects on ultraviolet photoclimatology

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Spinhirne, J. D.

    1978-01-01

    The purpose of this study is to quantify for the needs of photobiology the influence of clouds upon the ultraviolet spectral irradiance reaching the ground. Towards this end, analytic formulas are developed which approximately characterize the influence of clouds upon total solar radiation. These may be used in conjunction with a solar pyranometer to assign an effective visual optical depth for the cloud cover. A formula is also developed which characterizes the influence of the optical depth of clouds upon the UV spectral irradiance in the 280-340 nm region. Thus total solar energy observations to assign cloud optical properties can be used to calculate the UV spectral irradiance at the ground in the presence of these clouds. As incidental by-products of this effort, convenient formulas are found for the direct and diffuse components of total solar energy.

  8. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions

    PubMed Central

    Wilson, Adam M.; Jetz, Walter

    2016-01-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties. PMID:27031693

  9. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    PubMed

    Wilson, Adam M; Jetz, Walter

    2016-03-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  10. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; hide

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  11. Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1999-01-01

    The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as

  12. CO observations of dark clouds in Lupus

    NASA Technical Reports Server (NTRS)

    Murphy, D. C.; Cohen, R.; May, J.

    1986-01-01

    C-12O observations covering 170 square degrees toward the southern T Association Lupus have revealed the presence of an extended physically related complex of dark clouds which have recently formed low mass stars. The estimated mass of the clouds (about 30,000 solar masses) is comparable to that of the nearby Ophiuchus dust clouds. The Lupus clouds are projected onto a gap between two subgroups of the Scorpio-Centaurus OB association suggesting that this long accepted subgrouping may require reinterpretation.

  13. Cloud Computing E-Communication Services in the University Environment

    ERIC Educational Resources Information Center

    Babin, Ron; Halilovic, Branka

    2017-01-01

    The use of cloud computing services has grown dramatically in post-secondary institutions in the last decade. In particular, universities have been attracted to the low-cost and flexibility of acquiring cloud software services from Google, Microsoft and others, to implement e-mail, calendar and document management and other basic office software.…

  14. Remote sensing of smoke, clouds, and fire using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.; Green, Robert O.

    1993-01-01

    Clouds remain the greatest element of uncertainty in predicting global climate change. During deforestation and biomass burning processes, a variety of atmospheric gases, including CO2 and SO2, and smoke particles are released into the atmosphere. The smoke particles can have important effects on the formation of clouds because of the increased concentration of cloud condensation nuclei. They can also affect cloud albedo through changes in cloud microphysical properties. Recently, great interest has arisen in understanding the interaction between smoke particles and clouds. We describe our studies of smoke, clouds, and fire using the high spatial and spectral resolution data acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  15. Looking Down Through the Clouds – Optical Attenuation through Real-Time Clouds

    NASA Astrophysics Data System (ADS)

    Burley, J.; Lazarewicz, A.; Dean, D.; Heath, N.

    Detecting and identifying nuclear explosions in the atmosphere and on the surface of the Earth is critical for the Air Force Technical Applications Center (AFTAC) treaty monitoring mission. Optical signals, from surface or atmospheric nuclear explosions detected by satellite sensors, are attenuated by the atmosphere and clouds. Clouds present a particularly complex challenge as they cover up to seventy percent of the earth's surface. Moreover, their highly variable and diverse nature requires physics-based modeling. Determining the attenuation for each optical ray-path is uniquely dependent on the source geolocation, the specific optical transmission characteristics along that ray path, and sensor detection capabilities. This research details a collaborative AFTAC and AFIT effort to fuse worldwide weather data, from a variety of sources, to provide near-real-time profiles of atmospheric and cloud conditions and the resulting radiative transfer analysis for virtually any wavelength(s) of interest from source to satellite. AFIT has developed a means to model global clouds using the U.S. Air Force’s World Wide Merged Cloud Analysis (WWMCA) cloud data in a new toolset that enables radiance calculations through clouds from UV to RF wavelengths.

  16. Intensification of convective extremes driven by cloud-cloud interaction

    NASA Astrophysics Data System (ADS)

    Moseley, Christopher; Hohenegger, Cathy; Berg, Peter; Haerter, Jan O.

    2016-10-01

    In a changing climate, a key role may be played by the response of convective-type cloud and precipitation to temperature changes. Yet, it is unclear if convective precipitation intensities will increase mainly due to thermodynamic or dynamical processes. Here we perform large eddy simulations of convection by imposing a realistic diurnal cycle of surface temperature. We find convective events to gradually self-organize into larger cloud clusters and those events occurring late in the day to produce the highest precipitation intensities. Tracking rain cells throughout their life cycles, we show that events which result from collisions respond strongly to changes in boundary conditions, such as temperature changes. Conversely, events not resulting from collisions remain largely unaffected by the boundary conditions. Increased surface temperature indeed leads to more interaction between events and stronger precipitation extremes. However, comparable intensification occurs when leaving temperature unchanged but simply granting more time for self-organization. These findings imply that the convective field as a whole acquires a memory of past precipitation and inter-cloud dynamics, driving extremes. For global climate model projections, our results suggest that the interaction between convective clouds must be incorporated to simulate convective extremes and the diurnal cycle more realistically.

  17. Spatial characteristics of the tropical cloud systems: comparison between model simulation and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.

    1999-10-01

    A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non-mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature

  18. Automatic Cloud Detection from Multi-Temporal Satellite Images: Towards the Use of PLÉIADES Time Series

    NASA Astrophysics Data System (ADS)

    Champion, N.

    2012-08-01

    Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images) and is based on a region-growing procedure. Seeds (corresponding to clouds) are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images). Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011). In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  19. Life in the clouds: are tropical montane cloud forests responding to changes in climate?

    PubMed

    Hu, Jia; Riveros-Iregui, Diego A

    2016-04-01

    The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

  20. Limits to Cloud Susceptibility

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    2002-01-01

    1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.

  1. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  2. Low Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Indian Ocean Clouds     View Larger ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's polar-orbiting Terra spacecraft. The area covered by the image is 247.5 ... during the last decade. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  3. Titan's atmosphere (clouds and composition): new results

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200 % on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9 % of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering ≤1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection might govern their evolution. Their short lives point to the presence of rain.

  4. Study of the transport parameters of cloud lightning plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-11-15

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less

  5. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria

  6. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  7. Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.

    2017-12-01

    Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being

  8. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  9. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  10. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  11. Four years of global cirrus cloud statistics using HIRS

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.; Menzel, W. Paul; Woolf, Harold M.; Strabala, Kathleen I.

    1994-01-01

    Trends in global upper-tropospheric transmissive cirrus cloud cover are beginning to emerge from a four-year cloud climatology using NOAA polar-orbiting High-Resolution Infrared Radiation Sounder (HIRS) multispectral data. Cloud occurrence, height, and effective emissivity are determined with the CO2 slicing technique on the four years of data (June 1989-May 1993). There is a global preponderance of transmissive high clouds, 42% on the average; about three-fourths of these are above 500 hPa and presumed to be cirrus. In the Inter-tropical Convergence Zone (ITCZ), a high frequency of cirrus (greater than 50%) is found at all times; a modest seasonal movement tracks the sun. Large seasonal changes in cloud cover occur over the oceans in the storm belts at midlatitudes; the concentrations of these clouds migrate north and south with the seasons following the progressions of the subtropical highs (anticyclones). More cirrus is found in the summer than in the winter in each hemisphere. A significant change in cirrus cloud cover occurs in 1991, the third year of the study. Cirrus observations increase from 35% to 43% of the data, a change of eight percentage points. Other cloud forms, opaque to terrestrial radiation, decerase by nearly the same amount. Most of the increase is thinner cirrus with infrared optical depths below 0.7. The increase in cirrus happens at the same time as the 1991-92 El Nino/Southern Oscillation (ENSO) and the eruption of Mt. Pinatubo. The cirrus changes occur at the start of the ENSO and persist into 1993 in contrast to other climatic indicators that return to near pre-ENSO and volcanic levels in 1993.

  12. CloudSat Takes a 3D Slice of Hurricane Matthew

    NASA Image and Video Library

    2016-10-07

    NASA's CloudSat flew east of Hurricane Matthew's center on Oct. 6 at 11:30 a.m. PDT (2:30 p.m. EDT), intersecting parts of Matthew's outer rain bands and revealing Matthew's anvil clouds (thick cirrus cloud cover), with cumulus and cumulonimbus clouds beneath (lower image). Reds/pinks are larger water/ice droplets. http://photojournal.jpl.nasa.gov/catalog/PIA21095

  13. Trends in Total Cloud Amount Over China (1951 - 1994)

    DOE Data Explorer

    Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States).

    1999-01-01

    These total cloud amount time series for China are derived from the work of Kaiser (1998). The cloud data were extracted from a database of 6-hourly weather observations provided by the National Climate Center of the China Meteorological Administration (CMA) to the U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) through a bilateral research agreement. Surface-observed (visual) six-hourly observations [0200, 0800, 1400, and 2000 Beijing Time (BT)] of cloud amount (0-10 tenths of sky cover) were available from 196 Chinese stations covering the period 1954-94. Data from 1951-1953 were also available; however, they only included 0800, 1400, and 2000 BT observations.

  14. Pre-Dawn Clouds Over Mars

    NASA Image and Video Library

    1997-08-28

    These are more wispy blue clouds from Sol 39 as seen by the Imager for Mars Pathfinder. The bright clouds near the bottom are about 30 degrees above the horizon. The clouds are believed to be at an altitude of 10 to 15 km, and are thought to be made of small water ice particles. The picture was taken about 35 minutes before sunrise. Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00919

  15. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  16. Cloud cover over the equatorial eastern Pacific derived from July 1983 International Satellite Cloud Climatology Project data using a hybrid bispectral threshold method

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Harrison, Edwin F.; Gibson, Gary G.

    1987-01-01

    A set of visible and IR data obtained with GOES from July 17-31, 1983 is analyzed using a modified version of the hybrid bispectral threshold method developed by Minnis and Harrison (1984). This methodology can be divided into a set of procedures or optional techniques to determine the proper contaminate clear-sky temperature or IR threshold. The various optional techniques are described; the options are: standard, low-temperature limit, high-reflectance limit, low-reflectance limit, coldest pixel and thermal adjustment limit, IR-only low-cloud temperature limit, IR clear-sky limit, and IR overcast limit. Variations in the cloud parameters and the characteristics and diurnal cycles of trade cumulus and stratocumulus clouds over the eastern equatorial Pacific are examined. It is noted that the new method produces substantial changes in about one third of the cloud amount retrieval; and low cloud retrievals are affected most by the new constraints.

  17. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    DTIC Science & Technology

    2014-09-30

    developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud

  18. Equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in 14 horses associated with ingestion of Maple leaves (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum).

    PubMed

    van der Kolk, J H; Wijnberg, I D; Westermann, C M; Dorland, L; de Sain-van der Velden, M G M; Kranenburg, L C; Duran, M; Dijkstra, J A; van der Lugt, J J; Wanders, R J A; Gruys, E

    2010-01-01

    This case-series describes fourteen horses suspected of equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) also known as atypical myopathy of which seven cases were confirmed biochemically with all horses having had access to leaves of the Maple tree (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum). Assessment of organic acids, glycine conjugates, and acylcarnitines in urine was regarded as gold standard in the biochemical diagnosis of equine acquired multiple acyl-CoA dehydrogenase deficiency. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  20. Marine Layer Clouds off the California Coast

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 27, 2012 On September 27, 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of low-lying marine layer clouds along the coast of California. The image was captured by the VIIRS “day-night band,” which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe signals such as gas flares, auroras, wildfires, city lights, and reflected moonlight. An irregularly-shaped patch of high clouds hovers off the coast of California, and moonlight caused the high clouds to cast distinct shadows on the marine layer clouds below. VIIRS acquired the image when the Moon was in its waxing gibbous phase, meaning it was more than half-lit, but less than full. Low clouds pose serious hazards for air and ship traffic, but satellites have had difficulty detecting them in the past. To illustrate this, the second image shows the same scene in thermal infrared, the band that meteorologists generally use to monitor clouds at night. Only high clouds are visible; the low clouds do not show up at all because they are roughly the same temperature as the ground. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission

  1. Mapping with Small UAS: A Point Cloud Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Toth, Charles; Jozkow, Grzegorz; Grejner-Brzezinska, Dorota

    2015-12-01

    Interest in using inexpensive Unmanned Aerial System (UAS) technology for topographic mapping has recently significantly increased. Small UAS platforms equipped with consumer grade cameras can easily acquire high-resolution aerial imagery allowing for dense point cloud generation, followed by surface model creation and orthophoto production. In contrast to conventional airborne mapping systems, UAS has limited ground coverage due to low flying height and limited flying time, yet it offers an attractive alternative to high performance airborne systems, as the cost of the sensors and platform, and the flight logistics, is relatively low. In addition, UAS is better suited for small area data acquisitions and to acquire data in difficult to access areas, such as urban canyons or densely built-up environments. The main question with respect to the use of UAS is whether the inexpensive consumer sensors installed in UAS platforms can provide the geospatial data quality comparable to that provided by conventional systems. This study aims at the performance evaluation of the current practice of UAS-based topographic mapping by reviewing the practical aspects of sensor configuration, georeferencing and point cloud generation, including comparisons between sensor types and processing tools. The main objective is to provide accuracy characterization and practical information for selecting and using UAS solutions in general mapping applications. The analysis is based on statistical evaluation as well as visual examination of experimental data acquired by a Bergen octocopter with three different image sensor configurations, including a GoPro HERO3+ Black Edition, a Nikon D800 DSLR and a Velodyne HDL-32. In addition, georeferencing data of varying quality were acquired and evaluated. The optical imagery was processed by using three commercial point cloud generation tools. Comparing point clouds created by active and passive sensors by using different quality sensors, and finally

  2. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  3. Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Kang, Z.

    2017-09-01

    This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  4. The Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2008-01-01

    Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. I describe a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. Examples from the MODIS observations that illustrate the apparent bluing of aerosols near clouds will be discussed.

  5. SEMANTIC3D.NET: a New Large-Scale Point Cloud Classification Benchmark

    NASA Astrophysics Data System (ADS)

    Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.; Schindler, K.; Pollefeys, M.

    2017-05-01

    This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.

  6. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  7. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  8. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  9. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Core: Toward a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2005-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.

  10. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  11. GEWEX cloud assessment: A review

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  12. Snow cover monitoring model and change over both time and space in pastoral area of northern China

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Li, Suju; Wang, Ping; Zhang, Wei; Nie, Juan; Wen, Qi

    2014-11-01

    Snow disaster is a natural phenomenon owning to widespread snowfall for a long time and usually affect people's life, property and economic. During the whole disaster management circle, snow disaster in pastoral area of northern china which including Xinjiang, Inner Mongolia, Qinghai, Tibet has been paid more attention. Thus do a good job in snow cover monitoring then found snow disaster in time can help the people in disaster area to take effective rescue measures, which always been the central and local government great important work. Remote sensing has been used widely in snow cover monitoring for its wide range, high efficiency, less conditions, more methods and large information. NOAA/AVHRR data has been used for wide range, plenty bands information and timely acquired and act as an import data of Snow Cover Monitoring Model (SCMM). SCMM including functions list below: First after NOAA/AVHRR data has been acquired, geometric calibration, radiometric calibration and other pre-processing work has been operated. Second after band operation, four threshold conditions are used to extract snow spectrum information among water, cloud and other features in NOAA/AVHRR image. Third snow cover information has been analyzed one by one and the maximum snow cover from about twenty images in a week has been selected. Then selected image has been mosaic which covered the pastoral area of China. At last both time and space analysis has been carried out through this operational model ,such as analysis on the difference between this week and the same period of last year , this week and last week in three level regional. SCMM have been run successfully for three years, and the results have been take into account as one of the three factors which led to risk warning of snow disaster and analysis results from it always play an important role in disaster reduction and relief.

  13. Insights from a refined decomposition of cloud feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.

    Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloudmore » feedback but its anticorrelation with other components damps overall spread. Furthermore, the ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well-understood and robustly simulated feedbacks are discussed.« less

  14. Insights from a refined decomposition of cloud feedbacks

    DOE PAGES

    Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.

    2016-09-05

    Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloudmore » feedback but its anticorrelation with other components damps overall spread. Furthermore, the ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well-understood and robustly simulated feedbacks are discussed.« less

  15. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies.

    PubMed

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.

  16. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    PubMed Central

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  17. Fewer clouds in the Mediterranean: consistency of observations and climate simulations

    PubMed Central

    Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel R.; Vicente-Serrano, Sergio M.

    2017-01-01

    Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends. PMID:28148960

  18. Using Space Lidar Observations to Decompose Longwave Cloud Radiative Effect Variations Over the Last Decade

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Winker, David M.; Plougonven, Riwal

    2017-12-01

    Measurements of the longwave cloud radiative effect (LWCRE) at the top of the atmosphere assess the contribution of clouds to the Earth warming but do not quantify the cloud property variations that are responsible for the LWCRE variations. The CALIPSO space lidar observes directly the detailed profile of cloud, cloud opacity, and cloud cover. Here we use these observations to quantify the influence of cloud properties on the variations of the LWCRE observed between 2008 and 2015 in the tropics and at global scale. At global scale, the method proposed here gives good results except over the Southern Ocean. We find that the global LWCRE variations observed over ocean are mostly due to variations in the opaque cloud properties (82%); transparent cloud columns contributed 18%. Variation of opaque cloud cover is the first contributor to the LWCRE evolution (58%); opaque cloud temperature is the second contributor (28%).

  19. Tropical cloud feedbacks and natural variability of climate

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Del Genio, A. D.

    1994-01-01

    Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.

  20. Roughness Estimation from Point Clouds - A Comparison of Terrestrial Laser Scanning and Image Matching by Unmanned Aerial Vehicle Acquisitions

    NASA Astrophysics Data System (ADS)

    Rutzinger, Martin; Bremer, Magnus; Ragg, Hansjörg

    2013-04-01

    Recently, terrestrial laser scanning (TLS) and matching of images acquired by unmanned arial vehicles (UAV) are operationally used for 3D geodata acquisition in Geoscience applications. However, the two systems cover different application domains in terms of acquisition conditions and data properties i.e. accuracy and line of sight. In this study we investigate the major differences between the two platforms for terrain roughness estimation. Terrain roughness is an important input for various applications such as morphometry studies, geomorphologic mapping, and natural process modeling (e.g. rockfall, avalanche, and hydraulic modeling). Data has been collected simultaneously by TLS using an Optech ILRIS3D and a rotary UAV using an octocopter from twins.nrn for a 900 m² test site located in a riverbed in Tyrol, Austria (Judenbach, Mieming). The TLS point cloud has been acquired from three scan positions. These have been registered using iterative closest point algorithm and a target-based referencing approach. For registration geometric targets (spheres) with a diameter of 20 cm were used. These targets were measured with dGPS for absolute georeferencing. The TLS point cloud has an average point density of 19,000 pts/m², which represents a point spacing of about 5 mm. 15 images where acquired by UAV in a height of 20 m using a calibrated camera with focal length of 18.3 mm. A 3D point cloud containing RGB attributes was derived using APERO/MICMAC software, by a direct georeferencing approach based on the aircraft IMU data. The point cloud is finally co-registered with the TLS data to guarantee an optimal preparation in order to perform the analysis. The UAV point cloud has an average point density of 17,500 pts/m², which represents a point spacing of 7.5 mm. After registration and georeferencing the level of detail of roughness representation in both point clouds have been compared considering elevation differences, roughness and representation of different grain

  1. A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A.; Remer, Lorraine A.; Loeb, Norman G.; Cahalan, Robert F.

    2008-07-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3-D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper only addresses the cloud-clear sky radiative transfer interaction part. It provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. This assumption leads to a larger increase of AOT for shorter wavelengths, or to a "bluing" of aerosols near clouds. The assumption that contribution from molecular scattering dominates over aerosol scattering and surface reflection is justified for the case of shorter wavelengths, dark surfaces, and an aerosol layer below the cloud tops. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  2. Smart Point Cloud: Definition and Remaining Challenges

    NASA Astrophysics Data System (ADS)

    Poux, F.; Hallot, P.; Neuville, R.; Billen, R.

    2016-10-01

    Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  3. Georeferencing UAS Derivatives Through Point Cloud Registration with Archived Lidar Datasets

    NASA Astrophysics Data System (ADS)

    Magtalas, M. S. L. Y.; Aves, J. C. L.; Blanco, A. C.

    2016-10-01

    Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a `skeleton point cloud'. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of

  4. Desktop Cloud Visualization: the new technology to remote access 3D interactive applications in the Cloud.

    PubMed

    Torterolo, Livia; Ruffino, Francesco

    2012-01-01

    In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.

  5. Changes in cloud and aerosol cover (1980-2006) from reflectivity time series using SeaWiFS, N7-TOMS, EP-TOMS, SBUV-2, and OMI radiance data

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Labow, G.; Hsu, N. C.; Larko, D.

    2009-01-01

    The amount of solar radiation reflected back to space or reaching the Earth's surface is primarily governed by the amount of cloud cover and, to a much lesser extent, by Rayleigh scattering, aerosols, and various absorbing gases (e.g., O3, NO2, H2O). A useful measure of the effect of cloud plus aerosol cover is given by the amount that the 331 nm Lambert Equivalent Reflectivity (LER) of a scene exceeds the surface reflectivity for snow/ice-free scenes after Rayleigh scattering has been removed. Twenty-eight years of reflectivity data are available by overlapping data from several satellites: N7 (Nimbus 7, TOMS; 331 nm) from 1979 to 1992, SBUV-2 series (Solar Backscatter Ultraviolet, NOAA; 331 nm) 1985 to 2007, EP (Earth-Probe, TOMS; 331 nm) 1997 to 2006, SW (SeaWiFS; 412 nm) 1998 to 2006, and OMI (Ozone Measuring Instrument; 331 nm) 2004-2007. Only N7 and SW have a sufficiently long data record, Sun-synchronous orbits, and are adequately calibrated for long-term reflectivity trend estimation. Reflectivity data derived from these instruments and the SBUV-2 series are compared during the overlapping years. Key issues in determining long-term reflectivity changes that have occurred during the N7 and SW operating periods are discussed. The largest reflectivity changes in the 412 nm SW LER and 331 nm EP LER are found to occur near the equator and are associated with a large El Nino-Southern Oscillation event. Most other changes that have occurred are regional, such as the apparent cloud decrease over northern Europe since 1998. The fractional occurrence (fraction of days) of high reflectivity values over Hudson Bay, Canada (snow/ice and clouds) appears to have decreased when comparing reflectivity data from 1980 to 1992 to 1997-2006, suggesting shorter duration of ice in Hudson Bay since 1980.

  6. Changes in Cloud and Aerosol Cover (1980-2006) from Reflectivity Time Series Using SeaWiFS, N7-TOMS, EP-TOMS, SBUV-2, and OMI Radiance Data

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Labow, G.; Hsu, N. C.; Larko, D.

    2009-01-01

    The amount of solar radiation reflected back to space or reaching the Earth's surface is primarily governed by the amount of cloud cover and, to a much lesser extent, by Rayleigh scatteri ng, aerosols, and various absorbing gases (e.g., O3, NO2, H2O). A useful measure of the effect of cloud plus aerosol cover is given by the amount that the 331 run Lambert Equivalent Reflectivity (LER) ofa scene exceeds the surfuce reflectivity for snow/ice-free scenes after Rayleigh scattering has been removed. Twenty-eight years of reflectivity data are available by overlapping data from several satellites: N7 (Nimbus 7, TOMS; 331 nm) from 1979 to 1992, SBUV-2 series (Solar Backscatter Ultraviolet, NOAA; 331 nm) 1985 to 2007, EP (Earth-Probe, TOMS; 331 nm) 1997 to 2006, SW (SeaWiFS; 412 nm) 1998 to 2006, and OMI (Ozone Measuring Instrument; 331 nm) 2004-2007. Only N7 and SW have a sufficiently long data record, Sun-synchronous orbits, and are adequately calibrated for long-term reflectivity trend estimation. Reflectivity data derived from these instruments and the SBUV-2 series are compared during the overlapping years. Key issues in determining long-term reflecti vity changes that have occurred during the N7 and SW operating periods are discussed. The largest reflectivity changes in the 412 nm SW LER and 331 nm EP LER are found to occur near the equator and are associated with a large EI Nino-Southern Oscillation event. Most other changes that have occurred are regional, such as the apparent cloud decrease over northern Europe since 1998. The fractional occurrence (fraction of days) of high reflectivity values over Hudson Bay, Canada (snow/ice and clouds) appears to have decreased when comparing reflectivity data from 1980 to 1992 to 1997-2006, suggesting shorter duration of ice in Hudson Bay since 1980.

  7. Farming the Tropics: Visualizing Landscape Changes Through the Clouds, in the Cloud

    NASA Astrophysics Data System (ADS)

    Kontgis, C.; Brumby, S. P.; Chartrand, R.; Franco, E.; Keisler, R.; Kelton, T.; Mathis, M.; Moody, D.; Raleigh, D.; Rudelis, X.; Skillman, S.; Warren, M. S.

    2016-12-01

    A key component of studying land cover and land use change is analyzing trends in spectral signatures through time. For vegetation, the standard method of doing this involves the normalized difference vegetation index (NDVI) or near infrared signal during a growing season, as both increase while plants grow and decrease during senescence. If temporal resolution were high and clouds did not obstruct landscape views, this approach could work across the globe. However, in tropical regions that are increasingly important for global food production, often there is not enough spectral information to monitor landscape change due to persistent cloud cover. In these instances, synthetic aperture radar (SAR) data provides a useful alternative to shorter wavelength components of the spectrum since its longer wavelengths can penetrate clouds. This analysis uses the cloud-based platform developed by Descartes Labs to explore the utility of Sentinel-1 data in cloudy tropical regions, using the Mekong River Delta in southern Vietnam as a case study. We compare phenological growing patterns derived from Sentinel-1 data with those from Landsat and MODIS imagery, which are the most commonly used sensors to map land cover and land use across the globe. Using these SAR-derived phenology curves, it is possible to monitor landscape changes in near real-time, while also visualizing and quantifying the rates of agricultural intensification. Descartes Labs is a venture-backed remote sensing startup founded in 2014 by a group of scientists from the Los Alamos National Laboratory in New Mexico. Since its inception, the team at Descartes has assembled all available satellite imagery from the USGS Landsat and NASA MODIS programs, and has analyzed over 2.8 quadrillion pixels of satellite imagery. With a focus on food security and climate change, the company has succeeded at estimating United States corn yields earlier and more accurately than USDA estimates. Now, this technology is being

  8. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

    2016-01-01

    Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.

  9. Deployment of the third-generation infrared cloud imager: A two-year study of Arctic clouds at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Nugent, Paul Winston

    Cloud cover is an important but poorly understood component of current climate models, and although climate change is most easily observed in the Arctic, cloud data in the Arctic is unreliable or simply unavailable. Ground-based infrared cloud imaging has the potential to fill this gap. This technique uses a thermal infrared camera to observe cloud amount, cloud optical depth, and cloud spatial distribution at a particular location. The Montana State University Optical Remote Sensor Laboratory has developed the ground-based Infrared Cloud Imager (ICI) instrument to measure spatial and temporal cloud data. To build an ICI for Arctic sites required the system to be engineered to overcome the challenges of this environment. Of particular challenge was keeping the system calibration and data processing accurate through the severe temperature changes. Another significant challenge was that weak emission from the cold, dry Arctic atmosphere pushed the camera used in the instrument to its operational limits. To gain an understanding of the operation of the ICI systems for the Arctic and to gather critical data on Arctic clouds, a prototype arctic ICI was deployed in Barrow, AK from July 2012 through July 2014. To understand the long-term operation of an ICI in the arctic, a study was conducted of the ICI system accuracy in relation to co-located active and passive sensors. Understanding the operation of this system in the Arctic environment required careful characterization of the full optical system, including the lens, filter, and detector. Alternative data processing techniques using decision trees and support vector machines were studied to improve data accuracy and reduce dependence on auxiliary instrument data and the resulting accuracy is reported here. The work described in this project was part of the effort to develop a fourth-generation ICI ready to be deployed in the Arctic. This system will serve a critical role in developing our understanding of cloud cover

  10. Using cloud and climate data to understand warm season hydrometeorology from diurnal to monthly timescales

    NASA Astrophysics Data System (ADS)

    Betts, A. K.; Tawfik, A. B.; Desjardins, R. L.

    2016-12-01

    We use 600 station years of hourly data from 14 stations on the Canadian Prairies to map the warm season hydrometeorology. The months from April (after snowmelt) to September, have a very similar coupling between surface thermodynamics and opaque cloud cover, which has been calibrated to give cloud radiative forcing. We can derive both the mean diurnal ranges and the diurnal imbalances as a function of opaque cloud cover. For the monthly diurnal climate, we compute the coupling coefficients with opaque cloud cover and lagged precipitation. In April the diurnal cycle climate has memory of precipitation back to freeze-up in November. During the growing season months of June, July and August, there is memory of precipitation back to March. Monthly mean temperature depends strongly on cloud but little on precipitation, while monthly mean mixing ratio depends on precipitation, but rather little on cloud. The coupling coefficients to cloud and precipitation change with increasing monthly precipitation anomaly. This observational climate analysis provides a firm basis for model evaluation.

  11. Integrating Cloud-Computing-Specific Model into Aircraft Design

    NASA Astrophysics Data System (ADS)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  12. Hole punch clouds over the Bahamas

    NASA Image and Video Library

    2017-12-08

    In elementary school, students learn that water freezes at 0 degrees Celsius (32 degrees Fahrenheit). That is true most of the time, but there are exceptions to the rule. For instance, water with very few impurities (such as dust or pollution particles, fungal spores, bacteria) can be chilled to much cooler temperatures and still remain liquid—a process known as supercooling. Supercooling may sound exotic, but it occurs pretty routinely in Earth’s atmosphere. Altocumulus clouds, a common type of mid-altitude cloud, are mostly composed of water droplets supercooled to a temperature of about -15 degrees C. Altocumulus clouds with supercooled tops cover about 8 percent of Earth’s surface at any given time. Supercooled water droplets play a key role in the formation of hole-punch and canal clouds, the distinctive clouds shown in these satellite images. Hole-punch clouds usually appear as circular gaps in decks of altocumulus clouds; canal clouds look similar but the gaps are longer and thinner. This true-color image shows hole-punch and canal clouds off the coast of Florida, as observed on December 12, 2014, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Both types of cloud form when aircraft fly through cloud decks rich with supercooled water droplets and produce aerodynamic contrails. Air expands and cools as it moves around the wings and past the propeller, a process known as adiabatic cooling. Air temperatures over jet wings often cool by as much as 20 degrees Celsius, pushing supercooled water droplets to the point of freezing. As ice crystals form, they absorb nearby water droplets. Since ice crystals are relatively heavy, they tend to sink. This triggers tiny bursts of snow or rain that leave gaps in the cloud cover. Whether a cloud formation becomes a hole-punch or canal depends on the thickness of the cloud layer, the air temperature, and the degree of horizontal wind shear. Both descending and ascending

  13. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2008-03-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 μm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re=~10 μm, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in re due to evaporation.

  14. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2005-10-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 µm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re~10 µm, continues to be significant during the cloud's mixing with the entrained air, canceling out the decrease in re due to evaporation.

  15. Liquid water content variation with altitude in clouds over Europe

    NASA Astrophysics Data System (ADS)

    Andreea, Boscornea; Sabina, Stefan

    2013-04-01

    Cloud water content is one of the most fundamental measurements in cloud physics. Knowledge of the vertical variability of cloud microphysical characteristics is important for a variety of reasons. The profile of liquid water content (LWC) partially governs the radiative transfer for cloudy atmospheres, LWC profiles improves our understanding of processes acting to form and maintain cloud systems and may lead to improvements in the representation of clouds in numerical models. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote sensing techniques. The aim of this paper was to analyze the liquid water content (LWC) measurements in clouds, in time of the aircraft flights. The aircraft and its platform ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research is property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania. The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 m). The processed and analyzed measurements are acquired during 4 flights from Romania (Bucharest, 44°25'57″N 26°06'14″E) to Germany (Berlin 52°30'2″N 13°23'56″E) above the same region of Europe. The flight path was starting from Bucharest to the western part of Romania above Hungary, Austria at a cruse altitude between 6000-8500 m, and after 5 hours reaching Berlin. In total we acquired data during approximately 20 flight hours and we presented the vertical and horizontal LWC variations for different cloud types. The LWC values are similar for each type of cloud to values from literature. The vertical LWC profiles in the atmosphere measured during takeoff and landing of the aircraft have shown their

  16. Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.

    2005-01-01

    About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.

  17. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    NASA Astrophysics Data System (ADS)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  18. NH4SH and cloud cover in the atmospheres of the giant planets

    NASA Astrophysics Data System (ADS)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  19. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  20. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  1. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  2. Evaluating stratiform cloud base charge remotely

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri A.; Aplin, Karen L.

    2017-06-01

    Stratiform clouds acquire charge at their upper and lower horizontal boundaries due to vertical current flow in the global electric circuit. Cloud charge is expected to influence microphysical processes, but understanding is restricted by the infrequent in situ measurements available. For stratiform cloud bases below 1 km in altitude, the cloud base charge modifies the surface electric field beneath, allowing a new method of remote determination. Combining continuous cloud height data during 2015-2016 from a laser ceilometer with electric field mill data, cloud base charge is derived using a horizontal charged disk model. The median daily cloud base charge density found was -0.86 nC m-2 from 43 days' data. This is consistent with a uniformly charged region 40 m thick at the cloud base, now confirming that negative cloud base charge is a common feature of terrestrial layer clouds. This technique can also be applied to planetary atmospheres and volcanic plumes.Plain Language SummaryThe idea that <span class="hlt">clouds</span> in the atmosphere can charge electrically has been appreciated since the time of Benjamin Franklin, but it is less widely recognized that it is not just thunderclouds which contain electric charge. For example, water droplets in simple layer <span class="hlt">clouds</span>, that are abundant and often responsible for an overcast day, carry electric charges. The droplet charging arises at the upper and lower edges of the layer <span class="hlt">cloud</span>. This occurs because the small droplets at the edges draw charge from the air outside the <span class="hlt">cloud</span>. Understanding how strongly layer <span class="hlt">clouds</span> charge is important in evaluating electrical effects on the development of such <span class="hlt">clouds</span>, for example, how thick the <span class="hlt">cloud</span> becomes and whether it generates rain. Previously, <span class="hlt">cloud</span> charge measurement has required direct measurements within the <span class="hlt">cloud</span> using weather balloons or aircraft. This work has monitored the lower <span class="hlt">cloud</span> charge continuously using instruments placed at the surface beneath</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050157894','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050157894"><span><span class="hlt">Cloud</span> Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shiffman, Smadar</p> <p>2004-01-01</p> <p>Automated <span class="hlt">cloud</span> detection and tracking is an important step in assessing global climate change via remote sensing. <span class="hlt">Cloud</span> masks, which indicate whether individual pixels depict <span class="hlt">clouds</span>, are included in many of the data products that are based on data <span class="hlt">acquired</span> on- board earth satellites. Many <span class="hlt">cloud</span>-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing <span class="hlt">cloud</span> masks restrict our ability to accurately track changes in <span class="hlt">cloud</span> patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting <span class="hlt">clouds</span> from images <span class="hlt">acquired</span> using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the <span class="hlt">cloud</span> mask. We used ground observations collected by the National Aeronautics and Space Administration <span class="hlt">Clouds</span> and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the <span class="hlt">cloud</span> masks included in the AVHRR data product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.7081E..0TD','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.7081E..0TD"><span>WindCam and MSPI: two <span class="hlt">cloud</span> and aerosol instrument concepts derived from Terra/MISR heritage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diner, David J.; Mischna, Michael; Chipman, Russell A.; Davis, Ab; Cairns, Brian; Davies, Roger; Kahn, Ralph A.; Muller, Jan-Peter; Torres, Omar</p> <p>2008-08-01</p> <p>The Multi-angle Imaging SpectroRadiometer (MISR) has been <span class="hlt">acquiring</span> global <span class="hlt">cloud</span> and aerosol data from polar orbit since February 2000. MISR <span class="hlt">acquires</span> moderately high-resolution imagery at nine view angles from nadir to 70.5°, in four visible/near-infrared spectral bands. Stereoscopic parallax, time lapse among the nine views, and the variation of radiance with angle and wavelength enable retrieval of geometric <span class="hlt">cloud</span> and aerosol plume heights, height-resolved <span class="hlt">cloud</span>-tracked winds, and aerosol optical depth and particle property information. Two instrument concepts based upon MISR heritage are in development. The <span class="hlt">Cloud</span> Motion Vector Camera, or WindCam, is a simplified version comprised of a lightweight, compact, wide-angle camera to <span class="hlt">acquire</span> multiangle stereo imagery at a single visible wavelength. A constellation of three WindCam instruments in polar Earth orbit would obtain height-resolved <span class="hlt">cloud</span>-motion winds with daily global coverage, making it a low-cost complement to a spaceborne lidar wind measurement system. The Multiangle SpectroPolarimetric Imager (MSPI) is aimed at aerosol and <span class="hlt">cloud</span> microphysical properties, and is a candidate for the National Research Council Decadal Survey's Aerosol-<span class="hlt">Cloud</span>-Ecosystem (ACE) mission. MSPI combines the capabilities of MISR with those of other aerosol sensors, extending the spectral coverage to the ultraviolet and shortwave infrared and incorporating high-accuracy polarimetric imaging. Based on requirements for the nonimaging Aerosol Polarimeter Sensor on NASA's Glory mission, a degree of linear polarization uncertainty of 0.5% is specified within a subset of the MSPI bands. We are developing a polarization imaging approach using photoelastic modulators (PEMs) to accomplish this objective.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26618102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26618102"><span>Approaches to Observe Anthropogenic Aerosol-<span class="hlt">Cloud</span> Interactions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quaas, Johannes</p> <p></p> <p>Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-<span class="hlt">cloud</span> interactions via an immediate altering of <span class="hlt">cloud</span> albedo on the one hand and via rapid adjustments by alteration of <span class="hlt">cloud</span> processes and by changes in thermodynamic profiles on the other hand. Large variability in <span class="hlt">cloud</span> <span class="hlt">cover</span> and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on <span class="hlt">clouds</span> from natural <span class="hlt">cloud</span> variability to estimate or constrain the effective forcing. These are (i) intentional <span class="hlt">cloud</span> modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMetR..32..233J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMetR..32..233J"><span>Improving Representation of Tropical <span class="hlt">Cloud</span> Overlap in GCMs Based on <span class="hlt">Cloud</span>-Resolving Model Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jing, Xianwen; Zhang, Hua; Satoh, Masaki; Zhao, Shuyun</p> <p>2018-04-01</p> <p>The decorrelation length ( L cf) has been widely used to describe the behavior of vertical overlap of <span class="hlt">clouds</span> in general circulation models (GCMs); however, it has been a challenge to associate L cf with the large-scale meteorological conditions during <span class="hlt">cloud</span> evolution. This study explored the relationship between L cf and the strength of atmospheric convection in the tropics based on output from a global <span class="hlt">cloud</span>-resolving model. L cf tends to increase with vertical velocity in the mid-troposphere ( w 500) at locations of ascent, but shows little or no dependency on w 500 at locations of descent. A representation of L cf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of L cf leads to a significant improvement in simulation of both <span class="hlt">cloud</span> <span class="hlt">cover</span> and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting <span class="hlt">cloud</span> overlap in the tropics in GCMs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100035183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100035183"><span>Improving <span class="hlt">Cloud</span> Detection in Satellite Images of Coral Reef Environments Using Space Shuttle Photographs and High-Definition Television</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Andrefeouet, Serge; Robinson, Julie</p> <p>2000-01-01</p> <p>Coral reefs worldwide are suffering from severe and rapid degradation (Bryant et A, 1998; Hoegh-Guldberg, 1999). Quick, consistent, large-scale assessment is required to assess and monitor their status (e.g., USDOC/NOAA NESDIS et al., 1999). On-going systematic collection of high resolution digital satellite data will exhaustively complement the relatively small number of SPOT, Landsat 4-5, and IRS scenes <span class="hlt">acquired</span> for coral reefs the last 20 years. The workhorse for current image acquisition is the Landsat 7 ETM+ Long Term Acquisition Plan (Gasch et al. 2000). Coral reefs are encountered in tropical areas and <span class="hlt">cloud</span> contamination in satellite images is frequently a problem (Benner and Curry 1998), despite new automated techniques of <span class="hlt">cloud</span> <span class="hlt">cover</span> avoidance (Gasch and Campana 2000). Fusion of multidate acquisitions is a classical solution to solve the <span class="hlt">cloud</span> problems. Though elegant, this solution is costly since multiple images must be purchased for one location; the cost may be prohibitive for institutions in developing countries. There are other difficulties associated with fusing multidate images as well. For example, water quality or surface state can significantly change through time in coral reef areas making the bathymetric processing of a mosaiced image strenuous. Therefore, another strategy must be selected to detect <span class="hlt">clouds</span> and improve coral reefs mapping. Other supplemental data could be helpful and cost-effective for distinguishing <span class="hlt">clouds</span> and generating the best possible reef maps in the shortest amount of time. Photographs taken from the 1960s to the present from the Space Shuttle and other human-occupied spacecraft are one under-used source of alternative multitemporal data (Lulla et al. 1996). Nearly 400,000 photographs have been <span class="hlt">acquired</span> during this period, an estimated 28,000 of these taken to date are of potential value for reef remote sensing (Robinson et al. 2000a). The photographic images can be digitized into three bands (red, green and blue) and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20516.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20516.html"><span>Send in the <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-02</p> <p>Floating high above the hydrocarbon lakes, wispy <span class="hlt">clouds</span> have finally started to return to Titan's northern latitudes <span class="hlt">Clouds</span> like these disappeared from Titan's (3,200 miles or 5,150 kilometers across) northern reaches for several years (from about 2010 to 2014). Now they have returned, but in far smaller numbers than expected. Since <span class="hlt">clouds</span> can quickly appear and disappear, Cassini scientists regularly monitor the large moon, in the hopes of observing <span class="hlt">cloud</span> activity. They are especially interested in comparing these observations to predictions of how <span class="hlt">cloud</span> <span class="hlt">cover</span> should change with Saturn's seasons. Titan's clear skies are not what researchers expected. This view looks toward the Saturn-facing side of Titan. North on Titan is up and rotated 3 degrees to the left. The image was taken with the Cassini spacecraft narrow-angle camera on Oct. 29, 2016 using a spectral filter that preferentially admits wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 545,000 miles (878,000 kilometers) from Titan. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20516</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005497&hterms=colours&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcolours','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005497&hterms=colours&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcolours"><span><span class="hlt">Cloud</span> Motion in the GOCI COMS Ocean Colour Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robinson, Wayne D.; Franz, Bryan A.; Mannino, Antonio; Ahn, Jae-Hyun</p> <p>2016-01-01</p> <p>The Geostationary Ocean Colour Imager (GOCI) instrument, on Koreas Communications, Oceans, and Meteorological Satellite (COMS), can produce a spectral artefact arising from the motion of <span class="hlt">clouds</span> the <span class="hlt">cloud</span> is spatially shifted and the amount of shift varies by spectral band. The length of time it takes to <span class="hlt">acquire</span> all eight GOCI bands for a given slot (portion of a scene) is sucient to require that <span class="hlt">cloud</span> motion be taken into account to fully mask or correct the eects of <span class="hlt">clouds</span> in all bands. Inter-band correlations can be used to measure the amount of <span class="hlt">cloud</span> shift, which can then be used to adjust the <span class="hlt">cloud</span> mask so that the union of all shifted masks can act as a mask for all bands. This approach reduces the amount of masking required versus a simple expansion of the mask in all directions away from <span class="hlt">clouds</span>. <span class="hlt">Cloud</span> motion can also aect regions with unidentied <span class="hlt">clouds</span> thin or fractional <span class="hlt">clouds</span> that evade the <span class="hlt">cloud</span> identication process yielding degraded quality in retrieved ocean colour parameters. Areas with moving and unidentied <span class="hlt">clouds</span> require more elaborate masking algo-rithms to remove these degraded retrievals. Correction for the eects of moving fractional <span class="hlt">clouds</span> may also be possible. The <span class="hlt">cloud</span> shift information can be used to determine <span class="hlt">cloud</span> motion and thus wind at the <span class="hlt">cloud</span> levels on sub-minute timescales. The benecial and negative eects of moving <span class="hlt">clouds</span> should be con-sidered for any ocean colour instrument design and associated data processing plans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29727726','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29727726"><span>A lineage <span class="hlt">CLOUD</span> for neoblasts.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tran, Thao Anh; Gentile, Luca</p> <p>2018-05-10</p> <p>In planarians, pluripotency can be studied in vivo in the adult animal, making these animals a unique model system where pluripotency-based regeneration (PBR)-and its therapeutic potential-can be investigated. This review focuses on recent findings to build a <span class="hlt">cloud</span> model of fate restriction likelihood for planarian stem and progenitor cells. Recently, a computational approach based on functional and molecular profiling at the single cell level was proposed for human hematopoietic stem cells. Based on data generated both in vivo and ex vivo, we hypothesized that planarian stem cells could <span class="hlt">acquire</span> multiple direction lineage biases, following a "badlands" landscape. Instead of a discrete tree-like hierarchy, where the potency of stem/progenitor cells reduces stepwise, we propose a Continuum of LOw-primed UnDifferentiated Planarian Stem/Progenitor Cells (<span class="hlt">CLOUD</span>-PSPCs). Every subclass of neoblast/progenitor cells is a <span class="hlt">cloud</span> of likelihood, as the single cell transcriptomics data indicate. The <span class="hlt">CLOUD</span>-HSPCs concept was substantiated by in vitro data from cell culture; therefore, to confirm the <span class="hlt">CLOUD</span>-PSPCs model, the planarian community needs to develop new tools, like live cell tracking. Future studies will allow a deeper understanding of PBR in planarian, and the possible implications for regenerative therapies in human. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.C21B0476Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.C21B0476Y"><span>MODIS-based Snow <span class="hlt">Cover</span> Variability of the Upper River Grande Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, B.; Wang, X.; Xie, H.</p> <p>2007-12-01</p> <p>Snow <span class="hlt">cover</span> and its spring melting in the Upper Rio Grande Basin provides a major water source for the Upper to Middle Rio Grande valley and Elephant Butte Reservoir. Thus understanding the snowpack and its variability in the context of global climate change is crucial to the sustainable water resources for the region. MODIS instruments (on Terra and Aqua) have provided time series of snow <span class="hlt">cover</span> products since 2000, but suffering with <span class="hlt">cloud</span> contaminations. In this study, we evaluated four newly developed cloudless snow <span class="hlt">cover</span> products (less than 10%) and four standard products: daily (MOD10A1, MYD10A1) and 8-day (MOD10A2, MYD10A2), in comparison with in situ Snowpack Telemetry (SNOTEL) measurements for the hydrological year 2003-2004. The four new products are daily composite of Terra and Aqua (MODMYD10DC), multi-day composites of Terra (MOD10MC), Aqua (MYD10MC), and Terra and Aqua (MODMYD10MC). The standard daily and 8-day products can classify land correctly, but had fairly low accuracy in snow classification due to <span class="hlt">cloud</span> contamination (a average of 39.4% for Terra and 45% for Aqua in the year 2003-2004). All the new multi-day composite products tended to have high accuracy in classifying both snow and land (over 90%), as the <span class="hlt">cloud</span> <span class="hlt">cover</span> has been reduced to less than 10% (~5% for the year) under the new algorithm . This result is consistent with a previous study in the Xinjiang area, China (Wang and Xie, 2007). Therefore, MOD10MC (before the Aqua data available) and MODMYD10MC products are used to get the mean snow <span class="hlt">cover</span> of the Upper Rio Grande Basin from 2000 to 2007. The snow depletion curve derived from the new <span class="hlt">cloud</span>-free snow <span class="hlt">cover</span> map will be used to examine its effect on stream discharge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1328835-measuring-cloud-thermodynamic-phase-shortwave-infrared-imaging-spectroscopy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1328835-measuring-cloud-thermodynamic-phase-shortwave-infrared-imaging-spectroscopy"><span>Measuring <span class="hlt">cloud</span> thermodynamic phase with shortwave infrared imaging spectroscopy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thompson, David R.; McCubbin, Ian; Gao, Bo Cai</p> <p></p> <p>Shortwave Infrared imaging spectroscopy enables accurate remote mapping of <span class="hlt">cloud</span> thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in <span class="hlt">cloud</span> top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data <span class="hlt">acquired</span> in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse <span class="hlt">cloud</span> formations while the U.S. Department of Energy ARMmore » Aerial Facility G-1 aircraft measured <span class="hlt">cloud</span> integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous <span class="hlt">clouds</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21051.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21051.html"><span>Watching Summer <span class="hlt">Clouds</span> on Titan</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-11-04</p> <p>'s northern hemisphere. The movie was <span class="hlt">acquired</span> using the Cassini narrow-angle camera using infrared filters to make the surface and tropospheric methane <span class="hlt">clouds</span> visible. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA21051</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AMT....10.2129B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AMT....10.2129B"><span>Thin ice <span class="hlt">clouds</span> in the Arctic: <span class="hlt">cloud</span> optical depth and particle size retrieved from ground-based thermal infrared radiometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.</p> <p>2017-06-01</p> <p>Multiband downwelling thermal measurements of zenith sky radiance, along with <span class="hlt">cloud</span> boundary heights, were used in a retrieval algorithm to estimate <span class="hlt">cloud</span> optical depth and effective particle diameter of thin ice <span class="hlt">clouds</span> in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice <span class="hlt">clouds</span> cases were <span class="hlt">acquired</span> at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several <span class="hlt">cloud</span> parameters including optical depth, effective particle diameter and shape, water vapor content, <span class="hlt">cloud</span> geometric thickness and <span class="hlt">cloud</span> base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, <span class="hlt">cloud</span> optical depth up to a maximum value of 2.6 and to separate thin ice <span class="hlt">clouds</span> into two classes: (1) TIC1 <span class="hlt">clouds</span> characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 <span class="hlt">clouds</span> characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave <span class="hlt">Cloud</span> Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for <span class="hlt">cloud</span> optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 <span class="hlt">clouds</span>. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/993103','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/993103"><span>Using Radar, Lidar, and Radiometer measurements to Classify <span class="hlt">Cloud</span> Type and Study Middle-Level <span class="hlt">Cloud</span> Properties</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Zhien</p> <p>2010-06-29</p> <p>The project is mainly focused on the characterization of <span class="hlt">cloud</span> macrophysical and microphysical properties, especially for mixed-phased <span class="hlt">clouds</span> and middle level ice <span class="hlt">clouds</span> by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase <span class="hlt">cloud</span> retrieval algorithm will be developed to <span class="hlt">cover</span> all mixed-phase <span class="hlt">clouds</span> observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase <span class="hlt">cloud</span> product for model validations and arctic mixed-phase <span class="hlt">cloud</span> processes studies. To improve the representation of arctic mixed-phase <span class="hlt">clouds</span> in GCMs, an advanced understanding of mixed-phase <span class="hlt">cloud</span> processesmore » is needed. By combining retrieved mixed-phase <span class="hlt">cloud</span> microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water <span class="hlt">clouds</span>, the maintenance mechanisms of the arctic mixed-phase <span class="hlt">clouds</span>, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase <span class="hlt">clouds</span> observed at the ACRF SGP site. Compared with optically thin ice <span class="hlt">clouds</span>, optically thick middle level ice <span class="hlt">clouds</span> are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice <span class="hlt">cloud</span> study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice <span class="hlt">clouds</span>. Another area of the proposal is to generate long-term <span class="hlt">cloud</span> type classification product for the multiple ACRF sites. The <span class="hlt">cloud</span> type classification product will not only facilitates the generation of the integrated <span class="hlt">cloud</span> product by applying different retrieval algorithms to different types of <span class="hlt">clouds</span> operationally, but will also support other research to better understand <span class="hlt">cloud</span> properties and to validate model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045724&hterms=Electromagnetic+Pulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DElectromagnetic%2BPulse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045724&hterms=Electromagnetic+Pulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DElectromagnetic%2BPulse"><span>Microsecond-scale electric field pulses in <span class="hlt">cloud</span> lightning discharges</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.</p> <p>1994-01-01</p> <p>From wideband electric field records <span class="hlt">acquired</span> using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of <span class="hlt">cloud</span> flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of <span class="hlt">cloud</span>-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the <span class="hlt">cloud</span> flash suggests that they are related to the initial in-<span class="hlt">cloud</span> channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in <span class="hlt">cloud</span> flashes are the K processes which occur in the final, or J type, part of the <span class="hlt">cloud</span> discharge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1051181-marine-cloud-brightening','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1051181-marine-cloud-brightening"><span>Marine <span class="hlt">Cloud</span> Brightening</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Latham, John; Bower, Keith; Choularton, Tom</p> <p>2012-09-07</p> <p>The idea behind the marine <span class="hlt">cloud</span>-brightening (MCB) geoengineering technique is that seeding marine stratocumulus <span class="hlt">clouds</span> with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the <span class="hlt">cloud</span> droplet number concentration, and thereby the <span class="hlt">cloud</span> albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involvesmore » (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice <span class="hlt">cover</span> and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in <span class="hlt">cloud</span> brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on <span class="hlt">cloud</span>-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, <span class="hlt">cloud</span> albedo might be enhanced by seeding marine stratocumulus <span class="hlt">clouds</span> on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22869798','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22869798"><span>Marine <span class="hlt">cloud</span> brightening.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob</p> <p>2012-09-13</p> <p>The idea behind the marine <span class="hlt">cloud</span>-brightening (MCB) geoengineering technique is that seeding marine stratocumulus <span class="hlt">clouds</span> with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the <span class="hlt">cloud</span> droplet number concentration, and thereby the <span class="hlt">cloud</span> albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice <span class="hlt">cover</span> and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in <span class="hlt">cloud</span> brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on <span class="hlt">cloud</span>-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, <span class="hlt">cloud</span> albedo might be enhanced by seeding marine stratocumulus <span class="hlt">clouds</span> on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B"><span>Integrated approach using multi-platform sensors for enhanced high-resolution daily ice <span class="hlt">cover</span> product</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean</p> <p>2016-09-01</p> <p>The ultimate objective of this work is to improve characterization of the ice <span class="hlt">cover</span> distribution in the polar areas, to improve sea ice mapping and to develop a new automated real-time high spatial resolution multi-sensor ice extent and ice edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea ice extent datasets, analysts at the National Ice Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to <span class="hlt">clouds</span> and darkness, passive microwave products have poor spatial resolution, automated ice identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the ice <span class="hlt">cover</span> and rough ice-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea ice <span class="hlt">cover</span> from imaging instruments VIIRS and MODIS, including regions <span class="hlt">covered</span> by thin, semitransparent <span class="hlt">clouds</span>, then supplements the output by the microwave measurements and finally aggregates the results into a <span class="hlt">cloud</span> gap free daily product. This ability to identify ice <span class="hlt">cover</span> underneath thin <span class="hlt">clouds</span>, which is usually masked out by traditional <span class="hlt">cloud</span> detection algorithms, allows for expansion of the effective coverage of the sea ice maps and thus more accurate and detailed delineation of the ice edge. We have also developed a web-based monitoring system that allows comparison of our daily ice extent product with the several other independent operational daily products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1411907-single-column-model-simulations-subtropical-marine-boundary-layer-cloud-transitions-under-weakening-inversions-scm-simulations-cloud-transitions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1411907-single-column-model-simulations-subtropical-marine-boundary-layer-cloud-transitions-under-weakening-inversions-scm-simulations-cloud-transitions"><span>Single-Column Model Simulations of Subtropical Marine Boundary-Layer <span class="hlt">Cloud</span> Transitions Under Weakening Inversions: SCM SIMULATIONS OF <span class="hlt">CLOUD</span> TRANSITIONS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.</p> <p></p> <p>Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level <span class="hlt">cloud</span> transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this <span class="hlt">cloud</span> regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison <span class="hlt">covers</span> four different cases instead of one, in order to broaden the <span class="hlt">covered</span> parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transitionmore » process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level <span class="hlt">cloud</span> representation are identified. Considerable spread exists among models concerning the <span class="hlt">cloud</span> amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After <span class="hlt">cloud</span> breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping <span class="hlt">cloud</span> layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the <span class="hlt">cloud</span> layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090015902&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090015902&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bradiation"><span>More Frequent <span class="hlt">Cloud</span> Free Sky and Less Surface Solar Radiation in China from 1955-2000</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Qian, Yun; Kaiser, Dale P.; Leung, L. Ruby; Xu, Ming</p> <p>2006-01-01</p> <p>In this study, we used newly available data frorn extended weather stations and time period to reveal that much of China has experienced significant decreases in <span class="hlt">cloud</span> <span class="hlt">cover</span> over the last half of the Twentieth century. This conclusion is supported by analysis of the more reliably observed frequency of <span class="hlt">cloud</span>-free sky and overcast sky. We estimated that the total <span class="hlt">cloud</span> <span class="hlt">cover</span> and low <span class="hlt">cloud</span> <span class="hlt">cover</span> in China have decreased 0.88% and 0.33% per decade, respectively, and <span class="hlt">cloud</span>-free days have increased 0.60% and overcast days decreased 0.78% per decade from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in China, with'solar radiation decreasing 3.1 w/square m and pan evaporation decreasing 39 mm per decade. Combining these results with findings of previous studies, we speculated that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent increasing trends in <span class="hlt">cloud</span>-free sky over China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4840902S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4840902S"><span>High-resolution mapping of Martian water ice <span class="hlt">clouds</span> using Mars Express OMEGA observations - Derivation of the diurnal <span class="hlt">cloud</span> life cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szantai, Andre; Audouard, Joachim; Madeleine, Jean-Baptiste; Forget, Francois; Pottier, Alizée; Millour, Ehouarn; Gondet, Brigitte; Langevin, Yves; Bibring, Jean-Pierre</p> <p>2016-10-01</p> <p>The mapping in space and time of water ice <span class="hlt">clouds</span> can help to explain the Martian water cycle and atmospheric circulation. For this purpose, an ice <span class="hlt">cloud</span> index (ICI) corresponding to the depth of a water ice absorption band at 3.4 microns is derived from a series of OMEGA images (spectels) <span class="hlt">covering</span> 5 Martian years. The ICI values for the corresponding pixels are then binned on a high-resolution regular grid (1° longitude x 1° latitude x 5° Ls x 1 h local time) and averaged. Inside each bin, the <span class="hlt">cloud</span> <span class="hlt">cover</span> is calculated by dividing the number of pixels considered as cloudy (after comparison to a threshold) to the number of all (valid) pixelsWe compare the maps of <span class="hlt">clouds</span> obtained around local time 14:00 with collocated TES <span class="hlt">cloud</span> observations (which were only obtained around this time of the day). A good agreement is found.Averaged ICI compared to the water ice column variable from the Martian Climate Database (MCD) show a correct correlation (~0.5) , which increases when values limited to the tropics only are compared.The number of gridpoints containing ICI values is small ( ~1%), but by taking several neighbor gridpoints and over longer periods, we can observe a <span class="hlt">cloud</span> life cycle during daytime. An example in the the tropics, around the northern summer solstice, shows a decrease of cloudiness in the morning followed by an increase in the afternoon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014136','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014136"><span>Instrument for Aircraft-Icing and <span class="hlt">Cloud</span>-Physics Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lilie, Lyle; Bouley, Dan; Sivo, Chris</p> <p>2006-01-01</p> <p>The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on <span class="hlt">cloud</span> physics. The quantities that are calculated from measurement data <span class="hlt">acquired</span> by this system and that are used to quantify the severity of icing conditions include sizes of <span class="hlt">cloud</span> water drops, <span class="hlt">cloud</span> liquid water content (LWC), <span class="hlt">cloud</span> ice water content (IWC), and <span class="hlt">cloud</span> total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming <span class="hlt">cloud</span> water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of <span class="hlt">cloud</span> water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010gdc..conf...54Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010gdc..conf...54Y"><span>A Multilateral Negotiation Model for <span class="hlt">Cloud</span> Service Market</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoo, Dongjin; Sim, Kwang Mong</p> <p></p> <p>Trading <span class="hlt">cloud</span> services between consumers and providers is a complicated issue of <span class="hlt">cloud</span> computing. Since a consumer can negotiate with multiple providers to <span class="hlt">acquire</span> the same service and each provider can receive many requests from multiple consumers, to facilitate the trading of <span class="hlt">cloud</span> services among multiple consumers and providers, a multilateral negotiation model for <span class="hlt">cloud</span> market is necessary. The contribution of this work is the proposal of a business model supporting a multilateral price negotiation for trading <span class="hlt">cloud</span> services. The design of proposed systems for <span class="hlt">cloud</span> service market includes considering a many-to-many negotiation protocol, and price determining factor from service level feature. Two negotiation strategies are implemented: 1) MDA (Market Driven Agent); and 2) adaptive concession making responding to changes of bargaining position are proposed for <span class="hlt">cloud</span> service market. Empirical results shows that MDA achieved better performance in some cases that the adaptive concession making strategy, it is noted that unlike the MDA, the adaptive concession making strategy does not assume that an agent has information of the number of competitors (e.g., a consumer agent adopting the adaptive concession making strategy need not know the number of consumer agents competing for the same service).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030071257&hterms=cloud+database&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcloud%2Bdatabase','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030071257&hterms=cloud+database&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcloud%2Bdatabase"><span>Satellite and Surface Data Synergy for Developing a 3D <span class="hlt">Cloud</span> Structure and Properties Characterization Over the ARM SGP. Stage 1: <span class="hlt">Cloud</span> Amounts, Optical Depths, and <span class="hlt">Cloud</span> Heights Reconciliation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.</p> <p>2003-01-01</p> <p>One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the <span class="hlt">cloud</span> structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the <span class="hlt">cloud</span> properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the <span class="hlt">cloud</span> field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky <span class="hlt">cover</span> and satellite viewing angle dependent <span class="hlt">cloud</span> fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, <span class="hlt">cloud</span> height, multi-layer <span class="hlt">cloud</span> presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing <span class="hlt">cloud</span> layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated <span class="hlt">cloud</span> heights and evaluate the impact of this uncertainty for radiative studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJAEO..13..220W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJAEO..13..220W"><span>A combined spectral and object-based approach to transparent <span class="hlt">cloud</span> removal in an operational setting for Landsat ETM+</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.</p> <p>2011-04-01</p> <p>The automated <span class="hlt">cloud</span> <span class="hlt">cover</span> assessment (ACCA) algorithm has provided automated estimates of <span class="hlt">cloud</span> <span class="hlt">cover</span> for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, <span class="hlt">cloud</span> edges and transparent <span class="hlt">clouds</span> such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the <span class="hlt">cloud</span> masks. Object-based analysis was used to reduce the commission errors from the extended <span class="hlt">cloud</span> filters. The method resulted in the removal of optically thin cirrus <span class="hlt">cloud</span> and <span class="hlt">cloud</span> edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove <span class="hlt">cloud</span> and transparent <span class="hlt">cloud</span> helping to reduce bias in subsequent land <span class="hlt">cover</span> classifications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53B1018K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53B1018K"><span>Comparison of MODIS and VIIRS Snow <span class="hlt">Cover</span> Products for the 2016 Hydrological Year</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, A. G.; Thapa, S.</p> <p>2017-12-01</p> <p>The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow <span class="hlt">cover</span> initiated with MODIS. While it is speculated that MODIS and VIIRS snow <span class="hlt">cover</span> products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow <span class="hlt">Cover</span> product at a snow <span class="hlt">cover</span> fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as <span class="hlt">cloud</span>. The assessment of total snow and <span class="hlt">cloud</span> pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow <span class="hlt">cover</span> and less <span class="hlt">cloud</span> <span class="hlt">cover</span> compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and <span class="hlt">cloud</span> 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow <span class="hlt">cover</span> area visible in MODIS and VIIRS false color imagery and mapped in their respective snow <span class="hlt">cover</span> products. While VIIRS and MODIS have similar capacity to map snow <span class="hlt">cover</span>, VIIRS has the potential to more accurately map snow <span class="hlt">cover</span> area for the successive development of climate data records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P51G1195L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P51G1195L"><span>Cassini Imaging of Titan’s North Polar <span class="hlt">Cloud</span> With the Visual and Infrared Mapping Spectrometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Mouélic, S.; Rannou, P.; Rodriguez, S.; Sotin, C.; Le Corre, L.; Barnes, J. W.; Brown, R. H.; Griffith, C. A.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P.</p> <p>2009-12-01</p> <p>We report on the Visual and Infrared Mapping Spectrometer (VIMS) observations of a giant <span class="hlt">cloud</span> over the north pole of Titan. Griffith et al. [Science, 2006] described the first evidence of a north polar feature having the form of an ubiquitous bright band at 51° to 68°N in VIMS images <span class="hlt">acquired</span> in December 2004, August and September 2005. Rodriguez et al. [Nature, 2009] systematically detect spectral signatures of <span class="hlt">clouds</span> with VIMS at latitudes higher than 50°N between July 2004 and December 2007, with no attempt to show the structure of each individual <span class="hlt">cloud</span>. The first good opportunity to observe the fully illuminated north pole, that we described here, occurred on December 28, 2006. The north <span class="hlt">cloud</span> was then continuously monitored in various geometries during 3 years after its first discovery. This <span class="hlt">cloud</span> shows much less signal at 5-µm than southern and tropical <span class="hlt">clouds</span> which are thought to be composed of liquid/solid methane. This indicates a lower backscattering at 5-µm. It is consistent with <span class="hlt">clouds</span> composed of micron-sized particles made of solid ethane. A radiative transfer model in spherical geometry (SPDISORT) shows that it is found at an altitude between 30 and 40 km. This observation confirms the IPSL Titan global circulation model of Rannou et al. [Science 2006] that predicted the formation of large polar ethane <span class="hlt">clouds</span> due to the downwelling of atmospheric streams exactly at the same latitudes. The limits of the observed northern <span class="hlt">cloud</span> between 50-60°N corresponds to the limit between filled and dry lakes as observed by the RADAR of Cassini. The <span class="hlt">cloud</span> <span class="hlt">cover</span> appears less widespread in the last observations, which could indicate that it is progressively vanishing. This is also in agreement with the predictions of the IPSL general circulation model as we approach the equinox in August 2009. Dedicated observations by the Cassini spacecraft during the extended mission possibly up to 2017 should allow the observation of the forthcoming seasonal circulation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211364C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211364C"><span>Stabilization of Global Temperature and Polar Sea-ice <span class="hlt">cover</span> via seeding of Maritime <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jack; Gadian, Alan; Latham, John; Launder, Brian; Neukermans, Armand; Rasch, Phil; Salter, Stephen</p> <p>2010-05-01</p> <p>The marine <span class="hlt">cloud</span> albedo enhancement (<span class="hlt">cloud</span> whitening) geoengineering technique (Latham1990, 2002, Bower et al. 2006, Latham et al. 2008, Salter et al. 2008, Rasch et al. 2009) involves seeding maritime stratocumulus <span class="hlt">clouds</span> with seawater droplets of size (at creation) around 1 micrometer, causing the droplet number concentration to increase within the <span class="hlt">clouds</span>, thereby enhancing their albedo and possibly longevity. GCM modeling indicates that (subject to satisfactory resolution of specified scientific and technological problems) the technique could produce a globally averaged negative forcing of up to about -4W/m2, adequate to hold the Earth's average temperature constant as the atmospheric carbon dioxide concentration increases to twice the current value. This idea is being examined using GCM modeling, LES <span class="hlt">cloud</span> modeling, technological development (practical and theoretical), and analysis of data from the recent, extensive VOCALS field study of marine stratocumulus <span class="hlt">clouds</span>. We are also formulating plans for a possible limited-area field test of the technique. Recent general circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing <span class="hlt">cloud</span> reflectivity by seeding maritime boundary layer <span class="hlt">clouds</span> may compensate for some effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios), when employed in an atmosphere where the CO2 concentration is doubled, can restore global averages of temperature, precipitation and polar sea-ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. Our computations suggest that for the specimen cases examined there is no appreciable reduction of rainfall over land, as a consequence of seeding. This result is in agreement with one separate study but not another. Much further work is required to explain these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSA12A..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSA12A..02T"><span>Space Weather Connections to <span class="hlt">Clouds</span> and Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinsley, B. A.</p> <p>2004-12-01</p> <p>There is now a considerable amount of observational data and theoretical work pointing to a link between space weather and atmospheric electricity, and then between atmospheric electricity and <span class="hlt">cloud</span> <span class="hlt">cover</span> and precipitation, which ultimately affect climate and the biosphere. Studies so far have been largely confined to the Earth, but may be applicable to all planets with <span class="hlt">clouds</span> in their atmospheres. The current density Jz, that is the return current flowing downward through <span class="hlt">clouds</span> in the global circuit, is modulated by the galactic cosmic ray flux; by solar energetic particles; by the dawn-dusk polar cap potential difference; and by the precipitation of relativistic electrons from the radiation belts. The flow of Jz through <span class="hlt">clouds</span> generates unipolar space charge, which is positive at <span class="hlt">cloud</span> tops and negative at <span class="hlt">cloud</span> base. This charge attaches to aerosol particles, and affects their interaction with other particles and droplets. Ultrafine aerosol particles are formed around ions and are preserved from scavenging on background aerosols, and preserved for growth by vapor deposition, by space charge at the bases and tops of layer <span class="hlt">clouds</span>. There is electro-preservation of both ultrafines and of existing CCN that leads to increases in CCN concentration, and increases in <span class="hlt">cloud</span> <span class="hlt">cover</span> and reduction in both droplet size and precipitation by the `indirect aerosol effect'. For cold <span class="hlt">clouds</span> and larger aerosol particles that act as ice forming nuclei, the rate of scavenging of the IFN by large supercooled droplets varies with space charge. Changes in space weather affect both ion production and Jz in planetary atmospheres. In addition, changes in cosmic ray flux affect conductivity within thunderclouds and may affect the output of the thundercloud generators in the global circuit. Thus all four processes, (a) ion-induced nucleation, (b) electro-preservation of leading to increases in CCN concentration and the indirect aerosol effect, (c) contact ice nucleation affecting the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950041632&hterms=cloud+database&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcloud%2Bdatabase','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950041632&hterms=cloud+database&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcloud%2Bdatabase"><span>IRAS images of nearby dark <span class="hlt">clouds</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, Douglas O. S.; Myers, Philip C.; Daugherty, Debra A.</p> <p>1994-01-01</p> <p>We have investigated approximately 100 nearby molecular <span class="hlt">clouds</span> using the extensive, all-sky database of IRAS. The <span class="hlt">clouds</span> in this study <span class="hlt">cover</span> a wide range of physical properties including visual extinction, size, mass, degree of isolation, homogeneity and morphology. IRAS 100 and 60 micron co-added images were used to calculate the 100 micron optical depth of dust in the <span class="hlt">clouds</span>. These images of dust optical depth compare very well with (12)CO and (13)CO observations, and can be related to H2 column density. From the optical depth images we locate the edges of dark <span class="hlt">clouds</span> and the dense cores inside them. We have identified a total of 43 `IRAS <span class="hlt">clouds</span>' (regions with A(sub v) greater than 2) which contain a total of 255 `IRAS cores' (regions with A(sub v) greater than 4) and we catalog their physical properties. We find that the <span class="hlt">clouds</span> are remarkably filamentary, and that the cores within the <span class="hlt">clouds</span> are often distributed along the filaments. The largest cores are usually connected to other large cores by filaments. We have developed selection criteria to search the IRAS Point Source Catalog for stars that are likely to be associated with the <span class="hlt">clouds</span> and we catalog the IRAS sources in each <span class="hlt">cloud</span> or core. Optically visible stars associated with the <span class="hlt">clouds</span> have been identified from the Herbig and Bell catalog. From these data we characterize the physical properties of the <span class="hlt">clouds</span> including their star-formation efficiency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.A22A1054N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.A22A1054N"><span>Retrieval of <span class="hlt">Cloud</span> Properties for Partially <span class="hlt">Cloud</span>-Filled Pixels During CRYSTAL-FACE</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.</p> <p>2003-12-01</p> <p>Partially <span class="hlt">cloud</span>-filled pixels can be a significant problem for remote sensing of <span class="hlt">cloud</span> properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and <span class="hlt">cloud</span> areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially <span class="hlt">cloud</span> field pixels by estimating the <span class="hlt">cloud</span> fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of <span class="hlt">cloud</span> fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the <span class="hlt">Clouds</span> and Earth's Radiant Energy System (CERES) to derive <span class="hlt">cloud</span> amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial <span class="hlt">cloud</span> fraction within each low-resolution pixel. The <span class="hlt">cloud</span> properties are then derived from the observed low-resolution radiances using the <span class="hlt">cloud</span> <span class="hlt">cover</span> estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1374609','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1374609"><span>Thin ice <span class="hlt">clouds</span> in the Arctic: <span class="hlt">cloud</span> optical depth and particle size retrieved from ground-based thermal infrared radiometry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blanchard, Yann; Royer, Alain; O'Neill, Norman T.</p> <p></p> <p>Multiband downwelling thermal measurements of zenith sky radiance, along with <span class="hlt">cloud</span> boundary heights, were used in a retrieval algorithm to estimate <span class="hlt">cloud</span> optical depth and effective particle diameter of thin ice <span class="hlt">clouds</span> in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice <span class="hlt">clouds</span> cases were <span class="hlt">acquired</span> at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several <span class="hlt">cloud</span> parameters including optical depth, effective particle diameter and shape, water vapor content, <span class="hlt">cloud</span> geometric thickness and <span class="hlt">cloud</span> base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, <span class="hlt">cloud</span> optical depth up to a maximum value of 2.6 and to separate thin ice <span class="hlt">clouds</span> into two classes: (1) TIC1 <span class="hlt">clouds</span> characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 <span class="hlt">clouds</span> characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave <span class="hlt">Cloud</span> Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for <span class="hlt">cloud</span> optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 <span class="hlt">clouds</span>. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1374609-thin-ice-clouds-arctic-cloud-optical-depth-particle-size-retrieved-from-ground-based-thermal-infrared-radiometry','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1374609-thin-ice-clouds-arctic-cloud-optical-depth-particle-size-retrieved-from-ground-based-thermal-infrared-radiometry"><span>Thin ice <span class="hlt">clouds</span> in the Arctic: <span class="hlt">cloud</span> optical depth and particle size retrieved from ground-based thermal infrared radiometry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...</p> <p>2017-06-09</p> <p>Multiband downwelling thermal measurements of zenith sky radiance, along with <span class="hlt">cloud</span> boundary heights, were used in a retrieval algorithm to estimate <span class="hlt">cloud</span> optical depth and effective particle diameter of thin ice <span class="hlt">clouds</span> in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice <span class="hlt">clouds</span> cases were <span class="hlt">acquired</span> at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several <span class="hlt">cloud</span> parameters including optical depth, effective particle diameter and shape, water vapor content, <span class="hlt">cloud</span> geometric thickness and <span class="hlt">cloud</span> base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, <span class="hlt">cloud</span> optical depth up to a maximum value of 2.6 and to separate thin ice <span class="hlt">clouds</span> into two classes: (1) TIC1 <span class="hlt">clouds</span> characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 <span class="hlt">clouds</span> characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave <span class="hlt">Cloud</span> Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for <span class="hlt">cloud</span> optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 <span class="hlt">clouds</span>. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900048765&hterms=textural+features&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtextural%2Bfeatures','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900048765&hterms=textural+features&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtextural%2Bfeatures"><span><span class="hlt">Cloud</span> <span class="hlt">cover</span> analysis with Arctic Advanced Very High Resolution Radiometer data. II - Classification with spectral and textural measures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Key, J.</p> <p>1990-01-01</p> <p>The spectral and textural characteristics of polar <span class="hlt">clouds</span> and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a <span class="hlt">cloud</span> classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, <span class="hlt">cloud</span> detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, <span class="hlt">cloud</span> patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of <span class="hlt">cloud</span> patterns in the image are determined and each <span class="hlt">cloud</span> pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between <span class="hlt">cloud</span> classes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120017459&hterms=HISTOGRAM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHISTOGRAM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120017459&hterms=HISTOGRAM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHISTOGRAM"><span>Tropical and Subtropical <span class="hlt">Cloud</span> Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, J.; DeGenio, A.; DeMott, C.; Franklin, C.; Hannay, C.; Jakob, C.; Jiao, Y.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120017459'); toggleEditAbsImage('author_20120017459_show'); toggleEditAbsImage('author_20120017459_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120017459_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120017459_hide"></p> <p>2011-01-01</p> <p>A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ the Global Energy and Water Cycle Experiment <span class="hlt">Cloud</span> System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical <span class="hlt">cloud</span> processes in weather and climate prediction models. In this paper, a detailed analysis of <span class="hlt">cloud</span> regime transitions along the cross section from the subtropics to the tropics for the season June July August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of <span class="hlt">clouds</span>: underestimation of <span class="hlt">clouds</span> in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of <span class="hlt">clouds</span> by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of <span class="hlt">cloud</span> <span class="hlt">cover</span>, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of <span class="hlt">cloud</span> properties (in particular), vertical velocity, and relative humidity. An alternative analysis of <span class="hlt">cloud</span> <span class="hlt">cover</span> mean statistics is proposed where sharp gradients in <span class="hlt">cloud</span> <span class="hlt">cover</span> along the GPCI transect are taken into account. This analysis shows that the negative <span class="hlt">cloud</span> bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite <span class="hlt">Cloud</span> Climatology Project (ISCCP)] is associated not only with lower values of <span class="hlt">cloud</span> <span class="hlt">cover</span> in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DPS....4440304P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DPS....4440304P"><span>Slicing The 2010 Saturn's Storm: Upper <span class="hlt">Clouds</span> And Hazes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez-Hoyos, Santiago; Sanz-Requena, J. F.; Sanchez-Lavega, A.; Hueso, R.</p> <p>2012-10-01</p> <p>At the end of 2010 a small storm erupted in Saturn's northern mid-latitudes. Starting from a localized perturbation, it grew up to be a global-scale disturbance and <span class="hlt">cover</span> the whole latitude band by February, 2011 (Fletcher et al. 2011, Science 332; Sánchez-Lavega et al. 2011, Nature 475; Fischer et al. 2011, Nature 475). By June, 2011 the storm was facing its end and gradually disappeared (Sánchez-Lavega et al. 2012, Icarus 220). In this work we use the observations <span class="hlt">acquired</span> by the Cassini ISS instrument during the whole process to investigate the vertical <span class="hlt">cloud</span> and haze structure above the ammonia condensation level (roughly 1 bar). Cassini ISS observations <span class="hlt">cover</span> visual wavelengths from the blue to the near-infrared including two methane absorption bands. Such observations have been modeled using a radiative transfer code which reproduces the atmospheric reflectivity as a function of observation/illumination geometry and wavelength together with a retrieval technique to find maximum likelihood atmospheric models. This allows to investigate some atmospheric parameters: <span class="hlt">cloud</span>-top pressures, aerosol optical thickness and particle absorption, among others. We will focus on two aspects: (1) maximum likelihood models for the undisturbed reference atmosphere in the 15°N to 45°N band before and after the disturbance; (2) models for particular structures during the development of the global-scale phenomenon. Our results show a general increase of particle density and single-scattering albedo inside the storm. However, some discrete features showing anomalous structure and related to the storm peculiar dynamics will also be discussed. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.199..113W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.199..113W"><span>Comparison of <span class="hlt">cloud</span> top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength <span class="hlt">cloud</span> radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa</p> <p>2018-01-01</p> <p><span class="hlt">Clouds</span> are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic <span class="hlt">cloud</span> measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their <span class="hlt">cloud</span> top temperature product can be processed to retrieve the <span class="hlt">cloud</span> top height (CTH). The ground-based millimeter wavelength <span class="hlt">cloud</span> radar can <span class="hlt">acquire</span> information about the vertical structure of <span class="hlt">clouds</span>-such as the <span class="hlt">cloud</span> base height (CBH), CTH and the <span class="hlt">cloud</span> thickness-and can continuously monitor changes in the vertical profiles of <span class="hlt">clouds</span>. The CTHs were retrieved using both <span class="hlt">cloud</span> top temperature data from the FY-2 satellites and the <span class="hlt">cloud</span> radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of <span class="hlt">cloud</span> detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker <span class="hlt">clouds</span> with larger echo intensity and for more continuous <span class="hlt">clouds</span>. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level <span class="hlt">clouds</span> was less than that for high-level <span class="hlt">clouds</span>. An attenuation threshold of the <span class="hlt">cloud</span> radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the <span class="hlt">cloud</span> radar data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1337D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1337D"><span>Potential reciprocal effect between land use / land <span class="hlt">cover</span> change and climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel</p> <p>2016-04-01</p> <p>Land use/land <span class="hlt">cover</span> (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and <span class="hlt">Cover</span> Change) and the climate change on each other in the study area which <span class="hlt">covers</span> part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) <span class="hlt">acquired</span> in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of <span class="hlt">cloud</span> <span class="hlt">covers</span>. In this study, the <span class="hlt">cloud</span> <span class="hlt">cover</span> problem is handled using a novel algorithm, which is capable of reducing the <span class="hlt">cloud</span> coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of <span class="hlt">clouds</span>, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094167&hterms=Influence+clouds+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DInfluence%2Bclouds%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094167&hterms=Influence+clouds+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DInfluence%2Bclouds%2Bclimate"><span>Mesoscale to Synoptic Scale <span class="hlt">Cloud</span> Variability</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rossow, William B.</p> <p>1998-01-01</p> <p>The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of <span class="hlt">clouds</span>, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, <span class="hlt">clouds</span> and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite <span class="hlt">Cloud</span> Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the <span class="hlt">clouds</span>, atmosphere and ocean vary. A nearly 15-yr dataset is now available that <span class="hlt">covers</span> the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) <span class="hlt">cloud</span> variations at the smallest scales and how they may influence radiation-<span class="hlt">cloud</span> interactions, and (2) <span class="hlt">cloud</span> variations at "moderate" scales and how they may cause natural climate variability, and (3) <span class="hlt">cloud</span> variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of <span class="hlt">cloud</span>-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02850&hterms=Free+movies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DFree%2Bmovies','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02850&hterms=Free+movies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DFree%2Bmovies"><span>Movie of High <span class="hlt">Clouds</span> on Jupiter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>Jupiter's high-altitude <span class="hlt">clouds</span> are seen in this brief movie made from seven frames taken by the narrow-angle camera of NASA's Cassini spacecraft. This is the first time a movie sequence of Jupiter has been made that illustrates the motions of the high-altitude <span class="hlt">clouds</span> on a global scale.<p/>The images were taken at a wavelength that is absorbed by methane, one chemical in Jupiter's lower <span class="hlt">clouds</span>. So, dark areas are relatively free of high <span class="hlt">clouds</span>, and the camera sees through to the methane in a lower level. Bright areas are places with high, thick <span class="hlt">clouds</span> that shield the methane below.<p/>Jupiter's equator and Great Red Spot are <span class="hlt">covered</span> with high-altitude, hazy <span class="hlt">clouds</span>.<p/>The movie <span class="hlt">covers</span> the time period between Oct. 1 and Oct. 5, 2000, latitudes from 50 degrees north to 50 degrees south, and a 100-degree sweep of longitude. Those factors were the same for a Cassini movie of <span class="hlt">cloud</span> motions previously released (PIA02829), but that movie used frames taken through a blue filter, which showed deeper <span class="hlt">cloud</span> levels and sharper detail. Features in this methane-filter movie appear more diffuse.<p/>Among the nearly stationary features are the Red Spot and some bright ovals at mid-latitudes in both hemispheres. These are anticyclonic (counter-clockwise rotating) storms. They are bright in the methane band because of their high <span class="hlt">clouds</span> associated with rising gas. They behave differently from terrestrial cyclones, which swirl in the opposite direction. The mechanism making the Red Spot and similar spots stable apparently has no similarity to the mechanism which feeds terrestrial cyclones.<p/>Some small-scale features are fascinating because of their brightness fluctuations. Such fluctuations observed in the methane band are probably caused by strong vertical motions, which form <span class="hlt">clouds</span> rapidly, as in Earth's thunderstorms. Near the upper left corner in this movie, a number of smaller <span class="hlt">clouds</span> appear to circulate counterclockwise around a dark spot, and these <span class="hlt">clouds</span> fluctuate in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52H..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52H..05C"><span>The use of marine <span class="hlt">cloud</span> water samples as a diagnostic tool for aqueous chemistry, <span class="hlt">cloud</span> microphysical processes and dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crosbie, E.; Ziemba, L. D.; Moore, R.; Shook, M.; Jordan, C.; Thornhill, K. L., II; Winstead, E.; Shingler, T.; Brown, M.; MacDonald, A. B.; Dadashazar, H.; Sorooshian, A.; Weiss-Penzias, P. S.; Anderson, B.</p> <p>2017-12-01</p> <p><span class="hlt">Clouds</span> play several roles in the Earth's climate system. In addition to their clear significance to the hydrological cycle, they strongly modulate the shortwave and longwave radiative balance of the atmosphere, with subsequent feedback on the atmospheric circulation. Furthermore, <span class="hlt">clouds</span> act as a conduit for the fate and emergence of important trace chemical species and are the predominant removal mechanism for atmospheric aerosols. Marine boundary layer <span class="hlt">clouds</span> <span class="hlt">cover</span> large swaths of the global oceans. Because of their global significance, they have attracted significant attention into understanding how changes in aerosols are translated into changes in <span class="hlt">cloud</span> macro- and microphysical properties. The circular nature of the influence of <span class="hlt">clouds</span>-on-aerosols and aerosols-on-<span class="hlt">clouds</span> has been used to explain the chaotic patterns often seen in marine <span class="hlt">clouds</span>, however, this feedback also presents a substantial hurdle in resolving the uncertain role of anthropogenic aerosols on climate. Here we discuss ways in which the chemical constituents found in <span class="hlt">cloud</span> water can offer insight into the physical and chemical processes inherent in marine <span class="hlt">clouds</span>, through the use of aircraft measurements. We focus on observational data from <span class="hlt">cloud</span> water samples collected during flights conducted over the remote North Atlantic and along coastal California across multiple campaigns. We explore topics related to aqueous processing, wet scavenging and source apportionment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740021940','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740021940"><span>Studies in the use of <span class="hlt">cloud</span> type statistics in mission simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.</p> <p>1974-01-01</p> <p>A study to further improve NASA's global <span class="hlt">cloud</span> statistics for mission simulation is reported. Regional homogeneity in <span class="hlt">cloud</span> types was examined; most of the original region boundaries defined for <span class="hlt">cloud</span> <span class="hlt">cover</span> amount in previous studies were supported by the statistics on <span class="hlt">cloud</span> types and the number of <span class="hlt">cloud</span> layers. Conditionality in <span class="hlt">cloud</span> statistics was also examined with special emphasis on temporal and spatial dependencies, and <span class="hlt">cloud</span> type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different <span class="hlt">cloud</span> types reflected the dynamic processes which form the <span class="hlt">clouds</span>. Other phases of the study improved the <span class="hlt">cloud</span> type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global <span class="hlt">cloud</span> model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AdAtS..20..461D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AdAtS..20..461D"><span>The impact of low-level <span class="hlt">cloud</span> over the eastern subtropical Pacific on the ``Double ITCZ'' in LASG FGCM-0</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Fushan; Yu, Rucong; Zhang, Xuehong; Yu, Yongqiang; Li, Jianglong</p> <p>2003-05-01</p> <p>Like many other coupled models, the Flexible coupled General Circulation Model (FGCM-0) suffers from the spurious “Double ITCZ”. In order to understand the “Double ITCZ” in FGCM-0, this study first examines the low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> and the bulk stability of the low troposphere over the eastern subtropical Pacific simulated by the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3), which is the atmosphere component model of FGCM-0. It is found that the bulk stability of the low troposphere simulated by CCM3 is very consistent with the one derived from the National Center for Environmental Prediction (NCEP) reanalysis, but the simulated low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> is much less than that derived from the International Satellite <span class="hlt">Cloud</span> Climatology Project (ISCCP) D2 data. Based on the regression equations between the low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> from the ISCCP data and the bulk stability of the low troposphere derived from the NCEP reanalysis, the parameterization scheme of low-level <span class="hlt">cloud</span> in CCM3 is modified and used in sensitivity experiments to examine the impact of low-level <span class="hlt">cloud</span> over the eastern subtropical Pacific on the spurious “Double ITCZ” in FGCM-0. Results show that the modified scheme causes the simulated low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> to be improved locally over the cold oceans. Increasing the low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> off Peru not only significantly alleviates the SST warm biases in the southeastern tropical Pacific, but also causes the equatorial cold tongue to be strengthened and to extend further west. Increasing the low-level <span class="hlt">cloud</span> fraction off California effectively reduces the SST warm biases in ITCZ north of the equator. In order to examine the feedback between the SST and low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> off Peru, one additional sensitivity experiment is performed in which the SST over the cold ocean off Peru is restored. It shows that decreasing the SST results in similar impacts over the wide regions from the southeastern tropical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN51C..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN51C..02N"><span><span class="hlt">Cloud</span> Computing for Geosciences--Geo<span class="hlt">Cloud</span> for standardized geospatial service platforms (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nebert, D. D.; Huang, Q.; Yang, C.</p> <p>2013-12-01</p> <p> paper presents the background, architectural design, and activities of Geo<span class="hlt">Cloud</span> in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into <span class="hlt">cloud</span>, and cost estimation for <span class="hlt">cloud</span> operations are <span class="hlt">covered</span>. Finally, some lessons learned from the Geo<span class="hlt">Cloud</span> project are discussed as reference for geoscientists to consider in the adoption of <span class="hlt">cloud</span> computing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10615E..4VL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10615E..4VL"><span>An efficient <span class="hlt">cloud</span> detection method for high resolution remote sensing panchromatic imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Chaowei; Lin, Zaiping; Deng, Xinpu</p> <p>2018-04-01</p> <p>In order to increase the accuracy of <span class="hlt">cloud</span> detection for remote sensing satellite imagery, we propose an efficient <span class="hlt">cloud</span> detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse <span class="hlt">cloud</span> regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the <span class="hlt">acquired</span> texture detail image. Finally, the candidate <span class="hlt">cloud</span> regions are extracted by the intersection of two coarse <span class="hlt">cloud</span> regions above and we further adopt an adaptive morphological dilation to refine them for thin <span class="hlt">clouds</span> in boundaries. The experimental results demonstrate the effectiveness of the proposed method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3405666','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3405666"><span>Marine <span class="hlt">cloud</span> brightening</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob</p> <p>2012-01-01</p> <p>The idea behind the marine <span class="hlt">cloud</span>-brightening (MCB) geoengineering technique is that seeding marine stratocumulus <span class="hlt">clouds</span> with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the <span class="hlt">cloud</span> droplet number concentration, and thereby the <span class="hlt">cloud</span> albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice <span class="hlt">cover</span> and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in <span class="hlt">cloud</span> brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, <span class="hlt">cloud</span> albedo might be enhanced by seeding marine stratocumulus <span class="hlt">clouds</span> on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A31H3119D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A31H3119D"><span>Stereo <span class="hlt">Cloud</span> Height and Wind Determination Using Measurements from a Single Focal Plane</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demajistre, R.; Kelly, M. A.</p> <p>2014-12-01</p> <p>We present here a method for extracting <span class="hlt">cloud</span> heights and winds from an aircraft or orbital platform using measurements from a single focal plane, exploiting the motion of the platform to provide multiple views of the <span class="hlt">cloud</span> tops. To illustrate this method we use data <span class="hlt">acquired</span> during aircraft flight tests of a set of simple stereo imagers that are well suited to this purpose. Each of these imagers has three linear arrays on the focal plane, one looking forward, one looking aft, and one looking down. Push-broom images from each of these arrays are constructed, and then a spatial correlation analysis is used to deduce the delays and displacements required for wind and <span class="hlt">cloud</span> height determination. We will present the algorithms necessary for the retrievals, as well as the methods used to determine the uncertainties of the derived <span class="hlt">cloud</span> heights and winds. We will apply the retrievals and uncertainty determination to a number of image sets <span class="hlt">acquired</span> by the airborne sensors. We then generalize these results to potential space based observations made by similar types of sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15230.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15230.html"><span>Snapshots of Titan North Polar <span class="hlt">Cloud</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-02-23</p> <p>This series of false-color images obtained by NASA Cassini spacecraft shows the dissolving <span class="hlt">cloud</span> <span class="hlt">cover</span> over the north pole of Saturn moon Titan, allowing scientists to see the underlying northern lakes and seas, including Kraken Mare.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5664745','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5664745"><span>The Potential Impact of Satellite-Retrieved <span class="hlt">Cloud</span> Parameters on Ground-Level PM2.5 Mass and Composition</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei</p> <p>2017-01-01</p> <p>Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of <span class="hlt">cloud-cover</span>, surface brightness, and snow-<span class="hlt">cover</span>. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. <span class="hlt">Cloud-cover</span> in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS <span class="hlt">cloud</span> product and meteorological information to investigate the extent to which <span class="hlt">cloud</span> parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, <span class="hlt">cloud</span> effective radius, <span class="hlt">cloud</span> optical depth, and <span class="hlt">cloud</span> emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and <span class="hlt">cloud</span> phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for <span class="hlt">cloud-cover</span> and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170011284&hterms=accounting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Daccounting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170011284&hterms=accounting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Daccounting"><span>The Potential Impact of Satellite-Retrieved <span class="hlt">Cloud</span> Parameters on Ground-Level PM2.5 Mass and Composition</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang</p> <p>2017-01-01</p> <p>Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of <span class="hlt">cloud-cover</span>, surface brightness, and snow-<span class="hlt">cover</span>. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. <span class="hlt">Cloud-cover</span> in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS <span class="hlt">cloud</span> product and meteorological information to investigate the extent to which <span class="hlt">cloud</span> parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, <span class="hlt">cloud</span> effective radius, <span class="hlt">cloud</span> optical depth, and <span class="hlt">cloud</span> emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and <span class="hlt">cloud</span> phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for <span class="hlt">cloud-cover</span> and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29057838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29057838"><span>The Potential Impact of Satellite-Retrieved <span class="hlt">Cloud</span> Parameters on Ground-Level PM2.5 Mass and Composition.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang</p> <p>2017-10-18</p> <p>Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of <span class="hlt">cloud-cover</span>, surface brightness, and snow-<span class="hlt">cover</span>. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. <span class="hlt">Cloud-cover</span> in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS <span class="hlt">cloud</span> product and meteorological information to investigate the extent to which <span class="hlt">cloud</span> parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, <span class="hlt">cloud</span> effective radius, <span class="hlt">cloud</span> optical depth, and <span class="hlt">cloud</span> emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and <span class="hlt">cloud</span> phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for <span class="hlt">cloud-cover</span> and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001145','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001145"><span>Optical and morphological properties of Cirrus <span class="hlt">clouds</span> determined by the high spectral resolution lidar during FIRE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grund, Christian John; Eloranta, Edwin W.</p> <p>1990-01-01</p> <p>Cirrus <span class="hlt">clouds</span> reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these <span class="hlt">clouds</span>. Scattering and absorption by cirrus <span class="hlt">clouds</span> affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the <span class="hlt">cloud</span>, and thermal emissions from the <span class="hlt">cloud</span> can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these <span class="hlt">clouds</span>. Determination of the optical thickness and the vertical and horizontal extent of cirrus <span class="hlt">clouds</span> is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were <span class="hlt">acquired</span> under a variety of <span class="hlt">cloud</span> optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data <span class="hlt">acquired</span> during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus <span class="hlt">clouds</span>, as well as contour maps of extinction corrected backscatter cross sections indicating <span class="hlt">cloud</span> morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus <span class="hlt">clouds</span> with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of <span class="hlt">cloud</span> height and structure from lidar observations of optically thick cirrus are demonstrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44586','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44586"><span>Land <span class="hlt">cover</span> changes and their biogeophysical effects on climate</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Rezaul Mahmood; Roger A. Pielke; Kenneth G. Hubbard; Dev Niyogi; Paul A. Dirmeyer; Clive McAlpine; Andrew M. Carleton; Robert Hale; Samuel Gameda; Adriana Beltrán-Przekurat; Bruce Baker; Richard McNider; David R. Legates; Marshall Shepherd; Jinyang Du; Peter D. Blanken; Oliver W. Frauenfeld; U.S. Nair; Souleymane Fall</p> <p>2013-01-01</p> <p>Land <span class="hlt">cover</span> changes (LCCs) play an important role in the climate system. Research over recent decades highlights the impacts of these changes on atmospheric temperature, humidity, <span class="hlt">cloud</span> <span class="hlt">cover</span>, circulation, and precipitation. These impacts range from the local- and regional-scale to sub-continental and global-scale. It has been found that the impacts of regional-scale...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090011855&hterms=SCG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSCG','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090011855&hterms=SCG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSCG"><span>A Climatology of Midlatitude Continental <span class="hlt">Clouds</span> from the ARM SGP Site. Part II; <span class="hlt">Cloud</span> Fraction and Surface Radiative Forcing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xi, B.; Minnis, P.</p> <p>2006-01-01</p> <p>Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of <span class="hlt">cloud</span> fraction and radiative forcing between January 1997 and December 2002. <span class="hlt">Cloud</span> fractions are estimated for total <span class="hlt">cloud</span> <span class="hlt">cover</span> and for single-layered low (0-3 km), middle (3-6 km), and high <span class="hlt">clouds</span> (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high <span class="hlt">cloud</span> fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low <span class="hlt">cloud</span> amounts peak during January and February and reach a minimum during July and August, high <span class="hlt">clouds</span> occur more frequently than other types of <span class="hlt">clouds</span> with a peak in summer. The average annual downwelling surface SW fluxes for total and low <span class="hlt">clouds</span> (151 and 138 Wm(exp-2), respectively) are less than those under middle and high <span class="hlt">clouds</span> (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low <span class="hlt">clouds</span> are greater than those from middle and high <span class="hlt">clouds</span> (337 and 333 Wm(exp -2)). Low <span class="hlt">clouds</span> produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High <span class="hlt">clouds</span> have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing <span class="hlt">cloud</span> fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, <span class="hlt">clouds</span> deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240921-relationship-between-interannual-long-term-cloud-feedbacks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240921-relationship-between-interannual-long-term-cloud-feedbacks"><span>The relationship between interannual and long-term <span class="hlt">cloud</span> feedbacks</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; ...</p> <p>2015-12-11</p> <p>The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive <span class="hlt">cloud</span> feedback in response to interannual climate fluctuations also have more positive <span class="hlt">cloud</span> feedback in response to long-term global warming. Ensemble mean vertical profiles of <span class="hlt">cloud</span> change in response to interannual and long-term surface warming are similar, and the ensemble mean <span class="hlt">cloud</span> feedback is positive on both timescales. However, the average long-term <span class="hlt">cloud</span> feedback is smaller than the interannual <span class="hlt">cloud</span> feedback, likely due to differences in surface warming pattern on the two timescales. Low <span class="hlt">cloud</span> <span class="hlt">cover</span> (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term <span class="hlt">cloud</span> feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000802','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000802"><span>H31G-1596: DeepSAT's <span class="hlt">Cloud</span>CNN: A Deep Neural Network for Rapid <span class="hlt">Cloud</span> Detection from Geostationary Satellites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kalia, Subodh; Ganguly, Sangram; Li, Shuang; Nemani, Ramakrishna R.</p> <p>2017-01-01</p> <p><span class="hlt">Cloud</span> and <span class="hlt">cloud</span> shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data <span class="hlt">acquired</span> in very high frequency (10-15 mins per scan), the ability to derive an accurate <span class="hlt">cloud</span> shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called <span class="hlt">Cloud</span>CNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's <span class="hlt">Cloud</span>CNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train <span class="hlt">Cloud</span>CNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time <span class="hlt">cloud</span> detection, cyclone detection, or extreme weather event predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA10076&hterms=ammonia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dammonia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA10076&hterms=ammonia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dammonia"><span>Ammonia Ice <span class="hlt">Clouds</span> on Jupiter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p><p/> The top <span class="hlt">cloud</span> layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being <span class="hlt">covered</span> with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these <span class="hlt">clouds</span> and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia <span class="hlt">clouds</span> are shown in bright blue. The largest <span class="hlt">cloud</span> appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the <span class="hlt">cloud</span>, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P11E..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P11E..06R"><span>Can cirrus <span class="hlt">clouds</span> warm early Mars?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez, R. M.</p> <p>2015-12-01</p> <p>The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus <span class="hlt">cloud</span> decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus <span class="hlt">cloud</span> decks at full and fractional <span class="hlt">cloud</span> <span class="hlt">cover</span> for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus <span class="hlt">cloud</span> decks could have provided the mean surface temperatures required, but only if <span class="hlt">cloud</span> <span class="hlt">cover</span> approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus <span class="hlt">cloud</span> coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars <span class="hlt">cloud</span> fractions (~50%, Forget et al., 2013), cirrus <span class="hlt">clouds</span> do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007MNRAS.378..893B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007MNRAS.378..893B"><span>CaFe interstellar <span class="hlt">clouds</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bondar, A.; Kozak, M.; Gnaciński, P.; Galazutdinov, G. A.; Beletsky, Y.; Krełowski, J.</p> <p>2007-07-01</p> <p>A new kind of interstellar <span class="hlt">cloud</span> is proposed. These are rare (just a few examples among ~300 lines of sight) objects with the CaI 4227-Å, FeI 3720-Å and 3860-Å lines stronger than those of KI (near 7699 Å) and NaI (near 3302 Å). We propose the name `CaFe' for these <span class="hlt">clouds</span>. Apparently they occupy different volumes from the well-known interstellar HI <span class="hlt">clouds</span> where the KI and ultraviolet NaI lines are dominant features. In the CaFe <span class="hlt">clouds</span> we have not found either detectable molecular features (CH, CN) or diffuse interstellar bands which, as commonly believed, are carried by some complex, organic molecules. We have found the CaFe <span class="hlt">clouds</span> only along sightlines toward hot, luminous (and thus distant) objects with high rates of mass loss. In principle, the observed gas-phase interstellar abundances reflect the combined effects of the nucleosynthetic history of the material, the depletion of heavy elements into dust grains and the ionization state of these elements which may depend on irradiation by neighbouring stars. Based on data collected using the Maestro spectrograph at the Terskol 2-m telescope, Russia; and on data collected using the ESO Feros spectrograph; and on data obtained from the ESO Science Archive Facility <span class="hlt">acquired</span> with the UVES spectrograph, Chile. E-mail: `arctur'@rambler.ru (AB); marizak@astri.uni.torun.pl (MK); pg@iftia.univ.gda.pl (PG); gala@boao.re.kr (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346006','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1346006"><span>SACR ADVance 3-D Cartesian <span class="hlt">Cloud</span> <span class="hlt">Cover</span> (SACR-ADV-3D3C) product</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Meng Wang, Tami Toto, Eugene Clothiaux, Katia Lamer, Mariko Oue</p> <p>2017-03-08</p> <p>SACR-ADV-3D3C remaps the outputs of SACRCORR for cross-wind range-height indicator (CW-RHI) scans to a Cartesian grid and reports reflectivity CFAD and best estimate domain averaged <span class="hlt">cloud</span> fraction. The final output is a single NetCDF file containing all aforementioned corrected radar moments remapped on a 3-D Cartesian grid, the SACR reflectivity CFAD, a profile of best estimate <span class="hlt">cloud</span> fraction, a profile of maximum observable x-domain size (xmax), a profile time to horizontal distance estimate and a profile of minimum observable reflectivity (dBZmin).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A14A..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A14A..06Y"><span>Global Distribution and Vertical Structure of <span class="hlt">Clouds</span> Revealed by CALIPSO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, Y.; Minnis, P.; Winker, D.; Huang, J.; Sun-Mack, S.; Ayers, K.</p> <p>2007-12-01</p> <p>Understanding the effects of <span class="hlt">clouds</span> on Earth's radiation balance, especially on longwave fluxes within the atmosphere, depends on having accurate knowledge of <span class="hlt">cloud</span> vertical location within the atmosphere. The <span class="hlt">Cloud</span>- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite mission provides the opportunity to measure the vertical distribution of <span class="hlt">clouds</span> at a greater detail than ever before possible. The CALIPSO <span class="hlt">cloud</span> layer products from June 2006 to June 2007 are analyzed to determine the occurrence frequency and thickness of <span class="hlt">clouds</span> as functions of time, latitude, and altitude. In particular, the latitude-longitude and vertical distributions of single- and multi-layer <span class="hlt">clouds</span> and the latitudinal movement of <span class="hlt">cloud</span> <span class="hlt">cover</span> with the changing seasons are examined. The seasonal variablities of <span class="hlt">cloud</span> frequency and geometric thickness are also analyzed and compared with similar quantities derived from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) using the <span class="hlt">Clouds</span> and the Earth's Radiant Energy System (CERES) <span class="hlt">cloud</span> retrieval algorithms. The comparisons provide an estimate of the errors in <span class="hlt">cloud</span> fraction, top height, and thickness incurred by passive algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN31B3722R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN31B3722R"><span>Scientific Data Storage for <span class="hlt">Cloud</span> Computing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Readey, J.</p> <p>2014-12-01</p> <p>Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast <span class="hlt">cloud</span> based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google <span class="hlt">Cloud</span> Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these <span class="hlt">cloud</span>-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable <span class="hlt">cloud</span> storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also <span class="hlt">cover</span> other advantages of this system such as enhanced metadata search.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ClDy...42.2603Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ClDy...42.2603Q"><span>On the spread of changes in marine low <span class="hlt">cloud</span> <span class="hlt">cover</span> in climate model simulations of the 21st century</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.</p> <p>2014-05-01</p> <p>In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low <span class="hlt">cloud</span> <span class="hlt">cover</span> (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model's premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the <span class="hlt">clouds</span>' large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate's sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of <span class="hlt">cloud</span> and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational <span class="hlt">cloud</span> and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830027197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830027197"><span>Continental land <span class="hlt">cover</span> classification using meteorological satellite data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.</p> <p>1983-01-01</p> <p>The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land <span class="hlt">cover</span> and monitoring of vegetation dynamics over an extremely large area is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide <span class="hlt">cloud</span>-free imagery for the whole continent. Virtually <span class="hlt">cloud</span>-free images were obtainable even for equatorial areas. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land <span class="hlt">cover</span> classification. The resultant land <span class="hlt">cover</span> distributions correspond well to those of existing maps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020035532&hterms=benefits+cloud&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbenefits%2Bcloud','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020035532&hterms=benefits+cloud&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbenefits%2Bcloud"><span><span class="hlt">Cloud</span> Properties Derived from Surface-Based Near-Infrared Spectral Transmission</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pilewskie, Peter; Twomey, S.; Gore, Warren J. Y. (Technical Monitor)</p> <p>1996-01-01</p> <p>Surface based near-infrared <span class="hlt">cloud</span> spectral transmission measurements from a recent precipitation/<span class="hlt">cloud</span> physics field study are used to determine <span class="hlt">cloud</span> physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets <span class="hlt">acquired</span> during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (<span class="hlt">cloud</span>) transmission and water vapor transmission and the development of a method to derive <span class="hlt">cloud</span> liquid water content.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2737C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2737C"><span><span class="hlt">Cloud</span> Height Estimation with a Single Digital Camera and Artificial Neural Networks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carretas, Filipe; Janeiro, Fernando M.</p> <p>2014-05-01</p> <p><span class="hlt">Clouds</span> influence the local weather, the global climate and are an important parameter in the weather prediction models. <span class="hlt">Clouds</span> are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of <span class="hlt">cloud</span> parameters. Recently, the authors developed a low-cost system for the measurement of <span class="hlt">cloud</span> base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are <span class="hlt">acquired</span> simultaneously. In this work we present a new system that estimates the <span class="hlt">cloud</span> height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to <span class="hlt">acquire</span> images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the <span class="hlt">cloud</span> height in real time. To estimate the <span class="hlt">cloud</span> height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with <span class="hlt">cloud</span> features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11102172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11102172"><span>Low <span class="hlt">cloud</span> properties influenced by cosmic rays</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marsh; Svensmark</p> <p>2000-12-04</p> <p>The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global <span class="hlt">cloud</span> <span class="hlt">cover</span>. Surprisingly the influence of solar variability is strongest in low <span class="hlt">clouds</span> (</=3 km), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1193M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1193M"><span><span class="hlt">Cloud</span> Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.</p> <p>2017-12-01</p> <p><span class="hlt">Clouds</span> have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. <span class="hlt">Cloud</span> feedbacks can therefore play into Arctic warming as <span class="hlt">clouds</span> respond to changes in sea ice <span class="hlt">cover</span>. As the Arctic moves toward an ice-free state, understanding how <span class="hlt">cloud</span> - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice <span class="hlt">cover</span> on <span class="hlt">clouds</span>, but how will <span class="hlt">clouds</span> respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate <span class="hlt">cloud</span> - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the <span class="hlt">cloud</span> response to sea ice is well-represented in CESM1: we see no summer <span class="hlt">cloud</span> response to changes in sea ice <span class="hlt">cover</span>, but more fall <span class="hlt">clouds</span> over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic <span class="hlt">cloud</span> feedbacks related to sea ice loss is relevant for understanding future Arctic <span class="hlt">clouds</span>. In the future Arctic, summer <span class="hlt">cloud</span> structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and <span class="hlt">cloud</span> fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in <span class="hlt">cloud</span> properties such as opacity and liquid water path. Results thus far suggest that a positive fall <span class="hlt">cloud</span> - sea ice feedback exists in the present-day and future Arctic climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171524&hterms=biomass&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbiomass','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171524&hterms=biomass&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dbiomass"><span>3D <span class="hlt">Cloud</span> Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus <span class="hlt">Cloud</span> Fields in the Biomass Burning Region in Brazil</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.</p> <p>2004-01-01</p> <p>Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and <span class="hlt">clouds</span>. Since the global <span class="hlt">cloud</span> <span class="hlt">cover</span> is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while <span class="hlt">clouds</span> are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus <span class="hlt">cloud</span> fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., <span class="hlt">cloud</span> optical thickness, particle effective radius, <span class="hlt">cloud</span> top pressure, surface reflectance, etc.) are used to construct the <span class="hlt">cloud</span> property and surface reflectance fields. To estimate the <span class="hlt">cloud</span> 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D <span class="hlt">cloud</span> radiative effects on aerosol optical thickness retrieval are estimated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960051003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960051003"><span>Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eloranta, E. W.</p> <p>1996-01-01</p> <p>The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, <span class="hlt">cloud</span> physics and <span class="hlt">cloud</span> formation, mesoscale observations of <span class="hlt">cloud</span> phenomena, ground-based and satellite <span class="hlt">cloud</span> <span class="hlt">cover</span> observations, impact of volcanic aerosols on <span class="hlt">cloud</span> formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6558G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6558G"><span>The effect of <span class="hlt">cloud</span> screening on MAX-DOAS aerosol retrievals.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim</p> <p>2014-05-01</p> <p>In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our <span class="hlt">cloud</span>-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick <span class="hlt">cloud</span> <span class="hlt">cover</span>/extreme aerosols), mediocre (=thin <span class="hlt">clouds</span>/aerosols) and good (=clear sky). We also flag the presence of broken/scattered <span class="hlt">clouds</span>. We further compare our <span class="hlt">cloud</span>-screening method with results from <span class="hlt">cloud-cover</span> fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and <span class="hlt">cloud</span> conditions of MAX-DOAS measurements, without the need for other external <span class="hlt">cloud</span>-detection systems. Removing data under bad-sky and broken-<span class="hlt">cloud</span> conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as <span class="hlt">clouds</span> and/or the boundary layer height.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...69a2087Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...69a2087Z"><span>Study of Huizhou architecture component point <span class="hlt">cloud</span> in surface reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin</p> <p>2017-06-01</p> <p>Surface reconfiguration softwares have many problems such as complicated operation on point <span class="hlt">cloud</span> data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point <span class="hlt">cloud</span> preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the <span class="hlt">acquired</span> point <span class="hlt">cloud</span> data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point <span class="hlt">cloud</span> dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AAS...19914506M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AAS...19914506M"><span>A Thermal Infrared <span class="hlt">Cloud</span> Mapper</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mallama, A.; Degnan, J. J.</p> <p>2001-12-01</p> <p>A thermal infrared imager for mapping the changing <span class="hlt">cloud</span> <span class="hlt">cover</span> over a ground based observing site has been developed. There are two main components to our instrument. One is a commercially made uncooled 10 micron thermal infrared detector that outputs a 120x120 pixel thermogram. The other is a convex electroplated reflector, which is situated beneath the detector and in its field of view. The resulting image <span class="hlt">covers</span> the sky from zenith down to about 10 degrees elevation. The self-reflection of the camera and supporting vanes is removed by interpolation. Atmospheric transparency is distinguished by the difference between the sky temperature and the ambient air temperature. Clear sky is indicated by pixels having a difference of about 20 degrees C or more. The qualitative results 'clear, haze and <span class="hlt">cloud</span>' have proven to be very reliable during two years of development and testing. Quantitative information, such as the extinction coefficient, is also available though it is not exact. The uncertainty is probably due to variability of the lapse rate under different atmospheric conditions. Software has been written for PC/DOS and VME/LynxOS (similar to Linux) systems in the C programming language. Functionality includes serial communication with the detector, analysis of the thermogram, mapping of <span class="hlt">cloud</span> <span class="hlt">cover</span>, data display, and file I/O. The main elements of cost in this system were for the thermal infrared detector and for the machining of an 18-inch diameter stainless steel mandrel. The latter is needed to produce an electroplated reflector. We have had good success with the gold and rhodium reflectors that have been generated. The reflectors themselves are relatively inexpensive now that the mandrel is available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3538295','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3538295"><span>Scalable and responsive event processing in the <span class="hlt">cloud</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul</p> <p>2013-01-01</p> <p>Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. <span class="hlt">Cloud</span> computing makes it easy to <span class="hlt">acquire</span> and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a <span class="hlt">cloud</span> platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, <span class="hlt">cloud</span> resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through <span class="hlt">cloud</span>-based experiments. PMID:23230164</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22620890-robust-real-time-surface-reconstruction-method-point-clouds-captured-from-surface-photogrammetry-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22620890-robust-real-time-surface-reconstruction-method-point-clouds-captured-from-surface-photogrammetry-system"><span>A robust real-time surface reconstruction method on point <span class="hlt">clouds</span> captured from a 3D surface photogrammetry system</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Wenyang; Cheung, Yam; Sawant, Amit</p> <p>2016-05-15</p> <p>Purpose: To develop a robust and real-time surface reconstruction method on point <span class="hlt">clouds</span> captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point <span class="hlt">clouds</span> <span class="hlt">acquired</span> by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the <span class="hlt">acquired</span> point <span class="hlt">clouds</span>, their method solves and propagates a sparse linear relationship from the point <span class="hlt">cloud</span> manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point <span class="hlt">cloud</span> acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point <span class="hlt">cloud</span> as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point <span class="hlt">clouds</span> <span class="hlt">acquired</span> under consistent acquisition conditions and on point <span class="hlt">clouds</span> with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point <span class="hlt">clouds</span>, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point <span class="hlt">clouds</span> with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27147347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27147347"><span>A robust real-time surface reconstruction method on point <span class="hlt">clouds</span> captured from a 3D surface photogrammetry system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan</p> <p>2016-05-01</p> <p>To develop a robust and real-time surface reconstruction method on point <span class="hlt">clouds</span> captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point <span class="hlt">clouds</span> <span class="hlt">acquired</span> by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the <span class="hlt">acquired</span> point <span class="hlt">clouds</span>, their method solves and propagates a sparse linear relationship from the point <span class="hlt">cloud</span> manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point <span class="hlt">cloud</span> acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point <span class="hlt">cloud</span> as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point <span class="hlt">clouds</span> <span class="hlt">acquired</span> under consistent acquisition conditions and on point <span class="hlt">clouds</span> with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point <span class="hlt">clouds</span>, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point <span class="hlt">clouds</span> with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4833747','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4833747"><span>A robust real-time surface reconstruction method on point <span class="hlt">clouds</span> captured from a 3D surface photogrammetry system</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan</p> <p>2016-01-01</p> <p>Purpose: To develop a robust and real-time surface reconstruction method on point <span class="hlt">clouds</span> captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point <span class="hlt">clouds</span> <span class="hlt">acquired</span> by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the <span class="hlt">acquired</span> point <span class="hlt">clouds</span>, their method solves and propagates a sparse linear relationship from the point <span class="hlt">cloud</span> manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point <span class="hlt">cloud</span> acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point <span class="hlt">cloud</span> as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point <span class="hlt">clouds</span> <span class="hlt">acquired</span> under consistent acquisition conditions and on point <span class="hlt">clouds</span> with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point <span class="hlt">clouds</span>, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point <span class="hlt">clouds</span> with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4138938','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4138938"><span>A Survey on Personal Data <span class="hlt">Cloud</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Jiaqiu; Wang, Zhongjie</p> <p>2014-01-01</p> <p>Personal data represent the e-history of a person and are of great significance to the person, but they are essentially produced and governed by various distributed services and there lacks a global and centralized view. In recent years, researchers pay attention to Personal Data <span class="hlt">Cloud</span> (PDC) which aggregates the heterogeneous personal data scattered in different <span class="hlt">clouds</span> into one <span class="hlt">cloud</span>, so that a person could effectively store, <span class="hlt">acquire</span>, and share their data. This paper makes a short survey on PDC research by summarizing related papers published in recent years. The concept, classification, and significance of personal data are elaborately introduced and then the semantics correlation and semantics representation of personal data are discussed. A multilayer reference architecture of PDC, including its core components and a real-world operational scenario showing how the reference architecture works, is introduced in detail. Existing commercial PDC products/prototypes are listed and compared from several perspectives. Five open issues to improve the shortcomings of current PDC research are put forward. PMID:25165753</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41J..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41J..03P"><span>Efficacy of <span class="hlt">Cloud</span>-Radiative Perturbations in Deep Open- and Closed-Cell Stratocumulus <span class="hlt">Clouds</span> due to Aerosol Perturbations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Possner, A.; Wang, H.; Caldeira, K.; Wood, R.; Ackerman, T. P.</p> <p>2017-12-01</p> <p>Aerosol-<span class="hlt">cloud</span> interactions (ACIs) in marine stratocumulus remain a significant source of uncertainty in constraining the <span class="hlt">cloud</span>-radiative effect in a changing climate. Ship tracks are undoubted manifestations of ACIs embedded within stratocumulus <span class="hlt">cloud</span> decks and have proven to be a useful framework to study the effect of aerosol perturbations on <span class="hlt">cloud</span> morphology, macrophysical, microphyiscal and <span class="hlt">cloud</span>-radiative properties. However, so far most observational (Christensen et al. 2012, Chen et al. 2015) and numerical studies (Wang et al. 2011, Possner et al. 2015, Berner et al. 2015) have concentrated on ship tracks in shallow boundary layers of depths between 300 - 800 m, while most stratocumulus decks form in significantly deeper boundary layers (Muhlbauer et al. 2014). In this study we investigate the efficacy of aerosol perturbations in deep open and closed cell stratocumulus. Multi-day idealised <span class="hlt">cloud</span>-resolving simulations are performed for the RF06 flight of the VOCALS-Rex field campaign (Wood et al. 2011). During this flight pockets of deep open and closed cells were observed in a 1410 m deep boundary layer. The efficacy of aerosol perturbations of varied concentration and spatial gradients in altering the <span class="hlt">cloud</span> micro- and macrophysical state and <span class="hlt">cloud</span>-radiative effect is determined in both <span class="hlt">cloud</span> regimes. Our simulations show that a continued point source emission flux of 1.16*1011 particles m-2 s-1 applied within a 300x300 m2 gridbox induces pronounced <span class="hlt">cloud</span> <span class="hlt">cover</span> changes in approximately a third of the simulated 80x80 km2 domain, a weakening of the diurnal cycle in the open-cell regime and a resulting increase in domain-mean <span class="hlt">cloud</span> albedo of 0.2. Furthermore, we contrast the efficacy of equal strength near-surface or above-<span class="hlt">cloud</span> aerosol perturbations in altering the <span class="hlt">cloud</span> state.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..281..248R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..281..248R"><span>Could cirrus <span class="hlt">clouds</span> have warmed early Mars?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez, Ramses M.; Kasting, James F.</p> <p>2017-01-01</p> <p>The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus <span class="hlt">cloud</span> decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus <span class="hlt">cloud</span> warming hypothesis. Our calculations indicate that cirrus <span class="hlt">cloud</span> decks could have produced global mean surface temperatures above freezing, but only if cirrus <span class="hlt">cloud</span> <span class="hlt">cover</span> approaches ∼75 - 100% and if other <span class="hlt">cloud</span> properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus <span class="hlt">cloud</span> fractions, or if <span class="hlt">cloud</span> parameters are not optimal, cirrus <span class="hlt">clouds</span> do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780009489','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780009489"><span>Analyses of the <span class="hlt">cloud</span> contents of multispectral imagery from LANDSAT 2: Mesoscale assessments of <span class="hlt">cloud</span> and rainfall over the British Isles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barrett, E. C.; Grant, C. K. (Principal Investigator)</p> <p>1977-01-01</p> <p>The author has identified the following significant results. It was demonstrated that satellites with sufficiently high resolution capability in the visible region of the electromagnetic spectrum could be used to check the accuracy of estimates of total <span class="hlt">cloud</span> amount assessed subjectively from the ground, and to reveal areas of performance in which corrections should be made. It was also demonstrated that, in middle latitude in summer, <span class="hlt">cloud</span> shadow may obscure at least half as much again of the land surface <span class="hlt">covered</span> by an individual LANDSAT frame as the <span class="hlt">cloud</span> itself. That proportion would increase with latitude and/or time of year towards the winter solstice. Analyses of sample multispectral images for six different categories of <span class="hlt">clouds</span> in summer revealed marked differences between the reflectance characteristics of <span class="hlt">cloud</span> fields in the visible/near infrared region of the spectrum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014mysc.conf...85G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014mysc.conf...85G"><span>Star Clusters in the Magellanic <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallagher, J. S., III</p> <p>2014-09-01</p> <p>The Magellanic <span class="hlt">Clouds</span> (MC) are prime locations for studies of star clusters <span class="hlt">covering</span> a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic <span class="hlt">Cloud</span> (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.A43A..09M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.A43A..09M"><span>Validation of Local-<span class="hlt">Cloud</span> Model Outputs With the GOES Satellite Imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malek, E.</p> <p>2005-05-01</p> <p><span class="hlt">Clouds</span> (visible aggregations of minute droplets of water or tiny crystals of ice suspended in the air) affect the radiation budget of our planet by reflecting, absorbing and scattering solar radiation, and the re-emission of terrestrial radiation. They affect the weather and climate by positive or negative feedbacks. Many researchers have worked on the parameterization of <span class="hlt">clouds</span> and their effects on the radiation budget. There is little information about ground-based approaches for continuous evaluation of <span class="hlt">cloud</span>, such as <span class="hlt">cloud</span> base height, <span class="hlt">cloud</span> base temperature, and <span class="hlt">cloud</span> coverage, at local and regional scales. This present article deals with the development of an algorithm for continuous (day and night) evaluation of <span class="hlt">cloud</span> base temperature, <span class="hlt">cloud</span> base height and percent of skies <span class="hlt">covered</span> by <span class="hlt">cloud</span> at local scale throughout the year. The Vaisala model CT-12K laser beam ceilometer is used at the Automated Surface Observing Systems (ASOS) to measure the <span class="hlt">cloud</span> base height and report the sky conditions on an hourly basis or at shorter intervals. This laser ceilometer is a fixed-type whose transmitter and receiver point straight up at the <span class="hlt">cloud</span> (if any) base. It is unable to measure <span class="hlt">clouds</span> that are not above the sensor. To report cloudiness at the local scale, many of these type of ceilometers are needed. This is not a perfect method for <span class="hlt">cloud</span> measurement. A single <span class="hlt">cloud</span> hanging overhead the sensor will cause overcast readings, whereas, a hole in the <span class="hlt">clouds</span> could cause a clear reading to be reported. To overcome this problem, we have set up a ventilated radiation station at Logan-Cache airport, Utah, U.S.A., since 1995, which is equipped with one of the above-mentioned ceilometers. This radiation station (composed of pyranometers, pyrgeometers and net radiometer) provides continuous measurements of incoming and outgoing shortwave and longwave radiation and the net radiation throughout the year. We have also measured the surface temperature and pressure, the 2-m air</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920031296&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920031296&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes"><span>Effect of <span class="hlt">cloud</span> <span class="hlt">cover</span> and surface type on earth's radiation budget derived from the first year of ERBE data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, G. G.; Denn, F. M.; Young, D. F.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.</p> <p>1990-01-01</p> <p>One year of ERBE data is analyzed for variations in outgoing LW and absorbed solar flux. Differences in land and ocean radiation budgets as well as differences between clear-sky and total scenes, including <span class="hlt">clouds</span>, are studied. The variation of monthly average radiative parameters is examined for February 1985 through January 1986 for selected study regions and on zonal and global scales. ERBE results show significant seasonal variations in both outgoing LW and absorbed SW flux, and a pronounced difference between oceanic and continental surfaces. The main factors determining <span class="hlt">cloud</span> radiative forcing in a given region are solar insolation, <span class="hlt">cloud</span> amount, <span class="hlt">cloud</span> type, and surface properties. The strongest effects of <span class="hlt">clouds</span> are found in the midlatitude storm tracks over the oceans. Over much of the globe, LW warming is balanced by SW cooling. The annual-global average net <span class="hlt">cloud</span> forcing shows that <span class="hlt">clouds</span> have a net cooling effect on the earth for the year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.7245V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.7245V"><span>Analyzing <span class="hlt">cloud</span> base at local and regional scales to understand tropical montane <span class="hlt">cloud</span> forest vulnerability to climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.</p> <p>2017-06-01</p> <p>The degree to which <span class="hlt">cloud</span> immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane <span class="hlt">cloud</span> forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if <span class="hlt">cloud</span> base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in <span class="hlt">cloud</span> base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ˜ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and <span class="hlt">Cloud</span>-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal <span class="hlt">cloud</span> base dynamics, altitude of the trade-wind inversion (TWI), and typical <span class="hlt">cloud</span> thickness for the surrounding Caribbean region. <span class="hlt">Cloud</span> base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal <span class="hlt">cloud</span> base dynamics for the TMCF. From May 2013 to August 2016, <span class="hlt">cloud</span> base was lowest during the midsummer dry season, and <span class="hlt">cloud</span> bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest <span class="hlt">cloud</span> bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low <span class="hlt">cloud</span> base altitudes were higher than six other sites in the Caribbean by ˜ 200-600 m, highlighting the importance of site selection to measure topographic influence on <span class="hlt">cloud</span> height. Proximity to the oceanic <span class="hlt">cloud</span> system where shallow cumulus <span class="hlt">clouds</span> are seasonally invariant in altitude and <span class="hlt">cover</span>, along with local trade-wind orographic lifting and <span class="hlt">cloud</span> formation, may explain the dry season low <span class="hlt">clouds</span>. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SunGe..10...51V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SunGe..10...51V"><span>Low <span class="hlt">Clouds</span> and Cosmic Rays: Possible Reasons for Correlation Changes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veretenenko, S. V.; Ogurtsov, M. G.</p> <p>2015-03-01</p> <p>In this work we investigated the nature of correlations between low <span class="hlt">cloud</span> <span class="hlt">cover</span> anomalies (LCA) and galactic cosmic ray (GCR) variations detected on the decadal time scale, as well as possible reasons for the violation of these correlations in the early 2000s. It was shown that the link between <span class="hlt">cloud</span> <span class="hlt">cover</span> at middle latitudes and GCR fluxes is not direct, but it is realized through GCR influence on the development of extratropical baric systems (cyclones and troughs) which form <span class="hlt">cloud</span> field. As the sign of GCR effects on the troposphere dynamics seems to depend on the strength of the stratospheric polar vortex, a possible reason for the violation of a positive correlation between LCA and GCR fluxes in the early 2000s may be the change of the vortex state which resulted in the reversal of GCR effects on extratropical cyclone development.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512389K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512389K"><span>Experimental evaluation of ALS point <span class="hlt">cloud</span> ground extraction over different land <span class="hlt">cover</span> in the Malopolska Province</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata</p> <p>2013-04-01</p> <p>The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point <span class="hlt">clouds</span>. The research area <span class="hlt">covers</span> eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land <span class="hlt">cover</span> characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point <span class="hlt">cloud</span> data. Qualitative verification of ground extraction was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..263d2063M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..263d2063M"><span>Proactive replica checking to assure reliability of data in <span class="hlt">cloud</span> storage with minimum replication</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murarka, Damini; Maheswari, G. Uma</p> <p>2017-11-01</p> <p>The two major issues for <span class="hlt">cloud</span> storage systems are data reliability and storage costs. For data reliability protection, multi-replica replication strategy which is used mostly in current <span class="hlt">clouds</span> <span class="hlt">acquires</span> huge storage consumption, leading to a large storage cost for applications within the loud specifically. This paper presents a cost-efficient data reliability mechanism named PRCR to cut back the <span class="hlt">cloud</span> storage consumption. PRCR ensures data reliability of large <span class="hlt">cloud</span> information with the replication that might conjointly function as a price effective benchmark for replication. The duplication shows that when resembled to the standard three-replica approach, PRCR will scale back to consume only a simple fraction of the <span class="hlt">cloud</span> storage from one-third of the storage, thence considerably minimizing the <span class="hlt">cloud</span> storage price.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A31J..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A31J..07H"><span>The CREW intercomparison of SEVIRI <span class="hlt">cloud</span> retrievals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.</p> <p>2012-12-01</p> <p>About 70% of the earth's surface is <span class="hlt">covered</span> with <span class="hlt">clouds</span>. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of <span class="hlt">cloud</span> properties - such as <span class="hlt">cloud</span> fraction, <span class="hlt">cloud</span> top temperature, <span class="hlt">cloud</span> particle size, and <span class="hlt">cloud</span> water path - is important to understand the role of <span class="hlt">clouds</span> in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the <span class="hlt">cloud</span> parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of <span class="hlt">cloud</span> physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (<span class="hlt">Cloud</span> Retrieval Evaluation Working) group. <span class="hlt">Cloud</span> detection, <span class="hlt">cloud</span> top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent <span class="hlt">clouds</span> over the earth's surface or another <span class="hlt">cloud</span> layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken <span class="hlt">cloud</span> fields. Aerosols might be misclassified as <span class="hlt">cloud</span> and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/30086','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/30086"><span><span class="hlt">Cloud</span>-Free Satellite Image Mosaics with Regression Trees and Histogram Matching.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E.H. Helmer; B. Ruefenacht</p> <p>2005-01-01</p> <p><span class="hlt">Cloud</span>-free optical satellite imagery simplifies remote sensing, but land-<span class="hlt">cover</span> phenology limits existing solutions to persistent cloudiness to compositing temporally resolute, spatially coarser imagery. Here, a new strategy for developing <span class="hlt">cloud</span>-free imagery at finer resolution permits simple automatic change detection. The strategy uses regression trees to predict...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080045463&hterms=Ackerman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3DAckerman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080045463&hterms=Ackerman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3DAckerman"><span>Observing Ice in <span class="hlt">Clouds</span> from Space</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ackerman, S.; Star, D. O'C.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Norris, P.; daSilva, A.; Soden, B.</p> <p>2006-01-01</p> <p> brightness temperatures to ice. The next step is a satellite mission designed to <span class="hlt">acquire</span> global Earth radiance measurements in the submillimeter-wave region, thus bridging the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. This presentation provides scientific justification and an approach to measuring ice water path and particle size from a satellite platform that spans a range encompassing both the hydrologically active and radiatively active components of <span class="hlt">cloud</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43G2540C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43G2540C"><span><span class="hlt">Cloud</span> Chemistry in the United States: Problems and Prospects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlton, A. G.; Barth, M. C.; Lance, S.; Fahey, K.; McNeill, V. F.; Weber, R. J.</p> <p>2017-12-01</p> <p><span class="hlt">Clouds</span> <span class="hlt">cover</span> 60% of the Earth's surface at a given time and are the primary means by which atmospheric trace species are lofted from the polluted boundary layer to the free troposphere. <span class="hlt">Clouds</span> also play an important role as atmospheric aqueous phase reactors, scavenging soluble gas phase precursors and providing a medium for oxidation reactions that yield lower volatility products that contribute to increased aerosol mass when <span class="hlt">cloud</span> drops evaporate. On a global average, most sulfate particles are formed during <span class="hlt">cloud</span> processing, and organic particles known to form through aqueous phase pathways are found above <span class="hlt">clouds</span>. However, atmospheric chemistry observations are generally biased for clear sky conditions. For example, aircraft field deployments typically avoid <span class="hlt">clouds</span>. Satellite retrievals impacted by <span class="hlt">clouds</span> are often screened from the final data products. This hinders knowledge of <span class="hlt">cloud</span> chemistry and the impacts on tropospheric composition. In this work, we explore temporal and geospatial trends in trace species related to <span class="hlt">cloud</span> processing in the U.S. with a focus on organic chemistry. We apply 3-dimensional and 0-dimensional models to recent campaigns and mountaintop <span class="hlt">cloud</span> sampling sites, and compare to measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51M0256L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51M0256L"><span>A satellite observation test bed for <span class="hlt">cloud</span> parameterization development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebsock, M. D.; Suselj, K.</p> <p>2015-12-01</p> <p>We present an observational test-bed of <span class="hlt">cloud</span> and precipitation properties derived from <span class="hlt">Cloud</span>Sat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer <span class="hlt">clouds</span> including stratocumulus and cumulus and the transition between these <span class="hlt">cloud</span> regimes. Test-bed properties include the <span class="hlt">cloud</span> <span class="hlt">cover</span> and three dimensional <span class="hlt">cloud</span> fraction along with the <span class="hlt">cloud</span> water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of <span class="hlt">cloud</span> and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed <span class="hlt">clouds</span>. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus <span class="hlt">cloud</span> regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29124639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29124639"><span>The variation of <span class="hlt">cloud</span> amount and light rainy days under heavy pollution over South China during 1960-2009.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fu, Chuanbo; Dan, Li</p> <p>2018-01-01</p> <p>The ground observation data was used to analyze the variation of <span class="hlt">cloud</span> amount and light precipitation over South China during 1960-2009. The total <span class="hlt">cloud</span> <span class="hlt">cover</span> (TCC) decreases in this period, whereas the low <span class="hlt">cloud</span> <span class="hlt">cover</span> (LCC) shows the obvious opposite change with increasing trends. LCP defined as low <span class="hlt">cloud</span> <span class="hlt">cover</span>/total <span class="hlt">cloud</span> <span class="hlt">cover</span> has increased, and small rainy days (< 10 mm day -1 ) decreased significantly (passing 0.001 significance level) during the past 50 years, which is attributed to the enhanced levels of air pollution in the form of anthropogenic aerosols. The horizontal visibility and sunshine duration are used to depict the anthropogenic aerosol loading. When horizontal visibility declines to 20 km or sunshine duration decreases to 5 h per day, LCC increases 52% or more and LCP increases significantly. The correlation coefficients between LCC and horizontal visibility or sunshine duration are - 0.533 and - 0.927, and the values between LCP and horizontal visibility or sunshine duration are - 0.849 and - 0.641, which pass 0.001 significance level. The results indicated that aerosols likely impacted the long-term trend of <span class="hlt">cloud</span> amount and light precipitation over South China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001143','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001143"><span>The effects of <span class="hlt">cloud</span> radiative forcing on an ocean-<span class="hlt">covered</span> planet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randall, David A.</p> <p>1990-01-01</p> <p>Cumulus anvil <span class="hlt">clouds</span>, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric <span class="hlt">cloud</span> radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02851&hterms=Free+movies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DFree%2Bmovies','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02851&hterms=Free+movies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DFree%2Bmovies"><span>Still from High-<span class="hlt">Clouds</span> Jupiter Movie</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>This image is one of seven from the narrow-angle camera on NASA's Cassini spacecraft assembled as a brief movie of high-altitude <span class="hlt">cloud</span> movements on Jupiter. It was taken in early October 2000.<p/>The images were taken at a wavelength that is absorbed by methane, one chemical in Jupiter's lower <span class="hlt">clouds</span>. So, dark areas are relatively free of high <span class="hlt">clouds</span>, and the camera sees through to the methane in a lower level. Bright areas are places with high, thick <span class="hlt">clouds</span> that shield the methane below.<p/>The area shown <span class="hlt">covers</span> latitudes from 50 degrees north to 50 degrees south and a 100-degree sweep of longitude.<p/>Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC21B0959L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC21B0959L"><span>User Observed Estimates of <span class="hlt">Cloud</span> Fraction for Modifying a <span class="hlt">Cloud</span>-free UV Index for Use in an Educational Smart-phone Application on Erythema</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantz, K. O.; Long, C. S.; Buller, D.; Berwick, M.; Buller, M.; Kane, I.; Shane, J.</p> <p>2012-12-01</p> <p>The UV Index (UVI) is a measure of the skin-damaging UV radiation levels at the Earth's surface. <span class="hlt">Clouds</span>, haze, air pollution, total ozone, surface elevation, and ground reflectivity affect the levels of UV radiation reaching the ground. The global UV Index was developed as a simple tool to educate the public for taking precautions when exposed to UV radiation to avoid sun-burning, which has been linked to the development of skin cancer. The purpose of this study was to validate an algorithm to modify a <span class="hlt">cloud</span>-free UV Index forecast for <span class="hlt">cloud</span> conditions as observed by adults in real-time. The <span class="hlt">cloud</span> attenuation algorithm is used in a smart-phone application to modify a clear-sky UV Index forecast. In the United States, the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) issues a daily UV Index Forecast. The NOAA UV Index is an hourly forecast for a 0.5 x 0.5 degree area and thus has a degree of uncertainty. <span class="hlt">Cloud</span> <span class="hlt">cover</span> varies temporally and spatially over short times and distances as weather conditions change and can have a large impact on the UV radiation. The smart-phone application uses the <span class="hlt">cloud</span>-based UV Index forecast as the default but allows the user to modify a <span class="hlt">cloud</span>-free UV Index forecast when the predicted sky conditions do not match observed conditions. Eighty four (n=84) adults were recruited to participate in the study through advertisements posted online and in a university e-newsletter. Adults were screened for eligibility (i.e., 18 or older, capable to traveling to test site, had a smart phone with a data plan to access online observation form). A sky observation measure was created to assess <span class="hlt">cloud</span> fraction. The adult volunteers selected from among four photographs the image that best matched the <span class="hlt">cloud</span> conditions they observed. Images depicted no <span class="hlt">clouds</span> (clear sky), thin high <span class="hlt">clouds</span>, partly cloudy sky, and thick <span class="hlt">clouds</span> (sky completely overcast). When thin high <span class="hlt">clouds</span> or partly cloudy images were selected</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080024225','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080024225"><span>Characterization of Polar Stratospheric <span class="hlt">Clouds</span> With Spaceborne Lidar: CALIPSO and the 2006 Antarctic Season</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pitts, Michael C.; Thomason, L. W.; Poole, Lamont R.; Winker, David M.</p> <p>2007-01-01</p> <p>The role of polar stratospheric <span class="hlt">clouds</span> in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously unavailable. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous <span class="hlt">clouds</span>, with a very low rate of false positives and few missed <span class="hlt">clouds</span>. We applied the algorithm to CALIPSO data <span class="hlt">acquired</span> during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with virtual solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIPSO data. The observed area <span class="hlt">covered</span> with PSCs is significantly smaller than would be inferred from a temperature-based proxy such as TNAT but is similar in magnitude to that inferred from TSTS. The potential of CALIPSO measurements for investigating PSC microphysics is illustrated using combinations of lidar backscatter coefficient and volume depolarization to infer composition for two CALIPSO PSC scenes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21393.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21393.html"><span>Jupiter's Bands of <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-06-22</p> <p>This enhanced-color image of Jupiter's bands of light and dark <span class="hlt">clouds</span> was created by citizen scientists Gerald Eichstädt and Seán Doran using data from the JunoCam imager on NASA's Juno spacecraft. Three of the white oval storms known as the "String of Pearls" are visible near the top of the image. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (kilometers) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking. Juno <span class="hlt">acquired</span> the image on May 19, 2017, at 11:30 a.m. PST (2:30 p.m. EST) from an altitude of about 20,800 miles (33,400 kilometers) above Jupiter's <span class="hlt">cloud</span> tops. https://photojournal.jpl.nasa.gov/catalog/PIA21393</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21A2132C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21A2132C"><span>Machine learning based <span class="hlt">cloud</span> mask algorithm driven by radiative transfer modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.</p> <p>2017-12-01</p> <p><span class="hlt">Cloud</span> detection is a critically important first step required to derive many satellite data products. Traditional threshold based <span class="hlt">cloud</span> mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice <span class="hlt">covered</span> areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS <span class="hlt">Cloud</span> Mask (MOD35 C6) during the winter seasons over mid-latitude snow <span class="hlt">covered</span> areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001342','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001342"><span>OMMYDCLD: a New A-train <span class="hlt">Cloud</span> Product that Co-locates OMI and MODIS <span class="hlt">Cloud</span> and Radiance Parameters onto the OMI Footprint</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fisher, Brad; Joiner, Joanna; Vasilkov, Alexander; Veefkind, Pepijn; Platnick, Steven; Wind, Galina</p> <p>2014-01-01</p> <p><span class="hlt">Clouds</span> <span class="hlt">cover</span> approximately 60% of the earth's surface. When obscuring the satellite's field of view (FOV), <span class="hlt">clouds</span> complicate the retrieval of ozone, trace gases and aerosols from data collected by earth observing satellites. <span class="hlt">Cloud</span> properties associated with optical thickness, <span class="hlt">cloud</span> pressure, water phase, drop size distribution (DSD), <span class="hlt">cloud</span> fraction, vertical and areal extent can also change significantly over short spatio-temporal scales. The radiative transfer models used to retrieve column estimates of atmospheric constituents typically do not account for all these properties and their variations. The OMI science team is preparing to release a new data product, OMMYDCLD, which combines the <span class="hlt">cloud</span> information from sensors on board two earth observing satellites in the NASA A-Train: Aura/OMI and Aqua/MODIS. OMMYDCLD co-locates high resolution <span class="hlt">cloud</span> and radiance information from MODIS onto the much larger OMI pixel and combines it with parameters derived from the two other OMI <span class="hlt">cloud</span> products: OMCLDRR and OMCLDO2. The product includes histograms for MODIS scientific data sets (SDS) provided at 1 km resolution. The statistics of key data fields - such as effective particle radius, <span class="hlt">cloud</span> optical thickness and <span class="hlt">cloud</span> water path - are further separated into liquid and ice categories using the optical and IR phase information. OMMYDCLD offers users of OMI data <span class="hlt">cloud</span> information that will be useful for carrying out OMI calibration work, multi-year studies of <span class="hlt">cloud</span> vertical structure and in the identification and classification of multi-layer <span class="hlt">clouds</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1029807','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1029807"><span>Secure <span class="hlt">Cloud</span> Computing Implementation Study For Singapore Military Operations</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-09-01</p> <p>COMPUTING IMPLEMENTATION STUDY FOR SINGAPORE MILITARY OPERATIONS by Lai Guoquan September 2016 Thesis Advisor: John D. Fulp Co-Advisor...DATES <span class="hlt">COVERED</span> Master’s thesis 4. TITLE AND SUBTITLE SECURE <span class="hlt">CLOUD</span> COMPUTING IMPLEMENTATION STUDY FOR SINGAPORE MILITARY OPERATIONS 5. FUNDING NUMBERS...addition, from the military perspective, the benefits of <span class="hlt">cloud</span> computing were analyzed from a study of the U.S. Department of Defense. Then, using</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title26-vol15/pdf/CFR-2012-title26-vol15-sec31-3121j-1.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title26-vol15/pdf/CFR-2012-title26-vol15-sec31-3121j-1.pdf"><span>26 CFR 31.3121(j)-1 - <span class="hlt">Covered</span> transportation service.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 26 Internal Revenue 15 2012-04-01 2012-04-01 false <span class="hlt">Covered</span> transportation service. 31.3121(j)-1... § 31.3121(j)-1 <span class="hlt">Covered</span> transportation service. (a) Transportation systems <span class="hlt">acquired</span> in whole or in part... operation of a public transportation system constitutes <span class="hlt">covered</span> transportation service if any part of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title26-vol15/pdf/CFR-2011-title26-vol15-sec31-3121j-1.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title26-vol15/pdf/CFR-2011-title26-vol15-sec31-3121j-1.pdf"><span>26 CFR 31.3121(j)-1 - <span class="hlt">Covered</span> transportation service.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... 26 Internal Revenue 15 2011-04-01 2011-04-01 false <span class="hlt">Covered</span> transportation service. 31.3121(j)-1... § 31.3121(j)-1 <span class="hlt">Covered</span> transportation service. (a) Transportation systems <span class="hlt">acquired</span> in whole or in part... operation of a public transportation system constitutes <span class="hlt">covered</span> transportation service if any part of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title26-vol15/pdf/CFR-2013-title26-vol15-sec31-3121j-1.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title26-vol15/pdf/CFR-2013-title26-vol15-sec31-3121j-1.pdf"><span>26 CFR 31.3121(j)-1 - <span class="hlt">Covered</span> transportation service.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 26 Internal Revenue 15 2013-04-01 2013-04-01 false <span class="hlt">Covered</span> transportation service. 31.3121(j)-1... § 31.3121(j)-1 <span class="hlt">Covered</span> transportation service. (a) Transportation systems <span class="hlt">acquired</span> in whole or in part... operation of a public transportation system constitutes <span class="hlt">covered</span> transportation service if any part of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title26-vol15/pdf/CFR-2014-title26-vol15-sec31-3121j-1.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title26-vol15/pdf/CFR-2014-title26-vol15-sec31-3121j-1.pdf"><span>26 CFR 31.3121(j)-1 - <span class="hlt">Covered</span> transportation service.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 26 Internal Revenue 15 2014-04-01 2014-04-01 false <span class="hlt">Covered</span> transportation service. 31.3121(j)-1... § 31.3121(j)-1 <span class="hlt">Covered</span> transportation service. (a) Transportation systems <span class="hlt">acquired</span> in whole or in part... operation of a public transportation system constitutes <span class="hlt">covered</span> transportation service if any part of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27164747','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27164747"><span>[Topical problems of empiric therapy of community-<span class="hlt">acquired</span> pneumonia in outpatient practice].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stepanova, I I; Chorbinskaya, S A; Baryshnikonva, G A; Nikiforova, N V; Pokutniy, N F; Zverkov, I V; Maslovskyi, L V; Kotenko, K V</p> <p>2016-01-01</p> <p>Community-<span class="hlt">acquired</span> pneumonia is one of prevalent infectious respiratory diseases. Adequate treatment of community-<span class="hlt">acquired</span> pneumonia, with consideration of the disease severity and microbial resistence, remains extremely topical. The article <span class="hlt">covers</span> contemporary views of community-<span class="hlt">acquired</span> pneumonia treatment standards. The authors described results of personal research aimed to study antibacterial treatment for community-<span class="hlt">acquired</span> pneumonia on outpatient basis over 2004-2012, evaluated correspondence of the treatment to the national clinical recommendations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A31C0084G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A31C0084G"><span>Validation of CERES-MODIS Arctic <span class="hlt">cloud</span> properties using <span class="hlt">Cloud</span>Sat/CALIPSO and ARM NSA observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.</p> <p>2011-12-01</p> <p>The traditional passive satellite studies of <span class="hlt">cloud</span> properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic <span class="hlt">clouds</span> and the snow- and ice-<span class="hlt">covered</span> surfaces beneath them, which can lead to difficulties in satellite retrievals of <span class="hlt">cloud</span> properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for <span class="hlt">cloud</span> properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic <span class="hlt">cloud</span> fraction and <span class="hlt">cloud</span> heights derived from the NASA CERES team (CERES-MODIS) have been compared with <span class="hlt">Cloud</span>Sat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of <span class="hlt">cloud</span> fraction and height between CERES-MODIS and <span class="hlt">Cloud</span>Sat/CALIPSO was then conducted for the same time period. The CERES-MODIS <span class="hlt">cloud</span> properties, which include <span class="hlt">cloud</span> fraction and <span class="hlt">cloud</span> effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. <span class="hlt">Cloud</span>Sat/CALIPSO <span class="hlt">cloud</span> fraction and <span class="hlt">cloud</span>-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard <span class="hlt">Cloud</span>Sat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and <span class="hlt">Cloud</span>Sat/CALIPSO show generally good agreement in CF (0.79 vs. 0</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810054694&hterms=1095&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231095','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810054694&hterms=1095&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231095"><span>Sensitivity analysis of upwelling thermal radiance in presence of <span class="hlt">clouds</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Subramanian, S. V.; Tiwari, S. N.; Suttles, J. T.</p> <p>1981-01-01</p> <p>Total upwelling radiance at the top of the atmosphere is evaluated theoretically in the presence of <span class="hlt">clouds</span>. The influence of <span class="hlt">cloud</span> heights, thicknesses and different <span class="hlt">cloud</span> <span class="hlt">covers</span> on the upwelling radiance is also investigated. The characteristics of the two <span class="hlt">cloud</span> types considered in this study closely correspond to altocumulus and cirrus with the <span class="hlt">cloud</span> emissivity as a function of its liquid water (or ice) content. For calculation of the integrated transmittance of atmospheric gases such as, H2O, CO2, O3, and N2O, the Quasi Random Band (QRB) model approach is adopted. Results are obtained in three different spectral ranges and are compared with the clearsky radiance results. It is found that the difference between the clearsky and cloudy radiance increases with increasing <span class="hlt">cloud</span> height and liquid water content. This difference also decreases as the surface temperature approaches the value of the <span class="hlt">cloud</span> top temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53B1725N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53B1725N"><span>Forest Aboveground Biomass Mapping and Canopy <span class="hlt">Cover</span> Estimation from Simulated ICESat-2 Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narine, L.; Popescu, S. C.; Neuenschwander, A. L.</p> <p>2017-12-01</p> <p>The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. With a planned launch date of July 2018, the Ice, <span class="hlt">Cloud</span> and Land Elevation Satellite-2 (ICESat-2) will provide data which will offer the possibility of mapping AGB at global scales. In this study, we develop approaches for utilizing vegetation data that will be delivered in ICESat-2's land-vegetation along track product (ATL08). The specific objectives are to: (1) simulate ICESat-2 photon-counting lidar (PCL) data using airborne lidar data, (2) utilize simulated PCL data to estimate forest canopy <span class="hlt">cover</span> and AGB and, (3) upscale AGB predictions to create a wall-to-wall AGB map at 30-m spatial resolution. Using existing airborne lidar data for Sam Houston National Forest (SHNF) located in southeastern Texas and known ICESat-2 beam locations, PCL data are simulated from discrete return lidar points. We use multiple linear regression models to relate simulated PCL metrics for 100 m segments along the ICESat-2 ground tracks to AGB from a biomass map developed using airborne lidar data and canopy <span class="hlt">cover</span> calculated from the same. Random Forest is then used to create an AGB map from predicted estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land <span class="hlt">cover</span> data from the National Land <span class="hlt">Cover</span> Database (NLCD). Findings from this study will demonstrate how data that will be <span class="hlt">acquired</span> by ICESat-2 can be used to estimate forest structure and characterize the spatial distribution of AGB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1810k0012W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1810k0012W"><span>Study of UV <span class="hlt">cloud</span> modification factors in Southern Patagonia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolfram, Elian A.; Orte, Facundo; Salvador, Jacobo; Quiroga, Jonathan; D'Elia, Raúl; Antón, Manuel; Alados-Arboledas, Lucas; Quel, Eduardo</p> <p>2017-02-01</p> <p>Anthropogenic perturbation of the ozone layer has induced change in the amount of UV radiation that reaches the Earth's surface, mainly through the Antarctic ozone hole, making the ozone and ultraviolet (UV) radiation two important issues in the study of Earth atmosphere in the scientific community. Also the <span class="hlt">clouds</span> have been identified as the main modulator of UV amount in short time scales and produce the main source of uncertainty in the projection of surface UV level as consequence of projected ozone recovery. While <span class="hlt">clouds</span> can decrease direct radiation, they can produce an increase in the diffuse component, and as consequence the surface UV radiation may be higher than an equivalent clear sky scenario for several minutes. In particular this situation can be important when low ozone column and partially <span class="hlt">cloud</span> <span class="hlt">cover</span> skies happen simultaneously. These situations happen frequently in southern Patagonia, where the CEILAP Lidar Division has established the Atmospheric Observatory of Southern Patagonia, an atmospheric remote sensing site near the city of Río Gallegos (51°55'S, 69°14'W). In this paper, the impact of <span class="hlt">clouds</span> over the UV radiation is investigated by the use of ground based measurements from the passive remote sensing instruments operating at this site, mainly of broad and moderate narrow band filter radiometers. We analyzed the UV Index obtained from a multiband filter radiometer GUV-541 (UVI) [Biospherical Inc.] installed in the Observatorio Atmosférico de la Patagonia Austral, Río Gallegos, since 2005. <span class="hlt">Cloud</span> modification factors (CMF, ratio between the measured UV radiation in a cloudy sky and the simulated radiation under <span class="hlt">cloud</span>-free conditions) are evaluated for the study site. The database used in this work <span class="hlt">covers</span> the period 2005-2012 for spring and summer seasons, when the ozone hole can affect these subpolar regions. CMF higher than 1 are found during spring and summer time, when lower total ozone columns, higher solar elevations and high <span class="hlt">cloud</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970025054','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970025054"><span>The EOS CERES Global <span class="hlt">Cloud</span> Mask</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.</p> <p>1996-01-01</p> <p>To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global <span class="hlt">cloud</span> climatology data sets, such as the International Satellite <span class="hlt">Cloud</span> Climatology Experiment (ISCCP) or CLAVR (<span class="hlt">Clouds</span> from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a <span class="hlt">cloud</span> 'mask.' A <span class="hlt">cloud</span> mask is essential to studies monitoring changes over ocean, land, or snow-<span class="hlt">covered</span> surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The <span class="hlt">cloud</span> imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a <span class="hlt">cloud</span> masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting <span class="hlt">cloud</span> using multispectral narrowband radiance data. <span class="hlt">Clouds</span> generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the <span class="hlt">cloud</span> types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The <span class="hlt">cloud</span> mask effort builds upon operational experience of several groups that will now be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1810g0007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1810g0007S"><span>Upper tropospheric <span class="hlt">cloud</span> systems determined from IR Sounders and their influence on the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos</p> <p>2017-02-01</p> <p><span class="hlt">Covering</span> about 30% of the Earth, upper tropospheric <span class="hlt">clouds</span> play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global <span class="hlt">cloud</span> climate data records from AIRS and IASI observations, <span class="hlt">covering</span> the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric <span class="hlt">clouds</span> often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing <span class="hlt">cloud</span> regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent <span class="hlt">cloud</span> pressures, which estimates the horizontal extent of the mesoscale <span class="hlt">cloud</span> systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric <span class="hlt">cloud</span> systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21391.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21391.html"><span>Jovian <span class="hlt">Cloud</span> Tops</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-05-18</p> <p>This enhanced color view of Jupiter's <span class="hlt">cloud</span> tops was processed by citizen scientist Bjorn Jonsson using data from the JunoCam instrument on NASA's Juno spacecraft. The image highlights a massive counterclockwise rotating storm that appears as a white oval in the gas giant's southern hemisphere. Juno <span class="hlt">acquired</span> this image on Feb. 2, 2017, at 6:13 a.m. PDT (9:13 a.m. EDT), as the spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was about 9,000 miles (14,500 kilometers) from the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21391</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186881','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186881"><span><span class="hlt">Cloud</span> detection algorithm comparison and validation for operational Landsat data products</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady</p> <p>2017-01-01</p> <p><span class="hlt">Clouds</span> are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated <span class="hlt">cloud</span> detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of <span class="hlt">cloud</span> assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining <span class="hlt">clouds</span>, cirrus <span class="hlt">clouds</span>, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of <span class="hlt">cloud</span> masking algorithms, the U.S. Geological Survey (USGS) is replacing the current <span class="hlt">cloud</span> masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate <span class="hlt">cloud</span> and <span class="hlt">cloud</span> shadow masking algorithms using <span class="hlt">cloud</span> validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of <span class="hlt">cloud</span> <span class="hlt">cover</span>. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both <span class="hlt">cloud</span> and <span class="hlt">cloud</span> shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated <span class="hlt">Cloud</span> <span class="hlt">Cover</span> Algorithm (AT-ACCA) is the most accurate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPArXL15..701T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPArXL15..701T"><span>Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land <span class="hlt">Cover</span> Mapping</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamiminia, H.; Homayouni, S.; Safari, A.</p> <p>2015-12-01</p> <p>Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land <span class="hlt">cover</span> and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from <span class="hlt">Cloude</span>-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images <span class="hlt">acquired</span> over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land <span class="hlt">cover</span> mapping.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1455185','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1455185"><span><span class="hlt">Clouds</span> Optically Gridded by Stereo COGS product</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oktem, Rusen; Romps, David</p> <p></p> <p>COGS product is a 4D grid of cloudiness <span class="hlt">covering</span> a 6 km × 6 km × 6 km cube centered at the central facility of SGP site at a spatial resolution of 50 meters and a temporal resolution of 20 seconds. The dimensions are X, Y, Z, and time, where X,Y, Z, correspond to east-west, north-south, and altitude of the grid point, respectively. COGS takes on values 0, 1, and -1 denoting "<span class="hlt">cloud</span>", "no <span class="hlt">cloud</span>", and "not available". </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021881','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021881"><span>Improving Forecast Skill by Assimilation of AIRS <span class="hlt">Cloud</span> Cleared Radiances RiCC</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena</p> <p>2015-01-01</p> <p>ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by <span class="hlt">cloud</span> <span class="hlt">cover</span>. This test excludes Ri for most tropospheric sounding channels under partial <span class="hlt">cloud</span> <span class="hlt">cover</span> conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were <span class="hlt">cloud</span> free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are <span class="hlt">cloud</span> free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PASJ...70S..48H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PASJ...70S..48H"><span>High-mass star formation possibly triggered by <span class="hlt">cloud-cloud</span> collision in the H II region RCW 34</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayashi, Katsuhiro; Sano, Hidetoshi; Enokiya, Rei; Torii, Kazufumi; Hattori, Yusuke; Kohno, Mikito; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Fukui, Yasuo</p> <p>2018-05-01</p> <p>We report on the possibility that the high-mass star located in the H II region RCW 34 was formed by a triggering induced by a collision of molecular <span class="hlt">clouds</span>. Molecular gas distributions of the 12CO and 13CO J = 2-1 and 12CO J = 3-2 lines in the direction of RCW 34 were measured using the NANTEN2 and ASTE telescopes. We found two <span class="hlt">clouds</span> with velocity ranges of 0-10 km s-1 and 10-14 km s-1. Whereas the former <span class="hlt">cloud</span> is as massive as ˜1.4 × 104 M⊙ and has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter <span class="hlt">cloud</span>, with a mass of ˜600 M⊙, which has not been recognized by previous observations, is distributed to just <span class="hlt">cover</span> the bubble enclosed by the other <span class="hlt">cloud</span>. The high-mass star with a spectral type of O8.5V is located near the boundary of the two <span class="hlt">clouds</span>. The line intensity ratio of 12CO J = 3-2/J = 2-1 yields high values (≳1.0), suggesting that these <span class="hlt">clouds</span> are associated with the massive star. We also confirm that the obtained position-velocity diagram shows a similar distribution to that derived by a numerical simulation of the supersonic collision of two <span class="hlt">clouds</span>. Using the relative velocity between the two <span class="hlt">clouds</span> (˜5 km s-1), the collisional time scale is estimated to be ˜0.2 Myr with the assumption of a distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ˜0.2 Myr via a triggering of a <span class="hlt">cloud-cloud</span> collision.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410833J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410833J"><span>The ESA <span class="hlt">Cloud</span> CCI project: Generation of Multi Sensor consistent <span class="hlt">Cloud</span> Properties with an Optimal Estimation Based Retrieval Algorithm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.</p> <p>2012-04-01</p> <p>The ultimate objective of the ESA Climate Change Initiative (CCI) <span class="hlt">Cloud</span> project is to provide long-term coherent <span class="hlt">cloud</span> property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved <span class="hlt">cloud</span> properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA <span class="hlt">Cloud</span> CCI <span class="hlt">Cloud</span> are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for <span class="hlt">cloud</span> related essential climate variables like <span class="hlt">cloud</span> <span class="hlt">cover</span>, <span class="hlt">cloud</span> top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned <span class="hlt">cloud</span> properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets <span class="hlt">cover</span> the years 2007-2009 in the first project phase. ESA <span class="hlt">Cloud</span> CCI will also carry out a comprehensive validation of the <span class="hlt">cloud</span> property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA <span class="hlt">Cloud</span> CCI project and its goals and approaches and then continue with results from the Round Robin algorithm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002030','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002030"><span>Analysis of Co-Located MODIS and CALIPSO Observations Near <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Varnai, Tamas; Marshak, Alexander</p> <p>2011-01-01</p> <p>The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-<span class="hlt">cloud</span> interactions and aerosol radiative effects, For this, the paper explores whether <span class="hlt">cloud</span> information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near <span class="hlt">clouds</span> by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and <span class="hlt">cloud</span> information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and <span class="hlt">covers</span> wide areas around the satellite track. This paper analyzes a year-long global dataset <span class="hlt">covering</span> all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting <span class="hlt">clouds</span> that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or <span class="hlt">clouds</span> drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for <span class="hlt">clouds</span> lying outside the CALIOP track even when MODIS cannot as reliably detect low <span class="hlt">clouds</span>, for example at night or over ice. Finally, the paper finds that, because of variations in <span class="hlt">cloud</span> amount and type, the typical distance to <span class="hlt">clouds</span> in maritime clear areas varies with season and location. The overall median distance to <span class="hlt">clouds</span> in maritime clear areas around 4-5 km. The fact that half of all clear areas is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25093204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25093204"><span>Sloped terrain segmentation for autonomous drive using sparse 3D point <span class="hlt">cloud</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae</p> <p>2014-01-01</p> <p>A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point <span class="hlt">cloud</span> <span class="hlt">acquired</span> from undulating terrain. A sparse 3D point <span class="hlt">cloud</span> can be <span class="hlt">acquired</span> by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point <span class="hlt">clouds</span> are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4096021','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4096021"><span>Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point <span class="hlt">Cloud</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae</p> <p>2014-01-01</p> <p>A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point <span class="hlt">cloud</span> <span class="hlt">acquired</span> from undulating terrain. A sparse 3D point <span class="hlt">cloud</span> can be <span class="hlt">acquired</span> by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point <span class="hlt">clouds</span> are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1336125-understanding-rapid-changes-phase-partitioning-between-cloud-liquid-ice-stratiform-mixed-phase-clouds-arctic-case-study','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1336125-understanding-rapid-changes-phase-partitioning-between-cloud-liquid-ice-stratiform-mixed-phase-clouds-arctic-case-study"><span>Understanding Rapid Changes in Phase Partitioning between <span class="hlt">Cloud</span> Liquid and Ice in Stratiform Mixed-Phase <span class="hlt">Clouds</span>: An Arctic Case Study</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...</p> <p>2016-11-23</p> <p>Understanding phase transitions in mixed-phase <span class="hlt">clouds</span> is of great importance because the hydrometeor phase controls the lifetime and radiative effects of <span class="hlt">clouds</span>. These <span class="hlt">cloud</span> radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice <span class="hlt">cover</span>, in high altitudes. For a springtime low-level mixed-phase stratiform <span class="hlt">cloud</span> case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control <span class="hlt">cloud</span> phase partitioning. The interplay of local <span class="hlt">cloud</span>-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, <span class="hlt">cloud</span>-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of <span class="hlt">cloud</span> phase transitions, observations of key aerosol parameters such as profiles of <span class="hlt">cloud</span> condensation nucleus and ice nucleus concentration are desirable.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336125','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336125"><span>Understanding Rapid Changes in Phase Partitioning between <span class="hlt">Cloud</span> Liquid and Ice in Stratiform Mixed-Phase <span class="hlt">Clouds</span>: An Arctic Case Study</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kalesse, Heike; de Boer, Gijs; Solomon, Amy</p> <p></p> <p>Understanding phase transitions in mixed-phase <span class="hlt">clouds</span> is of great importance because the hydrometeor phase controls the lifetime and radiative effects of <span class="hlt">clouds</span>. These <span class="hlt">cloud</span> radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice <span class="hlt">cover</span>, in high altitudes. For a springtime low-level mixed-phase stratiform <span class="hlt">cloud</span> case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control <span class="hlt">cloud</span> phase partitioning. The interplay of local <span class="hlt">cloud</span>-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, <span class="hlt">cloud</span>-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of <span class="hlt">cloud</span> phase transitions, observations of key aerosol parameters such as profiles of <span class="hlt">cloud</span> condensation nucleus and ice nucleus concentration are desirable.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr62W1...71K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr62W1...71K"><span>Forest <span class="hlt">Cover</span> Mapping in Iskandar Malaysia Using Satellite Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.</p> <p>2016-09-01</p> <p>Malaysia is the third largest country in the world that had lost forest <span class="hlt">cover</span>. Therefore, timely information on forest <span class="hlt">cover</span> is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest <span class="hlt">cover</span> (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest <span class="hlt">cover</span> using Landsat images. This software is able to mask out <span class="hlt">clouds</span>, <span class="hlt">cloud</span> shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional <span class="hlt">cover</span> images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest <span class="hlt">cover</span> in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC21B0963Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC21B0963Y"><span>Effects of <span class="hlt">Cloud</span> Properties on PM2.5 Levels in the Southeastern United States</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, C.; Zhang, X.; Liu, Y.</p> <p>2012-12-01</p> <p>The spatial and temporal characteristics of fine particulate matter (PM2.5) are increasingly being derived from satellite aerosol remote sensing data. A major concern of satellite-derived PM2.5 information is <span class="hlt">cloud</span> <span class="hlt">cover</span>, i.e., PM2.5 mass concentrations cannot be estimated from satellite observations under cloudy conditions. There has been little research on the effects of <span class="hlt">cloud</span> properties on PM2.5 levels. In this study, we performed a statistical analysis of relationships between various <span class="hlt">cloud</span> parameters and PM2.5 concentrations. We used 2005-2010 PM2.5 observations from 8 sites in the Southeastern Aerosol Research and Characterization (SEARCH) Network, and <span class="hlt">cloud</span> parameters from MODIS <span class="hlt">cloud</span> product retrievals from Terra and Aqua satellites. We find that <span class="hlt">cloud</span> fraction (CF) is generally negatively correlated with the mean value of PM2.5 mass concentration. However, the largest mean value occurs when the <span class="hlt">cloud</span> fraction is between 10% and 30% instead of lower <span class="hlt">cloud</span> <span class="hlt">cover</span> (CF < 10%). The mean value of PM2.5 decreased from 14.3μg/m3 during 10%~30% <span class="hlt">cloud</span> fraction to 9.3μg/m3 in cloudy days (CF=100%), and the negative correlation is more significant during the summer and fall than spring and winter. In addition, <span class="hlt">Cloud</span> top pressure (CTP) and <span class="hlt">cloud</span> optical thickness (COT) also influence PM2.5 mass concentration, with CTP being positively correlated with PM2.5 while COT being negatively correlated. These results suggest that <span class="hlt">cloud</span> parameters may be used as predictor variables in satellite models of PM2.5.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192187','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192187"><span>Analyzing <span class="hlt">cloud</span> base at local and regional scales to understand tropical montane <span class="hlt">cloud</span> forest vulnerability to climate change</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.</p> <p>2017-01-01</p> <p>The degree to which <span class="hlt">cloud</span> immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane <span class="hlt">cloud</span> forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if <span class="hlt">cloud</span> base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in <span class="hlt">cloud</span> base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and <span class="hlt">Cloud</span>-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal <span class="hlt">cloud</span> base dynamics, altitude of the trade-wind inversion (TWI), and typical <span class="hlt">cloud</span> thickness for the surrounding Caribbean region. <span class="hlt">Cloud</span> base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal <span class="hlt">cloud</span> base dynamics for the TMCF. From May 2013 to August 2016, <span class="hlt">cloud</span> base was lowest during the midsummer dry season, and <span class="hlt">cloud</span> bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest <span class="hlt">cloud</span> bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low <span class="hlt">cloud</span> base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on <span class="hlt">cloud</span> height. Proximity to the oceanic <span class="hlt">cloud</span> system where shallow cumulus <span class="hlt">clouds</span> are seasonally invariant in altitude and <span class="hlt">cover</span>, along with local trade-wind orographic lifting and <span class="hlt">cloud</span> formation, may explain the dry season low <span class="hlt">clouds</span>. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02625&hterms=viewing+room&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dviewing%2Broom','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02625&hterms=viewing+room&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dviewing%2Broom"><span>MISR Stereo Imaging Distinguishes Smoke from <span class="hlt">Cloud</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p><p/> These views of western Alaska were <span class="hlt">acquired</span> by MISR on June 25, 2000 during Terra orbit 2775. The images <span class="hlt">cover</span> an area of about 150 kilometers x 225 kilometers, and have been oriented with north to the left. The left image is from the vertical-viewing (nadir) camera, whereas the right image is a stereo 'anaglyph' that combines data from the forward-viewing 45-degree and 60-degree cameras. This image appears three-dimensional when viewed through red/blue glasses with the red filter over the left eye. It may help to darken the room lights when viewing the image on a computer screen.<p/>The Yukon River is seen wending its way from upper left to lower right. A forest fire in the Kaiyuh Mountains produced the long smoke plume that originates below and to the right of image center. In the nadir view, the high cirrus <span class="hlt">clouds</span> at the top of the image and the smoke plume are similar in appearance, and the lack of vertical information makes them hard to differentiate. Viewing the righthand image with stereo glasses, on the other hand, demonstrates that the scene consists of several vertically-stratified layers, including the surface terrain, the smoke, some scattered cumulus <span class="hlt">clouds</span>, and streaks of high, thin cirrus. This added dimensionality is one of the ways MISR data helps scientists identify and classify various components of terrestrial scenes.<p/>MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.3175X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.3175X"><span>Coupled Retrieval of Liquid Water <span class="hlt">Cloud</span> and Above-<span class="hlt">Cloud</span> Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens</p> <p>2018-03-01</p> <p>An optimization algorithm is developed to retrieve liquid water <span class="hlt">cloud</span> properties including <span class="hlt">cloud</span> optical depth (COD), droplet size distribution and <span class="hlt">cloud</span> top height (CTH), and above-<span class="hlt">cloud</span> aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale <span class="hlt">cloud</span> and above-<span class="hlt">cloud</span> aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets <span class="hlt">acquired</span> during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above <span class="hlt">CLouds</span> and their intEractionS. The retrieved above-<span class="hlt">cloud</span> AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-<span class="hlt">cloud</span> AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above <span class="hlt">cloud</span> leads to an underestimate of image-averaged COD by 15%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA162210','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA162210"><span>Probability and Conditional Probability of Cumulative <span class="hlt">Cloud</span> <span class="hlt">Cover</span> for Selected Stations Worldwide.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-07-01</p> <p>INTRODUCTION The performance of precision-guided munition (PGM) systems may be severely compromised by the presence of <span class="hlt">clouds</span> in the desired target...Korea 37.98 N 12794 E Mar 67-Dec 79 4Ku san, Korea 37.90 N 126.63 E Jaug 51-Dec 81 (No Jan 71-Dec 72) 4 -7141- Taegu & Tonchon, Korea 35.90 N 128.67 E Jan</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120000427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120000427"><span>Monitoring Areal Snow <span class="hlt">Cover</span> Using NASA Satellite Imagery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harshburger, Brian J.; Blandford, Troy; Moore, Brandon</p> <p>2011-01-01</p> <p>The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow <span class="hlt">cover</span> imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow <span class="hlt">cover</span> extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow <span class="hlt">cover</span> analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under <span class="hlt">clouds</span> in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow <span class="hlt">Cover</span> Toolbar will ingest snow <span class="hlt">cover</span> imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow <span class="hlt">cover</span> data to predict the presence of snow under <span class="hlt">cloud</span> <span class="hlt">cover</span>. The toolbar has the ability to ingest both binary and fractional snow <span class="hlt">cover</span> data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is <span class="hlt">covered</span> with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow <span class="hlt">cover</span> image. This data</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080015516','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080015516"><span>Seasonal and Interannual Variations of Top-of-Atmosphere Irradiance and <span class="hlt">Cloud</span> <span class="hlt">Cover</span> over Polar Regions Derived from the CERES Data Set</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kato, Seiji; Loeb, Norman G.; Minnis, Patrick; Francis, Jennifer A.; Charlock, Thomas P.; Rutan, David A.; Clothiaux, Eugene E.; Sun-Mack, Szedung</p> <p>2006-01-01</p> <p>The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the <span class="hlt">Clouds</span> and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite <span class="hlt">Cloud</span> Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated <span class="hlt">clouds</span> is considerably smaller than that of dust-free <span class="hlt">clouds</span>. The mean ice water path (IWP) and liquid water path (LWP) of dusty <span class="hlt">clouds</span> are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP <span class="hlt">cloud</span> water path. These results suggest that dust aerosols warm <span class="hlt">clouds</span>, increase the evaporation of <span class="hlt">cloud</span> droplets and further reduce <span class="hlt">cloud</span> water path, the so-called semi-direct effect. The semi-direct effect may play a role in <span class="hlt">cloud</span> development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920011284','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920011284"><span>The role of global <span class="hlt">cloud</span> climatologies in validating numerical models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>HARSHVARDHAN</p> <p>1992-01-01</p> <p>Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model <span class="hlt">cloud</span> radiative forcing fields, the top of the atmosphere <span class="hlt">cloud</span> radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low <span class="hlt">cloud</span> <span class="hlt">cover</span>.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and <span class="hlt">cloud</span> <span class="hlt">cover</span> is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080039321&hterms=humidification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhumidification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080039321&hterms=humidification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhumidification"><span>3D Radiative Aspects of the Increased Aerosol Optical Depth Near <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim</p> <p>2007-01-01</p> <p>To characterize aerosol-<span class="hlt">cloud</span> interactions it is important to correctly retrieve aerosol optical depth in the vicinity of <span class="hlt">clouds</span>. It is well reported in the literature that aerosol optical depth increases with <span class="hlt">cloud</span> <span class="hlt">cover</span>. Part of the increase comes from real physics as humidification; another part, however, comes from 3D <span class="hlt">cloud</span> effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D <span class="hlt">cloud</span> affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of <span class="hlt">cloud</span>-free columns in the vicinity of <span class="hlt">clouds</span>. This model is based on the assumption that the enhancement in the <span class="hlt">cloud</span>-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding <span class="hlt">clouds</span>. A stochastic <span class="hlt">cloud</span> model of broken cloudiness is used to simulate the upward flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010069265','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010069265"><span>MODIS Snow-<span class="hlt">Cover</span> Products</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)</p> <p>2001-01-01</p> <p>On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-<span class="hlt">cover</span> products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-<span class="hlt">cover</span> products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and <span class="hlt">clouds</span>. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-<span class="hlt">cover</span> information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-<span class="hlt">cover</span> map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011849','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011849"><span>The Role of <span class="hlt">Clouds</span>: An Introduction and Rapporteur Report</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick C.</p> <p>2012-01-01</p> <p>This paper presents an overview of discussions during the <span class="hlt">Cloud</span> s Role session at the Observing and Modelling Earth s Energy Flows Workshop. N. Loeb and B. Soden convened this session including 10 presentations by B. Stevens, B. Wielicki, G. Stephens, A. Clement, K. Sassen, D. Hartmann, T. Andrews, A. Del Genio, H. Barker, and M. Sugi addressing critical aspects of the role of <span class="hlt">clouds</span> in modulating Earth energy flows. Presentation topics <span class="hlt">covered</span> a diverse range of areas from <span class="hlt">cloud</span> microphysics and dynamics, <span class="hlt">cloud</span> radiative transfer, and the role of <span class="hlt">clouds</span> in large-scale atmospheric circulations patterns in both observations and atmospheric models. The presentations and discussions, summarized below, are organized around several key questions raised during the session. (1) What is the best way to evaluate <span class="hlt">clouds</span> in climate models? (2) How well do models need to represent <span class="hlt">clouds</span> to be acceptable for making climate predictions? (3) What are the largest uncertainties in <span class="hlt">clouds</span>? (4) How can these uncertainties be reduced? (5) What new observations are needed to address these problems? Answers to these critical questions are the topics of ongoing research and will guide the future direction of this area of research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SGeo...33..609T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SGeo...33..609T"><span>The Role of <span class="hlt">Clouds</span>: An Introduction and Rapporteur Report</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, Patrick C.</p> <p>2012-07-01</p> <p>This paper presents an overview of discussions during the <span class="hlt">Cloud</span>'s Role session at the Observing and Modelling Earth's Energy Flows Workshop. N. Loeb and B. Soden convened this session including 10 presentations by B. Stevens, B. Wielicki, G. Stephens, A. Clement, K. Sassen, D. Hartmann, T. Andrews, A. Del Genio, H. Barker, and M. Sugi addressing critical aspects of the role of <span class="hlt">clouds</span> in modulating Earth energy flows. Presentation topics <span class="hlt">covered</span> a diverse range of areas from <span class="hlt">cloud</span> microphysics and dynamics, <span class="hlt">cloud</span> radiative transfer, and the role of <span class="hlt">clouds</span> in large-scale atmospheric circulations patterns in both observations and atmospheric models. The presentations and discussions, summarized below, are organized around several key questions raised during the session. (1) What is the best way to evaluate <span class="hlt">clouds</span> in climate models? (2) How well do models need to represent <span class="hlt">clouds</span> to be acceptable for making climate predictions? (3) What are the largest uncertainties in <span class="hlt">clouds</span>? (4) How can these uncertainties be reduced? (5) What new observations are needed to address these problems? Answers to these critical questions are the topics of ongoing research and will guide the future direction of this area of research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26438280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26438280"><span>Insights into low-latitude <span class="hlt">cloud</span> feedbacks from high-resolution models.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bretherton, Christopher S</p> <p>2015-11-13</p> <p><span class="hlt">Cloud</span> feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus <span class="hlt">cloud</span> regimes are particularly problematic, because they are sustained by tight interactions between <span class="hlt">clouds</span> and unresolved turbulent circulations. Turbulence-resolving models better simulate such <span class="hlt">cloud</span> regimes and support the GCM consensus that they contribute to positive global <span class="hlt">cloud</span> feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer <span class="hlt">cloud</span> response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' <span class="hlt">cloud</span> increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave <span class="hlt">cloud</span> feedback. <span class="hlt">Cloud</span>-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus <span class="hlt">cloud</span> systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of <span class="hlt">cloud</span> <span class="hlt">cover</span> in a warmer climate, implying positive <span class="hlt">cloud</span> feedbacks. A global <span class="hlt">cloud</span>-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave <span class="hlt">cloud</span> feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060028084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060028084"><span>Evaluation of Decision Trees for <span class="hlt">Cloud</span> Detection from AVHRR Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shiffman, Smadar; Nemani, Ramakrishna</p> <p>2005-01-01</p> <p>Automated <span class="hlt">cloud</span> detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based <span class="hlt">cloud</span> masks that assign <span class="hlt">cloud-cover</span> classifications to pixels. Many <span class="hlt">cloud</span>-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing <span class="hlt">cloud</span> masks restrict our ability to accurately track changes in <span class="hlt">cloud</span> patterns over time. In a previous study we compared automatically learned decision trees to <span class="hlt">cloud</span> masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the <span class="hlt">cloud</span> masks p < 0.001.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN21F..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN21F..06S"><span>Snow<span class="hlt">Cloud</span> - a Framework to Predict Streamflow in Snowmelt-dominated Watersheds Using <span class="hlt">Cloud</span>-based Computing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.</p> <p>2017-12-01</p> <p>Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. Snow<span class="hlt">Cloud</span> is a prototype web-based framework that integrates remote sensing, <span class="hlt">cloud</span> computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of Snow<span class="hlt">Cloud</span> to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. Snow<span class="hlt">Cloud</span> does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow <span class="hlt">cover</span> product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and <span class="hlt">cloud</span> computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of Snow<span class="hlt">Cloud</span> we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on Snow<span class="hlt">Cloud</span>, they outline methods to develop <span class="hlt">cloud</span>-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...10H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...10H"><span>Mean winds at the <span class="hlt">cloud</span> top of Venus obtained from two-wavelength UV imaging by Akatsuki</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horinouchi, Takeshi; Kouyama, Toru; Lee, Yeon Joo; Murakami, Shin-ya; Ogohara, Kazunori; Takagi, Masahiro; Imamura, Takeshi; Nakajima, Kensuke; Peralta, Javier; Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto</p> <p>2018-01-01</p> <p>Venus is <span class="hlt">covered</span> with thick <span class="hlt">clouds</span>. Ultraviolet (UV) images at 0.3-0.4 microns show detailed <span class="hlt">cloud</span> features at the <span class="hlt">cloud</span>-top level at about 70 km, which are created by an unknown UV-absorbing substance. Images <span class="hlt">acquired</span> in this wavelength range have traditionally been used to measure winds at the <span class="hlt">cloud</span> top. In this study, we report low-latitude winds obtained from the images taken by the UV imager, UVI, onboard the Akatsuki orbiter from December 2015 to March 2017. UVI provides images with two filters centered at 365 and 283 nm. While the 365-nm images enable continuation of traditional Venus observations, the 283-nm images visualize <span class="hlt">cloud</span> features at an SO2 absorption band, which is novel. We used a sophisticated automated <span class="hlt">cloud</span>-tracking method and thorough quality control to estimate winds with high precision. Horizontal winds obtained from the 283-nm images are generally similar to those from the 365-nm images, but in many cases, westward winds from the former are faster than the latter by a few m/s. From previous studies, one can argue that the 283-nm images likely reflect <span class="hlt">cloud</span> features at higher altitude than the 365-nm images. If this is the case, the superrotation of the Venusian atmosphere generally increases with height at the <span class="hlt">cloud</span>-top level, where it has been thought to roughly peak. The mean winds obtained from the 365-nm images exhibit local time dependence consistent with known tidal features. Mean zonal winds exhibit asymmetry with respect to the equator in the latter half of the analysis period, significantly at 365 nm and weakly at 283 nm. This contrast indicates that the relative altitude may vary with time and latitude, and so are the observed altitudes. In contrast, mean meridional winds do not exhibit much long-term variability. A previous study suggested that the geographic distribution of temporal mean zonal winds obtained from UV images from the Venus Express orbiter during 2006-2012 can be interpreted as forced by topographically induced</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10233E..14K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10233E..14K"><span>Comparison of the different approaches to generate holograms from data <span class="hlt">acquired</span> with a Kinect sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kang, Ji-Hoon; Leportier, Thibault; Ju, Byeong-Kwon; Song, Jin Dong; Lee, Kwang-Hoon; Park, Min-Chul</p> <p>2017-05-01</p> <p>Data of real scenes <span class="hlt">acquired</span> in real-time with a Kinect sensor can be processed with different approaches to generate a hologram. 3D models can be generated from a point <span class="hlt">cloud</span> or a mesh representation. The advantage of the point <span class="hlt">cloud</span> approach is that computation process is well established since it involves only diffraction and propagation of point sources between parallel planes. On the other hand, the mesh representation enables to reduce the number of elements necessary to represent the object. Then, even though the computation time for the contribution of a single element increases compared to a simple point, the total computation time can be reduced significantly. However, the algorithm is more complex since propagation of elemental polygons between non-parallel planes should be implemented. Finally, since a depth map of the scene is <span class="hlt">acquired</span> at the same time than the intensity image, a depth layer approach can also be adopted. This technique is appropriate for a fast computation since propagation of an optical wavefront from one plane to another can be handled efficiently with the fast Fourier transform. Fast computation with depth layer approach is convenient for real time applications, but point <span class="hlt">cloud</span> method is more appropriate when high resolution is needed. In this study, since Kinect can be used to obtain both point <span class="hlt">cloud</span> and depth map, we examine the different approaches that can be adopted for hologram computation and compare their performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A41C0050F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A41C0050F"><span>20 Years Lidar Observations of <span class="hlt">Clouds</span> at the Edge of Space</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiedler, J.; Baumgarten, G.; Luebken, F.</p> <p>2013-12-01</p> <p>The highest <span class="hlt">clouds</span> in the Earth atmosphere are located around 83 km altitude. They were first documented in 1885 and are called noctilucent <span class="hlt">clouds</span> (NLC) because of the impressive bluish-white displays they form against the dark night sky. NLC occur during the summer months from mid to high latitudes and are a visible sign of the extreme conditions in the mesopause region. They consist of nano-sized ice particles (mean value 48×1 nm) which are subject to the variability of the ambient atmosphere. Ice formation and growth at these high altitudes is very sensitive to temperature and water vapor content which are hardly to measure directly with high accuracy. Thus NLC can act as tracers for short-term variations and are thought to document long-term atmospheric changes as well. We will report about our NLC time series obtained by laser optical remote sensing at the research station ALOMAR in Northern Norway (69°N, 16°E). The data archive obtained with the Rayleigh/Mie/Raman-lidar <span class="hlt">covers</span> now 20 summer seasons and is the largest NLC data set <span class="hlt">acquired</span> by lidar. It shows variabilities of basic <span class="hlt">cloud</span> parameters like occurrence, altitude and brightness on time scales ranging from minutes to years. Using the capability of all three emitted laser wavelengths we are able to determine ice particle properties like mean and width of the size distribution and number density. This allows investigation of the <span class="hlt">cloud</span> water content and its variability. Comparing our ground-based measurements on a fixed location to data sets obtained from sun-synchronous satellites shows certain differences. They could at least partly be attributed to the observation conditions like measurement volume, local time, scattering angles etc. We found atmospheric tides to have a significant influence on the NLC properties. Additionally microphysical processes limit the duration within the ice particles can be considered as passive tracers. Long-term data sets are subject to varying instrument sensitivities</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol15/pdf/CFR-2010-title26-vol15-sec31-3121j-1.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol15/pdf/CFR-2010-title26-vol15-sec31-3121j-1.pdf"><span>26 CFR 31.3121(j)-1 - <span class="hlt">Covered</span> transportation service.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... operation of a public transportation system constitutes <span class="hlt">covered</span> transportation service if any part of the... connection with its operation of a public transportation system <span class="hlt">acquired</span> in whole or in part from private... an existing public transportation system which was <span class="hlt">acquired</span> in whole or in part by a State or...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840029403&hterms=hydrometer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhydrometer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840029403&hterms=hydrometer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhydrometer"><span>The structure and phase of <span class="hlt">cloud</span> tops as observed by polarization lidar</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.</p> <p>1983-01-01</p> <p>High-resolution observations of the structure of <span class="hlt">cloud</span> tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements <span class="hlt">acquired</span> from cumuliform <span class="hlt">cloud</span> systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate <span class="hlt">cloud</span> top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of <span class="hlt">cloud</span> top areas. An increase of the <span class="hlt">cloud</span> top depolarization with decreasing temperature was found for temperatures above and below -40 C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LNCS.5931..583S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LNCS.5931..583S"><span><span class="hlt">Cloud</span> Infrastructure & Applications - <span class="hlt">Cloud</span>IA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank</p> <p></p> <p>The idea behind <span class="hlt">Cloud</span> Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of <span class="hlt">Cloud</span> Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called <span class="hlt">Cloud</span> Infrastructure & Applications (<span class="hlt">Cloud</span>IA). The <span class="hlt">Cloud</span>IA project is a market-oriented <span class="hlt">cloud</span> infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the <span class="hlt">Cloud</span>IA project in details and mentions our early experiences in building a private <span class="hlt">cloud</span> using an existing infrastructure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APh....50...92A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APh....50...92A"><span>Identifying <span class="hlt">clouds</span> over the Pierre Auger Observatory using infrared satellite data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.</p> <p>2013-12-01</p> <p>We describe a new method of identifying night-time <span class="hlt">clouds</span> over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare <span class="hlt">cloud</span> identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop <span class="hlt">cloud</span> probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor <span class="hlt">cloud</span> <span class="hlt">cover</span> for other ground-based observatories and for space-based observatories.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1128324','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1128324"><span>Identifying <span class="hlt">clouds</span> over the Pierre Auger Observatory using infrared satellite data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Abreu, Pedro; et al.,</p> <p>2013-12-01</p> <p>We describe a new method of identifying night-time <span class="hlt">clouds</span> over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare <span class="hlt">cloud</span> identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop <span class="hlt">cloud</span> probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor <span class="hlt">cloud</span> <span class="hlt">cover</span> for other ground-based observatories and for space-based observatories.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...57a2048Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...57a2048Y"><span><span class="hlt">Cloud</span> removing method for daily snow mapping over Central Asia and Xinjiang, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Xiaoqi; Qiu, Yubao; Guo, Huadong; Chen, Lijuan</p> <p>2017-02-01</p> <p>Central Asia and Xinjiang, China are conjunct areas, located in the hinterland of the Eurasian continent, where the snowfall is an important water resource supplement form. The induced seasonal snow <span class="hlt">cover</span> is vita factors to the regional energy and water balance, remote sensing plays a key role in the snow mapping filed, while the daily remote sensing products are normally contaminated by the occurrence of <span class="hlt">cloud</span>, that obviously obstacles the utility of snow <span class="hlt">cover</span> parameters. In this paper, based on the daily snow product from Moderate Resolution Imaging Spectroradiometer (MODIS A1), a <span class="hlt">cloud</span> removing method was developed by considering the regional snow distribution characteristics with latitude and altitude dependence respectively. In the end, the daily <span class="hlt">cloud</span> free products was compared with the same period of eight days MODIS standard product, revealing that the <span class="hlt">cloud</span> free snow products are reasonable, while could provide higher temporal resolution, and more details over Center Asia and Xinjiang Province.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A41E0078W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A41E0078W"><span>Advanced Understanding of Convection Initiation and Optimizing <span class="hlt">Cloud</span> Seeding by Advanced Remote Sensing and Land <span class="hlt">Cover</span> Modification over the United Arab Emirates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.</p> <p>2016-12-01</p> <p>A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal <span class="hlt">cloud</span> seeding deployment, it is essential that these convergence zones are detected before <span class="hlt">clouds</span> are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing <span class="hlt">Cloud</span> Seeding by Advanced Remote Sensing and Land <span class="hlt">Cover</span> Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and <span class="hlt">cloud</span> radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A33E2405W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A33E2405W"><span>Aerosol effects on <span class="hlt">clouds</span> and precipitation over the eastern China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, W. C.; Chen, G.; Song, Y.</p> <p>2017-12-01</p> <p>Anthropogenic aerosols (sulfates, nitrates and black carbons) can act as <span class="hlt">cloud</span> condensation nuclei to regulate <span class="hlt">cloud</span> droplet number and size, thereby changing <span class="hlt">cloud</span> radiative properties and atmospheric short- and long-wave radiation. These together with aerosol direct radiative effects in turn alter the circulation with likely effects on the spatial distribution of <span class="hlt">cloud</span> and precipitation. We conduct WRF model simulations over the eastern China to investigate the aerosol-<span class="hlt">cloud</span>-climate interactions. In general, more aerosols yield more but smaller <span class="hlt">cloud</span> droplets and larger <span class="hlt">cloud</span> water content, whereas the changes of vertical distribution of <span class="hlt">cloud</span> <span class="hlt">cover</span> exhibit strong regional variations. For example, the low-<span class="hlt">cloud</span> fraction and water content increase by more than 10% over the west part of the Yangtze-Huai River Valley (YHRV) and the southeast coastal region, but decrease over the east part of the YHRV, and high-<span class="hlt">cloud</span> fraction decreases in South and North China but increases in the YHRV. The radiative forcing of aerosols and <span class="hlt">cloud</span> changes are compared, with focus on the effects of changes of vertical distribution of <span class="hlt">cloud</span> properties (microphysics and fraction). The precipitation changes are found to be closely associated with the circulation change, which favors more (and longer duration) rainfall over the YHRV but less (and shorter) rainfall over other regions. Details of the circulation change and its associations with <span class="hlt">clouds</span> and precipitation will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000877','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000877"><span><span class="hlt">Cloud</span> Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yao, Mao-Sung; Cheng, Ye</p> <p>2013-01-01</p> <p>The response of <span class="hlt">cloud</span> simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low <span class="hlt">cloud</span> <span class="hlt">cover</span> peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low <span class="hlt">cloud</span> <span class="hlt">cover</span> have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the <span class="hlt">cloud</span> and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in <span class="hlt">cloud</span> and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low <span class="hlt">cloud</span> distribution over oceans. This suggests that a <span class="hlt">cloud</span>-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3279223','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3279223"><span>Point <span class="hlt">Cloud</span> Generation from Aerial Image Data <span class="hlt">Acquired</span> by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosnell, Tomi; Honkavaara, Eija</p> <p>2012-01-01</p> <p>The objective of this investigation was to develop and investigate methods for point <span class="hlt">cloud</span> generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point <span class="hlt">clouds</span> from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point <span class="hlt">cloud</span> generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point <span class="hlt">cloud</span> generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point <span class="hlt">clouds</span> fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point <span class="hlt">clouds</span> that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point <span class="hlt">clouds</span> from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point <span class="hlt">cloud</span> generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point <span class="hlt">cloud</span> generation. PMID:22368479</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22368479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22368479"><span>Point <span class="hlt">cloud</span> generation from aerial image data <span class="hlt">acquired</span> by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosnell, Tomi; Honkavaara, Eija</p> <p>2012-01-01</p> <p>The objective of this investigation was to develop and investigate methods for point <span class="hlt">cloud</span> generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point <span class="hlt">clouds</span> from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point <span class="hlt">cloud</span> generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point <span class="hlt">cloud</span> generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point <span class="hlt">clouds</span> fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point <span class="hlt">clouds</span> that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point <span class="hlt">clouds</span> from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point <span class="hlt">cloud</span> generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point <span class="hlt">cloud</span> generation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41D0738S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41D0738S"><span>Discrimination Between <span class="hlt">Clouds</span> and Snow in Landsat 8 Imagery: an Assessment of Current Methods and a New Approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.</p> <p>2015-12-01</p> <p>Discrimination between snow and <span class="hlt">clouds</span> poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. <span class="hlt">Clouds</span> obstruct the surface from the sensor's view, and the similar optical properties of <span class="hlt">clouds</span> and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and <span class="hlt">cloud</span> mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and <span class="hlt">clouds</span> pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and <span class="hlt">cloud</span> particle sizes that <span class="hlt">cover</span> the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and <span class="hlt">clouds</span>. The results are synthesized to create a final snow/<span class="hlt">cloud</span> mask, and the method can be applied to any multispectral imager with bands <span class="hlt">covering</span> the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and <span class="hlt">clouds</span> in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A <span class="hlt">cloud</span> mask specifically designed to separate snow from <span class="hlt">clouds</span> is a valuable tool for those interested in remotely sensing snow <span class="hlt">cover</span>. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and <span class="hlt">clouds</span> increases the usability of the data for hydrological and climatological studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.2637B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.2637B"><span>Improving volcanic sulfur dioxide <span class="hlt">cloud</span> dispersal forecasts by progressive assimilation of satellite observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boichu, Marie; Clarisse, Lieven; Khvorostyanov, Dmitry; Clerbaux, Cathy</p> <p>2014-04-01</p> <p>Forecasting the dispersal of volcanic <span class="hlt">clouds</span> during an eruption is of primary importance, especially for ensuring aviation safety. As volcanic emissions are characterized by rapid variations of emission rate and height, the (generally) high level of uncertainty in the emission parameters represents a critical issue that limits the robustness of volcanic <span class="hlt">cloud</span> dispersal forecasts. An inverse modeling scheme, combining satellite observations of the volcanic <span class="hlt">cloud</span> with a regional chemistry-transport model, allows reconstructing this source term at high temporal resolution. We demonstrate here how a progressive assimilation of freshly <span class="hlt">acquired</span> satellite observations, via such an inverse modeling procedure, allows for delivering robust sulfur dioxide (SO2) <span class="hlt">cloud</span> dispersal forecasts during the eruption. This approach provides a computationally cheap estimate of the expected location and mass loading of volcanic <span class="hlt">clouds</span>, including the identification of SO2-rich parts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ACP.....7.3425L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ACP.....7.3425L"><span><span class="hlt">Cloud</span> microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.</p> <p>2007-07-01</p> <p>The double-moment <span class="hlt">cloud</span> microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of <span class="hlt">cloud</span> droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the <span class="hlt">cloud</span> droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase <span class="hlt">clouds</span> between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for <span class="hlt">cloud</span> droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent <span class="hlt">cloud</span> <span class="hlt">cover</span> scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the <span class="hlt">cloud</span> albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical <span class="hlt">cloud</span> <span class="hlt">cover</span> scheme or a different aerosol emission inventory are employed because the <span class="hlt">cloud</span> lifetime effect increases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1221473-saharan-dust-causal-factor-hemispheric-asymmetry-aerosols-cloud-cover-over-tropical-atlantic-ocean','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1221473-saharan-dust-causal-factor-hemispheric-asymmetry-aerosols-cloud-cover-over-tropical-atlantic-ocean"><span>Saharan dust as a causal factor of hemispheric asymmetry in aerosols and <span class="hlt">cloud</span> <span class="hlt">cover</span> over the tropical Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; ...</p> <p>2015-07-09</p> <p>Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS <span class="hlt">cloud</span> fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant <span class="hlt">cloud</span> <span class="hlt">cover</span> (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31G1592T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31G1592T"><span>MODIS Snow <span class="hlt">Cover</span> Recovery Using Variational Interpolation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.</p> <p>2017-12-01</p> <p><span class="hlt">Cloud</span> obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-<span class="hlt">Covered</span> Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains <span class="hlt">cloud</span>-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting <span class="hlt">cloud</span> free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow <span class="hlt">cover</span> maps. Lastly, the algorithm was applied to create a <span class="hlt">Cloud</span> free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=carbon+AND+dioxide+AND+atmospheric&pg=2&id=ED379142','ERIC'); return false;" href="https://eric.ed.gov/?q=carbon+AND+dioxide+AND+atmospheric&pg=2&id=ED379142"><span><span class="hlt">Clouds</span> and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Shaw, Glenn E.</p> <p></p> <p>The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of <span class="hlt">clouds</span> and <span class="hlt">cloud</span> <span class="hlt">cover</span>, and explains how <span class="hlt">clouds</span> form, what they are made of, what roles they play in…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.2009X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.2009X"><span>Generation of Ground Truth Datasets for the Analysis of 3d Point <span class="hlt">Clouds</span> in Urban Scenes <span class="hlt">Acquired</span> via Different Sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.</p> <p>2018-04-01</p> <p>In this work, we report a novel way of generating ground truth dataset for analyzing point <span class="hlt">cloud</span> from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point <span class="hlt">cloud</span>, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point <span class="hlt">clouds</span>, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point <span class="hlt">clouds</span> obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point <span class="hlt">clouds</span> of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point <span class="hlt">cloud</span> interpretation and semantic segmentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JAtS...57.2591R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JAtS...57.2591R"><span>Combustion Organic Aerosol as <span class="hlt">Cloud</span> Condensation Nuclei in Ship Tracks.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, Lynn M.; Noone, Kevin J.; Ferek, Ronald J.; Pockalny, Robert A.; Flagan, Richard C.; Seinfeld, John H.</p> <p>2000-08-01</p> <p>Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform <span class="hlt">clouds</span> to identify the contribution of anthropogenic combustion emissions in activation of aerosol to <span class="hlt">cloud</span> droplets. The Monterey Area Ship Track experiment provided an opportunity to <span class="hlt">acquire</span> data on the role of organic compounds in ambient <span class="hlt">clouds</span> and in ship tracks identified in satellite images. Identification of PAHs in <span class="hlt">cloud</span> droplet residual samples indicates that several PAHs are present in <span class="hlt">cloud</span> condensation nuclei in anthropogenically influenced air and do result in activated droplets in <span class="hlt">cloud</span>. These results establish the presence of combustion products, such as PAHs, in submicrometer aerosols in anthropogenically influenced marine air, with enhanced concentrations in air polluted by ship effluent. The presence of PAHs in droplet residuals in anthropogenically influenced air masses indicates that some fraction of those combustion products is present in the <span class="hlt">cloud</span> condensation nuclei that activate in <span class="hlt">cloud</span>. Although a sufficient mass of droplet residuals was not collected to establish a similar role for organics from measurements in satellite-identified ship tracks, the available evidence from the fraction of organics present in the interstitial aerosol is consistent with part of the organic fraction partitioning to the droplet population. In addition, the probability that a compound will be found in <span class="hlt">cloud</span> droplets rather than in the unactivated aerosol and the compound's water solubility are compared. The PAHs studied are only weakly soluble in water, but most of the sparse data collected support more soluble compounds having a higher probability of activation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00582&hterms=level&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DA%2Blevel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00582&hterms=level&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DA%2Blevel"><span>Jupiter's Multi-level <span class="hlt">Clouds</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p><span class="hlt">Clouds</span> and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the <span class="hlt">cloud</span> systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with <span class="hlt">clouds</span> down to a level about three times the atmospheric pressure at the Earth's surface.<p/>By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude <span class="hlt">clouds</span> and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial <span class="hlt">clouds</span>, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper <span class="hlt">clouds</span> can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.<p/>The false color image (lower right) succinctly shows various <span class="hlt">cloud</span> and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal <span class="hlt">cloud</span> <span class="hlt">cover</span>; green denotes cool temperatures of the tropospheric <span class="hlt">clouds</span>; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.7329L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.7329L"><span>The impact of atmospheric stability and wind shear on vertical <span class="hlt">cloud</span> overlap over the Tibetan Plateau</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua</p> <p>2018-05-01</p> <p>Studies have shown that changes in <span class="hlt">cloud</span> <span class="hlt">cover</span> are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total <span class="hlt">cloud</span> <span class="hlt">cover</span>, atmospheric models have to reasonably represent the characteristics of vertical overlap between <span class="hlt">cloud</span> layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of <span class="hlt">cloud</span> overlaps over the TP region and to build an empirical relationship between <span class="hlt">cloud</span> overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the <span class="hlt">Cloud</span>Sat <span class="hlt">cloud</span> product and collocated ERA-Interim reanalysis data. To do this, the <span class="hlt">cloud</span> overlap parameter α, which is an inverse exponential function of the <span class="hlt">cloud</span> layer separation D and decorrelation length scale L, is calculated using <span class="hlt">Cloud</span>Sat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous <span class="hlt">cloud</span> layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total <span class="hlt">cloud</span> <span class="hlt">cover</span> over the TP when the separations between <span class="hlt">cloud</span> layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on <span class="hlt">cloud</span> overlap should be taken into</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GRC-1975-C-03333.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GRC-1975-C-03333.html"><span><span class="hlt">Cloud</span> Physics Test in the Space Power Chamber</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1975-09-21</p> <p>A researcher sets up equipment in the Space Power Chamber at National Aeronautics and Space Administration’s (NASA) Plum Brook Station to study the effects of contaminants on <span class="hlt">clouds</span>. Drs. Rosa and Jorge Pena of Pennsylvania State University's Department of Meteorology initiated the program in an effort to develop methods of creating stable, long-lasting <span class="hlt">clouds</span> in a test chamber in order to study their composition and formation. The researchers then wanted to use the artificially-created <span class="hlt">clouds</span> to determine how they were affected by pollution. The 100-foot diameter and 122-foot high Space Power Chamber is the largest vacuum chamber in the world. The researchers <span class="hlt">covered</span> the circular walls with muslin. A recirculating water system saturated the cloth. The facility engineers then reduced the chamber’s pressure which released the water from the muslin and generated a <span class="hlt">cloud</span>. The researchers produced five different <span class="hlt">clouds</span> in this first portion of this study. They discovered that they could not create stable <span class="hlt">clouds</span> because of the heat generated by the water-pumping equipment. Nonetheless, they felt confident enough to commence planning the second phase of the program using a heat exchanger to cool the equipment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAr.XL5..123C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAr.XL5..123C"><span>D Point <span class="hlt">Cloud</span> Model Colorization by Dense Registration of Digital Images</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crombez, N.; Caron, G.; Mouaddib, E.</p> <p>2015-02-01</p> <p>Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the <span class="hlt">acquired</span> point <span class="hlt">clouds</span> is generally rather low because of several problems presented below. We propose an accurate method for registering digital images <span class="hlt">acquired</span> from any viewpoints on point <span class="hlt">clouds</span> which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point <span class="hlt">cloud</span> model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point <span class="hlt">clouds</span> with better photometric quality and resolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009681','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009681"><span>Effects of <span class="hlt">clouds</span> on the Earth radiation budget; Seasonal and inter-annual patterns</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dhuria, Harbans L.</p> <p>1992-01-01</p> <p>Seasonal and regional variations of <span class="hlt">clouds</span> and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and <span class="hlt">clouds</span> of 2070 target areas which <span class="hlt">covered</span> the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. <span class="hlt">Cloud</span> forcing and black body temperature at the top of the atmosphere were calculated. Interactions of <span class="hlt">clouds</span>, <span class="hlt">cloud</span> forcing, black body temperature, and the climatological parameters were investigated and analyzed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52C..07J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52C..07J"><span>Modeling of Shallow Marine <span class="hlt">Cloud</span> Topped Boundary Layer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janjic, Z.</p> <p>2017-12-01</p> <p>A common problem in many atmospheric models is excessive expansion over cold water of shallow marine planetary boundary layer (PBL) topped by a thin <span class="hlt">cloud</span> layer. This phenomenon is often accompanied by spurious light precipitation. The "<span class="hlt">Cloud</span> Top Entrainment Instability" (CTEI) was proposed as an explanation of the mechanism controlling this process and thus preventing spurious enlargement of the cloudy area and widely spread light precipitation observed in the models. A key element of this hypothesis is evaporative cooling at the PBL top. However, the CTEI hypothesis remains controversial. For example, a recent direct simulation experiment indicated that the evaporative cooling couldn't explain the break-up of the cloudiness as hypothesized by the CTEI. Here, it is shown that the <span class="hlt">cloud</span> break-up can be achieved in numerical models by a further modification of the nonsingular implementation of the nonsingular Mellor-Yamada Level 2.5 turbulence closure model (MYJ) developed at the National Centers for Environmental Prediction (NCEP) Washington. Namely, the impact of moist convective instability is included into the turbulent energy production/dissipation equation if (a) the stratification is stable, (b) the lifting condensation level (LCL) for a particle starting at a model level is below the next upper model level, and (c) there is enough turbulent kinetic energy so that, due to random vertical turbulent motions, a particle starting from a model level can reach its LCL. The criterion (c) should be sufficiently restrictive because otherwise the <span class="hlt">cloud</span> <span class="hlt">cover</span> can be completely removed. A real data example will be shown demonstrating the ability of the method to break the spurious <span class="hlt">cloud</span> <span class="hlt">cover</span> during the day, but also to allow its recovery over night.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26C....24...36B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26C....24...36B"><span><span class="hlt">Cloud</span> access to interoperable IVOA-compliant VOSpace storage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertocco, S.; Dowler, P.; Gaudet, S.; Major, B.; Pasian, F.; Taffoni, G.</p> <p>2018-07-01</p> <p>Handling, processing and archiving the huge amount of data produced by the new generation of experiments and instruments in Astronomy and Astrophysics are among the more exciting challenges to address in designing the future data management infrastructures and computing services. We investigated the feasibility of a data management and computation infrastructure, available world-wide, with the aim of merging the FAIR data management provided by IVOA standards with the efficiency and reliability of a <span class="hlt">cloud</span> approach. Our work involved the Canadian Advanced Network for Astronomy Research (CANFAR) infrastructure and the European EGI federated <span class="hlt">cloud</span> (EFC). We designed and deployed a pilot data management and computation infrastructure that provides IVOA-compliant VOSpace storage resources and wide access to interoperable federated <span class="hlt">clouds</span>. In this paper, we detail the main user requirements <span class="hlt">covered</span>, the technical choices and the implemented solutions and we describe the resulting Hybrid <span class="hlt">cloud</span> Worldwide infrastructure, its benefits and limitations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatGe...9..871Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatGe...9..871Z"><span>Impact of decadal <span class="hlt">cloud</span> variations on the Earth's energy budget</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.</p> <p>2016-12-01</p> <p>Feedbacks of <span class="hlt">clouds</span> on climate change strongly influence the magnitude of global warming. <span class="hlt">Cloud</span> feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal <span class="hlt">cloud</span> feedback could deviate from the long-term <span class="hlt">cloud</span> feedback. Here we present climate model simulations to show that the global mean <span class="hlt">cloud</span> feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that <span class="hlt">cloud</span> anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal <span class="hlt">cloud</span> feedback between the 1980s and 2000s is substantially more negative than the long-term <span class="hlt">cloud</span> feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level <span class="hlt">cloud</span> <span class="hlt">cover</span> and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low <span class="hlt">cloud</span> anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860015607','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860015607"><span>Empirical and modeled synoptic <span class="hlt">cloud</span> climatology of the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.</p> <p>1986-01-01</p> <p>A set of <span class="hlt">cloud</span> <span class="hlt">cover</span> data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly <span class="hlt">cloud</span> conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic <span class="hlt">cloud</span> regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and <span class="hlt">cloud</span> parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPIE.4894..373A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPIE.4894..373A"><span>Twenty-four year record of Northern Hemisphere snow <span class="hlt">cover</span> derived from passive microwave remote sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armstrong, Richard L.; Brodzik, Mary Jo</p> <p>2003-04-01</p> <p>Snow <span class="hlt">cover</span> is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can <span class="hlt">cover</span> more than 50% of the Northern Hemisphere land surface during the winter resulting in snow <span class="hlt">cover</span> being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to <span class="hlt">acquire</span> data through most <span class="hlt">clouds</span> or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow <span class="hlt">cover</span> over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-<span class="hlt">covered</span> area than the visible data. This underestimate of snow extent results from the fact that shallow snow <span class="hlt">cover</span> (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow <span class="hlt">cover</span> continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26835220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26835220"><span>An overview of platforms for <span class="hlt">cloud</span> based development.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I</p> <p>2016-01-01</p> <p>This paper provides an overview of the state of the art technologies for software development in <span class="hlt">cloud</span> environments. The surveyed systems <span class="hlt">cover</span> the whole spectrum of <span class="hlt">cloud</span>-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing <span class="hlt">cloud</span> development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the <span class="hlt">cloud</span> era has made its initial steps showing potential to provide concrete implementation and execution environments for <span class="hlt">cloud</span>-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.4141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.4141S"><span>Characteristics of the fractional <span class="hlt">cloud</span> <span class="hlt">cover</span> and its altitude distribution over the Indian Ocean region derived from NOAA14-AVHRR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suresh Raju, C.; Rajeev, K.; Parameswaran, K.</p> <p></p> <p>The climatic impact of <span class="hlt">clouds</span> and their role in energy and radiation budget of earth-atmosphere system largely depends on the <span class="hlt">cloud</span> properties and its altitude of occurrence. The quantitative estimates of spatio-temporal variations of <span class="hlt">cloud</span> fraction and <span class="hlt">cloud</span> properties are limited over the tropical Indian Oceanic region. Cloudiness and its radiative properties over this region is significantly different from other tropical regions indicating the need for their detailed studies. This has an important role in the Indian summer monsoon which is also a part of the global climate system. Daily, monthly, seasonal and yearly mean frequency of occurrence of total and high altitude <span class="hlt">clouds</span> are derived from the brightness temperature (TB) obtained from NOAA14-AVHRR data during the period of 1996-1999, and their spatio-temporal variations are investigated. The inversion algorithm used here is similar to the CLIVAR algorithm applied by ISCCP. All <span class="hlt">clouds</span> with TB quad < 250 K are classified as high <span class="hlt">clouds</span>, as their altitude of occurrence will be above ˜ 6 km. The <span class="hlt">clouds</span> above ˜ 10 km (with TB<220K) are also classified separately to study the deep convective events. The geographical distribution of monthly, seasonal and annual mean frequency of occurrence of total <span class="hlt">cloud</span> (Ftot) and high <span class="hlt">cloud</span> (Fh) are remarkably consistent from year to year, though the absolute magnitude of the frequency of occurrence can vary by as much as 30%. The highest annual variations in Ftot and Fh are observed near the eastern parts of Bay of Bengal. The average amplitude of the annual cycle in Ftot in this region is ˜ 40%. During the south-west monsoon season, the monthly mean of Ftot shows very large spatial gradients in the western Arabian Sea. In July, the Ftot varies from less than 20% near Arabian coastal regions to more than 75% at a location 10 degrees east of the Arabian coast. Similar gradients in Ftot are also observed between the equator and 10 S. One of the very striking features in Ftot</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AMT....10.3215E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AMT....10.3215E"><span>Combined retrieval of Arctic liquid water <span class="hlt">cloud</span> and surface snow properties using airborne spectral solar remote sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred</p> <p>2017-09-01</p> <p>The passive solar remote sensing of <span class="hlt">cloud</span> properties over highly reflecting ground is challenging, mostly due to the low contrast between the <span class="hlt">cloud</span> reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved <span class="hlt">cloud</span> optical thickness τ and <span class="hlt">cloud</span> droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water <span class="hlt">clouds</span>. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the <span class="hlt">cloud</span> optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin <span class="hlt">clouds</span> and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral <span class="hlt">cloud</span> reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral <span class="hlt">cloud</span> reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase <span class="hlt">Clouds</span> (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-<span class="hlt">covered</span> sea ice and another with a distinct snow-<span class="hlt">covered</span> sea ice edge are analysed. The retrieved values of τ, reff</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A41J0209M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A41J0209M"><span>CAUSES: <span class="hlt">Clouds</span> Above the United States and Errors at the Surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.</p> <p>2015-12-01</p> <p>The <span class="hlt">Clouds</span> Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of <span class="hlt">cloud</span>, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period <span class="hlt">covers</span> from April 1 to August 31, 2011, which also <span class="hlt">covers</span> the entire Midlatitude Continental Convective <span class="hlt">Clouds</span> Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the <span class="hlt">Cloud</span>-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A42E..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A42E..05M"><span>CAUSES: <span class="hlt">Clouds</span> Above the United States and Errors at the Surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.</p> <p>2014-12-01</p> <p>The <span class="hlt">Clouds</span> Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of <span class="hlt">cloud</span>, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period <span class="hlt">covers</span> from April 1 to August 31, 2011, which also <span class="hlt">covers</span> the entire Midlatitude Continental Convective <span class="hlt">Clouds</span> Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the <span class="hlt">Cloud</span>-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1376175-methods-estimating-cloud-size-distributions-from-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1376175-methods-estimating-cloud-size-distributions-from-observations"><span>Methods for estimating 2D <span class="hlt">cloud</span> size distributions from 1D observations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Romps, David M.; Vogelmann, Andrew M.</p> <p>2017-08-04</p> <p>The two-dimensional (2D) size distribution of <span class="hlt">clouds</span> in the horizontal plane plays a central role in the calculation of <span class="hlt">cloud</span> <span class="hlt">cover</span>, <span class="hlt">cloud</span> radiative forcing, convective entrainment rates, and the likelihood of precipitation. Here, a simple method is proposed for calculating the area-weighted mean <span class="hlt">cloud</span> size and for approximating the 2D size distribution from the 1D <span class="hlt">cloud</span> chord lengths measured by aircraft and vertically pointing lidar and radar. This simple method (which is exact for square <span class="hlt">clouds</span>) compares favorably against the inverse Abel transform (which is exact for circular <span class="hlt">clouds</span>) in the context of theoretical size distributions. Both methods also performmore » well when used to predict the size distribution of real <span class="hlt">clouds</span> from a Landsat scene. When applied to a large number of Landsat scenes, the simple method is able to accurately estimate the mean <span class="hlt">cloud</span> size. Finally, as a demonstration, the methods are applied to aircraft measurements of shallow cumuli during the RACORO campaign, which then allow for an estimate of the true area-weighted mean <span class="hlt">cloud</span> size.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>