Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data.
Brinkmann, Benjamin H; Bower, Mark R; Stengel, Keith A; Worrell, Gregory A; Stead, Matt
2009-05-30
The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100 channels) capable of probing the range of neural activity from local field potential oscillations to single-neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is currently performing continuous, long-term electrophysiological recordings in human subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32kHz per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning single-neuron action potentials, high frequency oscillations, and high amplitude ultra-slow activity, but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data formats. Data compression can provide several practical benefits, but only if data can be compressed and appended to files in real-time in a format that allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format that incorporates lossless data compression using range-encoded differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient information. PMID:19427545
Compressive Optical Image Encryption
Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong
2015-01-01
An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946
Compressive optical image encryption.
Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong
2015-01-01
An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946
Innovative hyperchaotic encryption algorithm for compressed video
NASA Astrophysics Data System (ADS)
Yuan, Chun; Zhong, Yuzhuo; Yang, Shiqiang
2002-12-01
It is accepted that stream cryptosystem can achieve good real-time performance and flexibility which implements encryption by selecting few parts of the block data and header information of the compressed video stream. Chaotic random number generator, for example Logistics Map, is a comparatively promising substitute, but it is easily attacked by nonlinear dynamic forecasting and geometric information extracting. In this paper, we present a hyperchaotic cryptography scheme to encrypt the compressed video, which integrates Logistics Map with Z(232 - 1) field linear congruential algorithm to strengthen the security of the mono-chaotic cryptography, meanwhile, the real-time performance and flexibility of the chaotic sequence cryptography are maintained. It also integrates with the dissymmetrical public-key cryptography and implements encryption and identity authentification on control parameters at initialization phase. In accord with the importance of data in compressed video stream, encryption is performed in layered scheme. In the innovative hyperchaotic cryptography, the value and the updating frequency of control parameters can be changed online to satisfy the requirement of the network quality, processor capability and security requirement. The innovative hyperchaotic cryprography proves robust security by cryptoanalysis, shows good real-time performance and flexible implement capability through the arithmetic evaluating and test.
Degradative encryption: An efficient way to protect SPIHT compressed images
NASA Astrophysics Data System (ADS)
Xiang, Tao; Qu, Jinyu; Yu, Chenyun; Fu, Xinwen
2012-11-01
Degradative encryption, a new selective image encryption paradigm, is proposed to encrypt only a small part of image data to make the detail blurred but keep the skeleton discernible. The efficiency is further optimized by combining compression and encryption. A format-compliant degradative encryption algorithm based on set partitioning in hierarchical trees (SPIHT) is then proposed, and the scheme is designed to work in progressive mode for gaining a tradeoff between efficiency and security. Extensive experiments are conducted to evaluate the strength and efficiency of the scheme, and it is found that less than 10% data need to be encrypted for a secure degradation. In security analysis, the scheme is verified to be immune to cryptographic attacks as well as those adversaries utilizing image processing techniques. The scheme can find its wide applications in online try-and-buy service on mobile devices, searchable multimedia encryption in cloud computing, etc.
System using data compression and hashing adapted for use for multimedia encryption
Coffland, Douglas R.
2011-07-12
A system and method is disclosed for multimedia encryption. Within the system of the present invention, a data compression module receives and compresses a media signal into a compressed data stream. A data acquisition module receives and selects a set of data from the compressed data stream. And, a hashing module receives and hashes the set of data into a keyword. The method of the present invention includes the steps of compressing a media signal into a compressed data stream; selecting a set of data from the compressed data stream; and hashing the set of data into a keyword.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Joint compression and encryption using chaotically mutated Huffman trees
NASA Astrophysics Data System (ADS)
Hermassi, Houcemeddine; Rhouma, Rhouma; Belghith, Safya
2010-10-01
This paper introduces a new scheme for joint compression and encryption using the Huffman codec. A basic tree is first generated for a given message and then based on a keystream generated from a chaotic map and depending from the input message, the basic tree is mutated without changing the statistical model. Hence a symbol can be coded by more than one codeword having the same length. The security of the scheme is tested against the known plaintext attack and the brute force attack. Performance analysis including encryption/decryption speed, additional computational complexity and compression ratio are given.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Li, Haolin; Wang, Di; Pan, Shumin; Zhou, Zhihong
2015-05-01
Most of the existing image encryption techniques bear security risks for taking linear transform or suffer encryption data expansion for adopting nonlinear transformation directly. To overcome these difficulties, a novel image compression-encryption scheme is proposed by combining 2D compressive sensing with nonlinear fractional Mellin transform. In this scheme, the original image is measured by measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the nonlinear fractional Mellin transform. The measurement matrices are controlled by chaos map. The Newton Smoothed l0 Norm (NSL0) algorithm is adopted to obtain the decryption image. Simulation results verify the validity and the reliability of this scheme.
NASA Astrophysics Data System (ADS)
Liu, Xingbin; Mei, Wenbo; Du, Huiqian
2016-05-01
In this paper, a novel approach based on compressive sensing and chaos is proposed for simultaneously compressing, fusing and encrypting multi-modal images. The sparsely represented source images are firstly measured with the key-controlled pseudo-random measurement matrix constructed using logistic map, which reduces the data to be processed and realizes the initial encryption. Then the obtained measurements are fused by the proposed adaptive weighted fusion rule. The fused measurement is further encrypted into the ciphertext through an iterative procedure including improved random pixel exchanging technique and fractional Fourier transform. The fused image can be reconstructed by decrypting the ciphertext and using a recovery algorithm. The proposed algorithm not only reduces data volume but also simplifies keys, which improves the efficiency of transmitting data and distributing keys. Numerical results demonstrate the feasibility and security of the proposed scheme.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Yang, Jianping; Tan, Changfa; Pan, Shumin; Zhou, Zhihong
2015-11-01
A new discrete fractional random transform based on two circular matrices is designed and a novel double-image encryption-compression scheme is proposed by combining compressive sensing with discrete fractional random transform. The two random circular matrices and the measurement matrix utilized in compressive sensing are constructed by using a two-dimensional sine Logistic modulation map. Two original images can be compressed, encrypted with compressive sensing and connected into one image. The resulting image is re-encrypted by Arnold transform and the discrete fractional random transform. Simulation results and security analysis demonstrate the validity and security of the scheme.
Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V
2015-01-01
Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834
NASA Astrophysics Data System (ADS)
Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.
2015-10-01
Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium.
Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.
2015-01-01
Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834
On encryption-compression tradeoff of pre/post-filtered images
NASA Astrophysics Data System (ADS)
Gurijala, Aparna; Khayam, Syed A.; Radha, Hayder; Deller, J. R., Jr.
2005-09-01
Advances in network communications have necessitated secure local-storage and transmission of multimedia content. In particular, military networks need to securely store sensitive imagery which at a later stage may be transmitted over bandwidth-constrained wireless networks. This work investigates compression efficiency of JPEG and JPEG 2000 standards for encrypted images. An encryption technique proposed by Kuo et al. in [4] is employed. The technique scrambles the phase spectrum of an image by addition of the phase of an all-pass pre-filter. The post-filter inverts the encryption process, provided the correct pseudo-random filter coefficients are available at the receiver. Additional benefits of pre/post-filter encryption include the prevention of blocking effects and better robustness to channel noise [4]. Since both JPEG and JPEG 2000 exploit spatial and perceptual redundancies for compression, pre/post-filtered (encrypted) images are susceptible to compression inefficiencies. The PSNR difference between the unencrypted and pre/post-filtered images after decompression is determined for various compression rates. Compression efficiency decreases with an increase in compression rate. For JPEG and JPEG 2000 compression rates between 0.5 to 2.5 bpp, the difference in PSNR is negligible. Partial encryption is proposed wherein a subset of image phase coefficients are scrambled. Due to the phase sensitivity of images, even partial scrambling of the phase information results in unintelligible data. The effect of compression on partially encrypted images is observed for various bit-rates. When 25% of image phase coefficients are scrambled, the JPEG and JPEG 2000 compression performance of encrypted images is almost similar to that of unencrypted images for compression rates in the 0.5 to 3.5 bpp range.
Optical image encryption via photon-counting imaging and compressive sensing based ptychography
NASA Astrophysics Data System (ADS)
Rawat, Nitin; Hwang, In-Chul; Shi, Yishi; Lee, Byung-Geun
2015-06-01
In this study, we investigate the integration of compressive sensing (CS) and photon-counting imaging (PCI) techniques with a ptychography-based optical image encryption system. Primarily, the plaintext real-valued image is optically encrypted and recorded via a classical ptychography technique. Further, the sparse-based representations of the original encrypted complex data can be produced by combining CS and PCI techniques with the primary encrypted image. Such a combination takes an advantage of reduced encrypted samples (i.e., linearly projected random compressive complex samples and photon-counted complex samples) that can be exploited to realize optical decryption, which inherently serves as a secret key (i.e., independent to encryption phase keys) and makes an intruder attack futile. In addition to this, recording fewer encrypted samples provides a substantial bandwidth reduction in online transmission. We demonstrate that the fewer sparse-based complex samples have adequate information to realize decryption. To the best of our knowledge, this is the first report on integrating CS and PCI with conventional ptychography-based optical image encryption.
NASA Astrophysics Data System (ADS)
Alfalou, Ayman; Elbouz, Marwa; Jridi, Maher; Loussert, Alain
2009-09-01
In some recognition form applications (which require multiple images: facial identification or sign-language), many images should be transmitted or stored. This requires the use of communication systems with a good security level (encryption) and an acceptable transmission rate (compression rate). In the literature, several encryption and compression techniques can be found. In order to use optical correlation, encryption and compression techniques cannot be deployed independently and in a cascade manner. Otherwise, our system will suffer from two major problems. In fact, we cannot simply use these techniques in a cascade manner without considering the impact of one technique over another. Secondly, a standard compression can affect the correlation decision, because the correlation is sensitive to the loss of information. To solve both problems, we developed a new technique to simultaneously compress & encrypt multiple images using a BPOF optimized filter. The main idea of our approach consists in multiplexing the spectrums of different transformed images by a Discrete Cosine Transform (DCT). To this end, the spectral plane should be divided into several areas and each of them corresponds to the spectrum of one image. On the other hand, Encryption is achieved using the multiplexing, a specific rotation functions, biometric encryption keys and random phase keys. A random phase key is widely used in optical encryption approaches. Finally, many simulations have been conducted. Obtained results corroborate the good performance of our approach. We should also mention that the recording of the multiplexed and encrypted spectra is optimized using an adapted quantification technique to improve the overall compression rate.
An Unequal Secure Encryption Scheme for H.264/AVC Video Compression Standard
NASA Astrophysics Data System (ADS)
Fan, Yibo; Wang, Jidong; Ikenaga, Takeshi; Tsunoo, Yukiyasu; Goto, Satoshi
H.264/AVC is the newest video coding standard. There are many new features in it which can be easily used for video encryption. In this paper, we propose a new scheme to do video encryption for H.264/AVC video compression standard. We define Unequal Secure Encryption (USE) as an approach that applies different encryption schemes (with different security strength) to different parts of compressed video data. This USE scheme includes two parts: video data classification and unequal secure video data encryption. Firstly, we classify the video data into two partitions: Important data partition and unimportant data partition. Important data partition has small size with high secure protection, while unimportant data partition has large size with low secure protection. Secondly, we use AES as a block cipher to encrypt the important data partition and use LEX as a stream cipher to encrypt the unimportant data partition. AES is the most widely used symmetric cryptography which can ensure high security. LEX is a new stream cipher which is based on AES and its computational cost is much lower than AES. In this way, our scheme can achieve both high security and low computational cost. Besides the USE scheme, we propose a low cost design of hybrid AES/LEX encryption module. Our experimental results show that the computational cost of the USE scheme is low (about 25% of naive encryption at Level 0 with VEA used). The hardware cost for hybrid AES/LEX module is 4678 Gates and the AES encryption throughput is about 50Mbps.
NASA Astrophysics Data System (ADS)
Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.
2014-05-01
Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.
Multiple-image encryption based on compressive holography using a multiple-beam interferometer
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Wu, Fan; Yang, Jinghuan; Man, Tianlong
2015-05-01
Multiple-image encryption techniques not only improve the encryption capacity but also facilitate the transmission and storage of the ciphertext. We present a new method of multiple-image encryption based on compressive holography with enhanced data security using a multiple-beam interferometer. By modifying the Mach-Zehnder interferometer, the interference of multiple object beams and unique reference beam is implemented for encrypting multiple images simultaneously into one hologram. The original images modulated with the random phase masks are put in different positions with different distance away from the CCD camera. Each image plays the role of secret key for other images to realize the mutual encryption. Four-step phase shifting technique is combined with the holographic recording. The holographic recording is treated as a compressive sensing process, thus the decryption process is inverted as a minimization problem and the two-step iterative shrinkage/thresholding algorithm (TwIST) is employed to solve this optimization problem. The simulated results about multiple binary and grayscale images encryption are demonstrated to verify the validity and robustness of our proposed method.
Compression-RSA: New approach of encryption and decryption method
NASA Astrophysics Data System (ADS)
Hung, Chang Ee; Mandangan, Arif
2013-04-01
Rivest-Shamir-Adleman (RSA) cryptosystem is a well known asymmetric cryptosystem and it has been applied in a very wide area. Many researches with different approaches have been carried out in order to improve the security and performance of RSA cryptosystem. The enhancement of the performance of RSA cryptosystem is our main interest. In this paper, we propose a new method to increase the efficiency of RSA by shortening the number of plaintext before it goes under encryption process without affecting the original content of the plaintext. Concept of simple Continued Fraction and the new special relationship between it and Euclidean Algorithm have been applied on this newly proposed method. By reducing the number of plaintext-ciphertext, the encryption-decryption processes of a secret message can be accelerated.
Compression-RSA technique: A more efficient encryption-decryption procedure
NASA Astrophysics Data System (ADS)
Mandangan, Arif; Mei, Loh Chai; Hung, Chang Ee; Che Hussin, Che Haziqah
2014-06-01
The efficiency of encryption-decryption procedures has become a major problem in asymmetric cryptography. Compression-RSA technique is developed to overcome the efficiency problem by compressing the numbers of kplaintext, where k∈Z+ and k > 2, becoming only 2 plaintext. That means, no matter how large the numbers of plaintext, they will be compressed to only 2 plaintext. The encryption-decryption procedures are expected to be more efficient since these procedures only receive 2 inputs to be processed instead of kinputs. However, it is observed that as the numbers of original plaintext are increasing, the size of the new plaintext becomes bigger. As a consequence, it will probably affect the efficiency of encryption-decryption procedures, especially for RSA cryptosystem since both of its encryption-decryption procedures involve exponential operations. In this paper, we evaluated the relationship between the numbers of original plaintext and the size of the new plaintext. In addition, we conducted several experiments to show that the RSA cryptosystem with embedded Compression-RSA technique is more efficient than the ordinary RSA cryptosystem.
NASA Astrophysics Data System (ADS)
Islam, Muhammad F.; Islam, Mohammed N.
2012-04-01
The objective of this paper is to develop a novel approach for encryption and compression of biometric information utilizing orthogonal coding and steganography techniques. Multiple biometric signatures are encrypted individually using orthogonal codes and then multiplexed together to form a single image, which is then embedded in a cover image using the proposed steganography technique. The proposed technique employs three least significant bits for this purpose and a secret key is developed to choose one from among these bits to be replaced by the corresponding bit of the biometric image. The proposed technique offers secure transmission of multiple biometric signatures in an identification document which will be protected from unauthorized steganalysis attempt.
Compression of Encrypted Images Using Set Partitioning In Hierarchical Trees Algorithm
NASA Astrophysics Data System (ADS)
Sarika, G.; Unnithan, Harikuttan; Peter, Smitha
2011-10-01
When it is desired to transmit redundant data over an insecure channel, it is customary to encrypt the data. For encrypted real world sources such as images, the use of Markova properties in the slepian-wolf decoder does not work well for gray scale images. Here in this paper we propose a method of compression of an encrypted image. In the encoder section, the image is first encrypted and then it undergoes compression in resolution. The cipher function scrambles only the pixel values, but does not shuffle the pixel locations. After down sampling, each sub-image is encoded independently and the resulting syndrome bits are transmitted. The received image undergoes a joint decryption and decompression in the decoder section. By using the local statistics based on the image, it is recovered back. Here the decoder gets only lower resolution version of the image. In addition, this method provides only partial access to the current source at the decoder side, which improves the decoder's learning of the source statistics. The source dependency is exploited to improve the compression efficiency. This scheme provides better coding efficiency and less computational complexity.
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Zhengjun; Liu, Shutian
2015-12-01
We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal.
Raeiatibanadkooki, Mahsa; Quchani, Saeed Rahati; KhalilZade, MohammadMahdi; Bahaadinbeigy, Kambiz
2016-03-01
In mobile health care monitoring, compression is an essential tool for solving storage and transmission problems. The important issue is able to recover the original signal from the compressed signal. The main purpose of this paper is compressing the ECG signal with no loss of essential data and also encrypting the signal to keep it confidential from everyone, except for physicians. In this paper, mobile processors are used and there is no need for any computers to serve this purpose. After initial preprocessing such as removal of the baseline noise, Gaussian noise, peak detection and determination of heart rate, the ECG signal is compressed. In compression stage, after 3 steps of wavelet transform (db04), thresholding techniques are used. Then, Huffman coding with chaos for compression and encryption of the ECG signal are used. The compression rates of proposed algorithm is 97.72 %. Then, the ECG signals are sent to a telemedicine center to acquire specialist diagnosis by TCP/IP protocol. PMID:26779641
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan
2015-10-01
In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.
Interference-based image encryption with silhouette removal by aid of compressive sensing
NASA Astrophysics Data System (ADS)
Gong, Qiong; Wang, Zhipeng; Lv, Xiaodong; Qin, Yi
2016-01-01
Compressive sensing (CS) offers the opportunity to reconstruct a signal from its sparse representation, either in the space domain or the transform domain. Exploiting this character, we propose a simple interference-based image encryption method. For encryption, a synthetic image, which contains sparse samples of the original image and the designated values, is analytically separated into two phase only masks (POMs). Consequently, only fragmentary data of the primary image can be directly collected in the traditional decryption scheme. However, the subsequent CS reconstruction will retrieve a high quality image from the fragmentary information. The proposed method has effectively suppressed the silhouette problem. Moreover, it has also some distinct advantages over the previous approaches.
Li, Xiangwei; Lan, Xuguang; Yang, Meng; Xue, Jianru; Zheng, Nanning
2014-01-01
Compressive Sensing Imaging (CSI) is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS) acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4∼2 dB comparing with current state-of-the-art, while maintaining a low computational complexity. PMID:25490597
Yi, Jiawang; Tan, Guanzheng
2015-12-20
Optical cryptosystems combined with compressed sensing can achieve compression and encryption simultaneously. But they usually use the same measurement matrix to sample all blocks of an image, which makes it easy to estimate the measurement matrix in the chosen plaintext attack. In this paper, we propose a robust scheme adopting multiple measurement matrices to overcome this shortcoming. The matrices can be efficiently derived by applying random row exchanging to a basic one, which is also encoded into the fractional Fourier transform (FrFT) domain to improve the visual effect of wrongly decrypted images. Chaos-based pixel scrambling is added into our double FrFT cryptosystem to guarantee its nonlinearity. Simulation results have shown the security and effectiveness of our scheme. PMID:26837032
Alfalou, A; Brosseau, C
2010-06-01
We report on an algorithm to compress and encrypt simultaneously multiple images (target images). This method, which is based upon a specific spectral multiplexing (fusion without overlapping) of the multiple images, aims to achieve a single encrypted image, at the output plane of our system, that contains all information needed to reconstruct the target images. For that purpose, we divide the Fourier plane of the image to transmit into two types of area, i.e., specific and common areas to each target image. A segmentation criterion taking into account the rms duration of each target image spectrum is proposed. This approach, which consists of merging the input target images together (in the Fourier plane) allows us to reduce the information to be stored and/or transmitted (compression) and induce noise on the output image (encryption). To achieve a good encryption level, a first key image (containing biometric information and providing the intellectual property of the target images) is used. A second encryption key is inserted in the Fourier plane to ensure a relevant phase distribution of the different merged spectra. We also discuss how the encoding information can be optimized by minimizing the number of bits required to encode each pixel. PMID:20517460
NASA Astrophysics Data System (ADS)
Zhang, Leihong; Pan, Zilan; Liang, Dong; Ma, Xiuhua; Zhang, Dawei
2015-12-01
An optical encryption method based on compressive ghost imaging (CGI) with double random-phase encoding (DRPE), named DRPE-CGI, is proposed. The information is first encrypted by the sender with DRPE, the DRPE-coded image is encrypted by the system of computational ghost imaging with a secret key. The key of N random-phase vectors is generated by the sender and will be shared with the receiver who is the authorized user. The receiver decrypts the DRPE-coded image with the key, with the aid of CGI and a compressive sensing technique, and then reconstructs the original information by the technique of DRPE-decoding. The experiments suggest that cryptanalysts cannot get any useful information about the original image even if they eavesdrop 60% of the key at a given time, so the security of DRPE-CGI is higher than that of the security of conventional ghost imaging. Furthermore, this method can reduce 40% of the information quantity compared with ghost imaging while the qualities of reconstructing the information are the same. It can also improve the quality of the reconstructed plaintext information compared with DRPE-GI with the same sampling times. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.
NASA Astrophysics Data System (ADS)
Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun
2006-10-01
With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.
Review of digital fingerprint acquisition systems and wavelet compression
NASA Astrophysics Data System (ADS)
Hopper, Thomas
2003-04-01
Over the last decade many criminal justice agencies have replaced their fingerprint card based systems with electronic processing. We examine these new systems and find that image acquisition to support the identification application is consistently a challenge. Image capture and compression are widely dispersed and relatively new technologies within criminal justice information systems. Image quality assurance programs are just beginning to mature.
Modeling of video compression effects on target acquisition performance
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Preece, Bradley; Espinola, Richard L.
2009-05-01
The effect of video compression on image quality was investigated from the perspective of target acquisition performance modeling. Human perception tests were conducted recently at the U.S. Army RDECOM CERDEC NVESD, measuring identification (ID) performance on simulated military vehicle targets at various ranges. These videos were compressed with different quality and/or quantization levels utilizing motion JPEG, motion JPEG2000, and MPEG-4 encoding. To model the degradation on task performance, the loss in image quality is fit to an equivalent Gaussian MTF scaled by the Structural Similarity Image Metric (SSIM). Residual compression artifacts are treated as 3-D spatio-temporal noise. This 3-D noise is found by taking the difference of the uncompressed frame, with the estimated equivalent blur applied, and the corresponding compressed frame. Results show good agreement between the experimental data and the model prediction. This method has led to a predictive performance model for video compression by correlating various compression levels to particular blur and noise input parameters for NVESD target acquisition performance model suite.
Brinkmann, Benjamin H.; Bower, Mark R.; Stengel, Keith A.; Worrell, Gregory A.; Stead, Matt
2010-01-01
Continuous, long-term (up to 10 days) electrophysiological monitoring using hybrid intracranial electrodes is an emerging tool for presurgical epilepsy evaluation and fundamental investigations of seizure generation. Detection of high-frequency oscillations and microseizures could provide valuable insights into causes and therapies for the treatment of epilepsy, but requires high spatial and temporal resolution. Our group is currently using hybrid arrays composed of up to 320 micro- and clinical macroelectrode arrays sampled at 32 kHz per channel with 18-bits of A/D resolution. Such recordings produce approximately 3 terabytes of data per day. Existing file formats have limited data compression capabilities, and do not offer mechanisms for protecting patient identifying information or detecting data corruption during transmission or storage. We present a novel file format that employs range encoding to provide a high degree of data compression, a three-tiered 128-bit encryption system for patient information and data security, and a 32-bit cyclic redundancy check to verify the integrity of compressed data blocks. Open-source software to read, write, and process these files are provided. PMID:19963940
Effects of video compression on target acquisition performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Cha, Jae; Preece, Bradley
2008-04-01
The bandwidth requirements of modern target acquisition systems continue to increase with larger sensor formats and multi-spectral capabilities. To obviate this problem, still and moving imagery can be compressed, often resulting in greater than 100 fold decrease in required bandwidth. Compression, however, is generally not error-free and the generated artifacts can adversely affect task performance. The U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate recently performed an assessment of various compression techniques on static imagery for tank identification. In this paper, we expand this initial assessment by studying and quantifying the effect of various video compression algorithms and their impact on tank identification performance. We perform a series of controlled human perception tests using three dynamic simulated scenarios: target moving/sensor static, target static/sensor static, sensor tracking the target. Results of this study will quantify the effect of video compression on target identification and provide a framework to evaluate video compression on future sensor systems.
Compressive image acquisition and classification via secant projections
NASA Astrophysics Data System (ADS)
Li, Yun; Hegde, Chinmay; Sankaranarayanan, Aswin C.; Baraniuk, Richard; Kelly, Kevin F.
2015-06-01
Given its importance in a wide variety of machine vision applications, extending high-speed object detection and recognition beyond the visible spectrum in a cost-effective manner presents a significant technological challenge. As a step in this direction, we developed a novel approach for target image classification using a compressive sensing architecture. Here we report the first implementation of this approach utilizing the compressive single-pixel camera system. The core of our approach rests on the design of new measurement patterns, or projections, that are tuned to objects of interest. Our measurement patterns are based on the notion of secant projections of image classes that are constructed using two different approaches. Both approaches show at least a twofold improvement in terms of the number of measurements over the conventional, data-oblivious compressive matched filter. As more noise is added to the image, the second method proves to be the most robust.
Efficient multimedia encryption via entropy codec design
NASA Astrophysics Data System (ADS)
Wu, Chung-Ping; Kuo, C.-C. Jay
2001-08-01
Efficient encryption algorithms are essential to multimedia data security, since the data size is large and real-time processing is often required. After discussing limitations of previous work on multimedia encryption, we propose a novel methodology for confidentiality, which turns entropy coders into encryption ciphers by using multiple statistical models. The choice of statistical models and the order in which they are applied are kept secret as the key Two encryption schemes are constructed by applying this methodology to the Huffman coder and the QM coder. It is shown that security is achieved without sacrificing the compression performance and the computational speed. The schemes can be applied to most modern compression systems such as MPEG audio, MPEG video and JPEG/JPEG2000 image compression.
NASA Astrophysics Data System (ADS)
Hollingsworth, Kieren Grant
2015-11-01
MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.
Hollingsworth, Kieren Grant
2015-11-01
MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI. PMID:26448064
The experiments and analysis of several selective video encryption methods
NASA Astrophysics Data System (ADS)
Zhang, Yue; Yang, Cheng; Wang, Lei
2013-07-01
This paper presents four methods for selective video encryption based on the MPEG-2 video compression,including the slices, the I-frames, the motion vectors, and the DCT coefficients. We use the AES encryption method for simulation experiment for the four methods on VS2010 Platform, and compare the video effects and the processing speed of each frame after the video encrypted. The encryption depth can be arbitrarily selected, and design the encryption depth by using the double limit counting method, so the accuracy can be increased.
Multiple image encryption by phase retrieval
NASA Astrophysics Data System (ADS)
Di, Hong; Kang, Yanmei; Liu, Yueqin; Zhang, Xin
2016-07-01
Multiple image encryption (MIE) was proposed to increase the efficiency of encrypting images by processing several images simultaneously. Because of the advantage of optical technology in processing twodimensional images at high throughput, MIE has been significantly improved by use of methods originating from optics. Phase retrieval was the process of algorithmically finding solutions to the phase loss problem due to light detectors only capturing the intensity. It was to retrieve phase information for the determination of a structure from diffraction data. Error-reduction algorithm is a typical phase retrieval method. Here, we employ it to illustrate that methods in phase retrieval are able to encrypt multiple images and compress them into encrypted data simultaneously. Moreover, the decryption is also designed to handle multiple images at the same time. The whole process including both the encryption and decryption is proposed to improve MIE with respect to the compression and efficiency. The feasibility and encryption of the MIE scheme is demonstrated with encryption experiments under Gaussian white noise and unauthorized access.
Design and implementation of a compressive infrared sampling for motion acquisition
NASA Astrophysics Data System (ADS)
Liu, Tong; Liu, Jun
2014-12-01
This article proposes a compressive infrared sampling method in pursuit of the acquisition and processing of human motion simultaneously. The spatial-temporal changes caused by the movements of the human body are intrinsical clues for determining the semantics of motion, while the movements of short-term changes can be considered as a sparse distribution compared with the sensing region. Several pyroelectric infrared (PIR) sensors with pseudo-random-coded Fresnel lenses are introduced to acquire and compress motion information synchronously. The compressive PIR array has the ability to record the changes in the thermal radiation field caused by movements and encode the motion information into low-dimensional sensory outputs directly. Therefore, the problem of recognizing a high-dimensional image sequence is cast as a low-dimensional sequence recognition process. A database involving various kinds of motion played by several people is built. Hausdorff distance-based template matching is employed for motion recognition. Experimental studies are conducted to validate the proposed method.
Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.
Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao
2016-06-01
Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost. PMID:27409446
48 CFR 352.239-71 - Standard for encryption language.
Code of Federal Regulations, 2014 CFR
2014-10-01
... language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...
48 CFR 352.239-71 - Standard for encryption language.
Code of Federal Regulations, 2012 CFR
2012-10-01
... language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...
48 CFR 352.239-71 - Standard for encryption language.
Code of Federal Regulations, 2011 CFR
2011-10-01
... language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...
48 CFR 352.239-71 - Standard for encryption language.
Code of Federal Regulations, 2013 CFR
2013-10-01
... language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...
48 CFR 352.239-71 - Standard for encryption language.
Code of Federal Regulations, 2010 CFR
2010-10-01
... language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...
Selective video encryption of a distributed coded bitstream using LDPC codes
NASA Astrophysics Data System (ADS)
Um, Hwayoung; Delp, Edward J.
2006-02-01
Selective encryption is a technique that is used to minimizec omputational complexity or enable system functionality by only encrypting a portion of a compressed bitstream while still achieving reasonable security. For selective encryption to work, we need to rely not only on the beneficial effects of redundancy reduction, but also on the characteristics of the compression algorithm to concentrate important data representing the source in a relatively small fraction of the compressed bitstream. These important elements of the compressed data become candidates for selective encryption. In this paper, we combine encryption and distributed video source coding to consider the choices of which types of bits are most effective for selective encryption of a video sequence that has been compressed using a distributed source coding method based on LDPC codes. Instead of encrypting the entire video stream bit by bit, we encrypt only the highly sensitive bits. By combining the compression and encryption tasks and thus reducing the number of bits encrypted, we can achieve a reduction in system complexity.
Implementation of the IDEA algorithm for image encryption
NASA Astrophysics Data System (ADS)
Dang, Philip P.; Chau, Paul M.
2000-11-01
In this paper, we present an implementation of the IDEA algorithm for image encryption. The image encryption is incorporated into the compression algorithm for transmission over a data network. In the proposed method, Embedded Wavelet Zero-tree Coding is used for image compression. Experimental results show that our proposed scheme enhances data security and reduces the network bandwidth required for video transmissions. A software implementation and system architecture for hardware implementation of the IDEA image encryption algorithm based on Field Programmable Gate Array (FPGA) technology are presented in this paper.
NASA Astrophysics Data System (ADS)
Chang, Chen-Ming; Grant, Alexander M.; Lee, Brian J.; Kim, Ealgoo; Hong, KeyJo; Levin, Craig S.
2015-08-01
In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing. In addition, unlike Anger logic, multiplexing by CS preserves the capability to resolve multi-hit events, in which multiple pixels are triggered within the resolving time of the detector. In this work, we characterized the time, energy and intrinsic spatial resolution of two CS detectors and a data acquisition system we have developed for a PET insert system for simultaneous PET/MRI. The CS detector comprises a 2× 4 mosaic of 4× 4 arrays of 3.2× 3.2× 20 mm3 lutetium-yttrium orthosilicate crystals coupled one-to-one to eight 4× 4 silicon photomultiplier arrays. The total number of 128 pixels is multiplexed down to 16 readout channels by CS. The energy, coincidence time and intrinsic spatial resolution achieved by two CS detectors were 15.4+/- 0.1 % FWHM at 511 keV, 4.5 ns FWHM and 2.3 mm FWHM, respectively. A series of experiments were conducted to measure the sources of time jitter that limit the time resolution of the current system, which provides guidance for potential system design improvements. These findings demonstrate the feasibility of compressed sensing as a promising multiplexing method for PET detectors.
Chang, Chen-Ming; Grant, Alexander M; Lee, Brian J; Kim, Ealgoo; Hong, KeyJo; Levin, Craig S
2015-08-21
In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing. In addition, unlike Anger logic, multiplexing by CS preserves the capability to resolve multi-hit events, in which multiple pixels are triggered within the resolving time of the detector. In this work, we characterized the time, energy and intrinsic spatial resolution of two CS detectors and a data acquisition system we have developed for a PET insert system for simultaneous PET/MRI. The CS detector comprises a 2 x 4 mosaic of 4 x 4 arrays of 3.2 x 3.2 x 20 mm(3) lutetium-yttrium orthosilicate crystals coupled one-to-one to eight 4 x 4 silicon photomultiplier arrays. The total number of 128 pixels is multiplexed down to 16 readout channels by CS. The energy, coincidence time and intrinsic spatial resolution achieved by two CS detectors were 15.4±0.1% FWHM at 511 keV, 4.5 ns FWHM and 2.3 mm FWHM, respectively. A series of experiments were conducted to measure the sources of time jitter that limit the time resolution of the current system, which provides guidance for potential system design improvements. These findings demonstrate the feasibility of compressed sensing as a promising multiplexing method for PET detectors. PMID:26237671
NASA Technical Reports Server (NTRS)
Jackson, Deborah J. (Inventor)
1998-01-01
An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.
An Attack on Wavelet Tree Shuffling Encryption Schemes
NASA Astrophysics Data System (ADS)
Assegie, Samuel; Salama, Paul; King, Brian
With the ubiquity of the internet and advances in technology, especially digital consumer electronics, demand for online multimedia services is ever increasing. While it's possible to achieve a great reduction in bandwidth utilization of multimedia data such as image and video through compression, security still remains a great concern. Traditional cryptographic algorithms/systems for data security are often not fast enough to process the vast amounts of data generated by the multimedia applications to meet the realtime constraints. Selective encryption is a new scheme for multimedia content protection. It involves encrypting only a portion of the data to reduce computational complexity(the amount of data to encrypt)while preserving a sufficient level of security. To achieve this, many selective encryption schemes are presented in different literatures. One of them is Wavelet Tree Shuffling. In this paper we assess the security of a wavelet tree shuffling encryption scheme.
Guo, Qiang; Chen, Hongwei; Weng, Zhiliang; Chen, Minghua; Yang, Sigang; Xie, Shizhong
2015-11-16
In this paper, compressive sensing based high-speed time-stretch optical microscopy for two-dimensional (2D) image acquisition is proposed and experimentally demonstrated for the first time. A section of dispersion compensating fiber (DCF) is used to perform wavelength-to-time conversion and then ultrafast spectral shaping of broadband optical pulses can be achieved via high-speed intensity modulation. A 2D spatial disperser comprising a pair of orthogonally oriented dispersers is employed to produce spatially structured illumination for 2D image acquisition and a section of single mode fiber (SMF) is utilized for pulse compression in the optical domain. In our scheme, a 1.2-GHz photodetector and a 50-MHz analog-to-digital converter (ADC) are used to acquire the energy of the compressed pulses. Image reconstructions are demonstrated at a frame rate of 500 kHz and a sixteen-fold image compression is achieved in our proof-of-concept demonstration. PMID:26698446
Sandia Scalable Encryption Software
Tarman, Thomas D.
1997-08-13
Sandia Scalable Encryption Library (SSEL) Version 1.0 is a library of functions that implement Sandia''s scalable encryption algorithm. This algorithm is used to encrypt Asynchronous Transfer Mode (ATM) data traffic, and is capable of operating on an arbitrary number of bits at a time (which permits scaling via parallel implementations), while being interoperable with differently scaled versions of this algorithm. The routines in this library implement 8 bit and 32 bit versions of a non-linear mixer which is compatible with Sandia''s hardware-based ATM encryptor.
Investigating Encrypted Material
NASA Astrophysics Data System (ADS)
McGrath, Niall; Gladyshev, Pavel; Kechadi, Tahar; Carthy, Joe
When encrypted material is discovered during a digital investigation and the investigator cannot decrypt the material then s/he is faced with the problem of how to determine the evidential value of the material. This research is proposing a methodology of extracting probative value from the encrypted file of a hybrid cryptosystem. The methodology also incorporates a technique for locating the original plaintext file. Since child pornography (KP) images and terrorist related information (TI) are transmitted in encrypted format the digital investigator must ask the question Cui Bono? - who benefits or who is the recipient? By doing this the scope of the digital investigation can be extended to reveal the intended recipient.
Sandia Scalable Encryption Software
Energy Science and Technology Software Center (ESTSC)
1997-08-13
Sandia Scalable Encryption Library (SSEL) Version 1.0 is a library of functions that implement Sandia''s scalable encryption algorithm. This algorithm is used to encrypt Asynchronous Transfer Mode (ATM) data traffic, and is capable of operating on an arbitrary number of bits at a time (which permits scaling via parallel implementations), while being interoperable with differently scaled versions of this algorithm. The routines in this library implement 8 bit and 32 bit versions of a non-linearmore » mixer which is compatible with Sandia''s hardware-based ATM encryptor.« less
Encrypting Digital Camera with Automatic Encryption Key Deletion
NASA Technical Reports Server (NTRS)
Oakley, Ernest C. (Inventor)
2007-01-01
A digital video camera includes an image sensor capable of producing a frame of video data representing an image viewed by the sensor, an image memory for storing video data such as previously recorded frame data in a video frame location of the image memory, a read circuit for fetching the previously recorded frame data, an encryption circuit having an encryption key input connected to receive the previously recorded frame data from the read circuit as an encryption key, an un-encrypted data input connected to receive the frame of video data from the image sensor and an encrypted data output port, and a write circuit for writing a frame of encrypted video data received from the encrypted data output port of the encryption circuit to the memory and overwriting the video frame location storing the previously recorded frame data.
A Selective Encryption Algorithm Based on AES for Medical Information
Oh, Ju-Young; Chon, Ki-Hwan
2010-01-01
Objectives The transmission of medical information is currently a daily routine. Medical information needs efficient, robust and secure encryption modes, but cryptography is primarily a computationally intensive process. Towards this direction, we design a selective encryption scheme for critical data transmission. Methods We expand the advandced encrytion stanard (AES)-Rijndael with five criteria: the first is the compression of plain data, the second is the variable size of the block, the third is the selectable round, the fourth is the optimization of software implementation and the fifth is the selective function of the whole routine. We have tested our selective encryption scheme by C++ and it was compiled with Code::Blocks using a MinGW GCC compiler. Results The experimental results showed that our selective encryption scheme achieves a faster execution speed of encryption/decryption. In future work, we intend to use resource optimization to enhance the round operations, such as SubByte/InvSubByte, by exploiting similarities between encryption and decryption. Conclusions As encryption schemes become more widely used, the concept of hardware and software co-design is also a growing new area of interest. PMID:21818420
An overview on scalable encryption for wireless multimedia access
NASA Astrophysics Data System (ADS)
Yu, Hong Heather
2003-08-01
Wireless environments present many challenges for secure multimedia access, especial streaming media. The availability of varying network bandwidths and diverse receiver device processing powers and storage spaces demand scalable and flexible approaches that are capable of adapting to changing network conditions as well as device capabilities. To meet these requirements, scalable and fine granularity scalable (FGS) compression algorithms were proposed and widely adopted to provide scalable access of multimedia with interoperability between different services and flexible support to receivers with different device capabilities. Encryption is one of the most important security tools to protect content from unauthorized use. If a medium data stream is encrypted using non-scalable cryptography algorithms, decryption at arbitrary bit rate to provide scalable services can hardly be accomplished. If a medium compressed using scalable coding needs to be protected and non-scalable cryptography algorithms are used, the advantages of scalable coding may be lost. Therefore scalable encryption techniques are needed to provide scalability or to preserve the FGS adaptation capability (if the media stream is FGS coded) and enable intermediate processing of encrypted data without unnecessary decryption. In this paper, we will give an overview of scalable encryption schemes and present a fine grained scalable encryption algorithm. One desirable feature is its simplicity and flexibility in supporting scalable multimedia communication and multimedia content access control in wireless environments.
Key Generation for Fast Inversion of the Paillier Encryption Function
NASA Astrophysics Data System (ADS)
Hirano, Takato; Tanaka, Keisuke
We study fast inversion of the Paillier encryption function. Especially, we focus only on key generation, and do not modify the Paillier encryption function. We propose three key generation algorithms based on the speeding-up techniques for the RSA encryption function. By using our algorithms, the size of the private CRT exponent is half of that of Paillier-CRT. The first algorithm employs the extended Euclidean algorithm. The second algorithm employs factoring algorithms, and can construct the private CRT exponent with low Hamming weight. The third algorithm is a variant of the second one, and has some advantage such as compression of the private CRT exponent and no requirement for factoring algorithms. We also propose the settings of the parameters for these algorithms and analyze the security of the Paillier encryption function by these algorithms against known attacks. Finally, we give experimental results of our algorithms.
NASA Astrophysics Data System (ADS)
Bellare, Mihir; Ristenpart, Thomas; Rogaway, Phillip; Stegers, Till
Format-preserving encryption (FPE) encrypts a plaintext of some specified format into a ciphertext of identical format—for example, encrypting a valid credit-card number into a valid credit-card number. The problem has been known for some time, but it has lacked a fully general and rigorous treatment. We provide one, starting off by formally defining FPE and security goals for it. We investigate the natural approach for achieving FPE on complex domains, the “rank-then-encipher” approach, and explore what it can and cannot do. We describe two flavors of unbalanced Feistel networks that can be used for achieving FPE, and we prove new security results for each. We revisit the cycle-walking approach for enciphering on a non-sparse subset of an encipherable domain, showing that the timing information that may be divulged by cycle walking is not a damaging thing to leak.
NASA Technical Reports Server (NTRS)
Bishop, Matt
1988-01-01
The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.
Adsorption Compressor For Acquisition and Compression aof Atmospheric C02 on Mars
NASA Technical Reports Server (NTRS)
Rapp, Donald; Karlmann, Paul B.; Clark, David L.; Carr, Chad M.
1997-01-01
A flight-prototype zeolite adsorption compressor is being developed as a reliable, efficient, cost-effective means of extracting and compressing atmospheric C02 on the surface of Mars for use as the first stage of a Mars in-sity C02 to 02 chemical conversion process.
Using Chaotic System in Encryption
NASA Astrophysics Data System (ADS)
Findik, Oğuz; Kahramanli, Şirzat
In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.
Chaos based encryption system for encrypting electroencephalogram signals.
Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De
2014-05-01
In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals. PMID:24733526
NASA Astrophysics Data System (ADS)
Capell, Joyce; Deeth, David
1996-01-01
This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.
A Literature Review on Image Encryption Techniques
NASA Astrophysics Data System (ADS)
Khan, Majid; Shah, Tariq
2014-12-01
Image encryption plays a paramount part to guarantee classified transmission and capacity of image over web. Then again, a real-time image encryption confronts a more noteworthy test because of vast measure of information included. This paper exhibits an audit on image encryption in spatial, frequency and hybrid domains with both full encryption and selective encryption strategy.
A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System
Wu, Xiangjun; Li, Yang; Kurths, Jürgen
2015-01-01
The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hung; Chen, Yen-Lin
2013-02-01
This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.
Encryption and networking applications
Long, J.P.
1995-04-01
The DOE requires that sensitive unclassified data be protected while being transmitted electronically. On most large networks it is difficult and expensive to provide the required level of physical protection. At Sandia National Laboratories, we are assembling the structure necessary to protect sensitive unclassified data using software-based encryption. This approach has the advantage that the data can be protected after arrival at its destination without additional investment While Sandia has expertise in cryptography, we had not used cryptography in this field. This discussion deals with the client-server model of file-based data exchange and interactive access to on-line data bases using Unix workstations, Macs and PCs.
Optical asymmetric image encryption using gyrator wavelet transform
NASA Astrophysics Data System (ADS)
Mehra, Isha; Nishchal, Naveen K.
2015-11-01
In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.
Flexible Timed-Release Encryption
NASA Astrophysics Data System (ADS)
Yoshida, Maki; Fujiwara, Toru
This paper presents a new scheme for Timed-Release Encryption (TRE), which is mainly designed for global use. TRE aims to control the timing of disclosing information. The major approach to TRE assumes that any participants can receive a time token broadcasted by a trusted agent, called a time server. Our scheme is based on this approach and allows participants to generate an encrypted message that can be decrypted using designated or any authenticated time servers including even those which are authenticated after encryption. In this sense, our scheme has a more flexible framework in terms of message decryption.
Quantum computing on encrypted data
NASA Astrophysics Data System (ADS)
Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Quantum computing on encrypted data.
Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems. PMID:24445949
Mosso, Fabian; Barrera, John Fredy; Tebaldi, Myrian; Bolognini, Néstor; Torroba, Roberto
2011-03-14
We introduce for the first time the concept of an all-optical encrypted movie. This movie joints several encrypted frames corresponding to a time evolving situation employing the same encoding mask. Thanks to a multiplexing operation we compact the encrypted movie information into a single package. But the decryption of this single package implies the existence of cross-talk if we do not adequately pre-process the encoded information before multiplexing. In this regard, we introduce a grating modulation to each encoded image, and then we proceed to multiplexing. After appropriate filtering and synchronizing procedures applied to the multiplexing, we are able to decrypt and to reproduce the movie. This movie is only properly decoded when in possession of the right decoding key. The concept development is carried-out in virtual optical systems, both for the encrypting and the filtering-decrypting stages. Experimental results are shown to confirm our approach. PMID:21445211
Optimal encryption of quantum bits
Boykin, P. Oscar; Roychowdhury, Vwani
2003-04-01
We show that 2n random classical bits are both necessary and sufficient for encrypting any unknown state of n quantum bits in an informationally secure manner. We also characterize the complete set of optimal protocols in terms of a set of unitary operations that comprise an orthonormal basis in a canonical inner product space. Moreover, a connection is made between quantum encryption and quantum teleportation that allows for a different proof of optimality of teleportation.
Scalable encryption using alpha rooting
NASA Astrophysics Data System (ADS)
Wharton, Eric J.; Panetta, Karen A.; Agaian, Sos S.
2008-04-01
Full and partial encryption methods are important for subscription based content providers, such as internet and cable TV pay channels. Providers need to be able to protect their products while at the same time being able to provide demonstrations to attract new customers without giving away the full value of the content. If an algorithm were introduced which could provide any level of full or partial encryption in a fast and cost effective manner, the applications to real-time commercial implementation would be numerous. In this paper, we present a novel application of alpha rooting, using it to achieve fast and straightforward scalable encryption with a single algorithm. We further present use of the measure of enhancement, the Logarithmic AME, to select optimal parameters for the partial encryption. When parameters are selected using the measure, the output image achieves a balance between protecting the important data in the image while still containing a good overall representation of the image. We will show results for this encryption method on a number of images, using histograms to evaluate the effectiveness of the encryption.
Image encryption in the wavelet domain
NASA Astrophysics Data System (ADS)
Bao, Long; Zhou, Yicong; Chen, C. L. Philip
2013-05-01
Most existing image encryption algorithms often transfer the original image into a noise-like image which is an apparent visual sign indicating the presence of an encrypted image. Motivated by the data hiding technologies, this paper proposes a novel concept of image encryption, namely transforming an encrypted original image into another meaningful image which is the final resulting encrypted image and visually the same as the cover image, overcoming the mentioned problem. Using this concept, we introduce a new image encryption algorithm based on the wavelet decomposition. Simulations and security analysis are given to show the excellent performance of the proposed concept and algorithm.
A symmetrical image encryption scheme in wavelet and time domain
NASA Astrophysics Data System (ADS)
Luo, Yuling; Du, Minghui; Liu, Junxiu
2015-02-01
There has been an increasing concern for effective storages and secure transactions of multimedia information over the Internet. Then a great variety of encryption schemes have been proposed to ensure the information security while transmitting, but most of current approaches are designed to diffuse the data only in spatial domain which result in reducing storage efficiency. A lightweight image encryption strategy based on chaos is proposed in this paper. The encryption process is designed in transform domain. The original image is decomposed into approximation and detail components using integer wavelet transform (IWT); then as the more important component of the image, the approximation coefficients are diffused by secret keys generated from a spatiotemporal chaotic system followed by inverse IWT to construct the diffused image; finally a plain permutation is performed for diffusion image by the Logistic mapping in order to reduce the correlation between adjacent pixels further. Experimental results and performance analysis demonstrate the proposed scheme is an efficient, secure and robust encryption mechanism and it realizes effective coding compression to satisfy desirable storage.
1995-04-01
In order to provide needed security assurances for traffic carried in Asynchronous Transfer Mode (ATM) networks, methods of protecting the integrity and privacy of traffic must be employed. Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale and the incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. To study these trade-offs, a research prototype encryptor/decryptor is under development. This prototype is to demonstrate the viability of implementing certain encryption techniques in high speed networks by processing Asynchronous Transfer Mode (ATM) cells in a SONET OC-3 payload. This paper describes the objectives and design trade-offs intended to be investigated with the prototype. User requirements for high performance computing and communication have driven Sandia to do work in the areas of functionality, reliability, security, and performance of high speed communication networks. Adherence to standards (including emerging standards) achieves greater functionality of high speed computer networks by providing wide interoperability of applications, network hardware, and network software.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) and 1 CFR part 51. Copies of the standard listed in this section that are incorporated by reference... employed then the following encryption protocol must be used: Project 25 DES Encryption Protocol,...
Code of Federal Regulations, 2012 CFR
2012-10-01
...) and 1 CFR part 51. Copies of the standard listed in this section that are incorporated by reference... employed then the following encryption protocol must be used: Project 25 DES Encryption Protocol,...
Broadcast Encryption for Differently Privileged
NASA Astrophysics Data System (ADS)
Jin, Hongxia; Lotspiech, Jeffery
Broadcast encryption is a primary technology that has been used for content protection. It enables a broadcaster to distribute content to a set of users so that only a privileged subset of users can access the content and another subset of revoked users cannot access the content. The main enabling block in a broadcast encryption scheme is the session key block, which each authorized user processes differently, but each gets the same valid session key. Currently all existing broadcast encryption schemes have assumed that the content and authorized users are equally privileged. There are emerging scenarios that demand protection for content with different privileges and for users with different privileges. In this paper we shall present a new broadcast encryption scheme that continues to employ single session key blocks but provides different privileged protections for different content and users. In particular we will expand the elegant subset-cover-based broadcast encryption scheme. We shall introduce a new concept called “security class” into the session key blocks. We use keys derived from a chain of one-way functions. Our approach is simple, efficient and secure.
Testing a Variety of Encryption Technologies
Henson, T J
2001-04-09
Review and test speeds of various encryption technologies using Entrust Software. Multiple encryption algorithms are included in the product. Algorithms tested were IDEA, CAST, DES, and RC2. Test consisted of taking a 7.7 MB Word document file which included complex graphics and timing encryption, decryption and signing. Encryption is discussed in the GIAC Kickstart section: Information Security: The Big Picture--Part VI.
Private predictive analysis on encrypted medical data.
Bos, Joppe W; Lauter, Kristin; Naehrig, Michael
2014-08-01
Increasingly, confidential medical records are being stored in data centers hosted by hospitals or large companies. As sophisticated algorithms for predictive analysis on medical data continue to be developed, it is likely that, in the future, more and more computation will be done on private patient data. While encryption provides a tool for assuring the privacy of medical information, it limits the functionality for operating on such data. Conventional encryption methods used today provide only very restricted possibilities or none at all to operate on encrypted data without decrypting it first. Homomorphic encryption provides a tool for handling such computations on encrypted data, without decrypting the data, and without even needing the decryption key. In this paper, we discuss possible application scenarios for homomorphic encryption in order to ensure privacy of sensitive medical data. We describe how to privately conduct predictive analysis tasks on encrypted data using homomorphic encryption. As a proof of concept, we present a working implementation of a prediction service running in the cloud (hosted on Microsoft's Windows Azure), which takes as input private encrypted health data, and returns the probability for suffering cardiovascular disease in encrypted form. Since the cloud service uses homomorphic encryption, it makes this prediction while handling only encrypted data, learning nothing about the submitted confidential medical data. PMID:24835616
Multichanneled puzzle-like encryption
NASA Astrophysics Data System (ADS)
Amaya, Dafne; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Néstor
2008-07-01
In order to increase data security transmission we propose a multichanneled puzzle-like encryption method. The basic principle relies on the input information decomposition, in the same way as the pieces of a puzzle. Each decomposed part of the input object is encrypted separately in a 4 f double random phase mask architecture, by setting the optical parameters in a determined status. Each parameter set defines a channel. In order to retrieve the whole information it is necessary to properly decrypt and compose all channels. Computer simulations that confirm our proposal are presented.
Enhancement of utilization of encryption engine
Robertson, Robert J.; Witzke, Edward L.
2008-04-22
A method of enhancing throughput of a pipelined encryption/decryption engine for an encryption/decryption process has a predetermined number of stages and provides feedback around the stages (and of such an encryption/decryption engine) by receiving a source datablock for a given stage and encryption/decryption context identifier; indexing according to the encryption/decryption context identifier into a bank of initial variables to retrieve an initial variable for the source datablock; and generating an output datablock from the source datablock and its corresponding initial variable.
Optical image encryption in phase space
NASA Astrophysics Data System (ADS)
Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying
2014-11-01
In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.
Simultaneous transmission for an encrypted image and a double random-phase encryption key
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Zhou, Xin; Li, Da-Hai; Zhou, Ding-Fu
2007-06-01
We propose a method to simultaneously transmit double random-phase encryption key and an encrypted image by making use of the fact that an acceptable decryption result can be obtained when only partial data of the encrypted image have been taken in the decryption process. First, the original image data are encoded as an encrypted image by a double random-phase encryption technique. Second, a double random-phase encryption key is encoded as an encoded key by the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. Then the amplitude of the encrypted image is modulated by the encoded key to form what we call an encoded image. Finally, the encoded image that carries both the encrypted image and the encoded key is delivered to the receiver. Based on such a method, the receiver can have an acceptable result and secure transmission can be guaranteed by the RSA cipher system.
Method for encryption and transmission of digital keying data
Mniszewski, S.M.; Springer, E.A.; Brenner, D.P.
1988-03-29
A cryptographic method for encrypting, transmitting and decrypting keying data between a master unit and at least one remote unit is described comprising the steps of: storing in the master unit and in the remote unit key encryption keys, generating a first storage address effective to identify a master key encryption key from the key encryption keys; indexing the first storage address by a first predetermined amount to define a second storage address effective to identify a first key encryption key from the key encryption keys; indexing the first storage address by a second predetermined amount to define a third storage address effective to identify a second key encryption key from the key encryption keys; generating a data encryption key in the master unit, using the first key encryption key; encrypting the data encryption key using the second key encryption key to produce an encrypted data encryption key; downloading to the remote unit the encrypted data encryption key together with a designator value for identifying the address of the second key encryption key at the remote unit; and decrypting the encrypted data encryption key at the remote unit to reproduce the data encryption key at the remote unit.
Method for encryption and transmission of digital keying data
Mniszewski, Susan M.; Springer, Edward A.; Brenner, David P.
1988-01-01
A method for the encryption, transmission, and subsequent decryption of digital keying data. The method utilizes the Data Encryption Standard and is implemented by means of a pair of apparatus, each of which is selectable to operate as either a master unit or remote unit. Each unit contains a set of key encryption keys which are indexed by a common indexing system. The master unit operates upon command from the remote unit to generate a data encryption key and encrypt the data encryption key using a preselected key encryption key. The encrypted data encryption key and an index designator are then downloaded to the remote unit, where the data encryption key is decrypted for subsequent use in the encryption and transmission data. Downloading of the encrypted data encryption key enables frequent change of keys without requiring manual entry or storage of keys at the remote unit.
Optical encryption system using quadrature multiplexing
NASA Astrophysics Data System (ADS)
Islam, Mohammed Nazrul; Alam, Mohammad S.
2006-08-01
Optical security systems have attracted much research interest recently for information security and fraud deterrent applications. A number of encryption techniques have been proposed in the literature, which includes double random-phase encryption, polarization encoding, encryption and verification using a multiplexed minimum average correlation energy phase-encrypted filter. Most of these reports employ a pseudo-random code for each information to be encrypted, where it requires individual storage capacity or transmission channel for further processing of each information. The objective of this paper is to develop an optical encryption system employing quadrature multiplexing to enhance the storage/transmission capacity of the system. Two information signals are encrypted using the same code but employing two orthogonal functions and then they are multiplexed together in the same domain. As the orthogonal functions have zero cross-correlation between them, so the encrypted information are expected to be unaffected by each other. Each encryption and multiplexing process can accommodate two information signals for a single code and a single storage cell or transmission channel. The same process can be performed in multiple steps to increase the multiplexing capability of the system. For decryption purpose, the composite encoded signal is correlated using the appropriate code and the appropriate function. The proposed technique has been found to work excellent in computer simulation with binary as well as gray level images. It has also been verified that the encrypted images remain secure, because no unwanted reproduction is possible without having the appropriate code and function.
A framework for MPEG-21 DIA based adaptation and perceptual encryption of H.264 video
NASA Astrophysics Data System (ADS)
Iqbal, Razib; Shirmohammadi, Shervin; El Saddik, Abdulmotaleb
2007-01-01
A ubiquitous computing concept permits end users to have access to multimedia and digital content anywhere, anytime and in any way they want. As a consequence, the importance of resource customization according to user preferences and device requirements set the primary challenge towards seamless access. Moreover, once a suitable customization approach has been decided (e.g. adaptation), deploying it in the existing network requires a generic and widely accepted standard applied to the process. With the advancement of time, performing encryption in the compressed domain should also be taken care of not only for serving sensitive digital contents but also for offering security as an embedded feature of the adaptation practice to ensure digital right management and confidentiality. In this paper, we present an architecture for temporal adaptation of ITU-T H.264 video conforming to ISO/IEC MPEG-21 DIA. In addition, we present a perceptual encryption scheme that is integrated in the system for video encryption. The framework enables video bitstreams to be adapted and encrypted in the compressed domain, eliminating cascaded adaptation (i.e. decoding - adaptation - encoding). The encryption framework is applied on the adapted video content, which reduces computational overhead compared to that on the original content. A prototype, based on the proposed architecture and experimental evaluations of the system as well as its performance supporting the architecture are also presented.
Pure optical dynamical color encryption.
Mosso, Fabian; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto
2011-07-18
We introduce a way to encrypt-decrypt a color dynamical phenomenon using a pure optical alternative. We split the three basic chromatic channels composing the input, and then each channel is processed through a 4f encoding method and a theta modulation applied to the each encrypted frame in every channel. All frames for a single channel are multiplexed. The same phase mask is used to encode all the information. Unlike the usual procedure we do not multiplex the three chromatic channels into a single encoding media, because we want to decrypt the information in real time. Then, we send to the decoding station the phase mask and the three packages each one containing the multiplexing of a single channel. The end user synchronizes and decodes the information contained in the separate channels. Finally, the decoding information is conveyed together to bring the decoded dynamical color phenomenon in real-time. We present material that supports our concepts. PMID:21934738
Pure optical dynamical color encryption
NASA Astrophysics Data System (ADS)
Mosso, Fabian; Tebaldi, Myrian; Fredy Barrera, John; Bolognini, Néstor; Torroba, Roberto
2011-07-01
We introduce a way to encrypt-decrypt a color dynamical phenomenon using a pure optical alternative. We split the three basic chromatic channels composing the input, and then each channel is processed through a 4f encoding method and a theta modulation applied to the each encrypted frame in every channel. All frames for a single channel are multiplexed. The same phase mask is used to encode all the information. Unlike the usual procedure we do not multiplex the three chromatic channels into a single encoding media, because we want to decrypt the information in real time. Then, we send to the decoding station the phase mask and the three packages each one containing the multiplexing of a single channel. The end user synchronizes and decodes the information contained in the separate channels. Finally, the decoding information is conveyed together to bring the decoded dynamical color phenomenon in real-time. We present material that supports our concepts.
Multiplexing of encrypted data using fractal masks.
Barrera, John F; Tebaldi, Myrian; Amaya, Dafne; Furlan, Walter D; Monsoriu, Juan A; Bolognini, Néstor; Torroba, Roberto
2012-07-15
In this Letter, we present to the best of our knowledge a new all-optical technique for multiple-image encryption and multiplexing, based on fractal encrypting masks. The optical architecture is a joint transform correlator. The multiplexed encrypted data are stored in a photorefractive crystal. The fractal parameters of the key can be easily tuned to lead to a multiplexing operation without cross talk effects. Experimental results that support the potential of the method are presented. PMID:22825170
Novel Image Encryption based on Quantum Walks
Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng
2015-01-01
Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889
Advanced technologies for encryption of satellite links
NASA Astrophysics Data System (ADS)
McMahan, Sherry S.
The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.
Novel image encryption based on quantum walks.
Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng
2015-01-01
Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889
Decryption with incomplete cyphertext and multiple-information encryption in phase space.
Xu, Xiaobin; Wu, Quanying; Liu, Jun; Situ, Guohai
2016-01-25
Recently, we have demonstrated that information encryption in phase space offers security enhancement over the traditional encryption schemes operating in real space. However, there is also an important issue with this technique: increasing the cost for data transmitting and storage. To address this issue, here we investigate the problem of decryption using incomplete cyphertext. We show that the analytic solution under the traditional framework set the lower limit of decryption performance. More importantly, we demonstrate that one just needs a small amount of cyphertext to recover the plaintext signal faithfully using compressive sensing, meaning that the amount of data that needs to transmit and store can be significantly reduced. This leads to multiple information encryption so that we can use the system bandwidth more effectively. We also provide an optical experimental result to demonstrate the plaintext recovered in phase space. PMID:26832552
15 CFR 742.15 - Encryption items.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Encryption items. 742.15 Section 742.15 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.15 Encryption...
15 CFR 742.15 - Encryption items.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Encryption items. 742.15 Section 742.15 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.15 Encryption...
Image encryption using the fractional wavelet transform
NASA Astrophysics Data System (ADS)
Vilardy, Juan M.; Useche, J.; Torres, C. O.; Mattos, L.
2011-01-01
In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.
Optical encryption for large-sized images
NASA Astrophysics Data System (ADS)
Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi
2016-02-01
We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.
Selective encryption for H.264/AVC video coding
NASA Astrophysics Data System (ADS)
Shi, Tuo; King, Brian; Salama, Paul
2006-02-01
Due to the ease with which digital data can be manipulated and due to the ongoing advancements that have brought us closer to pervasive computing, the secure delivery of video and images has become a challenging problem. Despite the advantages and opportunities that digital video provide, illegal copying and distribution as well as plagiarism of digital audio, images, and video is still ongoing. In this paper we describe two techniques for securing H.264 coded video streams. The first technique, SEH264Algorithm1, groups the data into the following blocks of data: (1) a block that contains the sequence parameter set and the picture parameter set, (2) a block containing a compressed intra coded frame, (3) a block containing the slice header of a P slice, all the headers of the macroblock within the same P slice, and all the luma and chroma DC coefficients belonging to the all the macroblocks within the same slice, (4) a block containing all the ac coefficients, and (5) a block containing all the motion vectors. The first three are encrypted whereas the last two are not. The second method, SEH264Algorithm2, relies on the use of multiple slices per coded frame. The algorithm searches the compressed video sequence for start codes (0x000001) and then encrypts the next N bits of data.
Quantum fully homomorphic encryption scheme based on universal quantum circuit
NASA Astrophysics Data System (ADS)
Liang, Min
2015-08-01
Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on any encrypted data. The QFHE scheme is proved to be perfectly secure. In the scheme, the decryption key is different from the encryption key; however, the encryption key cannot be revealed. Moreover, the evaluation algorithm of the scheme is independent of the encryption key, so it is suitable for delegated quantum computing between two parties.
Limitations on information-theoretically-secure quantum homomorphic encryption
NASA Astrophysics Data System (ADS)
Yu, Li; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2014-11-01
Homomorphic encryption is a form of encryption which allows computation to be carried out on the encrypted data without the need for decryption. The success of quantum approaches to related tasks in a delegated computation setting has raised the question of whether quantum mechanics may be used to achieve information-theoretically-secure fully homomorphic encryption. Here we show, via an information localization argument, that deterministic fully homomorphic encryption necessarily incurs exponential overhead if perfect security is required.
Video Encryption and Decryption on Quantum Computers
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Image encryption with chaotically coupled chaotic maps
NASA Astrophysics Data System (ADS)
Pisarchik, A. N.; Zanin, M.
2008-10-01
We present a novel secure cryptosystem for direct encryption of color images, based on chaotically coupled chaotic maps. The proposed cipher provides good confusion and diffusion properties that ensures extremely high security because of the chaotic mixing of pixels’ colors. Information is mixed and distributed over a complete image using a complex strategy that makes known plaintext attack unfeasible. The encryption algorithm guarantees the three main goals of cryptography: strong cryptographic security, short encryption/decryption time, and robustness against noise and other external disturbances. Due to the high speed, the proposed cryptosystem is suitable for application in real-time communication systems.
15 CFR 742.15 - Encryption items.
Code of Federal Regulations, 2014 CFR
2014-01-01
... classification, registration or self-classification reporting is a laptop computer that without encryption would...; home use networking commodities and software (e.g., personal firewalls, cable modems for...
15 CFR 742.15 - Encryption items.
Code of Federal Regulations, 2012 CFR
2012-01-01
... classification, registration or self-classification reporting is a laptop computer that without encryption would...; home use networking commodities and software (e.g., personal firewalls, cable modems for...
15 CFR 742.15 - Encryption items.
Code of Federal Regulations, 2013 CFR
2013-01-01
... classification, registration or self-classification reporting is a laptop computer that without encryption would...; home use networking commodities and software (e.g., personal firewalls, cable modems for...
Quantum Secure Dialogue with Quantum Encryption
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2014-09-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice.
WEDDS: The WITS Encrypted Data Delivery System
NASA Technical Reports Server (NTRS)
Norris, J.; Backes, P.
1999-01-01
WEDDS, the WITS Encrypted Data Delivery System, is a framework for supporting distributed mission operations by automatically transferring sensitive mission data in a secure and efficient manner to and from remote mission participants over the internet.
Multidimensional data encryption with virtual optics
NASA Astrophysics Data System (ADS)
Yu, Lingfeng
Information security is very important in many application areas in the field of information technology. Recently, a number of optical encryption methods have been proposed for the purpose of information hiding and data security, because optical information processing techniques have obvious advantages such as high degrees of freedom (e.g. amplitude, phase, polarization, wavelength) for encryption and decryption, and high-level data security. However, the limitations of current optical encryption methods relate to the complexity of their optical hardware, the requirements of the information type, lack of flexibility, and the lack of compact and low-cost optoelectronics devices and systems. These problems make it difficult to move optical encryption out of the research lab and into real world application areas. In this thesis, a novel parameterized multidimensional data encryption method based on the concept of "virtual optics" is proposed. A strong motivation for the research in this thesis is to overcome the abovementioned problems currently existing in optical encryption and to retain most of the favorable features of optical encryption. The phrase "virtual optics" means that both the optical encryption and decryption processes are implemented in an all-digital manner, adopting optical information processing technologies such as optical holography, optical diffraction or other relevant optical processes. In addition to utilizing some geometric and physical parameters derived from a configuration of digital optics, some information disarrangement actions have also been suggested as tools for designing multiple locks and keys for data encryption in hyperspace. The sensitivities of these supposed keys are quantitatively analyzed and the possible security level of the proposed cryptosystem is assessed. Security of the cryptosystem is also analyzed by examining some possible attacks on the cryptosystem from the viewpoint of a cryptanalysis. This thesis has shown the
ElGamal cryptosystem with embedded compression-crypto technique
NASA Astrophysics Data System (ADS)
Mandangan, Arif; Yin, Lee Souk; Hung, Chang Ee; Hussin, Che Haziqah Che
2014-12-01
Key distribution problem in symmetric cryptography has been solved by the emergence of asymmetric cryptosystem. Due to its mathematical complexity, computation efficiency becomes a major problem in the real life application of asymmetric cryptosystem. This scenario encourage various researches regarding the enhancement of computation efficiency of asymmetric cryptosystems. ElGamal cryptosystem is one of the most established asymmetric cryptosystem. By using proper parameters, ElGamal cryptosystem is able to provide a good level of information security. On the other hand, Compression-Crypto technique is a technique used to reduce the number of plaintext to be encrypted from k∈ Z+, k > 2 plaintext become only 2 plaintext. Instead of encrypting k plaintext, we only need to encrypt these 2 plaintext. In this paper, we embed the Compression-Crypto technique into the ElGamal cryptosystem. To show that the embedded ElGamal cryptosystem works, we provide proofs on the decryption processes to recover the encrypted plaintext.
Dual-Layer Video Encryption using RSA Algorithm
NASA Astrophysics Data System (ADS)
Chadha, Aman; Mallik, Sushmit; Chadha, Ankit; Johar, Ravdeep; Mani Roja, M.
2015-04-01
This paper proposes a video encryption algorithm using RSA and Pseudo Noise (PN) sequence, aimed at applications requiring sensitive video information transfers. The system is primarily designed to work with files encoded using the Audio Video Interleaved (AVI) codec, although it can be easily ported for use with Moving Picture Experts Group (MPEG) encoded files. The audio and video components of the source separately undergo two layers of encryption to ensure a reasonable level of security. Encryption of the video component involves applying the RSA algorithm followed by the PN-based encryption. Similarly, the audio component is first encrypted using PN and further subjected to encryption using the Discrete Cosine Transform. Combining these techniques, an efficient system, invulnerable to security breaches and attacks with favorable values of parameters such as encryption/decryption speed, encryption/decryption ratio and visual degradation; has been put forth. For applications requiring encryption of sensitive data wherein stringent security requirements are of prime concern, the system is found to yield negligible similarities in visual perception between the original and the encrypted video sequence. For applications wherein visual similarity is not of major concern, we limit the encryption task to a single level of encryption which is accomplished by using RSA, thereby quickening the encryption process. Although some similarity between the original and encrypted video is observed in this case, it is not enough to comprehend the happenings in the video.
Image encryption by redirection and cyclical shift
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; Wiatrek, Bryan A.; Agaian, Sos S.
2015-05-01
In this paper, we present a novel method for encrypting and decrypting large amounts of data such as two-dimensional (2-D) images, both gray-scale and color, without the loss of information, and using private keys of varying lengths. The proposed method is based on the concept of the tensor representation of an image and splitting the 2-D discrete Fourier transform (DFT) by one-dimensional (1-D) DFTs of signals from the tensor representation, or transform. The splitting of the transform is accomplished in a three-dimensional (3-D) space, namely on the 3-D lattice placed on the torus. Each splitting-signal of the image defines the 2-D DFT along the frequency-points located on the spirals on the torus. Spirals have different form and cover the lattice on the torus in a complex form, which makes them very effective when moving data through and between the spirals, and data along the spirals. The encryption consists of several iterative applications of mapping the 3-D torus into several ones of smaller sizes, and rotates then moves the data around the spirals on all tori. The encryption results in the image which is uncorrelated. The decryption algorithm uses the encrypted data, and processes them in inverse order with an identical number of iterations. The proposed method can be extended to encrypt and decrypt documents as well as other types of digital media. Simulation results of the purposed method are presented to show the performance for image encryption.
Visual cryptography based on optical interference encryption technique
NASA Astrophysics Data System (ADS)
Seo, Dong-Hoan; Kim, Jong-Yun; Lee, Sang-Su; Park, Se-Joon; Cho, Woong H.; Kim, Soo-Joong
2001-07-01
In this paper, we proposed a new visual cryptography scheme based on optical interference that can improve the contrast and signal to noise ratio of reconstructed images when compared to conventional visual cryptography methods. The binary image being encrypted is divided into any number of n slides. For encryption, randomly independent keys are generated along with another random key based on a XOR process of random keys. The XOR process between each divided image and each random key produces the encryption of n encrypted images. These encrypted images are then used to make encrypted binary phase masks. For decryption, the phase masks are placed on the paths of a Mach-Zehnder interferometer.
NASA Astrophysics Data System (ADS)
Bondareva, Alyona P.; Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.
2014-10-01
At present time methods of optical encryption are actively developed. The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution which require application of complex holographic schemes in conjunction with spatially coherent monochromatic illumination. This leads to complex optical schemes and low decryption quality. To eliminate these disadvantages it is possible to implement optical encryption using spatially incoherent monochromatic illumination which requires registration of light intensity distribution only. Encryption is accomplished by means of optical convolution of image of scene to be encrypted and encryption diffractive optical element (DOE) point spread function (PSF) which serves as encryption key. Encryption process is described as follows. Scene is illuminated with spatially-incoherent monochromatic light. In the absence of encryption DOE lens forms image of scene in photosensor plane. DOE serves as encryption element, its PSF - encryption key. Light passing through DOE forms convolution of object image and DOE PSF. Registered by photosensor convolution is encrypted image. Decryption was conducted numerically on computer by means of inverse filtration with regularization. Kinoforms were used as encryption DOE because they have single diffraction order. Two liquid crystal (LC) spatial light modulators (SLM) were used to implement dynamic digital information input and dynamic encryption key change. As input scene amplitude LC SLM HoloEye LC2002 with 800×600 pixels 32×32 μm2 and 256 gray levels was used. To image synthesized encryption kinoforms phase LC SLM HoloEye PLUTO VIS with 1920×1080 pixels 8×8 μm2 and 256 phase levels was used. Set of test images was successfully optically encrypted and then numerically decrypted. Encrypted images contents are hidden. Decrypted images despite quite high noise levels are positively recognizable
Implementation notes on bdes(1). [data encryption implementation
NASA Technical Reports Server (NTRS)
Bishop, Matt
1991-01-01
This note describes the implementation of bdes, the file encryption program being distributed in the 4.4 release of the Berkeley Software Distribution. It implements all modes of the Data Encryption Standard program.
Selective image encryption using a spatiotemporal chaotic system.
Xiang, Tao; Wong, Kwok-wo; Liao, Xiaofeng
2007-06-01
A universal selective image encryption algorithm, in which the spatiotemporal chaotic system is utilized, is proposed to encrypt gray-level images. In order to resolve the tradeoff between security and performance, the effectiveness of selective encryption is discussed based on simulation results. The scheme is then extended to encrypt RGB color images. Security analyses for both scenarios show that the proposed schemes achieve high security and efficiency. PMID:17614669
A DRM based on renewable broadcast encryption
NASA Astrophysics Data System (ADS)
Ramkumar, Mahalingam; Memon, Nasir
2005-07-01
We propose an architecture for digital rights management based on a renewable, random key pre-distribution (KPD) scheme, HARPS (hashed random preloaded subsets). The proposed architecture caters for broadcast encryption by a trusted authority (TA) and by "parent" devices (devices used by vendors who manufacture compliant devices) for periodic revocation of devices. The KPD also facilitates broadcast encryption by peer devices, which permits peers to distribute content, and efficiently control access to the content encryption secret using subscription secrets. The underlying KPD also caters for broadcast authentication and mutual authentication of any two devices, irrespective of the vendors manufacturing the device, and thus provides a comprehensive solution for securing interactions between devices taking part in a DRM system.
Optimal Symmetric Ternary Quantum Encryption Schemes
NASA Astrophysics Data System (ADS)
Wang, Yu-qi; She, Kun; Huang, Ru-fen; Ouyang, Zhong
2016-07-01
In this paper, we present two definitions of the orthogonality and orthogonal rate of an encryption operator, and we provide a verification process for the former. Then, four improved ternary quantum encryption schemes are constructed. Compared with Scheme 1 (see Section 2.3), these four schemes demonstrate significant improvements in term of calculation and execution efficiency. Especially, under the premise of the orthogonal rate ɛ as secure parameter, Scheme 3 (see Section 4.1) shows the highest level of security among them. Through custom interpolation functions, the ternary secret key source, which is composed of the digits 0, 1 and 2, is constructed. Finally, we discuss the security of both the ternary encryption operator and the secret key source, and both of them show a high level of security and high performance in execution efficiency.
Photonic encryption using all optical logic.
Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George
2003-12-01
With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an
Non Breakable Data Encryption With Classical Information?
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Sethuraman, Swaminathan; Heszler, Peter
2005-11-01
With the Kish-Sethuraman (KS) cipher an attempt was made, by using special operators and communication, to reach absolutely secure classical communication. First the message is bounced back with additional encryption by the Receiver and then the original encryption is removed and the message is resent by the Sender. The mechanical analogy of this operation is using two padlocks; one by the Sender and one by the Receiver. Klappenecker has pointed out that finding an efficient software realization of the operators is equivalent of proving the P ≠ NP problem. Various open problems are discussed.
A new lossless digital image encryption scheme
NASA Astrophysics Data System (ADS)
Pareek, Narendra K.; Patidar, Vinod; Sud, Krishan K.
2011-12-01
We propose a new lossless digital image encryption scheme based on the permutation and substitution architecture. Initially, original image is divided into squared sub-images and then three layers of pixels corresponding to additive primary colours (RGB) of each sub-image are separated. Each layer of pixels of squared sub-images are scrambled by three different ways in the permutation process whereas a simple arithmetic, mainly sorting and differencing, is performed on each layer of pixels to achieve the substitution. The results of several experiments show that the proposed image cipher provides an efficient way for image encryption with high decryption rate.
Identity-Based Verifiably Encrypted Signatures without Random Oracles
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wu, Qianhong; Qin, Bo
Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and the resulting encrypted signature consists of only four group elements. Based on the computational Diffie-Hellman assumption, our scheme is proven secure without using random oracles. To the best of our knowledge, this is the first identity-based verifiably encrypted signature scheme provably secure in the standard model.
Double image encryption based on iterative fractional Fourier transform
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Liu, Shutian
2007-07-01
We present an image encryption algorithm to simultaneously encrypt two images into a single one as the amplitudes of fractional Fourier transform with different orders. From the encrypted image we can get two original images independently by fractional Fourier transforms with two different fractional orders. This algorithm can be independent of additional random phases as the encryption/decryption keys. Numerical results are given to analyze the capability of this proposed method. A possible extension to multi-image encryption with a fractional order multiplexing scheme has also been given.
Public-key encryption with chaos
NASA Astrophysics Data System (ADS)
Kocarev, Ljupco; Sterjev, Marjan; Fekete, Attila; Vattay, Gabor
2004-12-01
We propose public-key encryption algorithms based on chaotic maps, which are generalization of well-known and commercially used algorithms: Rivest-Shamir-Adleman (RSA), ElGamal, and Rabin. For the case of generalized RSA algorithm we discuss in detail its software implementation and properties. We show that our algorithm is as secure as RSA algorithm.
Public-key encryption with chaos.
Kocarev, Ljupco; Sterjev, Marjan; Fekete, Attila; Vattay, Gabor
2004-12-01
We propose public-key encryption algorithms based on chaotic maps, which are generalization of well-known and commercially used algorithms: Rivest-Shamir-Adleman (RSA), ElGamal, and Rabin. For the case of generalized RSA algorithm we discuss in detail its software implementation and properties. We show that our algorithm is as secure as RSA algorithm. PMID:15568922
Encryption and the loss of patient data.
Miller, Amalia R; Tucker, Catherine E
2011-01-01
Fast-paced IT advances have made it increasingly possible and useful for firms to collect data on their customers on an unprecedented scale. One downside of this is that firms can experience negative publicity and financial damage if their data are breached. This is particularly the case in the medical sector, where we find empirical evidence that increased digitization of patient data is associated with more data breaches. The encryption of customer data is often presented as a potential solution, because encryption acts as a disincentive for potential malicious hackers, and can minimize the risk of breached data being put to malicious use. However, encryption both requires careful data management policies to be successful and does not ward off the insider threat. Indeed, we find no empirical evidence of a decrease in publicized instances of data loss associated with the use of encryption. Instead, there are actually increases in the cases of publicized data loss due to internal fraud or loss of computer equipment. PMID:21774164
Code of Federal Regulations, 2014 CFR
2014-10-01
... incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The standard can also be... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of... (AES) specified in ANSI/TIA-102.AAAD-A: Project 25 Digital Land Mobile Radio-Block Encryption...
Attribute-based proxy re-encryption with keyword search.
Shi, Yanfeng; Liu, Jiqiang; Han, Zhen; Zheng, Qingji; Zhang, Rui; Qiu, Shuo
2014-01-01
Keyword search on encrypted data allows one to issue the search token and conduct search operations on encrypted data while still preserving keyword privacy. In the present paper, we consider the keyword search problem further and introduce a novel notion called attribute-based proxy re-encryption with keyword search (ABRKS), which introduces a promising feature: In addition to supporting keyword search on encrypted data, it enables data owners to delegate the keyword search capability to some other data users complying with the specific access control policy. To be specific, ABRKS allows (i) the data owner to outsource his encrypted data to the cloud and then ask the cloud to conduct keyword search on outsourced encrypted data with the given search token, and (ii) the data owner to delegate other data users keyword search capability in the fine-grained access control manner through allowing the cloud to re-encrypted stored encrypted data with a re-encrypted data (embedding with some form of access control policy). We formalize the syntax and security definitions for ABRKS, and propose two concrete constructions for ABRKS: key-policy ABRKS and ciphertext-policy ABRKS. In the nutshell, our constructions can be treated as the integration of technologies in the fields of attribute-based cryptography and proxy re-encryption cryptography. PMID:25549257
Attribute-Based Proxy Re-Encryption with Keyword Search
Shi, Yanfeng; Liu, Jiqiang; Han, Zhen; Zheng, Qingji; Zhang, Rui; Qiu, Shuo
2014-01-01
Keyword search on encrypted data allows one to issue the search token and conduct search operations on encrypted data while still preserving keyword privacy. In the present paper, we consider the keyword search problem further and introduce a novel notion called attribute-based proxy re-encryption with keyword search (), which introduces a promising feature: In addition to supporting keyword search on encrypted data, it enables data owners to delegate the keyword search capability to some other data users complying with the specific access control policy. To be specific, allows (i) the data owner to outsource his encrypted data to the cloud and then ask the cloud to conduct keyword search on outsourced encrypted data with the given search token, and (ii) the data owner to delegate other data users keyword search capability in the fine-grained access control manner through allowing the cloud to re-encrypted stored encrypted data with a re-encrypted data (embedding with some form of access control policy). We formalize the syntax and security definitions for , and propose two concrete constructions for : key-policy and ciphertext-policy . In the nutshell, our constructions can be treated as the integration of technologies in the fields of attribute-based cryptography and proxy re-encryption cryptography. PMID:25549257
NES++: number system for encryption based privacy preserving speaker verification
NASA Astrophysics Data System (ADS)
Xu, Lei; Feng, Tao; Zhao, Xi; Shi, Weidong
2014-05-01
As speech based operation becomes a main hand-free interaction solution between human and mobile devices (i.e., smartphones, Google Glass), privacy preserving speaker verification receives much attention nowadays. Privacy preserving speaker verification can be achieved through many different ways, such as fuzzy vault and encryption. Encryption based solutions are promising as cryptography is based on solid mathematic foundations and the security properties can be easily analyzed in a well established framework. Most current asymmetric encryption schemes work on finite algebraic structures, such as finite group and finite fields. However, the encryption scheme for privacy preserving speaker verification must handle floating point numbers. This gap must be filled to make the overall scheme practical. In this paper, we propose a number system that meets the requirements of both speaker verification and the encryption scheme used in the process. It also supports addition homomorphic property of Pailliers encryption, which is crucial for privacy preserving speaker verification. As asymmetric encryption is expensive, we propose a method of packing several numbers into one plain-text and the computation overhead is greatly reduced. To evaluate the performance of this method, we implement Pailliers encryption scheme over proposed number system and the packing technique. Our findings show that the proposed solution can fulfill the gap between speaker verification and encryption scheme very well, and the packing technique improves the overall performance. Furthermore, our solution is a building block of encryption based privacy preserving speaker verification, the privacy protection and accuracy rate are not affected.
Image encryption using P-Fibonacci transform and decomposition
NASA Astrophysics Data System (ADS)
Zhou, Yicong; Panetta, Karen; Agaian, Sos; Chen, C. L. Philip
2012-03-01
Image encryption is an effective method to protect images or videos by transferring them into unrecognizable formats for different security purposes. To improve the security level of bit-plane decomposition based encryption approaches, this paper introduces a new image encryption algorithm by using a combination of parametric bit-plane decomposition along with bit-plane shuffling and resizing, pixel scrambling and data mapping. The algorithm utilizes the Fibonacci P-code for image bit-plane decomposition and the 2D P-Fibonacci transform for image encryption because they are parameter dependent. Any new or existing method can be used for shuffling the order of the bit-planes. Simulation analysis and comparisons are provided to demonstrate the algorithm's performance for image encryption. Security analysis shows the algorithm's ability against several common attacks. The algorithm can be used to encrypt images, biometrics and videos.
An OFDM-Based Speech Encryption System without Residual Intelligibility
NASA Astrophysics Data System (ADS)
Tseng, Der-Chang; Chiu, Jung-Hui
Since an FFT-based speech encryption system retains a considerable residual intelligibility, such as talk spurts and the original intonation in the encrypted speech, this makes it easy for eavesdroppers to deduce the information contents from the encrypted speech. In this letter, we propose a new technique based on the combination of an orthogonal frequency division multiplexing (OFDM) scheme and an appropriate QAM mapping method to remove the residual intelligibility from the encrypted speech by permuting several frequency components. In addition, the proposed OFDM-based speech encryption system needs only two FFT operations instead of the four required by the FFT-based speech encryption system. Simulation results are presented to show the effectiveness of this proposed technique.
A high performance hardware implementation image encryption with AES algorithm
NASA Astrophysics Data System (ADS)
Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab
2011-06-01
This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.
High Capacity Reversible Data Hiding in Encrypted Images by Patch-Level Sparse Representation.
Cao, Xiaochun; Du, Ling; Wei, Xingxing; Meng, Dan; Guo, Xiaojie
2016-05-01
Reversible data hiding in encrypted images has attracted considerable attention from the communities of privacy security and protection. The success of the previous methods in this area has shown that a superior performance can be achieved by exploiting the redundancy within the image. Specifically, because the pixels in the local structures (like patches or regions) have a strong similarity, they can be heavily compressed, thus resulting in a large hiding room. In this paper, to better explore the correlation between neighbor pixels, we propose to consider the patch-level sparse representation when hiding the secret data. The widely used sparse coding technique has demonstrated that a patch can be linearly represented by some atoms in an over-complete dictionary. As the sparse coding is an approximation solution, the leading residual errors are encoded and self-embedded within the cover image. Furthermore, the learned dictionary is also embedded into the encrypted image. Thanks to the powerful representation of sparse coding, a large vacated room can be achieved, and thus the data hider can embed more secret messages in the encrypted image. Extensive experiments demonstrate that the proposed method significantly outperforms the state-of-the-art methods in terms of the embedding rate and the image quality. PMID:25955861
Steganography and encrypting based on immunochemical systems.
Kim, Kyung-Woo; Bocharova, Vera; Halámek, Jan; Oh, Min-Kyu; Katz, Evgeny
2011-05-01
Steganography and encrypting were demonstrated with immuno-specific systems. IgG-proteins were used as invisible ink developed with complementary antibodies labeled with enzymes producing color spots. The information security was achieved by mixing the target protein-antigens used for the text encoding with masking proteins of similar composition but having different bioaffinity. Two different texts were simultaneously encoded by using two different encoding proteins in a mixture. Various encrypting techniques were exemplified with the immuno-systems used for the steganography. Future use of the developed approach for information protection and watermark-technology was proposed. Scaling down the encoded text to a micro-size is feasible with the use of nanotechnology. PMID:21449025
Current status of link access control and encryption system
Springer, E.
1984-01-01
The purpose of this project is to develop necessary technologies for the secure protection of data communication networks. Data encryption equipment, using the federal government's Data Encryption Standard (DES) algorithm, was designed and developed. This equipment is the Link Access Control and Encryption (Link ACE) system. It protects unclassified sensitive data transmissions over unprotected lines between central computers and remote terminals. Link ACE units have been installed and are operational in the Department of Energy's Central Personnel Clearance Index (CPCI) system.
Three-dimensional photon counting double-random-phase encryption.
Cho, Myungjin; Javidi, Bahram
2013-09-01
In this Letter, we present a three-dimensional (3D) photon counting double-random-phase encryption (DRPE) technique using passive integral imaging. A 3D photon counting DRPE can encrypt a 3D scene and provides more security and authentications due to photon counting Poisson nonlinear transformation on the encrypted image. In addition, 3D imaging allows verification of the 3D object at different depths. Preliminary results and performance evaluation have been presented. PMID:23988912
New Security Results on Encrypted Key Exchange
Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David
2003-12-15
Schemes for encrypted key exchange are designed to provide two entities communicating over a public network, and sharing a (short) password only, with a session key to be used to achieve data integrity and/or message confidentiality. An example of a very efficient and ''elegant'' scheme for encrypted key exchange considered for standardization by the IEEE P1363 Standard working group is AuthA. This scheme was conjectured secure when the symmetric-encryption primitive is instantiated via either a cipher that closely behaves like an ''ideal cipher,'' or a mask generation function that is the product of the message with a hash of the password. While the security of this scheme in the former case has been recently proven, the latter case was still an open problem. For the first time we prove in this paper that this scheme is secure under the assumptions that the hash function closely behaves like a random oracle and that the computational Diffie-Hellman problem is difficult. Furthermore, since Denial-of-Service (DoS) attacks have become a common threat we enhance AuthA with a mechanism to protect against them.
Nanocrystalline cellulose for covert optical encryption
NASA Astrophysics Data System (ADS)
Zhang, Yu Ping; Chodavarapu, Vamsy P.; Kirk, Andrew G.; Andrews, Mark P.
2012-02-01
Nanocrystalline cellulose solid films derived from spruce pulp exhibit iridescence when cast from chiral nematic aqueous phase suspensions of the nanocrystals. Iridescence is a color travel phenomenon that might have potential for overt encryption as an anti-counterfeiting measure. The iridescent phase also offers an intrinsic level of covert encryption by virtue of the fact that films of NCC reflect left-circularly polarized light. Addition of TINOPAL, an optical brightening agent (OBA), adds a third level of (covert) encryption potential since the chromophore exhibits strong fluorescence when excited at ultra-violet wavelengths. The overall result is a selectively polarizing fluorescent iridescent film. We study the impact of additions of OBA on NCC iridescence, optical activity, and physical structure variation with polarized optical microscopy, circular dichroism spectropolarimetry and zeta potential analysis. Increasing OBA additions increase the chiral nematic pitch of NCC films, and this in turn alters chiral nematic domain structure in the solid film. Under low concentration conditions defined by our experiments, OBA yields intense UV fluorescence, without compromising the visible light iridescent properties of the film. The potential security offered by NCC and its optical responses can be authenticated using a UV light source such as is commonly used for banknote verification, a circular polarizer in conjunction with an iridescent feature which can be verified by the eye or by chiral spectrometry.
Broadcast encryption: paving the road to practical content protection systems
NASA Astrophysics Data System (ADS)
Deen, G.; Ponceleon, D.; Leake, Donald, Jr.
2009-02-01
Broadcast encryption is a well established alternative to public key encryption for use in content protection systems. It offers significant performance benefits, as well as useful features such a one-to-many delivery, dynamic membership in the authorized receivers group, and provides anonymous access to content, permitting content protection systems to preserve privacy for consumers. Broadcast encryption has been successfully deployed to users for protection of commercial content on digital media such as flash memory devices and optical media for both standard-definition and high-definition content. In this paper, we present the Advanced Secure Content Cluster Technology which applies broadcast encryption to content protection for home media networks
15 CFR Supplement No. 5 to Part 742 - Encryption Registration
Code of Federal Regulations, 2011 CFR
2011-01-01
... platforms (d) Multimedia over IP (e) Trusted computing (f) Network infrastructure (g) Link layer encryption (h) Smartcards or other identity management (i) Computer or network forensics (j) Software...
Multiply-agile encryption in high speed communication networks
Pierson, L.G.; Witzke, E.L.
1997-05-01
Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.
NASA Astrophysics Data System (ADS)
Levanon, Assaf; Konstantinovsky, Michael; Kopeika, Natan S.; Yitzhaky, Yitzhak; Stern, A.; Turak, Svetlana; Abramovich, Amir
2015-05-01
In this article we present preliminary results for the combination of two interesting fields in the last few years: 1) Compressed imaging (CI), which is a joint sensing and compressing process, that attempts to exploit the large redundancy in typical images in order to capture fewer samples than usual. 2) Millimeter Waves (MMW) imaging. MMW based imaging systems are required for a large variety of applications in many growing fields such as medical treatments, homeland security, concealed weapon detection, and space technology. Moreover, the possibility to create a reliable imaging in low visibility conditions such as heavy cloud, smoke, fog and sandstorms in the MMW region, generate high interest from military groups in order to be ready for new combat. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A system based on Glow Discharge Detector (GDD) Focal Plane Arrays (FPA) can be very efficient in real time imaging with significant results. The GDD is located in free space and it can detect MMW radiation almost isotropically. In this article, we present a new approach of reconstruction MMW imaging by rotation scanning of the target. The Collection process here, based on Radon projections allows implementation of the compressive sensing principles into the MMW region. Feasibility of concept was obtained as radon line imaging results. MMW imaging results with our resent sensor are also presented for the first time. The multiplexing frame rate of 16×16 GDD FPA permits real time video rate imaging of 30 frames per second and comprehensive 3D MMW imaging. It uses commercial GDD lamps with 3mm diameter, Ne indicator lamps as pixel detectors. Combination of these two fields should make significant improvement in MMW region imaging research, and new various of possibilities in compressing sensing technique.
P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code
NASA Technical Reports Server (NTRS)
Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor); Young, Lawrence E. (Inventor)
2000-01-01
In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.
Bit-oriented quantum public-key encryption based on quantum perfect encryption
NASA Astrophysics Data System (ADS)
Wu, Chenmiao; Yang, Li
2016-05-01
A bit-oriented quantum public-key encryption scheme is presented. We use Boolean functions as private-key and randomly changed pairs of quantum state and classical string as public-keys. Following the concept of quantum perfect encryption, we prepare the public-key with Hadamard transformation and Pauli transformation. The quantum part of public-keys is various with different classical strings. In contrast to the typical classical public-key scheme, one private-key in our scheme corresponds to an exponential number of public-keys. We investigate attack to the private-key and prove that the public-key is a totally mixed state. So the adversary cannot acquire any information about private-key from measurement of the public-key. Then, the attack to encryption is analyzed. Since the trace distance between two different ciphertexts is zero, the adversary cannot distinguish between the two ciphertext states and also obtains nothing about plaintext and private-key. Thus, we have the conclusion that the proposed scheme is information-theoretically secure under an attack of the private-key and encryption.
Bit-oriented quantum public-key encryption based on quantum perfect encryption
NASA Astrophysics Data System (ADS)
Wu, Chenmiao; Yang, Li
2016-08-01
A bit-oriented quantum public-key encryption scheme is presented. We use Boolean functions as private-key and randomly changed pairs of quantum state and classical string as public-keys. Following the concept of quantum perfect encryption, we prepare the public-key with Hadamard transformation and Pauli transformation. The quantum part of public-keys is various with different classical strings. In contrast to the typical classical public-key scheme, one private-key in our scheme corresponds to an exponential number of public-keys. We investigate attack to the private-key and prove that the public-key is a totally mixed state. So the adversary cannot acquire any information about private-key from measurement of the public-key. Then, the attack to encryption is analyzed. Since the trace distance between two different ciphertexts is zero, the adversary cannot distinguish between the two ciphertext states and also obtains nothing about plaintext and private-key. Thus, we have the conclusion that the proposed scheme is information-theoretically secure under an attack of the private-key and encryption.
Phase encryption of biometrics in diffractive optical elements.
Johnson, E G; Brasher, J D
1996-08-15
A new technique for the optical encoding of images is presented. The method of generalized projections is used to design diffractive optical elements for the phase encryption of biometrics for security applications. The encryption algorithm converges rapidly, and the decryption is seen to be secure and tolerant to additive noise. PMID:19876322
The Escrowed Encryption Standard: The Clipper Chip and Civil Liberties.
ERIC Educational Resources Information Center
Diamond, Ted
1994-01-01
The federal Escrowed Encryption Standard (EES) has been opposed by civil liberties advocates and the computer industry. The author argues that the standard does not threaten privacy as long as its use remains voluntary, alternative forms of encryption are allowed, and the power of government to intercept transmission is kept in check. (20…
Phase encryption of biometrics in diffractive optical elements
NASA Astrophysics Data System (ADS)
Johnson, E. G.; Brasher, J. D.
1996-08-01
A new technique for the optical encoding of images is presented. The method of generalized projections is used to design diffractive optical elements for the phase encryption of biometrics for security applications. The encryption algorithm converges rapidly, and the decryption is seen to be secure and tolerant to additive noise.
Optical image encryption based on multifractional Fourier transforms.
Zhu, B; Liu, S; Ran, Q
2000-08-15
We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153
An Inexpensive Device for Teaching Public Key Encryption
ERIC Educational Resources Information Center
Pendegraft, Norman
2009-01-01
An inexpensive device to assist in teaching the main ideas of Public Key encryption and its use in class to illustrate the operation of public key encryption is described. It illustrates that there are two keys, and is particularly useful for illustrating that privacy is achieved by using the public key. Initial data from in class use seem to…
Private genome analysis through homomorphic encryption
2015-01-01
Background The rapid development of genome sequencing technology allows researchers to access large genome datasets. However, outsourcing the data processing o the cloud poses high risks for personal privacy. The aim of this paper is to give a practical solution for this problem using homomorphic encryption. In our approach, all the computations can be performed in an untrusted cloud without requiring the decryption key or any interaction with the data owner, which preserves the privacy of genome data. Methods We present evaluation algorithms for secure computation of the minor allele frequencies and χ2 statistic in a genome-wide association studies setting. We also describe how to privately compute the Hamming distance and approximate Edit distance between encrypted DNA sequences. Finally, we compare performance details of using two practical homomorphic encryption schemes - the BGV scheme by Gentry, Halevi and Smart and the YASHE scheme by Bos, Lauter, Loftus and Naehrig. Results The approach with the YASHE scheme analyzes data from 400 people within about 2 seconds and picks a variant associated with disease from 311 spots. For another task, using the BGV scheme, it took about 65 seconds to securely compute the approximate Edit distance for DNA sequences of size 5K and figure out the differences between them. Conclusions The performance numbers for BGV are better than YASHE when homomorphically evaluating deep circuits (like the Hamming distance algorithm or approximate Edit distance algorithm). On the other hand, it is more efficient to use the YASHE scheme for a low-degree computation, such as minor allele frequencies or χ2 test statistic in a case-control study. PMID:26733152
A complete classification of quantum public-key encryption protocols
NASA Astrophysics Data System (ADS)
Wu, Chenmiao; Yang, Li
2015-10-01
We present a classification of quantum public-key encryption protocols. There are six elements in quantum public-key encryption: plaintext, ciphertext, public-key, private-key, encryption algorithm and decryption algorithm. According to the property of each element which is either quantum or classical, the quantum public-key encryption protocols can be divided into 64 kinds. Among 64 kinds of protocols, 8 kinds have already been constructed, 52 kinds can be proved to be impossible to construct and the remaining 4 kinds have not been presented effectively yet. This indicates that the research on quantum public-key encryption protocol should be focus on the existed kinds and the unproposed kinds.
A Contents Encryption Mechanism Using Reused Key in IPTV
NASA Astrophysics Data System (ADS)
Jeong, Yoon-Su; Kim, Yong-Tae; Cho, Young-Bok; Lee, Ki-Jeong; Park, Gil-Cheol; Lee, Sang-Ho
Recently IPTV is being spotlighted as a new stream service to stably provide video, audio and control signals to subscribers through the application of IP protocol. However, the IPTV system is facing more security threats than the traditional TV. This study proposes a multicasting encryption mechanism for secure transmission of the contents of IPTV by which the content provider encrypts their contents and send the encrypted contents and the key used for encryption of the contents to the user. In order to reduce the time and cost of Head-End, the proposed mechanism encrypts the media contents at the Head-End, embeds the code of the IPTV terminal used at the Head-End in the media contents for user tracking, and performs desynchronization for protection of the media contents from various attacks.
Host-to-host encryption using commercial networking products
Not Available
1980-10-06
The report considers three commercial devices in a setting of host-to-host encryption. The basic questions considered are: (1) can this local networking product be modified to provide host-to-host encryption; (2) how could host-to-host encryption be achieved without modifying this local networking product. The HYPERchannel adapter from Network Systems Corporation, the Net/One from Ungermann-Bass, and the Computrol's Megalink product are each be examined. Section 2 discusses the general issues of host-to-host encryption. A generic host-to-host cryptosystem is developed, to be used later in the analysis of the specific products. Section 3 presents in turn the HYPERchannel, Net/One, and Megalink, considering the possibilities of host-to-host encryption with and without product modification. The report's conclusions are summarized in Section 4.
Three-dimensional optical encryption based on ptychography
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi
2015-10-01
We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.
Color image encryption based on joint fractional Fourier transform correlator
NASA Astrophysics Data System (ADS)
Lu, Ding; Jin, Weimin
2011-06-01
In this paper, an optical color image encryption/decryption technology based on joint fractional Fourier transform correlator and double random phase encoding (DRPE) is developed. In this method, the joint fractional power spectrum of the image to be encrypted and the key codes is recorded as the encrypted data. Different from the case with classical DRPE, the same key code was used both in the encryption and decryption. The security of the system is enhanced because of the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system, and could optically realize single-channel color image encryption. The experimental results indicate that the new method is feasible.
A Cryptosystem for Encryption and Decryption of Long Confidential Messages
NASA Astrophysics Data System (ADS)
Giri, Debasis; Barua, Prithayan; Srivastava, P. D.; Jana, Biswapati
In this paper, we propose a cryptosystem which can encrypt and decrypt long (text) messages in efficient manner. The proposed cryptosystem is a combination of symmetric-key and asymmetric-key cryptography, where asymmetric-key cryptography is used to transmit the secret key to an intended receiver and the sender/receiver encrypts/decrypts messages using that secret key. In 2002, Hwang et al. proposed a scheme for encrypting long messages. The main drawback of their scheme is that it requires more computational overhead. Our proposed scheme is more efficient from the computational point of view compared to that of their scheme. Our scheme is a block cipher, long messages are broken into fixed length plaintext blocks for encryption. It supports parallel computation, since encryption/decryption of all the blocks of plaintext/plaintext are independent and thus can be carried out simultaneously. In addition, our scheme retains the same security level as their scheme.
Secure Obfuscation for Encrypted Group Signatures
Fan, Hongfei; Liu, Qin
2015-01-01
In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686
Symmetric weak ternary quantum homomorphic encryption schemes
NASA Astrophysics Data System (ADS)
Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao
2016-03-01
Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.
Perceptual security of encrypted images based on wavelet scaling analysis
NASA Astrophysics Data System (ADS)
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2016-08-01
The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.
Key management for large scale end-to-end encryption
Witzke, E.L.
1994-07-01
Symmetric end-to-end encryption requires separate keys for each pair of communicating confidants. This is a problem of Order N{sup 2}. Other factors, such as multiple sessions per pair of confidants and multiple encryption points in the ISO Reference Model complicate key management by linear factors. Public-key encryption can reduce the number of keys managed to a linear problem which is good for scaleability of key management, but comes with complicating issues and performance penalties. Authenticity is the primary ingredient of key management. If each potential pair of communicating confidants can authenticate data from each other, then any number of public encryption keys of any type can be communicated with requisite integrity. These public encryption keys can be used with the corresponding private keys to exchange symmetric cryptovariables for high data rate privacy protection. The Digital Signature Standard (DSS), which has been adopted by the United States Government, has both public and private components, similar to a public-key cryptosystem. The Digital Signature Algorithm of the DSS is intended for authenticity but not for secrecy. In this paper, the authors will show how the use of the Digital Signature Algorithm combined with both symmetric and asymmetric (public-key) encryption techniques can provide a practical solution to key management scaleability problems, by reducing the key management complexity to a problem of order N, without sacrificing the encryption speed necessary to operate in high performance networks.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Hongjuan; Wang, Zhipeng; Gong, Qiong; Wang, Danchen
2016-09-01
In optical interference-based encryption (IBE) scheme, the currently available methods have to employ the iterative algorithms in order to encrypt two images and retrieve cross-talk free decrypted images. In this paper, we shall show that this goal can be achieved via an analytical process if one of the two images is QR code. For decryption, the QR code is decrypted in the conventional architecture and the decryption has a noisy appearance. Nevertheless, the robustness of QR code against noise enables the accurate acquisition of its content from the noisy retrieval, as a result of which the primary QR code can be exactly regenerated. Thereafter, a novel optical architecture is proposed to recover the grayscale image by aid of the QR code. In addition, the proposal has totally eliminated the silhouette problem existing in the previous IBE schemes, and its effectiveness and feasibility have been demonstrated by numerical simulations.
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-03-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
SSEL1.0. Sandia Scalable Encryption Software
Tarman, T.D.
1996-08-29
Sandia Scalable Encryption Library (SSEL) Version 1.0 is a library of functions that implement Sandia`s scalable encryption algorithm. This algorithm is used to encrypt Asynchronous Transfer Mode (ATM) data traffic, and is capable of operating on an arbitrary number of bits at a time (which permits scaling via parallel implementations), while being interoperable with differently scaled versions of this algorithm. The routines in this library implement 8 bit and 32 bit versions of a non-linear mixer which is compatible with Sandia`s hardware-based ATM encryptor.
A lossless encryption method for medical images using edge maps.
Zhou, Yicong; Panetta, Karen; Agaian, Sos
2009-01-01
Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services. PMID:19965008
A Novel Image Encryption Algorithm Based on DNA Subsequence Operation
Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng
2012-01-01
We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack. PMID:23093912
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-07-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Multiple Lookup Table-Based AES Encryption Algorithm Implementation
NASA Astrophysics Data System (ADS)
Gong, Jin; Liu, Wenyi; Zhang, Huixin
Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.
A novel image encryption algorithm based on DNA subsequence operation.
Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng
2012-01-01
We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack. PMID:23093912
System for processing an encrypted instruction stream in hardware
Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.
2016-04-12
A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.
A Layered Searchable Encryption Scheme with Functional Components Independent of Encryption Methods
Luo, Guangchun; Qin, Ke
2014-01-01
Searchable encryption technique enables the users to securely store and search their documents over the remote semitrusted server, which is especially suitable for protecting sensitive data in the cloud. However, various settings (based on symmetric or asymmetric encryption) and functionalities (ranked keyword query, range query, phrase query, etc.) are often realized by different methods with different searchable structures that are generally not compatible with each other, which limits the scope of application and hinders the functional extensions. We prove that asymmetric searchable structure could be converted to symmetric structure, and functions could be modeled separately apart from the core searchable structure. Based on this observation, we propose a layered searchable encryption (LSE) scheme, which provides compatibility, flexibility, and security for various settings and functionalities. In this scheme, the outputs of the core searchable component based on either symmetric or asymmetric setting are converted to some uniform mappings, which are then transmitted to loosely coupled functional components to further filter the results. In such a way, all functional components could directly support both symmetric and asymmetric settings. Based on LSE, we propose two representative and novel constructions for ranked keyword query (previously only available in symmetric scheme) and range query (previously only available in asymmetric scheme). PMID:24719565
Compressed hyperspectral sensing
NASA Astrophysics Data System (ADS)
Tsagkatakis, Grigorios; Tsakalides, Panagiotis
2015-03-01
Acquisition of high dimensional Hyperspectral Imaging (HSI) data using limited dimensionality imaging sensors has led to restricted capabilities designs that hinder the proliferation of HSI. To overcome this limitation, novel HSI architectures strive to minimize the strict requirements of HSI by introducing computation into the acquisition process. A framework that allows the integration of acquisition with computation is the recently proposed framework of Compressed Sensing (CS). In this work, we propose a novel HSI architecture that exploits the sampling and recovery capabilities of CS to achieve a dramatic reduction in HSI acquisition requirements. In the proposed architecture, signals from multiple spectral bands are multiplexed before getting recorded by the imaging sensor. Reconstruction of the full hyperspectral cube is achieved by exploiting a dictionary of elementary spectral profiles in a unified minimization framework. Simulation results suggest that high quality recovery is possible from a single or a small number of multiplexed frames.
Public-key encryption and authentication of quantum information
NASA Astrophysics Data System (ADS)
Liang, Min; Yang, Li
2012-09-01
Public-key cryptosystems for quantum messages are considered from two aspects: public-key encryption and public-key authentication. Firstly, we propose a general construction of quantum public-key encryption scheme, and then construct an information-theoretic secure instance. Then, we propose a quantum public-key authentication scheme, which can protect the integrity of quantum messages. This scheme can both encrypt and authenticate quantum messages. It is information-theoretic secure with regard to encryption, and the success probability of tampering decreases exponentially with the security parameter with regard to authentication. Compared with classical public-key cryptosystems, one private-key in our schemes corresponds to an exponential number of public-keys, and every quantum public-key used by the sender is an unknown quantum state to the sender.
Optical image encryption using multilevel Arnold transform and noninterferometric imaging
NASA Astrophysics Data System (ADS)
Chen, Wen; Chen, Xudong
2011-11-01
Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.
Video encryption using chaotic masks in joint transform correlator
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2015-03-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.
Research on medical image encryption in telemedicine systems.
Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi
2016-04-29
Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302
Attribute-Based Encryption with Partially Hidden Ciphertext Policies
NASA Astrophysics Data System (ADS)
Nishide, Takashi; Yoneyama, Kazuki; Ohta, Kazuo
We propose attribute-based encryption schemes where encryptor-specified policies (called ciphertext policies) are hidden. By using our schemes, an encryptor can encrypt data with a hidden access control policy. A decryptor obtains her secret key associated with her attributes from a trusted authority in advance and if the attributes associated with the decryptor's secret key do not satisfy the access control policy associated with the encrypted data, the decryptor cannot decrypt the data or guess even what access control policy was specified by the encryptor. We prove security of our construction based on the Decisional Bilinear Diffie-Hellman assumption and the Decision Linear assumption. In our security notion, even the legitimate decryptor cannot obtain the information about the access control policy associated with the encrypted data more than the fact that she can decrypt the data.
An image encryption based on elementary cellular automata
NASA Astrophysics Data System (ADS)
Jin, Jun
2012-12-01
This paper presents a new image encryption/decryption scheme. The behavior of a number of elementary cellular automata (ECA) of length 8 with periodic boundary conditions is investigated. It is found in the state-transition diagram that some ECA rules result in state attractors which satisfies basic requirement of the encryption scheme that can perform encrypting function to transform the pixel values. The generation of these attractors depending only on the rule and initial state of the CA, without any additional hardware cost for the implementation, and requires minimized computational resources. Simulation results on some grayscale and color images show that the proposed image encryption method satisfies the properties of confusion and diffusion, execution speed and has perfect information concealing.
Multiple-image encryption based on computational ghost imaging
NASA Astrophysics Data System (ADS)
Wu, Jingjing; Xie, Zhenwei; Liu, Zhengjun; Liu, Wei; Zhang, Yan; Liu, Shutian
2016-01-01
We propose an optical multiple-image encryption scheme based on computational ghost imaging with the position multiplexing. In the encryption process, each plain image is encrypted into an intensity vector by using the computational ghost imaging with a different diffraction distance. The final ciphertext is generated by superposing all the intensity vectors together. Different from common multiple-image cryptosystems, the ciphertext in the proposed scheme is simply an intensity vector instead of a complex amplitude. Simulation results are presented to demonstrate the validity and security of the proposed multiple-image encryption method. The multiplexing capacity of the proposed method is also investigated. Optical experiment is presented to verify the validity of the proposed scheme in practical application.
Optoelectronic information encryption with phase-shifting interferometry.
Tajahuerce, E; Matoba, O; Verrall, S C; Javidi, B
2000-05-10
A technique that combines the high speed and the high security of optical encryption with the advantages of electronic transmission, storage, and decryption is introduced. Digital phase-shifting interferometry is used for efficient recording of phase and amplitude information with an intensity recording device. The encryption is performed by use of two random phase codes, one in the object plane and another in the Fresnel domain, providing high security in the encrypted image and a key with many degrees of freedom. We describe how our technique can be adapted to encrypt either the Fraunhofer or the Fresnel diffraction pattern of the input. Electronic decryption can be performed with a one-step fast Fourier transform reconstruction procedure. Experimental results for both systems including a lensless setup are shown. PMID:18345139
Noise removing in encrypted color images by statistical analysis
NASA Astrophysics Data System (ADS)
Islam, N.; Puech, W.
2012-03-01
Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.
Experimental multiplexing of encrypted movies using a JTC architecture.
Barrera, John Fredy; Tebaldi, Myrian; Ríos, Carlos; Rueda, Edgar; Bolognini, Néstor; Torroba, Roberto
2012-02-13
We present the first experimental technique to encrypt a movie under a joint transform correlator architecture. We also extend the method to multiplex several movies in a single package. We use a Mach-Zehnder interferometer to encrypt experimentally each movie. One arm of the interferometer is the joint transform correlator and the other arm is the reference wave. We include the complete description of the procedure along with experimental results supporting the proposal. PMID:22418097
Hyperchaotic Encryption for Secure E-Mail Communication
NASA Astrophysics Data System (ADS)
Aguilar-Bustos, A. Y.; Cruz-Hernández, C.; López-Gutiérrez, R. M.; Tlelo-Cuautle, E.; Posadas-Castillo, C.
In this chapter, secure computer communication based on synchronized hyperchaotic maps is presented. In particular, we appeal to model-matching approach from nonlinear control theory to synchronize the outputs of two coupled hyperchaotic Rössler maps. An application to secure e-mail communication for confidential information is given. By using a hyperchaotic encryption scheme, we show that output synchronization of hyperchaotic Rössler maps is indeed suitable for encryption, transmission, and decryption of information.
Optical design of cipher block chaining (CBC) encryption mode by using digital holography
NASA Astrophysics Data System (ADS)
Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam
2016-03-01
We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.
The role of decimated sequences in scaling encryption speeds through parallelism
Witzke, E.L.
1995-09-01
Encryption performance, in terms of bits per second encrypted, has not scaled well as network performance has increased. The authors felt that multiple encryption modules operating in parallel would be the cornerstone of scalable encryption. One major problem with parallelizing encryption is ensuring that each encryption module is getting the proper portion of the key sequence at the correct point in the encryption or decryption of the message. Many encryption schemes use linear recurring sequences, which may be generated by a linear feedback shift register. Instead of using a linear feedback shift register, the authors describe a method to generate the linear recurring sequence by using parallel decimated sequences, one per encryption module. Computing decimated sequences can be time consuming, so the authors have also described a way to compute these sequences with logic gates rather than arithmetic operations.
A New Quaternion-Based Encryption Method for DICOM Images.
Dzwonkowski, Mariusz; Papaj, Michal; Rykaczewski, Roman
2015-11-01
In this paper, a new quaternion-based lossless encryption technique for digital image and communication on medicine (DICOM) images is proposed. We have scrutinized and slightly modified the concept of the DICOM network to point out the best location for the proposed encryption scheme, which significantly improves speed of DICOM images encryption in comparison with those originally embedded into DICOM advanced encryption standard and triple data encryption standard algorithms. The proposed algorithm decomposes a DICOM image into two 8-bit gray-tone images in order to perform encryption. The algorithm implements Feistel network like the scheme proposed by Sastry and Kumar. It uses special properties of quaternions to perform rotations of data sequences in 3D space for each of the cipher rounds. The images are written as Lipschitz quaternions, and modular arithmetic was implemented for operations with the quaternions. A computer-based analysis has been carried out, and the obtained results are shown at the end of this paper. PMID:26276993
Experimental multiplexing protocol to encrypt messages of any length
NASA Astrophysics Data System (ADS)
Fredy Barrera, John; Vélez, Alejandro; Torroba, Roberto
2013-05-01
As optical systems are diffraction limited, it is not possible to encrypt in a single step texts containing a large amount of characters. We overcome this situation by separately encrypting several characters, along with a multiplexing procedure to obtain an encrypted keyboard. The experimental application is performed in a joint transform correlator architecture and using digital holography. We combine the different characters into a keyboard encrypted with a single phase mask together with a selection-position key that gives the right sequence to recover safe encrypted messages. The multiplexing operation we suggest is advantageous in the sense that the technique enables processing of messages that otherwise the optical system could not process in a single step. We also employ a repositioning technique to prevent both the natural background noise over recovered characters and the possible cross talk. The lack of any single key avoids the correct message recovery. Experimental results are presented to show the feasibility of our proposal, representing an actual application of the optical encrypting protocols.
Secure data aggregation in wireless sensor networks using homomorphic encryption
NASA Astrophysics Data System (ADS)
Kumar, Manish; Verma, Shekhar; Lata, Kusum
2015-04-01
In a Wireless Sensor Network (WSN), aggregation exploits the correlation between spatially and temporally proximate sensor data to reduce the total data volume to be transmitted to the sink. Mobile agents (MAs) fit into this paradigm, and data can be aggregated and collected by an MA from different sensor nodes using context specific codes. The MA-based data collection suffers due to large size of a typical WSN and is prone to security problems. In this article, homomorphic encryption in a clustered WSN has been proposed for secure and efficient data collection using MAs. The nodes keep encrypted data that are given to an MA for data aggregation tasks. The MA performs all the data aggregation operations upon encrypted data as it migrates between nodes in a tree-like structure in which the nodes are leafs and the cluster head is the root of the tree. It returns and deposits the encrypted aggregated data to the cluster head after traversing through all the intra cluster nodes over a shortest path route. The homomorphic encryption and aggregation processing in encrypted domain makes the data collection process secure. Simulation results confirm the effectiveness of the proposed secure data aggregation mechanism. In addition to security, MA-based mechanism leads to lesser delay and bandwidth requirements.
Research of storage encryption based on multi-protocol RAID
NASA Astrophysics Data System (ADS)
Pei, Canhao; Xie, Changsheng; Zhang, Le
2009-08-01
Traditional RAID gradually becomes unable to satisfy most applications. It is reflected in two main respects, one is the security problem of data in RAID system, the other is that one RAID controller can not use several devices of different protocol. Now, the performance of RAID controller gets faster and faster, therefore, it is the right time to use software encryption module instead of hardware encryption to guarantee the data confidentiality. Furthermore, with the development of storage device, different disk interface appears. How to use the disk of different protocol in the same RAID controller is becoming a new research hotspot. As to the problems mentioned above, this paper presents a new multi-protocol disk array architecture that provides encryption on RAID, referred to as Encryption Multi-protocol RAID (EMRAID). EMRAID solution not only uses different interface to management the different kinds of device, but also adopts SEAL algorithm which is an efficient pseudorandom function family encryption algorithm. Analysis result indicates that EMRAID performs more efficiently than the single-protocol RAID, and the experiment shows that the encryption algorithm has certain loss (not very large) on I/O performance.
Bouslimi, D; Coatrieux, G; Roux, Ch
2011-01-01
In this paper, we propose a new joint watermarking/encryption algorithm for the purpose of verifying the reliability of medical images in both encrypted and spatial domains. It combines a substitutive watermarking algorithm, the quantization index modulation (QIM), with a block cipher algorithm, the Advanced Encryption Standard (AES), in CBC mode of operation. The proposed solution gives access to the outcomes of the image integrity and of its origins even though the image is stored encrypted. Experimental results achieved on 8 bits encoded Ultrasound images illustrate the overall performances of the proposed scheme. By making use of the AES block cipher in CBC mode, the proposed solution is compliant with or transparent to the DICOM standard. PMID:22256213
Forensic watermarking and bit-rate conversion of partially encrypted AAC bitstreams
NASA Astrophysics Data System (ADS)
Lemma, Aweke; Katzenbeisser, Stefan; Celik, Mehmet U.; Kirbiz, S.
2008-02-01
Electronic Music Distribution (EMD) is undergoing two fundamental shifts. The delivery over wired broadband networks to personal computers is being replaced by delivery over heterogeneous wired and wireless networks, e.g. 3G and Wi-Fi, to a range of devices such as mobile phones, game consoles and in-car players. Moreover, restrictive DRM models bound to a limited set of devices are being replaced by flexible standards-based DRM schemes and increasingly forensic tracking technologies based on watermarking. Success of these EMD services will partially depend on scalable, low-complexity and bandwidth eficient content protection systems. In this context, we propose a new partial encryption scheme for Advanced Audio Coding (AAC) compressed audio which is particularly suitable for emerging EMD applications. The scheme encrypts only the scale-factor information in the AAC bitstream with an additive one-time-pad. This allows intermediate network nodes to transcode the bitstream to lower data rates without accessing the decryption keys, by increasing the scale-factor values and re-quantizing the corresponding spectral coeficients. Furthermore, the decryption key for each user is customized such that the decryption process imprints the audio with a unique forensic tracking watermark. This constitutes a secure, low-complexity watermark embedding process at the destination node, i.e. the player. As opposed to server-side embedding methods, the proposed scheme lowers the computational burden on servers and allows for network level bandwidth saving measures such as multi-casting and caching.
Computed Tomography Image Compressibility and Limitations of Compression Ratio-Based Guidelines.
Pambrun, Jean-François; Noumeir, Rita
2015-12-01
Finding optimal compression levels for diagnostic imaging is not an easy task. Significant compressibility variations exist between modalities, but little is known about compressibility variations within modalities. Moreover, compressibility is affected by acquisition parameters. In this study, we evaluate the compressibility of thousands of computed tomography (CT) slices acquired with different slice thicknesses, exposures, reconstruction filters, slice collimations, and pitches. We demonstrate that exposure, slice thickness, and reconstruction filters have a significant impact on image compressibility due to an increased high frequency content and a lower acquisition signal-to-noise ratio. We also show that compression ratio is not a good fidelity measure. Therefore, guidelines based on compression ratio should ideally be replaced with other compression measures better correlated with image fidelity. Value-of-interest (VOI) transformations also affect the perception of quality. We have studied the effect of value-of-interest transformation and found significant masking of artifacts when window is widened. PMID:25804842
Applications of data compression techniques to a communication system
NASA Astrophysics Data System (ADS)
Choi, Junho; Grunes, Michael R.
1995-06-01
A brief overview of current status of data compression technologies are presented with the interim development of compression software and tests of effectiveness on the selected digitized data types. Several algorithms such as Rice, LZ-family, and run-length codings are examined for selected digitized packet data streams. These algorithms are able to compress most data available with a fairly good compression factor except for Tape A and encrypted data. Tape A data contains a mixture of several data formats in very short runs (several packets), rather than the long runs (typically hundreds of packets), for which the current version of the software was designed. The remaining data sets were compressed with a compression factor of over 2.74.
Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks.
Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin
2015-01-01
With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people's lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme. PMID:26151208
Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks
Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin
2015-01-01
With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people’s lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme. PMID:26151208
Image encryption based on nonlinear encryption system and public-key cryptography
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Ran, Qiwen; Chi, Yingying
2015-03-01
Recently, optical asymmetric cryptosystem (OACS) has became the focus of discussion and concern of researchers. Some researchers pointed out that OACS was not tenable because of misunderstanding the concept of asymmetric cryptosystem (ACS). We propose an improved cryptosystem using RSA public-key algorithm based on existing OACS and the new system conforms to the basic agreement of public key cryptosystem. At the beginning of the encryption process, the system will produce an independent phase matrix and allocate the input image, which also conforms to one-time pad cryptosystem. The simulation results show that the validity of the improved cryptosystem and the high robustness against attack scheme using phase retrieval technique.
Key management of the double random-phase-encoding method using public-key encryption
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2010-03-01
Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.
Photonic encryption : modeling and functional analysis of all optical logic.
Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.
2004-10-01
With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay
Encryption in TECB Mode: Modeling, Simulation and Synthesis
NASA Astrophysics Data System (ADS)
Reaz, M. B. I.; Ibrahimy, M. I.; Mohd-Yasin, F.; Wei, C. S.; Kamada, M.
The growth of the Internet as a vehicle for secure communication has resulted in Data Encryption Standard (DES) no longer capable of providing high-level security for data protection. Triple Data Encryption Standard (3DES) is a symmetric block cipher with 192 bits key proposed to further enhance DES. Many applications crave for the speed of a hardware encryption implementation while trying to preserve the flexibility and low cost of a software implementation. This project used single core module to implement encryption in Triple DES Electronic Code Book (TECB) mode, which was modeled using hardware description language VHDL. The architecture was mapped in Altera EPF10K100EFC484-1 and EP20K200EFC672-1X for performance investigations and resulted in achieving encryption rate of 102.56 Mbps, area utilization of 2111 logic cells (25%) and a higher maximum operating frequency of 78.59 MHz by implementing on the larger FPGA device EP20K200EFC672-1X. It also suggested that 3DES hardware was 2.4 times faster than its software counterpart.
Cancelable face verification using optical encryption and authentication.
Taheri, Motahareh; Mozaffari, Saeed; Keshavarzi, Parviz
2015-10-01
In a cancelable biometric system, each instance of enrollment is distorted by a transform function, and the output should not be retransformed to the original data. This paper presents a new cancelable face verification system in the encrypted domain. Encrypted facial images are generated by a double random phase encoding (DRPE) algorithm using two keys (RPM1 and RPM2). To make the system noninvertible, a photon counting (PC) method is utilized, which requires a photon distribution mask for information reduction. Verification of sparse images that are not recognizable by direct visual inspection is performed by unconstrained minimum average correlation energy filter. In the proposed method, encryption keys (RPM1, RPM2, and PDM) are used in the sender side, and the receiver needs only encrypted images and correlation filters. In this manner, the system preserves privacy if correlation filters are obtained by an adversary. Performance of PC-DRPE verification system is evaluated under illumination variation, pose changes, and facial expression. Experimental results show that utilizing encrypted images not only increases security concerns but also enhances verification performance. This improvement can be attributed to the fact that, in the proposed system, the face verification problem is converted to key verification tasks. PMID:26479930
Optical Encryption of Arrays of Binary Digits in Spatially Incoherent Light
NASA Astrophysics Data System (ADS)
Krasnov, V. V.; Starikov, S. N.; Starikov, R. S.; Cheremkhin, P. A.
2016-02-01
Optical encryption of arrays of binary digits in spatially incoherent light is experimentally implemented. Successful optical encryption and numerical decryption of images of binary arrays using a developed setup is demonstrated. Faultless decryption of arrays with normalized average energies (NAEs) up to 0.3 inclusive has been implemented. It is demonstrated that a decrease in the NAE of arrays to be encrypted leads to a decrease in the encryption error rate.
An Image Encryption Scheme Based on Lorenz System for Low Profile Applications
NASA Astrophysics Data System (ADS)
Anees, Amir
2015-09-01
Advanced encryption standard being a benchmark for encryption is very ideal for digital images encryption for its security reasons but might not be effective for low profile applications due to its high computational and hardware complexity. In this paper, we presents a robust image encryption scheme for these types of applications based on chaotic sequences of Lorenz system, also ensuring the system security as well. The security strength is evident from the results of statistical and key analysis done in this paper.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-07-07
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.
Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.
1998-01-01
A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-03-10
A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.
Content-based image retrieval in homomorphic encryption domain.
Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole
2015-08-01
In this paper, we propose a secure implementation of a content-based image retrieval (CBIR) method that makes possible diagnosis aid systems to work in externalized environment and with outsourced data as in cloud computing. This one works with homomorphic encrypted images from which it extracts wavelet based image features next used for subsequent image comparison. By doing so, our system allows a physician to retrieve the most similar images to a query image in an outsourced database while preserving data confidentiality. Our Secure CBIR is the first one that proposes to work with global image features extracted from encrypted images and does not induce extra communications in-between the client and the server. Experimental results show it achieves retrieval performance as good as if images were processed non-encrypted. PMID:26736909
Image encryption using random sequence generated from generalized information domain
NASA Astrophysics Data System (ADS)
Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu
2016-05-01
A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.
Secure Holographic Memory by Double-Random Polarization Encryption
NASA Astrophysics Data System (ADS)
Matoba, Osamu; Javidi, Bahram
2004-05-01
A novel optical encryption based on polarization is proposed and applied to a holographic memory system. Original binary data are described as two orthogonal linear polarization states. These input polarization states can be modulated by use of two polarization-modulation masks located at the input and the Fourier planes. Each modulation mask can convert an input polarization state into a random polarization state. Once encrypted, the polarization state is recorded as a hologram. For the decryption, the hologram can generate a vector phase-conjugate beam. When the same polarization-modulation masks are used, the vector phase-conjugate readout can cancel the polarization modulation at each mask, and the original polarization state can be recovered. The encryption of the proposed method is evaluated numerically. We also present experimental results by demonstrating holographic recording in a bacteriorhodopsin film.
Secure Genomic Computation through Site-Wise Encryption.
Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu
2015-01-01
Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients' genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds. PMID:26306278
Secure Genomic Computation through Site-Wise Encryption
Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu
2015-01-01
Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients’ genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds. PMID:26306278
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
Optical cryptanalysis of DRPE-based encryption systems
NASA Astrophysics Data System (ADS)
Qin, Wan; He, Wenqi; Meng, Xiangfeng; Peng, Xiang
2009-11-01
In this paper, we analyze the security of the classical double random phase encoding (DRPE) technique in Fourier domain, as well as its extended schemes in Fresnel and fractional Fourier domains. These schemes are resistant to bruteforce attacks, for their large key spaces. However, due to the linearity property of their encryption transformations, they are vulnerable to other attacks, such as chosen-plaintext attack and known-plaintext attack. We successfully break each of the three encryption schemes with the help of a certain quantity of plaintext-ciphertext pairs. Each attack is validated by computer simulations. The cryptanalysis indicates that, to minimize the risks, it is recommendable to introduce nonlinear operations to optical encryption systems.
A palmprint-based cryptosystem using double encryption
NASA Astrophysics Data System (ADS)
Kumar, Amioy; Kumar, Ajay
2008-03-01
We propose a novel cryptographic construct incorporating biometrics which insures a secure communication between two channels just by using Palmprint. The cryptosystem utilizes the advantages of both symmetric and asymmetric cryptographic approaches simultaneously; we denote it as double encryption. Any document in communication is first encrypted using symmetric cryptographic approach; the symmetric key involved is then encrypted using Asymmetric approach. Finally, the concept of fuzzy vault is explored to create a secure vault around the asymmetric key. We investigate the possible usage of palmprints in fuzzy vault to develop a user friendly and reliable crypto system. The experimental results from the proposed approach on the real palmprint images suggest its possible usage in an automated palmprint based key generation system.
Encryption of covert information into multiple statistical distributions
NASA Astrophysics Data System (ADS)
Venkatesan, R. C.
2007-10-01
A novel strategy to encrypt covert information (code) via unitary projections into the null spaces of ill-conditioned eigenstructures of multiple host statistical distributions, inferred from incomplete constraints, is presented. The host pdf's are inferred using the maximum entropy principle. The projection of the covert information is dependent upon the pdf's of the host statistical distributions. The security of the encryption/decryption strategy is based on the extreme instability of the encoding process. A self-consistent procedure to derive keys for both symmetric and asymmetric cryptography is presented. The advantages of using a multiple pdf model to achieve encryption of covert information are briefly highlighted. Numerical simulations exemplify the efficacy of the model.
Packet loss due to encryption in space data systems
NASA Astrophysics Data System (ADS)
Kwon, Hyuck M.
1994-05-01
This paper analyzes the probabilities of data packet loss for both an encrypted channel in self-synchronous cipher feedback mode and a nonencrypted channel, in the space data systems. Simulation results show reasonable agreement with analytical results. When channel bit error probability is 10(sup - 5) and the total number of packets per frame is 3, the analytical model gives 0.39% packet loss while the simulation gives 0.22% packet loss due to encryption. Although the analysis is performed for the space data systems, the resulting derived equations with minor change will be useful in many packet communication applications.
Special encryption considerations for unattended ground sensor systems
NASA Astrophysics Data System (ADS)
Drummond, Allen P.
2004-09-01
Requirements in Unattended Ground Sensor (UGS) systems have grown to include data privacy, message authentication, and anti-spoofing measures. This presents a challenge to the systems architect to consider approaches that defend against known and unknown attacks designed to compromise the system integrity. Encryption has been the preferred method to address these requirements. Encryption may be used to increase our confidence in the data transmitted in sensor networks, but requires greater, not less, attention to system security. After all, in an unencrypted network, at least we "know" that an adversary can read our data.
Image/video encryption using single shot digital holography
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Tang, Chen; Zhu, Xinjun; Li, Biyuan; Wang, Linlin; Yan, Xiusheng
2015-05-01
We propose a method for image/video encryption that combines double random-phase encoding in the Fresnel domain with a single shot digital holography. In this method, a complex object field can be reconstructed with only single frame hologram based on a constrained optimization method. The system without multiple shots and Fourier lens is simple, and allows to dynamically encrypt information. We test the proposed method on a computer simulated image, a grayscale image and a video in AVI format. Also we investigate the quality of the decryption process and the performance against noise attacks. The experimental results demonstrate the performance of the method.
Multiple-image encryption based on optical asymmetric key cryptosystem
NASA Astrophysics Data System (ADS)
Liu, Wei; Xie, Zhenwei; Liu, Zhengjun; Zhang, Yan; Liu, Shutian
2015-01-01
We propose a multiple-image encryption scheme with asymmetric keys and demonstrate it by optical experiments. The original secret images are multiplexed and encoded into a real-valued ciphertext using only one public encryption key. In the decryption process, each secret image can only be de-multiplexed by its corresponding private decryption key. The multiplexing capacity is analyzed through examining the distribution of cross-talk noise and the key space of private decryption key. Numerical simulations and optical experiments have been carried out to demonstrate the validity, high security, and large multiplexing capacity of the proposed method.
NASA Astrophysics Data System (ADS)
Lim, Se Hoon
Compressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography: estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field
Subsampling technique to enhance the decoded output of JTC encrypting system
NASA Astrophysics Data System (ADS)
Barrera, John Fredy; Rueda, Edgar; Ríos, Carlos; Tebaldi, Myrian; Bolognini, Nestor; Torroba, Roberto
2011-08-01
Optical systems have physical restrictions that impose limits in the finest spatial feature that can be processed. In this work we combine a subsampling procedure with a multiplexing technique to overtake the limit on the information that is processed in a JTC encryption system. In the process the object is divided in subsamples and each subsample is encrypted separately. Then the encrypted subsamples are multiplexed. The encryption of the subsamples is performed in a real optical JTC encrypting system. The multiplexing and the decryption process are carried out by means of a virtual optical system. Experimental results are presented to show the validity of the proposal.
Shao, Zhuhong; Shu, Huazhong; Wu, Jiasong; Dong, Zhifang; Coatrieux, Gouenou; Coatrieux, Jean Louis
2014-03-10
This paper describes a novel algorithm to encrypt double color images into a single undistinguishable image in quaternion gyrator domain. By using an iterative phase retrieval algorithm, the phase masks used for encryption are obtained. Subsequently, the encrypted image is generated via cascaded quaternion gyrator transforms with different rotation angles. The parameters in quaternion gyrator transforms and phases serve as encryption keys. By knowing these keys, the original color images can be fully restituted. Numerical simulations have demonstrated the validity of the proposed encryption system as well as its robustness against loss of data and additive Gaussian noise. PMID:24663832
Fok, Mable P; Prucnal, Paul R
2009-05-01
All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed. PMID:19412257
An arbitrated quantum signature protocol based on the chained CNOT operations encryption
NASA Astrophysics Data System (ADS)
Li, Feng-Guang; Shi, Jian-Hong
2015-06-01
At present, the encryption scheme used by most arbitrated quantum signature (AQS) protocols is quantum one-time pad (QOTP) which encrypts data qubit by qubit. Though QOTP can achieve high security for data encryption, it is not suitable for AQS. There are many attacks on AQS using QOTP. In this paper, we propose an AQS protocol based on another encryption scheme called the chained CNOT operations, which encrypts quantum message ensemble. Our protocol preserves all merits in the similar AQS schemes and has better security. Security analysis shows that our protocol cannot be forged and disavowed under the existing attacks.
An Identity-Based (IDB) Broadcast Encryption Scheme with Personalized Messages (BEPM)
Xu, Ke; Liao, Yongjian; Qiao, Li
2015-01-01
A broadcast encryption scheme with personalized messages (BEPM) is a scheme in which a broadcaster transmits not only encrypted broadcast messages to a subset of recipients but also encrypted personalized messages to each user individually. Several broadcast encryption (BE) schemes allow a broadcaster encrypts a message for a subset S of recipients with public keys and any user in S can decrypt the message with his/her private key. However, these BE schemes can not provide an efficient way to transmit encrypted personalized messages to each user individually. In this paper, we propose a broadcast encryption scheme with a transmission of personalized messages. Besides, the scheme is based on multilinear maps ensure constant ciphertext size and private key size of each user and the scheme can achieve statically security. More realistically, the scheme can be applied to the Conditional Access System (CAS) of pay television (pay-TV) efficiently and safely. PMID:26629817
An Identity-Based (IDB) Broadcast Encryption Scheme with Personalized Messages (BEPM).
Xu, Ke; Liao, Yongjian; Qiao, Li; Liu, Zhangyun; Yang, Xiaowei
2015-01-01
A broadcast encryption scheme with personalized messages (BEPM) is a scheme in which a broadcaster transmits not only encrypted broadcast messages to a subset of recipients but also encrypted personalized messages to each user individually. Several broadcast encryption (BE) schemes allow a broadcaster encrypts a message for a subset S of recipients with public keys and any user in S can decrypt the message with his/her private key. However, these BE schemes can not provide an efficient way to transmit encrypted personalized messages to each user individually. In this paper, we propose a broadcast encryption scheme with a transmission of personalized messages. Besides, the scheme is based on multilinear maps ensure constant ciphertext size and private key size of each user and the scheme can achieve statically security. More realistically, the scheme can be applied to the Conditional Access System (CAS) of pay television (pay-TV) efficiently and safely. PMID:26629817
Portable RSA encryption-decryption subprogram for protecting proprietary text
Hanson, R.J.
1981-09-01
A virtually portable (FORTRAN) version of the RSA (Rivest, Shamir, Adleman) algorithm for encryption and decryption of proprietary text has been written. This system uses three previously developed software packages. These are an extended precision integer arithmetic package, an error processing package, and machine-sensitive input/output subprograms from the Text Exchange System.
Masking property of quantum random cipher with phase mask encryption
NASA Astrophysics Data System (ADS)
Sohma, Masaki; Hirota, Osamu
2014-10-01
The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.
Experimental protocol for packaging and encrypting multiple data
NASA Astrophysics Data System (ADS)
Fredy Barrera, John; Trejos, Sorayda; Tebaldi, Myrian; Torroba, Roberto
2013-05-01
We present a novel single optical packaging and encryption (SOPE) procedure for multiple inputs. This procedure is based on a merging of a 2f scheme with a digital holographic technique to achieve efficient handling of multiple data. Through the 2f system with a random phase mask attached in its input plane, and the holographic technique, we obtain each processed input. A posteriori filtering and repositioning protocol on each hologram followed by an addition of all processed data, allows storing these data to form a single package. The final package is digitally multiplied by a second random phase mask acting as an encryption mask. In this way, the final user receives only one encrypted information unit and a single key, instead of a conventional multiple-image collecting method and several keys. Processing of individual images is cast into an optimization problem. The proposed optimization aims to simplify the handling and recovery of images while packing all of them into a single unit. The decoding process does not have the usual cross-talk or noise problems involved in other methods, as filtering and repositioning precedes the encryption step. All data are recovered in just one step at the same time by applying a simple Fourier transform operation and the decoding key. The proposed protocol takes advantage of optical processing and the versatility of the digital format. Experiments have been conducted using a Mach-Zehnder interferometer. An application is subsequently demonstrated to illustrate the feasibility of the SOPE procedure.
Query-Biased Preview over Outsourced and Encrypted Data
Luo, Guangchun; Qin, Ke; Chen, Aiguo
2013-01-01
For both convenience and security, more and more users encrypt their sensitive data before outsourcing it to a third party such as cloud storage service. However, searching for the desired documents becomes problematic since it is costly to download and decrypt each possibly needed document to check if it contains the desired content. An informative query-biased preview feature, as applied in modern search engine, could help the users to learn about the content without downloading the entire document. However, when the data are encrypted, securely extracting a keyword-in-context snippet from the data as a preview becomes a challenge. Based on private information retrieval protocol and the core concept of searchable encryption, we propose a single-server and two-round solution to securely obtain a query-biased snippet over the encrypted data from the server. We achieve this novel result by making a document (plaintext) previewable under any cryptosystem and constructing a secure index to support dynamic computation for a best matched snippet when queried by some keywords. For each document, the scheme has O(d) storage complexity and O(log(d/s) + s + d/s) communication complexity, where d is the document size and s is the snippet length. PMID:24078798
Helping Students Adapt to Computer-Based Encrypted Examinations
ERIC Educational Resources Information Center
Baker-Eveleth, Lori; Eveleth, Daniel M.; O'Neill, Michele; Stone, Robert W.
2006-01-01
The College of Business and Economics at the University of Idaho conducted a pilot study that used commercially available encryption software called Securexam to deliver computer-based examinations. A multi-step implementation procedure was developed, implemented, and then evaluated on the basis of what students viewed as valuable. Two key aspects…
15 CFR Supplement No. 5 to Part 742 - Encryption Registration
Code of Federal Regulations, 2014 CFR
2014-01-01
.../WLAN (iv) Satellite (v) Radios (vi) Mobile communications, n.e.s. (b) Mobile applications (c) Computing... storage (m) Gaming (n) Cryptanalytic tools (o) “Open cryptographic interface” (or other support for user... body. (If unsure, please explain.) (5) Will your company be exporting “encryption source code”? (6)...
Image encryption using the two-dimensional logistic chaotic map
NASA Astrophysics Data System (ADS)
Wu, Yue; Yang, Gelan; Jin, Huixia; Noonan, Joseph P.
2012-01-01
Chaos maps and chaotic systems have been proved to be useful and effective for cryptography. In our study, the two-dimensional logistic map with complicated basin structures and attractors are first used for image encryption. The proposed method adopts the classic framework of the permutation-substitution network in cryptography and thus ensures both confusion and diffusion properties for a secure cipher. The proposed method is able to encrypt an intelligible image into a random-like one from the statistical point of view and the human visual system point of view. Extensive simulation results using test images from the USC-SIPI image database demonstrate the effectiveness and robustness of the proposed method. Security analysis results of using both the conventional and the most recent tests show that the encryption quality of the proposed method reaches or excels the current state-of-the-art methods. Similar encryption ideas can be applied to digital data in other formats (e.g., digital audio and video). We also publish the cipher MATLAB open-source-code under the web page https://sites.google.com/site/tuftsyuewu/source-code.
Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.
Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun
2016-07-01
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. PMID:27259060
Selectively Encrypted Pull-Up Based Watermarking of Biometric data
NASA Astrophysics Data System (ADS)
Shinde, S. A.; Patel, Kushal S.
2012-10-01
Biometric authentication systems are becoming increasingly popular due to their potential usage in information security. However, digital biometric data (e.g. thumb impression) are themselves vulnerable to security attacks. There are various methods are available to secure biometric data. In biometric watermarking the data are embedded in an image container and are only retrieved if the secrete key is available. This container image is encrypted to have more security against the attack. As wireless devices are equipped with battery as their power supply, they have limited computational capabilities; therefore to reduce energy consumption we use the method of selective encryption of container image. The bit pull-up-based biometric watermarking scheme is based on amplitude modulation and bit priority which reduces the retrieval error rate to great extent. By using selective Encryption mechanism we expect more efficiency in time at the time of encryption as well as decryption. Significant reduction in error rate is expected to be achieved by the bit pull-up method.
Quantum Encryption Protocol Based on Continuous Variable EPR Correlations
NASA Astrophysics Data System (ADS)
He, Guang-Qiang; Zeng, Gui-Hua
2006-07-01
A quantum encryption protocol based on Gaussian-modulated continuous variable EPR correlations is proposed. The security is guaranteed by continuous variable EPR entanglement correlations produced by nondegenerate optical parametric amplifier (NOPA). For general beam splitter eavesdropping strategy, the mutual information I(α,epsilon) between Alice and Eve is calculated by employing Shannon information theory. Finally the security analysis is presented.
Progressive compressive imager
NASA Astrophysics Data System (ADS)
Evladov, Sergei; Levi, Ofer; Stern, Adrian
2012-06-01
We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.
NASA Astrophysics Data System (ADS)
Anderson, Peter G.; Liu, Changmeng
2003-01-01
We present a technique for converting continuous gray-scale images to halftone (black and white) images that lend themselves to lossless data compression with compression factor of three or better. Our method involves using novel halftone mask structures which consist of non-repeated threshold values. We have versions of both dispersed-dot and clustered-dot masks, which produce acceptable images for a variety of printers. Using the masks as a sort key allows us to reversibly rearrange the image pixels and partition them into groups with a highly skewed distribution allowing Huffman compression coding techniques to be applied. This gives compression ratios in the range 3:1 to 10:1.
Fast Video Encryption Using the H.264 Error Propagation Property for Smart Mobile Devices
Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee
2015-01-01
In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security. PMID:25850068