Sample records for acquisition mode steam

  1. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysismore » mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.« less

  2. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS.

    PubMed

    Kaufmann, Anton

    2018-04-30

    Quadrupole Orbitrap instruments (Q Orbitrap) permit high-resolution mass spectrometry (HRMS)-based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and HRMS-based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi-residue analysis (e.g., pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi-residue methods. This article is protected by copyright. All rights reserved.

  3. APNEA list mode data acquisition and real-time event processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogle, R.A.; Miller, P.; Bramblett, R.L.

    1997-11-01

    The LMSC Active Passive Neutron Examinations and Assay (APNEA) Data Logger is a VME-based data acquisition system using commercial-off-the-shelf hardware with the application-specific software. It receives TTL inputs from eighty-eight {sup 3}He detector tubes and eight timing signals. Two data sets are generated concurrently for each acquisition session: (1) List Mode recording of all detector and timing signals, timestamped to 3 microsecond resolution; (2) Event Accumulations generated in real-time by counting events into short (tens of microseconds) and long (seconds) time bins following repetitive triggers. List Mode data sets can be post-processed to: (1) determine the optimum time bins formore » TRU assay of waste drums, (2) analyze a given data set in several ways to match different assay requirements and conditions and (3) confirm assay results by examining details of the raw data. Data Logger events are processed and timestamped by an array of 15 TMS320C40 DSPs and delivered to an embedded controller (PowerPC604) for interim disk storage. Three acquisition modes, corresponding to different trigger sources are provided. A standard network interface to a remote host system (Windows NT or SunOS) provides for system control, status, and transfer of previously acquired data. 6 figs.« less

  4. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.

    PubMed

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-09-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.

  5. Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Permala, R.; Jayani, A. P. S.

    2018-05-01

    LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.

  6. Rapid Radiofrequency Field Mapping In Vivo Using Single-Shot STEAM MRI

    PubMed Central

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-01-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60° and 100° instead of 90°, inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T2-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods. Magn Reson Med 60:739–743, 2008. © 2008 Wiley-Liss, Inc. PMID:18727090

  7. Experimental validation of A-mode ultrasound acquisition system for computer assisted orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo

    2009-02-01

    Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).

  8. "Mode of Acquisition" of Word Meanings: The Viability of a Theoretical Construct.

    ERIC Educational Resources Information Center

    Wauters, Loes N.; Tellings, Agnes E. J. M.; Van Bon, Wim H. J.; Van Haaften, A. Wouter

    2003-01-01

    Examines the reliability and validity of the construct, "mode of acquisition" (MOA). The MOA of a word denotes the way in which the word's meaning is learned. Subjects in one study were volunteers from third year special education courses and in a second study, educational professionals. (Author/VWL)

  9. Experimental research of heterogeneous nuclei in superheated steam

    NASA Astrophysics Data System (ADS)

    Bartoš, Ondřej; Kolovratník, Michal; Šmíd, Bohuslav; Hrubý, Jan

    2016-03-01

    A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.

  10. Multidimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus During LBLOCA Reflood Phase with a Direct Vessel Injection Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin

    Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less

  11. Low chemical concentrating steam generating cycle

    DOEpatents

    Mangus, James D.

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  12. Architecture of a mixed-mode electrophysiological signal acquisition interface.

    PubMed

    Shen, Ding-Lan; Chen, Jyun-Min

    2012-01-01

    This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.

  13. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo

    2008-02-01

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, St, (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between St and the dose at half thickness, Dm, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the St signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, Diso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed Diso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time.

  14. Multi-mode acquisition (MMA): An MS/MS acquisition strategy for maximizing selectivity, specificity and sensitivity of DIA product ion spectra.

    PubMed

    Williams, Brad J; Ciavarini, Steve J; Devlin, Curt; Cohn, Steven M; Xie, Rong; Vissers, Johannes P C; Martin, LeRoy B; Caswell, Allen; Langridge, James I; Geromanos, Scott J

    2016-08-01

    In proteomics studies, it is generally accepted that depth of coverage and dynamic range is limited in data-directed acquisitions. The serial nature of the method limits both sensitivity and the number of precursor ions that can be sampled. To that end, a number of data-independent acquisition (DIA) strategies have been introduced with these methods, for the most part, immune to the sampling issue; nevertheless, some do have other limitations with respect to sensitivity. The major limitation with DIA approaches is interference, i.e., MS/MS spectra are highly chimeric and often incapable of being identified using conventional database search engines. Utilizing each available dimension of separation prior to ion detection, we present a new multi-mode acquisition (MMA) strategy multiplexing both narrowband and wideband DIA acquisitions in a single analytical workflow. The iterative nature of the MMA workflow limits the adverse effects of interference with minimal loss in sensitivity. Qualitative identification can be performed by selected ion chromatograms or conventional database search strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ultra-trace level analysis of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate by gas chromatography with multi-mode inlet, and flame ionization detection.

    PubMed

    Luong, J; Shellie, R A; Cortes, H; Gras, R; Hayward, T

    2012-03-16

    Steam condensate water treatment is a vital and integral part of the overall cooling water treatment process. Steam condensate often contains varying levels of carbon dioxide and oxygen which acts as an oxidizer. Carbon dioxide forms corrosive carbonic acid when dissolved in condensed steam. To neutralize the harmful effect of the carbonic acid, volatile amine compounds such as morpholine, cyclohexylamine, and diethylaminoethanol are often employed as part of a strategy to control corrosion in the water treatment process. Due to the high stability of these compounds in a water matrix, the indirect addition of such chemicals into the process via steam condensate often results in their presence throughout the process and even into the final product. It is therefore important to understand the impact of these chemicals and their fate within a chemical plant. The ability to analyze such compounds by gas chromatography has historically been difficult due to the lack of chromatographic system inertness at the trace level concentrations especially in an aqueous matrix. Here a highly sensitive, practical, and reliable gas chromatographic approach is described for the determination of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate at the part-per-billion (ppb) levels. The approach does not require any sample enrichment or derivatization. The technique employs a multi-mode inlet operating in pulsed splitless mode with programmed inlet temperature for sample introduction, an inert base-deactivated capillary column for solute separation and flame ionization detection. Chromatographic performance was further enhanced by the incorporation of 2-propanol as a co-solvent. Detection limits for morpholine, cyclohexylamine, diethylaminoethanol were established to be 100 ppb (v/v), with relative standard deviations (RSD) of less than 6% at the 95% confidence level (n=20) and a percent recovery of 96% or higher for the solutes of interest over a range of 0

  16. Optimization of transonic wind tunnel data acquisition and control systems for providing continuous mode tests

    NASA Astrophysics Data System (ADS)

    Petronevich, V. V.

    2016-10-01

    The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.

  17. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    PubMed

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of <1.0 was almost equal to the gantry rotation time, whereas with pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Heat transfer during condensation of steam from steam-gas mixtures in the passive safety systems of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Portnova, N. M.; Smirnov, Yu B.

    2017-11-01

    A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.

  19. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    PubMed

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig

    PubMed Central

    Meyerspeer, M.; Krššák, M.; Kemp, G.J.; Roden, M.; Moser, E.

    2016-01-01

    1 Objective To develop a measurement method for interleaved acquisition of 1H and 31P STEAM localised spectra of exercising human calf muscle. 2 Materials and Methods A nonmagnetic exercise rig with a pneumatic piston and sensors for force and pedal angle was constructed to enable plantar flexion measured in the 3 Tesla MR scanner, which holds the dual tuned (1H,31P) surface coil used for signal transmission and reception. 3 Results 31P spectra acquired in interleaved mode benefit from higher SNR (factor of 1.34± 0.06 for PCr) compared to standard acquisition due to the Nuclear Overhauser effect (NOE) and substantial PCr/Pi changes during exercise can be observed in 31P spectra. 1H spectral quality is equal to that in single mode experiments and allows Cr2 changes to be monitored. 4 Conclusion The feasibility of dynamic interleaved localised 1H and 31P spectroscopy during plantar flexion exercise has been demonstrated using a custom-built pneumatic system for muscle activation. This opens the possibility of studying the dynamics of metabolism with multi nuclear MRS in a single run. PMID:16320091

  1. Recent Developments in Superheated Steam Processing of Foods-A Review.

    PubMed

    Alfy, Anto; Kiran, B V; Jeevitha, G C; Hebbar, H Umesh

    2016-10-02

    Although the use of superheated steam has been known for quite a long time, only in the recent past has it emerged as a viable technology for food processing. Superheated steam, having higher enthalpy, can quickly transfer heat to the material being processed, resulting in its rapid heating. The major advantages of using superheated steam for food processing are better product quality (color, shrinkage, and rehydration characteristics), reduced oxidation losses, and higher energy efficiency. This review provides a comprehensive overview of recent studies on the application of superheated steam for food-processing operations such as drying, decontamination and microbial load reduction, parboiling, and enzyme inactivation. The review encompasses aspects such as the effect of superheated steam processing on product quality, mathematical models reported for superheated steam drying, and the future scope of application in food processing. Recent studies on process improvisation, wherein superheated steam is used at low pressure, in fluidized bed mode, sequential processing with hot air/infrared, and in combination with micro droplets of water have also been discussed.

  2. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    PubMed

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor

  3. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    PubMed Central

    GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT

    2014-01-01

    Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be

  4. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    NASA Astrophysics Data System (ADS)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  5. Steam drum design for direct steam generation

    NASA Astrophysics Data System (ADS)

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus

    2017-06-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.

  6. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  7. Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles.

    PubMed

    Chava, Anil K; Bandyopadhyay, Sumi; Chatterjee, Mitali; Mandal, Chitra

    2004-01-01

    Protozoan parasites including Plasmodia, Leishmania, Trypanosoma, Entamoeba, Trichomonas and others cause diseases in humans and domestic livestock having far-reaching socio-economic implications. They show remarkable propensity to survive within hostile environments encountered during their life cycle, and the identification of molecules that enable them to survive in such milieu is a subject of intense research. Currently available knowledge of the parasite cell surface architecture and biochemistry indicates that sialic acid and its principle derivatives are major components of the glycocalyx and assist the parasite to interact with its external environment through functions ranging from parasite survival, infectivity and host-cell recognition. This review highlights the present state of knowledge with regard to parasite sialobiology with an emphasis on its mode(s) of acquisition and their emerging biological roles, notably as an anti-recognition molecule thereby aiding the pathogen to evade host defense mechanisms.

  8. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    PubMed

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  9. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  10. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  11. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be

  12. Steam Rankine Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.; Faust, M.

    1981-01-01

    A steam rankine solar receiver (SRSR) based on a tubular concept was designed and developed. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam is used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy. The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0 inches in diameter and 21.5 inches long. The tube size is 7/16 inch I.D. by 0.070 inch wall for the primary, and 3/4 inch I.D. by 0.125 inch wall for the reheat section. The materials used were corrosion resistant steel (CRES) type 321 and type 347 stainless steel. The core is insulated with 6 inches of cerablanket insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400 F and 2550 psig.

  13. SU-F-T-263: Dosimetric Characteristics of the Cine Acquisition Mode of An A-Si EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bawazeer, O; Deb, P; Sarasanandarajah, S

    2016-06-15

    Purpose: To investigate the dosimetric characteristics of Varian a-Si-500 electronic portal imaging device (EPID) operated in cine mode particularly considering linearity with delivered dose, dose rate, field size, phantom thickness, MLC speed and common IMRT fields. Methods: The EPID that attached to a Varian Clinac 21iX linear accelerator, was irradiated with 6 and 18 MV using 600 MU/min. Image acquisition is controlled by the IAS3 software, Trigger delay was 6 ms, BeamOnDelay and FrameStartDelay were zero. Different frame rates were utilized. Cine mode response was calculated using MATLAB as summation of mean pixel values in a region of interest ofmore » the acquired images. The performance of cine mode was compared to integrated mode and dose measurements in water using CC13 ionization chamber. Results: Figure1 illustrates that cine mode has nonlinear response for small MU, when delivering 10 MU was about 0.5 and 0.64 for 6 and 18 MV respectively. This is because the missing acquired images that were calculated around four images missing in each delivery. With the increase MU the response became linear and comparable with integrated mode and ionization chamber within 2%. Figure 2 shows that cine mode has comparable response with integrated mode and ionization chamber within 2% with changing dose rate for 10 MU delivered. This indicates that the dose rate change has no effect on nonlinearity of cine mode response. Except nonlinearity, cine mode is well matched to integrated mode response within 2% for field size, phantom thickness, MLC speed dependences. Conclusion: Cine mode has similar dosimetric characteristics to integrated mode with open and IMRT fields, and the main limitation with cine mode is missing images. Therefore, the calibration of EPID images with this mode should be run with large MU, and when IMRT verification field has low MU, the correction for missing images are required.« less

  14. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  15. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  16. THE IMPACT OF MODE OF ACQUISITION ON BIOLOGICAL MARKERS OF PAEDIATRIC HEPATITIS C VIRUS INFECTION

    PubMed Central

    England, Kirsty; Thorne, Claire; Harris, Helen; Ramsay, Mary; Newell, Marie-Louise

    2012-01-01

    Background Despite the introduction of blood donor screening, worldwide, children continue to become infected with HCV via un-sterile medical injections, receipt of unscreened blood and isolated hospital contamination outbreaks. It is plausible that the natural history and disease progression in these children might differ from that of their vertically infected counterparts. Materials and Methods Vertically and parenterally HCV infected children were prospectively followed within the European Paediatric HCV Network and the UK National HCV Register respectively. Biological profiles were compared. Results Vertically and parenterally HCV infected children differed in terms of some key characteristics including the male:female ratio and the proportion of children receiving therapy. Parenterally infected children were more likely to have at least one hepatomegaly event during follow-up, 20% vs. 10%. Parenteral infection did not significantly affect the odds of being consistently viraemic, AOR 1.14 p=0.703 and there was no significant difference in the odds of having consistently elevated ALT levels and mode of acquisition, AOR 0.83 p=0.748. The proportion of children with 2 or more markers of HCV infection did not differ significantly by mode of acquisition, χ21.13 p=0.288. Conclusions This analysis does not support substantial differences between vertically and parenterally infected groups but there are specific mechanisms identified requiring further investigation. Given the continued parenteral infection of children worldwide it is vital that knowledge of disease progression in this group is accurate and that the differences in comparison to vertically infected children are clarified to inform more accurate and individualised clinical management. PMID:21762285

  17. On line instrument systems for monitoring steam turbogenerators

    NASA Astrophysics Data System (ADS)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  18. Cardiac phase-synchronized myocardial thallium-201 single-photon emission tomography using list mode data acquisition and iterative tomographic reconstruction.

    PubMed

    Vemmer, T; Steinbüchel, C; Bertram, J; Eschner, W; Kögler, A; Luig, H

    1997-03-01

    The purpose of this study was to determine whether data acquisition in the list mode and iterative tomographic reconstruction would render feasible cardiac phase-synchronized thallium-201 single-photon emission tomography (SPET) of the myocardium under routine conditions without modifications in tracer dose, acquisition time, or number of steps of the a gamma camera. Seventy non-selected patients underwent 201T1 SPET imaging according to a routine protocol (74 MBq/2 mCi 201T1, 180 degrees rotation of the gamma camera, 32 steps, 30 min). Gamma camera data, ECG, and a time signal were recorded in list mode. The cardiac cycle was divided into eight phases, the end-diastolic phase encompassing the QRS complex, and the end-systolic phase the T wave. Both phase- and non-phase-synchronized tomograms based on the same list mode data were reconstructed iteratively. Phase-synchronized and non-synchronized images were compared. Patients were divided into two groups depending on whether or not coronary artery disease had been definitely diagnosed prior to SPET imaging. The numbers of patients in both groups demonstrating defects visible on the phase-synchronized but not on the non-synchronized images were compared. It was found that both postexercise and redistribution phase tomograms were suited for interpretation. The changes from end-diastolic to end-systolic images allowed a comparative assessment of regional wall motility and tracer uptake. End-diastolic tomograms provided the best definition of defects. Additional defects not apparent on non-synchronized images were visible in 40 patients, six of whom did not show any defect on the non-synchronized images. Of 42 patients in whom coronary artery disease had been definitely diagnosed, 19 had additional defects not visible on the non-synchronized images, in comparison to 21 of 28 in whom coronary artery disease was suspected (P < 0.02; chi 2). It is concluded that cardiac phase-synchronized 201T1 SPET of the myocardium was

  19. Design Evolution and Verification of the A-3 Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Kirchner, Casey K.

    2009-01-01

    operate as expected. The generator which will undergo this testing is of the most recent A-3 configuration, and will be instrumented far in excess of what is normally required for operation. The extra data will allow for easier troubleshooting and more complete knowledge of expected generator performance. In addition, the early testing will give SSC personnel experience in operating the CSG systems, which will expedite the process of installation and activation at A-3. Each Chemical Steam Generator is supported by a complement of valves, instruments, and flow control devices, with the entire assembly called a "module." The generators will be installed in groups of three, historically called "units". A module is so called because of its modular ability to be replaced or serviced without disturbing the other two modules installed on the same unit. A module is pictured in Figure 1, shown with its generator secured by white bands in its shipping (vs. installed) configuration. The heritage system at WSTF is composed of a single unit (three generator modules), pictured in Figure 2 as it was installed in 1965. In contrast, A-3 will have nine units operating in parallel to achieve vacuum conditions appropriate for testing the J-2X engine. Each of the combustors operates in two modes and achieves the so-called "full-steam" mode after all three of its stages ignite. Ignition of the first stage is achieved by exciting a spark plug; the second stage and main stage are lit by the flame front of the previous stage. The main stage burns approximately 97% of the total propellant flow and uses the heat energy to vaporize water into superheated steam. While the main stage remains unlit, the combustor is in so-called "idle" mode. In the WSTF system, this idle mode is not optimized for water usage, and does not need to be, as the water is pumped from a large reservoir. The water supply at A-3 will be contained in tanks with finite volume, so water optimization is preferred for the modnized

  20. Continued Data Acquisition Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less

  1. 8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  2. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  3. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  4. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  5. Steam generator tubing NDE performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.; Welty, C.S. Jr.

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, andmore » data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.« less

  6. Metabolite-cycled STEAM and semi-LASER localization for MR spectroscopy of the human brain at 9.4T.

    PubMed

    Giapitzakis, Ioannis-Angelos; Shao, Tingting; Avdievich, Nikolai; Mekle, Ralf; Kreis, Roland; Henning, Anke

    2018-04-01

    Metabolite cycling (MC) is an MRS technique for the simultaneous acquisition of water and metabolite spectra that avoids chemical exchange saturation transfer effects and for which water may serve as a reference signal or contain additional information in functional or diffusion studies. Here, MC was developed for human investigations at ultrahigh field. MC-STEAM and MC-semi-LASER are introduced at 9.4T with an optimized inversion pulse and elaborate coil setup. Experimental and simulation results are given for the implementation of adiabatic inversion pulses for MC. The two techniques are compared, and the effect of frequency and phase correction based on the MC water spectra is evaluated. Finally, absolute quantification of metabolites is performed. The proposed coil configuration results in a maximum B1 + of 48 μΤ in a voxel within the occipital lobe. Frequency and phase correction of single acquisitions improve signal-to-noise ratio (SNR) and linewidth, leading to high-resolution spectra. The improvement of SNR of N-acetylaspartate (SNR NAA ) for frequency aligned data, acquired with MC-STEAM and MC-semi-LASER, are 37% and 30%, respectively (P < 0.05). Moreover, a doubling of the SNR NAA for MC-semi-LASER in comparison with MC-STEAM is observed (P < 0.05). Concentration levels for 18 metabolites from the human occipital lobe are reported, as acquired with both MC-STEAM and MC-semi-LASER. This work introduces a novel methodology for single-voxel MRS on a 9.4T whole-body scanner and highlights the advantages of semi-LASER compared to STEAM in terms of excitation profile. In comparison with MC-STEAM, MC-semi-LASER yields spectra with higher SNR. Magn Reson Med 79:1841-1850, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  8. [Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].

    PubMed

    Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai

    2014-12-01

    To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.

  9. Steam trap monitor

    DOEpatents

    Ryan, Michael J.

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  10. 14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. Study of connected system of automatic control of load and operation efficiency of a steam boiler with extremal controller on a simulation model

    NASA Astrophysics Data System (ADS)

    Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.

    2017-02-01

    The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.

  12. Condensation Heat Transfer of Steam on a Single Horizontal Tube.

    DTIC Science & Technology

    1983-06-01

    public release; distribution unlimited 88 09 07 1?0 L_ I jmmAzzLEim. SICUR1TY CLASStFICATION o« THIS r-AOt (*»*< Data Enf«r»d) REPORT...steam side data were taken at atmospheric pressure to test the data acquisition/reduction computer programs.^— S N 0102- LF. 014-1601 Accession For...Dlst H Special UNCLASSIFIED ItCUHlTV CLASSIFICATION O» TMI( PAOtyWft«! Data >*H mtm Im. ! Approved for public release; distribution

  13. Downhole steam injector

    DOEpatents

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  14. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  15. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  16. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  17. Experimental research of flow parameters on the last stage of the steam turbine 1090 MW

    NASA Astrophysics Data System (ADS)

    Sedlák, Kamil; Hoznedl, Michal; Bednář, Lukáš; Mrózek, Lukáš; Kalista, Robert

    2016-06-01

    This article deals with a brief description of measurement and evaluation of flow parameters at the output from the last stage of the low pressure steam turbine casing for the saturated steam with the nominal power 1090 MW. Measurement was carried out using a seven-hole pneumatic probe traversing along the length of the blade in several peripheral positions under nominal and selected partial modes. The result is knowledge of distribution of the static, dynamic and total pressure along the length of the blade and velocity distribution including their components. This information is the input data for determination of efficiency of the last stage, the loss coefficient of the diffuser and other significant parameters describing efficiency of selected parts of the steam turbine.

  18. Steamer of steam circulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onodera, M.

    1986-09-23

    A conveyor steamer is described which consists of: a room enclosed with heat-insulated walls, floor, and ceiling, the room having an entrance and an exit for goods to be steamed, a conveyor means for carrying the goods to be steamed, the conveyor means traversing into the entrance of the room, through the room, and out of the exit of the room; a source of heated primary steam; first pipe means, arranged beneath the conveyor means, for jetting the heated primary steam upwardly from across the floor of the room; second pipe means disposed across the entire ceiling of the roommore » arranged above the conveyor means, for scavenging spent steam from across the entire ceiling of the room; and an ejector-condenser means, interconnected between the first pipe means, the source of primary heated steam and the second pipe means, for mixing the spent steam from the second pipe means with the heated primary steam in the first pipe means; whereby the spent steam mixed with the heated primary steam is caused to recirculate in the first pipe means through the room, thus saving energy and consuming less heated primary steam so that cost reductions will result.« less

  19. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less

  20. Sterilisation in the laboratory autoclave using direct air displacement by steam.

    PubMed Central

    Everall, P H; Morris, C A; Yarnell, R

    1978-01-01

    A device using a steam injection funnel is described by means of which air can be driven quickly and surely from an autoclave load. It is simple and inexpensive, necessitates no changes in the working routine of a microbiology laboratory, and does not interfere with the operation of the autoclave in its normal mode. Images Fig. 1 Fig. 3 PMID:344345

  1. Kern River steam expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1970-09-15

    The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less

  2. Steam jet ejectors for the process industries. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, R.B.

    1994-01-01

    Steam jet ejectors were for many years the workhorse of the chemical process industries for producing vacuum. With increasing emphasis on stricter pollution control, their use was curtailed. There are still many applications, however, such as those with large capacity requirements, where ejectors are the only equipment that can produce sufficient vacuum. Chapter 1 is a short overview on how to use the text. Chapter 2 discusses what an ejector is and how it works. How ejector stages work is reviewed in Chapter 3. Engineering calculations for ejector stages is thoroughly discussed in Chapter 4. In Chapter 5, contact andmore » surface condensers are reviewed, and calculation procedures are presented. The various types of pressure control are discussed in Chapter 6. Chapter 7 is an excellent review of installation of ejector vacuum systems. The final chapter of Part 2 (Chapters 3--8) thoroughly covers all aspects of operation, testing, troubleshooting and maintenance. Part 3, consisting of two chapters, is devoted to specifying and purchasing steam jet ejectors. Part 4 on other ejector applications and upgrading ejector usage also consists of two chapters. Chapter 11 reviews steam-jet refrigeration, steam-jet and gas-jet compressors, liquid jet eductors, desuperheaters, special design situations, and designing one's own systems. Upgrading of existing ejector procedures and hardware is reviewed in Chapter 12. The 12 appendixes cover: physical properties of common fluids; handy vacuum engineering data and rules of thumb; SI unit conversions; sizing air and steam metering orifices for testing; drill sizes; ejector operating costs and design optimization; forms for ejector calculations, tests, and inspections; instructions for preparing ejector specifications; test kit contents list; ejector manufacturers and suppliers of referenced hardware and information; and failure modes and symptoms.« less

  3. The Assessment of Selectivity in Different Quadrupole-Orbitrap Mass Spectrometry Acquisition Modes

    NASA Astrophysics Data System (ADS)

    Berendsen, Bjorn J. A.; Wegh, Robin S.; Meijer, Thijs; Nielen, Michel W. F.

    2015-02-01

    Selectivity of the confirmation of identity in liquid chromatography (tandem) mass spectrometry using Q-Orbitrap instrumentation was assessed using different acquisition modes based on a representative experimental data set constructed from 108 samples, including six different matrix extracts and containing over 100 analytes each. Single stage full scan, all ion fragmentation, and product ion scanning were applied. By generating reconstructed ion chromatograms using unit mass window in targeted MS2, selected reaction monitoring (SRM), regularly applied using triple-quadrupole instruments, was mimicked. This facilitated the comparison of single stage full scan, all ion fragmentation, (mimicked) SRM, and product ion scanning applying a mass window down to 1 ppm. Single factor Analysis of Variance was carried out on the variance (s2) of the mass error to determine which factors and interactions are significant parameters with respect to selectivity. We conclude that selectivity is related to the target compound (mainly the mass defect), the matrix, sample clean-up, concentration, and mass resolution. Selectivity of the different instrumental configurations was quantified by counting the number of interfering peaks observed in the chromatograms. We conclude that precursor ion selection significantly contributes to selectivity: monitoring of a single product ion at high mass accuracy with a 1 Da precursor ion window proved to be equally selective or better to monitoring two transition products in mimicked SRM. In contrast, monitoring a single fragment in all ion fragmentation mode results in significantly lower selectivity versus mimicked SRM. After a thorough inter-laboratory evaluation study, the results of this study can be used for a critical reassessment of the current identification points system and contribute to the next generation of evidence-based and robust performance criteria in residue analysis and sports doping.

  4. Steaming Clean

    ERIC Educational Resources Information Center

    Hoverson, Rick

    2006-01-01

    Schools can provide a cleaner, more healthful school environment by simply combining heat and water. Steam vapor systems use only tap water with no chemicals added. Low-pressure (12 psi to 65 psi) steam vapor sanitizes and deodorizes. This process can then be used safely in many situations, but is especially suited for restrooms and food-service…

  5. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  6. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  7. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    PubMed

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-11-17

    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  8. Horizontal steam generator thermal-hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubra, O.; Doubek, M.

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less

  9. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  11. The Invisibility of Steam

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  12. Steam Turbines

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  13. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOEpatents

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  14. 48 CFR 47.305-14 - Mode of transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...

  15. 48 CFR 47.305-14 - Mode of transportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...

  16. 48 CFR 47.305-14 - Mode of transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...

  17. 48 CFR 47.305-14 - Mode of transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...

  18. 48 CFR 47.305-14 - Mode of transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...

  19. Slant-hole collimator, dual mode sterotactic localization method

    DOEpatents

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  20. Steam cooling system for a gas turbine

    DOEpatents

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  1. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  2. High-efficiency condenser of steam from a steam-gas mixture

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  3. More steam for Kern River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1973-02-01

    While production generally is declining elsewhere in California, the Kern River field continues to post gains. The field last year produced at an all-time high for the second year in a row, putting out at least 1.5 million bbl more than in its previous peak year. There is every reason to believe that gains will continue through this year. Steam is in the factor that underlies Kern River's resurgence, and Getty Oil Co., the field's premier steamer, recently added to its already imposing array of steam-generating equipment a pair of large boilers, each capable of generating 240 million btus permore » hr. Along with expansion of the steaming effort the company also expanded its water-treating facilities, making sure there will be plenty of feed water to fuel the steam generators at work in the field. The new boilers are being used to furnish steam to 136 wells in a steam displacement project. The purpose of going to a larger generator has been to gain higher efficiency. The components that have made Getty Oil the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells, steam generators and--since 1969--a computer. The entire project is described in detail.« less

  4. Can Production Precede Comprehension in L2 Acquisition?

    ERIC Educational Resources Information Center

    Tasseva-Kurktchieva, Mila

    2015-01-01

    So far, the comprehension and production language modes have typically been studied separately in generative second language acquisition research, with the focus shifting from one to the other. This article revisits the asymmetric relationship between comprehension and production by examining the second language (L2) acquisition of the noun phrase…

  5. STEAM by Design

    ERIC Educational Resources Information Center

    Keane, Linda; Keane, Mark

    2016-01-01

    We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…

  6. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam. (b...

  7. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  8. High angular resolution diffusion imaging with stimulated echoes: compensation and correction in experiment design and analysis.

    PubMed

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-08-01

    Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  9. Downhole steam quality measurement

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  10. EEG acquisition system based on active electrodes with common-mode interference suppression by Driving Right Leg circuit.

    PubMed

    Guermandi, Marco; Bigucci, Alessandro; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-01-01

    We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing network interference for both wet and dry-contact electrodes. The front-end amplification stage is integrated on the electrode, minimizing the system's sensitivity to electrode contact quality, cable movement and common mode interference. The A/D conversion stage can be either integrated in the remote back-end or placed on the head as well, allowing for an all-digital communication to the back-end. Noise integrated in the band from 0.5 to 100 Hz is comprised between 0.62 and 1.3 μV, depending on the configuration. Current consumption for the amplification and A/D conversion of one channel is 390 μA. Thanks to its low noise, the high level of interference suppression and its quick setup capabilities, the system is particularly suitable for use outside clinical environments, such as in home care, brain-computer interfaces or consumer-oriented applications.

  11. Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.

    2017-11-01

    The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.

  12. Safety Picks up "STEAM"

    ERIC Educational Resources Information Center

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  13. Cyclic steaming in heavy oil diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Beatty, F.D.

    1995-12-31

    Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less

  14. Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.

    PubMed

    Zhang, Mingxing; Chen, Haiyan

    2018-04-20

    Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50  = 4.785 μm, and another particle size is d 50  = 8.999 μm. For particle size d 50  = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.

  15. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...

  16. A PC-based single-ADC multi-parameter data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodring, M.; Kegel, G.H.R.; Egan, J.J.

    1995-10-01

    A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less

  17. Reflector automatic acquisition and pointing based on auto-collimation theodolite.

    PubMed

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  18. Reflector automatic acquisition and pointing based on auto-collimation theodolite

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  19. Vapor generator steam drum spray head

    DOEpatents

    Fasnacht, Jr., Floyd A.

    1978-07-18

    A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

  20. Stimulated echo diffusion tensor imaging (STEAM-DTI) with varying diffusion times as a probe of breast tissue.

    PubMed

    Teruel, Jose R; Cho, Gene Y; Moccaldi Rt, Melanie; Goa, Pål E; Bathen, Tone F; Feiweier, Thorsten; Kim, Sungheon G; Moy, Linda; Sigmund, Eric E

    2017-01-01

    To explore the application of diffusion tensor imaging (DTI) for breast tissue and breast pathologies using a stimulated-echo acquisition mode (STEAM) with variable diffusion times. In this Health Insurance Portability and Accountability Act-compliant study, approved by the local institutional review board, eight patients and six healthy volunteers underwent an MRI examination at 3 Tesla including STEAM-DTI with several diffusion times ranging from 68.5 to 902.5 ms. A DTI model was fitted to the data for each diffusion time, and parametric maps of mean diffusivity, fractional anisotropy, axial diffusivity, and radial diffusivity were computed for healthy fibroglandular tissue (FGT) and lesions. The median value of radial diffusivity for FGT was fitted to a linear decay to obtain an estimation of the surface-to-volume ratio, from which the radial diameter was calculated. For healthy FGT, radial diffusivity presented a linear decay with the square root of the diffusion time resulting in a range of estimated radial diameters from 202 to 496 µm, while axial diffusivity presented a nearly time-independent diffusion. Residual fat signal was reduced at longer diffusion times due to the shorter T1 of fat. Residual fat signal to the overall signal in the healthy volunteers' FGT was found to range from 2.39% to 2.55% (shortest mixing time), and from 0.40% to 0.51% (longest mixing time) for the b500 images. The use of variable diffusion times may provide an in vivo noninvasive tool to probe diffusion lengths in breast tissue and breast pathology, and might aid by improving fat suppression at longer diffusion times. 2 J. Magn. Reson. Imaging 2017;45:84-93. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Steampunk: Full Steam Ahead

    ERIC Educational Resources Information Center

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  2. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  3. Combining a Deconvolution and a Universal Library Search Algorithm for the Nontarget Analysis of Data-Independent Acquisition Mode Liquid Chromatography-High-Resolution Mass Spectrometry Results.

    PubMed

    Samanipour, Saer; Reid, Malcolm J; Bæk, Kine; Thomas, Kevin V

    2018-04-17

    Nontarget analysis is considered one of the most comprehensive tools for the identification of unknown compounds in a complex sample analyzed via liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Due to the complexity of the data generated via LC-HRMS, the data-dependent acquisition mode, which produces the MS 2 spectra of a limited number of the precursor ions, has been one of the most common approaches used during nontarget screening. However, data-independent acquisition mode produces highly complex spectra that require proper deconvolution and library search algorithms. We have developed a deconvolution algorithm and a universal library search algorithm (ULSA) for the analysis of complex spectra generated via data-independent acquisition. These algorithms were validated and tested using both semisynthetic and real environmental data. A total of 6000 randomly selected spectra from MassBank were introduced across the total ion chromatograms of 15 sludge extracts at three levels of background complexity for the validation of the algorithms via semisynthetic data. The deconvolution algorithm successfully extracted more than 60% of the added ions in the analytical signal for 95% of processed spectra (i.e., 3 complexity levels multiplied by 6000 spectra). The ULSA ranked the correct spectra among the top three for more than 95% of cases. We further tested the algorithms with 5 wastewater effluent extracts for 59 artificial unknown analytes (i.e., their presence or absence was confirmed via target analysis). These algorithms did not produce any cases of false identifications while correctly identifying ∼70% of the total inquiries. The implications, capabilities, and the limitations of both algorithms are further discussed.

  4. Running Out of Steam.

    ERIC Educational Resources Information Center

    Kumar, Promod

    2000-01-01

    Explains why schools should evaluate whether their older steam-heating systems are still cost-effective, or need to be repaired or replaced. The symptoms of deterioration are listed along with discussions on repair or replacement decision making on three areas of steam heating systems: boilers; distribution system; and terminal equipment. (GR)

  5. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  6. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  7. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...

  8. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  9. A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases.

    PubMed

    Guo, Jing; Ng, Waichiu; Yuan, Jie; Li, Suwen; Chan, Mansun

    2016-06-01

    Microelectrode array (MEA) can be used in the study of neurodegenerative diseases by monitoring the chemical neurotransmitter release and the electrical potential simultaneously at the cellular level. Currently, the MEA technology is migrating to more electrodes and higher electrode density, which raises power and area constraints on the design of acquisition IC. In this paper, we report the design of a 200-channel dual-mode acquisition IC with highly efficient usage of power and area. Under the constraints of target noise and fast settling, the current channel design saves power by including a novel current buffer biased in discrete time (DT) before the TIA (transimpedance amplifier). The 200 channels are sampled at 20 kS/s and quantized by column-wise SAR ADCs. The prototype IC was fabricated in a 0.18 μm CMOS process. Silicon measurements show the current channel has 21.6 pArms noise with cyclic voltammetry (CV) and 0.48 pArms noise with constant amperometry (CA) while consuming 12.1 μW . The voltage channel has 4.07 μVrms noise in the bandwidth of 100 kHz and 0.2% nonlinearity while consuming 9.1 μW. Each channel occupies 0.03 mm(2) area, which is among the smallest.

  10. Process for purifying geothermal steam

    DOEpatents

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  11. Process for purifying geothermal steam

    DOEpatents

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  12. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  13. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.

    PubMed

    Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B

    2015-06-01

    The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  15. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed...

  16. A SURVEY OF CONVENTIONAL STEAM BOILER EXPERIENCE APPLICABLE TO THE HTGR STEAM GENERATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paget, J.A.

    1959-10-01

    BS>The steam generator of a high temperature gas-cooled reactor consists of tubular heating surface inside a shell which forms part of the primary He circuit of the reactor. When a tube fails in such a steam generator, moisture in the form of steam is released into the He steam and is carried through the reactor where it will cause corrosion and mass transfer of C in the core. A paramount consideration in the design of a steam generator for a high temperature gas-cooled reactor is the prevention of tube failures. Preference, therefore, should be given to a forced circulation design.more » The Loeffler Boiler would be the best from this standpoint alone since only steam enters the tubes, and its circulation rate can be maintained at an adequate value to insure cool tubes regardless of load fluctuations. The next type in the order of preference would be the forced recirculation boiler, since at least the boiier tubes always have an adequate cooling flow regardless of output. The third type in order of preference would be a Sulzer Type boiler since it has a separator to remove dissolved material from the water which is comparible in efficiency to a standard boiler drum and although the flow through evaporator and superheater fluctuates with load, the Sulzer Boiler can be operated as a forced recirculation boiler at low loads. The least desirable type would be a Benson or supercritical boiler which is completely dependent on input water purity for its survival. It is not claimed that Benson or supercritical boilers should not or will not be used in the future for gas-cooled reactors, but only that their use would be the least conservative choice from a tube failure standpoint at the present time. (auth)« less

  17. Optical steam quality measurement system and method

    DOEpatents

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  18. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  19. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak

    PubMed Central

    Choi, Yun-Sang; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Eun-Mi; Sung, Jung-Min; Kim, Hyun-Wook

    2016-01-01

    The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (p<0.05), whereas protein content, redness value (a*-value), hardness, gumminess, and chewiness of superheated steam cooked chicken steak was lower than that in the other cooking treatments (p<0.05). Fat content and ash content, springiness, and cohesiveness were not significantly different among the chicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p<0.05), whereas no difference in flavor scores were observed among the other treatments (p>0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak. PMID:27499656

  20. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  1. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  2. Hockey-stick steam generator for LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallinan, G.J.; Svedlund, P.E.

    1981-01-01

    This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less

  3. Disinfection of Cystoscopes by Subatmospheric Steam and Steam and Formaldehyde at 80°C

    PubMed Central

    Alder, V. G.; Gingell, J. C.; Mitchell, J. P.

    1971-01-01

    A new method of disinfection adapted for endoscopic instruments uses low temperature steam at 80°C or steam and formaldehyde at 80°C. The process has considerable advantages over existing methods and more closely approaches the ideal requirements. ImagesFIG. 3FIG. 4FIG. 5 PMID:5569551

  4. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  5. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  6. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  7. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive number change. 230.21 Section 230... Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed... all documentation related to the steam locomotive by showing the old and new numbers: Old No. 000 New...

  8. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  9. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  10. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...

  11. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...

  12. The STEAM Project

    NASA Astrophysics Data System (ADS)

    von Schéele, F.; Steam Team

    The proposed satellite project "Stratosphere-Troposphere Exchange And climate Monitor" (STEAM) is dedicated to the investigation of chemical, dynamical, and radiative processes in the upper troposphere and lower stratosphere (UT/LS) altitude range and their links with the Earth climate and stratosphere evolution. The main objectives are to provide vertically and horizontally resolved information on the global distributions of UT/LS key species such as H2O, O3, and CO, and global fields of O3, H2O and halogen compounds responsible for the O3 destruction like ClO in the stratosphere. The UT/LS region plays an important role in the Earth's climate system. Despite its importance there is still a lack of accurate, height-resolved data from the UT/LS. Confronting 3-D climate and chemical-transport models with STEAM observations will improve our knowledge of this atmospheric region. Furthermore, it will be important to continue monitoring the evolution of the stratosphere regarding the expected decline of halogen compounds and recovery of the ozone layer. STEAM consists of a microwave limb-sounding instrument, operating in the 320-360 GHz range to sound the UT/LS and in the 485-505 GHz range to sound the stratosphere, and an optical instrument. By sounding the Earth atmosphere's limb from 5 to 28 km employing a new technique with 8 simultaneous measurements, STEAM will produce a global dataset of UT/LS key species with high vertical (1.5-2.5 km) and horizontal (30-50 km) resolution. The sub-mm band will cover 15 to 40 km. An optical instrument, co-aligned with the mm-wave band, will support micro-wave measurements with cloud indications and in addition provide stratospheric ozone, and aerosol and cloud property measurements. STEAM, planned for a launch in 2008, will be a collaboration between laboratories, industry and agencies in several countries. The Odin heritage of the project (e.g. microwave and optical instruments) provides technical maturity and will help to keep

  13. Some Aspects of Developing Background Knowledge in Second Language Acquisition Revisited

    ERIC Educational Resources Information Center

    Zashchitina, Galina; Moysyak, Natalia

    2017-01-01

    The article focuses on defining how background knowledge impacts on second-language acquisition by giving a brief overview of schema theory, the interaction of the basic modes of information processing. A challenge of dealing with culturally specific texts in second language acquisition is also touched upon. Different research-supported views on…

  14. STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices

    ERIC Educational Resources Information Center

    Herro, Danielle; Quigley, Cassie

    2016-01-01

    This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…

  15. Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.

    1983-09-01

    The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study andmore » from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition.« less

  16. Steam generator tube inspection in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Shigetaka

    1997-02-01

    Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbinmore » coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.« less

  17. Variable effect of steam injection level on beef muscles: semitendinosus and biceps femoris cooked in convection-steam oven.

    PubMed

    Zając, Marzena; Kącik, Sławomir; Palka, Krystyna; Widurek, Paweł

    2015-01-01

    Combi ovens are used very often in restaurants to heat up food. According to the producers the equipment allows to cook meat portions which are more tender and flavoursome comparing to conventional cooking techniques. Beef steaks from muscles semitendinosus and biceps femoris were cooked in convection-steam oven at three humidity levels: 10, 60 and 100%. Chemical composition, including total and insoluble collagen content and cook losses were analysed along with the texture and colour parameters. M. biceps femoris was the hardest and the most chewy at 100% steam saturation level and hardness measured for m. semitendinosus was the lowest at 10% of vapour injection. Changing the steam conditions in the oven chamber did not affect the detectable colour differences of m. biceps femoris, but it was significant for m. semitendinosus. Applying 100% steam saturation caused higher cook losses and the increase of insoluble collagen fractions in both analysed muscles. The results are beneficial for caterers using steam-convection ovens in terms of providing evidence that the heating conditions should be applied individually depending on the muscle used. The tenderness of m. semitendinosus muscle cooked at 10% steam saturation level was comparable to the tenderness obtained for the same muscle aged for 10 days and cooked with 100% steam saturation. Steaks from m. biceps femoris muscle should be cooked with maximum 60% saturation level to obtain higher tenderness.

  18. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng.

    PubMed

    In, Gyo; Ahn, Nam-Geun; Bae, Bong-Seok; Lee, Myoung-Woo; Park, Hee-Won; Jang, Kyoung Hwa; Cho, Byung-Goo; Han, Chang Kyun; Park, Chae Kyu; Kwak, Yi-Seong

    2017-07-01

    The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ . Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng . The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20( S )-Rg2, 20( S, R )-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

  19. Equations for calculating the properties of dissociated steam

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Gudym, A. A.

    2017-08-01

    The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.

  20. Steam-assisted hot-pressing of construction plywood

    Treesearch

    Ronald W. Jokerst; Robert L. Geimer

    1994-01-01

    This study was designed to determine if steam injection pressing used for fiberboard, particleboard, and flakeboard could be adapted to the pressing of plywood. Plywood panels were fabricated with and without adhesive and then pressed to determine the effects of steam injection Lime, steam injection pressure, and press pressure on heat transfer rate, moisture...

  1. Dehumidification System with Steam Permeability Films

    NASA Astrophysics Data System (ADS)

    Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo

    In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.

  2. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-01-01

    In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.

  3. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  4. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. Origin and transport of chloride in superheated geothermal steam

    USGS Publications Warehouse

    Truesdell, A.H.; Haizlip, J.R.; Armannsson, H.; D'Amore, F.

    1989-01-01

    Hydrogen chloride (HCl) is a known component of some volcanic gases and volcanic-related hydrothermal systems. It has recently been discovered in superheated steam in exploited geothermal systems, usually as a result of HCl-induced corrosion of well casing and steam gathering systems. Evaluation of four geothermal systems (Tatun, Taiwan; Krafla, Iceland; Larderello, Italy and The Geysers, USA) which produce CI-bearing steam provides evidence for the presence of Cl as HCl and the natural reservoir conditions which can produce HCl-bearing steam. Theoretical calculations defining the physical and chemical conditions of the reservoir liquid which can produce HCl-bearing steam are presented. The main factors are pH, temperature and Cl concentration. Lower pH, higher temperature and higher chlorinity allow more HCl to be volatilized with steam. In order to reach the surface in steam, the HCl cannot contact liquid water in which it is more soluble, essentially limiting transport to superheated steam. Temperature, pH and Cl concentration of reservoir liquids in each of the geothermal systems evaluated combine differently to produce HCl-bearing steam. ?? 1989.

  6. Comparative evaluation of surface and downhole steam-generation techniques

    NASA Astrophysics Data System (ADS)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  7. Steam injection pilot study in a contaminated fractured limestone (Maine, USA): Modeling and analysis of borehole radar reflection data

    USGS Publications Warehouse

    Gregoire, C.; Lane, J.W.; Joesten, P.K.

    2005-01-01

    Steam-enhanced remediation (SER) has been successfully used to remove DNAPL and LNAPL contaminants in porous media. Between August and November 2002, SER was tested in fractured limestone at the former Loring Air Force Base, in Maine, USA. During the SER investigation, the U.S. Geological Survey conducted a series of borehole radar surveys to evaluate the effectiveness of radar methods for monitoring the movement of steam and heat through the fractured limestone. The data were collected before steam injection, 10 days after the beginning of injection, and at the end of injection. In this paper, reflection-mode borehole radar data from wells JBW-7816 and JBW-7817A are presented and discussed. Theoretical modeling was performed to predict the variation of fracture reflectivity owed to heating, to show displacement of water and to assess the effect of SER at the site. Analysis of the radar profile data indicates some variations resulting from heating (increase of continuity of reflectors, attenuation of deeper reflections) but no substantial variation of traveltimes. Spectral content analysis of several individual reflections surrounding the boreholes was used to investigate the replacement of water by steam in the fractures. Observed decrease in radar reflectivity was too small to be explained by a replacement of water by steam, except for two high-amplitude reflectors, which disappeared near the end of the injection; moreover, no change of polarity, consistent with steam replacing water, was observed. The decrease of amplitude was greater for reflectors near well JBW-7817A and is explained by a greater heating around this well.

  8. Mathematical modeling of control system for the experimental steam generator

    NASA Astrophysics Data System (ADS)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  9. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  10. Steam reforming of commercial ultra-low sulphur diesel

    NASA Astrophysics Data System (ADS)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  11. 49 CFR 230.65 - Steam blocking view of engine crew.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or...

  12. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    NASA Astrophysics Data System (ADS)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  13. BWR Steam Dryer Alternating Stress Assessment Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morante, R. J.; Hambric, S. A.; Ziada, S.

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  14. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  15. Cogeneration steam turbines from Siemens: New solutions

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  16. Learning the manifold of quality ultrasound acquisition.

    PubMed

    El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo

    2013-01-01

    Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.

  17. Experiences with industrial solar process steam generation in Jordan

    NASA Astrophysics Data System (ADS)

    Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus

    2017-06-01

    At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.

  18. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  19. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  20. Gases in steam from Cerro Prieto geothermal wells with a discussion of steam/gas ratio measurements

    USGS Publications Warehouse

    Nehring, N.L.; Fausto, L.J.J.

    1979-01-01

    As part of a joint USGS-CFE geochemical study of Cerro Prieto, steam samples were collected for gas analyses in April, 1977. Analyses of the major gas components of the steam were made by wet chemistry (for H2O,CO2,H2S and NH3) and by gas chromatography (He,H2,Ar,O2,N2 and hydrocarbons). The hydrocarbon gases in Cerro Prieto steam closely resemble hydrocarbons in steam from Larderello, Italy and The Geysers, California which, although they are vapor-dominated rather than hot-water geothermal systems, also have sedimentary aquifer rocks. These sedimentary geothermal hydrocarbons are characterized by the presence of branched C4-6 compounds and a lack of unsaturated compounds other than benzene. Relatively large amounts of benzene may be characteristic of high-temperature geothermal systems. All hydrocarbons in these gases other than methane most probably originate from the thermal metamorphosis of organic matter contained in the sediments. ?? 1979.

  1. [Defective function of bioindicators for steam sterilization].

    PubMed

    Botzenhart, K; Merkt-Kinzler, M

    1990-05-01

    It can be shown, that under certain conditions commercially available indicators with Bacillus stearothermophilus and packages of native spores from soil prepared according to DIN 58 946/4 react differently to treatment in a lab-type steam sterilizer. The differences were most evident when incomplete evacuation of air had to be supposed. These results lead to the conclusion that some bioindicators are not able to show the inefficient function of steam sterilizers caused by local residuals of air. This may be caused by the properties of the selected strain, by the conditions of growth and preparation of the spores and by the culture medium used after exposition. The results of our experiments as well as the resistance of mesophilic spore forming bacilli against dry heat described by other authors make it necessary to test the resistance of bioindicators for steam sterilization not only against steam according to DIN 58946/4 but also against dry heat or mixtures of steam and air.

  2. Brush Seals for Improved Steam Turbine Performance

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  3. NIST/ASME Steam Properties Database

    National Institute of Standards and Technology Data Gateway

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  4. K-65-12.8 condensing steam turbine

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.

    2016-11-01

    A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.

  5. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    NASA Astrophysics Data System (ADS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  6. Fixation of compressive deformation in wood by pre-steaming

    Treesearch

    M. Inoue; N. Sekino; T. Morooka; R.M. Rowell; M. Norimoto

    2008-01-01

    Wood block specimens pre-steamed at 120-220 °C for 5-20 min were compressed in the radial direction. The recovery of set decreased with increasing pre-steaming temperature and time. The reduction of set recovery correlated with the amount of weight loss in steaming irrespective of pre-steaming temperature and time. The weight loss for the highest level of...

  7. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  8. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  9. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  10. Modeling and Simulation of U-tube Steam Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  11. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  12. [Effectiveness and limits of the cleaners steam in hospitals].

    PubMed

    Meunier, O; Meistermann, C; Schwebel, A

    2009-05-01

    We assessed bactericidal activity of the cleaners steam used for the bio-cleaning of the hospital surfaces. We performed of samples (Rodac) before and after use of cleaner steam and compared with bactericidal effect of disinfecting detergent used in hospital for surfaces. We studied this effectiveness for different time of steam contact. Finally, we wanted to prove, by air sampling, that aero-bio-contamination was possible generated by using cleaners steam. We show that bactericidal effect of the cleaner steam is superior of some tested disinfecting detergent, for the treatment of one square meter till 2 min. This effectiveness diminishes to be just identical in that some disinfecting detergent when use of the cleaner steam is up to two or four square meters surfaces till 2 min. On the other hand, the cleaner steam is less efficient in terms of bacterial destruction when the time of contact steam-soil is superior in 2 min for six square meter surface. The air bacterial pollution, generated by the use of the cleaner steam, is restricted and not significantly augmented if measured in 44 cm above the soil in the course of cleaning. The cleaner steam is indeed a very good equipment for the cleaning of surfaces but it is necessary to respect a time of minimal contact of 2 min for four square meters surfaces treaties to acquire an antibacterial effect at least so important as that acquired with used disinfecting detergent. The disinfection of surfaces is then user-dependent and the time of requested contact is can be not compatible with hospital obligations.

  13. US PWR steam generator management: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, C.S. Jr.

    1997-02-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less

  14. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  15. 46 CFR 50.05-20 - Steam-propelled motorboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-propelled motorboats. 50.05-20 Section 50.05-20... Application § 50.05-20 Steam-propelled motorboats. (a) The requirements covering design of the propelling... than 40 feet in length and which are propelled by machinery driven by steam shall be in accordance with...

  16. Chemistry of Earth's Putative Steam Atmosphere

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Schaefer, L.

    2007-12-01

    The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.

  17. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  18. Modeling Cyclic Fatigue Hysteresis Loops of 2D Woven Ceramic Matrix Composites at Elevated Temperatures in Steam

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544

  19. Spectral CT data acquisition with Medipix3.1

    NASA Astrophysics Data System (ADS)

    Walsh, M. F.; Nik, S. J.; Procz, S.; Pichotka, M.; Bell, S. T.; Bateman, C. J.; Doesburg, R. M. N.; De Ruiter, N.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.

    2013-10-01

    This paper describes the acquisition of spectral CT images using the Medipix3.1 in spectroscopic mode, in which the chip combines 2 × 2 pixel clusters to increase the number of energy thresholds and counters from 2 to 8. During preliminary measurements, it was observed that the temperature, DAC and equalisation stability of the Medipix3.1 outperformed the Medipix3.0, while maintaining similar imaging quality. In this paper, the Medipix3.1 chips were assembled in a quad (2 × 2) layout, with the four ASICs bump-bonded to a silicon semiconductor doped as an np-junction diode. To demonstrate the biological imaging quality that is possible with the Medipix3.1, an image of a mouse injected with gold nano-particle contrast agent was obtained. CT acquisition in spectroscopic mode was enabled and examined by imaging a customised phantom containing multiple contrast agents and biological materials. These acquisitions showed a limitation of imaging performance depending on the counter used. Despite this, identification of multiple materials in the phantom was demonstrated using an in-house material decomposition algorithm. Furthermore, gold nano-particles were separated from biological tissues and bones within the mouse by means of image rendering.

  20. RETRAN analysis of multiple steam generator blow down caused by an auxiliary feedwater steam-line break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1987-01-01

    Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less

  1. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  2. In Situ Steam Fracture Experiments.

    DTIC Science & Technology

    1984-12-31

    pressure and tempera- ture data for use in validation of multi-phase flow models describing - condensation/vaporization, heat-transfer, and fluid/vapor...provide an excellent base for development and/or verification of steam-fracture models for low- permeability materials where heat transfer is significant...representative of post-shot cavity conditions. Steam flow tests have been performed at S-CUBED in a 3-meter long by 20-centimeter diameter sand column. In

  3. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and...

  4. Use of borehole radar reflection logging to monitor steam-enhanced remediation in fractured limestone-results of numerical modelling and a field experiment

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.; Lane, J.W.

    2006-01-01

    Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature

  5. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    PubMed Central

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-01

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms. PMID:29329225

  6. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    PubMed

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  7. Review of surface steam sterilization for validation purposes.

    PubMed

    van Doornmalen, Joost; Kopinga, Klaas

    2008-03-01

    Sterilization is an essential step in the process of producing sterile medical devices. To guarantee sterility, the process of sterilization must be validated. Because there is no direct way to measure sterility, the techniques applied to validate the sterilization process are based on statistical principles. Steam sterilization is the most frequently applied sterilization method worldwide and can be validated either by indicators (chemical or biological) or physical measurements. The steam sterilization conditions are described in the literature. Starting from these conditions, criteria for the validation of steam sterilization are derived and can be described in terms of physical parameters. Physical validation of steam sterilization appears to be an adequate and efficient validation method that could be considered as an alternative for indicator validation. Moreover, physical validation can be used for effective troubleshooting in steam sterilizing processes.

  8. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  9. Progress on Pre-Stage Magnetic Coil to Enhance Helicon Mode Excitation and Data Acquisition Software on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sherman, Justin; Azzari, Phillip; Crilly, P. B.; Duke-Tinson, Omar; James, Royce W.; Karama, Jackson; Page, E. J.; Schlank, Carter; Zuniga, Jonathan

    2014-10-01

    CGAPL is conducting small investigations in plasma physics and magneto-hydrodynamics buoy positioning. For data management, we are developing capability to analyze/digitize data with a National Instruments Data Acquisition board, 2 MS/s sampling rate (long time scale), and an Express Octopus card, 125 MS/s sampling rate (short scale). Sampling at 12 bits precision, we use LabVIEW as a programing language; GUIs will control variables in 1 or more concurrent runs and monitor of diagnostics. HPX utilizes high density (1013 cm3 up), low pressure (.01 T) Ar gas (fill pressure: on 104 mTorr order). Helicon/W Mode plasmas become a diagnostics test-bed for other investigations and a tool for future spacecraft propulsion devices. Plasmas created by directing energy into gas-filled Pyrex tube; power supply and matching box, up to 250 W power in 20-100 MHz frequencies, provide energy to ignite. Uniform magnetic field needed to reach the W-Mode. We employ an electromagnet to B-field while an acceleration coil positions plasma in vacuum chamber, facilitating analysis. Initial field requirements and accuracy calibration have been completed. Progress on development and implementation of probes and DAQ/GUI system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  10. Multifuel industrial steam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesko, J.E.

    An inefficient, unreliable steam generation and distribution system at the Red River Army Depot (Texarkana, Tex.), a major industrial facility of the federal government, was replaced with a modern, multifuel-burning steam plant. In the new plant, steam is generated by three high-pressure field-erected boilers burning 100 percent coal, 100 percent refuse, or any combination of the two, while maintaining particulate emissions, SO{sub 2} concentration, and NO{sub x} and chlorine levels at or better than clean air standards. The plant, which has been in operation since 1986, is now part of the Army's Energy/Environment Showcase for demonstrating innovative technology to publicmore » and private operators. When the project began, the Red River depot faced several operational problems. Existing No. 2 oil- and gas- fired boilers in three separate boiler plants were inefficient, unreliable, and difficult to maintain. Extra boilers often had to be leased to provide for needed capacity. In addition, the facility had large quantities of waste to dispose of.« less

  11. Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings.

    PubMed

    Martín-Vivaldi, Manuel; Soler, Juan José; Martínez-García, Ángela; Arco, Laura; Juárez-García-Pelayo, Natalia; Ruiz-Rodríguez, Magdalena; Martínez-Bueno, Manuel

    2017-12-18

    Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by

  12. Project DEEP STEAM

    NASA Astrophysics Data System (ADS)

    Aeschliman, D. P.; Clay, R. G.; Donaldson, A. B.; Eisenhawer, S. W.; Fox, R. L.; Johnson, D. R.; Mulac, A. J.

    1982-01-01

    The objective of Project DEEP STEAM is to develop the technology to economically produce heavy oils from deep reservoirs. The tasks included in this project are the development of thermally efficient delivery systems and downhole steam generation systems. During the period January 1-March 31, 1981, effort has continued on a low pressure combustion downhole generator (Rocketdyne), and on two high pressure designs (Foster-Miller Associates, Sandia National Laboratories). The Sandia design was prepared for deployment in the Wilmington Field at Long Beach, California. Progress continued on the Min-Stress II packer concept at L'Garde, Inc., and on the extruded metal packer at Foster-Miller. Initial bare string field data are reported on the insulated tubular test at Lloydminster, Saskatchewan, Canada.

  13. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    PubMed

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  14. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    PubMed Central

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  15. Spiral inlets for steam turbines

    NASA Astrophysics Data System (ADS)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  16. The microbial-kill characteristics of saturated steam plus 1,000 to 10,000 ppm hydrogen peroxide at atmospheric pressure.

    PubMed

    Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P

    2008-01-01

    This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed.

  17. Hypertext Glosses for Foreign Language Reading Comprehension and Vocabulary Acquisition: Effects of Assessment Methods

    ERIC Educational Resources Information Center

    Chen, I-Jung

    2016-01-01

    This study compared how three different gloss modes affected college students' L2 reading comprehension and vocabulary acquisition. The study also compared how results on comprehension and vocabulary acquisition may differ depending on the four assessment methods used. A between-subjects design was employed with three groups of Mandarin-speaking…

  18. Industrial steam systems and the energy-water nexus.

    PubMed

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  19. Laboratory investigations of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.; O'Neal, II

    1983-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used in modeling pressure transient behavior in vapor dominated geothermal systems. Transient, superheated steam flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure and then making a step increase in pressure at one end of the sample while monitoring the pressure transient breakthrough at the other end. It was found in experiments run at 100°, 125°, and 146°C that the time required for steam pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10–25 times longer than predicted by conventional superheated steam flow theory. It is hypothesized that the delay in the steam pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10°C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. This function was assumed to be an equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved.

  20. Steam distribution and energy delivery optimization using wireless sensors

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  1. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  2. Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano

    NASA Astrophysics Data System (ADS)

    Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus

    2017-01-01

    Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).

  3. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time.

    PubMed

    Wu, Li; Wang, Bujun

    2016-07-01

    We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of a Unix/VME data acquisition system

    NASA Astrophysics Data System (ADS)

    Miller, M. C.; Ahern, S.; Clark, S. M.

    1992-01-01

    The current status of a Unix-based VME data acquisition development project is described. It is planned to use existing Fortran data collection software to drive the existing CAMAC electronics via a VME CAMAC branch driver card and associated Daresbury Unix driving software. The first usable Unix driver has been written and produces single-action CAMAC cycles from test software. The data acquisition code has been implemented in test mode under Unix with few problems and effort is now being directed toward finalizing calls to the CAMAC-driving software and ultimate evaluation of the complete system.

  5. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  6. Study of steam condensation at sub-atmospheric pressure: setting a basic research using MELCOR code

    NASA Astrophysics Data System (ADS)

    Manfredini, A.; Mazzini, M.

    2017-11-01

    One of the most serious accidents that can occur in the experimental nuclear fusion reactor ITER is the break of one of the headers of the refrigeration system of the first wall of the Tokamak. This results in water-steam mixture discharge in vacuum vessel (VV), with consequent pressurization of this container. To prevent the pressure in the VV exceeds 150 KPa absolute, a system discharges the steam inside a suppression pool, at an absolute pressure of 4.2 kPa. The computer codes used to analyze such incident (eg. RELAP 5 or MELCOR) are not validated experimentally for such conditions. Therefore, we planned a basic research, in order to have experimental data useful to validate the heat transfer correlations used in these codes. After a thorough literature search on this topic, ACTA, in collaboration with the staff of ITER, defined the experimental matrix and performed the design of the experimental apparatus. For the thermal-hydraulic design of the experiments, we executed a series of calculations by MELCOR. This code, however, was used in an unconventional mode, with the development of models suited respectively to low and high steam flow-rate tests. The article concludes with a discussion of the placement of experimental data within the map featuring the phenomenon characteristics, showing the importance of the new knowledge acquired, particularly in the case of chugging.

  7. Antioxidants from steamed used tea leaves and their reaction behavior.

    PubMed

    Nomizu, Kayoko; Hashida, Koh; Makino, Rei; Ohara, Seiji

    2008-07-01

    The most efficient steaming conditions below 200 degrees C for extracting antioxidants from used tea leaves and their reaction behavior during the steaming treatment were investigated. The antioxidative activity of the steamed extracts increased with increasing steaming temperature, and the yield of the ethyl acetate extract fraction from each steamed extract showing the greatest antioxidative activity also increased. Caffeine, (-)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin gallate, (-)-epicatechin gallate, (-)-gallocatechin gallate, (-)-epigallocatechin gallate and gallic acid were identified from the ethyl acetate extract fraction. Quantitative analyses demonstrated that the catechins with a 2,3-cis configuration decreased with increasing steaming temperature, whereas the corresponding epimers at the C-2 position increased. Each pair of epimers showed similar antioxidative activity to each other, indicating that the epimerization reaction did not contribute to the improved antioxidative activity. It is concluded from these results that the improvement in antioxidative activity at higher steaming temperatures was due to the increased yield of catechins and other antioxidants.

  8. Subscale Diffuser Testing, E-3 produces first steam

    NASA Image and Video Library

    2007-10-25

    Phase 2 of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at Stennis Space Center reached a milestone Oct. 25 when the E-3 Test Facility produced superheated (500+ degrees) steam for approximately 3 seconds at more than 400 psi. The test team, led by Barry Robinson of NASA's Test Projects Office, followed that success with further tests to lengthen the duration of steam production. On Nov. 1, they were able to maintain a consistent pressure and temperature of steam for 60 seconds. In December, the team began Phase 3 of the testing, providing data for the design and procurement to build the full-scale version of the steam diffuser for SSC's A-3 Test Stand.

  9. Subscale Diffuser Testing, E-3 produces first steam

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Phase 2 of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at Stennis Space Center reached a milestone Oct. 25 when the E-3 Test Facility produced superheated (500+ degrees) steam for approximately 3 seconds at more than 400 psi. The test team, led by Barry Robinson of NASA's Test Projects Office, followed that success with further tests to lengthen the duration of steam production. On Nov. 1, they were able to maintain a consistent pressure and temperature of steam for 60 seconds. In December, the team began Phase 3 of the testing, providing data for the design and procurement to build the full-scale version of the steam diffuser for SSC's A-3 Test Stand.

  10. CHARACTERIZATION OF FRACTURED BEDROCK FOR STEAM INJECTION

    EPA Science Inventory

    The most difficult setting in which to conduct groundwater remediation is that where chlorinated solvents have penetrated fractured bedrock. To demonstrate the potential viability of steam injection as a means of groundwater clean-up in this type of environment, steam will be in...

  11. ENGINEERING BULLETIN: IN SITU STEAM EXTRACTION TREATMENT

    EPA Science Inventory

    In situ steam extraction removes volatile and semivolatile hazardous contaminants from soil and groundwater without excavation of the hazardous waste. Waste constituents are removed in situ by the technology and are not actually treated. The use of steam enhances the stripping of...

  12. Alkali-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1986-09-02

    This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less

  13. 3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF STEAM PLANT BUILDING, FROM SOUTHWEST. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  14. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive...

  15. Performance of equipment used in high-pressure steam floods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, M.E.; Bramley, B.G.

    1966-01-01

    Recovery of low-gravity, high-viscosity crude oil from relatively shallow reservoirs is becoming feasible through the application of steam flooding. Pan American Petroleum Corp. initiated a pilot steam flood with a 5.36 million btu/hr, 1,500-psi steam generator at the Winkleman Dome Field in West Central Wyoming in March, 1964. After 1 yr of operation, this steamer was replaced with a larger unit capable of 12 million-btu/hr, 2,500-psi steam generators, one at the Salt Creek Shannon Field and another at the Fourbear Field, both in Wyoming. This paper discusses the equipment used in high-pressure steam flooding and reviews some of the problemsmore » that have been encountered in the application of the equipment. Where determined, a suggested solution is presented.« less

  16. Steam vaporizers: A danger for paediatric burns.

    PubMed

    Lonie, Sarah; Baker, Paul; Teixeira, Rodrigo

    2016-12-01

    Steam vaporizers are used to humidify air in dry environments. They are marketed to moisten children's airway secretions and thus to help relieve symptoms associated with upper respiratory tract infections. Unfortunately the steam emitted from the unit can also pose a significant risk of burns to children. Our study aimed to ascertain patterns of injury and treatment outcomes from steam burns resulting from these devices. Potential preventative measures are discussed. Children who had sustained vaporizer scald burns were identified at the outpatient burns clinic over a 10-month period (November 2014-August 2015). Medical records were reviewed retrospectively and data collected on pattern of injury, management and outcomes. Ten children were treated for vaporizer steam burns over the study period. The mean age was 1.6 years and 8 (80%) patients were male. Operative intervention was undergone in 5 (50%) cases; four acutely and one as a secondary reconstructive procedure. Hand burns accounted for 8 (80%) of cases. Steam vaporizers can cause significant burns in the paediatric population. Toddlers were most at risk, frequently sustaining hand burns that underwent skin grafting. Greater public awareness of the danger is indicated and measures to prevent such injuries should be addressed by appropriate authorities. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  17. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  18. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  19. Simulation of a main steam line break with steam generator tube rupture using trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallardo, S.; Querol, A.; Verdu, G.

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less

  20. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  1. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  2. Highly Flexible and Efficient Solar Steam Generation Device.

    PubMed

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and...

  4. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  5. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  6. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  7. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  8. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  9. Next generation PET data acquisition architectures

    NASA Astrophysics Data System (ADS)

    Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.

    1997-06-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  10. Optimization of steam-vortex plasma-torch start-up

    NASA Astrophysics Data System (ADS)

    Mikhailov, B. I.

    2011-12-01

    We propose a new optimal method of steam-vortex plasma-torches start-up; this method completely prevents the danger of water steam condensation in the arc chamber and all undesirable consequences of it.

  11. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  12. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  13. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  14. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  15. Evaluation of rock/fracture interactions during steam injection through vertical hydrofractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.

    1995-12-31

    This paper illustrates the design and results of Shell`s Phase 2 steam drive pilot in the South Belridge Diatomite, Kern County, California. Steam drive on 5/8 acre spacing appears to be an economically viable alternative to waterflooding in the Diatomite; hence, it is being explored as a secondary recovery process. The purpose of the Phase 2 pilot was to demonstrate that steam could be injected across the full Diatomite interval and to quantify reservoir heating and volumetric sweep by steam. In this pilot, two separate, noncommunicating hydrofractures that span the entire Diatomite column (1,110--1,910 ft) are used for injection. Tomore » interpret quantitatively steam drive results the authors propose a computationally simple, high resolution model that captures formation heating due to both steam/hot condensate convection and heat conduction, evolution of formation permeability, and changes in the size and shape of the injection hydrofractures. From this model they obtain formation pressure, temperature, the cumulative steam injection, the dynamics of hydrofractures while they undergo steam injection, and, thus, a history match for the pilot.« less

  16. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a) General...

  17. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen; Zhang, He; Sun, Junming

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  18. Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam

    NASA Astrophysics Data System (ADS)

    Kalitko, V. A.

    2010-03-01

    On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.

  19. Continuous scanning mode for ptychography

    DOE PAGES

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  20. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  1. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  2. Cycle 24 HST+COS Target Acquisition Monitor Summary

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.; White, James

    2018-06-01

    HST/COS calibration program 14847 (P14857) was designed to verify that all three COS Target Acquisition (TA) modes were performing nominally during Cycle 24. The program was designed not only to determine if any of the COS TA flight software (FSW) patchable constants need updating but also to determine the values of any required parameter updates. All TA modes were determined to be performing nominally during the Cycle 24 calendar period of October 1, 2016 - October 1, 2017. No COS SIAF, TA subarray, or FSW parameter updates were required as a result of this program.

  3. 22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, SHOWING TOPS OF DIESEL ENGINES AT FAR NORTH END, PRIOR TO INSTALLATION OF STEAM UNIT NO. 4. Ca. 1948 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  4. 49 CFR 230.37 - Steam test following repairs or alterations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam test following repairs or alterations. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.37 Steam test following repairs or alterations...

  5. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  6. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; R. C. O'Brien

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less

  7. Bistable flow occurrence in the 2D model of a steam turbine valve

    NASA Astrophysics Data System (ADS)

    Pavel, Procházka; Václav, Uruba

    2017-09-01

    The internal flow inside a steam turbine valve was investigated experimentally using PIV measurement. The valve model was proposed to be two-dimensional. The model was connected to the blow-down wind tunnel. The flow conditions were set by the different position of the valve plug. Several angles of the diffuser by diverse radii were investigated concerning flow separation and flow dynamics. It was found that the flow takes one of two possible bistable modes. The first regime is characterized by a massive flow separation just at the beginning of the diffuser section on the one side. The second regime is axisymmetric and the flow separation is not detected at all.

  8. Solar process steam for a pharmaceutical company in Jordan

    NASA Astrophysics Data System (ADS)

    Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.

    2016-05-01

    This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.

  9. Methods of increasing thermal efficiency of steam and gas turbine plants

    NASA Astrophysics Data System (ADS)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  10. 2. Credit BG. Looking west at east facade of Steam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA

  11. Surgical energy device using steam jet for robotic assisted surgery.

    PubMed

    Yoshiki, Hitoshi; Tadano, Kotaro; Ban, Daisuke; Ohuchi, Katsuhiro; Tanabe, Minoru; Kawashima, Kenji

    2015-01-01

    In robotic assisted surgery, the carbonization and the adherence of coagulated tissues caused by surgical energy devices are problems. We propose a surgical energy device using a steam jet to solve the problems. The device applies a steam jet and performs coagulation and hemostasis. The exposed tissue is heated quickly with latent heat of the steam. The carbonization and the adherence of the tissue can be avoided. We prototyped a steam jet coagulator to prove the concept. The coagulator was mounted on the laparoscopic surgical robot. The effectiveness of the coagulation and hemostasis using steam was confirmed by the in vitro experiment on the chicken's liver and the in vivo experiments on the pig's spleen under the robotic assisted laparoscopic environment.

  12. Steam dispatching control system demonstration at Fort Benjamin Harrison. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diks, C.L.; Moshage, R.E.; Lin, M.C.

    1993-07-01

    Currently most Army Central steam heating systems operate by maintaining a constant steam pressure regardless of actual steam demand. This method offers some operational convenience, but is often the cause of significant energy losses. Researchers at the U.S. Army Construction Engineering Research Laboratories (USACERL) have investigated the Steam Dispatching Control System (SDCS), a control system that lowers supply steam pressure-and therefore steam temperature-to slightly above the amount needed to meet the steam demand. The lower Steam temperature and reduction in steam loss (from leaks and faulty traps) result in lower heat losses and higher energy savings. Limiting steam pressure canmore » diminish the amount of excess heat loss in the distribution system while still meeting the demand. The Army's Facilities Engineering Applications Program (FEAP) chose Fort Benjamin Harrison, IN, as the Army demonstration site for SDCS. Researchers found that use of SDCS is technically and economically viable improvement over current operating procedures. Analysis based on demonstration results show that the simple payback for SDCS is less than 1 year. The results of this demonstration are generally applicable to installations with a large central heating plant and a substantial steam distribution system. Findings, indicate that energy savings form SDCS are significant regardless of what type of fuel powers the boiler. The authors note that, during the initial evaluation of a potential SDCS application, attention must be paid to the condensate return to ensure that it will operate properly. Fort Benjamin Harrison, IN, Steam Dispatching Control System(SDCS), Central heating plants, energy conservation.« less

  13. Trona-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1988-03-01

    In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less

  14. Bore tube assembly for steam cooling a turbine rotor

    DOEpatents

    DeStefano, Thomas Daniel; Wilson, Ian David

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  15. Steam sterilisation's energy and water footprint.

    PubMed

    McGain, Forbes; Moore, Graham; Black, Jim

    2017-03-01

    Objective The aim of the present study was to quantify hospital steam steriliser resource consumption to provide baseline environmental data and identify possible efficiency gains. We sought to find the amount of steriliser electricity and water used for active cycles and for idling (standby), and the relationship between the electricity and water consumption and the mass and type of items sterilised. Methods We logged a hospital steam steriliser's electricity and water meters every 5min for up to 1 year. We obtained details of all active cycles (standard 134°C and accessory or 'test' cycles), recording item masses and types. Relationships were investigated for both the weight and type of items sterilised with electricity and water consumption. Results Over 304 days there were 2173 active cycles, including 1343 standard 134°C cycles that had an average load mass of 21.2kg, with 32% of cycles <15kg. Electricity used for active cycles was 32652kWh (60% of total), whereas the water used was 1243495L (79%). Standby used 21457kWh (40%) electricity and 329200L (21%) water. Total electricity and water consumption per mass sterilised was 1.9kWhkg -1 and 58Lkg -1 , respectively. The linear regression model predicting electricity use was: kWh=15.7+ 0.14×mass (in kg; R 2 =0.58, P<0.01). Models for water and item type were poor. Electricity and water use fell from 3kWhkg -1 and 200Lkg -1 , respectively, for 5-kg loads to 0.5kWhkg -1 and 20Lkg -1 , respectively, for 40-kg loads. Conclusions Considerable electricity and water use occurred during standby, load mass was only moderately predictive of electricity consumption and light loads were common yet inefficient. The findings of the present study are a baseline for steam sterilisation's environmental footprint and identify areas to improve efficiencies. What is known about the topic? There is increasing interest in the environmental effects of healthcare. Life cycle assessment ('cradle to grave') provides a scientific

  16. Modifications of steam condensation model implemented in commercial solver

    NASA Astrophysics Data System (ADS)

    Sova, Libor; Jun, Gukchol; ŠÅ¥astný, Miroslav

    2017-09-01

    Nucleation theory and droplet grow theory and methods how they are incorporated into numerical solvers are crucial factors for proper wet steam modelling. Unfortunately, they are still covered by cloud of uncertainty and therefore some calibration of these models according to reliable experimental results is important for practical analyses of steam turbines. This article demonstrates how is possible to calibrate wet steam model incorporated into commercial solver ANSYS CFX.

  17. Steam Oxidation Testing in the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.

    After the March 2011 accident at Fukushima Daiichi, Oak Ridge National Laboratory (ORNL) began conducting high temperature steam oxidation testing of candidate materials for accident tolerant fuel (ATF) cladding in August 2011 [1-11]. The ATF concept is to enhance safety margins in light water reactors (LWR) during severe accident scenarios by identifying materials with 100× slower steam oxidation rates compared to current Zr-based alloys. In 2012, the ORNL laboratory equipment was expanded and made available to the entire ATF community as the Severe Accident Test Station (SATS) [4,12]. Compared to the current UO2/Zr-based alloy fuel system, an ATF alternative wouldmore » significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [13-14]. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models [15-17]. However, initial modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. Also, because many accident scenarios include steadily increasing temperatures, the required data are not traditional isothermal exposures but exposures with varying “ramp” rates. In some cases, the steam oxidation behavior has been surprising and difficult to interpret. Thus, more fundamental information continues to be collected. In addition, more work continues to focus on commercially-manufactured tube material. This report summarizes recent work to characterize the behavior of candidate alloys exposed to high temperature steam, evaluate steam oxidation behavior in various ramp scenarios and continue to collect integral data on FeCrAl compared to conventional Zr-based cladding.« less

  18. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam chests...

  19. Laboratory investigations of the physics of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.

    1982-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.

  20. 7 CFR 305.23 - Steam sterilization treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Steam sterilization treatment schedules. 305.23... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.23 Steam sterilization treatment schedules. Treatment schedule Temperature( °F) Pressure Exposure period...

  1. Examining Students' Opinions about STEAM Activities

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Topsakal, Unsal Umdu

    2017-01-01

    The purpose of this study is to determine the opinions of students about STEAM activities. This qualitative study was conducted on the with 7th grade students (n = 37) who are studying at a public school in Istanbul. A purposeful sampling was used in this study. Nine STEAM activities were used while teaching Force and Energy unit. An evaluation…

  2. STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, R.O.; Steamer, A.G.

    1960-10-01

    Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)

  3. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cepcek, S.

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  4. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...

  6. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...

  7. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...

  8. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...

  9. Hot steam transfer through heat protective clothing layers.

    PubMed

    Rossi, René; Indelicato, Eric; Bolli, Walter

    2004-01-01

    The aim of this study was to analyse the transfer of steam through different types of textile layers as a function of sample parameters such as thickness and permeability. In order to simulate the human body, a cylinder releasing defined amounts of moisture was also used. The influence of sweating on heat and mass transfer was assessed. The results show that in general impermeable materials offer better protection against hot steam than semi-permeable ones. The transfer of steam depended on the water vapour permeability of the samples, but also on their thermal insulation and their thickness. Increasing the thickness of the samples with a spacer gave a larger increase in protection with the impermeable samples compared to semi-permeable materials. Measurements with pre-wetted samples showed a reduction in steam protection in any case. On the other hand, the measurements with a sweating cylinder showed a beneficial effect of sweating.

  10. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  11. Steam Oxidation Testing in the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; McMurray, Jake W.

    2016-08-01

    Since 2011, Oak Ridge National Laboratory (ORNL) has been conducting high temperature steam oxidation testing of candidate alloys for accident tolerant fuel (ATF) cladding. These concepts are designed to enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the US ATF community, the Severe Accident Test Station (SATS) has been evaluating candidate materials (including coatings) since 2012. Compared to the current UO 2/Zr-based alloy fuel system, alternative cladding materials need to offer slower oxidation kinetics and a smaller enthalpy of oxidation in order to significantly reduce the rate of heat and hydrogen generation in the coremore » during a coolant-limited severe accident. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models. However, prior modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. In some cases, the results have been difficult to interpret and more fundamental information is needed such as the stability of alumina in flowing steam at 1400°-1500°C. This report summarizes recent work to measure the steam oxidation kinetics of candidate alloys, the evaporation rate of alumina in steam and the development of integral data on FeCrAl compared to conventional Zr-based cladding.« less

  12. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  13. DETERMINATION OF MAXIMUM PERMISSIBLE LEAKAGE FROM THE HRT PROCESS STEAM SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gift, E.H.

    1959-01-30

    Calculations were made to determine the radiation hazard to HRT personnel as a result of leakage to the atmosphere from the process steam system in the event of a heat exchanger tube rupture. These calculations show that with the present four-minute delay before dumping approximately 1020 lb of fuel solution may be transferred to the steam system. The radiation hazard from fission products in the atomosphere will be negligble if the steam killer blower is operating. If this blower is not operatin. a natural convection loop will be set up in the steam killer which will have a condensing capacitymore » of 4 lb/min of steam at atmospheric pressure. In this latter case. the inhalation hazard will be negligible when the leak rate through the steam stop valves is less than 4lb/ min. (auth)« less

  14. Oxygen-hydrogen torch is a small-scale steam generator

    NASA Technical Reports Server (NTRS)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  15. Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    PubMed Central

    2011-01-01

    Background Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents. Methods Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS). Results A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of Amomum villosum, Amomum microcarpum and Blumea balsamifera were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene. Conclusions Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath

  16. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  17. Are two hands (from different people) better than one? Mode effects and differential transfer between manual coordination modes.

    PubMed

    Gorman, Jamie C; Crites, Michael J

    2013-08-01

    We report an experiment in which we investigated differential transfer between unimanual (one-handed), bimanual (two-handed), and intermanual (different peoples' hands) coordination modes. People perform some manual tasks faster than others ("mode effects"). However, little is known about transfer between coordination modes. To investigate differential transfer, we draw hypotheses from two perspectives--information based and constraint based--of bimanual and interpersonal coordination and skill acquisition. Participants drove a teleoperated rover around a circular path in sets of two 2-min trials using two of the different coordination modes. Speed and variability of the rover's path were measured. Order of coordination modes was manipulated to examine differential transfer and mode effects. Differential transfer analyses revealed patterns of positive transfer from simpler (localized spatiotemporal constraints) to more complex (distributed spatiotemporal constraints) coordination modes paired with negative transfer in the opposite direction. Mode effects indicated that intermanual performance was significantly faster than unimanual performance, and bimanual performance was intermediate. Importantly, all of these effects disappeared with practice. The observed patterns of differential transfer between coordination modes may be better accounted for by a constraint-based explanation of differential transfer than by an information-based one. Mode effects may be attributable to anticipatory movements based on dyads' access to mutual visual information. Although people may be faster using more-complex coordination modes, when operators transition between modes, they may be more effective transitioning from simpler (e.g., bimanual) to more complex (e.g., intermanual) modes than vice versa. However, this difference may be critical only for novel or rarely practiced tasks.

  18. Developing a Conceptual Model of STEAM Teaching Practices

    ERIC Educational Resources Information Center

    Quigley, Cassie F.; Herro, Dani; Jamil, Faiza M.

    2017-01-01

    STEAM, where the "A" represents arts and humanities, is considered a transdisciplinary learning process that has the potential to increase diverse participation in science, technology, engineering, and math (STEM) fields. However, a well-defined conceptual model that clearly articulates essential components of the STEAM approach is…

  19. PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-04-01

    Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less

  20. Mushrooms as Efficient Solar Steam-Generation Devices.

    PubMed

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Implementation of STEAM Education to Improve Mastery Concept

    NASA Astrophysics Data System (ADS)

    Liliawati, W.; Rusnayati, H.; Purwanto; Aristantia, G.

    2018-01-01

    Science Technology Engineering, Art, Mathematics (STEAM) is an integration of art into Science Technology Engineering, Mathematics (STEM). Connecting art to science makes learning more effective and innovative. This study aims to determine the increase in mastery of the concept of high school students after the application of STEAM education in learning with the theme of Water and Us. The research method used is one group Pretest-posttest design with students of class VII (n = 37) junior high school. The instrument used in the form of question of mastery of concepts in the form of multiple choices amounted to 20 questions and observation sheet of learning implementation. The results of the study show that there is an increase in conceptualization on the theme of Water and Us which is categorized as medium (=0, 46) after the application of the STEAM approach. The conclusion obtained that by applying STEAM approach in learning can improve the mastery of concept

  2. Steaming of Red Oak Prior to Kiln-Drying: Effects on Moisture Movement

    Treesearch

    Robert A. Harris; James G. Schroeder; Stan C. Addis

    1989-01-01

    Red oak boards were steamed prior to kiln-drying to determine the effect of steaming on initial moisture content (MC), moisture distribution, and drying rate. Four hours of steaming in a saturated steam atmosphere caused a drop of approximately 10 percent in initial MC, a reduced moisture gradient through the thickness of the boards, and an increase in drying rate...

  3. Analytical description of the modern steam automobile

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1974-01-01

    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  4. What Are the Underlying Skills of Silent Reading Acquisition? A Developmental Study from Kindergarten to the 2nd Grade

    ERIC Educational Resources Information Center

    Bar-Kochva, Irit

    2013-01-01

    Research on reading acquisition and on the processes underlying it usually examined reading orally, while silent reading, which is the more common mode of reading, has been rather neglected. As accumulated data suggests that these two modes of reading only partially overlap, our understanding of the natural mode of reading may still be limited.…

  5. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  6. [On the importance of the steam trap to the efficient sterilization of solutions in stored blood bottles by saturated steam under pressure (author's transl)].

    PubMed

    Schreiber, M; Göbel, M

    1979-01-01

    Biological tests with soil samples were performed to fix the sterilization time for a new steam sterilizer. These tests yielded repeatedly positive spore findings despite modifications of the conditions of sterilization. Having excluded a series of possible sources of trouble, the authors stated that the quality of the steam was the assignable cause. After restoration of the functionality of the steam traps, the biological tests yielded negative results also under normal conditions of sterilization.

  7. The relationship between surface temperature, tissue temperature, microbubble formation, and steam pops.

    PubMed

    Thompson, Nathaniel; Lustgarten, Daniel; Mason, Bryan; Mueller, Enkhtuyaa; Calame, James; Bell, Stephen; Spector, Peter

    2009-07-01

    It has been proposed that microbubble (MB) monitoring can be used to safely titrate radiofrequency (RF) power. However, MB formation has been found to be an insensitive indicator of tissue temperature during RF delivery. We hypothesized that MB formation corresponds to surface-not tissue--temperature, and therefore would be an insensitive predictor of steam pops. An in vitro bovine heart model was used to measure surface and tissue temperatures during RF delivery under conditions designed to cause steam pops. Sensitivity of type II MB (MBII) formation as a predictor of steam pops and for surface temperatures more than 80 degrees C was calculated. Of 105 lesions delivered, 99 steam pops occurred. Twenty-one steam pops were preceded by MBII. MBII were seen in 26 lesions, five of which were not associated with steam pop. Surface temperature at onset of MBII was 87 +/- 9 degrees C versus a tissue temperature of 78 +/- 23 degrees C (P = 0.044). Surface temperature at the time of steam pops was 71 +/- 17 degrees C versus a tissue temperature of 102 +/- 17 degrees C (P < 0.0001). The sensitivity of MBII for steam pops was 21%, and 58% for detecting surface temperature in excess of 80 degrees C. MBII correlated better with surface temperature than with tissue temperature; steam pops, on the other hand, correlated better with tissue temperature. MBII was an insensitive marker of steam pops and surface temperature in excess of 80 degrees C. Therefore, MBII should not be used to titrate RF power.

  8. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  9. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  10. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. Themore » guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.« less

  11. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOEpatents

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  12. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  13. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  14. Steam injection for in-situ remediation of DNAPLs in low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleep, B.

    1996-08-01

    The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPLmore » in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.« less

  15. The Representation of Bilingual Mental Lexicon and English Vocabulary Acquisition

    ERIC Educational Resources Information Center

    Ying, Zhang

    2017-01-01

    This paper provides an overview of the theories on the organization and development of L1 mental lexicon and the representation mode of bilingual mental lexicon. It analyzes the structure and characteristics of Chinese EFL learners and their problems in English vocabulary acquisition. On the basis of this, it suggests that English vocabulary…

  16. The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.

    PubMed

    Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas

    2016-10-01

    Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX ® . GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  17. Investigation of Materials for Ship-to-Shore Low Pressure Steam Hoses.

    DTIC Science & Technology

    1977-07-01

    t aging results in either softening or hardening of rubber prod u c ts used for tite tube , cover , and adhesion layers of steam l iose~ • In the...preliniinarv evaluation will be available after in-servile use . EPDM rubber is a l s o suitable for the cover of a steam hose ex c e p t where contact... rubber -lined Steam hoses were invi s t ig i ted At t he present si, itc 01 the art , the average lift for a steam hose is about (t mont hs to one

  18. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  19. Flow patterns and transition characteristics for steam condensation in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Hao, Tingting

    2011-07-01

    This study investigated the two-phase flow patterns and transition characteristics for steam condensation in silicon microchannels with different cross-sectional geometries. Novel experimental techniques were developed to determine the local heat transfer rate and steam quality by testing the temperature profile of a copper cooler. Flow regime maps for different microchannels during condensation were established in terms of steam mass flux and steam quality. Meanwhile, the correlation for the flow pattern transition was obtained using different geometrical and dimensionless parameters for steam condensation in microchannels. To better understand the flow mechanisms in microchannels, the condensation flow patterns, such as annular flow, droplet flow, injection flow and intermittent flow, were captured and analyzed. The local heat transfer rate showed the nonlinear variations along the axial direction during condensation. The experimental results indicate that the flow patterns and transition characteristics strongly depend on the geometries of microchannels. With the increasing steam mass flux and steam quality, the annular/droplet flow expands and spans over a larger region in the microchannels; otherwise the intermittent flow occupies the microchannels. The dimensionless fitting data also reveal that the effect of surface tension and vapor inertia dominates gravity and viscous force at the specified flow pattern transitional position.

  20. Heat transfer with hockey-stick steam generator. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E; Gabler, M J

    1977-11-01

    The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less

  1. Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification.

    PubMed

    Hamilton, Gavin; Middleton, Michael S; Bydder, Mark; Yokoo, Takeshi; Schwimmer, Jeffrey B; Kono, Yuko; Patton, Heather M; Lavine, Joel E; Sirlin, Claude B

    2009-07-01

    To compare PRESS and STEAM MR spectroscopy for assessment of liver fat in human subjects. Single-voxel (20 x 20 x 20 mm) PRESS and STEAM spectra were obtained at 1.5T in 49 human subjects with known or suspected fatty liver disease. PRESS and STEAM sequences were obtained with fixed TR (1500 msec) and different TE (five PRESS spectra between TE 30-70 msec, five STEAM spectra between TE 20-60 msec). Spectra were quantified and T2 and T2-corrected peak area were calculated by different techniques. The values were compared for PRESS and STEAM. Water T2 values from PRESS and STEAM were not significantly different (P = 0.33). Fat peak T2s were 25%-50% shorter on PRESS than on STEAM (P < 0.02 for all comparisons) and there was no correlation between T2s of individual peaks. PRESS systematically overestimated the relative fat peak areas (by 7%-263%) compared to STEAM (P < 0.005 for all comparisons). The peak area given by PRESS was more dependent on the T2-correction technique than STEAM. Measured liver fat depends on the MRS sequence used. Compared to STEAM, PRESS underestimates T2 values of fat, overestimates fat fraction, and provides a less consistent fat fraction estimate, probably due to J coupling effects. (c) 2009 Wiley-Liss, Inc.

  2. Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents.

    PubMed

    Benson, Courtney A; Bizzoco, Richard W; Lipson, David A; Kelley, Scott T

    2011-04-01

    Fumaroles, commonly called steam vents, are ubiquitous features of geothermal habitats. Recent studies have discovered microorganisms in condensed fumarole steam, but fumarole deposits have proven refractory to DNA isolation. In this study, we report the development of novel DNA isolation approaches for fumarole deposit microbial community analysis. Deposit samples were collected from steam vents and caves in Hawaii Volcanoes National Park, Yellowstone National Park and Lassen Volcanic National Park. Samples were analyzed by X-ray microanalysis and classified as nonsulfur, sulfur or iron-dominated steam deposits. We experienced considerable difficulty in obtaining high-yield, high-quality DNA for cloning: only half of all the samples ultimately yielded sequences. Analysis of archaeal 16S rRNA gene sequences showed that sulfur steam deposits were dominated by Sulfolobus and Acidianus, while nonsulfur deposits contained mainly unknown Crenarchaeota. Several of these novel Crenarchaeota lineages were related to chemoautotrophic ammonia oxidizers, indicating that fumaroles represent a putative habitat for ammonia-oxidizing Archaea. We also generated archaeal and bacterial enrichment cultures from the majority of the deposits and isolated members of the Sulfolobales. Our results provide the first evidence of Archaea in geothermal steam deposits and show that fumaroles harbor diverse and novel microbial lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. ABB's advanced steam turbine program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellini, R.

    Demand for industrial steam turbines for combined-cycle applications and cogeneration plants has influenced turbine manufacturers to standardize their machines to reduce delivery time and cost. ABB, also a supplier of turnkey plants, manufactures steam turbines in Finspong, Sweden, at the former ASEA Stal facilities and in Nuernberg, Germany, at the former AEG facilities. The companies have joined forces, setting up the advanced Steam Turbine Program (ATP) that, once completed, will cover a power range from two to 100 MW. The company decided to use two criteria as a starting point, the high efficiency design of the Swedish turbines and themore » high reliability of the German machines. Thus, the main task was combining the two designs in standard machines that could be assembled quickly into predefined packages to meet specific needs of combined-cycle and cogeneration plants specified by customers. In carrying out this project, emphasis was put on cost reduction as one of the main goals. The first results of the ATP program, presented by ABB Turbinen Nuernberg, is the range of 2-30 MW turbines covered by two frame sizes comprising standard components supporting the thermodynamic module. An important feature is the standardization of the speed reduction gearbox.« less

  4. Steam explosion of oil palm residues for the production of durable pellets

    DOE PAGES

    Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; ...

    2015-01-03

    Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less

  5. Steam explosion of oil palm residues for the production of durable pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab

    Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less

  6. Steam-jet Chiller for Army Field Kitchens

    DTIC Science & Technology

    2009-08-01

    Steam-Jet Test-Loop Schematic A vacuum pump removes air from the entire system on startup, and is occasionally used to expel air during...delivered to the tube and shell condenser. The steam is condensed and drains to the vacuum sump tank. 11 Periodically, the condensate pump ... Vacuum Roughing Pump The condenser must be held at vacuum to prevent air from insulating the condenser tubes or create a back-pressure that would

  7. Net energy ratio for the production of steam pretreated biomass-based pellets

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2015-06-21

    In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less

  8. 21 CFR 200.11 - Use of octadecylamine in steam lines of drug establishments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Use of octadecylamine in steam lines of drug... SERVICES (CONTINUED) DRUGS: GENERAL GENERAL General Provisions § 200.11 Use of octadecylamine in steam... octadecylamine in steam lines where the steam may be used for autoclaving surgical instruments and gauze if the...

  9. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  10. An Industrial Steam Distillation

    ERIC Educational Resources Information Center

    Potter, Frederick S.; Schuerch, Conrad

    1975-01-01

    Describes an undergraduate chemistry experiment which demonstrates the use of codistillation for the separation of substances of low volatility from nonvolatiles. Pine gum is separated into turpentine and rosin by means of codistillation with steam at temperatures above 100 degrees centigrade. (MLH)

  11. Liquid chromatography with high resolution mass spectrometry for identification of organic contaminants in fish fillet: screening and quantification assessment using two scan modes for data acquisition.

    PubMed

    Munaretto, Juliana S; May, Marília M; Saibt, Nathália; Zanella, Renato

    2016-07-22

    This study proposed a strategy to identify and quantify 182 organic contaminants from different chemical classes, as for instance pesticides, veterinary drug and personal care products, in fish fillet using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF/MS). For this purpose, two different scan methods (full scan and all ions MS/MS) were evaluated to assess the best option for screening analysis in spiked fish fillet samples. In general, full scan acquisition was found to be more reliable (84%) in the automatic identification and quantification when compared to all ions MS/MS with 72% of the compounds detected. Additionally, a qualitative automatic search showed a mass accuracy error below 5ppm for 77% of the compounds in full scan mode compared to only 52% in all ions MS/MS scan. However, all ions MS/MS provides fragmentation information of the target compounds. Undoubtedly, structural information of a wide number of compounds can be obtained using high resolution mass spectrometry (HRMS), but it is necessary thoroughly assess it, in order to choose the best scan mode. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kervinen, T.; Riikonen, V.; Ritonummi, T.

    A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less

  13. Information management system breadboard data acquisition and control system.

    NASA Technical Reports Server (NTRS)

    Mallary, W. E.

    1972-01-01

    Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.

  14. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  15. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  16. Steam ejector as an industrial heat pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, H.G.; Huntley, W.R.; Perez-Blanco, H.

    1982-01-01

    The steam ejector is analyzed for use in industrial heat recovery applications and compared to mechanical compressor heat pumps. An estimated ejector performance was analyzed using methods based on conservation of mass, momentum, and energy; using steam properties to account for continuity; and using appropriate efficiencies for the nozzle and diffuse performance within the ejector. A potential heat pump application at a paper plant in which waste water was available in a hot well downstream of the paper machine was used to describe use of the stream ejector. Both mechanical compression and jet ejector heat pumps were evaluated for recompressionmore » of flashed steam from the hot well. It is noted that another possible application of vapor recompression heat pumps is the recovery of waste heat from large facilities such as the gaseous diffusion plants. The economics of recovering waste heat in similar applications is analyzed. (MCW)« less

  17. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  18. DPLL implementation in carrier acquisition and tracking for burst DS-CDMA receivers.

    PubMed

    Guan, Yun-feng; Zhang, Zhao-yang; Lai, Li-feng

    2003-01-01

    This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.

  19. Use of bauxite as packing material in steam injection wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoglio, J.; Joubert, G.; Gallardo, B.

    1995-12-31

    Cyclic steam injection, also known as steam soak, has proven to be the most efficient method for producing heavy crude oil and bitumen from unconsolidated sands. The application of steam injection may, however, generate sand production, causing, among other things, a decrease in production. The gravel pack technique is the most efficient way to prevent fines production from cold producing wells. But, once they are steam stimulated, a dissolution of quartz containing gravel material takes place reducing greatly the packing permeability and eventually sand production. Different types of packing material have been used to avoid sand production after cyclic steammore » injection, such as gravel, ceramics, bauxite, coated resin, and American sand. This paper presents the results of field test, using sinterized bauxite as a packing material, carried out in Venezuela`s heavy oil operations as a part of a comprehensive program aimed at increasing the packing durability and reducing sand production. This paper also verify the results of laboratory tests in which Bauxite was found to be less soluble than other packing material when steam injected.« less

  20. Steam exit flow design for aft cavities of an airfoil

    DOEpatents

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  1. Developmental Stages in Receptive Grammar Acquisition: A Processability Theory Account

    ERIC Educational Resources Information Center

    Buyl, Aafke; Housen, Alex

    2015-01-01

    This study takes a new look at the topic of developmental stages in the second language (L2) acquisition of morphosyntax by analysing receptive learner data, a language mode that has hitherto received very little attention within this strand of research (for a recent and rare study, see Spinner, 2013). Looking at both the receptive and productive…

  2. [Steam cautery of the cornea in microbial keratitis].

    PubMed

    Maier, P; Birnbaum, F; Reinhard, T

    2008-01-01

    In some cases topical antimicrobial treatment of microbial keratitis or corneal ulcers remains unsuccessful, with increasing infiltration of the corneal stroma. In this situation the steam cautery procedure developed by Karl Wessely in 1911 can lead to rapid healing of the inflammatory process, avoiding further corneal surgery. In this article we describe the steam cautery technique and discuss its indications for microbial keratitis.

  3. The Role of Biomass Composition and Steam Treatment on Durability of Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab

    Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less

  4. The Role of Biomass Composition and Steam Treatment on Durability of Pellets

    DOE PAGES

    Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...

    2018-03-03

    Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less

  5. Steam inhalation therapy: severe scalds as an adverse side effect

    PubMed Central

    Baartmans, Martin; Kerkhof, Evelien; Vloemans, Jos; Dokter, Jan; Nijman, Susanne; Tibboel, Dick; Nieuwenhuis, Marianne

    2012-01-01

    Background Steam inhalation therapy is often recommended in the treatment of a common cold. However, it has no proven benefit and may in fact have serious adverse side effects in terms of burn injuries. Aim To quantify the human and economic costs of steam inhalation therapy in terms of burn injury. Design and setting A prospective database study of all patients admitted to the burn centres (Beverwijk, Groningen, Rotterdam) and the hospital emergency departments in the Netherlands. Method Number and extent of burn injuries as a result of steam inhalation therapy were analysed, as well as an approximation made of the direct costs for their medical treatment. Results Annually, on average three people are admitted to in one of the Dutch burn centres for burns resulting from steam inhalation therapy. Most victims were children, and they needed skin grafting more often than adults. The total direct medical costs for burn centre and emergency department treatment were €115 500 (£93 000), emotional costs are not reflected. Conclusion As steam inhalation therapy has no proven benefit and the number and extent of complications of this therapy in terms of burn injury are significant, especially in children, steam inhalation therapy should be considered a dangerous procedure and not recommended anymore in professional guidelines and patient brochures. PMID:22781995

  6. Evaluation of rock/fracture interactions during steam injection through vertical hydraulic fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.

    1997-05-01

    The design, results, and analysis of a steamdrive pilot in the South Belridge diatomite, Kern County, California, are reviewed. Pilot results demonstrate that steam can be injected across a 1,000-ft-tall diatomite column using hydraulically fractured wells and that significant oil is produced in response to steaming. A computationally simple numerical model is proposed and used to analyze reservoir heating and volumetric sweep by steam. Results from the analysis show that hydraulic fractures undergoing steam injection can be dynamic and asymmetrical.

  7. Steam disinfestation as a methyl bromide alternative in California cut flower nurseries

    USDA-ARS?s Scientific Manuscript database

    Steam may be an effective alternative to methyl bromide in cut flower production in California. Advantages of steam include broad spectrum pest control and a zero hour re-entry interval. The principle disadvantage of sheet steaming is cost effectiveness due to current energy prices and application...

  8. Physical structure changes of solid medium by steam explosion sterilization.

    PubMed

    Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang

    2016-03-01

    Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance. Therefore, steam explosion sterilization increased the effective contact area for microbial cells on solid medium, which contributed to improving SSF performance. Combined with the previous research, mechanisms of SSF improvement by steam explosion sterilization contained both chemical and physical effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows.

    PubMed

    Theurer, C B; Huber, J T; Delgado-Elorduy, A; Wanderley, R

    1999-09-01

    Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).

  10. The STEAM-Powered Classroom

    ERIC Educational Resources Information Center

    Harper, Charlie

    2017-01-01

    An instructional coach argues that STEAM (science, technology, engineering, arts, and mathematics) programming combined with problem-based learning can offer rich academic experiences--and not just in science classrooms. He outlines relevant problem-based lesson ideas, and discusses ways school leaders can better support instructional practices…

  11. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  12. Flexural Fatigue Behavior of an EBC CMC Composite System In Air and Steam at High Temperature

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha; Bur, Michael; Harder, Bryan; Gorican, Daniel

    2017-01-01

    Both coated and uncoated SiCSiC ceramic matrix composite (CMC) samples were tested in flexure under sustained peak low cycle fatigue (SPLCF) conditions in air or steam at elevated temperatures. The SiCSiC composites were reinforced with 2-D plies of boron nitride coated Hi-Nicalon Type-S SiC fibers which were woven as 5 harness satin (5HS) cloth. The composites were densified by chemical vapor infiltration (CVI) followed by slurry melt infiltration (SMI). A multilayer barium strontium aluminosilicate (BSAS) coating was applied to the samples by a plasma spray method. Fatigue loading limits were determined from monotonic flexure tests at room temperature and 1200oC. Stress levels under the proportional limit of the composite material were selected for the SPLCF tests. After cyclic testing, the composites were evaluated to determine crack propagation and failure modes in the coated and uncoated composites. Microstructural examination was used to identify coating degradation and failure modes of the EBCCMC system.

  13. Integrated vacuum absorption steam cycle gas separation

    DOEpatents

    Chen, Shiaguo [Champaign, IL; Lu, Yonggi [Urbana, IL; Rostam-Abadi, Massoud [Champaign, IL

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  14. A fast response miniature probe for wet steam flow field measurements

    NASA Astrophysics Data System (ADS)

    Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.

    2016-12-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.

  15. Open cycle ocean thermal energy conversion steam control and bypass system

    DOEpatents

    Wittig, J. Michael; Jennings, Stephen J.

    1980-01-01

    Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.

  16. Steam-soak performance in south Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.A.

    1991-11-01

    With about 2 {times} 10{sup 9} stock-tank m{sup 3} (12.6 {times} 10{sup 9} STB) of medium/heavy oil originally in place (OOIP) in south Oman, considerable scope exists for increasing oil recovery by thermal methods. The viability of thermal recovery in south Oman was tested with a steamflood pilot in the Al Khlata sands of the Marmul field and a 2-year steam-soak project to test the applicability of steam soak in five south Oman oil fields producing heavy oil. This paper describes the performance of the latter project. The wells selected for the test program included a wide range of southmore » Oman reservoir and oil characteristics i.e., the main reservoir drive mechanisms of depletion, solution-gas, and edge- and bottomwater drive, the reservoir sandbody types, and oil viscosities from 80 to 4000 mPa {center dot} s (80 to 4,000 cp). Steam-soak operations were successful, and oil production accelerated significantly, with an average stimulate production rate twice that before stimulation. Acceleration was less marked in wells where reservoir energy is limited or where the primary (cold) water cut is more than 30%. At primary (cold) water cuts {gt}50%, no increase in oil production rate was observed. The process was simulated numerically for several wells, with the results in close agreement with performance. Improved understanding of the process resulting from the simulation allowed the most important factors influencing performance to be identified and aided process optimization in the field test. Two small-scale steam-soak projects currently are being assessed for implementatioimplementation in the early 1990's.« less

  17. Design and Activation of a LOX/GH Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  18. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... than one shim may be used between the box and bearing. (b) Broken bearings. Broken bearings shall be... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal...

  19. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... than one shim may be used between the box and bearing. (b) Broken bearings. Broken bearings shall be... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal...

  20. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... than one shim may be used between the box and bearing. (b) Broken bearings. Broken bearings shall be... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal...

  1. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... than one shim may be used between the box and bearing. (b) Broken bearings. Broken bearings shall be... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal...

  2. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... than one shim may be used between the box and bearing. (b) Broken bearings. Broken bearings shall be... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal...

  3. [MR spectroscopy of amygdala: investigation of methodology].

    PubMed

    Tang, Hehan; Yue, Qiang; Gong, Qiyong

    2013-08-01

    This study was aimed to optimize the methods of magnetic resonance spectroscopy (MRS) to improve its quality in amygdala. Forty-three volunteers were examined at right and left amygdala using stimulated-echo acquisition mode (STEAM), and point-resolved spectroscopy series (PRESS) with and without saturation bands. The Cr-SNR, water-suppression level, water full width at half maximum (FWHM) and RMS noise of three sequences were compared. The results showed that (1) the Cr-SNR and water-suppression lelvel of PRESS with saturation bands were better than that of PRESS without saturation bands and STEAM (P<0.001); (2) the left and right RMS noise was significantly different both using PRESS with saturation bands and using STEAM (P<0.05); (3) there was a positive, significant correlation between Cr-SNR and voxel size (P<0.05). Therefore, PRESS with saturation bands is better than PRESS without saturation bands or STEAM for the spectroscopy of amygdala. It is also useful to make the voxel as big as possible to improve the spectral quality.

  4. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Actual operation and regulatory activities on steam generator replacement in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hitoshi

    1997-02-01

    This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.

  7. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  8. Project DEEP STEAM: Fourth meeting of the technical advisory panel

    NASA Astrophysics Data System (ADS)

    Fox, R. L.; Donaldson, A. B.; Eisenhawer, S. W.; Hart, C. M.; Johnson, D. R.; Mulac, A. J.; Wayland, J. R.; Weirick, L. J.

    1981-07-01

    The status of project DEEP STEAM was reviewed. Proceedings, are divided into five main sections: (1) the injection string modification program; (2) the downhole steam generator program; (3) supporting activities; (4) field testing; and (5) recommendations and discussion.

  9. 10. GENERAL VIEW FROM SOUTH WEST. CHIPPER AT LEFT, STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. GENERAL VIEW FROM SOUTH WEST. CHIPPER AT LEFT, STEAM PLANT AT RIGHT. NOTE STEAM EXHAUSTS IN ROOF; LEFT IS MAIN ENGINE, RIGHT IS CARRIAGE DRIVE ENGINE. - Hull-Oakes Lumber Company, 23837 Dawson Road, Monroe, Benton County, OR

  10. EXTERIOR ELEVATION, LOOKING SOUTH, ALSO SHOWING THE NORFOLK SOUTHERN STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR ELEVATION, LOOKING SOUTH, ALSO SHOWING THE NORFOLK SOUTHERN STEAM RESTORATION FLOOR INTERIOR WITH A DRILL PRESS (LEFT) AND BORING MILL (RIGHT). - Norfolk & Southern Steam Locomotive No. 1218, Norris Yards, East of Ruffner Road, Irondale, Jefferson County, AL

  11. Downhole steam generator with improved preheating, combustion and protection features

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

  12. Automation of steam generator services at public service electric & gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruickshank, H.; Wray, J.; Scull, D.

    1995-03-01

    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was duemore » to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.« less

  13. Steam generator design for solar towers using solar salt as heat transfer fluid

    NASA Astrophysics Data System (ADS)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  14. 67. VIEW, LOOKING WEST, OF A STEAM LAUNDRY LOCATED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. VIEW, LOOKING WEST, OF A STEAM LAUNDRY LOCATED IN THE CONDENSER GALLERY UNDER THE TURBINE HALL. THE FACILITY WAS USED TO WASH WORKERS CLOTHES. THE WASH TUB IS LOCATED AT THE LEFT OF THE PHOTOGRAPH. THE TUB WAS LOADED WITH LAUNDRY, SOAP AND WATER. STEAM WAS BLOWN IN THROUGH THE PIPE AT THE EXTREME LEFT OF THE PHOTOGRAPH. THE ROUNDED RIGHT END OF THE TUB PROMOTED TUMBLING AND SCRUBBING ACTION. ON THE RIGHT OF THE PHOTOGRAPH IS A STEAM POWERED CENTRIFUGE FOR SPIN DRYING LAUNDRY. THE WIRE FRAMES AT THE CENTER BACKGROUND ARE PANTS STRETCHERS. THEY WERE INSERTED INTO OVERALL OR TROUSER LEGS TO MINIMIZE WRINKLING AND ENCOURAGE DRYING. LAUNDRY WAS DRIED ON NEARBY STEAM PIPES. (WITH SCALE) - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  15. Steam as Social Practice: Cultivating Creativity in Transdisciplinary Spaces

    ERIC Educational Resources Information Center

    Guyotte, Kelly W.; Sochacka, Nicki W.; Costantino, Tracie E.; Walther, Joachim; Kellam, Nadia N.

    2014-01-01

    Recently there have been calls to expandSTEM education to include the arts and design, transforming STEM into STEAM in the K-20 classroom (Maeda, 2013). Like STEM, STEAM education stresses making connections between disciplines that were previously perceived as disparate. This has been conceptualized in different ways, such as: focusing on the…

  16. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.; Prichard, Andrew W.; Reid, Bruce D.; Burritt, James

    1998-01-01

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  17. French Regulatory practice and experience feedback on steam generator tube integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandon, G.

    1997-02-01

    This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generatorsmore » for leakage during operation, with guidelines for when generators must be pulled off line.« less

  18. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    NASA Astrophysics Data System (ADS)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  19. Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1980-09-01

    It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.

  20. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.

  1. Watt steam governor stability

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2002-05-01

    The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

  2. 45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING UNIT USED TO PRODUCE ELECTRICITY FOR MANUFACTURING OPERATIONS AND FOR THE TOWN OF RAINELLE. STEAM ENGINE IS A HAMILTON CORLISS. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  3. Corrosion performance of alternative steam generator materials and designs. Volume 2. Posttest examination of a seawater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Fink, G.C.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high seawater contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 282 fault steaming days at a 30 ppM chloride concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heat transfermore » tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited moderate pitting, primarily in the sludge pile region above the tubesheet.« less

  4. Corrosion performance of alternative steam generator materials and designs. Volume 3. Posttest examination of a freshwater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less

  5. WRATS Integrated Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Piatak, David J.

    2008-01-01

    The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data.

  6. On calculation of a steam-water flow in a geothermal well

    NASA Astrophysics Data System (ADS)

    Shulyupin, A. N.; Chermoshentseva, A. A.

    2013-08-01

    Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.

  7. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  8. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  9. Materials Performance in USC Steam Portland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interestmore » include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.« less

  10. Immediate use steam sterilization: moving beyond current policy.

    PubMed

    Seavey, Rose

    2013-05-01

    Immediate-use steam sterilization (IUSS) is steam sterilization intended for immediate use. IUSS may cause an increased risk of infection to patients because of stress and time constraints placed on staff. When IUSS is used, it is vital to properly carry out the complete multistep process according to the manufacturer's written validated instructions for use. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Downhole steam generator having a downhole oxidant compressor

    DOEpatents

    Fox, R.L.

    1981-01-07

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  12. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOEpatents

    Wilson, Ian D.; Wesorick, Ronald R.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  13. Effectiveness of a steam cleaning unit for disinfection in a veterinary hospital.

    PubMed

    Wood, Cheryl L; Tanner, Benjamin D; Higgins, Laura A; Dennis, Jeffrey S; Luempert, Louis G

    2014-12-01

    To evaluate whether the application of steam to a variety of surface types in a veterinary hospital would effectively reduce the number of bacteria. 5 surface types. Steam was applied as a surface treatment for disinfection to 18 test sites of 5 surface types in a veterinary hospital. A pretreatment sample was obtained by collection of a swab specimen from the left side of each defined test surface. Steam disinfection was performed on the right side of each test surface, and a posttreatment sample was then collected in the same manner from the treated (right) side of each test surface. Total bacteria for pretreatment and posttreatment samples were quantified by heterotrophic plate counts and for Staphylococcus aureus, Pseudomonas spp, and total coliforms by counts on selective media. Significant reductions were observed in heterotrophic plate counts after steam application to dog runs and dog kennel floors. A significant reduction in counts of Pseudomonas spp was observed after steam application to tub sinks. Bacterial counts were reduced, but not significantly, on most other test surfaces that had adequate pretreatment counts for quantification. Development of health-care-associated infections is of increasing concern in human and veterinary medicine. The application of steam significantly reduced bacterial numbers on a variety of surfaces within a veterinary facility. Steam disinfection may prove to be an alternative or adjunct to chemical disinfection within veterinary practices.

  14. Derivatization Ion Chromatography for the Determination of Monoethanolamine in Presence of Hydrazine in PHWR Steam-Water Circuits

    PubMed Central

    D., Ayushi; Sengupta, Arijit; Kumar, Sangita D.; Kumbhar, A. G.; Venkateswaran, G.

    2011-01-01

    A simple, rapid and accurate method for the determination of monoethanolamine (MEA) in PHWR steam-water circuits has been developed. MEA is added in the feed water to provide protection against corrosion while hydrazine is added to scavenge dissolved oxygen. The quantitative determination of MEA in presence of hydrazine was accomplished using derivatization ion chromatography with conductometric detection in nonsuppressed mode. A Metrosep cation 1-2 analytical column and a Metrosep cartridge were used for cation separation. A mixture of 4 mM tartaric acid, 20% acetone and 0.05 mM HNO3 was used as eluent. Acetone in the mobile phase leads to the formation of different derivatives with MEA and hydrazine. The interferences due Na+ and NH4  + were eliminated by adopting a simple pretreatment procedure employing OnGuard-H cartridge. The limit of detection limit of MEA was 0.1 μg mL−1 and the relative standard deviation was 2% for the overall method. The recovery of MEA added was in the range 95%–102%. The method was applied to the determination of MEA in steam generator water samples. PMID:21785596

  15. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization.

    PubMed

    Zhao, Shengguo; Li, Guodong; Zheng, Nan; Wang, Jiaqi; Yu, Zhongtang

    2018-04-01

    The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.

    PubMed

    Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie

    2017-08-01

    Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.

    PubMed

    Li, Xiangfeng; Guo, Bo; Xiao, Yumei; Yuan, Tun; Fan, Yujiang; Zhang, Xingdong

    2016-01-01

    The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of β-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of β-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties.

  18. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  19. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  20. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    NASA Astrophysics Data System (ADS)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  1. Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)

    NASA Astrophysics Data System (ADS)

    Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.

    2018-04-01

    The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.

  2. Steam technology options for pre-plant and replant soil disinfestation

    USDA-ARS?s Scientific Manuscript database

    This paper describes a development, testing, and commercialization program including a portfolio of three propane-fueled technologies that use pure steam or aerated steam to kill soil-borne pests prior to planting high-value crops. It includes research focused on laboratory and field evaluations of...

  3. Exploring the Effects of Integrating Self-Explanation into a Multi-User Game on the Acquisition of Scientific Concepts

    ERIC Educational Resources Information Center

    Hsu, Chung-Yuan; Tsai, Chin-Chung; Wang, Hung-Yuan

    2016-01-01

    The purpose of this study was to examine the impacts of embedding collaboration into a game with a self-explanation design for supporting the acquisition of light and shadow concepts. The participants were 184 fourth graders who were randomly assigned to three conditions: a solitary mode of the game with self-explanation, a collaborative mode with…

  4. System and method for coproduction of activated carbon and steam/electricity

    DOEpatents

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  5. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    PubMed

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  6. An evaluation of different steam disinfection protocols for cystic fibrosis nebulizers.

    PubMed

    Hohenwarter, K; Prammer, W; Aichinger, W; Reychler, G

    2016-01-01

    Contamination is a key element in cystic fibrosis. For this reason, nebulizer hygiene is an important, but complex and time-consuming task for cystic fibrosis patients. The aim of this study was to compare different steam disinfection and drying protocols. One hundred nebulizer parts were inoculated with cystic fibrosis-related bacteria in high concentrations (Burkholderia multivorans 3.9 × 10(10)/ml, Staphylococcus aureus 8.9 × 10(8/)ml and Pseudomonas aeruginosa 2.1 × 10(9)/ml). Tubes with Mycobacterium abscessus complex were additionally tested. Six steam disinfectors were compared. Different methods of drying were examined. All tested bacteria were efficiently killed by the different steam disinfectors tested. The risk of contamination depended on the method of drying. Steam disinfection is a safe disinfection method. It is better to leave the nebulizers wet after steam disinfection than to manipulate them by active drying, which seems to be a source of recontamination. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  7. Graphical Procedure for Comparing Thermal Death of Bacillus stearothermophilus Spores in Saturated and Superheated Steam

    PubMed Central

    Shull, James J.; Ernst, Robert R.

    1962-01-01

    The thermal death curve of dried spores of Bacillus stearothermophilus in saturated steam was characterized by three phases: (i) a sharp initial rise in viable count; (ii) a low rate of death which gradually increased; and (iii) logarithmic death at maximal rate. The first phase was a reflection of inadequate heat activation of the spore population. The second and third phases represented the characteristic thermal death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped with a system for initial evacuation of the chamber, was examined for superheat during normal operation. Measurements of spore inactivation and temperature revealed superheat in surface layers of fabrics being processed in steam at 121 C. The high temperature of the fabric surfaces was attributed to absorption of excess heat energy from superheated steam. The superheated steam was produced at the beginning of the normal sterilizing cycle by transfer of heat from the steam-heated jacket to saturated steam entering the vessel. PMID:13988774

  8. Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source

    NASA Astrophysics Data System (ADS)

    Wei, LIU; Chundong, HU; Sheng, LIU; Shihua, SONG; Jinxin, WANG; Yan, WANG; Yuanzhe, ZHAO; Lizhen, LIANG

    2017-12-01

    Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinement-fusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI (PCI eXtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module, the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and over-current protection system has the advantages of setting forbidden time and isolation transmission.

  9. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  10. Baby bottle steam sterilizers disinfect home nebulizers inoculated with bacterial respiratory pathogens.

    PubMed

    Towle, Dana; Callan, Deborah A; Farrel, Patricia A; Egan, Marie E; Murray, Thomas S

    2013-09-01

    Contaminated nebulizers are a potential source of bacterial infection but no single method is universally accepted for disinfection. We hypothesized that baby-bottle steam sterilizers effectively disinfect home nebulizers. Home nebulizers were inoculated with the common CF respiratory pathogens methicillin resistant Staphylococcus aureus, Burkholderia cepacia, Haemophilus influenzae, mucoid and non mucoid Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The nebulizers were swabbed for bacterial growth, treated with either the AVENT (Philips), the NUK Quick & Ready (Gerber) or DRY-POD (Camera Baby) baby bottle steam sterilizer and reswabbed for bacterial growth. All steam sterilizers were effective at disinfecting all home nebulizers. Viable bacteria were not recovered from any inoculated site after steam treatment, under any conditions tested. Steam treatment is an effective disinfection method. Additional studies are needed to confirm whether these results are applicable to the clinical setting. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. Materials for advanced ultrasupercritical steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Saha, Deepak

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  12. The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsden, S.S. Jr.; Tyran, Craig K.

    1986-01-21

    For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wetmore » steam quality.« less

  13. Dancing with STEAM: Creative Movement Generates Electricity for Young Learners

    ERIC Educational Resources Information Center

    Simpson Steele, Jamie; Fulton, Lori; Fanning, Lisa

    2016-01-01

    The integration of science, technology, engineering, arts, and mathematics (STEAM) serves to develop creative thinking and twenty-first-century skills in the classroom (Maeda 2012). Learning through STEAM promotes novelty, innovation, ingenuity, and task-specific purposefulness to solve real-world problems--all aspects that define creativity. Lisa…

  14. PHYSICAL AND OPTICAL PROPERTIES OF STEAM-EXPLODED LASER-PRINTED PAPER

    EPA Science Inventory

    Laser-printed paper was pulped by the steam-explosion process. A full-factorial experimental design was applied to determine the effects of key operating variables on the properties of steam-exploded pulp. The variables were addition level for pulping chemicals (NaOH and/or Na2SO...

  15. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    NASA Astrophysics Data System (ADS)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  16. SURVEY ON PREVACUUM HIGH-PRESSURE STEAM STERILIZERS.

    PubMed

    DARMADY, E M; DREWETT, S E; HUGHES, K E

    1964-03-01

    None of the 10 prevacuum high-pressure sterilizers of different makes tested was able to produce and maintain the conditions advocated by the Medical Research Council working party on high-pressure steam sterilizers (1959) or by Knox and Penikett (1958) with the result that steam did not penetrate adequately the single challenge load and it was not sterilized. The sterilization of ;group drums' of various sizes and contents was erratic and tended to give operators a false sense of security. An alarming number of minor engineering faults were present in seven out of 10 machines tested and they require very much more skilled maintenance than is being given at the moment. The possibility of centralizing sterilizers to central sterile supply departments and placing them under the care of a regional engineer cannot be too highly recommended. The presence of undetected ;leaks' and a failure to draw a prevacuum of 20 mm. even with a steam burst interferes with sterilization of a challenge load. A leak test should be performed twice daily and should not exceed more than 1 mm. in one minute at 20 mm. absolute. The centre of the load should be monitored by crossed tapes or Brownes tubes in each sterilizing cycle. Although the challenge load was sterilized when the chamber was filled to capacity, a more reliable cycle consisting of a double prevacuum of 20 mm. or more with intermediate steam burst to 10 lb. ensured the sterilizing of a single challenge load, which could be adequately controlled by the chamber drain temperature.

  17. Pilot-scale steam aging of steel slags.

    PubMed

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr

    2017-06-01

    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  18. Survey on prevacuum high-pressure steam sterilizers

    PubMed Central

    Darmady, E. M.; Drewett, S. E.; Hughes, K. E. A.

    1964-01-01

    None of the 10 prevacuum high-pressure sterilizers of different makes tested was able to produce and maintain the conditions advocated by the Medical Research Council working party on high-pressure steam sterilizers (1959) or by Knox and Penikett (1958) with the result that steam did not penetrate adequately the single challenge load and it was not sterilized. The sterilization of `group drums' of various sizes and contents was erratic and tended to give operators a false sense of security. An alarming number of minor engineering faults were present in seven out of 10 machines tested and they require very much more skilled maintenance than is being given at the moment. The possibility of centralizing sterilizers to central sterile supply departments and placing them under the care of a regional engineer cannot be too highly recommended. The presence of undetected `leaks' and a failure to draw a prevacuum of 20 mm. even with a steam burst interferes with sterilization of a challenge load. A leak test should be performed twice daily and should not exceed more than 1 mm. in one minute at 20 mm. absolute. The centre of the load should be monitored by crossed tapes or Brownes tubes in each sterilizing cycle. Although the challenge load was sterilized when the chamber was filled to capacity, a more reliable cycle consisting of a double prevacuum of 20 mm. or more with intermediate steam burst to 10 lb. ensured the sterilizing of a single challenge load, which could be adequately controlled by the chamber drain temperature. PMID:14149935

  19. Effects of water states on steam explosion of lignocellulosic biomass.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2016-01-01

    The work aimed to identify the complexity and roles of water states in steam explosion process of corn stalk to enhance the treatment efficiency. Results showed that two main water states with different mobility existed in corn stalk and influenced steam explosion treatment. By correlating dynamic water states data to feedstock mechanical properties and treatment process characteristics, the bound water being the excellent plasticizer that reduced the mechanical strength of fibers by over 30%, was conducive to treatment; while, the free water presenting buffering effects in treatment by hindering heat transfer which was reflected by the increase of temperature rising time by 1.29 folds and steam consumption by 2.18 folds, was not conducive. The distinguished point of these two waters was fiber saturated point. By considering treatment efficacy and energy consumption, the significance of fiber saturated point was highlighted as the optimal water states for steam explosion of corn stalk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.

    PubMed

    Kim, Hyungseup; Park, Yunjong; Ko, Youngwoon; Mun, Yeongjin; Lee, Sangmin; Ko, Hyoungho

    2018-01-01

    Wearable healthcare systems require measurements from electrocardiograms (ECGs) and photoplethysmograms (PPGs), and the blood pressure of the user. The pulse transit time (PTT) can be calculated by measuring the ECG and PPG simultaneously. Continuous-time blood pressure without using an air cuff can be estimated by using the PTT. This paper presents a biosignal acquisition integrated circuit (IC) that can simultaneously measure the ECG and PPG for wearable healthcare applications. Included in this biosignal acquisition circuit are a voltage mode instrumentation amplifier (IA) for ECG acquisition and a current mode transimpedance amplifier for PPG acquisition. The analog outputs from the ECG and PPG channels are muxed and converted to digital signals using 12-bit successive approximation register (SAR) analog-to-digital converter (ADC). The proposed IC is fabricated by using a standard 0.18 μm CMOS process with an active area of 14.44 mm2. The total current consumption for the multichannel IC is 327 μA with a 3.3 V supply. The measured input referred noise of ECG readout channel is 1.3 μVRMS with a bandwidth of 0.5 Hz to 100 Hz. And the measured input referred current noise of the PPG readout channel is 0.122 nA/√Hz with a bandwidth of 0.5 Hz to 100 Hz. The proposed IC, which is implemented using various circuit techniques, can measure ECG and PPG signals simultaneously to calculate the PTT for wearable healthcare applications.

  1. 1. Front view of steam engine and mill, looking NE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Front view of steam engine and mill, looking NE, showing (l to r) 6-column beam engine, flywheel, reduction gears and 3-roll cane mill. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  2. Task Performance with List-Mode Data

    NASA Astrophysics Data System (ADS)

    Caucci, Luca

    This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.

  3. Downhole steam generator having a downhole oxidant compressor

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  4. Rice cooker steam hand burn in the pediatric patient.

    PubMed

    Roh, T S; Kim, Y S; Burm, J S; Chung, C H; Kim, J B; Oh, S J

    2000-07-01

    Burn injuries often lead to significant cosmetic and functional deformity. In the Orient, household electric rice cookers have caused a significant number of steam burns to infant hands. The clinical course and treatment outcome of these burns have been studied retrospectively in a review of the medical records of 79 pediatric patients treated for acute hand steam burns and of 38 other patients who underwent correction for postburn contracture. Electric rice cookers caused all of the acute pediatric steam burns treated at our institute. Of the 81 hands treated between 1995 and 1998, 38.3 percent healed with conservative treatment and 61.7 percent required skin grafting. The volar aspects of the index and middle fingers were those most frequently involved. Eighteen of 36 hands (50 percent) grafted with split-thickness skin developed late contractures requiring additional procedures. Among the 38 patients who underwent correction for postburn deformity, initial treatment was split-thickness grafting for 60.5 percent, full-thickness skin grafting for 7.9 percent, and spontaneous healing for 31.6 percent. Awareness among medical personnel and continued public education should be promoted to help prevent this unique type of pediatric steam burn from occurring.

  5. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  6. Equilibrium model analysis of waste plastics gasification using CO2 and steam.

    PubMed

    Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C

    2017-12-01

    Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.

  7. Changes of wood cell walls in response to hygro-mechanical steam treatment.

    PubMed

    Guo, Juan; Song, Kunlin; Salmén, Lennart; Yin, Yafang

    2015-01-22

    The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  9. Chemicals and ruminant feed from lignocelluloses by the steaming-extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puls, J.; Ayla, C.; Dietrichs, H.H.

    1983-01-01

    Steaming is applicable to lignocelluloses with lower lignin content such as hardwoods and most agricultural residues. The cellulose of steamed fiber materials becomes accessible for enzymatic degradation in spite of the presence of lignin. The hemicelluloses become water soluble. The lignin can be extracted with alkaline or organic solvents. Without further treatment, the steamed material can be used as highly digestible ruminant feed. Steam treatment, however, is most effective after separation of the hemicelluloses. Depending on the starting material, 10-25% hemicelluloses with xylose contents up to 80% can be recovered by aqueous extraction of the fiber material. The xylans andmore » xylan fragments can be used as substrates for chemical, biochemical, or microbial processes. The residual fiber material consists only of cellulose and lignin in highly accessible form for rumen bacteria and fungal cellulases. They are digested by ruminants up to 70-80% and degraded by cellulases without further treatment to 50-60%. In a second extraction step, the lignin can be removed from the fiber material. After controlled steaming at 190/sup 0/C with an optimum yield of hemicellulose, two-thirds of the original lignin present in the starting material can be extracted with dilute alkali. A relatively mild steaming with additional alkaline extraction of lignin is recommended when total utilization of the components including the hemicelluloses is desired. The extracted lignin can be used as a chemical feedstock. 16 references, 6 figures, 3 tables.« less

  10. Effects of steaming treatment on crystallinity and glass transition temperature of Eucalyptuses grandis × E. urophylla

    NASA Astrophysics Data System (ADS)

    Kong, Lulu; Zhao, Zijian; He, Zhengbin; Yi, Songlin

    To investigate the effects of steaming treatment on crystallinity and glass transition temperature, samples of Eucalyptuses grandis × E. urophylla with moisture content of 50%, 70%, and 90% were steamed in saturated steam at 100 °C for 2, 4, 6, and 8 h. The degree of crystallinity (CrI) and glass transition temperature (Tg) were measured via X-ray diffraction and dynamic mechanical analysis, respectively. Results revealed a crystallinity degree of Eucalyptus of 29.9%-34.2%, and a glass transition temperature of 80-94 °C with moisture contents of steamed samples of 20%. Furthermore, steaming was revealed to have an obvious effect on crystallization and glass transition. Values of CrI and Tg showed similar changing characteristics: increasing initially, followed by a decrease with increasing steaming time, reaching a maximum at 2 h. Water within the wood seemed to promote crystallization and glass transition during steaming. All steamed samples tested in this study reached glass transition temperature after 50 min of steaming, and the residual growth stress was released.

  11. Optimization of steam generators of NPP with WWER in operation with variable load

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.

    2017-11-01

    The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.

  12. Reliable steam generators: how KWU solved beginning problems for its customers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggers, B.; Engl, G.; Froehlich, K.

    This paper describes improvements in inspection and maintenance techniques, the adaptation of a secondary-side concept, and the optimization of water chemistry to achieve the highest possible operational reliability of steam generator performance. In the late 1970s and the early 1980s steam generators of several pressurized water reactors delivered by Kraftwerk Union (KWU) experienced corrosion-induced tube-wall degradation. As a result of these findings and the similar experience in US plants, KWU initiated a systematic program to retain the operational history of the plants at their historically outstanding level. By a combination of improvement in the balance of plant, reduction of themore » phosphate conditioning, and even a change to an all-volatile treatment as well as by the performance of tubesheet lancing, the tube degradation in KWU steam generators is nearly halted and no other known corrosion mechanisms exist that could impair the life expectancy of the steam generators. Nevertheless, repair and cleaning techniques have been developed and are available for application, if necessary, such as tube plugging, tube sleeving, or even partial tube replacement as well as chemical cleaning of the steam generator's secondary side.« less

  13. Degradation of 316L stainless steel sternal wire by steam sterilization.

    PubMed

    Shih, Chun-Che; Su, Yea-Yang; Chen, Lung-Ching; Shih, Chun-Ming; Lin, Shing-Jong

    2010-06-01

    Sterilization is an important step prior to the implantation of medical devices inside the human body. In this work we studied the influence of steam sterilization cycles on the oxide film properties of stainless steel sternal wire. Characterization techniques such as open- circuit potential, potentiodynamic measurement, electrochemical impedance spectroscopy, cathodic stripping, transmission electron microscopy, atomic force microscopy and scanning electron microscopy were employed to investigate the cycles of steam sterilization on the corrosion behavior of sternal wire. The results showed that the oxide properties are a function of the number of steam sterilization cycles and deteriorate as the number of cycles increases. Steam sterilization might damage the implant integrity and heavy metals could be released to the surrounding tissues due to deterioration of the oxide film. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. 'Basically, it's sorcery for your vagina': unpacking Western representations of vaginal steaming.

    PubMed

    Vandenburg, Tycho; Braun, Virginia

    2017-04-01

    Vaginal steaming made global headlines in 2015 after its promotion by celebrity Gwyneth Paltrow. One of many female genital modification practices currently on offer in Anglo-Western nations - practices both heavily promoted and critiqued - vaginal steaming is claimed to offer benefits for fertility and overall reproductive, sexual or even general health and wellbeing. We analysed a selection of online accounts of vaginal steaming to determine the sociocultural assumptions and logics within such discourse, including ideas about women, women's bodies and women's engagement with such 'modificatory' practices. Ninety items were carefully selected from the main types of website discussing vaginal steaming: news/magazines; health/lifestyle; spa/service providers; and personal blogs. Data were analysed using thematic analysis, within a constructionist framework that saw us focus on the constructions and rationalities that underpin the explicit content of the texts. Within an overarching theme of 'the self-improving woman' we identified four themes: (1) the naturally deteriorating, dirty female body; (2) contemporary life as harmful; (3) physical optimisation and the enhancement of health; and (4) vaginal steaming for life optimisation. Online accounts of vaginal steaming appear both to fit within historico-contemporary constructions of women's bodies as deficient and disgusting, and contemporary neoliberal and healthist discourse around the constantly improving subject.

  15. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  16. Interpretation of steam drive pilots in the Belridge Diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, R.M.; Shahin, G.T.

    1995-12-31

    The South Belridge Diatomite Field contains more than 2.5 billion barrels of oil-in-place. Current primary and waterflood development are estimated to recover only a small fraction of this oil. Despite its low permeability, the diatomite may be a good candidate for the steam drive process, due to its thick oil column (1,000 ft), high porosity (50% to 65%), and high oil saturation (up to 70%). With these attributes, thermal expansion and decreased viscosity of reservoir fluids accelerate oil production, without significant heat loss to cap and base rock. Steam drive pilot operations have been conducted at South Belridge since 1986.more » This paper discusses the pilot projects and the 15-acre steam drive full-scale project currently being installed.« less

  17. 40 CFR 408.270 - Applicability; description of the steamed and canned oyster processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... steamed and canned oyster processing subcategory. 408.270 Section 408.270 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Steamed and Canned Oyster Processing Subcategory § 408.270 Applicability; description of the steamed and canned oyster processing subcategory. The provisions of this subpart are...

  18. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  19. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  20. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  1. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  2. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  3. 6. INTERIOR OF NORTH END OF STEAM PLANT, GROUND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR OF NORTH END OF STEAM PLANT, GROUND FLOOR, SHOWING FORMER LOCATION OF DIESEL ENGINES. THIS WAS THE FIRST PART OF THE BUILDING TO BE CONSTRUCTED, WHEN IT HOUSED ONLY THE DIESEL ENGINES. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  4. Teachers' Perceptions and Practices of STEAM Education in South Korea

    ERIC Educational Resources Information Center

    Park, HyunJu; Byun, Soo-yong; Sim, Jaeho; Han, Hyesook; Baek, Yoon Su

    2016-01-01

    This study examined teachers' perceptions and practices of science, technology, engineering, arts, and mathematics (STEAM) education in South Korea, drawing on a survey of teachers in STEAM model schools. Results showed that the majority of Korean teachers, especially experienced teachers and male teachers, had a positive view on the role of STEAM…

  5. 46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...

  6. 46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...

  7. Measuring non-condensable gases in steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presentedmore » that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.« less

  8. Measuring non-condensable gases in steam.

    PubMed

    van Doornmalen, J P C M; Kopinga, K

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1%) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M(TM) Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  9. Measuring non-condensable gases in steam

    NASA Astrophysics Data System (ADS)

    van Doornmalen, J. P. C. M.; Kopinga, K.

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3MTM Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  10. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    NASA Astrophysics Data System (ADS)

    Raju, Arun Satheesh Kumar

    This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio

  11. Performance Evaluation of Steam Traps and Orifice Plates.

    DTIC Science & Technology

    1980-10-01

    ADlAO9dl 229 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV-’ETC F/S 13/1 PERFOR1ANCE EVALUATION OF STEAM TRAPS AND ORIFICE PLATES.(U)/ OCT 80...AGENCY t REPORT FESA-TS-2085 41! PERFORMANCE EVALUATION OF STEAM TRAPS AND ORIFICE PLATES P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION w RESEARCH...PERFORMING ORGANIZATION NAME ANED ADDPESS!_ i lFioC’iA.TCr ’.ETPlJ A~ Johns - Manville Sales Corporation &00* 0 - Research & Development Center qOll Ken

  12. A Further Comparison of Manual Signing, Picture Exchange, and Speech-Generating Devices as Communication Modes for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    van der Meer, Larah; Sutherland, Dean; O'Reilly, Mark F.; Lancioni, Giulio E.; Sigafoos, Jeff

    2012-01-01

    We compared acquisition of, and preference for, manual signing (MS), picture exchange (PE), and speech-generating devices (SGDs) in four children with autism spectrum disorders (ASD). Intervention was introduced across participants in a non-concurrent multiple-baseline design and acquisition of the three communication modes was compared in an…

  13. The development of an air Brayton and a steam Rankine solar receiver

    NASA Technical Reports Server (NTRS)

    Greeven, M. V.

    1980-01-01

    An air Brayton and a steam Rankine solar receiver now under development are described. These cavity receivers accept concentrated insolation from a single point focus, parabolic concentrator, and use this energy to heat the working fluid. Both receivers were designed for a solar input of 85 kw. The air Brayton receiver heats the air to 816 C. A metallic plate-fin heat transfer surface is used in this unit to effect the energy transfer. The steam Rankine receiver was designed as a once-through boiler with reheat. The receiver heats the water to 704 C to produce steam at 17.22 MPa in the boiler section. The reheat section operates at 1.2 MPA, reheating the steam to 704 C.

  14. Steam turbine/generator NDE workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottingham, L.D.; Sabourin, P.F.

    1990-11-01

    On September 12--15, 1989, EPRI sponsored a workshop in Charlotte, North Carolina on steam turbine/generator rotating components. The approximate 185 attendees represented a broad spectrum of utilities, equipment manufactures, forging suppliers, service organizations, universities, insurance carriers, and consultants from the United States and abroad. Canada, England, Finland, France, Germany, Japan, Korea, Italy, Spain, and Sweden were represented at the workshop, and 81 of the attendees represented 44 domestic utilities. Nondestructive examination equipment demonstrations by 16 vendors and 2 utilities at the EPRI NDE Center complemented the technical presentation. In addition to 23 formal, technical presentations of prepared papers of specificmore » topics, 8 tutorial presentations, plus various opening and closing remarks and addresses, were given at the workshop. Presentations were organized under the following general topics: bucket blades and/or attachment regions; retaining rings; wheels/disks; steam turbine/generator testing and evaluation; and tutorials. Each individual paper has been cataloged separately.« less

  15. Potential applications for amylose inclusion complexes produced by steam jet cooking

    USDA-ARS?s Scientific Manuscript database

    Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...

  16. Analysis of the effectiveness of steam retorting of oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Pensel, R.W.; Udell, K.S.

    A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less

  17. A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, R. R.

    1983-01-01

    A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.

  18. Water droplet erosion of stainless steel steam turbine blades

    NASA Astrophysics Data System (ADS)

    Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.

    2017-08-01

    Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.

  19. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  20. Sliding Mode Approaches for Robust Control, State Estimation, Secure Communication, and Fault Diagnosis in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Ablay, Gunyaz

    Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.

  1. Utility of dual source CT with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to evaluate morphological features of ventricles in children with complex congenital heart defects.

    PubMed

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Nomura, Norikazu; Inukai, Sachiko; Tsubokura, Satoshi; Sakurai, Keita; Shimohira, Masashi; Ogawa, Masaki; Shibamoto, Yuta

    2016-04-01

    We evaluated the ability of dual source CT (DSCT) with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to depict the morphological features of ventricles in pediatric patients with congenital heart defects (CHD). Between July 2013 and April 2015, 78 pediatric patients with CHD (median age 4 months) were examined using DSCT with the Flash Spiral Cardio mode. The types of ventricular abnormalities were ventricular septal defect (VSD) in 42 (the malaligned type in 11, perimembranous type in 23, supracristal type in 2, atrioventricular type in 2, and muscular type in 4), single ventricle (SV) in 11, and congenital corrected transposition of the great arteries (ccTGA) in 4. We evaluated the accuracy of the diagnosis of the VSD type. In cases of SV and ccTGA, we assessed the detectability of the anatomical features of both ventricles for a diagnosis of ventricular situs. DSCT confirmed the diagnoses for all VSDs. The type of defect was precisely diagnosed for all patients. The anatomical features of both ventricles were also depicted and ventricular situs of SV and ccTGA was correctly diagnosed. The results suggest that DSCT has the ability to clearly depict the configuration of ventricles.

  2. [Ethical issues of treatment with embryonic steam cells].

    PubMed

    Siluianova, I V

    2007-01-01

    Review of ethical issues related to the application of embryonic steam cells (SC) for the treatment of different diseases is presented. On the background of ethical considerations, limits and possibilities as well as advantages and shortcomings of using steam cells in the clinical practice are discussed. On the basis of analysis of scientific reference data and ethical side of the given issue, it may be concluded that the principle "don't harm" must be applied also and especially for the use if this particular type of treatment in the clinical practice.

  3. Steam plant startup and control in system restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, F.P. de; Westcott, J.C.

    1994-02-01

    The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.

  4. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping

    2017-11-01

    Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.

  5. Pricing decisions from experience: the roles of information-acquisition and response modes.

    PubMed

    Golan, Hagai; Ert, Eyal

    2015-03-01

    While pricing decisions that are based on experience are quite common, e.g., setting a selling price for a used car, this type of decision has been surprisingly overlooked in psychology and decision research. Previous studies have focused on either choice decisions from experience, or pricing decisions from description. Those studies revealed that pricing involves cognitive mechanisms other than choice, while experience-based decisions involve mechanisms that differ from description-based ones. Thus, the mutual effect of pricing and experience on decision-making remains unclear. To test this effect, we experimentally compared real-money pricing decisions from experience with those from description, and with choices from experience. The results show that the mode of acquiring information affects pricing: the tendency to underprice high-probability prospects and overprice low-probability ones is diminished when pricing is based on experience rather than description. The findings further reveal attenuation of the tendency to underweight rare events, which underlies choices from experience, in pricing decisions from experience. The difference occurs because the response mode affects the search effort and decision strategy in decisions from experience. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  7. Research on simulation of supercritical steam turbine system in large thermal power station

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  8. Control of the probe influence on the flow field in LP steam turbine

    NASA Astrophysics Data System (ADS)

    Kolovratník, Michal; Yun, Kukchol; Bartoš, Ondřej

    For measuring the fine droplets properties in the wet steam expanding in the steam turbines the light extinction probes are usually used. The paper presents CFD modelling of the extinction probe influence on the wet steam flow field at the measurement position. The aim is to get a basic information about the influence of the flow field deviation on the measured data, in other words, of necessity to correct the measured data. The basic modelling procedure is described, as well as the supposed simplifications and the factor considering the change in the steam density in the measuring slot of the probe. The model is based on the experimental data that were achieved during the developmental measurements in the steam turbine 1090 MW in the power station Temelín. The experimental measurement was done in the cooperation with the Doosan Škoda Power s.r.o.

  9. Disinfection of heat-sensitive material by low-temperature steam and formaldehyde

    PubMed Central

    Alder, V. G.; Brown, Anne M.; Gillespie, W. A.

    1966-01-01

    Steam under subatmospheric pressure at temperatures below 90°C. rapidly killed nonsporing organisms after air had been removed by a high-vacuum pump. Most bacterial spores were killed but small proportions of the populations were very resistant. The destruction of spores was not logarithmic. The addition of formaldehyde vapour to the steam greatly increased its sterilizing power, with deep penetration into fabrics and destruction of spores. Penetration into wide tubes was good, but was poor in narrow tubes. Most fabrics, plastics, and instruments were unharmed. Low-temperature steam with formaldehyde is probably as efficient a sterilizing agent as ethylene oxide. PMID:5904988

  10. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    NASA Technical Reports Server (NTRS)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  11. Nonuniformity of Temperatures in Microwave Steam Heating of Lobster Tail.

    PubMed

    Fleischman, Gregory J

    2016-11-01

    The biennial Conference for Food Protection provides a formal process for all interested parties to influence food safety guidance. At a recent conference, an issue was raised culminating in a formal request to the U.S. Food and Drug Administration to change its Food Code recommendation for safe cooking of seafood using microwave energy when steaming was also employed. The request was to treat microwave steam cooked seafood as a conventionally cooked raw animal product rather than a microwave cooked product, for which the safe cooking recommendation is more extensive owing to the complex temperature distributions in microwave heating. The request was motivated by a literature study that revealed a more uniform temperature distribution in microwave steam cooked whole lobster. In that study, single-point temperatures were recorded in various sections of the whole lobster, but only one temperature was recorded in the tail, although the large size of the tail could translate to multiple hot and cold points. The present study was conducted to examine lobster tail specifically, measuring temperatures at multiple points during microwave steam cooking. Large temperature differences, greater than 60°C at times, were found throughout the heating period. To compensate for such differences, the Food Code recommends a more extensive level of cooking when microwave energy, rather than conventional heat sources, is used. Therefore, a change in the Food Code regarding microwave steam heating cannot be recommended.

  12. Steam ejector-condenser: stage I of a differential vacuum pumping station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, C.L.; Alger, T.W.

    1981-04-01

    A steam ejector-condenser unit was built and tested to produce a 10 Torr (13.3 x 10/sup 2/Pa) vacuum with a 2 cm aperture to the atmosphere. This unit is the first stage of a differential vacuum pumping station that will be used with the Experimental Test Accelerator. The accelerator's electron beam will pass through a series of openings from a high vacuum (5 x 10/sup -6/ Torr) to the atmosphere. The differential system consists of four vacuum pumping units separated by 2 cm-diam apertures. Superheated steam is injected near the final beamline orifice to reduce the quantity of atmospheric airmore » flowing into the steam ejector--condenser unit. The steam ejector in the condenser vessel is open at its center to permit passage of the accelerator beam. Five nozzles mounted in a conical array produce the ejector vacuum of 10 Torr. The ejector exhausts into the condenser and forms a barrier to air flow into the lower pressure region. This feature permits high volume cold trapping and cryopumping of water vapor in the remaining lower-pressure stages. Tests have proven that the steam ejector--condenser is a reliable operating unit and suitable for long-term, steady-state accelerator operation.« less

  13. Bunch mode specific rate corrections for PILATUS3 detectors

    DOE PAGES

    Trueb, P.; Dejoie, C.; Kobas, M.; ...

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less

  14. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    NASA Astrophysics Data System (ADS)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  15. Quality requirements of soft red winter wheat for making northern-style Chinese steamed bread

    USDA-ARS?s Scientific Manuscript database

    Flours of 19 soft red winter (SRW) wheat varieties having protein contents of 6.6 to 9.9% were used to determine the suitability of SRW wheat for making steamed bread and the influences of flour characteristics on the quality attributes of steamed bread. Fourteen varieties produced steamed bread of ...

  16. The effects of steam injection in a sandstone reservoir (Etchegoin Formation), Buena Vista field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, C.W.; Reed, A.A.

    1991-03-01

    At Buena Vista field, California, 120 ft of post-steamflood core, spanning the middle Pliocene Wilhelm Member of the Etchegoin Formation, was taken to assess the influence of stratigraphy on light-oil steamflood (LOSF) processes and to determine what steam-rock reactions occurred and how these affected reservoir properties. High-quality steam (600F (300C)) had been injected ({approximately}1,700 psi) into mixed tidal flat and estuarine facies in an injector well located 55 ft from the cored well. Over a period of 20 months, steam rapidly channeled through a thin ({approximately}7 ft), relatively permeable (1-1,000 md), flaser-bedded sandstone unit. Conductive heating above this permeable unitmore » produced, in the vicinity of the cored well, a 35-ft steam-swept zone (oil saturation = 0), overlain by a 29-ft steam-affected zone in which oil saturation had been reduced to 13%, far below the presteam saturation of 30%. Steam-induced alteration ('artificial diagenesis') of the clay-rich reservoir rock was recognized using SEM, petrography, and X-ray diffraction. Salient dissolution effects were the complete to partial removal of siliceous microfossils, Fe-dolomite, volcanic rock fragments, and labile heavy minerals. The artificial diagenetic effects are first encountered in the basal 6 ft of the 29-ft steam-affected zone. Based on the distribution of the authigenic phases, the authors conclude that the reactions took place, or were at least initiated, in the steam condensate bank ahead of the advancing steam front. Although these changes presumably reduced permeability, the steamflood process was effective in reducing oil saturation to zero in the steam-contacted portion of the reservoir.« less

  17. Downhole measurements and fluid chemistry of a castle rock steam well, the Geysers, Lake County, California

    USGS Publications Warehouse

    Truesdell, A.H.; Nathenson, M.; Frye, G.A.

    1981-01-01

    Wellbore and reservoir processes in a steam well in the Castle Rock field of The Geysers have been studied by means of down-hole pressure and temperature measurements and analyses of ejected water and steam produced under bleed and full flow. Down-hole measurements show that below a vapor zone there is liquid water in the well in pressure equilibrium with reservoir steam at a depth of 2290 m. The progressive decreases, from 1973 to 1977, of pressure and temperature in the vapor zone indicate that wellbore heat loss is high enough to condense a large fraction of the steam inflow. The chemical composition of water ejected from the well is consistent with an origin from wellbore condensation of steam. Calculations using the differences in gas and isotopic compositions between bleed and full-flow steam show that about half of the full-flow steam originated as liquid water in the reservoir and that about 30% of the steam entering the well under bleed was condensed in the wellbore and drained downward. Heat loss calculations are also consistent with this amount of condensation. ?? 1981.

  18. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    PubMed

    Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.

  19. 26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  20. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization.

    PubMed

    Ito, Yoshikazu; Tanabe, Yoichi; Han, Jiuhui; Fujita, Takeshi; Tanigaki, Katsumi; Chen, Mingwei

    2015-08-05

    Multifunctional nanoporous graphene is realized as a heat generator to convert solar illumination into high-energy steam. The novel 3D nanoporous graphene demonstrates a highly energy-effective steam generation with an energy conversation of 80%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    NASA Astrophysics Data System (ADS)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  2. Design of multi-mode compatible image acquisition system for HD area array CCD

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sui, Xiubao

    2014-11-01

    Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.

  3. 10 CFR 431.86 - Uniform test method for the measurement of energy efficiency of commercial packaged boilers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Boiler That is Capable of Supplying Either Steam or Hot Water—(A) Testing. For purposes of EPCA, before... supplying either steam or hot water either by testing the boiler in the steam mode or by testing it in both... supplying either steam or hot water either by testing the boiler for both efficiencies in steam mode, or by...

  4. The STEAM behind the Scenes

    ERIC Educational Resources Information Center

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  5. Heat Strain Evaluation of U.S. Navy Steam Suit Ensembles

    DTIC Science & Technology

    2016-05-01

    method for measuring the thermal insulation of clothing using a heated manikin. West Conshohocken, PA: ASTM International. 2. Castellani, J.W., Young...TECHNICAL REPORT NO. T16-13 DATE May 2016 ADA HEAT STRAIN EVALUATION OF U.S. NAVY STEAM SUIT ENSEMBLES DISCLAIMER The opinions or...USARIEM TECHNICAL REPORT T16-13 HEAT STRAIN EVALUATION OF U.S. NAVY STEAM SUIT ENSEMBLES

  6. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    NASA Astrophysics Data System (ADS)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  7. Visual Knowledge in Tactical Planning: Preliminary Knowledge Acquisition Phase 1 Technical Report

    DTIC Science & Technology

    1990-04-05

    MANAGEMENT INFORMATION , COMMUNICATIONS, AND COMPUTER SCIENCES Visual Knowledge in Tactical Planning: Preliminary Knowledge Acquisition Phase I Technical...perceived provides information in multiple modalities and, in fact, we may rely on a non-verbal mode for much of our understanding of the situation...some tasks, almost all the pertinent information is provided via diagrams, maps, znd other illustrations. Visual Knowledge Visual experience forms a

  8. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less

  9. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czernik, S.; Wang, D.; Chornet, E.

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step.more » Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.« less

  10. Statistical methods for the quality control of steam cured concrete : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    Concrete strength test results from three prestressing plants utilizing steam curing were evaluated statistically in terms of the concrete as received and the effectiveness of the plants' steaming procedures. Control charts were prepared to show tren...

  11. Filmwise Condensation of Steam on Externally-Finned Horizontal Tubes.

    DTIC Science & Technology

    1983-12-01

    via gravity to the boiler. The auxiliary condenser was constructed of two 9.5-mm (3/8-in) water- cooled ccpper lines helically coiled to a height of...34. " . .. . ’ . .- .. ’. .. .- . . . i . ’ -, - NPS69-83-003 - m NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS FILMWISE CONDENSATION OF STEAM ON EXTERNALLY-FINNED...and SubEtee) 5. TYPE OF REPORT & PERIOD COVERED Filmwise Condensation of Steam on Master Thesis; Externally-Finned Horizontal Tubes D e r1 6

  12. Visualizing intramyocardial steam formation with a radiofrequency ablation catheter incorporating near-field ultrasound.

    PubMed

    Wright, Matthew; Harks, Erik; Deladi, Szabolcs; Fokkenrood, Steven; Zuo, Fei; Van Dusschoten, Anneke; Kolen, Alexander F; Belt, Harm; Sacher, Frederic; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2013-12-01

    Steam pops are a risk of irrigated RF ablation even when limiting power delivery. There is currently no way to predict gas formation during ablation. It would be useful to visualize intramyocardial gas formation prior to a steam pop occurring using near-field ultrasound integrated into a RF ablation catheter. In an in vivo open-chest ovine model (n = 9), 86 lesions were delivered to the epicardial surface of the ventricles. Energy was delivered for 15-60 seconds, to achieve lesions with and without steam pops, based on modeling data. The ultrasound image was compared to a digital audio recording from within the pericardium by a blinded observer. Of 86 lesions, 28 resulted in an audible steam pop. For lesions that resulted in a steam pop compared to those that did not (n = 58), the mean power delivered was 8.0 ± 1.8 W versus 6.7 ± 2.0 W, P = 0.006. A change in US contrast due to gas formation in the tissue occurred in all lesions that resulted in a steam pop. In 4 ablations, a similar change in US contrast was observed in the tissue and RF delivery was stopped; in these cases, no pop occurred. The mean depth of gas formation was 0.9 ± 0.8 mm, which correlated with maximal temperature predicted by modeling. Changes in US contrast occurred 7.6 ± 7.2 seconds before the impedance rise and 7.9 ± 6.2 seconds (0.1-17.0) before an audible pop. Integrated US in an RF ablation catheter is able to visualize gas formation intramyocardially several seconds prior to a steam pop occurring. This technology may help prevent complications arising from steam pops. © 2013 Wiley Periodicals, Inc.

  13. STEAM by Another Name: Transdisciplinary Practice in Art and Design Education

    ERIC Educational Resources Information Center

    Costantino, Tracie

    2018-01-01

    The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union…

  14. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  15. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    PubMed

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.

  16. Baby bottle steam sterilizers for disinfecting home nebulizers inoculated with non-tuberculous mycobacteria.

    PubMed

    Towle, D; Callan, D A; Lamprea, C; Murray, T S

    2016-03-01

    Non-tuberculous mycobacteria (NTMb), present in environmental water sources, can contribute to respiratory infection in patients with chronic pulmonary disease. Contaminated nebulizers are a potential source of respiratory infection. Treatment with baby bottle steam sterilizers disinfects home nebulizers inoculated with bacterial pathogens but whether this method works for disinfection of NTMb is unclear. Baby bottle steam sterilization was compared with vigorous water washing for disinfecting home nebulizers inoculated with NTMb mixed with cystic fibrosis sputum. No NTMb was recovered from any nebulizers after steam treatment whereas viable NTMb grew after water washing, demonstrating that steam sterilization effectively disinfects NTMb-inoculated nebulizers. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Catalytic glycerol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  18. Steam-cooking rapidly destroys and reverses onion-induced antiplatelet activity.

    PubMed

    Hansen, Emilie A; Folts, John D; Goldman, Irwin L

    2012-09-20

    Foods in the diet that can aid in the prevention of diseases are of major interest. Onions are key ingredients in many cuisines around the world and moreover, onion demand has trended higher over the past three decades. An important pharmacological aspect of onion is the ability to inhibit platelet aggregation. Raw onions inhibit platelet aggregation; however, when onions are boiled or heated, antiplatelet activity may be abolished. Onion quarters were steamed for 0, 1, 3, 6, 10, and 15 min. The in vitro antiplatelet activity of a yellow hybrid storage onion was examined at these times on the blood of 12 human subjects using in vitro whole blood aggregometry. Contrary to findings reported for boiling, antiplatelet activity was destroyed between 3 and 6 min of steaming, and at 10 min of steaming, cooked onions stimulated platelet activity. Extracts from cooked onion had the potential to reverse the inhibitory effect on blood platelets by 25%. Responses were consistent across all donors. Total polyphenolic concentration and soluble solids were not affected by steaming time. The potential value of cooked onion preparations may result in destruction or reversal of antiplatelet activity, without affecting the polyphenolic concentration.

  19. Halophilic Archaea determined from geothermal steam vent aerosols.

    PubMed

    Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T

    2008-06-01

    Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.

  20. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.

    PubMed

    Garmakhany, Amir Daraei; Kashaninejad, Mahdi; Aalami, Mehran; Maghsoudlou, Yahya; Khomieri, Mortza; Tabil, Lope G

    2014-06-01

    In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw. © 2013 Society of Chemical Industry.

  1. Use of borehole radar tomography to monitor steam injection in fractured limestone

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.

    2006-01-01

    Borehole radar tomography was used as part of a pilot study to monitor steam-enhanced remediation of a fractured limestone contaminated with volatile organic compounds at the former Loring Air Force Base, Maine, USA. Radar tomography data were collected using 100-MHz electric-dipole antennae before and during steam injection to evaluate whether cross-hole radar methods could detect changes in medium properties resulting from the steam injection. Cross-hole levelrun profiles, in which transmitting and receiving antennae are positioned at a common depth, were made before and after the collection of each full tomography data set to check the stability of the radar instruments. Before tomographic inversion, the levelrun profiles were used to calibrate the radar tomography data to compensate for changes in traveltime and antenna power caused by instrument drift. Observed changes in cross-hole radar traveltime and attenuation before and during steam injection were small. Slowness- and attenuation-difference tomograms indicate small increases in radar slowness and attenuation at depths greater than about 22 m below the surface, consistent with increases in water temperature observed in the boreholes used for the tomography. Based on theoretical modelling results, increases in slowness and attenuation are interpreted as delineating zones where steam injection heating increased the electrical conductivity of the limestone matrix and fluid. The results of this study show the potential of cross-hole radar tomography methods to monitor the effects of steam-induced heating in fractured rock environments. ?? 2006 European Association of Geoscientists & Engineers.

  2. Effect of resin type on properties of steam-press-cured flakeboards

    Treesearch

    Chung-Yun Hse; Robert L. Geimer; W. Ernest Hsu; R.C. Tang

    1995-01-01

    Six potentially important wood adhesives for gluing southern pine and white oak flakeboards were evaluated for their performances in steam-injection pressing and conventional platen pressing. Of the six resins tested, polyisocyanate resin performed well in both steam injection and conventional platen pressings. Phenol-fonnaldehyde (PF) and melamine urea-fonnaldehyde (...

  3. Effect of resin type on properties of steam-press-cured flakeboards

    Treesearch

    Chung-Yun Hse; Robert L. Geimer; W. Earnest Hsu; R.C. Tang

    1995-01-01

    Six potentially important wood adhesives for gluing southern pine and white oak flakeboards were evaluated for their performances in steam-injection pressing and conventional platen pressing. Of the six resins tested, polyisocyanate resin performed well in both steam injection and conventional platen pressings. Phenol-formaldehyde (PF) and melamine urea-formaldehyde (...

  4. Design with constructal theory: Steam generators, turbines and heat exchangers

    NASA Astrophysics Data System (ADS)

    Kim, Yong Sung

    This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.

  5. Real time software for a heat recovery steam generator control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, R.; Delgadillo, M.A.; Chavez, R.

    1995-12-31

    This paper is addressed to the development and successful implementation of a real time software for the Heat Recovery Steam Generator (HRSG) control system of a Combined Cycle Power Plant. The real time software for the HRSG control system physically resides in a Control and Acquisition System (SAC) which is a component of a distributed control system (DCS). The SAC is a programmable controller. The DCS installed at the Gomez Palacio power plant in Mexico accomplishes the functions of logic, analog and supervisory control. The DCS is based on microprocessors and the architecture consists of workstations operating as a Man-Machinemore » Interface (MMI), linked to SAC controllers by means of a communication system. The HRSG real time software is composed of an operating system, drivers, dedicated computer program and application computer programs. The operating system used for the development of this software was the MultiTasking Operating System (MTOS). The application software developed at IIE for the HRSG control system basically consisted of a set of digital algorithms for the regulation of the main process variables at the HRSG. By using the multitasking feature of MTOS, the algorithms are executed pseudo concurrently. In this way, the applications programs continuously use the resources of the operating system to perform their functions through a uniform service interface. The application software of the HRSG consist of three tasks, each of them has dedicated responsibilities. The drivers were developed for the handling of hardware resources of the SAC controller which in turn allows the signals acquisition and data communication with a MMI. The dedicated programs were developed for hardware diagnostics, task initializations, access to the data base and fault tolerance. The application software and the dedicated software for the HRSG control system was developed using C programming language due to compactness, portability and efficiency.« less

  6. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    PubMed

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  7. Co-Measure: Developing an Assessment for Student Collaboration in STEAM Activities

    ERIC Educational Resources Information Center

    Herro, Danielle; Quigley, Cassie; Andrews, Jessica; Delacruz, Girlie

    2017-01-01

    Background: The shortage of skilled workers choosing STEM (Science, Technology, Engineering, and Math) careers in the USA and worldwide has fueled a movement towards STEAM, in which the "A" addresses the arts and humanities. STEAM education has been proposed as a way to offer relevant problems to solve while drawing on creative and…

  8. 16 CFR Appendix G6 to Part 305 - Boilers-Gas (Steam)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Boilers-Gas (Steam) G6 Appendix G6 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix G6 to Part 305—Boilers—Gas (Steam) Manufacturer's rated heating capacities (Btu's/hr.) Range of...

  9. An integrated strategy to improve data acquisition and metabolite identification by time-staggered ion lists in UHPLC/Q-TOF MS-based metabolomics.

    PubMed

    Wang, Yang; Feng, Ruibing; He, Chengwei; Su, Huanxing; Ma, Huan; Wan, Jian-Bo

    2018-08-05

    The narrow linear range and the limited scan time of the given ion make the quantification of the features challenging in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics with the full-scan mode. And metabolite identification is another bottleneck of untargeted analysis owing to the difficulty of acquiring MS/MS information of most metabolites detected. In this study, an integrated workflow was proposed using the newly established multiple ion monitoring mode with time-staggered ion lists (tsMIM) and target-directed data-dependent acquisition with time-staggered ion lists (tsDDA) to improve data acquisition and metabolite identification in UHPLC/Q-TOF MS-based untargeted metabolomics. Compared to the conventional untargeted metabolomics, the proprosed workflow exhibited the better repeatability before and after data normalization. After selecting features with the significant change by statistical analysis, MS/MS information of all these features can be obtained by tsDDA analysis to facilitate metabolite identification. Using time-staggered ion lists, the workflow is more sensitive in data acquisition, especially for the low-abundant features. Moreover, the metabolites with low abundance tend to be wrongly integrated and triggered by full scan-based untargeted analysis with MS E acquisition mode, which can be greatly improved by the proposed workflow. The integrated workflow was also successfully applied to discover serum biosignatures for the genetic modification of fat-1 in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Indirect-cycle FBR cooled by supercritical steam-concept and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshiaki, Oka; Tatjana, Jevremovic; Sei-ichi, Koshizuka

    1993-01-01

    Neutronic and thermal-hydraulic design of an in direct-cycle supercritical steam-cooled fast breeder reactor (SCFBR-I) is carried out to find a way to make low-cost FBRs (Ref. 1). The advantages of supercritical steam cooling are high thermal efficiency, low pumping power, simplified system (no primary steam generators and no Loeffler boilers), and the use of experienced technology in fossil-fired power plants. The design goals are fissile fuel breeding (compound system doubling time below 30 yr), 1000-M(electric) class out-put, high fuel discharge burnup, and a long refueling period. The coolant void reactivity should be negative throughout fuel lifetime because the loss-of-coolant accidentmore » is the design-basis accident. These goals have never been satisfied simultaneously in previous SCFBRs.« less

  11. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Burns, R. K.

    1982-01-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  12. Detection of metal-transfer mode in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.A.; Carlson, N.M.; Smartt, H.B.

    1989-01-01

    One of the requirements of a sensing system for feedback control of gas metal arc welding (GMAW) is the capability to detect information about the metal-transfer mode. Because the operating boundary for the desired transfer mode, expressed as a function of mass input and heat input, may vary due to conditions beyond the control of the system, a means of determining the transfer mode during welding is necessary. A series of sensing experiments is performed during which the ultrasonic emissions, audio emissions, welding current fluctuations, and welding voltage fluctuations are recorded as a function of the transfer mode. In addition,more » high speed movies (5000 frame/s) of the droplet formation and detachment are taken synchronously with the sensing data. An LED mounted in the camera is used to work the film at the beginning and end of the data acquisition period. A second LED is pulsed at a 1 kHz rate and the pulses are recorded on film and with the sensor data. Thus events observed on the film can be correlated with the sensor data. Data acquired during globular transfer, spray transfer, and stiff spray or streaming transfer are observed to correlate with droplet detachment and arc shorting. The audio, current, and voltage data can be used to discriminate among these different transfer modes. However, the current and voltage data are also dependent on the characteristics of the welding power supply. 4 refs., 5 figs.« less

  13. Functionality of ovalbumin during Chinese steamed bread-making processing.

    PubMed

    Sang, Shangyuan; Zhang, Huang; Xu, Lei; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Yang, Na; Wu, Fengfeng; Li, Dandan

    2018-07-01

    Hen egg is commonly used in some cereal-based food, including cakes and bread. Ovalbumin, one of the major components of egg white protein, can affect the performance of the food product. The interaction between ovalbumin and gluten protein and its effect on property of dough and quality of Chinese steamed bread was investigated in this study. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns indicated that ovalbumin was surprisingly not incorporated in glutenins by covalent bond, whereas size-exclusion high-performance liquid chromatography showed that glutenin macropolymer content in glutenins increased slightly. Furthermore, dynamic rheology experiments indicated ovalbumin led to a decrease inG' andG″ of dough. Based on molecular dynamic simulation and SDS-PAGE results, it was inferred that ovalbumin was not hydrolyzed by endopeptidases during dough fermentation and crosslinked to gluten proteins during steaming. Finally, ovalbumin improved maximum dough height (Hm) during dough development and specific volume of Chinese steamed bread. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Start-up circuit upgrading to reduce the erosion of the rotor blades of the last stages of steam turbines and prevent the mass strips of stellite plates

    NASA Astrophysics Data System (ADS)

    Bozhko, V. V.; Gorin, A. V.; Zaitsev, I. V.; Kovalev, I. A.; Nosovitskii, I. A.; Orlik, V. G.; Lomagin, S. N.; Chernov, V. P.

    2017-03-01

    At turbine starts with low steam flow rates in idle mode, the low-pressure rotor blades consume energy, causing the ventilation heating of the stages and creating higher depression in them than in the condenser. This leads to the return steam flows in the exhaust of the low-pressure cylinder (LPC), reducing the heat due to the moisture of starting steam damps and cooling injections. It is shown that, as a result of upgrading with the transition to fully milled shroud platforms of rotor blades, the depression in the stages decreases and their cooling efficiency is reduced due to the removal of an elastic turn of the rotor blades under the action of centrifugal forces and seal of them by periphery. Heating the rotor blades of the last stages exceeds the temperature threshold of soldering resistance of stellite plates (150°C), and their mass strips begin. The start-up circuit providing both the temperature retention of the last stages lower the soldering resistance threshold due to overwetting the steam damps up to saturation condition and the high degree of removal from the dump steam of excessive erosive-dangerous condensed moisture was proposed, applied, and tested at the operating power unit. The investment in the development and application of the new start-up circuit are compensated in the course of a year owing to guaranteed prevention of the strips of stellite plates that lengthens the service life of the rotor blades of the last stages as well as increase of the rotor blade efficiency due to the sharp decrease of erosive wear of the profiles and reduction of their surface roughness. This reduces the annual consumption of equivalent fuel by approximately 1000 t for every 100 MW of installed capacity.

  15. Demonstration of the CDMA-mode CAOS smart camera.

    PubMed

    Riza, Nabeel A; Mazhar, Mohsin A

    2017-12-11

    Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.

  16. Heat Entrapment Effects Within Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Chato, D. J.; Doherty, M. P.

    2010-01-01

    We introduce a model problem to address heat entrapment effects or the local accumulation of thermal energy within liquid acquisition devices. We show that the parametric space consists of six parameters, namely the Rayleigh and Prandtl numbers, the aspect ratio, and heat flux ratios for the bottom, side, and top boundaries of the enclosure. For the range of Ra considered 1 to 10(sup 9), beyond Ra on the order of 10(sup 5), convective instability is the dominant mode of convection in comparison to natural convection. The flow field transitions to asymmetric modes at Ra on the order of 10(sup 7). Direct numerical simulation of a large geometric length scale prototype for Ra on the order of 10(sup 9) shows that the flow field evolves from small wavelength instability which gives rise to nonlinear growth of thermals, propagation of the instability occurs via growth of secondary and tertiary modes, and a travelling wave mode occurs prior to asymmetry. The effect of a large aspect ratio is to increase the number of modes in the vertical direction. Due to the slow diffusion of heat in the prototype, asymptotic states are not readily attained, we show that dynamical similarity can be used for a model which allows the attainment of asymptotic states and that transition to a chaotic state occurs for Ra on the order of 10(sup 9) via a broadband power spectrum. These dynamical events show that for the baseline condition in which heat is absorbed from background laboratory environment, higher heat flux is absorbed at the top and bottom boundaries of the enclosure than a nominal value of 34.9 ergs per square centimeter -second.

  17. General Mode Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Jesse, Stephen

    A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these

  18. Development and Control of Multi-Degree-of-Freedom Mobile Robot for Acquisition of Road Environmental Modes

    NASA Astrophysics Data System (ADS)

    Murata, Naoya; Katsura, Seiichiro

    Acquisition of information about the environment around a mobile robot is important for purposes such as controlling the robot from a remote location and in situations such as that when the robot is running autonomously. In many researches, audiovisual information is used. However, acquisition of information about force sensation, which is included in environmental information, has not been well researched. The mobile-hapto, which is a remote control system with force information, has been proposed, but the robot used for the system can acquire only the horizontal component of forces. For this reason, in this research, a three-wheeled mobile robot that consists of seven actuators was developed and its control system was constructed. It can get information on horizontal and vertical forces without using force sensors. By using this robot, detailed information on the forces in the environment can be acquired and the operability of the robot and its capability to adjust to the environment are expected to improve.

  19. Steam engine research for solar parabolic dish

    NASA Technical Reports Server (NTRS)

    Demler, R. L.

    1981-01-01

    The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.

  20. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Lost motion between steam locomotives and tenders not equipped with spring buffers shall be kept to a minimum and shall not exceed 1/2 inch. (e) Spring buffers. When spring buffers are used between steam locomotives and tenders the spring shall be applied with not less than 3/4 inch compression, and shall at all...