Science.gov

Sample records for acrylic composites loaded

  1. Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing.

    PubMed

    Bajpai, S K; Pathak, V; Soni, Bhawna

    2015-08-01

    In this work, antibiotic drug Minocycline (Mic) loaded cellulose nano-whiskers (CNWs)/poly(sodium acrylate) hydrogel films were prepared and investigated for their drug releasing capacity in physiological buffer solution (PBS) at 37 °C. The (CNWs)/poly(sodium acrylate) film, containing 9.7% (w/w) of CNWs, demonstrated Mic release of 2500 μg/g while the plain poly(acrylate) film showed 3100 μg/g of drug release. In addition, with the increase in the concentration of cross-linker N,N'-methylene bisacrylamide (MB) from to, the drug release from the resulting films decreased from 507 to 191 μg/g. The release exponent 'n' for films with different compositions was found in the range of 0.45 to 0.89, thus indicating non-Fickian release mechanism. The Schott model was employed to interpret the kinetic drug release data successfully. The film samples poly(SA) and CNWs/poly(SA) (both not containing drug) showed thrombus formation of 0.010±0.001 g and 0.007±0.001 g, respectively, thus showing the non-thrombogenic behavior. In percent Hemolysis, both of the film samples of 1.136±0.012 and 0.5±0.020, respectively, thus indicating non-hemolytic behavior. In addition, both of the film samples demonstrated protein adsorption of 49.02±0.59μ g/μL and 51.20±0.51 μg/μL per cm(2), thus revealing a fair degree of protein adsorption. Finally, the Mic-loaded films showed fair anti-fungal and antibacterial properties. PMID:25940526

  2. Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology.

    PubMed

    González-Chomón, Clara; Braga, Mara E M; de Sousa, Herminio C; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2012-10-01

    Cataracts treatment usually involves the extraction of the opaque crystalline lens and its replacement by an intraocular lens (IOL). A serious complication is the occurrence of endophthalmitis, a post-surgery infection mainly caused by Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. IOLs having the ability to load and to release norfloxacin in a controlled way and at efficient therapeutic levels may help to overcome these issues. In this work, acrylic hydrogels combining 2-hydroxyethyl methacrylate (HEMA) and 2-butoxyethyl methacrylate (BEM) at various ratios were prepared to attain biocompatible networks that can be foldable even in the dry state and thus insertable through minor ocular incision, and that load therapeutic amounts of norfloxacin. Acrylamide (AAm) and methacrylic acid (MAAc) were also incorporated as functional comonomers in small proportions. Water sorption, contact angle, protein adsorption, and optical properties of the networks were characterized. BEM notably decreased the T(g) of the networks, but also the loading by immersion in aqueous solution (presoaking). Then, a scCO(2)-based impregnation/deposition (SSI) method was implemented to improve the uptake of the drug. Loading capacities were discussed in terms of the comonomers composition and the employed method and operational conditions. The networks prepared with HEMA/BEM 20:80 vol/vol and processed with supercritical fluids combine adequate mechanical properties, biocompatibility and norfloxacin loading/release, and seem to be suitable for developing norfloxacin-eluting IOLs. PMID:22846620

  3. Composite Load Model Evaluation

    SciTech Connect

    Lu, Ning; Qiao, Hong

    2007-09-30

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  4. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  5. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  6. Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement

    SciTech Connect

    Gray, J.E.; Stears, J.G.; Frank, E.D.

    1983-03-01

    Shaped filters that are constructed of lead-loaded acrylic material for use in patient radiography are discussed. Use of the filters will result in improved overall image quality with significant exposure reduction to the patient (approximately a 2X reduction in breast exposure and a 3X reduction in thyroid gland exposure). Detailed drawings of the shaped filters for scoliosis radiography, cervical spine radiography, and for long film changers in special procedures are provided. The use of the scoliosis filters is detailed and includes phantom and patient radiographs and dose reduction information.

  7. Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Simmonds, J. G.

    2000-01-01

    This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  8. Alumina-coated graphene nanosheet and its composite of acrylic rubber.

    PubMed

    Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo

    2014-02-15

    A graphene was coated with a thin alumina layer to prepare a novel nanosheet which had high thermal conductivity but low electrical conductivity. The nanosheet with minimal aggregation was prepared effectively by first coating it with aluminum tri-sec-butoxide in anhydrous dimethylformamide, followed by rapid calcination in an inert atmosphere after the hydrolysis of the alkoxide. The morphology observed by scanning electron microscopy and elemental mapping by energy-dispersive X-ray spectrometry showed that the alumina layer coated on the graphene surface was uniform and ultra-thin. Thermogravimetry demonstrated that the uniformly coated alumina protective layer substantially improved the thermal stability of the graphene and that the electrically-insulative alumina layer effectively reduced the electrical conductivity of the graphene. The enhanced polar nature of surface as well as the increased surface roughness due to the coated alumina improved the dispersion of the graphene in the polar acrylic rubber matrix and the interaction at the interface. This led to an effective improvement of the thermal conductivity but marginal increase in electrical conductivity by the filler. Tensile modulus increased drastically to as high as 470% for the composite reinforced with the 5 phr (about 2.5 vol%) loading of the alumina-coated graphene. PMID:24370399

  9. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  10. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement.

    PubMed

    Gálvez-López, Ruben; Peña-Monje, Alejandro; Antelo-Lorenzo, Ramón; Guardia-Olmedo, Juan; Moliz, Juan; Hernández-Quero, José; Parra-Ruiz, Jorge

    2014-01-01

    Antibiotic-loaded acrylic bone cements (ALABC) spacers are routinely used in the treatment of prosthetic joint infections. The objectives of our study were to evaluate different ALABC for elution kinetics, thermal stability, and mechanical properties. A 10 or 20% mixture (w/w) beads of medium viscosity bone cement (DePuy, Inc) and vancomycin (VAN), gentamycin (GM), daptomycin (DAP), moxifloxacin (MOX), rifampicin (RIF), cefotaxime (CTX), cefepime (FEP), amoxicillin clavulanate (AmC), ampicillin (AMP), meropenem (MER), and ertapenem (ERT) were formed and placed into wells filled with phosphate-buffered saline. Antibiotic concentrations were determined using high-performance liquid chromatography. Antimicrobial activity was tested against Micrococcus luteus ATCC 9341 or Escherichia coli ATCC 25922. AmC, AMP, and FEP concentration rapidly decreased after day 2, being almost undetectable at day 4. Sustained and high elution rates were observed with VAN, GM, MOX, and RIF for the 30-day duration of the experiment. DAP, MER, ERT, and CTX elution rates constantly decreased from day 4. All antibiotics tested retained antimicrobial activity proving thermal stability. Mechanical properties of ALABC were maintained except when RIF was used. PMID:24231380

  11. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks

    NASA Astrophysics Data System (ADS)

    Porro, S.; Giardi, R.; Chiolerio, A.

    2014-06-01

    This work reports the electrical characterization of a water-based graphene oxide/acrylic composite material, which was directly inkjet printed to fabricate dissipative patterns. The graphene oxide filler, which is strongly hydrophilic due to its heavily oxygenated surface and can be readily dispersed in water, was reduced by UV irradiation during photo-curing of the polymeric matrix. The concurrent polymerization of the acrylic matrix and reduction of graphene oxide filler was demonstrated by real-time resistance measurements during UV light irradiation. The presence of graphene filler allowed decreasing the resistance of the pure polymeric matrix by nearly five orders of magnitude. This was explained by the fact that clusters of reduced graphene oxide inside the polymer matrix act as preferential pathways for the mobility of charge carriers, thus leading to an overall decrease of the material's resistance.

  12. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  13. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies. PMID:19452959

  14. Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites

    NASA Astrophysics Data System (ADS)

    Dashtizadeh, Ahmad; Abdouss, Majid; Mahdavi, Hossein; Khorassani, Manuchehr

    2011-01-01

    To prepare nano-composite emulsion acrylic resins with improved surface hardness and solvent resistance, nano-silica particles were treated with surfactants. The monomers of methyl methacrylate/butylacrylate were co-polymerized on the surface of dispersed silica particles. Several emulsions with different silica contents and copolymer mole fractions were prepared. Finally the emulsions were modified to water-based acrylic coatings and improved properties such as surface hardness, solvent resistance and glossiness were determined. The study of coatings was directed to find the improved resin by optimum surface properties. Size distribution and morphology of latexes were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. The glass transition temperature of nano-composites was measured and discussed its relation with silica contents, monomer mole fractions and improved properties of coatings. The optimum pendulum hardness of coatings was on 0.46 methyl methacrylate mole fraction and 120 g silica content. An increase in pendulum hardness of nano-composites with the addition of modified silica was observed. DLS and TEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.

  15. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Martínez Martínez, D.; Nohava, Jiri; De Hosson, J. Th. M.

    2015-11-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond-like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the uncoated substrate. A wide range of applied loads is explored, from 1 mN to 1 N, which is achieved by using a specific tribometer. The variation of 3 orders of magnitude in the applied load leads to a strong variation of the observed frictional phenomena. The different behavior of both samples at various loads is explained using a model that considers two contributions to the friction coefficient, namely, an adhesive and a rubber hysteresis part. The constraints and applicability of such model are critically evaluated.

  16. Stress distribution associated with loaded acrylic-metal-cement crowns by using finite element method.

    PubMed

    Toparli, M; Aykul, H; Aksoy, T

    2002-11-01

    The axisymmetrical finite element method (FEM) was used to compare stress distribution in a maxillary second premolar restored tooth. The three models were evaluated by crowning the tooth with Au-Pd alloy, Ni-Cr alloy and Ti alloy with acrylic. A longitudinal static force, 200 N in magnitude at an angle of 45 degrees was applied on the occlusal margin of each model. The tooth was assumed isotropic, homogenous and elastic. This numerical study was carried out using axisymmetric finite element models and calculation programmes were prepared by the authors using FORTRAN 77. Comparison of stress distributions was made in four regions of apex, cole, dentin-metal interface and metal-acrylic interface. The highest stress values were obtained when NiCr alloy with acrylic was used. PMID:12453266

  17. Wear of feldspathic ceramic, nano-filled composite resin and acrylic resin artificial teeth when opposed to different antagonists.

    PubMed

    Ghazal, Muhamad; Hedderich, Jürgen; Kern, Matthias

    2008-12-01

    The aim of this study was to evaluate the wear of denture teeth and their antagonists produced by two-body and three-body wear tests. Three types of denture teeth, namely feldspathic ceramic (FC), nano-filled composite resin (NCR), and experimental acrylic resin teeth (AR), were tested. For each type two groups of eight upper premolars each were prepared. The first group was tested against cusps from the same material and the second group was tested against human enamel cusps. Each group was loaded with a total of 200,000 chewing cycles (two-body wear 100,000 cycles and three-body wear 100,000 cycles). Wear was analyzed by measuring the maximum depth and volume loss of the denture teeth using a laser scanner and by measuring the vertical loss of the antagonists using an optical macroscope. Statistically, there was no significant difference between the following combinations: FC-FC and NCR-NCR regarding the vertical and volume loss; and FC-enamel and NCR-enamel regarding the total vertical substance loss. The combinations AR-AR and AR-enamel showed higher wear values than the other combinations. For complete dentures, composite resin and ceramic teeth showed similar vertical and volume loss, whereas composite resin teeth seemed to be more suitable for partial dentures opposing natural teeth in terms of wear of teeth and antagonists. PMID:19049531

  18. Highly Loaded Composite Strut Test Results

    NASA Technical Reports Server (NTRS)

    Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.

    2011-01-01

    Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.

  19. Relationship between cell surface composition of Candida albicans and adherence to acrylic after growth on different carbon sources.

    PubMed Central

    McCourtie, J; Douglas, L J

    1981-01-01

    The adherence of Candida albicans to acrylic was measured in vitro after growth of the yeast to stationary phase in defined medium containing glucose, sucrose, galactose, fructose, or maltose as the carbon source. In each case, yeast adherence was proportional to the concentration of sugar in the growth medium, but equimolar concentrations of different sugars promoted adherence to different extents. In vitro adherence was further increased by the addition of divalent cations to assay mixtures but was inhibited when saliva-treated acrylic strips were used or when yeasts were suspended in mixed saliva during the assay. The rate of spheroplast formation of yeasts grown in media containing a 500 mM concentration of the different sugars correlated well with the relative adherence of the cells to acrylic. Galactose-grown yeasts were most resistant to spheroplast formation with Zymolyase-5000 and most adherent to acrylic, whereas fructose-grown organisms were least resistant to spheroplast formation and least adherent to acrylic. These results indicate that when grown to stationary phase in media containing high concentrations of certain sugars, C. albicans undergoes a change in cell surface composition which facilitates its adherence to acrylic surfaces. Electron microscopy of yeasts harvested from such media revealed the presence of an additional surface layer which may be responsible for this enhanced adherence. Images PMID:7019091

  20. The influence of ultrasound on the release of gentamicin from antibiotic-loaded acrylic beads and bone cements.

    PubMed

    Ensing, Geert T; Hendriks, Johannes G E; Jongsma, Jelmer E; van Horn, Jim R; van der Mei, Henny C; Busscher, Henk J

    2005-10-01

    Gentamicin-loaded acrylic beads are loosely placed in infected bone cavities, whereas gentamicin-loaded acrylic bone cement is used as a mechanical filler in bone to anchor prosthetic components. Both drug delivery systems are used to decrease infection rates by gentamicin release. The objective of this study is to investigate the effects of pulsed ultrasound on gentamicin release from both materials. Gentamicin release from gentamicin-loaded beads (Septopal) and from three commercially-available brands of gentamicin-loaded bone cement (CMW 1, Palacos R-G, and Palamed G) was measured after 18 h of exposure in PBS to an ultrasonic field of 46.5 kHz in a 1:3 duty cycle with an average acoustic intensity of 167 mW/cm(2). Samples not exposed to ultrasound were used as controls. Pulsed ultrasound significantly enhanced gentamicin release from gentamicin-loaded beads, whereas gentamicin release from the gentamicin-loaded bone cements was not significantly enhanced. Mercury intrusion porosimetry revealed an increased distribution of pores between 0.1 and 0.01 microm in beads after gentamicin release, while in bone cements no increase in the number of pores was found. Increased gentamicin release in beads due to ultrasound may be explained by micro-streaming in a porous structure, whereas the absence of changes in pore structure after gentamicin release in bone cement is concurrent with the lack of an enhanced release of the antibiotic by ultrasound. As an effective treatment of infections requires high local concentrations of antibiotic, increased gentamicin release due to ultrasound may be of clinical significance, especially since ultrasound has been demonstrated to increase bacterial killing by antibiotics. PMID:16044459

  1. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances

    NASA Astrophysics Data System (ADS)

    Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier

    2014-12-01

    The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites.

  2. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  3. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  4. Highly Loaded Composite Strut Test Development

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.

    2011-01-01

    Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.

  5. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  6. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  7. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity. PMID:26360748

  8. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    PubMed

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli. PMID:26123815

  9. The effect of void space and polymerization time on transverse strength of acrylic-glass fibre composite.

    PubMed

    Vallittu, P K

    1995-04-01

    The aim of this study was to establish (i) the causes and effects of void space formation in acrylic-glass fibre composite material; and (ii) to clarify the effect of polymerization time of acrylic resin on the transverse strength of heat-cured acrylic resin test specimens. In study 1, three transverse sections of the continuous glass fibre reinforced test specimens (n = 48) were studied by a scanning electron microscope (SEM) and the SEM-micrographs were analysed by a computerized picture analyser. The results suggested that the void space inside the test specimens is caused by a lack of the adsorbed monomer liquid in the fibre bundle before polymerization. The correlation coefficient between these two factors was -0.633 (P < 0.001). No correlation was found between the void space of the acrylic-glass fibre composite and the transverse strength of the test specimens (r = 0.000, P = 1.000). The results of study 2 showed that the transverse strengths of test specimens (n = 240, total) subjected to polymerization of different time spans did not vary significantly (P > 0.05). PMID:7769523

  10. Composite Material Behaviour Under Shock Loading

    NASA Astrophysics Data System (ADS)

    Vignjevic, R.; Campbell, J. C.; Hazell, P.; Bourne, N. K.

    2007-06-01

    Composite materials have been of significant interest due to widespread application of anisotropic materials in aerospace and civil engineering problems. For example, composite materials are one of the important types of materials in the construction of modern aircraft due to their mechanical properties. The strain rate dependent mechanical behaviour of composite materials is important for applications involving impact and dynamic loading. Therefore, we are interested in understanding the composite material mechanical properties and behaviour for loading rates between quasistatic and 1x108s-1. This paper investigates modeling of shock wave propagation in orthotropic materials in general and a specific type of CFC composite material. The determination of the equation of state and its coupling with the rest of the constitutive model for these materials is presented and discussed along with validation from three dimensional impact tests.

  11. Combined mechanical loading of composite tubes

    NASA Technical Reports Server (NTRS)

    Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.

    1988-01-01

    An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.

  12. Synthesis and characterization of a sphere-like modified chitosan and acrylate resin composite for organics absorbency

    NASA Astrophysics Data System (ADS)

    Xin, S. S.; Wang, Y. H.; Li, Q. R.; Zhang, Q.; Wang, X. P.

    2015-07-01

    In this study, the chitosan (deacetylation degree >95%) was modified with vinyltriethoxysilane (A151) and became hydrophobic. The modified chitosan and acrylate resin composite can be synthesized by butyl methacrylate (BMA), butyl acrylate (BA), poly vinyl alcoho(PVA), N,N’-methylene bisacrylamide (MBA), benzoyl peroxide (BPO), and ethyl acetate under microwave irradiation. The optimal synthetic condition was as follows: the molar ratio of BA and BMA was 1.5:1, the dosage of ethyl acetate, PVA, MBA, BPO and modified chitosan were 50 wt.%, 10 wt.%, 1.5 wt.%, 2.0 wt.% and 1.0 wt.% of monomers, respectively. The adsorption capacity of the composite for CHCl3 and CCl4 were approximate to 53 g/g and 44 g/g, respectively. The organics absorbency and regeneration of the samples were also tested, and the samples were characterized by analysis of the scanning electron microscope and simultaneous thermo gravimetric/differential thermal.

  13. Comparative Analysis of Electromagnetic Response of PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT Composites

    NASA Astrophysics Data System (ADS)

    Plyushch, A. O.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ivanova, T.; Merijs-Meri, R.; Bitenieks, J.; Zicans, J.; Suslyaev, V. I.; Pletnev, M. A.

    2016-06-01

    The present paper focuses on electromagnetic response of polymeric composites with different concentrations of multiwall carbon nanotubes in the radio (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges. Widely available polymeric materials, such as PVA latex (polyvinyl acetate) and styrene-acrylic copolymer, were used as a matrix. Analysis of the experimental data demonstrated that in electromagnetic shielding applications one should give preference to the styrene-acrylic copolymer, as far as application of this matrix type allows reducing the percolation threshold in such composites. As a result, it allows reaching the necessary level of shielding at a lower filler concentration, while unique properties of the chosen polymer allow expanding the range of applications for the new materials.

  14. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.

    1992-01-01

    The present paper describes the application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to air craft wing type structures. The code performs a complete probabilistic structural analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of life of a wing type composite structure under different hygrothermal environments subjected to random pressure. The sensitivity of fatigue life to a number of critical structural/material variables is also computed from the analysis.

  15. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  16. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  17. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.

  18. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection.

    PubMed

    Zhao, Yan; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-01-15

    We report an ultrasensitive electrochemical immunosensor designed for the detection of protein biomarkers using horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes (SiO2-SPAABs) as labels. HRP could be efficiently and stably accommodated in the three-dimensional architecture of the SiO2-SPAABs and the SiO2-SPAABs-HRP exhibited high catalytic performance towards o-phenylenediamine (OPD) oxidation in the presence of H2O2, which resulted in significant differential pulse voltammetric (DPV) response change and color change. Using human IgG (HIgG) as a model analyte, a sandwich-type immunosensor was constructed. In particular, graphene oxide (GO) and SiO2-SPAABs-HRP were used to immobilize capture antibody (Ab1) and bind a layer of detection antibody (Ab2), respectively. The current biosensor exhibited a good linear response of HIgG from 100pg/mL to 100μg/mL with a detection limit of 50pg/mL (S/N=5). The sensitivity was 6.70-fold higher than the conventional enzyme-linked immunosorbent assays. The immunosensor results were validated through the detection of HIgG in serum samples. PMID:26342574

  19. Composition containing aerogel substrate loaded with tritium

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Ellefson, Robert E.; Gill, John T.; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  20. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. PMID:25597658

  1. Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Kang, Yuru; Wang, Aiqin

    2010-04-01

    A series of novel guar gum-g-poly(sodium acrylate-co-styrene)/muscovite (GG-g-P(NaA-co-St)/MVT) superabsorbent composites were prepared by free-radical grafting copolymerization of natural guar gum (GG), partially neutralized acrylic acid (NaA), styrene (St) and muscovite (MVT) using ammonium persulfate (APS) as the initiator and N,N-methylene-bis-acrylamide (MBA) as the crosslinker. Optical absorption spectra confirmed that NaA and St had been grafted onto the GG main chain and MVT participated in the polymerization reaction. The simultaneous introduction of St and MVT into the GG-g-PNaA matrix could clearly improve the surface morphologies of the composites, and MVT led to better dispersion in the polymeric matrix without agglomeration, as revealed by electron microscopy. The effects of St and MVT on the water absorption and swelling behavior in various saline solutions, aqueous solutions of hydrophilic organic solvents and surfactant solutions were investigated. Results indicated that the swelling rate and capabilities of the composites were markedly enhanced by the incorporation of the hydrophobic monomer St and inorganic MVT clay mineral. The superabsorbent composite showed a clearer deswelling characteristic in solutions of multivalent saline, acetone and ethanol, and cationic surfactant than that in the solutions of multivalent saline, methanol and anionic surfactant.

  2. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  3. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    PubMed

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  4. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, C. O.

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by

  5. Preparation of poly (styrene)-b-poly (acrylic acid)/γ-Fe 2O 3 composites

    NASA Astrophysics Data System (ADS)

    Zhang, L. D.; Liu, W. L.; Xiao, C. L.; Yao, J. S.; Fan, Z. P.; Sun, X. L.; Zhang, X.; Wang, L.; Wang, X. Q.

    2011-12-01

    The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified γ-Fe2O3, and subsequently the magnetic nanocomposite was achieved. The products were characterized by 1H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately.

  6. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.

    1987-01-01

    The objective of this program is to develop generic load models to simulate the composite load spectra (CLS) that are induced in space propulsion system components representative of the space shuttle main engines (SSME). These models are being developed through describing individual component loads with an appropriate mix of deterministic and state-of-the-art probabilistic models that are related to key generic variables. Combinations of the individual loads are used to synthesize the composite loads spectra. A second approach for developing the composite loads spectra load model simulation, the option portion of the contract will develop coupled models which combine the individual load models. Statistically varying coefficients of the physical models will be used to obtain the composite load spectra.

  7. Comparative failure load values of acrylic resin denture teeth bonded to three different heat cure denture base resins: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Dua, Amit; Dua, Mahima; Sehgal, Varun; Setya, Gaurav; Dhall, Rupinder Singh

    2016-01-01

    Aim and Objectives: Acrylic teeth are used for fabrication of dentures. Debonding of tooth – denture base bond is routine problem in dental practice. The aim of this study was to comparatively evaluate failure load of acrylic resin denture teeth bonded to three different heat resin. Materials and Methods: Four groups were created out of test samples central incisors (11). Group I: Control, whereas Group II, Group III and Group IV were experimental groups modified with diatoric hole, cingulum ledge lock and Teeth modified with both diatoric hole and cingulum ledge lock, respectively. These test specimens with 3 teeth (2 central [11, 21] and 1, lateral [12] incisors) positioned imitating arrangement of teeth in the conventional denture, prepared by three different heat cure materials (DPI, Trevalon, Acralyn-H). A shear load was applied at cingulum of central incisor (11) at 130° to its long axis using universal tester at a cross head speed of 5 mm/min until failure occurred. Failure load test was conducted and statistical analysis was performed using SPSS 16 software package (IBM Company, New York, U.S). Results: Highest failure load was seen in Group IV specimens, prepared by Trevalon but did not significantly differ from that of DPI. Conclusion: The failure load of bonding denture teeth to three different heat cure materials was notably affected by modifications of ridge lap before processing. The specimens with a combination of diatoric hole and cingulum ledge lock, prepared by Trevalon showed highest failure load but did not significantly vary from that of DPI. The control group prepared by Acralyn-H showed lowest failure load but did not significantly differ from that of DPI. PMID:27195221

  8. Acrylic resin-fiber composite--Part I: The effect of fiber concentration on fracture resistance.

    PubMed

    Vallittu, P K; Lassila, V P; Lappalainen, R

    1994-06-01

    This study tested the effect on the fracture resistance of acrylic resin test specimens when different amounts of fibers were incorporated in the resin matrix. The fibers used included glass, carbon, and aramid fibers, with 30 test specimens of each concentration of fibers. Transverse sections of the specimens were studied by scanning electron microscope to establish how the fibers behave in the polymerization process. The results indicated that an increase in the amount of fibers enhanced the fracture resistance of the test specimens (p < 0.001). The SEM micrographs of transverse sections of test polymerized specimens revealed void spaces of different sizes inside the fiber roving. PMID:8040825

  9. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    PubMed

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  10. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  11. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  12. Progression of damage and fracture in composites under dynamic loading

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Murthy, Pappu L. N.; Chamis, Christos C.

    1990-01-01

    A new computational simulation method is presented to evaluate the dynamic aspects of composite structural response and durability that have not been simulated previously. Composite structural behavior under any loading condition, geometry, composite system, laminate configuration, and boundary conditions can now be simulated. Structural degradation, delamination, fracture, and damage propagation are included in the simulation. An angle-plied composite plate structure under normal impact loading is used as an example to demonstrate the versatility of the simulation method.

  13. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being

  14. Delaminations in composite plates under impact loads

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1991-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to non-penetrating (low velocity) impact of a solid object. The plate may be simply supported, clamped, or free along its edges. A failure model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were then implemented by a computer code (IMPACT-ST) which can be used to estimate the damage initiation load and the locations, shapes, and sizes of the delaminations. Tests were performed measuring the geometries of the delaminations in graphite-epoxy, graphite-toughened epoxy, and graphite-PEEK plates impacted by a projectile with a spherical tip having masses ranging from 0.355 lbm to 0.963 lbm and velocities from 50 in/sec to 225 in/sec. The data were compared to the results of the model, and good agreements were found between the measured and the calculated delamination lengths and widths.

  15. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  16. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  17. Synthesis and characterization of poly(methyl methacrylate-butyl acrylate)/nano-titanium oxide composite particles.

    PubMed

    Guo, Gang; Yu, Jie; Luo, Zhu; Zhou, LiangXue; Liang, Hang; Luo, Feng; Qian, ZhiYong

    2011-06-01

    Poly(methyl methacrylate-butyl acrylate) [P(MMA-BA)]/nanosized titanium oxide (nano-TiO2) composite particles were prepared via insitu emulsion polymerization of MMA and BA in presence of nano-TiO2 particles. Before polymerization, the nano-TiO2 particles were modified by coupling agent. The structure and thermal properties of the obtained P(MMA-BA)/nano-TiO2 composite particles were characterized by Fourier transform infrared spectra (FTIR), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). The results showed that there are covalent bond bindings between P(MMA-BA) and nano-TiO2 particles, meaning that P(MMA-BA) and nano-TiO2 particles were not simply blended or mixed up and that there is a strong interaction between P(MMA-BA) and nano-TiO2 particles. TGA and DSC measurements indicated an enhancement of thermal stability. Transmission electron microscopy (TEM) results showed that P(MMA-BA) enhanced the dispersibility of nano-TiO2 particles. The dispersion stabilization of modified nano-TiO2 particles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nano-particles. PMID:21770123

  18. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    A description is presented of the test techniques which have been used to apply sustained uniaxial tensile loading to fiber/epoxy composites. The fiber types used include S-glass, aramid, graphite, and beryllium wire. The applied load vs lifetime data for four composite materials are presented in graphs. Attention is given to a statistical analysis of data, a performance comparison of various composites, the age effect on the strength of composites, the applicability of the lifetime data to complex composites, and aspects of accelerated test method development. It is found that the lifetime of a composite under a sustained load varies widely. Depending on the composite system, the minimum life typically differs from the maximum life by a factor of 100 to 1000. It is in this connection recommended that a use of average life data should be avoided in serious design calculations.

  19. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    NASA Astrophysics Data System (ADS)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  20. Behavior of grid-stiffened composite structures under transverse loading

    NASA Astrophysics Data System (ADS)

    Gan, Changsheng

    The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary

  1. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  2. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  3. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  4. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    PubMed

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one. PMID:11074433

  5. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  6. Detail of first floor of loading dock showing composition tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of first floor of loading dock showing composition tile over wood floor/basement ceiling - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  7. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  8. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  9. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. PMID:24268266

  10. Culture-Loaded Expressions in Korean EFL Students' Compositions.

    ERIC Educational Resources Information Center

    Choe, Yongjae Paul

    2001-01-01

    Discusses the inevitability of native culture-loaded expressions in Korean English-as-a-Foreign-Language students' compositions. Cultures, both native and target play a major role in forming ideas in any communicative situation. Thus, Korean EFL students' compositions all reveal without exception the traits of Korean culture. (Author/VWL)

  11. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  13. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  14. Numerical optimization of composite hip endoprostheses under different loading conditions

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  15. Strength of composite laminates under biaxial loads

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Soden, P. D.; Kaddour, A. S.

    1996-05-01

    Five well known failure criteria and one simple progressive model have been used in conjunction with laminate theory, which allows for nonlinear lamina shear behaviour, to predict the initial and final failure strengths of filament wound composite tubes. The predictions have been compared with experimental leakage and fracture stresses for ±75°, ±55° and ±45° filament wound GRP tubes subjected to a wide range of biaxial stress systems including biaxial compression. In some cases the fracture strengths were a factor of 10 higher than the initial failure predictions. The simple progressive failure theory predictions gave the best agreement with the experimental results.

  16. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    NASA Astrophysics Data System (ADS)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  17. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement

    PubMed Central

    Wendling, A.; Mar, D.; Wischmeier, N.; Anderson, D.

    2016-01-01

    Objectives The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. A-priori t-tests and univariate ANOVAs were used to compare elution and mechanical test results between the two mix groups and the control group. Results The delayed technique showed a significant increase in elution on day one compared with the standard mix technique (p < 0.001). The transition point from Phase I to Phase II occurred on day ten. LFUS treatments significantly increased elution amounts for all groups above control. Delayed technique resulted in significantly higher elution amounts for the five-minute- (p = 0.004) and 45-minute- (p < 0.001) duration groups compared with standard technique. Additionally, the correlations between LFUS duration and total elution amount for both mix techniques were significant (p = 0.03). Both antibiotic-impregnated groups exhibited a significant decrease in offset yield stress compared with the control group (p < 0.001), however, their lower 95% confidence intervals were all above the 70 MPa limit defined by International Standards Organization (ISO) 5833-2 reference standard for acrylic bone cement. Conclusion The combination of a delayed mix technique with LFUS treatments

  18. Coupled composite rotor blades under bending and torsional loads

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh; Chopra, Inderjit

    This paper presents an analytical-cum-experimental study of the structural response of composite rotor blades with elastic couplings. Vlasov theory is expanded to analyze two-cell composite rotor blades made out of general composite laminates including the transverse shear deformation of the cross-section. In order to validate this analysis, two-cell graphite-epoxy composite blades with bending-torsion coupling were fabricated using matched-die molding technique. These blades were tested under tip bending and torsional loads, and their structural response in terms of bending slope and twist was measured with a laser optical system. Good correlation between theory and experiment is achieved.

  19. Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.

    1997-01-01

    New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation

  20. Thermoelastic determination of individual stress components in loaded composites

    SciTech Connect

    Feng, Z.; Zhang, D.; Rowlands, R.E.; Sandor, B.I. Detroit Diesel Co., MI Wisconsin, University, Madison )

    1992-06-01

    An experimental-numerical hybrid method is developed for determining the individual stresses in orthotropic composites from measured thermoelastic information. This includes evaluating the thermoelastic calibration coefficients, effective processing of the noisy measured data, and separating the stress components at nonboundary locations. The method is illustrated experimentally by application to a uniaxially loaded fiber-reinforced composite plate containing a central circular hole. 39 refs.

  1. Loading rate sensitivity of open hole composites in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, Steve J.; Guynn, E. G.; Elber, Wolf; Whitcomb, J. D.

    1988-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  2. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  3. Alignment and Load Transfer in Carbon Nanotube and Dicyclopentadiene Composites

    NASA Astrophysics Data System (ADS)

    Severino, Joseph Vincent

    Individual carbon nanotubes (CNTs) are the strongest materials available but their macroscopic assemblies are weak. This work establishes a new thermosetting dicyclopentadiene (DCPD) and CNT composite that increases the strength of CNT assemblies. These high volume fraction and void free structures constitute advanced materials that could one day replace traditional composite systems. To further the understanding of physical interactions between polymer and CNTs, a novel "capstan" load transfer mechanism is also introduced. Self-supporting assemblies of interconnected carbon nanotubes were stretched, twisted and compressed to fashion composites by the infusion and polymerization of low viscosity DCPD based monomeric resins. The properties of the CNTs, polymer and composite were characterized with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA) and Raman spectroscopy. The microstructure was analyzed by wide angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sheets were drawn at 15 m/min from a growth furnace to impart alignment then stretched to further modify alignment. The mechanical properties were determined in five orientations with respect to the growth direction. The strength was nearly three times higher along this growth direction than it was perpendicular, and modulus was nearly six times higher. Transverse stretching achieved 1.5 times the elongation but alignment was inferior due to CNT kinking that prevented alignment and consolidation. Composites yarns and sheets were investigated for the mechanical properties, microstructure and load transfer. The DCPD resin was found to wet the CNTs and lubricated deformation. This reduced loads during processing, and curing solidified the aligned and consolidated structure. The stretched and twisted composite yarns increased the failure stress 51%. In aligned composite sheet, the failure stress increased 200%. The increased stresses

  4. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    NASA Astrophysics Data System (ADS)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  5. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  6. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Poland, Laura E; Meyer III, Harry M

    2013-01-01

    The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing. The thermal history during the cure was also recorded. It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface, leading to a high level of adhesion strength, which was not the case for electron beam curing. The thermal history during the cure appeared to be a determining parameter for the level of performance of composites cured by electron beam.

  7. Evaluation of flawed composite structure under static and cyclic loading

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1977-01-01

    This paper presents the results of a program investigating the effects of initial defects on the fatigue and fracture response of composite laminates. The structural laminates investigated were a typical angle-ply laminate, a polar/hoop-wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full- and half-penetration circular holes, full- and half-penetration slits, and countersink holes. Results are presented showing the effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength. The results of inspection procedures are shown, describing the effect of cyclic and static loadings on damage propagation in composite laminates. The data in this study were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  8. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    SciTech Connect

    Maddocks, J.R.

    1995-05-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to {minus}184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool.

  9. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1986-01-01

    A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.

  10. Cumulative creep damage for unidirectional composites under step loading

    NASA Astrophysics Data System (ADS)

    Guedes, Rui Miranda

    2012-11-01

    The creep lifetime prediction of unidirectional composite materials under step loading, based on constant loading durability diagram, is analyzed for the two-step creep loading condition. For this purpose different nonlinear cumulative-damage laws are revisited and applied to predict creep lifetime. One possible approach to accounting for damage accumulation is provided by the continuum-damage mechanics (CDM). However, the CDM lifetime expression obtained for constant loading condition presents some drawbacks. Specifically, the upper stress range is not accommodated by CDM form. A modification of CDM is proposed, forcing the CDM to capture the short-term creep failure. It is proven that this modified CDM (MCDM) does not yield the same predictions as the Linear Cumulative-damage law (Miner's law). Predictions obtained from the nonlinear cumulative-damage laws are compared against synthetic lifetime generated by a micromechanical model that simulates unidirectional composites under two-step creep loading condition. Comparable deviations from Miner's law are obtained by the nonlinear cumulative-damage laws.

  11. Load Characteristics of Induction Motor Manufactured by Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Fukuda, Tomohiro; Sasaki, Yutaka; Morimoto, Masayuki

    The load characteristics of induction motor manufactured by soft magnetic composite (SMC) are presented. We manufactured three kinds of induction motors experimentally. One is a conventional laminated iron core motor. The others are SMC motors. One of the SMC motor uses SMC only for stator, while the other SMC motor uses SMC for stator and rotor. The experimental comparisons of load characteristics and loss analysis are shown. As a result, the difference between the efficiency of the SMC motor and the conventional laminated motor is 4.6%, in spite of the permeability of SMC being 20% lower than the conventional electromagnetic steel.

  12. Prediction of microcracking in composite laminates under thermomechanical loading

    SciTech Connect

    Maddocks, J.R.; Mcmanus, H.L.

    1995-01-01

    Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.

  13. Micromechanical design of hierarchical composites using global load sharing theory

    NASA Astrophysics Data System (ADS)

    Rajan, V. P.; Curtin, W. A.

    2016-05-01

    Hierarchical composites, embodied by natural materials ranging from bone to bamboo, may offer combinations of material properties inaccessible to conventional composites. Using global load sharing (GLS) theory, a well-established micromechanics model for composites, we develop accurate numerical and analytical predictions for the strength and toughness of hierarchical composites with arbitrary fiber geometries, fiber strengths, interface properties, and number of hierarchical levels, N. The model demonstrates that two key material properties at each hierarchical level-a characteristic strength and a characteristic fiber length-control the scalings of composite properties. One crucial finding is that short- and long-fiber composites behave radically differently. Long-fiber composites are significantly stronger than short-fiber composites, by a factor of 2N or more; they are also significantly tougher because their fiber breaks are bridged by smaller-scale fibers that dissipate additional energy. Indeed, an "infinite" fiber length appears to be optimal in hierarchical composites. However, at the highest level of the composite, long fibers localize on planes of pre-existing damage, and thus short fibers must be employed instead to achieve notch sensitivity and damage tolerance. We conclude by providing simple guidelines for microstructural design of hierarchical composites, including the selection of N, the fiber lengths, the ratio of length scales at successive hierarchical levels, the fiber volume fractions, and the desired properties of the smallest-scale reinforcement. Our model enables superior hierarchical composites to be designed in a rational way, without resorting either to numerical simulation or trial-and-error-based experimentation.

  14. Analysis of delamination growth in compressively loaded composite laminates

    NASA Astrophysics Data System (ADS)

    Tratt, Matthew D.

    The present analytical and empirical study of composite structure delamination has attempted to predict the threshold stress for the initiation of delamination growth in compressively loaded composite laminates. The strain-energy release-rate distributions around circular delaminations are computed via MSC/NASTRAN analysis in conjunction with a virtual crack-opening technique. Static compression tests were conducted on specimens of graphite fiber-reinforced epoxy having circular delaminations of various sizes. Computed delamination growth threshold-stress prediction results were at substantial variance with the test data, but confirmed trends and gave qualitative insight into quasi-static delamination growth.

  15. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  16. Load sequence effects on the fatigue of unnotched composite materials

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1981-01-01

    A more comprehensive version of an earlier fatigue and residual strength degradation model is proposed to predict the effect of load sequence on the statistical fatigue behavior of composite laminates. The model, which reduces to various fatigue models proposed in the literature by means of approximations, is verified by a survey of experiments on glass/epoxy laminates. It is shown that the correlation between the model and the test results under dual stress levels is reasonable, and that a simplified version of the model is verified by experiments on graphite/epoxy laminates in which the correlation between theoretical predictions and results under dual stress levels is satisfactory. The model is also shown capable of predicting the effect of proof loads on the fatigue behavior of composite materials.

  17. Response of composite plates subjected to acoustic loading

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.

    1989-01-01

    The objectives of the project were to investigate numerical methodology for the determination of narrowband response in the geometrically nonlinear regime, to determine response characteristics for geometrically nonlinear plates subjected to random loading and to compare the predictions with experiments to be performed at NASA-Langley. The first two objectives were met. The response of composite plates subjected to both narrowband and broadband excitation were studied and the results are presented and discussed.

  18. End Effects and Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2002-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  19. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  20. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  1. Solid freeform fabrication of highly loaded composite materials

    NASA Astrophysics Data System (ADS)

    Souvignier, Chad William

    Composites are known for their unique blend of modulus, strength, and toughness. This study focuses on two types of composites; organic-inorganic hybrids and the mineralization of highly swollen polymer gels. Both of these composite systems mimic the biological process of composite formation, known as biomineralization. Biomineralization allows for the control of the precipitating phase through an interaction with the organic matrix. This allows higher volume fractions of inorganic material than can be achieved by many traditional processing techniques. Solid freeform fabrication is a processing method that builds materials by the sequential addition of thin layers. As long as the material can easily be converted from a liquid to a solid, it should be amenable for this processing technique. Freeform fabrication has three distinctions from traditional processing techniques that may enable the formation of composite materials with improved mechanical properties. These are the sequential addition of layers, which allows a layer by layer influence of chemistry, the ability to form complex geometries, and finally, extrusion freeform fabrication has been shown to align fibers due to the extrusion of the slurry through a needle. Cracking and shrinkage still play a major role in forming solid parts. The use of an open mesh structure in combination with proper materials selection allowed the formation of highly loaded composite materials without cracking. The modulus values of these materials ranged from 0.1 GPa to 6.0 GPa. The mechanical properties of these materials were modeled.

  2. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    Results are presented for a study intended to summarize lifetime data on several fiber/epoxy composite materials subjected to sustained uniaxial tensile loading, to report preliminary results of an accelerated test method for predicting the life of simple composites, and to describe related work in progress on pressure vessels and other filament-wound structures. The lifetime performance of the tested composites was compared by plotting the percent of ultimate strength (applied fiber stress normalized with respect to fiber failure stress in a composite) versus lifetime. In terms of performance in long-term tensile applications, the tested composites are ranked in the following order: graphite/epoxy, Be wire/epoxy, Aramid/epoxy, and S-glass/epoxy. The accelerated test using temperature and stress to simulate the passage of time proves to be encouraging, at least in the case of the Aramid/epoxy composite. The potential of a statistical analysis based on Weibull distribution analyses or a power law relationship is demonstrated.

  3. Optimization of Sandwich Composites Fuselages Under Flight Loads

    NASA Astrophysics Data System (ADS)

    Yuan, Chongxin; Bergsma, Otto; Koussios, Sotiris; Zu, Lei; Beukers, Adriaan

    2012-02-01

    The sandwich composites fuselages appear to be a promising choice for the future aircrafts because of their structural efficiency and functional integration advantages. However, the design of sandwich composites is more complex than other structures because of many involved variables. In this paper, the fuselage is designed as a sandwich composites cylinder, and its structural optimization using the finite element method (FEM) is outlined to obtain the minimum weight. The constraints include structural stability and the composites failure criteria. In order to get a verification baseline for the FEM analysis, the stability of sandwich structures is studied and the optimal design is performed based on the analytical formulae. Then, the predicted buckling loads and the optimization results obtained from a FEM model are compared with that from the analytical formulas, and a good agreement is achieved. A detailed parametric optimal design for the sandwich composites cylinder is conducted. The optimization method used here includes two steps: the minimization of the layer thickness followed by tailoring of the fiber orientation. The factors comprise layer number, fiber orientation, core thickness, frame dimension and spacing. Results show that the two-step optimization is an effective method for the sandwich composites and the foam sandwich cylinder with core thickness of 5 mm and frame pitch of 0.5 m exhibits the minimum weight.

  4. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  5. One-Pot Synthesis of Hydrophilic Superparamagnetic Fe3O4/Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization.

    PubMed

    Ma, Shaohua; Lan, Fang; Yang, Qi; Xie, Liqin; Wu, Yao; Gu, Zhongwei

    2015-01-01

    Uniform superparamagnetic Fe3O4/poly(methyl methacrylate-acrylic acid) (P(MMA-AA)) composite nanoparticles with high saturation magnetization and good hydrophilicity were successfully and directly synthesized via a facile one-pot miniemulsion polymerization approach. The mixture of the ferrofluids, MMA and AA monomers, surfactants and initiator was co-sonicated and emulsified to prepare stable miniemulsion for polymerization. The as-prepared products were characterized by SEM, TEM, FT-IR, XRD, TGA and VSM. The results of SEM indicated that the morphology of the Fe3O4/P(MMA-AA) composite nanoparticles all assumed near spherical geometry with diameters about 60 nm, 60 nm, and 100 nm respectively corresponding to the weight ratios of Fe3O4 to MMA and AA at 1:8, 1:4, and 1:2. The TEM images implied that the Fe3O4/P(MMA-AA) composite nanoparticles showed a perfect core-shell structure with a polymeric shell of about 2 nm thickness and a core encapsulating uniform and close packed Fe3O4 nanoparticles. TGA and VSM showed that the Fe3O4/P(MMA-AA) composite nanoparticles with a maximum saturation magnetization up to 45 emu g(-1) corresponding to the magnetite content of 78% exhibited superparamagntism. The hydrophilic modification and the high saturation magnetization impart a promising potential for biomedical applications to the as-synthesized composite nanoparticles. PMID:26328359

  6. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel.

    PubMed

    Dong, Yixiao; Hassan, Waqar; Zheng, Yu; Saeed, Aram Omer; Cao, Hongliang; Tai, Hongyun; Pandit, Abhay; Wang, Wenxin

    2012-01-01

    Thermoresponsive polymers have been widely used for in situ formed hydrogels in drug delivery and tissue engineering as they are easy to handle and their shape can easily conform to tissue defects. However, non-covalent bonding and mechanical weakness of these hydrogels limit their applications. In this study, a physically and chemically in situ cross-linkable hydrogel system was developed from a novel thermoresponsive hyperbranched PEG based copolymer with multi acrylate functionality, which was synthesized via an 'one pot and one step' in situ deactivation enhanced atom transfer radical co-polymerization of poly(ethylene glycol) diacrylate (PEGDA, M(n) = 258 g mol(-1)), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M(n )= 475 g mol(-1)) and (2-methoxyethoxy) ethyl methacrylate (MEO(2)MA). This hyperbranched copolymer was tailored to have the lower critical solution temperature to form physical gelation around 37°C. Meanwhile, with high level of acrylate functionalities, a chemically cross-linked gel was formed from this copolymer using thiol functional cross-linker of pentaerythritol tetrakis (3-mercaptopropionate) (QT) via thiol-ene Michael addition reaction. Furthermore, a semi-interpenetrated polymer networks (semi-IPN) structure was developed by combining this polymer with hyaluronic acid (HA), leading to an in situ cross-linkable hydrogel with significantly increased porosity, enhanced swelling behavior and improved cell adhesion and viability both in 2D and 3D cell culture models. PMID:22143908

  7. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  8. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  9. Assessment of Composite Delamination Self-Healing Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    2009-01-01

    Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.

  10. Testing and simulation of composite laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  11. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  12. Thick-walled composite tubes under mechanical and hygrothermal loading

    NASA Astrophysics Data System (ADS)

    Wuetrich, C.

    1992-11-01

    The stresses in long thick-walled composite tubes were determined analytically for loading by internal and external pressure, longitudinal forces and twisting moments. Effects of thermal and hygrothermal expansion were also treated. The solution is restricted to tubes built up from one or more layers with macroscopically orthotropic properties. Such layers may be produced, for example, by filament winding or winding of textile reinforcements. It was shown how the elastic and hygrothermal parameters of the macroscopically orthotropic materials may be calculated by homogenization of the properties of uniaxially reinforced materials.

  13. Characterization of Composites Response at High Rates of Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2002-01-01

    The objective of the proposed research is to experimentally study the effect of strain rate on mechanical response (deformation and failure) carbon fiber/epoxy matrix composites. The experimental data provide the information needed for the development of a nonlinear, rate dependent deformation and strength models that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Two types of epoxy were tested each in tension and shear at various strain rate that ranges from 5x10(exp -5), to 700/s. The results show that both the strain rate and the mode of loading affect the epoxy response.

  14. Dynamic properties of a shock loaded tungsten composite

    NASA Astrophysics Data System (ADS)

    Holt, W. H.; Wilson, L. T.; Mock, W.; Simpson, B.

    2000-04-01

    Disks of a 90% tungsten, 9% nickel, 1% cobalt composite have been shock loaded in momentum trapping assemblies using a 40 mm bore gas gun, and recovered in water bags. The specimen disks were 30.5 mm in diameter and 7.2 mm thick. The larger-diameter impactor disks had the same composition. Impact speeds for the three experiments were 0.073, 0.148, and 0.405 km/sec, respectively. The specimen disks were shocked and recovered without fracture only for the two lower impact speeds. Portions of the recovered material for these experiments were machined into specimens for Hopkinson bar measurements. These measurements indicated minor differences in the constitutive response of the shocked and "as received" material.

  15. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  16. Innovative Manufacturing of Carbon Nanotube-Loaded Fibrillar Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lin, R. J. T.; Bhattacharyya, D.; Fakirov, S.

    The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.

  17. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  18. Multi-objective/loading optimization for rotating composite flexbeams

    NASA Technical Reports Server (NTRS)

    Hamilton, Brian K.; Peters, James R.

    1989-01-01

    With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.

  19. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  20. Buckling and Damage Resistance of Transversely-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Wardle, Brian L.

    1998-01-01

    Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into

  1. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  2. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  3. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  4. Composite Vessels for Containment of Extreme Blast Loadings

    SciTech Connect

    Pastrnak, J; Henning, C; Grundler, W; Switzer, V; Hollaway, R; Morrison, J; Hagler, L; Kokko, E; Deteresa, S; Hathcoat, B; Dalder, E

    2004-07-15

    A worldwide trend for explosives testing has been to replace open-air detonations with containment vessels, especially when any hazardous materials are involved. As part of the National Nuclear Security Administration's (NNSA) effort to ensure the safety and reliability of the nation's nuclear stockpile, researchers at Lawrence Livermore National Laboratory have been developing a high performance filament wound composite firing vessel that is nearly radiographically transparent. It was intended to contain a limited number of detonations of metal cased explosive assemblies in radiographic facilities such as the Advanced Hydrodynamic Facility (AHF) being studied by Los Alamos National Laboratory. A 2-meter diameter pressure vessel was designed to contain up to 35 kg (80 lb) of TNT equivalent explosive without leakage. Over the past 5 years a total of three half-scale (1 meter diameter) vessels have been constructed, and two of them were tested to 150% load with 8.2 kg (18-pound) spheres of C4 explosive. The low density and high specific strength advantages used in this composite vessel design may have other additional applications such as transporting sensitive explosives that could otherwise be moved only in very small quantities. Also, it could be used for highly portable, explosive containment systems for law enforcement.

  5. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  6. Response of marine composites subjected to near field blast loading

    NASA Astrophysics Data System (ADS)

    LiVolsi, Frank

    Experimental studies were performed to understand the explosive response of composite panels when exposed to near-field explosive loading in different environments. The panel construction under consideration was an E-glass fiber-reinforced composite laminate infused with vinyl ester resin (Derakane 8084). The panel was layered bi-axially with plain-woven fiber orientations at 0° and 90°. Panel dimensions were approximately 203 mm x 203 mm x 1 mm (8 in x 8 in x 0.04 in). Experiments were carried out with the panel fully clamped in a holding fixture, which was in turn fastened inside a water tank. The fixture was fastened in such a way as to allow for explosive loading experiments in the following environments: water submersion with water backing, water submersion with air backing, and air immersion with air backing. Experiments were performed in room temperature conditions, and additional experiments in the submerged environments were also performed at high and low water temperatures of 40°C and 0°C, respectively. A stereo Digital Image Correlation (DIC) system was employed to capture the full-field dynamic behavior of the panel during the explosive event. Results indicated that the immersion environment contributes significantly to the blast response of the material and to the specimens' appreciable damage characteristics. The water submersion with air backing environment was found to encourage the greatest panel center point deflection and the most significant damage mechanisms around the boundary. The air immersion with air backing environment was found to encourage less center point deflection and exhibited significant impact damage from the explosive capsule. The water submersion with water backing environment encouraged the least panel deflection and minimal interlaminate damage around the panel boundary and center. Water temperature was found to influence the panel center point deflection, but not damage mechanisms. Maximum positive center point

  7. Development of highly-filled, bioactive acrylic-based composite bone cements for orthopedic and craniofacial surgery: Tuning of material properties after incorporation of calcium phosphate and antimicrobial fillers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Lucas Carlos

    Bone cements are used in a variety of healthcare specialties ranging from orthopedics to dentistry to craniofacial surgery to spinal disc reconstruction. These materials need characteristics which mimic their surrounding tissues. Currently available materials have struggled to maintain these necessary characteristics. Poly (methyl methacrylate) is a very high strength bio-inert polymer which has been utilized in healthcare since the 1940's. Calcium phosphate cements are well established as being bone mimicking, but cannot sustain the compressive loads in a weight bearing application. This study sought to solve the problem of currently available bone cements by filling calcium phosphates and antimicrobials into an acrylic polymer matrix. The intended outcome was a material capable of retaining high mechanical stability from the acrylic polymer phase, while becoming sufficiently bone mimicking and antimicrobial. This thesis work presented, characterizes the material properties of the developed materials and eventually isolates a material of interest for future studies.

  8. UV curing of nanoparticle reinforced acrylates

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Flyunt, R.; Czihal, K.; Ernst, H.; Naumov, S.; Buchmeiser, M. R.

    2007-12-01

    To improve the surface hardness of radiation cured acrylate coatings, both silica nanoparticles and alumina particles with a few microns in size have been embedded into acrylate formulations. Regular mixing of nanoparticles into acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification of nanoparticles using trialkoxysilanes, which provide an interface between the two dissimilar materials. Nanoparticles modified by methacryloxypropyltrimethoxysilane (MEMO) and vinyltrimethoxysilane (VTMO), both having polymerisation-active groups, may be crosslinked with the acrylate resin. UV curing of the nanocomposites revealed an unexpected lower reactivity of the vinyl groups of VTMO modified silica compared to MEMO grafted on silica. For VTMO modification, DFT calculations showed a decrease of Mulliken atomic charge for the olefinic carbons pointing to a lower reactivity. For UV cured nano/microhybrid composites, a significant improvement of abrasion resistance was obtained.

  9. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    NASA Astrophysics Data System (ADS)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  10. LDEXPT, an intelligent database system for the Composite Load Spectra project

    NASA Technical Reports Server (NTRS)

    Ho, H.; Newell, J. F.; Hopkins, D.; Chamis, C. C.

    1990-01-01

    The Composite Load Spectra project develops probabilistic models to simulate the probabilistic loads for selected components of a generic space propulsion system. Tremendous information such as engine load variables and their distributions is needed by the simulation program. An intelligent data base system was constructed and integrated with the probabilistic load simulation program to manage and maintain the knowledge base of the Composite Load Spectra project. The intelligent data base system takes care of the data retrieval and storage functions and has expert knowledge on engine load models and associated engine variables. The integration of the intelligent data base into the load simulation program achieves a smooth coupling between the numeric processing (load simulation calculation) and the symbolic processing (intelligent load information management).

  11. Thermal loading in the laser holography nondestructive testing of a composite structure

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Kurtz, R. L.

    1975-01-01

    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material.

  12. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    NASA Astrophysics Data System (ADS)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  13. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  14. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  15. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGESBeta

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  16. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  17. Effect of a silane coupling agent on the optical and the mechanical characteristics of nanodiamond/acrylic resin composites

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Gun; Chun, Yoon-Soo; Lim, Dae-Soon; Kim, Jung Youl

    2014-10-01

    Nanodiamond (ND) is a good candidate for a filler material to fabricate transparent films. This study explores a characterization of the optical and the mechanical properties of ND dispersed polymer films. An attrition milling method was adapted to break ND aggregates, and a silane coupling agent (3-methacryloxypropyltrimethoxysilane) was used to modify the ND surfaces and stabilize the dispersion. Dipentaerylthritol hexaacrylate and pentaerythritol tetraacrylate were used in the polymer matrix, and up to 3 wt.% of ND was added to improve the mechanical properties. Fabricated composites were analyzed and tested using UV-visible spectroscopy for the optical properties and a Micro-Vickers hardness tester and ball-on-disktype friction tester for the mechanical properties. Results show that the transmittance of the ND-added composite increased with decreasing aggregate size. Through the addition of small amounts of NDs, the mechanical properties were greatly improved, the material became 3.5 times as hard, and the wear rate were greatly decreased. Possible mechanisms responsible for the enhancement of the mechanical and the optical properties are discussed.

  18. Injectable, high modulus, and fatigue resistant composite scaffold for load-bearing soft tissue regeneration.

    PubMed

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2013-12-01

    High modulus, two-phase, bicontinuous scaffolds were prepared by photocross-linking an aqueous suspension of chondrocytes and N-methacrylate glycol chitosan with a hydrolyzable, hydrophobic, acrylated star-copolymer. Two acrylated star-copolymers were examined: poly(ε-caprolactone-co-d,l-lactide) (5446DLLACL) and poly(ε-caprolactone-co-trimethylene carbonate) (7030TMCCL). The scaffolds were assessed for injectability, two-phase interconnectivity, fatigue resistance, and long-term static culture behavior. The 7030TMCCL scaffolds demonstrated decreased moduli of 17% after 1 × 10(6) cycles at 30% strain and 5% after 56 days in culture, compared to the 5446DLLACL scaffolds, which exhibited decreases of 58 and 68%, respectively. The 7030TMCCL scaffolds accumulated more extracellular matrix after 56 days of culture (GAG: 20.1 ± 1, collagen: 35.5 ± 1.8 μg) compared to 5446DLLACL scaffolds (GAG: 13.2 ± 0.6, collagen: 6.2 ± 3.4 μg). Overall, the 7030TMCCL-based scaffolds were shown to be better suited for use as a load bearing soft tissue scaffold. PMID:24147621

  19. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  20. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  1. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Everleigh, Carl A.; Moorhead, Arthur J.

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  2. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  3. Delaminations in composite plates under transverse static loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.

    1992-01-01

    Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.

  4. Deformation and failure of transversely loaded composite plates

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Wooh, S. C.

    1985-01-01

    Quasi-isotropic graphite/epoxy clamped circular plates were loaded under control point loading. Deflections and strains at various locations were monitored up to failure. Various damage mechanisms, such as intralaminar matrix cracking, delaminations and fiber breaks, are correlated with the strain records. The damage at various stages of deformation was characterized by means of X-radiography. Results are compared with an approximate isotropic plate theory.

  5. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  6. The acrylic jacket crown.

    PubMed

    Bell, A M

    1975-04-01

    An attempt has been made to cover briefly the many applications of the acrylic jacket crown. It is readily understandable that this type of restoration has many shortcomings but at the same time it has many useful and important applications in dentistry when properly employed. It is hoped that the specialist and generalist alike will have found some new and useful applications of the acrylic jacket crown. PMID:1090464

  7. Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures

    PubMed Central

    Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.

    2008-01-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  8. Effects of simulated functional loading conditions on dentin, composite, and laminate structures.

    PubMed

    Walker, Mary P; Teitelbaum, Heather K; Eick, J David; Williams, Karen B

    2009-02-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Because mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. This investigation utilized relevant parameters (specimen size, loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite "laminate" structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  9. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  10. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates. PMID:26367207

  11. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  12. Optimal overlap length in staggered architecture composites under dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun; Miklavcic, Milan

    2013-01-01

    Hybrid staggered architecture composites, like nacre and bone, are known for two discernible aspects: superior strength and synergistic toughness. What is lacking is the scientific rationale proving suitability of these materials under impact/time dependent loading. The current investigation aims to address the structure-property correlationship of these materials by development of an analytical model under dynamic rates of loading. Existing literature studies address behavior of staggered materials under quasi-static loading conditions. Critical overlap length was computed for three natural composites-nacre, spider-silk and, collagen in bone/tendon, and showed reasonable agreement with experimental data. Applicability of the analytical approach to predict lap-joint strength has been briefly discussed and quantified against experimental data. Choice of nanometer sized building blocks in natural composites has been addressed and explained from shear transfer efficiency point of view. The potentiality of these composites for use as biomimetic protective material under impact loading has been addressed as well.

  13. Deformation and damage of composite plates under impact loading

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Wooh, S. C.

    1986-01-01

    Transient deformation and damage were studied in impacted graphite/epoxy plates. The plates were 8-ply and 16-ply quasi-isotropic laminates clamped around a 12.7 cm diameter circumference. They were instrumented with surface and embedded strain gages and loaded by a 202 gr mass dropped from a height of 1.8 m. The load history and imparted energy were obtained by means of an accelerometer attached to the impactor. Transient strains at various locations through the thickness and at various distances from the loading point were obtained. The characteristic features of the strain records are associated with specific failure modes in the laminate. The deformation history was also correlated with the induced damage as detected by X-radiography and ultrasonics. Impact damage is more extensive in the thicker laminate. Damage takes the form of delaminated strips parallel to the fiber direction in each ply and increasing in length from top to bottom.

  14. Assessment of particulate cellulose epoxy composites manufactured by JMFIL under impact load

    NASA Astrophysics Data System (ADS)

    Srinivasababu, Nadendla

    2015-08-01

    Increase in environmental concern towards sustainable development invites the development of new materials which are eco-friendly to satisfy various engineering needs. The present work introduces a new manufacturing method i.e. "Just Mold Fill and Immediate Loading" to prepare epoxy composites reinforced at different contents of particulate cellulose. The fabricated composites specimens are post processed and machined, tested as per ASTM procedures under impact load.

  15. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  16. Modeling of failure and response to laminated composites subjected to in-plane loads

    NASA Technical Reports Server (NTRS)

    Shahid, Iqbal; Chang, Fu-Kuo

    1993-01-01

    An analytical model was developed for predicting the response of laminated composites with or without a cutout and subjected to in-plane tensile and shear loads. Material damage resulting from the loads in terms of matrix cracking, fiber-matrix shearing, and fiber breakage was considered in the model. Delamination, an out-of-plane failure mode, was excluded from the model.

  17. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    PubMed

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials. PMID:27106158

  18. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, James F.; Ho, Hing W.

    1991-01-01

    This report summarizes the development for: (1) correlation fields; (2) applications to liquid oxygen post; (3) models for pressure fluctuatios and vibration loads fluctuations; (4) additions to expert systems; and (5) scaling criteria. Implementation to computer code is also described. Demonstration sample cases are included with additional applications to engine duct and pipe bend.

  19. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses

    PubMed Central

    Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2011-01-01

    Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different

  20. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    PubMed Central

    Kermanshah, Hamid; Yasini, Esmail; Hoseinifar, Razieh

    2016-01-01

    Background: There are many concerns regarding the marginal seal of composite restorations, especially when composite restorations are subjected to cyclic loading. The aim of this study was to evaluate the effect of cyclic loading on the microleakage of silorane based composite compared with low shrinkage methacrylate-based composites in class V cavities. Materials and Methods: In this in vitro study, class V cavities were prepared on the facial and lingual surfaces of 48 human premolars (96 cavities). The teeth were randomly divided into four groups of 12 teeth (24 cavities) each and restored as follows: Group 1 (Siloran System Adhesive + Filtek P90), Group 2 (All Bond SE + Aelite LS Posterior), Group 3 (Futurabond NR + Grandio), and Group 4 (G-Bond + Kalore-GC). All the specimens were thermocycled for 2000 cycles (5-55°C) and then half of the specimens from each group, were Load cycled. All teeth were immersed in 0.5% basic fuchsine dye, sectioned, and observed under a stereomicroscope. Data were analyzed using Wilcoxon test, Kruskal–Wallis, and Mann–Whitney U-tests. P < 0.05 was considered as significant. Results: In both unloaded and loaded groups, no statistically significant differences were observed among four composites at the occlusal margin, but a significant difference in gingival microleakage was found between Aelite and silorane. Occlusal and gingival microleakage was not affected by cyclic loading in none of the four restorative materials. Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite). In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations. PMID:27274348

  1. Structure of boundaries in composite materials obtained using explosive loading

    NASA Astrophysics Data System (ADS)

    Lysak, V. I.; Kuz'min, S. V.; Krokhalev, A. V.; Grinberg, B. A.

    2013-11-01

    We have presented the results of studying the fine structure of interphase boundaries for a number of composite materials obtained by methods of explosive welding and explosive compacting of powder mixtures. Joints of different metals (titanium-low-carbon steel, copper-tantalum) and metals with refractory carbides (chromium carbide-titanium) have been investigated. Under welding, pairs differed from each other by the type of interaction. It has been found that, in these composites, interphase boundaries exhibit a final thickness on the order of 200 nm, throughout which the composition of the material changes gradually from a composition that corresponds to one of the components of the composite to a composition that corresponds to the second component. It has been shown that the structure of interphase boundaries is complex. With the limited solubility of components along boundaries, two fairly thick crystalline interlayers are detected, the total thickness of which is equal to the total thickness of the boundary; between the interlayers, there is a thin (to 5-7 nm in thickness) interlayer with a crystalline or amorphous structure.

  2. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    SciTech Connect

    Brown, Alexander; Jernigan, Dann A.; Dodd, Amanda B.

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  3. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  4. Effects of heat and moisture on fiberglass composite materials in the load carrying and non-load carrying conditions

    NASA Astrophysics Data System (ADS)

    McClurg, Jack Albert

    The objective set forth in this study was to thoroughly document the effects of heat, moisture, and loading conditions on a variety of pultruded unidirectional fiberglass reinforced composite materials. This study incorporated the use of two environmental control chambers and two water immersion tanks in order to provide the necessary range of environmental exposure conditions. A set of specially designed stainless steel loading fixtures was produced in order to introduce the factor of external loading of the specimens while exposed to the predetermined environmental condition and how that would affect the mechanical and physical properties in question. The properties of interest were the flexural strength (determined using the three-point flexural bending method), flexural modulus (determined using the three-point flexural bending method), and glass transition temperature of the material (determined using differential scanning calorimetry). Other data that was noted during the conditioning and testing of the specimens was the break type (flexural tension, compression, shear, etc...), the change in dimensions (prior to exposure vs. after exposure), and the change in weight (prior to exposure vs. after exposure). Using all of the information that was obtained from this study, a more detailed understanding of how and why fiberglass reinforced materials react the way they do when exposed to moisture and elevated temperature was drawn. This study is different from most others in that it explores the interactions of three independent variables (heat, moisture, and loading condition) on three different fiberglass reinforced composite systems (epoxy, vinylester, and polyester resin).

  5. General Factor Loadings and Specific Effects of the Differential Ability Scales, Second Edition Composites

    ERIC Educational Resources Information Center

    Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III

    2011-01-01

    The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four composites,…

  6. Development of highly loaded root end attachments for composite material high speed flying surfaces

    NASA Astrophysics Data System (ADS)

    Cooper, T. P.; Wright, R. A. S.

    In the design of cantilever composite flying surfaces, one of the most difficult problems to overcome is the interface with the aircraft fuselage. The authors describe some interface methodologies which significantly improve the load introduction at the interface between composite flying surface and a metal fuselage.

  7. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  8. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2015-09-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  9. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; OBrien, T. Kevin; Minguet, Pierre J.

    1999-01-01

    Damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out- of-plane) loading conditions were examined. Specimens consisted of a tapered composite flange bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending . For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. A two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in two locations where delaminations were observed. The analyses showed that unstable delamination propagation is likely to occur in one location at the loads corresponding to matrix ply crack initiation for all three load cases.

  10. Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.

    2004-01-01

    The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.

  11. Mechanical behavior of a continuous fiber reinforced aluminum matrix composite subjected to transverse and thermal loading

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers were investigated. The composite is subjected to both mechanical and cyclic thermal loading. The results of an experimental program indicate that the shakedown concept of structural mechanics provides a means of describing the material behavior. When the loading conditions are within the shakedown region, the material finally responds in an elastic manner after initial plastic response, and for loading conditions outside the shakedown region, the material exhibits a rapid incremental plastic strain accumulation. The failure strain varies by an order of magnitude according to the operating conditions. Hence, for high mechanical and low thermal loading, the failure strains is small; for low mechanical and high thermal loading, the failure strain is large.

  12. Pull-out fibers from composite materials at high rate of loading

    NASA Technical Reports Server (NTRS)

    Amijima, S.; Fujii, T.

    1981-01-01

    Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.

  13. Effects of static tensile load on the thermal expansion of Gr/PI composite material

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1981-01-01

    The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.

  14. Mechanics of load transfer at the interface. [from matrix to fiber of composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    The mechanism of load transfer from matrix to fiber though the interface and, as a consequence, the effects of the interface on composite structural integrity are discussed. Specifically, the present work deals with the role of interfacial bonding in composite strength, the dependence of fracture surface on interface bond strength, and methods of measuring and predicting the stress at the interface, the microresidual stress, and load condition effects on the interface bond. The possibility of designing composites with specified bond properties is examined. Many of these effects are illustrated graphically to indicate general trends and to illustrate significant points. The discussion is based on theoretical considerations and is supplemented with pertinent experimental data.

  15. Micromechanical analysis of filamentary metal matrix composites under longitudinal loading

    NASA Technical Reports Server (NTRS)

    Gdoutos, Emmanuel E.; Karalekas, Dimitrios; Daniel, Isaac M.

    1991-01-01

    A two-material composite cylinder model (CCM) was considered for the study of the mechanical behavior at different temperatures of a fiber-reinforced silicon carbide/aluminum (SiC/Al) composite. An elastoplastic analysis of the model was performed in which the fiber was assumed to be linear elastic and the matrix elastoplastic with work-hardening. The analysis was based on the deformation theory of plasticity in conjunction with the von-Mises yield criterion. Experimental stress-strain curves of an SiC/Al composite were obtained at 24 and 288 C (75 and 550 F). The complete three-dimensional stress distribution in the composite using the CCM was determined. It was found that, in addition to longitudinal stresses, transverse stresses in both the fiber and the matrix were developed as a result of the different Poisson's ratios of the two materials. The transverse stresses, although much smaller than the longitudinal stresses, contributed to the plastic deformation of the matrix. The experimental stress-strain curves were favorably compared with the theoretical predictions.

  16. Ultrasonic Attenuation Results of Thermoplastic Resin Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1998-01-01

    As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post

  17. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  18. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  19. Analysis of notched metal matrix composites under tension loading

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    Presented are techniques based on 3-D finite-element analysis for the examination of continuous fiber reinforced metal matrix composites. Examples are shown for specific metal matrix composites such as boron/aluminum and silicon-carbide/aluminum. Specimen stress-strain behavior and stress at first fiber failure were predicted for boron/aluminum laminates containing circular holes and crack-like slits. The predictions compared very well for (+ or - 45) sub 2s laminates. Mesh configuration was shown to have an effect on the calculation of stresses local to the notch. The presence of thin interface layers of matrix material had a significant influence on the slit-tip stress state, causing sharper stress gradients near the notch. Interface layers reduced the slit-tip fibers stresses in a (+ or - 45) sub s silicon-carbide/aluminum laminate but increased them in a (0/90) sub s laminate.

  20. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    NASA Astrophysics Data System (ADS)

    Muttalib, Siti Nadzirah Abdul; Othman, Nadras; Ismail, Hanafi

    2015-07-01

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  1. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    SciTech Connect

    Muttalib, Siti Nadzirah Abdul Othman, Nadras Ismail, Hanafi

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  2. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.

    PubMed

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang

    2016-09-01

    Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. PMID:27209115

  3. The composite method: An improved method for stream-water solute load estimation

    USGS Publications Warehouse

    Aulenbach, Brent T.; Hooper, R.P.

    2006-01-01

    The composite method is an alternative method for estimating stream-water solute loads, combining aspects of two commonly used methods: the regression-model method (which is used by the composite method to predict variations in concentrations between collected samples) and a period-weighted approach (which is used by the composite method to apply the residual concentrations from the regression model over time). The extensive dataset collected at the outlet of the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia, USA, was used in data analyses for illustrative purposes. A bootstrap (subsampling) experiment (using the composite method and the PMRW dataset along with various fixed-interval and large storm sampling schemes) obtained load estimates for the 8-year study period with a magnitude of the bias of less than 1%, even for estimates that included the fewest number of samples. Precisions were always <2% on a study period and annual basis, and <2% precisions were obtained for quarterly and monthly time intervals for estimates that had better sampling. The bias and precision of composite-method load estimates varies depending on the variability in the regression-model residuals, how residuals systematically deviated from the regression model over time, sampling design, and the time interval of the load estimate. The regression-model method did not estimate loads precisely during shorter time intervals, from annually to monthly, because the model could not explain short-term patterns in the observed concentrations. Load estimates using the period-weighted approach typically are biased as a result of sampling distribution and are accurate only with extensive sampling. The formulation of the composite method facilitates exploration of patterns (trends) contained in the unmodelled portion of the load. Published in 2006 by John Wiley & Sons, Ltd.

  4. Stiffener-skin interactions in pressure-loaded composite panels

    NASA Technical Reports Server (NTRS)

    Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.

    1986-01-01

    The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.

  5. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  6. Evaluation of Composite Honeycomb Sandwich Panels Under Compressive Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Fourteen composite honeycomb sandwich panels were tested to failure under compressive loading. The test specimens included panels with both 8 and 24-ply graphite-bismaleimide composite facesheets and both titanium and graphite-polyimide core materials. The panels were designed to have the load introduced through fasteners attached to pairs of steel angles on the ends of the panels to simulate double shear splice joints. The unloaded edges were unconstrained. Test temperatures included room temperature, 250F, and 300F. For the room and 250F temperature tests, the 24-ply specimen failure strains were close to the unnotched allowable strain values and failure loads were well above the design loads. However, failure strains much lower than the unnotched allowable strain values, and failure loads below the design loads were observed with several of the 8-ply specimens. For each individual test temperature, large variations in the failure strains and loads were observed for the 8-ply specimens. Dramatic decreases in the failure strains and loads were observed for the 24-ply specimens as the test temperature was increased from 250F to 300F. All 8-ply specimens appeared to have failed in a facesheet strength failure mode for all test temperatures. The 24-ply specimens displayed appreciably greater amounts of bending prior to failure than the 8-ply specimens, and panel buckling occurred prior to facesheet strength failure for the 24-ply room and 250F temperature tests.

  7. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated. PMID:27501777

  8. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  9. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    NASA Astrophysics Data System (ADS)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  10. Analysis of notched metal matrix composites under tensile loading

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1989-01-01

    This paper presents techniques based on a three-dimensional finite-element analysis for the analysis of continuous fiber reinforced metal matrix composite. Examples are shown for specific metal matrix composites such as boron/aluminum and silicon-carbide/aluminum. Specimen stress-strain behavior and stress at first fiber failure were predicted for boron/aluminum laminates containing circular holes and crack-like slits. The predictions compared very well with test data for laminates containing 0 deg fibers and reasonably well for (+/-45)2s laminates. Mesh configuration was shown to have an effect on the calculation of stresses local to the notch. The presence of thin interface layers of matrix material had a significant influence on the slit tip stress state, causing sharper stress gradients near the notch. Interface layers reduced the slit-tip fibers stress in a (+/-45)2s silicon-carbide/aluminum laminate but increased them in a (0/90)2s laminate.

  11. Experimental investigation of wood fibre cement composite wall panel under axial loading

    NASA Astrophysics Data System (ADS)

    Sadia Mahzabin, Mst; Hamid, Roszilah

    2015-04-01

    Wood fibre cement (WFC) composite wall panels were cast and tested under axial load with 4/6 wood/cement ratio, 0.8 water/cement ratio, three chemical additives and horizontal and vertical reinforcement. Other panels with the same mix design proportion without reinforcement were also tested and compared with the commercially available WFC composite Duralite boards. An experimental result for the Duralite boards, the specimen showed quick failure with lower loading value and also with axial deformation. The WFC panel without reinforcement showed more brittle type of failure in that they were unable to sustain any more loading after reaching the maximum load. The failure for the WFC panel with reinforcement was gradual and this behaviour was attributed to the presence of steel as they act like bridges between cracks preventing sudden failure. The WFC panels without reinforcement results are higher than the theoretical value and also higher than the Duralite board panels.

  12. Thermography inspection for detection and tracking of composite cylinder damage during load testing

    SciTech Connect

    Zalameda, J. N.; Winfree, W. P.; Johnston, P. H.; Seebo, J. P.

    2011-06-23

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to non-immersion ultrasonic results.

  13. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  14. Combined-load stress-strain relationship for advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  15. Buckling of Laminated Composite Stiffened Panels Subjected to Linearly Varying In-Plane Edge Loading

    NASA Astrophysics Data System (ADS)

    Mallela, Upendra K.; Upadhyay, Akhil

    2014-01-01

    The presence of in-plane loading may cause buckling of stiffened panels. An accurate knowledge of critical buckling load and mode shapes is essential for reliable and lightweight structural design. This paper presents parametric studies on simply supported laminated composite blade-stiffened panels subjected to linearly varying in-plane edge/compressive loading. Studies are carried out by changing the panel orthotropy ratio, stiffener depth, pitch length (number of stiffeners), smeared extensional stiffness ratio of stiffener to that of the plate and load distribution parameter. Based on the studies, a few important parameters influencing the buckling behavior are identified and their significance is discussed. Further, the interaction equations for combined loadings are validated by carrying out numerical studies.

  16. Load-Bearing Capacity of Fiber-Reinforced Composite Abutments and One-Piece Implants.

    PubMed

    Etxeberria, Marina; Abdulmajeed, Aous A; Escuin, Tomas; Vinas, Miguel; Lassila, Lippo V J; Närhi, Timo O

    2015-06-01

    Fiber-reinforced composites (FRC) can potentially help in a physiologic stress transmission due to its excellent biomechanical matching with living tissues. Novel one-piece FRC implants and abutments with two different fiber orientations were loaded until failure to assess the load-bearing capacity, fracture patterns, and precision of fit. The one-piece FRC implants showed significantly higher load-bearing capacity compared to FRC abutments regardless of the fiber orientation (p < 0.001). For FRC abutments, bidirectional abutments showed significantly higher loads compared to unidirectional abutments (p < 0.001). The type of structure and fiber orientation are strong determinant factors of the load-bearing capacity of FRC implants and abutments. PMID:26373199

  17. Phytoplankton composition in Dutch coastal waters responds to changes in riverine nutrient loads

    NASA Astrophysics Data System (ADS)

    Prins, T. C.; Desmit, X.; Baretta-Bekker, J. G.

    2012-10-01

    The Southern Bight of the North Sea is a shallow shelf sea, strongly influenced by river-borne nutrient loads. Eutrophication symptoms manifest themselves as high levels of chlorophyll-a and long-lasting, extensive blooms of Phaeocystis globosa, especially in the waters along the continental coast. As a consequence of measures to reduce eutrophication, riverine phosphorus loads have decreased more than 50% in the last two decades, and nitrogen loads show a decrease of ca 30%. While decreases in riverine N and P loads are observed, an increase in summer river-borne loads of silica occurred. Since 1990, The Netherlands has carried out a routine monitoring program in the North Sea, including analysis of phytoplankton composition and carbon biomass. An analysis of these data for the period 1990-2007 shows a trend in phytoplankton composition, toward an increase in diatom biomass, increased bloom frequency and maximum bloom cell numbers of several diatom species, in particular Chaeotoceros socialis, in the coastal waters. These changes coincide with increases in riverine Si loadings and increased Si concentrations in coastal waters as a consequence of changed river loads.

  18. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  19. A review of failure models for ceramic matrix composite laminates under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  20. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading.

    PubMed

    Ku-Herrera, J J; Pacheco-Salazar, O F; Ríos-Soberanis, C R; Domínguez-Rodríguez, G; Avilés, F

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  1. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading

    PubMed Central

    Ku-Herrera, J. J.; Pacheco-Salazar, O. F.; Ríos-Soberanis, C. R.; Domínguez-Rodríguez, G.; Avilés, F.

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  2. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites

    NASA Astrophysics Data System (ADS)

    Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T.

    2000-05-01

    Multiwall carbon nanotubes have been dispersed homogeneously throughout polystyrene matrices by a simple solution-evaporation method without destroying the integrity of the nanotubes. Tensile tests on composite films show that 1 wt % nanotube additions result in 36%-42% and ˜25% increases in elastic modulus and break stress, respectively, indicating significant load transfer across the nanotube-matrix interface. In situ transmission electron microscopy studies provided information regarding composite deformation mechanisms and interfacial bonding between the multiwall nanotubes and polymer matrix.

  3. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  4. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  5. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  6. Loading rate sensitivity of open-hole composite specimens in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, S. J.; Guynn, E. G.; Elber, W.; Whitcomb, J. D.

    1990-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  7. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds. PMID:25123942

  8. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences

  9. Prediction of the response of metal matrix composite laminates under multiaxial loading

    SciTech Connect

    Subramanian, S.; Soni, S.R.; Foringer, M.A.

    1995-12-31

    In this paper, a simple micromechanics model is proposed to predict the response of metal matrix composites under multiaxial loading. The model includes the effects of residual thermal stresses, interphasial yielding and matrix plasticity. In this work, the concentric cylinders model (CCM) developed by Pagano and Tandon has been modified to include effects that are commonly observed in metal matrix composites (MMC). The matrix region is divided into five layers, and the stresses are determined in each of these layers and the fiber and interphase regions using the CCM. Interfacial debonding is modeled using a cylindrical interphase region and evaluating the yielding behavior of this region under thermo-mechanical loading. The nonlinear response of the MMC is predicted by considering progressive yielding of the various matrix layers. An iterative scheme is used to predict the onset and progression of plasticity in each matrix region. At any applied external load (strain), the volume averaged stresses are estimated in each of the constituent region. Results indicate that the predicted response of unidirectional and multidirectional laminates under thermo-mechanical loading agree well with experimental data. The onset of interfacial debonding and plasticity is predicted well by the model for SCS6/Ti 15-3 composites. In addition, the predicted response of SCS6/Ti 15-3 composites at room and elevated temperatures agree well with the experimental data.

  10. Load-induced debonding of FRP composites applied to reinforced concrete

    NASA Astrophysics Data System (ADS)

    Blok, Joel; Brown, Jeff

    2009-05-01

    Fiber-reinforced polymer (FRP) composites are widely used to increase the flexural and shear capacity of reinforced concrete (RC) elements. One potential disadvantage is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for monitoring and evaluating load-induced delamination of FRP composites applied to small scale RC beams. Two beams (3.5 in x 4.5 in x 58 in) were loaded monotonically to failure. Infrared thermography (IRT) inspections were performed at various load levels through failure using a composite phase imaging technique. Two similar beams were tested in fatigue and periodic IRT inspections were performed at 50,000-cycle intervals. Individual phase values for each pixel were designated as "well-bonded", "suspect" or "unbonded" to indicate the quality of FRP bond. Suspect areas included regions of excess thickened-epoxy tack-coat and smaller installation defects in the unloaded specimens. The long-term objective of this research is to develop a practical framework for conducting quantitative IRT inspections of FRP composites applied to RC and incorporating these results into acceptance criteria for new installations and predictions for the remaining service life of in-service FRP systems. This method may also offer insight into the necessity for repairs to in-service systems.

  11. Experimental observation of damage in 8HS fabric composites in tensile loading

    SciTech Connect

    Roy, A.K.

    1994-12-31

    An observation of damage in two different laminates (one symmetric and another unsymmetric) of 8HS fabric composites is made in tensile loading. The damage initiation seems to controlled by the state of local stress field, not by the ply stacking of the laminates. Further, the damage initiation occurred in the vicinity of yarn crimping.

  12. Dynamic Stability Optimization of Laminated Composite Plates under Combined Boundary Loading

    NASA Astrophysics Data System (ADS)

    Shafei, Erfan; Kabir, Mohammad Zaman

    2011-12-01

    Dynamic stability and design optimization of laminated simply supported plates under planar conservative boundary loads are investigated in current study. Examples can be found in internal connecting elements of spacecraft and aerospace structures subjected to edge axial and shear loads. Designation of such elements is function of layup configuration, plate aspect ratio, loading combinations, and layup thickness. An optimum design aims maximum stability load satisfying a predefined stable vibration frequency. The interaction between compound loading and layup angle parameter affects the order of merging vibration modes and may stabilize the dynamic response. Laminated plates are assumed to be angle-plies symmetric to mid-plane surface. Dynamic equilibrium PDE has been solved using kernel integral transformation for modal frequency values and eigenvalue-based orthogonal functions for critical stability loads. The dictating dynamic stability mode is shown to be controlled by geometric stiffness distributions of composite plates. Solution of presented design optimization problem has been done using analytical approach combined with interior penalty multiplier algorithm. The results are verified by FEA approach and stability zones of original and optimized plates are stated as final data. Presented method can help designers to stabilize the dynamic response of composite plates by selecting an optimized layup orientation and thickness for prescribed design circumstances.

  13. IGFC response to initial fuel cell load for various syngas compositions

    SciTech Connect

    Tucker, David; Hughes, Dimitri O.; Haynes, Comas L.

    2012-01-01

    The system response to an initial electric load of the fuel cell during the startup of a direct-fired fuel cell turbine power system was studied using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory for a range of input fuel compositions. The facility was brought to a steady condition at a temperature deemed adequate to minimize stress on the fuel cell during the initial load transient. A 1D distributed fuel cell model operating in real-time was used to produce individual cell transient temperature profiles during the course of the load change. The process was conducted with humidified hydrogen, and then repeated with various syngas compositions representative of different gasifier technologies. The results provide insight into control strategy requirements for mitigation of expected fuel cell failure modes relevant to available gasifier technology.

  14. Development of a fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1973-01-01

    This experimental program was undertaken to establish a fracture control method for composite tanks with load sharing liners. Uniaxial specimens containing surface flaws were loaded to failure (static fractured) and cycled to failure and the results were compared with burst tests and cyclic life tests of composite tanks having surface flaws present in the load sharing metal liners. The liner materials investigated were Inconel X750 STA, 2219-T62 aluminum and cryostretched 301 stainless steel at room temperature and at 78 K (-320 F) in liquid nitrogen. Differences were observed in comparing the uniaxial and tank test results. These differences should be resolved if an adequate fracture control method is to be developed.

  15. Discrete Meso-Element Simulation of Failure Behavior of Short-Fiber Composites under Shock Loading

    NASA Astrophysics Data System (ADS)

    Tang, Z. P.; Liu, Wenyan; Liu, Yunxin

    1999-06-01

    Recent years, it was paid more attention to better understanding the failure behavior and mechanism of heterogeneous materials at meso- scale level. In this paper, the crack initiation and development in epoxy composite reinforced with short steel fibre under dynamic loading were simulated and analyzed with 2D Discrete Meso-Element Dynamic Method. Results show that cracks initiate at the tips of fibres on the Loading side where stress concentrates. The effective strength of the composite sample is related to shape, orientation, weight percentage of the fibres, and particularly, the bonding strength between fibre and matrix. In the case of low bonding strength, the crack will propagate along the fibre and finally penetrate the whole sample. The differences compared with static loading are also discussed.

  16. A test method to measure the response of composite materials under reversed cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, Charles E.; Simonds, Robert A.; Stinchcomb, Wayne W.

    1989-01-01

    A test method to measure the response of composite materials under reversed cyclic loads is described. The method approximates the long-term response of a component by permitting the composite specimen to respond to the imposed loads and fail in an unconstrained mode rather than in a constrained mode. The method has been successfully used for the reversed cyclic loading of unnotched and notched graphite/epoxy and graphite/PEEK laminates of various stacking sequences. Included in the paper are monotonic tensile and compressive stiffness and strength data at several points in the fatigue lifetime, and damage development information obtained via X-ray radiography for quasi-isotropic T300/5208 and AS4/PEEK laminates with unloaded circular holes.

  17. The relationship of compliance changes during fatigue loading to the fracture of composite materials

    NASA Technical Reports Server (NTRS)

    Reifsnider, K. L.; Highsmith, A.

    1982-01-01

    The study outlined here is based on measurements of the change in engineering stiffness values induced by the development of damage in composite laminates during quasi-static or cyclic (fatigue) loading. These changes are found to be related to the individual details of the damage events in the laminates, as well as to the residual strength and life of the laminates. It is believed that the stiffness changes can also be used to relate composite material behavior under cyclic loading to its behavior under quasi-static loading. Results are presented for both notched and unnotched laminates. Compliance changes are found to be caused by damage events that bring about both global and local redistributions of stress. It is also found that the redistributions of stress determine the residual strength of the laminate. The quantitative link between compliance changes and fracture strength is the mechanics of the internal stress redistributions.

  18. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors.

    PubMed

    Kougias, P G; Boe, K; Angelidaki, I

    2013-09-01

    Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise increasing the OLR and the concentration of proteins or lipids in the substrate, foaming in biogas reactors was investigated. No foam formation was observed at the OLR of 3.5 g volatile solids/(L-reactor·day). Organic loading was the main factor affecting foam formation in manure digester, while the organic composition, such as content of proteins or lipids were factors that in combination with the organic loading were triggering foaming. More specifically, gelatine could initiate foam formation at a lower OLR than sodium oleate. Moreover, the volume of foam produced by gelatine was relatively stable and was not increased when further increasing either OLR or gelatine concentration in the feed. PMID:23850819

  19. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; O'Brien, T. Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as

  20. Testing and Analysis of Composite Skin/Stringer Debonding under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael; OBrien, Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as

  1. Behaviour of hybrid jute-glass/epoxy composite tubes subjected to lateral loading

    NASA Astrophysics Data System (ADS)

    Khalid, A. A.

    2015-12-01

    Experimental work on hybrid and non-hybrid composite tubes subjected to lateral loading has been carried out using jute, glass and hybrid jute-glass/epoxy materials. Tubes of 200 mm length with 110 mm inner diameter were fabricated by hand lay-up method to investigate the effect of material used and the number of layers on lateral-load-displacement relations and on the failure mode. Crush force efficiency and the specific energy absorption of the composite tubes were calculated. Results show that the six layers glass/epoxy tubes supported load higher 10.6% than that of hybrid jute-glass/ epoxy made of two layers of jute/epoxy four layers of glass/epoxy. It has been found that the specific energy absorption of the glass/epoxy tubes is found higher respectively 11.6% and 46% than hybrid jute-glass/epoxy and jute/epoxy tubes. The increase in the number of layers from two to six increases the maximum lateral load from 0.53KN to 1.22 KN for jute/epoxy and from 1.35 KN to 3.87 KN for the glass/epoxy tubes. The stacking sequence of the hybrid tubes influenced on the maximum lateral load and the absorbed energy. The maximum load obtained for the six layers jute-glass/epoxy tubes of different staking sequence varies between 1.88 KN to 3.46 KN. Failure mechanisms of the laterally loaded composite tubes were also observed and discussed.

  2. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-01-01

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

  3. Prediction of failure envelopes of composite tubes subjected to biaxial loadings

    NASA Astrophysics Data System (ADS)

    Gargiulo, C.; Marchetti, M.; Rizzo, A.

    1996-09-01

    Practical cylindrical structures including pressure vessels, pipes, drive shafts and rochet motors are usually subjected to complex loads involving biaxial or triaxial stress systems. In particular, filamentary composite vessels are used in applications of Space Shuttle tankage, as well as for the storage of fluids in various commercial applications. The object of this work is to provide numerical and experiment data on the strength of filament wound carbon fibre reinforced epoxy resin thin tubes under biaxial loading conditions. Internal or external pressure and axial loads are applied simultaneously to produce a variety of biaxial stress conditions. The effects of the winding angle of the fibre reinforcements on the failure loads of the pipes have been examined. Finite elements and thin shell analysis have been applied to the problem using different failure criteria in order to predict the specimen's failure for a comparison with experimental results.

  4. Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.

  5. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  6. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  7. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    SciTech Connect

    Cui, Zhongping; Qi, Ji; Xu, Xinxin Liu, Lu; Wang, Yi

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.

  8. Probabilistic design analysis using Composite Loads Spectra (CLS) coupled with Probabilistic Structural Analysis Methodologies (PSAM)

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Rajagopal, K. R.; Ho, H.

    1989-01-01

    Composite loads spectra (CLS) were applied to generate probabilistic loads for use in the PSAM nonlinear evaluation of stochastic structures under stress (NESSUS) finite element code. The CLS approach allows for quantifying loads as mean values and distributions around a central value rather than maximum or enveloped values typically used in deterministic analysis. NESSUS uses these loads to determine mean and perturbation responses. These results are probabilistically evaluated with the distributional information from CLS using a fast probabilistic integration (FPI) technique to define response distributions. The main example discussed describes a method of obtaining load descriptions and stress response of the second-stage turbine blade of the Space Shuttle Main Engine (SSME) high-pressure fuel turbopump (HPFTP). Additional information is presented on the on-going analysis of the high pressure oxidizer turbopump discharge duct (HPOTP) where probabilistic dynamic loads have been generated and are in the process of being used for dynamic analysis. Example comparisons of load analysis and engine data are furnished for partial verification and/or justification for the methodology.

  9. Design and Evaluation of Composite Fuselage Panels Subjected to Combined Loading Conditions

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rouse, Marshall

    1998-01-01

    Methodologies used in industry for designing transport aircraft composite fuselage structures are discussed. Several aspects of the design methodologies are based on assumptions from metallic fuselage technology which requires that full-scale structures be tested with the actual loading conditions to validate the designs. Composite panels which represent crown and side regions of a fuselage structure are designed using this approach and tested in biaxial tension. Descriptions of the state-of-the-art test facilities used for this structural evaluation are presented. These facilities include a pressure-box test machine and a D-box test fixture in a combined loads test machine which are part of a Combined Loads Test System (COLTS). Nonlinear analysis results for a reference shell and a stiffened composite panel tested in the pressure-box test machine with and without damage are presented. The analytical and test results are compared to assess the ability of the pressure-box test machine to simulate a shell stress state with and without damage. A combined loads test machine for testing aircraft primary structures is described. This test machine includes a D-box test fixture to accommodate curved stiffened panels and the design features of this test fixture are presented. Finite element analysis results for a curved panel to be tested in the D-box test fixture are also discussed.

  10. Modeling Loading/Unloading Hysteresis Behavior of Unidirectional C/SiC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li; Yingdong, Song; Youchao, Sun

    2013-08-01

    The loading/unloading tensile behavior of unidirectional C/SiC ceramic matrix composites at room temperature has been investigated. The loading/unloading stress-strain curve exhibits obvious hysteresis behavior. An approach to model the hysteresis loops of ceramic matrix composites including the effect of fiber failure during tensile loading has been developed. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix cracking space and interface debonded length are obtained by matrix statistical cracking model and fracture mechanics interface debonded criterion. The two-parameter Weibull model is used to describe the fiber strength distribution. The stress carried by the intact and fracture fibers on the matrix crack plane during unloading and subsequent reloading is determined by the Global Load Sharing criterion. Based on the damage mechanisms of fiber sliding relative to matrix during unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are obtained by the fracture mechanics approach. The hysteresis loops of unidirectional C/SiC ceramic matrix composites corresponding to different stress have been predicted.

  11. A Numerical and Experimental Study of Compression-Loaded Composite Panels With Cutouts

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2006-01-01

    Results from a numerical and experimental study on the effects of laminate orthotropy and circular cutout size on the response of compression-loaded composite curved panels are presented. Several 60-in-radius composite panels with four different laminate configurations were tested with cutout diameters that range from 10% to 60% of the panel width. Finite-element analyses were performed for each panel in order to identify the effects boundary conditions, measured initial geometric imperfections and thickness variations had on the nonlinear and buckling behavior of the panels. The compression-loaded panels considered herein exhibited two separate types of behavior depending on the laminate stacking sequence and cutout size. More specifically, some of the panels exhibited the classical snap-through type buckling response; however, some of the panels exhibited a monotonically increasing stable response and achieved compressive loads in excess of twice the predicted linear bifurcation buckling load. In general, the finite-element analyses were able to predict accurately the nonlinear response and buckling loads of the panels and the prebuckling and postbuckling out-of-plane deformations and strains.

  12. Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.

  13. Composition-property relationships for radiopaque composite materials: pre-loaded drug-eluting beads for transarterial chemoembolization.

    PubMed

    Kilcup, Nancy; Tonkopi, Elena; Abraham, Robert J; Boyd, Daniel; Kehoe, Sharon

    2015-07-01

    The purpose of this study was to synthesize and optimize intrinsically radiopaque composite embolic microspheres for sustained release of doxorubicin in drug-eluting bead transarterial chemoembolization. Using a design of experiments approach, 12 radiopaque composites composed of polylactic-co-glycolic acid and a radiopaque glass (ORP5) were screened over a range of compositions and examined for radiopacity (computed tomography) and density. In vitro cell viability was determined using an extract assay derived from each composition against the human hepatocellular carcinoma cell line, HepG2. Mathematical models based on a D-Optimal response surface methodology were used to determine the preferred radiopaque composite. The resulting radiopaque composite was validated and subsequently loaded with doxorubicin between 0 and 1.4% (wt% of polylactic-co-glycolic acid) to yield radiopaque composite drug-eluting beads. Thereafter, the radiopaque composite drug-eluting beads were subjected to an elution study (up to 168 h) to determine doxorubicin release profiles (UV-Vis spectroscopy) and in vitro cell viability. Radiopaque composites evaluated for screening purposes had densities between 1.28 and 1.67 g.cm(-3), radiopacity ranged between 211 and 1450HU and cell viabilities between 91 and 106% were observed. The optimized radiopaque composite comprised 23 wt% polylactic-co-glycolic acid and 60 wt% ORP5 with a corresponding density of 1.63 ± 0.001 g.cm(-3), radiopacity at 1930 ± 44HU and cell viability of 89 ± 7.6%. Radiopaque composite drug-eluting beads provided sustained doxorubicin release over 168 h. In conclusion, the mathematical models allowed for the identification and synthesis of a unique radiopaque composite. The optimized radiopaque composite had similar density and cell viability to commercially available embolic microspheres. It was possible to preload doxorubicin into radiopaque composite drug-eluting beads, such that sustained release

  14. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels.

    PubMed

    Bajpai, S K; Chand, Navin; Soni, Shweta

    2015-01-01

    Drug Gliclazide (Glz) has limited solubility and low bioavailability. In order to obtain a controlled release of this drug and to improve its bioavailability, the drug has been loaded into poly(caprolactone) (PCL)/poly(acrylic acid) (PAAc) hydrogels, prepared by free radical polymerization of acrylic acid in the presence of poly(caprolactone) in acetone medium using azo-isobutyronitrile as initiator and N,N' methylene bisacrylamide as cross-linking agent. The swelling behaviour of these hydrogels has been investigated in the physiological gastric and intestinal fluids to obtain an optimum composition suitable for delivery of a biologically active compound. The gels were loaded with anti-diabetic drug Glz and a detailed investigation of release of drug has been carried out. Various kinetic models have been applied on the release data. Finally, the Albino wistar rats were treated for Streptozotocin plus nicotinamide - induced diabetes using a Glz-loaded PCL/PAAc hydrogel. The results indicated a fair reduction in the glucose level of rats. PMID:26135033

  15. PHEMA based composite cryogels with loaded hydrophobic beads for lysozyme purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil

    2014-11-01

    The purpose of this study is to synthesize megaporous cryogel loaded with hydrophobic affinity beads which can be utilized for the purification of lysozyme from chicken egg-white. N-methacryloyl-(L)-tryptophan methylester (MATrp) was used as the hydrophobic ligand. In the first step, poly(glycidyl methacrylate-N-methacryloyl-(L)-tryptophan methyl-ester) [PGMATrp] beads (2.2 μm in diameter) were produced by dispersion polymerization. In the second step, the poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel loaded with PGMATrp beads [PHEMA/PGMATrp composite cryogel] was polymerized initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) at -12°C. Lysozyme adsorption capacity of the PHEMA/PGMATrp composite cryogel (332.7 mg/g polymer) was improved significantly due to the loading of PGMATrp beads into the cryogel structure. The hydrophobic MATrp comonomer played a vital role in this binding mechanism. The PHEMA/PGMATrp composite cryogel could be used many times without decreasing the lysozyme adsorption amount significantly. The main advantage of the PHEMA/PGMATrp composite cryogel is the high adsorption capacity. PMID:25454758

  16. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  17. Nonlinear dynamic response of laminated composite plates subjected to pulse loading

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. K.; Pandey, Ramesh; Shukla, K. K.

    2011-11-01

    An analytical solution methodology for the non-linear dynamic displacement response of laminated composite plates subjected to different types of pulse loading is presented. The mathematical formulation is based on third-order shear deformation plate theory and von-Karman non-linear kinematics. Fast-converging finite double Chebyshev series is employed for evaluating the displacement response. Houbolt time marching scheme is used for temporal discretization and quadratic extrapolation technique is used for linearization. The effects of magnitude and duration of the pulse load, boundary conditions and plate parameters on the central displacement and bending moment responses are studied.

  18. Effects of loading rate and temperature on dynamic fracture of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Yang, K. H.; Kobayashi, A. S.; Emery, A. F.

    1989-01-01

    A hybrid experimental-numerical procedure was used to determine the dynamic fracture initiation toughnesses and the dynamic stress intensity factors of alumina, TiB2-particulate/SiC-matrix, and SiC(w)/Al2O3-matrix composites at room and elevated temperatures under static and impact loadings. The dynamic fracture initiation toughnesses at room and elevated temperatures were greater than the corresponding static fracture toughness. The crack velocity versus the dynamic stress intensity factor relations showed minor differences due to temperature changes but significant differences due to the change in loading rates.

  19. Photo-thermal polymerization of nanotube/polymer composites: Effects of load transfer and mechanical strength

    PubMed Central

    Xu, Peng; Loomis, James; Panchapakesan, Balaji

    2012-01-01

    The authors report a method where in-situ photon assisted heating of multi-wall carbon nanotubes was utilized for enhanced polymerization of the nanotube/polydimethylsiloxane interface that resulted in significant load transfer and improved mechanical properties. Large Raman shifts (20 cm−1 wavenumbers) of the 2D bands were witnessed for near-infrared light polymerized samples, signifying increased load transfer to the nanotubes for up to ∼80% strains. An increase in elastic modulus of ∼130% for 1 wt. % composites is reported for photon assisted crosslinking. PMID:22509070

  20. Fracture Load of Tooth Restored with Fiber Post and Experimental Short Fiber Composite

    PubMed Central

    Bijelic, Jasmina; Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo V.J

    2011-01-01

    Purpose: This study evaluated the load bearing capacity of anatomically designed canines restored with FRC posts and experimental short fiber composite resin (FC). The effect of using three different types of tooth preparation and woven net on the fracture load was also investigated. Further aim was to evaluate the failure mode of each restoration. Material and methods: 80 maxillary frasaco-canines were divided into 10 groups (n=8). The anatomic crowns were cut perpendicular at CEJ of the tooth. Group 1 was composed of teeth with flattened surface. Groups 2, 3 & 4 were prepared of teeth with 2 mm ferrule. In the third group, everStick Net was applied above the ferrule. Group 5 was composed of teeth with large box type preparation. The root canals were enlarged, sandblasted and then surface treated with Stick resin for 5 min. Two types of FRC root canal posts were used. The crowns were prepared either with composite resin or with FC. A static load until failure was applied to the crowns at a 45 degrees angle. Failure modes were visually examined. Results: ANOVA revealed that use of FRC-post and tooth preparation (p<0.001) had significant effect on fracture load of FRC-crown. The crowns made from only FC gave comparable fracture load to groups with FRC-post. No significant difference was found in load-bearing capacity between restorations reinforced with FRC net-substructure and those without (p>0.001). Chi-square test revealed that both, crown design and existence of FRC-post effected significantly fracture types (p<0.001). Conclusion: FC demonstrated similar load bearing capacity with restorations reinforced with FRC post. The presence of ferrule around the tooth increased the load bearing capacity significantly. Abbreviations: EET – endodontically treated teeth; FRC – fiber-reinforced composite; semi-IPN – semi-interpenetrating network; CEJ – cementoenamel junction; FC – experimental short fiber composite; SiC – silicon carbide abrasive paper; N

  1. Determination of the criteria of controlling the state of stress in composite materials during steplike loading

    NASA Astrophysics Data System (ADS)

    Surzhikov, V. P.; Fedotov, P. I.; Khorsov, N. N.

    2015-03-01

    Criteria for controlling the state of stress in composite materials based on epoxy resin filled with sand are determined using the phenomenon of mechanoelectrical conversion in dielectric materials. The principle of synchronous detection is applied to analyze the experimental results. Reference signals are taken to be the mechanoelectrical conversion pulse at a zero load and the acoustic pulse emitted by a piezoelectric transducer. It is shown that the elimination of low-informative time intervals from responses leads to a quasi-linear dependence of the chosen control criteria on the pressure applied to a sample and to an increase in the sensitivity of the criteria to the applied load.

  2. Dynamic stability of simply supported composite cylindrical shells under partial axial loading

    NASA Astrophysics Data System (ADS)

    Dey, Tanish; Ramachandra, L. S.

    2015-09-01

    The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.

  3. Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Sharba, M. J.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Hanim, M. A. A.

    2015-12-01

    The aim of this work is to investigate the effect of hybridization of kenaf-glass fibers reinforced unsaturated polyester on fatigue life. Three types of composites were fabricated using hands lay-up method, namely, kenaf, glass, and hybrid composites with 30% of weight fraction, the hybrid was mixed with a ratio of kenaf: glass 10:20. Monotonic tests were achieved (Tensile and compression) to determine the fatigue stress levels. Fully reversed fatigue loading was conducted with a stress ratio of -1 and stress levels 55-85% of the ultimate static stresses, all tests were conducted at 10 Hz of frequency. The results proof a positive hybrid composite; also agree with the rule of mixture that can predict the final composite properties. Moreover, it's been observed an improvement in overall mechanical properties of hybrid compared to individual ones.

  4. Meshless Analysis of Laminated Composite and Sandwich Plates Subjected to Various Types of Loads

    NASA Astrophysics Data System (ADS)

    Singh, Jeeoot; Singh, Sandeep; Shukla, K. K.

    2014-03-01

    The bending analysis of laminated composite and sandwich plates using different radial basis functions and higher-order shear deformation theory is presented. This meshfree technique is insensitive to spatial dimension and considers only a cloud of nodes (centers) for the spatial discretization of both the problem domain and the boundary. Numerical results for simply supported isotropic, symmetric cross-ply composite and sandwich plate are presented. The results are compared with other available results. It is observed that convergence of the polynomial function is faster as compared to other radial basis functions, whereas Gaussian function takes the least solution time. The effect of various types of loadings on sandwich plate is presented.

  5. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  6. Optimum Design of Composite Sandwich Structures Subjected to Combined Torsion and Bending Loads

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Li, Gangyan; Wang, Chun H.; You, Min

    2012-06-01

    This research is motivated by the increase use of composite sandwich structures in a wide range of industries such as automotive, aerospace and civil infrastructure. To maximise stiffness at minimum weight, the paper develops a minimum weight optimization method for sandwich structure under combined torsion and bending loads. We first extend the minimum-weight design of sandwich structures under bending load to the case of torsional deformation and then present optimum solutions for the combined requirements of both bending and torsional stiffness. Three design cases are identified for a sandwich structure required to meet multiple design constraints of torsion and bending stiffness. The optimum solutions for all three cases are derived. To illustrate the newly developed optimum design solutions, numerical examples are presented for sandwich structures made of either isotropic face skins or orthotropic composite face skins.

  7. Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.

    2001-01-01

    Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.

  8. Optimization of coating diameter of fiber optic sensors embedded in composite structures under arbitrary loading conditions

    NASA Astrophysics Data System (ADS)

    Lammens, Nicolas; Luyckx, Geert; Voet, Eli; van Paepegem, Wim; Degrieck, Joris

    2015-11-01

    Due to mismatches in size and material properties, optical fiber (OF) sensors act as inclusions when embedded in composite hosts. The resulting stress concentrations surrounding the OF sensor may lead to premature failure of the host structure. In this work, a novel technique is presented to determine optimal coating properties for OF sensors embedded in composite structures in order to minimize stress concentrations surrounding these sensors. The method is validated against methodologies available in literature and is shown to produce identical results under these specific circumstances. Compared to the methods in literature, the proposed method is significantly more flexible as it allows the optimization of the coating for any arbitrary load condition. The results of the computations can be reused for any load case in the given combination of host and coating material, reducing the computations to a one time effort for a specific combination of host and coating.

  9. Preparation and characterization of hydrophilic composites AA/EPMA loaded with hydroxyapatite.

    PubMed

    Campos, Yaima; Fuentes, Gastón; Delgado, José A; Almirall, Amisel

    2013-12-01

    Copolymeric composites of acrylamide (AA) and 2,3-epoxypropyl methacrylate (EPMA) with hydroxyapatite (HA) load were studied. Swelling studies reports an anomalous or non-Fickian behavior following a good fitting to a pseudo second order mathematical treatment (α = 0.05, p < 0.0001). The composites showed a strong dependence on pH, related with the variations in the swelling behavior. The addition of load induces a diminution of swelling capacity and an increase of diametric tensile strength (DTS) ranging between 20 and 90 kPa. The calorimetric experiments showed two steps at 78°C and 255°C assigned to water loss and samples Tg. The drug control released was adjusted to a two-term equation obtaining a diffusion coefficient around 10(-5) cm(2) /s. The samples showed a significant bioactivity in vitro and it was certified by SEM, EDS and surface area calculus. PMID:23982885

  10. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  11. The development of theoretical relationships between some handling parameters (setting time and setting temperature), composition (relative amounts of initiator and activator) and ambient temperature for acrylic bone cement.

    PubMed

    Milner, Richard

    2004-02-15

    Commercially available acrylic bone cements are two-component systems based on the polymerization of methyl methacrylate around poly(methyl methacrylate) particles. When benzoyl peroxide (BPO), which is the initiator, in the powder component meets accelerator (N,N-dimethyl-p-toluidine (DMpT)) in the liquid component, radicals are produced, initiating the polymerization. This solidifies the cement. In this work, kinetic expressions have been developed that describe the relationship between bone cement setting time on the one hand, and BPO and DMpT concentrations on the other. Changes in setting time with ambient temperature follow a complex relationship, because both the polymerization process (initiation, propagation, and termination) and the swelling and dissolution of the polymer particles contribute to setting. The contribution of polymer swelling and dissolution to the setting process was determined by developing a relationship between the doughing time, which is substantially independent of DMpT or BPO concentrations, and ambient temperature. A value of 64 kJ mol(-1) was found for the activation energy for this process. An activation energy for the overall setting process of 68 kJ mol(-1) was determined from setting-time measurements over several ambient temperatures. This indicates that the sensitivity of setting time to temperature depends more on swelling and dissolution than on the polymerization process. PMID:14737766

  12. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  13. Damage and failure behavior of metal matrix composites under biaxial loads

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  14. Investigation and characterization of constraint effects on flaw growth during fatigue loading of composite materials

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Reifsnider, K. L.; Yeung, P.; Gibbins, M. N.

    1979-01-01

    An investigative program is presented in an attempt to add to the current understanding of constraint effects on the response of composite materials under cyclic loading. The objectives were: (1) to use existing data and to develop additional data in order to establish an understanding and quantitative description of flaw growth in unidirectional lamina under cyclic loading at different load direction to fiber direction angles; (2) to establish a similar understanding and description of flaw growth in lamina which are embedded in laminates between other unflawed lamina; (3) to determine the nature of the influence of constraint on flaw growth by quantitatively comparing the results of the tests; and (4) to develop a model and philosophy of constraints effects based on our investigative results.

  15. Structural effects of three-dimensional angle-interlock woven composite undergoing bending cyclic loading

    NASA Astrophysics Data System (ADS)

    Jin, LiMin; Yao, Yao; Yu, YiMin; Rotich, Gideon; Sun, BaoZhong; Gu, BoHong

    2014-03-01

    This paper reports the structural effects of three-dimensional (3-D) angle-interlock woven composite (3DAWC) undergoing three-point bending cyclic loading from experimental and finite element analysis (FEA) approaches. In experiment, the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies. By the FEA approach, a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage. The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties. In addition, the stress distribution, fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.

  16. Predicting the residual strength of open-hole (OH) composite specimens subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Ceparano, Angelo; Dell'Aversano, Raffaella

    2016-05-01

    A procedure is reported that allows the prediction of the fatigue life and the residual strength of "open hole" composite specimens subjected to constant amplitude cyclic loadings. Based on a two-parameter phenomenological model explicitly accounting for the maximum applied stress, σmax, and the stress ratio, R, the procedure relies on a relatively small set of experimental fatigue life data. The approach reliability is checked in predicting the fatigue life and residual strength of AS4 carbon/epoxy 3k/E7K8 Plain Weave Fabric "open-hole" (OH) samples subjected to a very broad loading conditions from prevailing tension (R=0 and R=-0.2) to compression (R=5) to mixed tension/compression (R=-1) loadings.

  17. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites

    PubMed Central

    Mortazavi, Vajihesadat; Atai, Mohammad; Fathi, Mohammadhossein; Keshavarzi, Solmaz; Khalighinejad, Navid; Badrian, Hamid

    2012-01-01

    Background: Flexural strength of prosthesis made with dental composite resin materials plays an important role in their survival. The aim of this study was investigating the effect of nanoclay fillers and Poly (methyl methacrylate)-grafted (PMMA-grafted) nanoclay fillers loading on the flexural strength of fiber-reinforced composites (FRCs). Materials and Methods: Standard FRC bars (2 × 2 × 25 mm) for flexural strength testing were prepared with E-glass fibers and a synthetic resin loaded with different quantities of unmodified nanoclay and PMMA-grafted nanoclay filler particles (0% as control group, 0.2%, 0.5%, 1%, 2%, 5%). Flexural strength and flexural modulus were determined. The data were analyzed using 2-way, 1-way ANOVA and post hoc Tukey's test (α = 0.05). The fracture surfaces were evaluated by Scanning Electron Microscopy. Results: For groups with the same concentration of nanoparticles, PMMA-grafted filler-loaded group showed significantly higher flexural strength, except for 0.2% wt. For groups that contain PMMA-grafted nanoclay fillers, the 2% wt had the highest flexural strength value with significant difference to other subgroups. 1% wt and 2% wt showed significantly higher values compared to control (P < 0.05). None of the unmodified nanoclay particles loaded group represented statistically higher values of flexural strength compared to control group (P > 0.05). Flexural modulus of 2%, 5% wt PMMA-grafted and 0.5%, 1%, 2%, 5% wt unmodified nanoclay particles-loaded subgroups decreased significantly compared to control group (P < 0.05). Conclusions: PMMA-grafted nanoclay filler loading may enhance the flexural strength of FRCs. Addition of unmodified nanoparticles cannot significantly improve the flexural strength of FRCs. Addition of both unmodified and PMMA-grafted nanoclay particles in some concentrations decreased the flexural modulus. PMID:23087731

  18. Effect of Molecular Weight on Load Transfer in Nanotube / Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mu, Minfang; Du, Fangming; Haggenmueller, Reto; Winey, Karen

    2006-03-01

    The tensile moduli of nanocomposite fibers are being investigated with attention to the molecular weight of the polymer. Nanocomposites composed of single wall carbon nanotube (SWNT) and poly(methyl methacrylate) (PMMA) were prepared by our coagulation method and processed into composite fibers using melt fiber spinning. SWNT in the fibers are aligned and the nanotube - nanotube interactions are diminished, so that, the mechanical load on SWNT is mainly from polymer - SWNT interactions. The tensile moduli along the direction parallel to the SWNT were characterized at 1.0 mm / sec with the fiber length of 25.4 mm. At a weight-average molecular weight (Mw) 25 kDa, the tensile moduli of PMMA are the same with the composites. However, when the Mw is increased to 100kDa, the tensile moduli are improved greatly by adding SWNT. This indicates that the load in the composites is transferred to the SWNT more efficiently at 100 kDa molecular weight. A micromechanics model was used to relate the elastic shear stress on the polymer - SWNT interface to the polymer chain length. It showed that with increasing polymer chain length, the interfacial shear stress was enhanced. This study demonstrates the importance of the molecular weight of the polymer matrix to the load transfer in nanocomposites.

  19. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  20. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Cheng, Ron-Bin; Hsu, Su-Yuen

    2012-01-01

    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  1. Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2000-01-01

    The results of an experimental and numerical study of the effects of imperfections on the buckling response of unstiffened thin-walled composite cylindrical shells are presented. Results that identify the individual and combined effects of traditional initial geometric shell-wall imperfections and non-traditional shell-wall thickness variations, shell-end geometric imperfections and variations in loads applied to the ends of the shells on the shell buckling response are included. In addition, results illustrating the effects of manufacturing flaws in the form of gaps between adjacent pieces of graphite-epoxy tape in some of the laminate plies are presented in detail. The shells have been analyzed with a nonlinear finite-element analysis code that accurately accounts for these effects on the buckling and nonlinear responses of the shells. The numerical results indicate that traditional and nontraditional initial imperfections can cause a significant reduction in the buckling load of a compression-loaded composite shell. Furthermore, the results indicate that the imperfections couple in a nonlinear manner. The numerical results correlate well with the experimental results. The nonlinear analysis results are also compared to the results from a traditional linear bifurcation buckling analysis. The results suggest that the nonlinear analysis procedure can be used for determining accurate, high-fidelity design knockdown factors for shell buckling and collapse. The results can also be used to determine the effects of manufacturing tolerances on the buckling response of composite shells.

  2. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Wu, Guojian; Ruan, Cong; Zhou, Qi; Wang, Yan; Doherty, Winston; Xie, Kui; Wu, Yucheng

    2014-05-01

    The use of composite electrodes based on La0.7Sr0.3VO3 (LSV) for steam electrolysis has uncovered the tremendous potential and capacity inherent in this material. Unfortunately, this material has a major setback of inefficient electrolysis triggered by limited electrocatalytic activity. In this work, an infiltration method is employed to load catalytic-active metal nanoparticles onto the composite electrodes in order to achieve an activity-enhanced electrode performance. The electrical properties of LSV are methodically explored and correlated to electrode performance. At 800 °C in either pure H2 or low hydrogen partial pressure (pH2) of 5%H2/N2, the polarization resistance of symmetrical cells with Ni-loaded LSV (LSV-Ni) cathode is largely enhanced, in contrast to bare LSV cathode. Similar improvement is also achieved for the Fe-loaded LSV (LSV-Fe) cathode in a wide range of hydrogen partial pressures of 5%-100%. The Faraday efficiencies of LSV-Ni and LSV-Fe composite cathodes were remarkably improved for electrolysis in either 3%H2O/4.7H2/Ar or 3%H2O/Ar at 800 °C.

  3. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    NASA Astrophysics Data System (ADS)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  4. Transient Dynamic Response and Failure of Sandwich Composite Structures under Impact Loading with Fluid Structure Interaction

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Violette, M. A.; McCrillis, R. D.; Didoszak, J. M.

    2012-12-01

    The objective of this study is to examine the Fluid Structure Interaction (FSI) effect on transient dynamic response and failure of sandwich composite structures under impact loading. The primary sandwich composite used in this study consisted of a 6.35 mm balsa core and a multi-ply symmetrical plain weave 6 oz E-glass skin. Both clamped sandwich composite plates and beams were studied using a uniquely designed vertical drop-weight testing machine. There were three impact conditions on which these experiments focused. The first of these conditions was completely dry (or air surrounded) testing. The second condition was completely water submerged. The final condition was also a water submerged test with air support at the backside of the plates. The tests were conducted sequentially, progressing from a low to high drop height to determine the onset and spread of damage to the sandwich composite when impacted with the test machine. The study showed the FSI effect on sandwich composite structures is very critical such that impact force, strain response, and damage size are generally much greater with FSI under the same impact condition. As a result, damage initiates at much lower impact energy conditions with the effect of FSI. Neglecting to account for FSI effects on sandwich composite structures results in very non-conservative analysis and design. Additionally, it was observed that the damage location changed for sandwich composite beams with the effect of FSI.

  5. Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1993-01-01

    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the

  6. Determination of load sequence effects on the degradation and failure of composite materials. [Graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1981-01-01

    A theoretical model was established to predict the fatigue behavior of composite materials, with emphasis placed on predictions of the degradation of residual strength and residual stiffness during fatigue cycling. The model parameters were evaluated from three test series including static strength fatigue life and residual strength tests. The tests were applied to two graphite/epoxy laminates. Load sequence effects were emphasized for both laminates and the predicted results agreed quite well with subsequent verification tests. Dynamic as well as static stiffness reduction data were collected by use of a PDP11-03 computer, which performed quite satisfactorily and permitted the recording of a substantial amount of dynamic stiffness reduction data.

  7. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    NASA Astrophysics Data System (ADS)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  8. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions. PMID:27078740

  9. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.

  10. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  11. Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading

    NASA Astrophysics Data System (ADS)

    Pandey, Akash; Arockiarajan, A.

    2016-04-01

    Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.

  12. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  13. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  14. Characterisation of a metallic foam-cement composite under selected loading conditions.

    PubMed

    Tozzi, Gianluca; Zhang, Qing-Hang; Lupton, Colin; Tong, Jie; Guillen, Teodolito; Ohrndorf, Arne; Christ, Hans-Jurgen

    2013-11-01

    An open-cell metallic foam was employed as an analogue material for human trabecular bone to interface with polymethyl methacrylate (PMMA) bone cement to produce composite foam-cement interface specimens. The stress-displacement curves of the specimens were obtained experimentally under tension, shear, mixed tension and shear (mixed-mode), and step-wise compression loadings. In addition, under step-wise compression, an image-guided failure assessment (IGFA) was used to monitor the evolution of micro-damage of the interface. Microcomputed tomography (µCT) images were used to build a subject-specific model, which was then used to perform finite element (FE) analysis under tension, shear and compression. For tension-shear loading conditions, the strengths of the interface specimens were found to increase with the increase of the loading angle reaching the maximum under shear loading condition, and the results compare reasonably well with those from bone-cement interface. Under compression, however, the mechanical strength measured from the foam-cement interface is much lower than that from bone-cement interface. Furthermore, load transfer between the foam and the cement appears to be poor under both tension and compression, hence the use of the foam should be discouraged as a bone analogue material for cement fixation studies in joint replacements. PMID:23846838

  15. Dynamic Fracture of Nanocomposites and Response of Fiber Composite Panels to Shock Loading

    NASA Astrophysics Data System (ADS)

    Shukla, Arun

    2009-06-01

    This lecture will present studies on the response of novel engineering materials to extreme dynamic loadings. In particular, the talk will focus on the behavior of sandwich composite materials to shock loading and dynamic fracture of nano-composite materials. Results from an experimental study on the response of sandwich materials to controlled blast loading will be presented. In this study, a shock tube facility was utilized to apply blast loading to simply supported plates of E-glass vinyl ester/PVC foam sandwich composite materials. Pressure sensors were mounted at the end of the muzzle section of the shock tube to measure the incident pressure and the reflected pressure profiles during the experiment. A high speed digital camera was utilized to capture the real time side deformation of the materials, as well as the development and progression of damage. Macroscopic and microscopic examination was then implemented to study the post-mortem damage. Conclusions on the relative performance of sandwich composites under blast loadings will also be discussed. Results from an experimental investigation conducted to evaluate the mechanical properties of novel materials fabricated using nano sized particles in polymer matrix will also be presented. Unsaturated polyester resin specimens embedded with small loadings of nano sized particles of TiO2 and Al2O3 were fabricated using a direct ultrasonification method to study the effects of nanosized particles on nanocomposite fracture properties. The ultrasonification method employed produced nanocomposites with excellent particle dispersion as verified by TEM. Experiments were conducted to investigate the dynamic crack initiation and rapid crack propagation in theses particle reinforced materials. High-speed digital imaging was employed along with dynamic photoelasticity to obtain real time, full-field quantification of the stress field associated with the dynamic fracture process. Birefringent coatings were used to conduct

  16. The deformation response of three-dimensional woven composites subjected to high rates of loading

    NASA Astrophysics Data System (ADS)

    Pankow, Mark Robert

    The use of polymer matrix composites is widespread, with development in automotive, aerospace and recreational equipment. These applications have produced loading scenarios which are unfamiliar and not well understood. Several applications involve impact loading, which produces large strain rates and delamination failure. New manufacturing methods have led to three dimensional (3D) weave geometries that provide composites with damage protection. This is accomplished through elimination of delamination, and localizing the extent of damage. The present work is a combined experimental and computational study aimed at developing a mechanism based deformation response model for 3D woven composites, including the prediction of failure strengths at high loading rates. Three unique experimental configurations have been developed; along with finite element based simulations to predict the material response and failure mechanisms that are experimentally observed. End Notch Flexure (ENF) tests were used to determine the effectiveness of the Z-fiber at resisting crack propagation. The crack propagation was found to have rate dependent properties, with architecture based parameters required to predict the strength and resistance. The computational results reinforced the experimental observations. A new FE implementation captured the effectiveness of the Z-fiber reinforcement bridging the growing crack. Shock impact testing was performed to simulate the effects of blast loading on the material. New experimental measurement methods were utilized to record the deformations and strains which led to observations of matrix micro-cracking, the first failure mode. Computational models were developed to predict the material behavior subjected to shock loading, including matrix micro-cracking, which was predicted accurately. Finally, split Hopkinson pressure bar (SHPB) testing was done to understand the high strain rate behavior of the material in compression in all three directions. The

  17. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  18. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption.

    PubMed

    Zhong, Jun; Ji, Hua; Duan, Jiang; Tu, Haiyang; Zhang, Aidong

    2016-04-01

    This work aims at developing versatile low-biofouling polymeric coatings by using acrylic terpolymers (DOFs) that bear pendant catechol (D), oligo(ethylene glycol) (O), and perfluoroalkyl (F) groups in varying ratios. The polymers were endowed with the ability to form firmly coatings on virtually any surfaces and undergo surface microphase separation and self-assembly, as revealed by the surface enrichment of F pendants and the morphology variation from irregular solid domains to discrete crater-type aggregates of different size. The effect on protein adsorption was investigated using bovine serum albumin (BSA) and adhesive fibrinogen (Fib) as model proteins. The coating of DOF164 (low F content), which has morphology of discrete crater-type aggregates of ∼ 400 nm in size, adsorbed a least amount of protein but with a highest protein unit activity as determined by SPR and immunosorbent assay; whereas the coating of DOF1612 (high F content) showed a 12.3-fold higher adsorption capacity toward Fib. Interestingly, a 2.2-fold lower adsorption amount but with a 1.8-fold higher unit activity was found for Fib adsorbed on the DOF164 surface than on DOF250 (without F fraction), whose OEG segments being a widely recognized protein compatible material. The features of the DOF164 terpolymer presenting a robust coating ability and a minimal protein adsorption capacity while with a high protein unit activity suggest its potential application as a non-fouling surface-modifier for medical antifouling coatings and as a matrix material for selective protein immobilization and activity preservation in biosensor construction. PMID:26764109

  19. Effect of Piezoelectric Implant on the Structural Integrity of Composite Laminates Subjected to Tensile Loads

    NASA Astrophysics Data System (ADS)

    Masmoudi, Sahir; El Mahi, Abderrahim; Turki, Saïd

    2016-07-01

    The embedment of sensors within composite structures gives the opportunity to develop smart materials for health and usage monitoring systems. This study investigates the use of acoustic emission monitoring with embedded piezoelectric sensor during mechanical tests in order to identify the effects of introducing the sensor into the composite materials. The composite specimen with and without embedded sensor were subject to tensile static and fatigue loading. The analysis and observation of AE signals show that the integration of a sensor presents advantage of the detection of the acoustic events and also show the presence of three or four types of damage during tests. The incorporation of piezoelectric sensor has a negligible influence on the mechanical properties of materials.

  20. Nonlinear Viscoelastic Response of Unidirectional Polymeric Laminated Composite Plates Under Bending Loads

    NASA Astrophysics Data System (ADS)

    Falahatgar, S. R.; Salehi, Manouchehr

    2011-12-01

    Nonlinear bending analysis of polymeric laminated composite plate is examined considering material nonlinearity for viscoelastic matrix material through a Micro-macro approach. The micromechanical Simplified Unit Cell Method (SUCM) in three-dimensional closed-form solution is used for the overall behavior of the unidirectional composite in any combination of loading conditions. The elastic fibers are transversely isotropic where Schapery single integral equation in multiaxial stress state describes the matrix material by recursive-iterative formulation. The finite difference Dynamic Relaxation (DR) method is utilized to study the bending behavior of Mindlin annular sector plate including geometric nonlinearity under uniform lateral pressure with clamped and hinged edge constraints. The unsymmetrical laminated plate deflection is predicted for different thicknesses and also various pressures in different time steps and they are compared with elastic finite element results. As a main objective, the deflection results of viscoelastic laminated sector plate are obtained for various fiber volume fractions in the composite system.

  1. Effect of Cyclic Thermal Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Technological solutions that will ensure the economic viability and environmental compatibility of a future High Speed Civil Transport plane are currently being sought. Lighter structural materials for both airframe primary structures and engine structure components are being investigated. We believe that such objectives can be achieved through the use of high-temperature composites as well as other conventional, lighter weight alloys. One of the prime issues for these structural components is assured long-term behavior with a specified reliability. An investigation was conducted to describe a computational simulation methodology for predicting fatigue life, reliability, and probabilistic long-term behavior of polymer matrix composites. A unified time-, stress-, and load-dependent Multi- Factor Interaction Equation (MFIE) model developed at the NASA Lewis Research Center was used to simulate the long-term behavior of polymer matrix composites.

  2. Models for predicting damage evolution in metal matrix composites subjected to cyclic loading

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-03-01

    A thermomechanical analysis of a continuous fiber metal matrix composite (MMC) subjected to cyclic loading is performed herein. The analysis includes the effects of processing induced residual thermal stresses, matrix inelasticity, and interface cracking. Due to these complexities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modelled with a rate dependent viscoplasticity model. Interface fracture is modelled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue. Results indicate rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for damage propagation, thus contributing to improved ductility of the composite. Results also indicate that the model may be useful for inclusion in life prediction methodologies for MMC`s.

  3. Achieving highly dispersed nanofibres at high loading in carbon nanofibre-metal composites

    NASA Astrophysics Data System (ADS)

    Kang, Jianli; Nash, Philip; Li, Jiajun; Shi, Chunsheng; Zhao, Naiqin

    2009-06-01

    In order to tap into the advantages of the properties of carbon nanotubes (CNTs) or carbon nanofibres (CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. In the current work, a novel approach, consisting of in situ synthesis of CNFs within the Cu powders and mixing Cu ions with the in situ CNF(Ni/Y)-Cu composite powders in a solvent, was developed to highly disperse CNFs in a Cu matrix. The composite, produced by vacuum hot pressing, shows extremely high strength, 3.6 times more than that of the matrix material alone. It is worth mentioning that this method can disperse CNFs at high loading in a metal matrix, inferring good potential for applications, such as electronic packaging materials.

  4. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  5. Effect of cyclic high loading rates on the fatigue strength of aluminum-based composites

    NASA Astrophysics Data System (ADS)

    Calderon Arteaga, Hermes Eskander

    The study of fatigue under high loading rates is of great interest in the complete characterization of a new series of composites with Al-Cu-Mg matrix reinforced with AlB2 dispersoids. Homogeneous and functionally graded composites were prepared via gravity and centrifugal casting, respectively. Through centrifugal casting a gradual variation of the volume fraction of reinforcing particles along the cross section was obtained. In specific fabrication conditions, even complete segregation of the reinforcement particles was achieved. Charpy impact tests as well as hardness tests were conducted to assess the composite strength as a function of the weight percent of boron. The tensile properties of gravity cast samples were obtained. Then for both casting conditions, simple edge-notched bend SE(B) specimens were tested under fatigue conditions (three-point bending). The results from impact and hardness tests allowed identifying an interaction between the Mg dissolved in the matrix and the diborides. This interaction, which has never been reported before, was responsible for the strength reduction observed. It was assumed that a substitutional diffusion of Al by Mg atoms in the hp3 structure of diboride was causing the strength reduction, and three approaches were developed to estimate the amount of Mg depleted from the matrix by the diborides during the composite processing. Gravity cast samples were more sensitive to monotonic damage due to fatigue loads where compared with functionally-graded composites. Contrary to the centrifugal cast samples, gravity samples were also affected by the loading rate. The Mg-AlB2 interaction was also responsible for the reduction in the fatigue resistance as the weight percent of boron increased in both types of composites; regression models were obtained to predict the crack growth curve slope change as function of the boron level. The particle distribution showed to affect the crack growth behavior of the FGMs, decreasing the

  6. Preparation and properties of acrylic resin coating modified by functional graphene oxide

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Liu, Lili

    2016-04-01

    To improve the dispersion and the strength of filler-matrix interface in acrylic resin, the functional graphene oxide (FGO) was obtained by surface modification of graphene oxide (GO) by γ-methacryloxypropyl trimethoxysilane (KH-570) and then the acrylic nanocomposites containing different loadings of GO and FGO were prepared. The structure, morphology and dispersion/exfoliation of the FGO were characterized by XRD, FT-IR, Raman, XPS, SEM and TEM. The results demonstrated that the KH-570 was successfully grafted onto the surface of GO sheets. Furthermore, the corresponding thermal, mechanical and chemical resistance properties of the acrylic nanocomposites filled with the FGO were studied and compared with those of neat acrylic and GO/acrylic nanocomposites. The results revealed that the loading of FGO effectively enhanced various properties of acrylic resin. These findings confirmed that the dispersion and interfacial interaction were greatly improved by incorporation of FGO, which might be the result of covalent bonds between the FGO and the acrylic matrix. This work demonstrates an in situ polymerization method to construct a flexible interphase structure, strong interfacial interaction and good dispersion of FGO in acrylic nanocomposites, which can reinforce the polymer properties and be applied in research and industrial areas.

  7. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  8. The stiffness of bone marrow cell-knit composites is increased during mechanical load.

    PubMed

    Bruinink, A; Siragusano, D; Ettel, G; Brandsberg, T; Brandsberg, F; Petitmermet, M; Müller, B; Mayer, J; Wintermantel, E

    2001-12-01

    A novel device for mechanical stimulation of primary adult rat bone marrow cells cultured on three-dimensional knitted textiles has been prototyped. A method has been developed ensuring a well-defined, high-density, and reproducible cell seeding on the knitted fabric. After culturing for 18-52 days the cell-knit composites were subjected to uniaxial 2% stretching and relaxation. The frequency was altered between 0.1 Hz (196 min, loading phase) and 0.01 Hz (360 min, resting phase). Identically treated knits without cells exhibited a slight stiffness reduction, whereas the stiffness of knits with cells increased from cycle to cycle. The stiffness increase was found to depend on the duration of the culture period before mechanical loading. Our data suggest that the extracellular matrix deposited by the cells on the knit and intact microtubuli of living cells cause the observed stiffness increase. In comparison to the unstrained static cell-knit composites cell proliferation and bone cell differentiation were reduced by the mechanical load. PMID:11603589

  9. Influence of surface preparation on fracture load of resin composite-based repairs

    PubMed Central

    Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-01-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering. PMID:25810848

  10. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites.

    PubMed

    Li, Hanwen; Gu, Jisheng; Shah, Luqman Ali; Siddiq, Mohammad; Hu, Jianhua; Cai, Xiaobing; Yang, Dong

    2015-04-01

    A novel bone cement pellet, with sustained release of vancomycin (VAN), was prepared by mixing VAN loaded mesoporous silica nanoparticle (MSN) and calcium sulfate α-hemihydrate (CS) together. To improve the VAN loading ability, MSN was functionalized with aminopropyltriethoxysilane (APS) to give APS-MSN. The VAN loading content and entrapment efficiency of APS-MSN could reach up to 45.91±0.81% and 84.88±1.52%, respectively, much higher than those of MSN, which were only 3.91% and 4.07%, respectively. The nitrogen adsorption-desorption measurement results demonstrated that most of the VAN were in the pores of APS-MSN. The CS/VAN@APS-MSN composite pellet showed a strongly drug sustained release effect in comparison with CS control pellet. The in vitro cell assays demonstrated that CS/APS-MSN composite was highly biocompatible and suitable to use as bone cement. Furthermore, CS/VAN@APS-MSN pellet showed no pyrogenic effect and meet the clinical requirements on hemolytic reaction. These results imply that CS/VAN@APS-MSN was an ideal candidate to replace CS bone cement in the treatment of open fractures. PMID:25686941

  11. Aeroelastic response and blade loads of a composite rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  12. Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading

    NASA Astrophysics Data System (ADS)

    Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.

    1996-05-01

    The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.

  13. Electrical and thermal response of carbon nanotube composites under quasi-static and dynamic loading

    NASA Astrophysics Data System (ADS)

    O'Connell, Christopher D.

    Carbon nanotube (CNT) composites have attracted much interest due to their possible technical applications as conductive polymers and sensory materials. This study will consist of two major objectives: 1.) to investigate the thermal conductivity and thermal response of multi-wall carbon nanotube (MWCNT) composites under quasi-static loading, and 2.) to investigate the electrical response of carboxyl-terminated butadiene (CTBN) rubber-reinforced MWCNT/Epoxy composites under quasi-static and dynamic loading. Similar studies have shown that the electrical conductivity of CNT/Epoxy composites dramatically increases with compressive strains up to 15%. Part 1 seeks to find out if thermal conductivity show a similar response to electrical conductivity under an applied load. Part 2 seeks to investigate how the addition of rubber affects the mechanical and electrical response of the composite subjected to quasi-static and dynamic loading. By knowing how thermal and electrical properties change under a given applied strain, we attempt to broaden the breadth of understanding of CNT/epoxy composites and inqure the microscopic interactions occurring between the two. Electrical experiments sought to investigate the electrical response of rubber-reinforced carbon nanotube epoxy composites under quasi-static and dynamic loading. Specimens were fabricated with CTBN rubber content of 10 parts per hundredth resin (phr), 20 phr, 30 phr and 0 phr for a basis comparison. Both quasi-static and dynamic mechanical response showed a consistent decrease in peak stress and Young's modulus with increasing rubber content. Trends in the electrical response between each case were clearly observed with peak resistance changes ranging from 58% to 73% and with each peak occurring at a higher value with increasing rubber content, with the exception of the rubber-free specimens. It was concluded that among the rubber-embedded specimens, the addition of rubber helped to delay micro-cracking and

  14. Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Shevade, A. V.; Ryan, M. A.

    2003-01-01

    We report the effect of environmental condtions coupled with varying polymer properties and carbon loadings on the performance of polymer-carbon black composite film, used as sensing medium in the JPL Electronic Nose.

  15. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.

    2007-01-01

    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  16. Improvements to a method for the geometrically nonlinear analysis of compressively loaded stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick

    1993-01-01

    The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.

  17. Characterization of static- and fatigue-loaded carbon composites by X-ray CT

    SciTech Connect

    Savona, V.; Martz, H.E.; Brand, H.R.; Groves, S.E.; DeTeresa, S.J.

    1995-08-31

    The development and improvement of advanced materials is strictly connected to the understanding of the properties and behavior of such materials as a function of both their macro and micro-structures. The application of X-ray computed tomography (CT) to these materials allows for a better understanding of the materials properties and behavior on either macro or micro-structure scales. The authors applied CT to study a set of aerospace grade carbon fiber/thermoplastic matrix composites. Samples of APC-2 (PEEK/AS4) were subjected to either static or high-stress fatigue loading in tension. Both notched (central circular hole) and unnotched specimens were examined. They are investigating a high-temperature thermoplastic polyimide composite sample by acquiring CT data sets before, during (at set intervals), and after full-reversal (tension-compression), low-stress fatigue loading at the upper use temperature. The CT scanner employed and the results obtained in the analysis of 3D CT data sets to study the defects and other features within the different composites are presented in this report.

  18. Tribological Performance of NiAl Self-lubricating Matrix Composite with Addition of Graphene at Different Loads

    NASA Astrophysics Data System (ADS)

    Xiao, Yecheng; Shi, Xiaoliang; Zhai, Wenzheng; Yao, Jie; Xu, Zengshi; Chen, Long; Zhu, Qingshuai

    2015-08-01

    This research was carried out on the beneficial effect of graphene additive in self-lubricating composites for use at different loads of tribological application. The dry friction and wear behaviors of NiAl self-lubricating matrix composite with graphene (NSMG) were investigated at different loads at room temperature. Finite element method served as aided method to analyze the stress condition of contact pair, which would provide another perspective to comprehend the relationship between tribological behaviors and different degrees of load-induced deformation. In the load range of 2-16 N, the results indicated that NSMG showed excellent tribological performance at load of 16 N due to the formation of anti-friction tribo-film on the worn surface. Moreover, suitable load would lead to the contact situation transfer from multi-point contact to area contact, which could contribute to the beneficial effect on friction behavior of NSMG.

  19. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGESBeta

    Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; Cagın, T.; Goddard, III, W. A.

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  20. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    SciTech Connect

    Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; Cagın, T.; Goddard, III, W. A.

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. The CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.

  1. The behavior of elastic anisotropic laminated composite flat structures subjected to deterministic and random loadings

    NASA Technical Reports Server (NTRS)

    Librescu, Liviu

    1990-01-01

    Within this research project, the following topics were studied: (1) foundation of the refined theory of flat cross-ply laminated composite flat and curved panels as well as their static and dynamic response analysis; (2) foundation of a geometrically-nonlinear shear-deformable theory of composite laminated flat panels including the effect of initial geometric imperfections and its application in the postbuckling analysis; (3) the study of the dynamic response of shear deformable elastic laminated composite panels to deterministic time-dependent external excitations as the sonic boom and explosive blast type-loadings; (4) the study of the dynamic response of shear deformable elastic laminated composite panels to random excitation as e.g. the one produced by a jet noise or by any time-dependent external excitation whose characteristics are expressed in a statistical sense; and (5) the dynamic stability of fiber-reinforced composite flat panels whose materials (due to e.g. an ambient high temperature field) exhibit a time-dependent physical behavior.

  2. Optical performance of mesostructured composite silica film loaded with organic dye.

    PubMed

    Guli, Mina; Chen, Shijian; Zhang, Dingke; Li, Xiaotian; Yao, Jianxi; Chen, Lei; Xiao, Li

    2014-01-10

    A mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The composite film was characterized by x-ray diffraction, transmission electron microscopy, UV-Vis, photoluminescence (PL) spectra, and laser performance, and the results confirmed the existence of dyes in the channels of the silica film. A blue-shift and fluorescence property in the PL spectrum was observed from the composite film compared with that of dye molecules in C₂H₅OH solution. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=355  nm by a Nd:YAG pulsed laser. A narrower, higher peak was observed in emission spectra from the mesostructured composite silica film compared with the PL spectrum of dye in C₂H₅OH solution. There is a substantial reduction in the full width at half-maximum of the emitting light, which results in peaks with linewidths of 26 nm or more. This collapse of the emission spectrum is one of the signatures of the presence of amplified spontaneous emission. PMID:24514063

  3. Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2007-01-01

    Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.

  4. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  5. Composite load bearing outer skin for an arctic structure and a method for erecting same

    SciTech Connect

    Chen, J.; Birdy, J. N.; Watt, B. J.

    1985-08-27

    The load bearing outer skin contains an inner assembly and an outer assembly. Both the inner and outer assemblies include a skin plate member which is stiffened by stiffeners welded to one side of the skin plate member. The stiffeners are located at spaced intervals from each other and are disposed substantially perpendicular to the skin plate member. The inner and outer assembly are placed substantially parallel to each other to form a composite structure having an internal cavity defined by the inner and outer plates. The stiffeners of the inner assembly and the outer assembly are disposed in the cavity at a spaced relation to each other and extend partly into the cavity. A cementitious material substantially fills the cavity thereby completing the load bearing outer skin structure. The stiffeners may be flat steel plates or may have the profile of structural shapes such as angles or T's among others.

  6. Flexible impedance and capacitive tensile load Sensor based on CNT composite

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmad; Kh, S. Karimov; Farid, Touati

    2016-02-01

    In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube (CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N-1 and 1.8 N-1, respectively. Experimental results are compared with the simulated values, and they show that they are in reasonable agreement with each other.

  7. Damage Evolution in Composite Materials and Sandwich Structures Under Impulse Loading

    NASA Astrophysics Data System (ADS)

    Silva, Michael Lee

    Damage evolution in composite materials is a rather complex phenomenon. There are numerous failure modes in composite materials stemming from the interaction of the various constituent materials and the particular loading conditions. This thesis is concerned with investigating damage evolution in sandwich structures under repeated transient loading conditions associated with impulse loading due to hull slamming of high-speed marine craft. To fully understand the complex stress interactions, a full field technique to reveal stress or strain is required. Several full field techniques exist but are limited to materials with particular optical properties. A full field technique applicable to most materials is known as thermoelastic stress analysis (TSA) and reveals the variation in sum of principal stresses of a cyclically loaded sample by correlating the stresses to a small temperature change occurring at the loading frequency. Digital image correlation (DIC) is another noncontact full field technique that reveals the deformation field by tracking the motion of subsets of a random speckle pattern during the loading cycles. A novel experimental technique to aid in the study of damage progression that combines TSA and DIC simultaneously utilizing a single infrared camera is presented in this thesis. A technique to reliably perform DIC with an infrared (IR) camera is developed utilizing variable emissivity paint. The thermal data can then be corrected for rigid-body motion and deformation such that each pixel represents the same material point in all frames. TSA is then performed on this corrected data, reducing motion blur and increasing accuracy. This combined method with a single infrared camera has several advantages, including a straightforward experimental setup without the need to correct for geometric effects of two spatially separate cameras. Additionally, there is no need for external lighting in TSA as the measured electromagnetic radiation is emitted by the

  8. Interspecific mating in the Piriqueta caroliniana (Turneraceae) complex: effects of pollen load size and composition.

    PubMed

    Wang, J; Cruzan, M

    1998-08-01

    Two taxa of Piriqueta (P. caroliniana and P. viridis) form a broad hybrid zone that extends over much of the central Florida peninsula. We used genetic markers to examine the strength of the isolation barriers between these taxa and the patterns of mating at the initial stages of hybridization. Regression models were employed to analyze the effects of pollen load size and the proportions of intra- and interspecific pollen on the frequency of first-generation (F1) hybrid formation. Overall, the postpollination mating barriers between these two taxa were relatively weak. However, there were significant effects of pollen load composition and size on the patterns of hybridization in both taxa with frequency-dependent responses to composition in both taxa. The frequency of F1 hybrid formation was generally lower than expected based on the frequency of each pollen type on the stigma for P. caroliniana recipients. The lower frequencies of F1 seeds in this taxon were apparently due to a greater competitive ability for intraspecific pollen, since hybrid seed formation decreased with increasing pollen load size. Pollen from P. caroliniana donors was also competitively superior on P. viridis recipients, leading to higher than expected frequencies of hybrid seed formation. Pollen from P. caroliniana did suffer higher rates of pollen-tube attrition than intraspecific pollen on P. viridis recipients, so the frequency of hybrid seed formation would be lower when pellen load sizes were small. In general, reproductive isolation mechanisms were stronger in P. caroliniana, suggesting that introgression should occur into P. viridis when these taxa come into close contact. Comparison of these expected patterns of mating to the distribution of hybrid genotypes in Florida provides insights into the relative roles of mating and selection in the evolution of hybrid populations of Piriqueta. PMID:21685002

  9. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  10. Interpreting the "g" Loadings of Intelligence Test Composite Scores in Light of Spearman's Law of Diminishing Returns

    ERIC Educational Resources Information Center

    Reynolds, Matthew R.

    2013-01-01

    The linear loadings of intelligence test composite scores on a general factor ("g") have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the "g" loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of this study was to (a)…

  11. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  12. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.

  13. Design procedures for fiber composite structural components: Panels subjected to combined in-plane loads

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    Step by step procedures are described which can be used to design panels made from fiber composite angleplied laminates and subjected to combined in plane loads. The procedures are set up as a multistep sample design. Steps in the sample design procedure range from selection of the laminate configuration to the subsequent analyses required to check design requirements for: (1) displacement, (2) ply stresses, and (3) buckling. The sample design steps are supplemented with appropriate tabular and graphical data which can be used to expedite the design process.

  14. The effect of cyclic loading on the stiffness degradation of angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Whitworth, H. A.

    1984-01-01

    An experimental investigation has been conducted to determine the effect of cyclic loading on the stiffness degradation of composite laminates. Specimens were tested in tension-tension fatigue at a frequency of 10 Hz and a stress ratio of 0.1, over a wide range of stress levels. The laminate employed for this investigation was made of graphite/epoxy in an angle-ply (+ or - 35)2s orientation. During this investigation both static and dynamic stiffness reduction data were recorded during constant amplitude fatigue testing, and the results are presented in tabular and graphical form.

  15. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  16. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  17. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  18. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  19. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  20. ANISAP: A three-dimensional finite element program for laminated composites subjected to mechanical loading

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Mathison, S.; Herakovich, C. T.

    1986-01-01

    ANISAP is a 3-D finite element FORTRAN 77 computer code for linear elastic, small strain, analysis of laminated composites with arbitrary geometry including free edges and holes. Individual layers may be isotropic or transversely isotropic in material principal coordinates; individual layers may be rotated off-axis about a global z-axis. The laminate may be a hybrid. Three different isoparametric elements, variable order of gaussian integration, calculation of stresses at element boundaries, and loading by either nodal displacement of forces are included in the program capability. Post processing capability includes failure analysis using the tensor polynominal failure criterion.

  1. Description of the HiMAT Tailored composite structure and laboratory measured vehicle shape under load

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.

    1981-01-01

    The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.

  2. Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading

    NASA Astrophysics Data System (ADS)

    Wade, Bonnie

    different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure

  3. Effects of Nesting on Compression-Loaded 2-D Woven Textile Composites

    NASA Technical Reports Server (NTRS)

    Adams, Daniel OHare; Breiling, Kurtis B.; Verhulst, Mark A.

    1995-01-01

    Layer nesting was investigated in five harness satin weave textile composite laminates under static compression loading. Two carbon/epoxy material systems, AS4/3501-6 and IM7/8551-7A were considered. Laminates were fabricated with three idealized nesting cases: stacked, split-span and diagonal. Similar compression strength reductions due to the effects of idealized nesting were identified for each material. The diagonal nesting geometry produced the largest reduction in static strength when compared to the compression strength of a conventional textile composite. All three nesting cases produced reductions in strength and ultimate strain due to the effects of idealized nesting. Finite element results showed consistent strength reduction trends for the idealized nesting cases, however the magnitudes of compressive strengths were overpredicted.

  4. A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading

    NASA Technical Reports Server (NTRS)

    Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.

    2006-01-01

    A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.

  5. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  6. Failure of laminated composites at thickness discontinuities under complex loading and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Sangwook

    1998-12-01

    Failure initiation of laminated composites with discontinuous thickness is examined in terms of typical structural load description (tension, shear force and bending moment) rather than in terms of micromechanics considerations. Because transverse shear produced relatively small effects in failure initiation, results are presented as tension-bending interactions. Two loading frames were designed to apply moments and tension simultaneously. Four types of specimens of different stacking sequence were examined to determine failure initiation, and analyzed subsequently via a finite element analysis (ABAQUS). Depending on the stacking sequence across the interface of the step, two different failure modes are identified: For uni-directional fiber orientation across the interface in the tension direction, failure occurs through cracking and delamination which is governed by a fracture mechanics criterion. While the initiation strength for this failure mode is higher than for the cross-ply configurations, the residual strength after initiation is only marginally higher, providing virtually no margin of safety (10%). For cases involving cross-plies on either side of the interface, failure initiation occurs by matrix cracking, with a critical strain across the fibers providing a universal failure criterion. In these cases the residual load bearing capability was 30 to 45% higher than the failure initiation loads. The interaction between moment and tension at failure initiation is linear, an observation that does not hold for the delamination failure driven by crack propagation. It is found that all failures can be described in terms of a common fracture principle; the stress or strain criteria are interchangeable with the fracture energy computations, provided one allows for a range of values of associated fracture energies. Assuming that time dependent aspects of the failure process are not dominant, elevated temperatures did not change the general results of how bending

  7. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    PubMed

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers. PMID:6499426

  8. Failure mechanisms of notched laminated composites under compressive loading at room and elevated temperature

    NASA Astrophysics Data System (ADS)

    Ahn, Jung Hyun

    1999-10-01

    Understanding the mechanisms of failure of composite structures and developing mechanism based failure criteria are important considerations in designing structures made of composite materials. The compressive response of composite materials and structures has received considerable attention due to their significance in the aerospace industry and the complexity associated with compressive failure. Several competing failure mechanisms such as fiber instability, fiber/matrix interfacial failure, fiber microbuckling/kinking, delamination initiation and delamination buckling may become active in compressive loading. Environmental effect such as an elevated temperature can alter and affect these failure mechanisms. In this thesis, a micromechanics based finite element predictive model for notched strength of multidirectional laminates is presented. The in-situ shear response of the matrix, the fiber mechanical properties, the lay-up (stacking sequence) and fiber volume fraction serve as input to the model. The prediction of the model is found to match favorably with experimental data. The effect of ply angle and its influence on the failure mechanism are quantified and compared with a set of available experimental data. The present work is the first development of a non-empirical mechanics based failure prediction methodology for notched compressive strength of composite laminates. Both an experimental and an analytical study are presented herein.

  9. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears

    PubMed Central

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M.; Stenhouse, Gordon B.; Gänzle, Michael

    2011-01-01

    Background Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Methodology/Principal Findings Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. Conclusion This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens. PMID:22194798

  10. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  11. Elastic response of water-filled fiber composite tubes under shock wave loading

    SciTech Connect

    Perotti, Luigi E.; Deiterding, Ralf; Inaba, Kazuaki; Shepherd, Joseph E; Ortiz, Michael

    2013-01-01

    We experimentally and numerically investigate the response of fluid-filled filament-wound composite tubes subjected to axial shock wave loading in water. Our study focuses on the fluid structure interaction occurring when the shock wave in the fluid propagates parallel to the axis of the tube, creating pressure waves in the fluid coupled to flexural waves in the shell. The in-house-developed computational scheme couples an Eulerian fluid solver with a Lagrangian shell solver, which includes a new and simple material model to capture the response of fiber composites in finite kinematics. In the experiments and simulations we examine tubes with fiber winding angles equal to 45 and 60 , and we measure the precursor and primary wave speeds, hoop and longitudinal strains, and pressure. The experimental and computational results are in agreement, showing the validity of the computational scheme in complex fluid structure interaction problems involving fiber composite materials subjected to shock waves. The analyses of the measured quantities show the strong coupling of axial and hoop deformations and the significant effect of fiber winding angle on the composite tube response, which differs substantially from that of a metal tube in the same configuration.

  12. Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy (ALOX).

    SciTech Connect

    Montgomery, Stephen Tedford; Ahn, Sung K. (Washington State University, Pullman, WA); Lee, Moo Yul

    2006-02-01

    Detailed statistical analysis of the experimental data from testing of alumina-loaded epoxy (ALOX) composites was conducted to better understand influences of the selected compositional properties on the compressive strength of these ALOX composites. Analysis of variance (ANOVA) for different models with different sets of parameters identified the optimal statistical model as, y{sub l} = -150.71 + 29.72T{sub l} + 204.71D{sub l} + 160.93S{sub 1l} + 90.41S{sub 2l}-20.366T{sub l}S{sub 2l}-137.85D{sub l}S{sub 1l}-90.08D{sub l}S{sub 2l} where y{sub l} is the predicted compressive strength, T{sub l} is the powder type, D{sub l} is the density as the covariate for powder volume concentration, and S{sub il}(i=1,2) is the strain rate. Based on the optimal statistical model, we conclude that the compressive strength of the ALOX composite is significantly influenced by the three main factors examined: powder type, density, and strain rate. We also found that the compressive strength of the ALOX composite is significantly influenced by interactions between the powder type and the strain rate and between the powder volume concentration and the strain rate. However, the interaction between the powder type and the powder volume concentration may not significantly influence the compressive strength of the ALOX composite.

  13. Progressive Fracture of Fiber Composite Thin Shell Structures Under Internal Pressure and Axial Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon

    1996-01-01

    Graphite/epoxy composite thin shell structures were simulated to investigate damage and fracture progression due to internal pressure and axial loading. Defective and defect-free structures (thin cylinders) were examined. The three different laminates examined had fiber orientations of (90/0/+/-0)(sub s), where 0 is 45, 60, and 75 deg. CODSTRAN, an integrated computer code that scales up constituent level properties to the structural level and accounts for all possible failure modes, was used to simulate composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture were included in the simulation. Burst pressures for defective and defect-free shells were compared to evaluate damage tolerance. The results showed that damage initiation began with matrix failure whereas damage and/or fracture progression occurred as a result of additional matrix failure and fiber fracture. In both thin cylinder cases examined (defective and defect-free), the optimum layup configuration was (90/0/+/-60)(sub s) because it had the best damage tolerance with respect to the burst pressure.

  14. Geometrically nonlinear bending analysis of Metal-Ceramic composite beams under thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Torabizadeh, Mohammad Amin

    2013-07-01

    A new method is developed to derive equilibrium equations of Metal-Ceramic beams based on first order shear deformation plate theory which is named first order shear deformation beam theory2(FSDBT2). Equilibrium equations obtained from conventional method (FSDBT1) is compared with FSDBT2 and the case of cylindrical bending of Metal-Ceramic composite plates for non-linear thermomechanical deformations and various loadings and boundary conditions. These equations are solved by using three different methods (analytical, perturbation technique and finite element solution). The through-thickness variation of the volume fraction of the ceramic phase in a Metal-Ceramic beam is assumed to be given by a power-law type function. The non-linear strain-displacement relations in the von-Kármán sense are used to study the effect of geometric non-linearity. Also, four other representative averaging estimation methods, the linear rule, Mori-Tanaka, Self-Consistent and Wakashima-Tsukamoto schemes, by comparing with the power-law type function are also investigated. Temperature distribution through the thickness of the beams in thermal loadings is obtained by solving the one-dimensional heat transfer equation. Finally it is concluded that for Metal-Ceramic composites, these two theories result in identical static responses. Also the displacement field and equilibrium equations in the case of cylindrical bending of Metal-Ceramic plates are the same as those supposed in FSDBT2.

  15. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  16. Damage progression during static and fatigue loading in metal matrix composites, volumes 1-3

    SciTech Connect

    Bakuckas, J.G., Jr.

    1991-01-01

    The objective is to gain a rational understanding of the damage initiation and progression in a variety of metal matrix composites (MMC) during both static and fatigue loading. An extensive two prong investigation involving experimental and analytical phases was undertaken in order to characterize damage progression in center notched MMC. Experimentally, the crack tip damage growth was studied utilizing several techniques including optical observations, use of the laser interferometric displacement gauge, acoustic emission, and fractography. The effects of heat treatment, constituents, and laminate configuration are addressed. In the analytical phase, the mechanics which govern the onset of damage formation in center cracked unidirectional MMC monolayers are predicted. A unique analytical technique to numerically simulate the subsequent damage progression is presented which manifests the individual microfailure mechanisms and their interaction in the evolution of the failure process ahead of an existing crack. Numerical simulations of the failure process was performed in several center-cracked unidirectional monolayered composites. The numerical simulations are correlated with experimental results in terms of the observed failure process, the notched strength, and load-COD data. Excellent agreement between the optical observations and the numerical simulation of the failure process was obtained. The numerical simulations captured the salient features observed in the sequential failure process. When correlated with the experimental results, the numerical simulations provided a better insight into the failure process in MMC. The appropriate selection of constituent components in the development of damage tolerant MMC for a particular application can be achieved by using this numerical technique.

  17. Antitumor Activity of Doxorubicin-Loaded Carbon Nanotubes Incorporated Poly(Lactic-Co-Glycolic Acid) Electrospun Composite Nanofibers

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Kong, Lijun; Li, Lan; Li, Naie; Yan, Peng

    2015-08-01

    The drug-loaded composite electrospun nanofiber has attracted more attention in biomedical field, especially in cancer therapy. In this study, a composite nanofiber was fabricated by electrospinning for cancer treatment. Firstly, the carbon nanotubes (CNTs) were selected as carriers to load the anticancer drug—doxorubicin (DOX) hydrochloride. Secondly, the DOX-loaded CNTs (DOX@CNTs) were incorporated into the poly(lactic-co-glycolic acid) (PLGA) nanofibers via electrospinning. Finally, a new drug-loaded nanofibrous scaffold (PLGA/DOX@CNTs) was formed. The properties of the prepared composite nanofibrous mats were characterized by various techniques. The release profiles of the different DOX-loaded nanofibers were measured, and the in vitro antitumor efficacy against HeLa cells was also evaluated. The results showed that DOX-loaded CNTs can be readily incorporated into the nanofibers with relatively uniform distribution within the nanofibers. More importantly, the drug from the composite nanofibers can be released in a sustained and prolonged manner, and thereby, a significant antitumor efficacy in vitro is obtained. Thus, the prepared composite nanofibrous mats are a promising alternative for cancer treatment.

  18. Evaluation of thermal and mechanical loading effects on the structural behavior of a SiC/titanium composite

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1990-01-01

    Composite specimens of titanium-15-3 matrix reinforced with continuous SCS-6 silicon carbide fibers were tested under a variety of thermal and mechanical loadings. A combined experimental/finite element approach was used to estimate the effective in-situ modulus of the matrix material and to evaluate changes in modulus due to the applied loads. Several fiber orientations were tested. Results indicate that the effect of the thermal loads on composite stiffness varies with fiber orientation. Applications of this method to test specimens damaged by uniaxial tension, thermal cycling, and isothermal fatigue loadings are used to illustrate that by monitoring overall structural behavior, changes in stiffness caused by thermomechanical loading can be detected.

  19. Ultrasonic Monitoring of Ply Crack and Delamination Formation in Composite Tube Under Torsion Load

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.; Wright, C. W.; Zalameda, J. N.; Seebo, J. P.

    2010-01-01

    As a simple model of a rotor spar, a circular graphite-epoxy composite laminate cylinder was subjected to cyclic torsional load. The test section of the cylindrical specimen varied from four to six plies of plus or minus 45 degree fibers, due to intentional ply overlaps and gaps. A layer of 13-micrometer Teflon film was inserted between plies at three locations to serve as delamination initiators. A commercial X-Y scanner was mounted to the load frame to enable ultrasonic inspection without removing the specimen. A focused immersion probe was mounted in a captive water column with a rugged Nitrile membrane tip, which was coupled to the cylinder using a mist of soapy water. The transducer was aligned normal to the cylinder surface using the X-axis. Scanning was performed along the length of the specimen with the Y-axis and the specimen was incrementally rotated by the torsion head of the load frame. After 350k cycles of torsion, several linear 45 degree diagonal indications appeared as 5-40% attenuation of the back wall echo, with no apparent echoes from the interior of the composite, suggesting through-ply cracks in the innermost ply. Crack indications grew and new cracks appeared as torsion cycling continued. Internal reflections from delaminations associated with the growing ply cracks appeared after 500k cycles. Three areas of extensive multi-layer delaminations appeared after 1150k cycles. Failure of the specimen occurred at 1600k cycles. The observed progressive damage was not associated with the Teflon inclusions. Concurrent thermographic measurements provided lower resolution confirmation of the damage observed.

  20. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  1. The Development of a Conical Composite Energy Absorber for Use in the Attenuation of Crash/Impact Loads

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2014-01-01

    A design for a novel light-weight conical shaped energy absorbing (EA) composite subfloor structure is proposed. This composite EA is fabricated using repeated alternating patterns of a conical geometry to form long beam structures which can be implemented as aircraft subfloor keel beams or frame sections. The geometrical features of this conical design, along with the hybrid composite materials used in the manufacturing process give a strength tailored to achieve a constant 25-40 g sustained crush load, small peak crush loads and long stroke limits. This report will discuss the geometrical design and fabrication methods, along with results from static and dynamic crush testing of 12-in. long subcomponents.

  2. Dependence of Seebeck coefficient on a load resistance and energy conversion efficiency in a thermoelectric composite

    SciTech Connect

    Yamashita, Osamu Odahara, Hirotaka; Ochi, Takahiro; Satou, Kouji

    2007-10-02

    The thermo-emf {delta}V and current {delta}I generated by imposing the alternating temperature gradients (ATG) at a period of T and the steady temperature gradient (STG) on a thermoelectric (TE) composite were measured as a function of t, where t is the lapsed time and T was varied from 60 to or {infinity} s. The STG and ATG were produced by imposing steadily and alternatively a source voltage V in the range from 1.0 to 4.0 V on two Peltier modules sandwiching a composite. {delta}T, {delta}V, {delta}I and V{sub P} oscillate at a period T and their waveforms vary significantly with a change of T, where {delta}V and V{sub P} are the voltage drops in a load resistance R{sub L} and in resistance R{sub P} of two modules. The resultant Seebeck coefficient |{alpha}| = |{delta}V|/{delta}T of a composite under the STG was found to be expressed as |{alpha}| = |{alpha}{sub 0}|(1 - R{sub comp}/R{sub T}), where R{sub T} is the total resistance of a circuit for measuring the output signals and R{sub comp} is the resistance of a composite. The effective generating power {delta}W{sub eff} has a local maximum at T = 960 s for the p-type composite and at T = 480 s for the n-type one. The maximum energy conversion efficiency {eta} of the p- and n-type composites under the ATG produced by imposing a voltage of 4.0 V at an optimum period were 0.22 and 0.23% at {delta}T{sub eff} = 50 K, respectively, which are 42 and 43% higher than those at {delta}T = 42 K under the STG. These maximum {eta} for a TE composite sandwiched between two Peltier modules, were found to be expressed theoretically in terms of R{sub P}, R{sub T}, R{sub L}, {alpha}{sub P} and {alpha}, where {alpha}{sub P} and {alpha} are the resultant Seebeck coefficients of Peltier modules and a TE composite.

  3. Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites

    SciTech Connect

    D Janes; J Moll; S Harton; C Durning

    2011-12-31

    Nearly monodisperse poly(methyl acrylate) (PMA) and spherical SiO{sub 2} nanoparticles (NP, d = 14 {+-} 4 nm) were co-cast from 2-butanone, a mutually good solvent and a displacer of adsorbed PMA from silica. The effects of NP content and post-casting sample history on the dispersion morphology were found by small-angle X-ray scattering supplemented by transmission electron microscopy. Analysis of the X-ray results show that cast and thermally annealed samples exhibited a nearly random particle dispersion. That the same samples, prior to annealing, were not well-dispersed is indicative of thermodynamic miscibility during thermal annealing over the range of NP loadings studied. A simple mean-field thermodynamic model suggests that miscibility results primarily from favorable polymer segment/NP surface interactions. The model also indicates, and experiments confirm, that subsequent exposure of the composites to the likely displacer ethyl acetate results in entropic destabilization and demixing into NP-rich and NP-lean phases.

  4. An Investigation of SiC/SiC Woven Composite Under Monotonic and Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Lang, J.; Sankar, J.; Kelkar, A. D.; Bhatt, R. T.; Singh, M.; Lua, J.

    1997-01-01

    The desirable properties in ceramic matrix composites (CMCs), such as high temperature strength, corrosion resistance, high toughness, low density, or good creep resistance have led to increased use of CMCs in high-speed engine structural components and structures that operate in extreme temperature and hostile aero-thermo-chemical environments. Ceramic matrix composites have been chosen for turbine material in the design of 21 st-century civil propulsion systems to achieve high fuel economy, improved reliability, extended life, and reduced cost. Most commercial CMCs are manufactured using a chemical vapor infiltration (CVI) process. However, a lower cost fabrication known as melt-infiltration process is also providing CMCs marked for use in hot sections of high-speed civil transports. The scope of this paper is to report on the material and mechanical characterization of the CMCs subjected to this process and to predict the behavior through an analytical model. An investigation of the SiC/SiC 8-harness woven composite is ongoing and its tensile strength and fatigue behavior is being characterized for room and elevated temperatures. The investigation is being conducted at below and above the matrix cracking stress once these parameters are identified. Fractography and light microscopy results are being studied to characterize the failure modes resulting from pure uniaxial loading. A numerical model is also being developed to predict the laminate properties by using the constituent material properties and tow undulation.

  5. Prediction of damage evolution in continuous fiber metal matrix composites subjected to fatigue loading

    SciTech Connect

    Allen, D.; Helms, K.; Lagoudas, D.

    1995-08-01

    A life prediction model is being developed by the authors for application to metal matrix composites (MMC`s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors. The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650{degrees}C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.

  6. Novel bioresorbabale composite fiber structures loaded with proteins for tissue regeneration applications: microstructure and protein release.

    PubMed

    Levy, Yair; Zilberman, Meital

    2006-12-15

    Novel bioresorbable core/shell composite fiber structures loaded with proteins were developed and studied. These unique polymeric structures are designed to combine good mechanical properties with a desired controlled protein-release profile, to serve as scaffolds for tissue regeneration applications. Core/shell fiber structures were formed by "coating" poly(L-lactic acid) fibers with protein-containing poly(DL-lactic-co-glycolic acid) porous structures. Shell preparation (coating) was performed by the freeze-drying of water in oil emulsions. The present study focused on the effect of the emulsion's formulation on the porous shell structure and on the resulting cumulative protein release from the composite fibers for 90 days. Horseradish peroxidase (HRP) was used as the protein source. The release profiles usually exhibited an initial burst effect, accompanied by a decrease in release rate with time, as is typical for diffusion-controlled systems. The HRP content and the emulsion's organic:aqueous phase ratio exhibited significant effects on both the shell microstructure and the HRP release profile from the composite fibers, whereas the polymer content of the emulsion's organic phase only affected these fiber characteristics in certain cases. Proper selection of the emulsion's parameters can yield core/shell fiber structures with the desired protein release behavior and other useful physical properties. PMID:16883584

  7. Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis.

    PubMed

    Kimishima, Kaori; Matsuno, Tomonori; Makiishi, Jun; Tamazawa, Gaku; Sogo, Yu; Ito, Atsuo; Satoh, Tazuko

    2016-01-01

    Composites of gatifloxacin (GFLX)-loaded poly (lactic-co-glycolic) acid (PLGA) and β-tricalcium phosphate (βTCP) containing 0, 1, and 10 wt % GFLX (0, 1, and 10 wt % GFLX composites), and GFLX-loaded PLGA containing 1, 5, and 10 wt % GFLX (1, 5, and 10wt % GFLX-PLGA) as controls were fabricated and characterized in vitro and in vivo. On in vitro evaluation, the 10 wt % GFLX composite released GFLX over at least 28 days in Hanks' balanced solution and exhibited clinically sufficient bactericidal activities against Streptococcus milleri and Bacteroides fragilis from 1 h to 10 days. The 0, 1, and 10 wt % GFLX composites and 10 wt % GFLX-PLGA were implanted in bone defects created by debridement of osteomyelitis lesions induced by S. milleri and B. fragilis in the mandible of rabbits (n = 5). Four weeks after implantation of the 10 wt % GFLX composite, inflammation in the debrided area disappeared in all the rabbits, while inflammation remained in all the rabbits after implantation of the 0 wt % GFLX composite and 10 wt % GFLX-PLGA, and in three rabbits after implantation of the 1 wt % GFLX composite. Bone formation appears to be less intense for the 10 wt % GFLX composite than for the 1 wt % GFLX composite probably owing to the rapid degradation of the 10 wt % GFLX composite. These findings show that the GFLX composite is effective for the local treatment of osteomyelitis. PMID:25533357

  8. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  9. Uncertainty in nutrient loads from tile-drained landscapes: Effect of sampling frequency, calculation algorithm, and compositing strategy

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; King, Kevin W.; Macrae, Merrin L.; Ford, William; Van Esbroeck, Chris; Brunke, Richard I.; English, Michael C.; Schiff, Sherry L.

    2015-11-01

    Accurate estimates of annual nutrient loads are required to evaluate trends in water quality following changes in land use or management and to calibrate and validate water quality models. While much emphasis has been placed on understanding the uncertainty of nutrient load estimates in large, naturally drained watersheds, few studies have focused on tile-drained fields and small tile-drained headwater watersheds. The objective of this study was to quantify uncertainty in annual dissolved reactive phosphorus (DRP) and nitrate-nitrogen (NO3-N) load estimates from four tile-drained fields and two small tile-drained headwater watersheds in Ohio, USA and Ontario, Canada. High temporal resolution datasets of discharge (10-30 min) and nutrient concentration (2 h to 1 d) were collected over a 1-2 year period at each site and used to calculate a reference nutrient load. Monte Carlo simulations were used to subsample the measured data to assess the effects of sample frequency, calculation algorithm, and compositing strategy on the uncertainty of load estimates. Results showed that uncertainty in annual DRP and NO3-N load estimates was influenced by both the sampling interval and the load estimation algorithm. Uncertainty in annual nutrient load estimates increased with increasing sampling interval for all of the load estimation algorithms tested. Continuous discharge measurements and linear interpolation of nutrient concentrations yielded the least amount of uncertainty, but still tended to underestimate the reference load. Compositing strategies generally improved the precision of load estimates compared to discrete grab samples; however, they often reduced the accuracy. Based on the results of this study, we recommended that nutrient concentration be measured every 13-26 h for DRP and every 2.7-17.5 d for NO3-N in tile-drained fields and small tile-drained headwater watersheds to accurately (±10%) estimate annual loads.

  10. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. PMID:26042695

  11. Series solution for a cylindrical composite shell subject to axisymmetric loadings

    NASA Astrophysics Data System (ADS)

    Lindstrom, D. W.

    1990-07-01

    Elasticity equations were solved to an arbitrary degree of precision for a thick-walled orthotropic cylinder subject to axisymmetric loading. The theory is directly applicable to a layered composite material where each layer is orthotropic in character. The solution proceeds by representing the deformations of the cylinder wall as a power series in a nondimensional radial parameter. By introducing a generalized stress resultant and a generalized stiffness for the material, a series of coupled second order differential equations in the coefficients of the deformation series results. These were solved using a generalized eigenvalue technique for an infinitely long cylinder, a simply held cylinder, and a rigidly clamped cylinder. The solution was shown to reduce to standard shell solutions for thin cylinders. A thick-walled filament wound test specimen is also described that when fabricated and pressurized would experimentally verify the refined theory developed.

  12. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  13. Response of laminated composite flat panels to sonic boom and explosive blast loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Nosier, A.

    1990-01-01

    This paper deals with a theoretical analysis of the dynamic response of shear deformable symmetrically laminated rectangular composite flat panels exposed to sonic boom and explosive blast loadings. The pertinent governing equations incorporating transverse shear deformation, transverse normal stress, as well as the higher-order effects are solved by using the integral-transform technique. The obtained results are compared with their counterparts obtained within the framework of the first-order transverse shear deformation and the classical plate theories and some conclusions concerning their range of applicability are outlined. The paper also contains a detailed analysis of the influence played by the various parameters characterizing the considered pressure pulses as well as the material and geometry of the plate.

  14. The fatigue growth of internal delaminations under compressive loading of cross-ply composite plates

    SciTech Connect

    Pelegri, A.A.; Kardomateas, G.A.; Malik, B.U.

    1997-12-31

    This study focuses on the mode dependence of delamination growth under cyclic compressive loads in cross-ply composite plates. The model proposed makes use of an initial postbuckling solution derived from a perturbation procedure. A mode-dependent crack growth criterion is introduced. Expressions describing the fatigue crack growth are derived in terms of the distribution of the mode adjusted energy release rate. The resulting crack growth laws are numerically integrated to produce delamination growth versus number of cycles diagrams. The model does not impose any restrictive assumptions on the relative thickness of the delaminated and the base plates, although transverse shear stress effects are not considered. Experimental results are presented for cross-ply graphite/epoxy specimens, and the results are compared with experimental results for unidirectional specimens. The test data are obtained for different delamination locations and for different values of applied compressive strain.

  15. A method for the geometrically nonlinear analysis of compressively loaded prismatic composite structures

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick; Gurdal, Zafer; Starnes, James H., Jr.

    1991-01-01

    A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modeled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods. The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the model amplitudes are incorported in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the model amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures which can be modeled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method. Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffening panel configurations, featuring both homogeneous, isotropic materials, and laminated composite

  16. Matrix Dominated Failure of Fiber-Reinforced Composite Laminates Under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Schaefer, Joseph Daniel

    Hierarchical material systems provide the unique opportunity to connect material knowledge to solving specific design challenges. Representing the quickest growing class of hierarchical materials in use, fiber-reinforced polymer composites (FRPCs) offer superior strength and stiffness-to-weight ratios, damage tolerance, and decreasing production costs compared to metals and alloys. However, the implementation of FRPCs has historically been fraught with inadequate knowledge of the material failure behavior due to incomplete verification of recent computational constitutive models and improper (or non-existent) experimental validation, which has severely slowed creation and development. Noted by the recent Materials Genome Initiative and the Worldwide Failure Exercise, current state of the art qualification programs endure a 20 year gap between material conceptualization and implementation due to the lack of effective partnership between computational coding (simulation) and experimental characterization. Qualification processes are primarily experiment driven; the anisotropic nature of composites predisposes matrix-dominant properties to be sensitive to strain rate, which necessitates extensive testing. To decrease the qualification time, a framework that practically combines theoretical prediction of material failure with limited experimental validation is required. In this work, the Northwestern Failure Theory (NU Theory) for composite lamina is presented as the theoretical basis from which the failure of unidirectional and multidirectional composite laminates is investigated. From an initial experimental characterization of basic lamina properties, the NU Theory is employed to predict the matrix-dependent failure of composites under any state of biaxial stress from quasi-static to 1000 s-1 strain rates. It was found that the number of experiments required to characterize the strain-rate-dependent failure of a new composite material was reduced by an order of

  17. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  18. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  19. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  20. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  1. Effect of adherend thickness and mixed mode loading on debond growth in adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mangalgiri, P. D.; Johnson, W. S.; Everett, R. A., Jr.

    1986-01-01

    Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of: (1) adherend thickness, and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16, or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.

  2. Microcracking of cross-ply composites under static and fatigue loads. Ph.D. Thesis

    SciTech Connect

    Liu, S.

    1994-12-31

    Recently, a variational mechanics analysis approach has been used to determine the thermoelastic stress state in cracked, cross-ply laminates. The analysis included a calculation of the energy release rate due to the formation of a microcrack in the 90 deg plies. A wide variety of composite material systems and cross-ply layups of generic type (0{sub m}/90{sub n}) sub s were tested during static loading. The variational mechanics energy release rate analysis can be used to predict all features of the experimental results and to draw some new conclusions about the progression of damage in cross-ply laminates. The recommended experiments are to measure the density of microcracks as a function of applied stress. Such results can be fit with the energy release rate expression and used to measure the microcracking or intralaminar fracture toughness. Experiments that measure only the stress to initiate microcracking are specifically not recommended because they do not give an accurate measure of the microcracking fracture toughness. Static fatigue, thermal cycling, and combined thermal and mechanical fatigue experiments were run on several material systems and many cross-ply layups. A modified Paris-law was used and the data from all layups of a single material system were found to fall on a single master Paris-law plot. The authors claim that the master Paris-law plot gives a good characterization of a given material system`s resistance to microcrack formation during fatigue loading.

  3. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  4. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  5. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Moore, Eric; Kurtz, Andrew; Portier, Evan; Alleau, Yvan; Merrell, David

    2014-09-01

    The compositions and loadings of organic matter in soils and sediments from a diverse range of environments along the Fly River system were determined to investigate carbon transport and sequestration in this region. Soil horizons from highland sites representative of upland sources have organic carbon contents (%OC) that range from 0.3 to 25 wt%, carbon:nitrogen ratios (OC/N) that range from 7 to 25 mol/mol, highly negative stable carbon isotopic compositions (δ13Corg < -26‰) and variable concentrations of lignin phenols (1 < LP < 5 mg/100 mg OC). These compositions reflect inputs from local vegetation, with contributions from bedrock carbon in the deeper mineral horizons. Soils developed on the levees of active floodplains receive inputs of allochthonous materials by overbank deposition as well as autochthonous inputs from local vegetation. In the forested upper floodplain reaches, %OC contents are lower than upland soils (0.8-1.5 wt%) as are OC/N ratios (9-15 mol/mol) while δ13Corg (-25 to -28‰) and LP (2-6 mg/100 mg OC) values are comparable to upland soils. These results indicate that organic matter present in these active floodplain soils reflect local (primarily C3) vegetation inputs mixed with allochthonous organic matter derived from eroded bedrock. In the lower reaches of the floodplain, which are dominated by swamp grass vegetation, isotopic compositions were less negative (δ13Corg > -25‰) and non-woody vegetation biomarkers (cinnamyl phenols and cutin acids) more abundant relative to upper floodplain sites. Soils developed on relict Pleistocene floodplain terraces, which are typically not flooded and receive little sediment from the river, were characterized by low %OC contents (<0.6 wt%), low OC/N ratios (<9 mol/mol), more positive δ13Corg signatures (>-21‰) and low LP concentrations (∼3 mg/100 mg OC). These relict floodplain soils contain modern carbon that reflects primarily local (C3 or C4) vegetation sources. Total suspended solids

  6. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo

    2012-08-01

    Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.

  7. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite.

    PubMed

    Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo

    2012-08-10

    Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite. PMID:22797555

  8. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

  9. Atmospheric dust loads and their elemental composition at a background site in India.

    PubMed

    Negi, B S; Jha, S K; Chavan, S B; Sadasivan, S; Goyal, A; Sapru, M L; Bhat, C L

    2002-01-01

    Air particulate samples collected during 1995-96 at a background site situated on the east coast of Thar Desert in Rajsthan State of India were analysed for atmospheric dust loads (Suspended Particulate Matter) and elemental composition. The values of SPM ranged from 9 microg M(-3) to 97 microg M(-3) with an average of 43 microg M(-3) except a few episodic values, which were 3 to 5 times higher than the average during summer months. The results for elemental composition of the particulate samples showed that the concentrations of anthropogenic toxic trace elements viz. Br, Cr, Pb, Sb, Se and Zn are lower by a factor of 2 to 10 as compared to urban areas. The high enrichment factors for anthropogenic elements viz. Br, Pb, Sb and Zn show an input from coal/wood fuel burning and vehicular pollution at the sampling site. The depletion of Si in SPM samples shows long distance transport of dust to the sampling site. PMID:11878626

  10. Micro/nano composited tungsten material and its high thermal loading behavior

    NASA Astrophysics Data System (ADS)

    Fan, Jinglian; Han, Yong; Li, Pengfei; Sun, Zhiyu; Zhou, Qiang

    2014-12-01

    Tungsten (W) is considered as promising candidate material for plasma facing components (PFCs) in future fusion reactors attributing to its many excellent properties. Current commercial pure tungsten material in accordance with the ITER specification can well fulfil the performance requirements, however, it has defects such as coarse grains, high ductile-brittle transition temperature (DBTT) and relatively low recrystallization temperature compared with its using temperature, which cannot meet the harsh wall loading requirement of future fusion reactor. Grain refinement has been reported to be effective in improving the thermophysical and mechanical properties of W. In this work, rare earth oxide (Y2O3/La2O3) and carbides (TiC/ZrC) were used as dispersion phases to refine W grains, and micro/nano composite technology with a process of 'sol gel - heterogeneous precipitation - spray drying - hydrogen reduction - ordinary consolidation sintering' was invented to introduce these second-phase particles uniformly dispersed into W grains and grain-boundaries. Via this technology, fine-grain W materials with near-full density and relatively high mechanical properties compared with traditional pure W material were manufactured. Preliminary transient high-heat flux tests were performed to evaluate the thermal response under plasma disruption conditions, and the results show that the W materials prepared by micro/nano composite technology can endure high-heat flux of 200 MW/m2 (5 ms).

  11. Preparation and characterization of new nano-composite scaffolds loaded with vascular stents.

    PubMed

    Xu, Hongzhen; Su, Jiansheng; Sun, Jun; Ren, Tianbin

    2012-01-01

    In this study, vascular stents were fabricated from poly (lactide-ɛ-caprolactone)/collagen/nano-hydroxyapatite (PLCL/Col/nHA) by electrospinning, and the surface morphology and breaking strength were observed or measured through scanning electron microscopy and tensile tests. The anti-clotting properties of stents were evaluated for anticoagulation surfaces modified by the electrostatic layer-by-layer self-assembly technique. In addition, nano-composite scaffolds of poly (lactic-co-glycolic acid)/polycaprolactone/nano-hydroxyapatite (PLGA/PCL/nHA) loaded with the vascular stents were prepared by thermoforming-particle leaching and their basic performance and osteogenesis were tested in vitro and in vivo. The results show that the PLCL/Col/nHA stents and PLGA/PCL/nHA nano-composite scaffolds had good surface structures, mechanical properties, biocompatibility and could guide bone regeneration. These may provide a new way to build vascularized-tissue engineered bone to repair large bone defects in bone tissue engineering. PMID:22489156

  12. Assessment of PZT transducer bonding techniques under drop-weight impact loading in composites

    NASA Astrophysics Data System (ADS)

    Mulligan, Kyle R.; Ostiguy, Pierre-Claude; Masson, Patrice; Elkoun, Saïd; Quaegebeur, Nicolas

    2011-04-01

    This paper describes the robustness of a structural health monitoring system (SHM) that utilizes lead-zirconatetitanate (PZT) transducers tested on carbon fibre composite coupons under drop-weight impact loading. Four PZT transducers are attached to the surface of 10.16 cm x 15.24 cm aerospace grade carbon fibre coupons using four types of adhesives: cyanoacrylate, epoxy, methyl methacrylate, and silicon. Each PZT transducer is tuned to excite preferentially an A0 mode guided wave burst into each composite coupon prior to and following an impact. The output from a PZT transducer, the amplitude of the propagating guided waves measured using a laser vibrometer on the coupon surface and the RMS velocity is plotted. The cycle is repeated for the three remaining transducers. The electrical admittance is also measured using an impedance analyzer prior to and following impact. This paper illustrates how a robustness metric expressed in terms of admittance can be used to infer the ability of the SHM system to generate guided waves and to detect damage following impact. The robustness metric is a measure of the adhesive strength and the mechanism to provide accurate damage detection results. It is shown that transducers attached using silicon provide accurate damage detection results based on pre-attached adhesive yielding difference of <0.5% obtained from electrical admittance measurements before and after impact.

  13. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  14. Dynamic response and modeling of a carbon fiber— epoxy composite subject to shock loading

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.; Key, C. T.; Schumacher, S. C.

    2013-12-01

    Unidirectional carbon fiber reinforced epoxy composite samples were tested to determine their response to one dimensional shock loading with the ultimate goal of developing a micromechanics based numerical model of the dynamic response. The material tested had high fiber content (62-68% by volume) and low porosity. Wave speeds for shocks traveling along the carbon fibers are significantly higher than for those traveling transverse to the fibers or through the bulk epoxy. As a result, the dynamic material response is dependent on the relative shock—fiber orientation; a complication that must be captured in the numerical models. Shocks traveling transverse to the fibers show an inelastic response consistent with the material constituent parts. Shocks traveling along the fiber direction travel faster and exhibit both elastic and plastic characteristics over the stress range tested; up to 15 GPa. Results presented detail the anisotropic material response, which is governed by different mechanisms along each of the two principle directions in the composite. Finally, numerical modeling of this response is described in detail and validated against the experimental data.

  15. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shen, Zhen; Hu, Yi; Chen, Yanli; Zhang, Xiangwu; Wang, Kehao; Chen, Renzhong

    2015-03-01

    Metallic Sn is a promising high-capacity anode material for use in lithium-ion batteries (LIBs), but its huge volume variation during lithium ion insertion/extraction typically results in poor cycling stability. To address this, we demonstrate the fabrication of Sn nanoparticle-loaded porous carbon nanofiber (Sn-PCNF) composites via the electrospinning of Sn(II) acetate/mineral oil/polyacrylonitrile precursors in N,N-dimethylformamide solvent and their subsequent carbonization at 700 °C under an argon atmosphere. This is shown to result in an even distribution of pores on the surface of the nanofibers, allowing the Sn-PCNF composite to be used directly as an anode in lithium-ion batteries without the need to add non-active materials such as polymer binders or electrical conductors. With a discharge capacity of around 774 mA h g-1 achieved at a high current of 0.8 A g-1 over 200 cycles, this material clearly has a high rate capability and excellent cyclic stability, and thanks to its unique structure and properties, is an excellent candidate for use as an anode material in high-current rechargeable lithium-ion batteries.

  16. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  17. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions. PMID:20402501

  18. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    The plane stress/plane strain problem of radial matrix cracking in fiber-reinforced composites, due to thermal mismatch and externally applied stress is solved numerically in the framework of linear elasticity, using Erdogan's integral equation technique. It is shown that, in order to obtain the results of the combined loading case, the solutions of purely thermal and purely mechanical loading can simply be superimposed. Stress-intensity factors are calculated for various lengths and distances of the crack from the interface for each of these loading conditions.

  19. Transparent acrylic enamel slide holograms

    NASA Astrophysics Data System (ADS)

    Ponce-Lee, E. L.; Olivares Pérez, A.; Ruiz-Limón, B.; Hernández-Garay, M. P.; Toxqui-López, S.

    2006-02-01

    We present holograms generated in a computer to an acrylic enamel slide (Comex (R)), getting phase holograms. The information in the mask is transferred to the material by temperature gradients generated by rubbing. The refraction index is transformed at each material point by the temperature changes, thus the film is recorded and developed by itself. this material can be used for soft lithography.

  20. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  1. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    PubMed

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5 %Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5 %Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5 %Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body. PMID:26883948

  2. Interpreting the g loadings of intelligence test composite scores in light of Spearman's law of diminishing returns.

    PubMed

    Reynolds, Matthew R

    2013-03-01

    The linear loadings of intelligence test composite scores on a general factor (g) have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the g loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of this study was to (a) investigate whether the g loadings of composite scores from the Differential Ability Scales (2nd ed.) (DAS-II, C. D. Elliott, 2007a, Differential Ability Scales (2nd ed.). San Antonio, TX: Pearson) were nonlinear and (b) if they were nonlinear, to compare them with linear g loadings to demonstrate how SLODR alters the interpretation of these loadings. Linear and nonlinear confirmatory factor analysis (CFA) models were used to model Nonverbal Reasoning, Verbal Ability, Visual Spatial Ability, Working Memory, and Processing Speed composite scores in four age groups (5-6, 7-8, 9-13, and 14-17) from the DAS-II norming sample. The nonlinear CFA models provided better fit to the data than did the linear models. In support of SLODR, estimates obtained from the nonlinear CFAs indicated that g loadings decreased as g level increased. The nonlinear portion for the nonverbal reasoning loading, however, was not statistically significant across the age groups. Knowledge of general ability level informs composite score interpretation because g is less likely to produce differences, or is measured less, in those scores at higher g levels. One implication is that it may be more important to examine the pattern of specific abilities at higher general ability levels. PMID:23506024

  3. Composite Materials and Meta Materials for a New Approach to ITER ICRH Loads

    SciTech Connect

    Bottollier-Curtet, H.; Argouarch, A.; Vulliez, K.; Becoulet, A.; Litaudon, X.; Magne, R.; Champeaux, S.; Gouard, Ph.; Primout, M.; Le Gallou, J.-H.

    2009-11-26

    Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These 'water' loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads). Preliminary results are very encouraging.

  4. Composite Materials and Meta Materials for a New Approach to ITER ICRH Loads

    NASA Astrophysics Data System (ADS)

    Bottollier-Curtet, H.; Argouarch, A.; Champeaux, S.; Gouard, Ph.; Le Gallou, J.-H.; Primout, M.; Vulliez, K.; Bécoulet, A.; Litaudon, X.; Magne, R.

    2009-11-01

    Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These "water" loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads) [1]. Preliminary results are very encouraging.

  5. Load bearing capacity of bone anchored fiber-reinforced composite device.

    PubMed

    Ballo, Ahmed Mansour; Lassila, Lippo V; Vallittu, Pekka K; Närhi, Timo O

    2007-10-01

    The purpose of this study was to evaluate the push-out load-bearing capacity of threaded fiber-reinforced composite (FRC) devices for use as bone-anchored devices. The purpose was also to evaluate the possibility to use bioactive glass (BAG) granules on the experimental FRC devices in terms the mechanical behavior. Three experimental FRC devices (n = 15) were fabricated for the study: (a) threaded device with smooth surface; (b) threaded device with BAG granules (S53P4, Vivoxid Ltd, Turku, Finland) and supplementary retention grooves, and (c) unthreaded device with BAG granules. Threaded titanium devices were used as controls. The FRC devices were prepared from a light-polymerized dimethacrylate resin reinforced with preimpregnated unidirectional and bidirectional E-glass fibers (EverStick, StickTech Ltd, Turku, Finland). Experimental and control devices were embedded into dental plaster to simulate bone before the mechanical push-out test was carried out. ANOVA and Weibull analysis were used for the statistical evaluation. Threaded FRC devices had significantly higher push-out strength than the threaded titanium device (p < .001). The push-out forces exceeding 2,500 N were measured for threaded FRC devices with supplementary grooves and BAG coating. No thread failures were observed in any FRC devices. The unthreaded FRC devices with BAG lost 70% of glass particles during the test, while no BAG particles were lost from threaded FRC devices. It can be concluded that threaded FRC devices can withstand high push-out forces in the dental plaster without a risk of thread failure under physiological load. PMID:17558473

  6. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing.

    PubMed

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-05-30

    Biocomposite interactive wound dressings have been designed and fabricated using oxidized pectin (OP), gelatin and nonwoven cotton fabric. Due to their inherent virtues of antimicrobial activity and cytocompatibility, these composite structures are capable of redirecting the healing cascade and influencing cell attachment and proliferation. A novel in situ reduction process has been followed to synthesize oxidized pectin-gelatin-nanosilver (OP-Gel-NS) flower like nanohydrocolloids. This encapsulation technology controls the diffusion and permeation of nanosilver into the surrounding biological tissues. Ciprofloxacin hydrochloride has also been incorporated into the OP-Gel matrix to produce OP-Gel-Cipro dressings. While OP-Gel-NS dressings exhibited 100% antimicrobial activity at extremely low loadings of 3.75μg/cm(2), OP-Gel-Cipro dressings were highly antimicrobial at 1% drug loading. While NIH3T3 mouse fibroblasts proliferated remarkably well when cultured with OP-Gel and OP-Gel-Cipro dressings, OP-Gel-NS hindered cell growth and Bactigras(®) induced complete lysis. Full thickness excisional wounds were created on C57BL/6J mice and the wound healing potential of the OP-Gel-NS dressings led to accelerated healing within 12days, while OP-Gel-Cipro dressings healed wounds at a rate similar to that of Bactigras(®). Histological examination revealed that OP-Gel-NS and OP-Gel-Cipro treatment led to organized collagen deposition, neovascularization and nuclei migration, unlike Bactigras(®). Therefore, the OP-Gel-NS and OP-Gel-Cipro biocomposite dressings exhibiting good hydrophilicity, sustained antimicrobial nature, promote cell growth and proliferation, and lead to rapid healing, can be considered viable candidates for effective management. PMID:27063849

  7. Variable-temperature measurements of the dielectric relaxation in carbon black loaded epoxy composites

    NASA Astrophysics Data System (ADS)

    Brosseau, C.; Achour, M. E.

    2009-06-01

    Technologically, an understanding of the temperature influence on the transport properties is essential to the study of many random conductor-insulator composites, while fundamentally it is related to a variety of questions in statistical physics, dielectrics, and materials science, to name a few. Variable-temperature measurements of the frequency dependent complex effective permittivity were performed on amine-cured epoxy resins loaded with carbon black (CB). Two series of prepercolative samples differing from the kind of CB particles (Raven 2000 and Raven 5000) mixed in an amine-cured epoxy matrix (diglycidylic ether of bisphenol F) were studied. In this effort to contribute to our understanding of the role of frequency (100 Hz-15 MHz) and temperature (from ambient temperature up to 90 °C) on the complex effective permittivity which describes the linear response of the system to an electromagnetic wave, we investigate these composites with CB loadings below the percolation threshold. Two features are observed. First, our observations cannot be understood in the typical framework of a simple Debye-like dipolar process. In this analysis, we argue that the appearance of the broad temperature and frequency dependent maximum loss can be understood within the heuristic framework proposed by Jonscher which applies to disordered heterogeneous systems. This theoretical framework is consistent with several aspects of the experiments, notably the power-law decays of the real and imaginary parts of the effective permittivity characterized by two fractional exponents m and n. These exponents are both positive and smaller than unity. We further quantified their different temperature variations: while m is strongly decreasing with increasing temperature, n takes a value close to 1. Second, the observed maximum loss frequency found for each CB volume fraction shifts to higher frequencies with increasing temperature and exhibits a non-Arrhenius temperature dependence well

  8. Ceramic composites: Fabrication by rolling of highly loaded suspensions, and their mechanical characterization

    NASA Astrophysics Data System (ADS)

    Menon, Mohan

    A novel technique for fabrication of dense, crack free ceramic composites by repeated rolling and folding of highly loaded suspensions has been developed. Coagulated suspensions of Alsb2Osb3 and CeOsb2 stabilized ZrOsb2 tetragonal polycrystals (Ce-TZP) were prepared. The rheology of the highly loaded suspensions were characterized. The suspensions were shear thinning and possessed a yield stress, which was a function of the salt concentration, confirming Lange and co-workers' studies. The Alsb2Osb3 and Ce-TZP suspensions were rolled to obtain tapes. Laminates were fabricated by repeated rolling and folding of these tapes. The flat interface separating suspensions with differing yield stress was found to be unstable under rolling, and was distorted to a wavy shape. When the perturbation was of the order of layer thickness the layered structure broke down into a cellular one, with the harder phase as the included one. The critical number of foldings at which the microstructural transition occurs was found to depend on the yield stress ratio of the constituent suspensions. Typically, it takes from 6 to 9 foldings of 50% thickness reduction to induce the microstructural transition. The rolled samples were dried and pressureless sintered in air to near full density regardless of the number of foldings. The shrinkage anisotropy (in direction parallel and perpendicular to rolling) in shrinkage was found to decrease with decreasing thickness and especially after the microstructural transition, with the cellular material showing no anisotropy. Sintering cracks were formed in some layers thicker than 60 mum and the crack spacing increased with increasing layer thickness. In the layers devoid of sintering cracks, thermal cracks formed during cooling in layers thicker than 50 mum and the crack spacing decreased with increasing layer thickness and saturated at 150 mum. The strength in three point flexure, R-curve behavior and indentation behavior of these composites were

  9. A Study on Response of a Contoured Composite Panel with Co-cured Stiffeners Under Transient Loading

    NASA Astrophysics Data System (ADS)

    Begum, Shahnaaz; Jain, Prakash Chand; Venkatesh, Siddu

    2016-07-01

    Composite materials are emerging to be the best applied materials for aerospace applications. With rapid improvement in computational facilities, it is now possible to design the best composite lay up for a particular kind of application. This paper presents the development of a Finite Element model of a contoured composite panel with co-cured stiffeners using Finite Element Simulation. Commercial package ANSYS 15.0 is used for this study. Such half contoured panels find wide application in Aerospace industry. The panel is hinged at one of the ends and dynamically loaded at the other end over a relatively small surface area by transverse load. The response of the panel is observed for variation in stresses, deflections and failure criteria. The panel is expected to rotate about the hinge point by 4° from the initial point. The transient response of the composite panel has been observed for expected load and two test load cases and results reported in this paper. Analysis has become useful input for the design of panel.

  10. The effect of sulfur loading on the electrochemical performance of a sulfur-polymer composite cathode coated on aluminium foil.

    PubMed

    Doan, The Nam Long; Gosselink, Denise; Hoang, Tuan K A; Chen, P

    2014-07-21

    A scaling-up investigation of a sulfur-polymer cathode for rechargeable lithium-sulfur batteries is reported. The proposed procedure uses a low cost aluminium current collector and is suitable for mass production of a composite cathode, with sulfur loading levels of up to 5.9 mg cm(-2), and good electrochemical performance. PMID:24910180

  11. Effect of cyclic loading on marginal adaptation and bond strength in direct vs. indirect class II MO composite restorations.

    PubMed

    Aggarwal, Vivek; Logani, Ajay; Jain, Veena; Shah, Naseem

    2008-01-01

    This study evaluated the effect of cyclic loading on the marginal adaptation and microtensile bond strength of direct vs indirect Class II composite restorations in an in-vitro model. Forty Class II cavities were prepared on the mesial surface of extracted human maxillary first premolars and divided into two groups: Group I--direct composite restorations and Group II--indirect composite restorations. Groups I and II were further divided into subgroups: A (without cyclic loading) and B (with cyclic loading of 150,000 cycles at 60N). The gingival margin of the proximal box was evaluated at 200x magnification for marginal adaptation in a low vacuum scanning electron microscope. The restorations were sectioned perpendicular to the bonded surface into 1 mm thickslabs. The slabswere further trimmed at the interface to produce a cross-sectional surface area of approximately 1 mm2. All specimens were subjected to microtensile bond strength testing. The marginal adaptation was analyzed using descriptive studies and bond strength data were analyzed by one-way ANOVA test. The indirect composite restorations performed better under cyclic loading. PMID:18833866

  12. Structure and properties of binary polystyrene-epoxy acrylate oligomer mixtures irradiated by electron beams

    SciTech Connect

    Lomonosova, N.V.

    1995-03-01

    The change in the structure of oriented polymer-oligomer systems based on polystyrene (PS) with M > 10{sup 6} and epoxy acrylate oligomers (aliphatic and aromatic) under irradiation by accelerated electrons was studied using birefringence, isometric heating, IR dichroism, and thermooptical analysis. Mechanical properties of these systems were investigated. It was found that, by adding aliphatic epoxy acrylate to PS and further irradiating this mixture, one can obtain both isotropic and oriented composites with higher strengths, elasticity moduli, and glass transition temperatures.

  13. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  14. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    NASA Astrophysics Data System (ADS)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  15. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites

    NASA Astrophysics Data System (ADS)

    Gong, Changyang; Wang, Cheng; Wang, Yujun; Wu, Qinjie; Zhang, Doudou; Luo, Feng; Qian, Zhiyong

    2012-05-01

    In this work, we aim to develop a dual drug delivery system (DDDS) of self-assembled micelles in thermosensitive hydrogel composite to deliver hydrophilic and hydrophobic drugs simultaneously for colorectal peritoneal carcinomatosis (CRPC) therapy. In our previous studies, we found that poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) copolymers with different molecular weight and PEG/PCL ratio could be administered to form micelles or thermosensitive hydrogels, respectively. Therefore, the DDDS was constructed from paclitaxel (PTX) encapsulated PCEC micelles (PTX-micelles) and a fluorouracil (Fu) loaded thermosensitive PCEC hydrogel (Fu-hydrogel). PTX-micelles were prepared by self-assembly of biodegradable PCEC copolymer (Mn = 3700) and PTX without using any surfactants or excipients. Meanwhile, biodegradable and injectable thermosensitive Fu-hydrogel (Mn = 3000) with a lower sol-gel transition temperature at around physiological temperature was also prepared. The obtained PTX-micelles in thermosensitive Fu-hydrogel (PTX-micelles-Fu-hydrogel) composite is a free-flowing sol at ambient temperature and rapidly turned into a non-flowing gel at physiological temperature. In addition, the results of cytotoxicity, hemolytic study, and acute toxicity evaluation suggested that the PTX-micelles-Fu-hydrogel was non-toxic and biocompatible. In vitro release behaviors of PTX-micelles-Fu-hydrogel indicated that both PTX and Fu have a sustained release behavior. Furthermore, intraperitoneal application of PTX-micelles-Fu-hydrogel effectively inhibited growth and metastasis of CT26 peritoneal carcinomatosis in vivo (p < 0.001), and induced a stronger antitumor effect than that of Taxol® plus Fu (p < 0.001). The pharmacokinetic study indicated that PTX-micelles-Fu-hydrogel significantly increased PTX and Fu concentration and residence time in peritoneal fluids compared with Taxol® plus Fu group. Thus, the results suggested the micelles-hydrogel DDDS may

  16. Analyses of quasi-isotropic composite plates under quasi-static point loads simulating low-velocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Kelkar, A. D.

    1984-01-01

    In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.

  17. Development of a multi-component fiber-reinforced composite implant for load-sharing conditions.

    PubMed

    Zhao, D S; Moritz, N; Laurila, P; Mattila, R; Lassila, L V J; Strandberg, N; Mäntylä, T; Vallittu, P K; Aro, H T

    2009-05-01

    Fiber-reinforced composites (FRC) have the potential for use as load-bearing orthopaedic implants if the high strength and elastic modulus of FRC implant can be matched with local requirements. This study tested the in vivo performance of novel FRC implants made of unidirectional glass fibers (E-glass fibers in Bis-GMA and TEGDMA polymeric matrix). The implant surface was covered with bioactive glass granules. Control implants were made of surface-roughened titanium. Stress-shielding effects of the implants were predicted by finite element modelling (FEM). Surgical stabilization of bone metastasis in the subtrochanteric region of the femur was simulated in 12 rabbits. An oblong subtrochanteric defect of a standardized size (reducing the torsional strength of the bones approximately by 66%) was created and an intramedullary implant made of titanium or the FRC composite was inserted. The contralateral femur served as the intact control. At 12 weeks of healing, the femurs were harvested and analyzed by radiography, torsional testing, micro-CT imaging and hard tissue histology. The functional recovery was unremarkable in both groups, although the final analysis revealed two healed undisplaced peri-implant fractures in the group of FRC implants. FEM studies demonstrated differences in stress-shielding effects of the titanium and FRC implants, but the expected biological consequences did not become evident during the follow-up time of the animal study. Biomechanical testing of the retrieved femurs showed no significant differences between the groups. The torsional strength of the fixed bones had returned the level of contralateral intact femurs. Both implants showed ongrowth of intramedullary new bone. No adverse tissue reactions were observed. Based on these favorable results, a large-scale EU-project (NewBone, www.hb.se/ih/polymer/newbone) has been launched for development of orthopaedic FRC implants. PMID:19109047

  18. Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants.

    PubMed

    Bandyopadhyay, Amit; Dittrick, Stanley; Gualtieri, Thomas; Wu, Jeffrey; Bose, Susmita

    2016-04-01

    Calcium phosphate (CaP)-titanium (Ti) composites were processed using a commercial laser engineered net shaping (LENS™) machine to increase wear resistance of articulating surfaces of load-bearing implants. Such composites could be used to cover the surface of titanium implants and potentially increase the lifetime of a joint replacement. It was hypothesized that adding calcium phosphate to commercially pure titanium (CP-Ti) and Ti6Al4V alloy via laser processing would decrease the material loss when subjected to wear. This added protection would be due to the in situ formation of a CaP tribofilm. Different amounts of CaP were mixed by weight with pure Ti and Ti6Al4V powders. The mixed powders were then made into cylindrical samples using a commercial LENS™-750 system. Microstructures were observed and it was found the CaP had integrated into the titanium metal matrix. Compression test revealed that CaP significantly increased the 0.2% offset yield strength as well as the ultimate compressive strength of CP-Ti. It was found that the addition of CaP to pure titanium reduced the material loss and increased wear resistance. This was due to the formation of CaP tribofilm on the articulating surface. The in situ formed tribofilm also lowered the coefficient of friction and acted as a solid lubricant between the two interacting metal surfaces. Overall, CaP addition to Ti and its alloy Ti6Al4V show an effective way to minimize wear induced damage due to the formation of in situ tribofilm at the articulating surface, a strategy that can be utilized in various biomedical devices. PMID:26826471

  19. The influence of FRCs reinforcement on marginal adaptation of CAD/CAM composite resin endocrowns after simulated fatigue loading.

    PubMed

    Rocca, Giovanni Tommaso; Saratti, Carlo Massimo; Poncet, Antoine; Feilzer, Albert J; Krejci, Ivo

    2016-05-01

    To evaluate the marginal adaptation of endodontically treated molars restored with CAD/CAM composite resin endocrowns either with or without reinforcement by fibre reinforced composites (FRCs), used in different configurations. 32 human endodontically treated molars were cut 2 mm over the CEJ. Two interproximal boxes were created with the margins located 1 mm below the CEJ (distal box) and 1 mm over the CEJ (mesial box). All specimens were divided in four groups (n = 8). The pulp chamber was filled with: group 1 (control), hybrid resin composite (G-aenial Posterior, GC); group 2, as group 1 but covered by 3 meshes of E-glass fibres (EverStick NET, Stick Tech); group 3, FRC resin (EverX Posterior, GC); group 4, as group 3 but covered by 3 meshes of E-glass fibres. The crowns of all teeth were restored with CAD/CAM composite resin endocrowns (LAVA Ultimate, 3M). All specimens were thermo-mechanically loaded in a computer-controlled chewing machine (600,000 cycles, 1.6 Hz, 49 N and simultaneously 1500 thermo-cycles, 60 s, 5-55 °C). Marginal analysis before and after the loading was carried out on epoxy replicas by SEM at 200× magnification. For all the groups, the percentage values of perfect marginal adaptation after loading were always significantly lower than before loading (p < 0.05). The marginal adaptation before and after loading was not significantly different between the experimental groups (p > 0.05). Within the limitations of this in vitro study, the use of FRCs to reinforce the pulp chamber of devitalized molars restored with CAD/CAM composite resin restorations did not significantly influenced their marginal quality. PMID:25854165

  20. Dynamic load capacities of graphite fiber: Polyimide composites in oscillating plain bearings to 340 C (650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Munson, H. E.

    1975-01-01

    Load capacities were determined for plain spherical bearings with self-lubricating spherical elements of graphite-fiber-reinforced-polyimide, and for plain cylindrical bearings with thin-wall liners of the composite in the bearing bores. Composites consisted of a 1-to-1 weight ratio of graphite fibers and polyimide. Oscillation was at an amplitude of + or - 15 deg at a frequency of 1 hertz. Bearings with composite ball material had a load capacity of approximately 69 MN/sq m (10 000 psi) at room temperature 25 MN/sq m (3600 psi) at 340 C (650 F). Bearings with thin-wall composite liners had much higher load capacities of 280 MN/sq m (40 000 psi) at room temperature amd 240 MN/sq m (35 000 psi) at 320 C (600 F). Friction coefficients were in the range of 0.12 to 0.19. The addition of 10 wt.% graphite fluoride solid lubricant to the composition of the thin-wall liners reduced friction coefficients into the range of 0.10 to 0.12.

  1. Wear of combinations of acrylic resin and porcelain, on an abrasion testing machine.

    PubMed

    Harrison, A

    1978-04-01

    Wear tests of various combinations of acrylic resin and porcelain were made using a machine which was designed to test materials under conditions similar to those of masticatory function by simulating the loads, sliding distances, and contact times encountered in the human masticatory cycle. The results showed that the amount of wear of the two materials worn in combination depended on the nature of the surrounding medium and on the surface roughness of the opposing material. Acrylic resin showed good wear resistance provided no third party abrasive or opposing hard, rough surface was present. When a mild abrasive was incorporated in the system, the acrylic resin vs acrylic resin combination wore almost seven times more than porcelain vs porcelain. Clinical experience would suggest that this is a reasonably sound order of wear. PMID:213546

  2. An Experimental Study of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C., Jr.

    1999-01-01

    A series of tests was conducted to measure the strength of stitched carbon/epoxy composites containing through-thickness damage in the form of a crack-like notch. The specimens were subjected to three types of loading: pure bending, pure tension, and combined bending and tension loads. Measurements of applied loads, strains near crack tips, and crack opening displacements (COD) were monitored in all tests. The transverse displacement at the center of the specimen was measured using a Linear Variable Differential Transformer (LVDT). The experimental data showed that the outer surface of the pure tension specimen failed at approximately 6,000 microstrain, while in combined bending and tension loads the measured tensile strains reached 10,000 microstrain.

  3. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Ayari, F.; Bayraktar, E.; Zghal, A.

    2011-01-01

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  4. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  5. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    SciTech Connect

    Ayari, F.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  6. Yield and failure criteria for composite materials under static and dynamic loading

    NASA Astrophysics Data System (ADS)

    Daniel, Isaac M.

    2016-02-01

    To facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of structural laminates based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new failure theory, the Northwestern (NU-Daniel) theory, has been proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is primarily applicable to matrix-dominated interfiber/interlaminar failures. It is based on micromechanical failure mechanisms but is expressed in terms of easily measured macroscopic lamina stiffness and strength properties. It is presented in the form of a master failure envelope incorporating strain rate effects. The theory was further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive failure of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools.

  7. Effect of mass loading on ionic polymer metal composite actuators and sensors

    NASA Astrophysics Data System (ADS)

    Sakthi Swarrup, J.; Ganguli, Ranjan

    2015-04-01

    Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

  8. Optimization of artemether-loaded NLC for intranasal delivery using central composite design.

    PubMed

    Jain, Kunal; Sood, Sumeet; Gowthamarajan, Kuppusamy

    2015-01-01

    The objective of the study was to optimize artemether-loaded nanostructured lipid carriers (ARM-NLC) for intranasal delivery using central composite design. ARM-NLC was prepared by microemulsion method with optimized formulation having particle size of 123.4 nm and zeta potential of -34.4 mV. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that drug existed in amorphous form in NLC formulation. In vitro cytotoxicity assay using SVG p12 cell line and nasal histopathological studies on sheep nasal mucosa indicated the developed formulations were non-toxic and safe for intranasal administration. In vitro release studies revealed that NLC showed sustained release up to 96 h. Ex vivo diffusion studies using sheep nasal mucosa revealed that ARM-NLC had significantly lower flux compared to drug solution (ARM-SOL). Pharmacokinetic and brain uptake studies in Wistar rats showed significantly higher drug concentration in brain in animals treated intranasally (i.n.) with ARM-NLC. Brain to blood ratios for ARM-NLC (i.n.), ARM-SOL (i.n.) and ARM-SOL (i.v.) were 2.619, 1.642 and 0.260, respectively, at 0.5 h indicating direct nose to brain transport of ARM. ARM-NLC showed highest drug targeting efficiency and drug transport percentage of 278.16 and 64.02, respectively, which indicates NLC had better brain targeting efficiency compared to drug solution. PMID:24512368

  9. Development of a micromechanics based failure criteria for transversely loaded composite materials

    NASA Astrophysics Data System (ADS)

    Foster, Dean Curtis

    2008-10-01

    The present work has identified two competing failure initiation mechanisms occurring in a unidirectional model composite system when loaded transverse to the direction of the fibers. Matrix cavitation and fiber-matrix debonding are the failure modes that have manifested themselves as a function of fiber spacing in multi-fiber cruciform specimens. The model composite system used two transparent epoxy systems, a linear room temperature cured 828/D-230 system and a nonlinear high temperature cured 862/W system, with five 0.36 mm diameter stainless steel wires as fibers. The fibers were arranged such that a single fiber was placed at the intersection of the face diagonals of four fibers located at the corners of a square. Seven different fiber spacing groups were tested ranging in volume fraction from 64% to 4%. Failure initiation was optically detected in-situ via the reflected light method using multiple high resolution, high magnification microscope video cameras. Three dimensional (3-D) finite element models (FEM) for all fiber spacing groups tested were used to analyze the stress state in the cruciform specimen at failure initiation. Residual stresses of both epoxy systems were measured by photoelasticity methods for incorporation into the micromechanical FEM. Analytical results of the individual cruciform 3-D FEMs in conjunction with the experimental observations were used to evaluate fiber-matrix debond and matrix failure criteria. A linear interaction debond criterion expressed as the sum of the ratios of the interfacial normal stress to tensile strength and interfacial shear stress to shear strength best validated the observed debond limits at the fiber spacing exhibiting fiber-matrix debonding as failure initiation. For the matrix failure criterion, analytical results indicated that the Mohr-Coulomb criterion validated the fiber spacing exhibiting cavitation. This work has developed failure criteria that correctly identified the two competing failure

  10. Release of a chitosan-hydroxyapatite composite loaded with ibuprofen and acetyl-salicylic acid submitted to different sterilization treatments

    NASA Astrophysics Data System (ADS)

    Larena, A.; Cáceres, D. A.; Vicario, C.; Fuentes, A.

    2004-11-01

    It has been demonstrated that chitosan-hydroxyapatite composite induces osteoconductivity in osseous defects but also could act as drug vehicle. It is important be able to load these composites with short-time life and controlled action anti-inflammatories to reduce or eliminate undesirable inflammatory processes. The goal of the present study is to define the variation between surface properties that this composite experiments as consequence of several sterilization treatments, and application of several pharmaceutical products relating with physical properties. Morphological changes on surface, achieved by polarization and confocal microscopies, thermal and physical properties of chitosan composites and the NSAIDs release process kinetics so as the sterilization treatment effects observed by UV-vis spectroscopy were studied. In this article, it has been demonstrated that the kind of sterilization has no important influence in NSAIDs release in chitosan membranes or composites but differs a little with chitosan membranes no submitted to sterilization treatments.

  11. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  12. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  13. A method for preparing sodium acrylate-d3, a useful and stable precursor for deuterated acrylic monomers

    SciTech Connect

    Yang, Jun; Hong, Kunlun; Bonnesen, Peter V

    2011-01-01

    A convenient and economical method for converting propiolic acid to sodium acrylate-d3 is described. Successive D/H exchange of the alkyne proton of sodium propiolate (prepared from propiolic acid) using D2O affords sodium propiolate-d having up to 99 atom% D. Sodium propiolate-d can be partially reduced to sodium acrylate-d3 with 90% conversion and 89% yield, using D2 and the Lindlar catalyst with control of reaction parameters to maximize conversion while minimizing over reduction.

  14. Long–Term Effects of High-and Low-Glycemic Load Energy-Restricted Diets on Metabolic Adaptation and the Composition of Weight Loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of high glycemic load (HG) and low glycemic load (LG) diets on resting metabolic rate (RMR) and body composition changes in response to caloric restriction (CR) remains controversial. Objective To examine the effects of two CR diets differing primarily in glycemic load on RMR and the % o...

  15. Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing.

    PubMed

    Perumal, Sathiamurthi; Ramadass, Satiesh kumar; Madhan, Balaraman

    2014-02-14

    Development of a bio-composite using synergistic combination is a promising strategy to address various pathological manifestations of acute and chronic wounds. In the present work, we have combined three materials viz., mupirocin as an antimicrobial drug, sol-gel processed silica microsphere as drug carrier for sustained delivery of drug and collagen, an established wound healer as scaffold. The mupirocin-loaded silica microspheres (Mu-SM) and Mu-SM loaded collagen scaffold were characterized for surface morphology, entrapment efficiency and distribution homogeneity, in vitro drug release, water uptake capacity, cell proliferation and antibacterial activity. In vivo wound healing efficacy of the bio-composite was experimented using full thickness excision wound model in Wistar albino rats. The Mu-SM incorporated collagen scaffold showed good in vitro characteristics in terms of better water uptake, sustained drug availability and antimicrobial activity. The wound closure analysis revealed that the complete epithelialisation was observed at 14.2 ± 0.44 days for Mu-SM loaded collagen, whereas this was 17.4 ± 0.44 days and 20.6 ± 0.54 days for collagen and control groups, respectively. Consequently, the synergistic strategy of combining mupirocin-loaded silica microspheres and collagen as a Mu-SM loaded collagen dressing material would be an ideal biomaterial for the treatment of surface wounds, burns and foot ulcers. PMID:24514452

  16. Mode interaction in stiffened composite shells under combined mechanical and thermal loadings

    NASA Technical Reports Server (NTRS)

    Sridharan, Srinivasan

    1992-01-01

    Stiffened shells of various configurations fabricated out of composite materials find extensive applications in aircraft structures. Two distinctive modes of buckling dominate structural response of stiffened panels, viz. the short-wave local mode in which the shell skin buckles essentially between the stiffeners and the long-wave overall mode in which the shell skin buckles carrying the stiffeners with it. In optimized designs, the critical stresses corresponding to these modes of buckling would be close to each other. This leads to a nonlinear mode interaction which is recognized to be the principal cause of the failure of stiffened structures. If the structure is subjected to through-the-thickness thermal gradients, then large-wave bending effects would begin to occur well below the overall critical load and these would play the role of overall imperfections. The load carrying capacity would be significantly diminished as a result of interaction of local buckling with overall thermal distortions. The analysis of this problem using standard finite element techniques can be shown to be prohibitively expensive for design iterations. A concept which would greatly facilitate the analysis of mode interaction is advanced. We note that the local buckling occurs in a more or less periodic pattern in a structure having regular spacings of stiffeners. Thus it is a relatively simple matter to analyze the local buckling and the second order effects (which are essential for modeling postbuckling phenomena) using a unit cell of the structure. Once analyzed, these dormations are embedded in a shell element. Thus, a shell element could span several half-waves of local buckling and still be able to depict local buckling effects with requisite accuracy. A major consequence of the interaction of overall buckling/bending is the slow variation of the local buckling amplitude across the structure - the phenomenon of 'amplitude modulation' - and this is accounted for in the present

  17. Minimum-mass design of filamentary composite panels under combined loads: Design procedure based on simplified buckling equations

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Agranoff, N.

    1976-01-01

    An analytical procedure is presented for designing hat stiffened and corrugated panels made of composite material and subjected to longitudinal (in the direction of the stiffeners) compression and shear loadings. The procedure is based on nonlinear mathematical programming techniques and a simplified set of buckling equations. Design requirements considered are buckling, strength, and extensional and shear stiffness. The effects of specified thickness, variation of cross-section dimensions, stiffness requirements, local buckling boundary conditions, and the effect of combined compression and shear loadings are shown.

  18. Poly(amide-graft-acrylate) interfacial compounds

    NASA Astrophysics Data System (ADS)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  19. Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy.

    PubMed

    Wu, Xingjie; Zhou, Linzhu; Su, Yue; Dong, Chang-Ming

    2016-07-11

    To integrate cocktail chemotherapy with photothermal therapy into one biocompatible and biodegradable nanocarrier, the plasmonic, lactose-targeted, and dual anticancer drugs-loaded polypeptide composite nanoparticles were for the first time fabricated under mild conditions. The glyco-PEGylated polypeptide micelles that self-assembled from the lactose (LAC) and PEG grafted polycysteine terpolymer were used as templates to generate the plasmonic composite nanoparticles, as mainly characterized by DLS, TEM, SEM, and XPS. These composite nanoparticles showed a broad and strong near-infrared (NIR) absorption at 650-1100 nm and increased the temperature of phosphate buffer solution by 30.1 °C upon a continuous-wave laser irradiation (808 nm, 5 min, 2 W·cm(-2)), while the same dose of NIR-mediated heating completely killed HepG2 cancer cells in vitro, presenting excellent photothermal properties. Two anticancer drugs, doxorubicin (DOX) and 6-mercaptopurine (6-MP), were loaded into the composite nanoparticles through physical interactions and Au-S bond, respectively. The dual drugs-loaded composite nanoparticles exhibited reduction-sensitive and NIR-triggered cocktail drugs release profiles and trigger-enhanced cytotoxicity. As evidenced by flow cytometry, fluorescence microscopy, and MTT assay, the LAC-coated composite nanoparticles were more internalized by the HepG2 than the HeLa cell line, demonstrating a LAC-targeting enhanced cytotoxicity toward HepG2. The combination cocktail chemo-photothermal therapy produced a lower half maximal inhibitory concentration than cocktail chemotherapy or photothermal therapy alone, displaying a good synergistic antitumor effect. PMID:27310705

  20. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds.

    PubMed

    Sprio, Simone; Tampieri, Anna; Celotti, Giancarlo; Landi, Elena

    2009-04-01

    This work deals with the preparation of bioactive ceramic composites to be employed for the development of load-bearing bone substitutes, made of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2), HA) and bioactive dicalcium silicate (Ca(2)SiO(4), C(2)S) as a reinforcing phase. The composite materials were prepared by Fast Hot-Pressing (FHP), which allowed the rapid sintering of monolithic ceramics at temperatures up to 1500 degrees C, well above the commonly adopted temperatures for the consolidation of hydroxyapatite (1200-1300 degrees C). The purpose was to achieve the grain coalescence of both HA and the strengthening phase, so that to obtain a homogeneous ceramic material characterized by controlled phase composition and improved mechanical strength; the dwell time was reduced as much as possible to prevent HA decomposition and excessive grain growth. The most remarkable result, in terms of phase composition, was the absence of any secondary phases in the final ceramics other than HA and C(2)S, even after sintering at 1500 degrees C. The flexure strength of the composite materials was found to be much higher than that of HA alone. Further mechanical characterization was also carried out on HA and composites, sintered in different conditions, to evaluate the elastic properties and fracture toughness, and properties close to those of mineral bone were found. These preliminary results confirmed that composites of HA and Ca(2)SiO(4) are promising for the development of bioactive load-bearing ceramic bone substitutes with controlled phase composition. PMID:19627818

  1. Evaluation of a strain based failure criterion for the multi-constituent composite model under shock loading

    NASA Astrophysics Data System (ADS)

    Key, Christopher T.; Schumacher, Shane C.; Alexander, C. Scott

    2015-09-01

    This study details and demonstrates a strain-based criterion for the prediction of polymer matrix composite material damage and failure under shock loading conditions. Shock loading conditions are characterized by high-speed impacts or explosive events that result in very high pressures in the materials involved. These material pressures can reach hundreds of kbar and often exceed the material strengths by several orders of magnitude. Researchers have shown that under these high pressures, composites exhibit significant increases in stiffness and strength. In this work we summarize modifications to a previous stress based interactive failure criterion based on the model initially proposed by Hashin, to include strain dependence. The failure criterion is combined with the multi-constituent composite constitutive model (MCM) within a shock physics hydrocode. The constitutive model allows for decomposition of the composite stress and strain fields into the individual phase averaged constituent level stress and strain fields, which are then applied to the failure criterion. Numerical simulations of a metallic sphere impacting carbon/epoxy composite plates at velocities up to 1000 m/s are performed using both the stress and strain based criterion. These simulation results are compared to experimental tests to illustrate the advantages of a strain-based criterion in the shock environment.

  2. Numerical simulation of effective mechanical properties of stochastic composites with consideration for structural evolution under intensive dynamic loading

    SciTech Connect

    Karakulov, Valerii V.; Smolin, Igor Yu. E-mail: skrp@ftf.tsu.ru; Skripnyak, Vladimir A. E-mail: skrp@ftf.tsu.ru

    2014-11-14

    Mechanical behavior of stochastic metal-ceramic composites with the aluminum matrix under high-rate deformation at shock-wave loading is numerically simulated with consideration for structural evolution. Effective values of mechanical parameters of metal-ceramic composites AlB{sub 4}C, AlSiC, and AlAl{sub 2}O{sub 3} are evaluated depending on different concentration of ceramic inclusions.

  3. Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Rezvanil, Mohammad Javad; Kargarnovin, Mohammad Hossein; Younesian, Davood

    2011-12-01

    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to demonstrate the accuracy of the present method, the results TSDT are compared with the previously obtained results based on first-order shear deformation theory, with which good agreements are observed.

  4. Micromechanics of ambient temperature cyclic fatigue loading in a composite of CAS glass ceramic reinforced with Nicalon fibers

    SciTech Connect

    Rousseau, C.Q.; Davidson, D.L.; Campbell, J.B. )

    1994-04-01

    The behavior of a Nicalon fiber reinforced glass ceramic composite cyclicly loaded has been evaluated at ambient temperature using high-resolution micromechanical test methods. On this basis, the events leading to fracture have been found to be similar to those accompanying fracture in unidirectional tension tests. Matrix strains were determined locally at the point of matrix fracture. Crack opening displacements (CODs) were measured as a function of loading cycles, and fiber strains were determined, in some cases. It is concluded that debonding of fibers begins at the point of matrix cracking and rapidly increases. Most of the cyclic lifetime of the material is spent with fibers debonded over large distances (fractions of a millimeter); these fibers are pulled out of the matrix on each loading cycle. Final debond length, as determined by fractography, is a function of the number of cycles to fracture, and of the applied stress level. 23 refs.

  5. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    NASA Astrophysics Data System (ADS)

    Liu, Wenyan; Tang, Z. P.; Liu, Yunxin

    2000-04-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers.

  6. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads. Final report

    SciTech Connect

    Tiwari, ANIL

    1995-08-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models.

  7. The Study of Stability of Compression-Loaded Multispan Composite Panel Upon Failure of Elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, accomplished in 1996, 1997, and 1998, respectively). The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  8. Determination of the shear buckling load of a large polymer composite I-section using strain and displacement sensors.

    PubMed

    Park, Jin Y; Lee, Jeong Wan

    2012-01-01

    This paper presents a method and procedure of sensing and determining critical shear buckling load and corresponding deformations of a comparably large composite I-section using strain rosettes and displacement sensors. The tested specimen was a pultruded composite beam made of vinyl ester resin, E-glass and carbon fibers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. An asymmetric four-point bending loading scheme was utilized for the test. The loading scheme resulted a high shear and almost zero moment condition at the center of the web panel. The web shear buckling load was determined after analyzing the obtained test data from strain rosettes and displacement sensors. Finite element analysis was also performed to verify the experimental results and to support the discussed experimental approach. PMID:23443364

  9. GENOTOXICITY OF ACRYLIC ACID, METHYL ACRYLATE, ETHYL ACRYLATE, METHYL METHACRYLATE, AND ETHYL METHACRYLATE IN L5178Y MOUSE LYMPHOMA CELLS (JOURNAL VERSION)

    EPA Science Inventory

    A series of monomeric acrylate/methacrylate esters (methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate) as well as acrylic acid were examined for genotoxic activity in L5178Y mouse lymphoma cells without exogenous activation. All five compounds induced c...

  10. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  11. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  12. Predicting Failure Progression and Failure Loads in Composite Open-Hole Tension Coupons

    NASA Technical Reports Server (NTRS)

    Arunkumar, Satyanarayana; Przekop, Adam

    2010-01-01

    Failure types and failure loads in carbon-epoxy [45n/90n/-45n/0n]ms laminate coupons with central circular holes subjected to tensile load are simulated using progressive failure analysis (PFA) methodology. The progressive failure methodology is implemented using VUMAT subroutine within the ABAQUS(TradeMark)/Explicit nonlinear finite element code. The degradation model adopted in the present PFA methodology uses an instantaneous complete stress reduction (COSTR) approach to simulate damage at a material point when failure occurs. In-plane modeling parameters such as element size and shape are held constant in the finite element models, irrespective of laminate thickness and hole size, to predict failure loads and failure progression. Comparison to published test data indicates that this methodology accurately simulates brittle, pull-out and delamination failure types. The sensitivity of the failure progression and the failure load to analytical loading rates and solvers precision is demonstrated.

  13. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  14. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  15. Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs.

    PubMed

    Eshel-Green, Tal; Bianco-Peled, Havazelet

    2016-03-01

    Blockpolymer micelles having acrylated end groups were fabricated for the development of mucoadhesive drug loaded vehicle. The critical micelle concentration (CMC) of Pluronic(®) F127 modified with acrylate end groups (F127DA) was found to be similar to that of the unmodified Pluronic(®) F127 (F127). Small angle X-ray scattering verified existence of micelles with an inner core of 4.9±0.2 and 5.5±0.3 for F127 and F127DA respectively. Indomethacin, a hydrophobic drug, was incorporated into the micelles using the thin-film hydration method. In vitro drug release assay demonstrated that the micelles sustained the release of the drug in comparison with free drug in solution. Several methods were used for mucoadhesion evaluation. Viscosity profiling was performed by shear rate sweep experiment of hydrated commercial mucin, F127 or F127DA, and combination of both mucin and a copolymer. Elevated viscosity was achieved for acrylated micelles with mucin compared to mixtures of non-acrylated micelles with mucin. The mucoadhesivity of the acrylated micelles was further characterized using nuclear magnetic resonance (NMR); data affirmed the Michael type addition reaction occurred between acrylates on the micelles corona and thiols present in the mucin. SAXS scattering data further showed a modification in the scattering of F127DA micelles with the addition of pig gastric mucin. Cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) data detected increase in the aggregates size while using acrylated micelles enhance mucoadhesion. Thus acrylated F127DA micelles were found to be mucoadhesive, and a suitable and preferred candidate for micellar drug delivery to mucosal surfaces. PMID:26700232

  16. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  17. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  18. Stress-displacement relation of fiber for fiber-reinforced ceramic composites during (indentation) loading and unloading

    SciTech Connect

    Hsueh, C.; Ferber, M.K.; Becher, P.F. )

    1989-11-01

    The stress-displacement relation of the fiber is analyzed for fiber-reinforced ceramic composites during axial compressive loading (indentation) and unloading on the exposed end of an embedded fiber. An unbonded fiber/matrix interface subject to Coulomb friction and residual radial clamping stresses is considered in the present study. The results show that the stress-displacement curves during loading and unloading can be used to evaluate the magnitude of the clamping stress, the coefficient of friction, and the frictional stress distribution at the interface. Specifically, in the absence of Poisson's effect (i.e., when Poisson's ratio of the fiber is zero), the interfacial shear stress is constant, the loading curve is parabolic, and, after complete unloading, the residual fiber displacement equals half of the maximum fiber displacement at the peak loading stress. In the presence of Poisson's effect, the interfacial shear stress is not constant, and, after complete unloading, the residual fiber displacement is less than half of the maximum fiber displacement at the peak loading stress.

  19. Fatigue performance of composite analogue femur constructs under high activity loading.

    PubMed

    Chong, Alexander C M; Friis, Elizabeth A; Ballard, Gregory P; Czuwala, Peter J; Cooke, Francis W

    2007-07-01

    Synthetic mechanical analogue bone models are valuable tools for consistent analysis of implant performance in both equilibrium and fatigue biomechanical testing. Use of these models has previously been limited by the poor fatigue performance when tested under realistic service loads. An objective was to determine whether a new analogue bone model (Fourth-Generation) using enhanced analogue cortical bone provides significantly improved resistance to high load fracture and fatigue as compared to the current (Third-Generation) bone models in clinically relevant in situ type testing of total hip implants. Six Third-Generation and six Fourth-Generation mechanical analogue proximal femur models were implanted with a cemented mock hip arthroplasty. Each specimen was loaded at 5 Hz in simulated one-legged stance under load control with a maximum compressive load of 2670 N and load ratio of 0.1. Average complete structural failure in Third-Generation femurs occurred at 3.16 million cycles; all specimens exhibited substantial displacement and crazing at well below 3 million cycles. In contrast, all Fourth-Generation femurs sustained 10 million cycles without complete structural failure and showed little change in actuator deflection. The Fourth-Generation femur model performance was sufficient to allow the model to be used in biomechanically relevant load bearing levels with an intramedullary device without model compromise that would affect test results. PMID:17390224

  20. Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release.

    PubMed

    Kang, Xiaojiao; Yang, Dongmei; Dai, Yunlu; Shang, Mengmeng; Cheng, Ziyong; Zhang, Xiao; Lian, Hongzhou; Ma, Ping'an; Lin, Jun

    2013-01-01

    In this study, multifunctional poly(acrylic acid) modified lanthanide-doped GdVO(4) nanocomposites [PAA@GdVO(4): Ln(3+) (Ln = Yb/Er, Yb/Ho, Yb/Tm)] were constructed by filling PAA hydrogel into GdVO(4) hollow spheres via photoinduced polymerization. The up-conversion (UC) emission colors (green, red and blue) can be tuned by changing the codopant compositions in the matrices. The composites have potential applications as bio-probes for cell imaging. Meanwhile, the hybrid spheres can act as T(1) contrast agents for magnetic resonance imaging (MRI) owing to the existence of Gd(3+) ions on the surface of composites. Due to the nature of PAA, DOX-loaded PAA@GdVO(4):Yb(3+)/Er(3+) system exhibits pH-dependent drug releasing kinetics. A lower pH offers a faster drug release rate. Such character makes the loaded DOX easily released at cancer cells. The cell uptake process of drug-loaded composites was observed by using confocal laser scanning microscopy (CLSM). The results indicate the potential application of the multifunctional composites as theragnostics (effective bimodal imaging probes and pH-responsive drug carriers). PMID:23154448

  1. Compression-Loaded Composite Panels With Elastic Edge Restraints and Initial Prestress

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2005-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  2. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  3. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  4. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    This paper is concerned with the problem of the calculation of stress-intensity factors at the tips of radial matrix cracks (r-cracks) in fiber-reinforced composites under thermal and/or transverse uniaxial or biaxial mechanical loading. The crack is either located in the immediate vicinity of a single fiber or it terminates at the interface between the fiber and the matrix. The problem is stated and solved numerically within the framework of linear elasticity using Erdogan's integral equation technique. It is shown that the solutions for purely thermal and purely mechanical loading can simply be superimposed in order to obtain the results of the combined loading case. Stress-intensity factors (SIFs) are calculated for various lengths and distances of the crack from the interface for each of these loading conditions. The behavior of the SIFs for cracks growing towards or away from the interface is examined. The role of the elastic mismatch between the fibers and the matrix is emphasized and studied extensively using the so-called Dundurs' parameters. It is shown that an r-crack, which is remotely located from the fiber, can either be stabilized or destabilized depending on both the elastic as well as the thermal mismatch of the fibrous composite. Furthermore, Dundurs' parameters are used to predict the exponent of the singularity of the crack tip elastic field and the behavior of the corresponding SIFs for cracks which terminate at the interface. An analytical solution for the SIFs is derived for all three loading conditions under the assumption that the elastic constants of the matrix and the fiber are equal. It is shown that the analytical solution is in good agreement with the corresponding numerical results. Moreover, another analytical solution from the literature, which is based upon Paris' equation for the calculation of stress-intensity factors, is compared with the numerical results and it is shown to be valid only for extremely short r-cracks touching the

  5. Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix.

    PubMed

    Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero

    2015-06-15

    This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering. PMID:25778738

  6. Compression creep rupture of an E-glass/vinyl ester composite subjected to combined mechanical and fire loading conditions

    NASA Astrophysics Data System (ADS)

    Boyd, Steven Earl

    Polymer matrix composites are seeing increasing use in structural systems (e.g. ships, bridges) and require a quantitative basis for describing their performance under combined mechanical load and fire. Although much work has been performed to characterize the flammability, fire resistance and toxicity of these composite systems, an understanding of the structural response of sandwich type structures and laminate panels under combined mechanical and thermal loads (simulating fire conditions) is still largely unavailable. Therefore a research effort to develop a model to describe the structural response of these glass/vinyl esters systems under fire loading conditions is relevant to the continuing and future application of polymer matrix composites aboard naval ships. The main goal of the effort presented here is to develop analytical models and finite element analysis methods and tools to predict limit states such as local compression failures due to micro-buckling, residual strength and times to failure for composite laminates at temperatures in the vicinity of the glass transition where failure is controlled by viscoelastic effects. Given the importance of compression loading to a structure subject to fire exposure, the goals of this work are succinctly stated as the: (a) Characterization of the non-linear viscoelastic and viscoplastic response of the E-glass/vinyl ester composite above Tg. (b) Description of the laminate compression mechanics as a function of stress and temperature including viscoelasticity. (c) Viscoelastic stress analysis of a laminated panel ([0/+45/90/-45/0] S) using classical lamination theory (CLT). Three manuscripts constitute this dissertation which is representative of the three steps listed above. First, a detailed characterization of the nonlinear thermoviscoelastic response of Vetrotex 324/Derakane 510A--40 through Tg was conducted using the Time--Temperature--Stress--Superposition Principle (TTSSP) and Zapas--Crissman model. Second

  7. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    PubMed

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study. PMID:25974660

  8. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  9. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  10. Radiopurity measurement of acrylic for DEAP-3600

    SciTech Connect

    Nantais, C. M.; Boulay, M. G.; Cleveland, B. T.

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  11. New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Isac, Luminita; Duta, Anca

    2015-06-01

    The goal of this paper was to develop a new composite obtained in mild hydrothermal conditions starting from fly ash (a waste raising significant environmental problems), and TiO2. The composite was characterized through XRD, SEM/EDX, AFM, and BET surface measurements. The composite was further used for the advanced treatment of wastewaters with multiple-pollutants load. The photocatalytic efficiency of the powder composite was tested on synthetic solutions containing a heavy metal cation (copper), a dye (methyl orange), and a surfactant (sodium dodecylbenzenesulfonate), under UV and simulated solar radiation. Comparative experiments were done in systems with and without H2O2 showing a significant increase in efficiency for methyl orange removal from mono-, bi-, and tri-pollutants solutions. The process parameters were optimized and the adsorption mechanisms are discussed, outlining that adsorption is the limiting step. Experiments also outlined that homogeneous photocatalysis (using H2O2) is less efficient then the heterogeneous process using the novel composite, both under UV and simulated solar radiation.

  12. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray

    NASA Astrophysics Data System (ADS)

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-04-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.

  13. Changes in the Radioactivity, Topography, and Surface Composition of Uranium after Hydrogen Loading by Aqueous Electrolysis

    NASA Astrophysics Data System (ADS)

    Dash, J.; Chicea, D.

    2005-12-01

    Hydrogen loading of 99.98% pure natural uranium foils (0.18mm thick) was performed by aqueous electrolysis in order to compare with glow discharge results. The alpha, beta, and gamma specific radioactivity were measured after hydrogen loading and compared with the control. Some of the samples revealed an increase of the specific radioactivity of up to 20%. Gamma-ray spectroscopy was also performed on the samples. Results reveal an increase of the specific counts for the peaks of Th234 and U235 and a decrease in the U Kα1 characteristic X-ray peak. The surface topography changed from granular before electrolysis to pitted afterward. The thorium concentration increased slightly after electrolysis compared with the original material. In summary, this work in progress reveals that loading hydrogen into uranium increases the uranium decay rate, in agreement with the glow discharge results.

  14. Observation of the initiation and progression of damage in compressively loaded composite plates containing a cutout

    NASA Technical Reports Server (NTRS)

    Waas, A.; Babcock, C., Jr.

    1986-01-01

    A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.

  15. Study of fatigue durability of advanced composite materials under conditions of accelerated loading

    NASA Technical Reports Server (NTRS)

    Shih, H. M.

    1979-01-01

    The effect of temperature on the tension-tension fatigue life of the T300/5208 graphite/epoxy angle-ply laminate system was investigated in an effort to develop an acceptable and reliable method of accelerated loading. Typical S log sub 10 N curves were determined experimentally at 25 C, 75 C, and 115 C. The time-temperature superposition principle was employed to find the shift factors of uniaxial fatigue strength, and a general linear equation of S log sub 10 N for shifting purpose was established. The combined techniques of cyclic creep measurements and optical microscopy upon fatigue failure allow some assessment of the possible physical basis of S log 10 N curve shifting. Before fatigue, the laminates at all test temperatures and stress levels undergo a unique damage mechanism during fatigue loading. It is concluded that an accelerated loading method is feasible.

  16. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  17. Buckling and Failure of Compression-Loaded Composite Cylindrical Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.

  18. Effect of gamma irradiation on the microbial load, nutrient composition and free radical scavenging activity of Nelumbo nucifera rhizome

    NASA Astrophysics Data System (ADS)

    Khattak, Khanzadi Fatima; Simpson, Thomas James; Ihasnullah

    2009-03-01

    The assurance of microbial quality is necessary to make plant materials suitable for human consumption and commercialization. The aim of the present study was to evaluate the possibility to apply the gamma radiation treatment on the rhizome samples of Nelumbo nucifera for microbial decontamination. The radiation processing was carried out at dose levels of 1, 2, 4 and 6 kGy. The irradiated and control samples were analyzed for microbial load, organoleptic acceptance, extraction yield, proximate composition, phenolic contents and DPPH scavenging activity. The results indicated that gamma radiation treatment significantly reduced microbial load and increased the storability of the irradiated samples. The treated samples were also acceptable sensorically. The extraction yield and phenolic contents increased with the increase of radiation dose. Gamma radiation also enhanced the DPPH scavenging activity.

  19. Effects of method of loading and specimen configuration on compressive strength of graphite/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Lisagor, W. B.

    1980-01-01

    Three test schemes were examined for testing graphite/epoxy (Narmco T300/5208) composite material specimens to failure in compression, including an adaptation of the IITRI "wedge grip" compression fixture, a face-supported-compression fixture, and an end-loaded-coupon fixture. The effects of specimen size, specimen support arrangement and method of load transfer on compressive behavior of graphite/epoxy were investigated. Compressive stress strain, strength, and modulus data obtained with the three fixtures are presented with evaluations showing the effects of all test parameters, including fiber orientation. The IITRI fixture has the potential to provide good stress/strain data to failure for unidirectional and quasi-isotropic laminates. The face supported fixture was found to be the most desirable for testing + or - 45 s laminates.

  20. A compact very wideband amplifying filter based on RTD loaded composite right/left-handed transmission lines.

    PubMed

    Abu-Marasa, Mahmoud O Mahmoud; El-Khozondar, Hala Jarallah

    2015-01-01

    The composite right/left-handed (CRLH) transmission line (TL) is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. RH materials have both positive permittivity and positive permeability, and LH materials have both negative permittivity and negative permeability. This paper aims to design and analyze nonlinear CRLH-TL transmission line loaded with resonant tunneling diode (RTD). The main application of this design is a very wideband and compact filter that amplifies the travelling signal. We used OrCAD and ADS software to analyze the proposed circuit. CRLH-TL consists of a microstrip line which is loaded with complementary split-rings resonators (CSRRs), series gaps, and shunt inductor connected parallel to the RTD. The designed structure possess a wide band that ranges from 5 to 10.5 GHz and amplifies signal up to 50 %. The proposed design is of interest to microwave compact component designers. PMID:26636021

  1. Hydroxyapatite wrapped multiwalled carbon nanotubes composite, a highly efficient template for palladium loading for electrooxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safavi, Afsaneh; Abbaspour, Abdolkarim; Sorouri, Mohsen

    2015-08-01

    A new electrocatalyst is introduced by loading palladium nanoparticles on the unique structured composite of hydroxyapatite and multiwalled carbon nanotubes. The structure and morphology of the designed electrocatalyst are characterized by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The efficiency of the resulted nanostructure is explored toward the electrooxidation of some common alcohols in alkaline media. The electrooxidation of ethylene glycol (EG) is explored more extensively which provides a large peak current density (more than 1810 mA mg-1Pd). Surprisingly, the efficiency of oxidation is maintained even for relatively high concentrations of EG. In terms of the current density and the onset potential, significant improvements are observed for the proposed structure versus hydroxyapatite free catalyst. The high efficiency of the proposed electrocatalyst is explained via the presence of hydroxyl rich surface of hydroxyapatite which causes a more effective oxidation of alcohols over the loaded Pd nanoparticles.

  2. Short-wavelength buckling and shear failures for compression-loaded composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.

    1985-01-01

    The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.

  3. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  4. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  5. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  7. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  9. Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.

    1985-01-01

    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.

  10. Occupational respiratory disease caused by acrylates.

    PubMed

    Savonius, B; Keskinen, H; Tuppurainen, M; Kanerva, L

    1993-05-01

    Acrylates are compounds used in a variety of industrial fields and their use is increasing. They have many features which make them superior to formerly used chemicals, regarding both their industrial use and their possible health effects. Contact sensitization is, however, one of their well known adverse health effects but they may also cause respiratory symptoms. We report on 18 cases of respiratory disease, mainly asthma, caused by different acrylates, 10 cases caused by cyanoacrylates, four by methacrylates and two cases by other acrylates. PMID:8334539

  11. Research on the exploitation of advanced composite materials to lightly loaded structures

    NASA Technical Reports Server (NTRS)

    Mar, J. W.

    1976-01-01

    The objective was to create a sailplane which could fly in weaker thermals than present day sailplanes (by being lighter) and to fly in stronger thermals than present sailplanes (by carrying more water ballast). The research was to tackle the interaction of advanced composites and the aerodynamic performance, the interaction of fabrication procedures and the advanced composites, and the interaction of advanced composites and the design process. Many pieces of the overall system were investigated but none were carried to the resolution required for engineering application. Nonetheless, interesting and useful results were obtained and are here reported.

  12. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  13. The Study of Stability of Compression-loaded Multispan Composite Panel Upon Failure of elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  14. Development of a fatigue-life methodology for composite structures subjected to out-of-plane load components

    NASA Technical Reports Server (NTRS)

    Sumich, Mark; Kedward, Keith T.

    1991-01-01

    The efforts to identify and implement a fatigue life methodology applicable to demonstrate delamination failures for use in certifying composite rotor blades are presented. The RSRA/X-Wing vehicle was a proof-of-concept stopped rotor aircraft configuration which used rotor blades primarily constructed of laminated carbon fiber. Delamination of the main spar during ground testing demonstrated that significant interlaminar stresses were produced. Analysis confirmed the presence of out-of-plane load components. The wear out (residual strength) methodology and the requirements for its implementation are discussed.

  15. Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfect ions that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations local shell-wall ply-gaps associated with the fabrication process, sheltered geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the nonlinear response, and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.

  16. Effect of fiber loading on flexural strength of hybrid sisal/hemp-HDPE composites

    NASA Astrophysics Data System (ADS)

    Aggarwal, Lakshya; Sinha, Shishir; Gupta, V. K.

    2015-05-01

    The continuing demand for sustainable materials and increasing environmental concerns have led to intense research in the field of natural fiber reinforced composites. Natural fibers are favored over synthetic fibers as reinforcement due to positive environmental benefits such as raw material utilization at source and easy disposable of the biodegradable fiber. In the present work, we have investigated flexural behavior of hybrid natural fiber reinforced HDPE composites. The matrix comprises of 50-50 ratio of virgin and recycled HDPE and the content of fibers (sisal and hemp) in the composite is varied from 10 to 30%. The natural fibers were mercerized with NaOH solution and chemically treated with maleic anhydride. The flexural specimens were prepared by injection moulding process and the testing was conducted in accordance to ASTM D790 standards. It is revealed that the flexural strength of the hybrid composite increases with the increase in fibers content when compared to specimen containing 100% HDPE.

  17. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  18. Determination of the composition, encapsulation efficiency and loading capacity in protein drug delivery systems using circular dichroism spectroscopy.

    PubMed

    Peng, Zhili; Li, Shanghao; Han, Xu; Al-Youbi, Abdulrahman O; Bashammakh, Abdulaziz S; El-Shahawi, Mohammad S; Leblanc, Roger M

    2016-09-21

    Peptides and proteins have become very promising drug candidates in recent decades due to their unique properties. However, the application of these drugs has been limited by their high enzymatic susceptibility, low membrane permeability and poor bioavailability when administered orally. Considerable efforts have been made to design and develop drug delivery systems that could transport peptides and proteins to targeted area. Although it is of great importance to determine the composition after loading a drug to the carrier, the ability to do so is significantly limited by current analytical methods. In this letter, five important proteins, α1-antitrypsin, hemoglobin human, human serum albumin, human transferrin and r-globulin were chemically conjugated to two model drug carriers, namely carbon dots and polymer O-(2-carboxyethyl) polyethylene glycol. A simple yet convenient method based on circular dichroism spectroscopy was developed to determine the compositions of the various protein-carrier conjugates. PMID:27590552

  19. Degradation of back surface acrylic mirrors for low concentration and mirror-augmented photovoltaics

    NASA Astrophysics Data System (ADS)

    Murray, Myles P.; Bruckman, Laura S.; Gordon, Devin; Richardson, Samuel; Reinbolt, Greg; Schuetz, Mark; French, Roger H.

    2012-10-01

    Back-surface acrylic mirrors can be used in low concentration and mirror augmented photovoltaics (LCPV, MAPV) to increase the irradiance on a module. Back-surface mirrors can spectrally filter incoming solar radiation reducing the ultraviolet (UV) and infrared (IR) load on the module, while useful radiation is coupled into a module or photovoltaic cell. Degradation of these mirrors can occur from UV induced photodegradative processes and metallization corrosion. Environmental stresses such as humidity, thermal cycling and exposure to corrosive substances can cause an increase in scattering, reducing mirror performance. In order to increase the lifetime and durability of back-surface acrylic mirrors a better understanding of the degradation modes is necessary. In a study of acrylic back-surface mirrors for LCPV and MAPV applications, optical properties and bidirectional scattering distribution functions (BSDF) were investigated and correlated to simulated exposure protocols. Formulations of Poly(methyl methacrylate) (PMMA) with differing concentration of UV absorbers were used for the aluminum backsurface acrylic mirrors. The formulations of aluminum back-surface acrylic mirrors were exposed in a QUV accelerated weathering tester (QLabs) to ASTM G154 Cycle 4. Total and diffuse reflectance spectra were measured for each mirror under exposure using a diffuse reflectance accessory (DRA) from 180-1800 nm on a Varian Cary 6000i at defined dose intervals. The total reflectance losses in the 250-400 nm region were greater and diffuse-only reflectance increased for formulations of acrylic mirrors that contained the least amount of UV stabilizer after each dose of QUV exposure. Acrylic back-surface mirrors were exposed to salt fog corrosion and QUV and were analyzed using BSDF. There was an increase in scattering from roughening of the mirror surface after exposure to the corrosive environment.

  20. Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature

    PubMed Central

    2014-01-01

    In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed. PMID:25246871

  1. Study on the laser irradiation effects on carbon fiber reinforced resin composite subjected to tangential gas flow loading

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman; Jiao, Luguang; Li, Junshen; Liu, Zejin

    2013-05-01

    The irradiation effects of 976nm continuous-wave laser on carbon fiber reinforced E-51 resin composite is studied experimentally, with a 0.4Ma tangential airflow or 0.4Ma tangential nitrogen gas flow on the target surface. In order to simulate the thermal response of fiber reinforced resin composite materials subjected to combined laser and tangential gas flow loading, a three-dimensional thermal response model of resin composite materials is developed. In the model, the thermal decomposition of resin is described by a multi-step model. The motion of the decomposition gas is assumed to be one-dimensional, for the case that the laser spot is significantly larger than the thickness of the sample. According the above assumption, the flow of the decomposition gas is considered in the three-dimensional model without introducing any mechanical quantities. The influences of the tangential gas flow, the outflow of the thermal decomposition gas and the ablation-including phase change ablation or oxidative ablation-of the surface material on the laser irradiation effects are included in the surface boundary conditions. The three-dimensional thermal response model is calculated numerically by use of the modified smooth particle hydrodynamics (MSPH) method which is coded with FORTRAN. The model is tested by experimentally measuring the temperature profiles during carbon fiber reinforced E-51 resin composite subjected to combined laser and tangential gas flow. The predicted temperature profiles are in good agreement with experimental temperatures obtained using thermocouples.

  2. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2016-08-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  3. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.

    PubMed

    Hu, Mingjun; Cai, Xiaobing; Guo, Qiuquan; Bian, Bin; Zhang, Tengyuan; Yang, Jun

    2016-01-26

    In this article, we describe a writable particle-free ink for fast fabrication of highly conductive stretchable circuits. The composite ink mainly consists of soluble silver salt and adhesive rubber. Low toxic ketone was employed as the main solvent. Attributed to ultrahigh solubility of silver salt in short-chain ketone and salt-assisted dissolution of rubber, the ink can be prepared into particle-free transparent solution. As-prepared ink has a good chemical stability and can be directly filled into ballpoint pens and use to write on different substrates to form well adhesive silver salt-based composite written traces as needed. As a result of high silver salt loading, the trace can be converted into highly conductive silver nanoparticle-based composites after in situ reduction. Because of the introduction of adhesive elastomeric rubber, the as-formed conductive composite written trace can not only maintain good adhesion to various substrates but also show good conductivity under various deformations. The conductivity of written traces can be enhanced by repeated writing-reduction cycles. Different patterns can be fabricated by either direct handwriting or hand-copying. As proof-of-concept demonstrations, a typical handwriting heart-like circuit was fabricated to show its capability to work under different deformations, and a pressure-sensitive switch was also manufactured to present pressure-dependent change of resistance. PMID:26624508

  4. Enhanced molecular level dispersion and interface bonding at low loading of modified graphene oxide to fabricate super nylon 12 composites.

    PubMed

    Roy, Sunanda; Tang, Xiuzhi; Das, Tanya; Zhang, Liying; Li, Yongmei; Ting, Sun; Hu, Xiao; Yue, C Y

    2015-02-11

    Development of advanced graphene based polymer composites is still confronted with severe challenges due to its poor dispersion caused by restacking, weak interface bonding, and incompatibility with polymer matrices which suppress exertion of the actual potential of graphene sheets in composites. Here, we have demonstrated an efficient chemical modification process with polyethylenimine (PEI) to functionalize graphene oxide which can overcome the above-mentioned drawbacks and also can remarkably increase the overall strength of the nylon 12 composites even at very low graphene loading. Chemical modification was analyzed by various surface characterizations including X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Addition of only 0.25 and 0.35 wt % modified GO showed 37% and 54% improvement in tensile strength and 65% and 74% in Young's modulus, respectively, compared with that of the neat polymer. The dynamic mechanical analysis showed ∼39% and 63% increment in storage modulus of the nanocomposites. Moreover, the nanocomposites exhibited significantly high thermal stability (∼15 °C increment by only 0.35 wt %) as compared to neat polymer. Furthermore, the composites rendered outstanding resistance against various chemicals. PMID:25545112

  5. Characterization and Analysis of Triaxially Braided Polymer Composites under Static and Impact Loads

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Blinzler, Brina J.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2012-01-01

    In order to design impact resistant aerospace components made of triaxially-braided polymer matrix composite materials, a need exists to have reliable impact simulation methods and a detailed understanding of the material behavior. Traditional test methods and specimen designs have yielded unrealistic material property data due to material mechanisms such as edge damage. To overcome these deficiencies, various alternative testing geometries such as notched flat coupons have been examined to alleviate difficulties observed with standard test methods. The results from the coupon level tests have been used to characterize and validate a macro level finite element-based model which can be used to simulate the mechanical and impact response of the braided composites. In the analytical model, the triaxial braid unit cell is approximated by using four parallel laminated composites, each with a different fiber layup, which roughly simulates the braid architecture. In the analysis, each of these laminated composites is modeled as a shell element. Currently, each shell element is considered to be a smeared homogeneous material. Simplified micromechanics techniques and lamination theory are used to determine the equivalent stiffness properties of each shell element, and results from the coupon level tests on the braided composite are used to back out the strength properties of each shell element. Recent improvements to the model include the incorporation of strain rate effects into the model. Simulations of ballistic impact tests have been carried out to investigate and verify the analysis approach.

  6. Buckling and failure characteristics of compression-loaded stiffened composite panels with a hole

    NASA Astrophysics Data System (ADS)

    Nagendra, S.; Gurdal, Z.; Haftka, R. T.; Starnes, J. H.

    An experimental and analytical study was carried out to investigate the buckling and failure characteristics of stiffened compression-loaded panels with holes and to assess the validity of analytical models used for the design of such panels. Graphite-epoxy panels with four equally spaced blade stiffeners were fabricated with a laminate stacking sequence optimally designed for stiffened panels without holes. Panels with different hole sizes and panels without holes were tested.

  7. High-Fidelity Nonlinear Analysis of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2001-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have four different shell-wall laminates and two different shell-radius-to-thickness ratios. The shell-wall laminates include two different orthotropic laminates and two different quasi-isotropic laminates. The shell-radius-to-thickness ratios include shell-radius-to-thickness ratios equal to 100 and 200. The results identify the effects of traditional and nontraditional initial imperfections on the nonlinear response characteristics and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The nontraditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these traditional and nontraditional imperfections on the nonlinear response characteristics and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts the stable response characteristics of the shells, and a nonlinear transient analysis that predicts the unstable response characteristics. The results of a local shell-wall stress analysis used to estimate failure stresses are also described.

  8. Gel time of calcium acrylate grouting material.

    PubMed

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  9. Experimental and Numerical Investigations of Textile Hybrid Composites Subjected to Low Velocity Impact Loadings

    PubMed Central

    Chandekar, Gautam S.; Kelkar, Ajit D.

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  10. Experimental and numerical investigations of textile hybrid composites subjected to low velocity impact loadings.

    PubMed

    Chandekar, Gautam S; Kelkar, Ajit D

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  11. Simple solutions of the free-edge stresses in composite laminates under thermal and mechanical loads

    SciTech Connect

    Yin, Wan-Lee )

    1994-01-01

    Intense and localized interlaminar stresses generally occur in a narrow boundary region near the free edge of a multilayered anisotropic laminate under mechanical and temperature loads. Quantitative measures of interlaminar action across interfaces may be readily obtained through purely algebraic operations, even if nonlinear and inelastic material behavior becomes significant in the boundary region due to severe strain concentration. These measures are the limiting values of the Lekhnitskii stress functions F and Psi (and of the normal derivative of F) along interfaces and toward the interior region of the laminate. In the present work, they are used as the basis of an exceedingly simple and efficient method of interlaminar stress analysis that is potentially applicable to free-edge problems involving nonlinear thermoelastic constitutive relations. Example solutions are obtained for symmetric, four-layer, cross-ply, and angle-ply laminates under a temperature load and two different types of strain loads, and the results are found to be in reasonable agreement with the existing numerical and analytical solutions based on elaborate analysis methods. 13 refs.

  12. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulus, M. M., Jr.

    1976-01-01

    Structural efficiency studies were made to determine the weight saving potential of graphite/epoxy composite structures for compression panel applications. Minimum weight hat-stiffened and open corrugation configurations were synthesized using a nonlinear mathematical programming technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience suggests that most of the theoretical weight saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  13. Graphite/Polyimide Composites Subjected to Biaxial Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Kumosa, Maciej S.; Sutter, J. K.

    2007-01-01

    First, we will review our most important research accomplishments from a five year study concerned with the prediction of mechanical properties of unidirectional and woven graphite/polyimide composites based on T650-35, M40J and M60J fibers embedded in either PMR-15 or PMR-II-50 polyimide resins. Then, an aging model recently developed for the composites aged in nitrogen will be proposed and experimentally verified on an eight harness satin (8HS) woven T650-35/PMR-15 composite aged in nitrogen at 315 C for up to 1500 hours. The study was supported jointly between 1999 and 2005 by the AFOSR, the NASA Glenn Research Center, and the National Science Foundation.

  14. Damage development in titanium metal matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1992-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  15. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-04-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  16. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-08-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  17. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  18. Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells.

    PubMed

    Tadier, Solène; Bareille, Reine; Siadous, Robin; Marsan, Olivier; Charvillat, Cédric; Cazalbou, Sophie; Amédée, Joelle; Rey, Christian; Combes, Christèle

    2012-02-01

    This study aims to evaluate in vitro the release properties and biological behavior of original compositions of strontium (Sr)-loaded bone mineral cements. Strontium was introduced into vaterite CaCO3 -dicalcium phosphate dihydrate cement via two routes: as SrCO3 in the solid phase (SrS cements), and as SrCl2 dissolved in the liquid phase (SrL cements), leading to different cement compositions after setting. Complementary analytical techniques implemented to thoroughly investigate the release/dissolution mechanism of Sr-loaded cements at pH 7.4 and 37°C during 3 weeks revealed a sustained release of Sr and a centripetal dissolution of the more soluble phase (vaterite) limited by a diffusion process. In all cases, the initial burst of the Ca and Sr release (highest for the SrL cements) that occurred over 48 h did not have a significant effect on the expression of bone markers (alkaline phosphatase, osteocalcin), the levels of which remained overexpressed after 15 days of culture with human osteoprogenitor (HOP) cells. At the same time, proliferation of HOP cells was significantly higher on SrS cements. Interestingly, this study shows that we can optimize the sustained release of Sr(2+) , the cement biodegradation and biological activity by controlling the route of introduction of strontium in the cement paste. PMID:22102621

  19. Failure kinetic and scaling behavior of the composite materials: Fiber Bundle Model with the local load-sharing rule (LLS)

    NASA Astrophysics Data System (ADS)

    Hader, A.; Boughaleb, Y.; Achik, I.; Sbiaai, K.

    2013-11-01

    We investigate the spatial distribution of mechanical stresses of composite materials densely packed with thin glass fibers and yield so low transparency that the conventional method of photoelasticity testing fails to provide good quality birefringence fringes. The failure kinetic and the scaling behavior of theses materials are also studied. The calculations are done within the framework of the fiber bundle model with the local load-sharing rule (LLS) in which the load of the failing fiber is shared between only the nearest neighbor elements. We have found that the failure properties of these materials are characterized by the avalanche phenomena with two different timescales and the number of broken fibers presents a Boltzmann distribution. The failure time tf presents a power law with the applied force and the system size. The results show also that the failure kinetic of the composite materials is self-similar. The creep rupture is also investigated. The results show that these materials are characterized by a two creep regimes characterized by the Andrade's law with a two different exponents, and separated by a cross over time tm more consisting with the experiment results.

  20. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    SciTech Connect

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.