Science.gov

Sample records for acrylic composites loaded

  1. Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing.

    PubMed

    Bajpai, S K; Pathak, V; Soni, Bhawna

    2015-08-01

    In this work, antibiotic drug Minocycline (Mic) loaded cellulose nano-whiskers (CNWs)/poly(sodium acrylate) hydrogel films were prepared and investigated for their drug releasing capacity in physiological buffer solution (PBS) at 37 °C. The (CNWs)/poly(sodium acrylate) film, containing 9.7% (w/w) of CNWs, demonstrated Mic release of 2500 μg/g while the plain poly(acrylate) film showed 3100 μg/g of drug release. In addition, with the increase in the concentration of cross-linker N,N'-methylene bisacrylamide (MB) from to, the drug release from the resulting films decreased from 507 to 191 μg/g. The release exponent 'n' for films with different compositions was found in the range of 0.45 to 0.89, thus indicating non-Fickian release mechanism. The Schott model was employed to interpret the kinetic drug release data successfully. The film samples poly(SA) and CNWs/poly(SA) (both not containing drug) showed thrombus formation of 0.010±0.001 g and 0.007±0.001 g, respectively, thus showing the non-thrombogenic behavior. In percent Hemolysis, both of the film samples of 1.136±0.012 and 0.5±0.020, respectively, thus indicating non-hemolytic behavior. In addition, both of the film samples demonstrated protein adsorption of 49.02±0.59μ g/μL and 51.20±0.51 μg/μL per cm(2), thus revealing a fair degree of protein adsorption. Finally, the Mic-loaded films showed fair anti-fungal and antibacterial properties. PMID:25940526

  2. Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology.

    PubMed

    González-Chomón, Clara; Braga, Mara E M; de Sousa, Herminio C; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2012-10-01

    Cataracts treatment usually involves the extraction of the opaque crystalline lens and its replacement by an intraocular lens (IOL). A serious complication is the occurrence of endophthalmitis, a post-surgery infection mainly caused by Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. IOLs having the ability to load and to release norfloxacin in a controlled way and at efficient therapeutic levels may help to overcome these issues. In this work, acrylic hydrogels combining 2-hydroxyethyl methacrylate (HEMA) and 2-butoxyethyl methacrylate (BEM) at various ratios were prepared to attain biocompatible networks that can be foldable even in the dry state and thus insertable through minor ocular incision, and that load therapeutic amounts of norfloxacin. Acrylamide (AAm) and methacrylic acid (MAAc) were also incorporated as functional comonomers in small proportions. Water sorption, contact angle, protein adsorption, and optical properties of the networks were characterized. BEM notably decreased the T(g) of the networks, but also the loading by immersion in aqueous solution (presoaking). Then, a scCO(2)-based impregnation/deposition (SSI) method was implemented to improve the uptake of the drug. Loading capacities were discussed in terms of the comonomers composition and the employed method and operational conditions. The networks prepared with HEMA/BEM 20:80 vol/vol and processed with supercritical fluids combine adequate mechanical properties, biocompatibility and norfloxacin loading/release, and seem to be suitable for developing norfloxacin-eluting IOLs. PMID:22846620

  3. Composite Load Model Evaluation

    SciTech Connect

    Lu, Ning; Qiao, Hong

    2007-09-30

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  4. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  5. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  6. Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement

    SciTech Connect

    Gray, J.E.; Stears, J.G.; Frank, E.D.

    1983-03-01

    Shaped filters that are constructed of lead-loaded acrylic material for use in patient radiography are discussed. Use of the filters will result in improved overall image quality with significant exposure reduction to the patient (approximately a 2X reduction in breast exposure and a 3X reduction in thyroid gland exposure). Detailed drawings of the shaped filters for scoliosis radiography, cervical spine radiography, and for long film changers in special procedures are provided. The use of the scoliosis filters is detailed and includes phantom and patient radiographs and dose reduction information.

  7. Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Simmonds, J. G.

    2000-01-01

    This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  8. Alumina-coated graphene nanosheet and its composite of acrylic rubber.

    PubMed

    Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo

    2014-02-15

    A graphene was coated with a thin alumina layer to prepare a novel nanosheet which had high thermal conductivity but low electrical conductivity. The nanosheet with minimal aggregation was prepared effectively by first coating it with aluminum tri-sec-butoxide in anhydrous dimethylformamide, followed by rapid calcination in an inert atmosphere after the hydrolysis of the alkoxide. The morphology observed by scanning electron microscopy and elemental mapping by energy-dispersive X-ray spectrometry showed that the alumina layer coated on the graphene surface was uniform and ultra-thin. Thermogravimetry demonstrated that the uniformly coated alumina protective layer substantially improved the thermal stability of the graphene and that the electrically-insulative alumina layer effectively reduced the electrical conductivity of the graphene. The enhanced polar nature of surface as well as the increased surface roughness due to the coated alumina improved the dispersion of the graphene in the polar acrylic rubber matrix and the interaction at the interface. This led to an effective improvement of the thermal conductivity but marginal increase in electrical conductivity by the filler. Tensile modulus increased drastically to as high as 470% for the composite reinforced with the 5 phr (about 2.5 vol%) loading of the alumina-coated graphene. PMID:24370399

  9. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  10. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement.

    PubMed

    Gálvez-López, Ruben; Peña-Monje, Alejandro; Antelo-Lorenzo, Ramón; Guardia-Olmedo, Juan; Moliz, Juan; Hernández-Quero, José; Parra-Ruiz, Jorge

    2014-01-01

    Antibiotic-loaded acrylic bone cements (ALABC) spacers are routinely used in the treatment of prosthetic joint infections. The objectives of our study were to evaluate different ALABC for elution kinetics, thermal stability, and mechanical properties. A 10 or 20% mixture (w/w) beads of medium viscosity bone cement (DePuy, Inc) and vancomycin (VAN), gentamycin (GM), daptomycin (DAP), moxifloxacin (MOX), rifampicin (RIF), cefotaxime (CTX), cefepime (FEP), amoxicillin clavulanate (AmC), ampicillin (AMP), meropenem (MER), and ertapenem (ERT) were formed and placed into wells filled with phosphate-buffered saline. Antibiotic concentrations were determined using high-performance liquid chromatography. Antimicrobial activity was tested against Micrococcus luteus ATCC 9341 or Escherichia coli ATCC 25922. AmC, AMP, and FEP concentration rapidly decreased after day 2, being almost undetectable at day 4. Sustained and high elution rates were observed with VAN, GM, MOX, and RIF for the 30-day duration of the experiment. DAP, MER, ERT, and CTX elution rates constantly decreased from day 4. All antibiotics tested retained antimicrobial activity proving thermal stability. Mechanical properties of ALABC were maintained except when RIF was used. PMID:24231380

  11. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks

    NASA Astrophysics Data System (ADS)

    Porro, S.; Giardi, R.; Chiolerio, A.

    2014-06-01

    This work reports the electrical characterization of a water-based graphene oxide/acrylic composite material, which was directly inkjet printed to fabricate dissipative patterns. The graphene oxide filler, which is strongly hydrophilic due to its heavily oxygenated surface and can be readily dispersed in water, was reduced by UV irradiation during photo-curing of the polymeric matrix. The concurrent polymerization of the acrylic matrix and reduction of graphene oxide filler was demonstrated by real-time resistance measurements during UV light irradiation. The presence of graphene filler allowed decreasing the resistance of the pure polymeric matrix by nearly five orders of magnitude. This was explained by the fact that clusters of reduced graphene oxide inside the polymer matrix act as preferential pathways for the mobility of charge carriers, thus leading to an overall decrease of the material's resistance.

  12. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  13. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies. PMID:19452959

  14. Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites

    NASA Astrophysics Data System (ADS)

    Dashtizadeh, Ahmad; Abdouss, Majid; Mahdavi, Hossein; Khorassani, Manuchehr

    2011-01-01

    To prepare nano-composite emulsion acrylic resins with improved surface hardness and solvent resistance, nano-silica particles were treated with surfactants. The monomers of methyl methacrylate/butylacrylate were co-polymerized on the surface of dispersed silica particles. Several emulsions with different silica contents and copolymer mole fractions were prepared. Finally the emulsions were modified to water-based acrylic coatings and improved properties such as surface hardness, solvent resistance and glossiness were determined. The study of coatings was directed to find the improved resin by optimum surface properties. Size distribution and morphology of latexes were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. The glass transition temperature of nano-composites was measured and discussed its relation with silica contents, monomer mole fractions and improved properties of coatings. The optimum pendulum hardness of coatings was on 0.46 methyl methacrylate mole fraction and 120 g silica content. An increase in pendulum hardness of nano-composites with the addition of modified silica was observed. DLS and TEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.

  15. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Martínez Martínez, D.; Nohava, Jiri; De Hosson, J. Th. M.

    2015-11-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond-like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the uncoated substrate. A wide range of applied loads is explored, from 1 mN to 1 N, which is achieved by using a specific tribometer. The variation of 3 orders of magnitude in the applied load leads to a strong variation of the observed frictional phenomena. The different behavior of both samples at various loads is explained using a model that considers two contributions to the friction coefficient, namely, an adhesive and a rubber hysteresis part. The constraints and applicability of such model are critically evaluated.

  16. Wear of feldspathic ceramic, nano-filled composite resin and acrylic resin artificial teeth when opposed to different antagonists.

    PubMed

    Ghazal, Muhamad; Hedderich, Jürgen; Kern, Matthias

    2008-12-01

    The aim of this study was to evaluate the wear of denture teeth and their antagonists produced by two-body and three-body wear tests. Three types of denture teeth, namely feldspathic ceramic (FC), nano-filled composite resin (NCR), and experimental acrylic resin teeth (AR), were tested. For each type two groups of eight upper premolars each were prepared. The first group was tested against cusps from the same material and the second group was tested against human enamel cusps. Each group was loaded with a total of 200,000 chewing cycles (two-body wear 100,000 cycles and three-body wear 100,000 cycles). Wear was analyzed by measuring the maximum depth and volume loss of the denture teeth using a laser scanner and by measuring the vertical loss of the antagonists using an optical macroscope. Statistically, there was no significant difference between the following combinations: FC-FC and NCR-NCR regarding the vertical and volume loss; and FC-enamel and NCR-enamel regarding the total vertical substance loss. The combinations AR-AR and AR-enamel showed higher wear values than the other combinations. For complete dentures, composite resin and ceramic teeth showed similar vertical and volume loss, whereas composite resin teeth seemed to be more suitable for partial dentures opposing natural teeth in terms of wear of teeth and antagonists. PMID:19049531

  17. Stress distribution associated with loaded acrylic-metal-cement crowns by using finite element method.

    PubMed

    Toparli, M; Aykul, H; Aksoy, T

    2002-11-01

    The axisymmetrical finite element method (FEM) was used to compare stress distribution in a maxillary second premolar restored tooth. The three models were evaluated by crowning the tooth with Au-Pd alloy, Ni-Cr alloy and Ti alloy with acrylic. A longitudinal static force, 200 N in magnitude at an angle of 45 degrees was applied on the occlusal margin of each model. The tooth was assumed isotropic, homogenous and elastic. This numerical study was carried out using axisymmetric finite element models and calculation programmes were prepared by the authors using FORTRAN 77. Comparison of stress distributions was made in four regions of apex, cole, dentin-metal interface and metal-acrylic interface. The highest stress values were obtained when NiCr alloy with acrylic was used. PMID:12453266

  18. Highly Loaded Composite Strut Test Results

    NASA Technical Reports Server (NTRS)

    Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.

    2011-01-01

    Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.

  19. Relationship between cell surface composition of Candida albicans and adherence to acrylic after growth on different carbon sources.

    PubMed Central

    McCourtie, J; Douglas, L J

    1981-01-01

    The adherence of Candida albicans to acrylic was measured in vitro after growth of the yeast to stationary phase in defined medium containing glucose, sucrose, galactose, fructose, or maltose as the carbon source. In each case, yeast adherence was proportional to the concentration of sugar in the growth medium, but equimolar concentrations of different sugars promoted adherence to different extents. In vitro adherence was further increased by the addition of divalent cations to assay mixtures but was inhibited when saliva-treated acrylic strips were used or when yeasts were suspended in mixed saliva during the assay. The rate of spheroplast formation of yeasts grown in media containing a 500 mM concentration of the different sugars correlated well with the relative adherence of the cells to acrylic. Galactose-grown yeasts were most resistant to spheroplast formation with Zymolyase-5000 and most adherent to acrylic, whereas fructose-grown organisms were least resistant to spheroplast formation and least adherent to acrylic. These results indicate that when grown to stationary phase in media containing high concentrations of certain sugars, C. albicans undergoes a change in cell surface composition which facilitates its adherence to acrylic surfaces. Electron microscopy of yeasts harvested from such media revealed the presence of an additional surface layer which may be responsible for this enhanced adherence. Images PMID:7019091

  20. The influence of ultrasound on the release of gentamicin from antibiotic-loaded acrylic beads and bone cements.

    PubMed

    Ensing, Geert T; Hendriks, Johannes G E; Jongsma, Jelmer E; van Horn, Jim R; van der Mei, Henny C; Busscher, Henk J

    2005-10-01

    Gentamicin-loaded acrylic beads are loosely placed in infected bone cavities, whereas gentamicin-loaded acrylic bone cement is used as a mechanical filler in bone to anchor prosthetic components. Both drug delivery systems are used to decrease infection rates by gentamicin release. The objective of this study is to investigate the effects of pulsed ultrasound on gentamicin release from both materials. Gentamicin release from gentamicin-loaded beads (Septopal) and from three commercially-available brands of gentamicin-loaded bone cement (CMW 1, Palacos R-G, and Palamed G) was measured after 18 h of exposure in PBS to an ultrasonic field of 46.5 kHz in a 1:3 duty cycle with an average acoustic intensity of 167 mW/cm(2). Samples not exposed to ultrasound were used as controls. Pulsed ultrasound significantly enhanced gentamicin release from gentamicin-loaded beads, whereas gentamicin release from the gentamicin-loaded bone cements was not significantly enhanced. Mercury intrusion porosimetry revealed an increased distribution of pores between 0.1 and 0.01 microm in beads after gentamicin release, while in bone cements no increase in the number of pores was found. Increased gentamicin release in beads due to ultrasound may be explained by micro-streaming in a porous structure, whereas the absence of changes in pore structure after gentamicin release in bone cement is concurrent with the lack of an enhanced release of the antibiotic by ultrasound. As an effective treatment of infections requires high local concentrations of antibiotic, increased gentamicin release due to ultrasound may be of clinical significance, especially since ultrasound has been demonstrated to increase bacterial killing by antibiotics. PMID:16044459

  1. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances

    NASA Astrophysics Data System (ADS)

    Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier

    2014-12-01

    The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites.

  2. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  3. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  4. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  5. Highly Loaded Composite Strut Test Development

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.

    2011-01-01

    Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.

  6. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  7. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity. PMID:26360748

  8. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    PubMed

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli. PMID:26123815

  9. The effect of void space and polymerization time on transverse strength of acrylic-glass fibre composite.

    PubMed

    Vallittu, P K

    1995-04-01

    The aim of this study was to establish (i) the causes and effects of void space formation in acrylic-glass fibre composite material; and (ii) to clarify the effect of polymerization time of acrylic resin on the transverse strength of heat-cured acrylic resin test specimens. In study 1, three transverse sections of the continuous glass fibre reinforced test specimens (n = 48) were studied by a scanning electron microscope (SEM) and the SEM-micrographs were analysed by a computerized picture analyser. The results suggested that the void space inside the test specimens is caused by a lack of the adsorbed monomer liquid in the fibre bundle before polymerization. The correlation coefficient between these two factors was -0.633 (P < 0.001). No correlation was found between the void space of the acrylic-glass fibre composite and the transverse strength of the test specimens (r = 0.000, P = 1.000). The results of study 2 showed that the transverse strengths of test specimens (n = 240, total) subjected to polymerization of different time spans did not vary significantly (P > 0.05). PMID:7769523

  10. Composite Material Behaviour Under Shock Loading

    NASA Astrophysics Data System (ADS)

    Vignjevic, R.; Campbell, J. C.; Hazell, P.; Bourne, N. K.

    2007-06-01

    Composite materials have been of significant interest due to widespread application of anisotropic materials in aerospace and civil engineering problems. For example, composite materials are one of the important types of materials in the construction of modern aircraft due to their mechanical properties. The strain rate dependent mechanical behaviour of composite materials is important for applications involving impact and dynamic loading. Therefore, we are interested in understanding the composite material mechanical properties and behaviour for loading rates between quasistatic and 1x108s-1. This paper investigates modeling of shock wave propagation in orthotropic materials in general and a specific type of CFC composite material. The determination of the equation of state and its coupling with the rest of the constitutive model for these materials is presented and discussed along with validation from three dimensional impact tests.

  11. Combined mechanical loading of composite tubes

    NASA Technical Reports Server (NTRS)

    Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.

    1988-01-01

    An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.

  12. Synthesis and characterization of a sphere-like modified chitosan and acrylate resin composite for organics absorbency

    NASA Astrophysics Data System (ADS)

    Xin, S. S.; Wang, Y. H.; Li, Q. R.; Zhang, Q.; Wang, X. P.

    2015-07-01

    In this study, the chitosan (deacetylation degree >95%) was modified with vinyltriethoxysilane (A151) and became hydrophobic. The modified chitosan and acrylate resin composite can be synthesized by butyl methacrylate (BMA), butyl acrylate (BA), poly vinyl alcoho(PVA), N,N’-methylene bisacrylamide (MBA), benzoyl peroxide (BPO), and ethyl acetate under microwave irradiation. The optimal synthetic condition was as follows: the molar ratio of BA and BMA was 1.5:1, the dosage of ethyl acetate, PVA, MBA, BPO and modified chitosan were 50 wt.%, 10 wt.%, 1.5 wt.%, 2.0 wt.% and 1.0 wt.% of monomers, respectively. The adsorption capacity of the composite for CHCl3 and CCl4 were approximate to 53 g/g and 44 g/g, respectively. The organics absorbency and regeneration of the samples were also tested, and the samples were characterized by analysis of the scanning electron microscope and simultaneous thermo gravimetric/differential thermal.

  13. Comparative Analysis of Electromagnetic Response of PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT Composites

    NASA Astrophysics Data System (ADS)

    Plyushch, A. O.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ivanova, T.; Merijs-Meri, R.; Bitenieks, J.; Zicans, J.; Suslyaev, V. I.; Pletnev, M. A.

    2016-06-01

    The present paper focuses on electromagnetic response of polymeric composites with different concentrations of multiwall carbon nanotubes in the radio (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges. Widely available polymeric materials, such as PVA latex (polyvinyl acetate) and styrene-acrylic copolymer, were used as a matrix. Analysis of the experimental data demonstrated that in electromagnetic shielding applications one should give preference to the styrene-acrylic copolymer, as far as application of this matrix type allows reducing the percolation threshold in such composites. As a result, it allows reaching the necessary level of shielding at a lower filler concentration, while unique properties of the chosen polymer allow expanding the range of applications for the new materials.

  14. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  15. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.

    1992-01-01

    The present paper describes the application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to air craft wing type structures. The code performs a complete probabilistic structural analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of life of a wing type composite structure under different hygrothermal environments subjected to random pressure. The sensitivity of fatigue life to a number of critical structural/material variables is also computed from the analysis.

  16. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  17. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.

  18. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection.

    PubMed

    Zhao, Yan; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-01-15

    We report an ultrasensitive electrochemical immunosensor designed for the detection of protein biomarkers using horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes (SiO2-SPAABs) as labels. HRP could be efficiently and stably accommodated in the three-dimensional architecture of the SiO2-SPAABs and the SiO2-SPAABs-HRP exhibited high catalytic performance towards o-phenylenediamine (OPD) oxidation in the presence of H2O2, which resulted in significant differential pulse voltammetric (DPV) response change and color change. Using human IgG (HIgG) as a model analyte, a sandwich-type immunosensor was constructed. In particular, graphene oxide (GO) and SiO2-SPAABs-HRP were used to immobilize capture antibody (Ab1) and bind a layer of detection antibody (Ab2), respectively. The current biosensor exhibited a good linear response of HIgG from 100pg/mL to 100μg/mL with a detection limit of 50pg/mL (S/N=5). The sensitivity was 6.70-fold higher than the conventional enzyme-linked immunosorbent assays. The immunosensor results were validated through the detection of HIgG in serum samples. PMID:26342574

  19. Composition containing aerogel substrate loaded with tritium

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Ellefson, Robert E.; Gill, John T.; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  20. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. PMID:25597658

  1. Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Kang, Yuru; Wang, Aiqin

    2010-04-01

    A series of novel guar gum-g-poly(sodium acrylate-co-styrene)/muscovite (GG-g-P(NaA-co-St)/MVT) superabsorbent composites were prepared by free-radical grafting copolymerization of natural guar gum (GG), partially neutralized acrylic acid (NaA), styrene (St) and muscovite (MVT) using ammonium persulfate (APS) as the initiator and N,N-methylene-bis-acrylamide (MBA) as the crosslinker. Optical absorption spectra confirmed that NaA and St had been grafted onto the GG main chain and MVT participated in the polymerization reaction. The simultaneous introduction of St and MVT into the GG-g-PNaA matrix could clearly improve the surface morphologies of the composites, and MVT led to better dispersion in the polymeric matrix without agglomeration, as revealed by electron microscopy. The effects of St and MVT on the water absorption and swelling behavior in various saline solutions, aqueous solutions of hydrophilic organic solvents and surfactant solutions were investigated. Results indicated that the swelling rate and capabilities of the composites were markedly enhanced by the incorporation of the hydrophobic monomer St and inorganic MVT clay mineral. The superabsorbent composite showed a clearer deswelling characteristic in solutions of multivalent saline, acetone and ethanol, and cationic surfactant than that in the solutions of multivalent saline, methanol and anionic surfactant.

  2. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  3. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    PubMed

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  4. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, C. O.

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by

  5. Preparation of poly (styrene)-b-poly (acrylic acid)/γ-Fe 2O 3 composites

    NASA Astrophysics Data System (ADS)

    Zhang, L. D.; Liu, W. L.; Xiao, C. L.; Yao, J. S.; Fan, Z. P.; Sun, X. L.; Zhang, X.; Wang, L.; Wang, X. Q.

    2011-12-01

    The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified γ-Fe2O3, and subsequently the magnetic nanocomposite was achieved. The products were characterized by 1H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately.

  6. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.

    1987-01-01

    The objective of this program is to develop generic load models to simulate the composite load spectra (CLS) that are induced in space propulsion system components representative of the space shuttle main engines (SSME). These models are being developed through describing individual component loads with an appropriate mix of deterministic and state-of-the-art probabilistic models that are related to key generic variables. Combinations of the individual loads are used to synthesize the composite loads spectra. A second approach for developing the composite loads spectra load model simulation, the option portion of the contract will develop coupled models which combine the individual load models. Statistically varying coefficients of the physical models will be used to obtain the composite load spectra.

  7. Comparative failure load values of acrylic resin denture teeth bonded to three different heat cure denture base resins: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Dua, Amit; Dua, Mahima; Sehgal, Varun; Setya, Gaurav; Dhall, Rupinder Singh

    2016-01-01

    Aim and Objectives: Acrylic teeth are used for fabrication of dentures. Debonding of tooth – denture base bond is routine problem in dental practice. The aim of this study was to comparatively evaluate failure load of acrylic resin denture teeth bonded to three different heat resin. Materials and Methods: Four groups were created out of test samples central incisors (11). Group I: Control, whereas Group II, Group III and Group IV were experimental groups modified with diatoric hole, cingulum ledge lock and Teeth modified with both diatoric hole and cingulum ledge lock, respectively. These test specimens with 3 teeth (2 central [11, 21] and 1, lateral [12] incisors) positioned imitating arrangement of teeth in the conventional denture, prepared by three different heat cure materials (DPI, Trevalon, Acralyn-H). A shear load was applied at cingulum of central incisor (11) at 130° to its long axis using universal tester at a cross head speed of 5 mm/min until failure occurred. Failure load test was conducted and statistical analysis was performed using SPSS 16 software package (IBM Company, New York, U.S). Results: Highest failure load was seen in Group IV specimens, prepared by Trevalon but did not significantly differ from that of DPI. Conclusion: The failure load of bonding denture teeth to three different heat cure materials was notably affected by modifications of ridge lap before processing. The specimens with a combination of diatoric hole and cingulum ledge lock, prepared by Trevalon showed highest failure load but did not significantly vary from that of DPI. The control group prepared by Acralyn-H showed lowest failure load but did not significantly differ from that of DPI. PMID:27195221

  8. Acrylic resin-fiber composite--Part I: The effect of fiber concentration on fracture resistance.

    PubMed

    Vallittu, P K; Lassila, V P; Lappalainen, R

    1994-06-01

    This study tested the effect on the fracture resistance of acrylic resin test specimens when different amounts of fibers were incorporated in the resin matrix. The fibers used included glass, carbon, and aramid fibers, with 30 test specimens of each concentration of fibers. Transverse sections of the specimens were studied by scanning electron microscope to establish how the fibers behave in the polymerization process. The results indicated that an increase in the amount of fibers enhanced the fracture resistance of the test specimens (p < 0.001). The SEM micrographs of transverse sections of test polymerized specimens revealed void spaces of different sizes inside the fiber roving. PMID:8040825

  9. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  10. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    PubMed

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  11. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  12. Progression of damage and fracture in composites under dynamic loading

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Murthy, Pappu L. N.; Chamis, Christos C.

    1990-01-01

    A new computational simulation method is presented to evaluate the dynamic aspects of composite structural response and durability that have not been simulated previously. Composite structural behavior under any loading condition, geometry, composite system, laminate configuration, and boundary conditions can now be simulated. Structural degradation, delamination, fracture, and damage propagation are included in the simulation. An angle-plied composite plate structure under normal impact loading is used as an example to demonstrate the versatility of the simulation method.

  13. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being

  14. Delaminations in composite plates under impact loads

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1991-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to non-penetrating (low velocity) impact of a solid object. The plate may be simply supported, clamped, or free along its edges. A failure model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were then implemented by a computer code (IMPACT-ST) which can be used to estimate the damage initiation load and the locations, shapes, and sizes of the delaminations. Tests were performed measuring the geometries of the delaminations in graphite-epoxy, graphite-toughened epoxy, and graphite-PEEK plates impacted by a projectile with a spherical tip having masses ranging from 0.355 lbm to 0.963 lbm and velocities from 50 in/sec to 225 in/sec. The data were compared to the results of the model, and good agreements were found between the measured and the calculated delamination lengths and widths.

  15. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  16. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  17. Synthesis and characterization of poly(methyl methacrylate-butyl acrylate)/nano-titanium oxide composite particles.

    PubMed

    Guo, Gang; Yu, Jie; Luo, Zhu; Zhou, LiangXue; Liang, Hang; Luo, Feng; Qian, ZhiYong

    2011-06-01

    Poly(methyl methacrylate-butyl acrylate) [P(MMA-BA)]/nanosized titanium oxide (nano-TiO2) composite particles were prepared via insitu emulsion polymerization of MMA and BA in presence of nano-TiO2 particles. Before polymerization, the nano-TiO2 particles were modified by coupling agent. The structure and thermal properties of the obtained P(MMA-BA)/nano-TiO2 composite particles were characterized by Fourier transform infrared spectra (FTIR), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). The results showed that there are covalent bond bindings between P(MMA-BA) and nano-TiO2 particles, meaning that P(MMA-BA) and nano-TiO2 particles were not simply blended or mixed up and that there is a strong interaction between P(MMA-BA) and nano-TiO2 particles. TGA and DSC measurements indicated an enhancement of thermal stability. Transmission electron microscopy (TEM) results showed that P(MMA-BA) enhanced the dispersibility of nano-TiO2 particles. The dispersion stabilization of modified nano-TiO2 particles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nano-particles. PMID:21770123

  18. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    A description is presented of the test techniques which have been used to apply sustained uniaxial tensile loading to fiber/epoxy composites. The fiber types used include S-glass, aramid, graphite, and beryllium wire. The applied load vs lifetime data for four composite materials are presented in graphs. Attention is given to a statistical analysis of data, a performance comparison of various composites, the age effect on the strength of composites, the applicability of the lifetime data to complex composites, and aspects of accelerated test method development. It is found that the lifetime of a composite under a sustained load varies widely. Depending on the composite system, the minimum life typically differs from the maximum life by a factor of 100 to 1000. It is in this connection recommended that a use of average life data should be avoided in serious design calculations.

  19. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    NASA Astrophysics Data System (ADS)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  20. Behavior of grid-stiffened composite structures under transverse loading

    NASA Astrophysics Data System (ADS)

    Gan, Changsheng

    The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary

  1. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  2. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  3. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  4. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    PubMed

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one. PMID:11074433

  5. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  6. Detail of first floor of loading dock showing composition tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of first floor of loading dock showing composition tile over wood floor/basement ceiling - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  7. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  8. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  9. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. PMID:24268266

  10. Culture-Loaded Expressions in Korean EFL Students' Compositions.

    ERIC Educational Resources Information Center

    Choe, Yongjae Paul

    2001-01-01

    Discusses the inevitability of native culture-loaded expressions in Korean English-as-a-Foreign-Language students' compositions. Cultures, both native and target play a major role in forming ideas in any communicative situation. Thus, Korean EFL students' compositions all reveal without exception the traits of Korean culture. (Author/VWL)

  11. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  13. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  14. Numerical optimization of composite hip endoprostheses under different loading conditions

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  15. Strength of composite laminates under biaxial loads

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Soden, P. D.; Kaddour, A. S.

    1996-05-01

    Five well known failure criteria and one simple progressive model have been used in conjunction with laminate theory, which allows for nonlinear lamina shear behaviour, to predict the initial and final failure strengths of filament wound composite tubes. The predictions have been compared with experimental leakage and fracture stresses for ±75°, ±55° and ±45° filament wound GRP tubes subjected to a wide range of biaxial stress systems including biaxial compression. In some cases the fracture strengths were a factor of 10 higher than the initial failure predictions. The simple progressive failure theory predictions gave the best agreement with the experimental results.

  16. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    NASA Astrophysics Data System (ADS)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  17. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement

    PubMed Central

    Wendling, A.; Mar, D.; Wischmeier, N.; Anderson, D.

    2016-01-01

    Objectives The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. A-priori t-tests and univariate ANOVAs were used to compare elution and mechanical test results between the two mix groups and the control group. Results The delayed technique showed a significant increase in elution on day one compared with the standard mix technique (p < 0.001). The transition point from Phase I to Phase II occurred on day ten. LFUS treatments significantly increased elution amounts for all groups above control. Delayed technique resulted in significantly higher elution amounts for the five-minute- (p = 0.004) and 45-minute- (p < 0.001) duration groups compared with standard technique. Additionally, the correlations between LFUS duration and total elution amount for both mix techniques were significant (p = 0.03). Both antibiotic-impregnated groups exhibited a significant decrease in offset yield stress compared with the control group (p < 0.001), however, their lower 95% confidence intervals were all above the 70 MPa limit defined by International Standards Organization (ISO) 5833-2 reference standard for acrylic bone cement. Conclusion The combination of a delayed mix technique with LFUS treatments

  18. Coupled composite rotor blades under bending and torsional loads

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh; Chopra, Inderjit

    This paper presents an analytical-cum-experimental study of the structural response of composite rotor blades with elastic couplings. Vlasov theory is expanded to analyze two-cell composite rotor blades made out of general composite laminates including the transverse shear deformation of the cross-section. In order to validate this analysis, two-cell graphite-epoxy composite blades with bending-torsion coupling were fabricated using matched-die molding technique. These blades were tested under tip bending and torsional loads, and their structural response in terms of bending slope and twist was measured with a laser optical system. Good correlation between theory and experiment is achieved.

  19. Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.

    1997-01-01

    New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation

  20. Thermoelastic determination of individual stress components in loaded composites

    SciTech Connect

    Feng, Z.; Zhang, D.; Rowlands, R.E.; Sandor, B.I. Detroit Diesel Co., MI Wisconsin, University, Madison )

    1992-06-01

    An experimental-numerical hybrid method is developed for determining the individual stresses in orthotropic composites from measured thermoelastic information. This includes evaluating the thermoelastic calibration coefficients, effective processing of the noisy measured data, and separating the stress components at nonboundary locations. The method is illustrated experimentally by application to a uniaxially loaded fiber-reinforced composite plate containing a central circular hole. 39 refs.

  1. Loading rate sensitivity of open hole composites in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, Steve J.; Guynn, E. G.; Elber, Wolf; Whitcomb, J. D.

    1988-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  2. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  3. Alignment and Load Transfer in Carbon Nanotube and Dicyclopentadiene Composites

    NASA Astrophysics Data System (ADS)

    Severino, Joseph Vincent

    Individual carbon nanotubes (CNTs) are the strongest materials available but their macroscopic assemblies are weak. This work establishes a new thermosetting dicyclopentadiene (DCPD) and CNT composite that increases the strength of CNT assemblies. These high volume fraction and void free structures constitute advanced materials that could one day replace traditional composite systems. To further the understanding of physical interactions between polymer and CNTs, a novel "capstan" load transfer mechanism is also introduced. Self-supporting assemblies of interconnected carbon nanotubes were stretched, twisted and compressed to fashion composites by the infusion and polymerization of low viscosity DCPD based monomeric resins. The properties of the CNTs, polymer and composite were characterized with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA) and Raman spectroscopy. The microstructure was analyzed by wide angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sheets were drawn at 15 m/min from a growth furnace to impart alignment then stretched to further modify alignment. The mechanical properties were determined in five orientations with respect to the growth direction. The strength was nearly three times higher along this growth direction than it was perpendicular, and modulus was nearly six times higher. Transverse stretching achieved 1.5 times the elongation but alignment was inferior due to CNT kinking that prevented alignment and consolidation. Composites yarns and sheets were investigated for the mechanical properties, microstructure and load transfer. The DCPD resin was found to wet the CNTs and lubricated deformation. This reduced loads during processing, and curing solidified the aligned and consolidated structure. The stretched and twisted composite yarns increased the failure stress 51%. In aligned composite sheet, the failure stress increased 200%. The increased stresses

  4. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    NASA Astrophysics Data System (ADS)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  5. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  6. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Poland, Laura E; Meyer III, Harry M

    2013-01-01

    The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing. The thermal history during the cure was also recorded. It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface, leading to a high level of adhesion strength, which was not the case for electron beam curing. The thermal history during the cure appeared to be a determining parameter for the level of performance of composites cured by electron beam.

  7. Evaluation of flawed composite structure under static and cyclic loading

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1977-01-01

    This paper presents the results of a program investigating the effects of initial defects on the fatigue and fracture response of composite laminates. The structural laminates investigated were a typical angle-ply laminate, a polar/hoop-wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full- and half-penetration circular holes, full- and half-penetration slits, and countersink holes. Results are presented showing the effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength. The results of inspection procedures are shown, describing the effect of cyclic and static loadings on damage propagation in composite laminates. The data in this study were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  8. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    SciTech Connect

    Maddocks, J.R.

    1995-05-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to {minus}184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool.

  9. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1986-01-01

    A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.

  10. Cumulative creep damage for unidirectional composites under step loading

    NASA Astrophysics Data System (ADS)

    Guedes, Rui Miranda

    2012-11-01

    The creep lifetime prediction of unidirectional composite materials under step loading, based on constant loading durability diagram, is analyzed for the two-step creep loading condition. For this purpose different nonlinear cumulative-damage laws are revisited and applied to predict creep lifetime. One possible approach to accounting for damage accumulation is provided by the continuum-damage mechanics (CDM). However, the CDM lifetime expression obtained for constant loading condition presents some drawbacks. Specifically, the upper stress range is not accommodated by CDM form. A modification of CDM is proposed, forcing the CDM to capture the short-term creep failure. It is proven that this modified CDM (MCDM) does not yield the same predictions as the Linear Cumulative-damage law (Miner's law). Predictions obtained from the nonlinear cumulative-damage laws are compared against synthetic lifetime generated by a micromechanical model that simulates unidirectional composites under two-step creep loading condition. Comparable deviations from Miner's law are obtained by the nonlinear cumulative-damage laws.

  11. Load Characteristics of Induction Motor Manufactured by Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Fukuda, Tomohiro; Sasaki, Yutaka; Morimoto, Masayuki

    The load characteristics of induction motor manufactured by soft magnetic composite (SMC) are presented. We manufactured three kinds of induction motors experimentally. One is a conventional laminated iron core motor. The others are SMC motors. One of the SMC motor uses SMC only for stator, while the other SMC motor uses SMC for stator and rotor. The experimental comparisons of load characteristics and loss analysis are shown. As a result, the difference between the efficiency of the SMC motor and the conventional laminated motor is 4.6%, in spite of the permeability of SMC being 20% lower than the conventional electromagnetic steel.

  12. Prediction of microcracking in composite laminates under thermomechanical loading

    SciTech Connect

    Maddocks, J.R.; Mcmanus, H.L.

    1995-01-01

    Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.

  13. Micromechanical design of hierarchical composites using global load sharing theory

    NASA Astrophysics Data System (ADS)

    Rajan, V. P.; Curtin, W. A.

    2016-05-01

    Hierarchical composites, embodied by natural materials ranging from bone to bamboo, may offer combinations of material properties inaccessible to conventional composites. Using global load sharing (GLS) theory, a well-established micromechanics model for composites, we develop accurate numerical and analytical predictions for the strength and toughness of hierarchical composites with arbitrary fiber geometries, fiber strengths, interface properties, and number of hierarchical levels, N. The model demonstrates that two key material properties at each hierarchical level-a characteristic strength and a characteristic fiber length-control the scalings of composite properties. One crucial finding is that short- and long-fiber composites behave radically differently. Long-fiber composites are significantly stronger than short-fiber composites, by a factor of 2N or more; they are also significantly tougher because their fiber breaks are bridged by smaller-scale fibers that dissipate additional energy. Indeed, an "infinite" fiber length appears to be optimal in hierarchical composites. However, at the highest level of the composite, long fibers localize on planes of pre-existing damage, and thus short fibers must be employed instead to achieve notch sensitivity and damage tolerance. We conclude by providing simple guidelines for microstructural design of hierarchical composites, including the selection of N, the fiber lengths, the ratio of length scales at successive hierarchical levels, the fiber volume fractions, and the desired properties of the smallest-scale reinforcement. Our model enables superior hierarchical composites to be designed in a rational way, without resorting either to numerical simulation or trial-and-error-based experimentation.

  14. Analysis of delamination growth in compressively loaded composite laminates

    NASA Astrophysics Data System (ADS)

    Tratt, Matthew D.

    The present analytical and empirical study of composite structure delamination has attempted to predict the threshold stress for the initiation of delamination growth in compressively loaded composite laminates. The strain-energy release-rate distributions around circular delaminations are computed via MSC/NASTRAN analysis in conjunction with a virtual crack-opening technique. Static compression tests were conducted on specimens of graphite fiber-reinforced epoxy having circular delaminations of various sizes. Computed delamination growth threshold-stress prediction results were at substantial variance with the test data, but confirmed trends and gave qualitative insight into quasi-static delamination growth.

  15. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  16. Load sequence effects on the fatigue of unnotched composite materials

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1981-01-01

    A more comprehensive version of an earlier fatigue and residual strength degradation model is proposed to predict the effect of load sequence on the statistical fatigue behavior of composite laminates. The model, which reduces to various fatigue models proposed in the literature by means of approximations, is verified by a survey of experiments on glass/epoxy laminates. It is shown that the correlation between the model and the test results under dual stress levels is reasonable, and that a simplified version of the model is verified by experiments on graphite/epoxy laminates in which the correlation between theoretical predictions and results under dual stress levels is satisfactory. The model is also shown capable of predicting the effect of proof loads on the fatigue behavior of composite materials.

  17. Response of composite plates subjected to acoustic loading

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.

    1989-01-01

    The objectives of the project were to investigate numerical methodology for the determination of narrowband response in the geometrically nonlinear regime, to determine response characteristics for geometrically nonlinear plates subjected to random loading and to compare the predictions with experiments to be performed at NASA-Langley. The first two objectives were met. The response of composite plates subjected to both narrowband and broadband excitation were studied and the results are presented and discussed.

  18. End Effects and Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2002-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  19. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  20. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  1. Solid freeform fabrication of highly loaded composite materials

    NASA Astrophysics Data System (ADS)

    Souvignier, Chad William

    Composites are known for their unique blend of modulus, strength, and toughness. This study focuses on two types of composites; organic-inorganic hybrids and the mineralization of highly swollen polymer gels. Both of these composite systems mimic the biological process of composite formation, known as biomineralization. Biomineralization allows for the control of the precipitating phase through an interaction with the organic matrix. This allows higher volume fractions of inorganic material than can be achieved by many traditional processing techniques. Solid freeform fabrication is a processing method that builds materials by the sequential addition of thin layers. As long as the material can easily be converted from a liquid to a solid, it should be amenable for this processing technique. Freeform fabrication has three distinctions from traditional processing techniques that may enable the formation of composite materials with improved mechanical properties. These are the sequential addition of layers, which allows a layer by layer influence of chemistry, the ability to form complex geometries, and finally, extrusion freeform fabrication has been shown to align fibers due to the extrusion of the slurry through a needle. Cracking and shrinkage still play a major role in forming solid parts. The use of an open mesh structure in combination with proper materials selection allowed the formation of highly loaded composite materials without cracking. The modulus values of these materials ranged from 0.1 GPa to 6.0 GPa. The mechanical properties of these materials were modeled.

  2. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  3. Optimization of Sandwich Composites Fuselages Under Flight Loads

    NASA Astrophysics Data System (ADS)

    Yuan, Chongxin; Bergsma, Otto; Koussios, Sotiris; Zu, Lei; Beukers, Adriaan

    2012-02-01

    The sandwich composites fuselages appear to be a promising choice for the future aircrafts because of their structural efficiency and functional integration advantages. However, the design of sandwich composites is more complex than other structures because of many involved variables. In this paper, the fuselage is designed as a sandwich composites cylinder, and its structural optimization using the finite element method (FEM) is outlined to obtain the minimum weight. The constraints include structural stability and the composites failure criteria. In order to get a verification baseline for the FEM analysis, the stability of sandwich structures is studied and the optimal design is performed based on the analytical formulae. Then, the predicted buckling loads and the optimization results obtained from a FEM model are compared with that from the analytical formulas, and a good agreement is achieved. A detailed parametric optimal design for the sandwich composites cylinder is conducted. The optimization method used here includes two steps: the minimization of the layer thickness followed by tailoring of the fiber orientation. The factors comprise layer number, fiber orientation, core thickness, frame dimension and spacing. Results show that the two-step optimization is an effective method for the sandwich composites and the foam sandwich cylinder with core thickness of 5 mm and frame pitch of 0.5 m exhibits the minimum weight.

  4. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    Results are presented for a study intended to summarize lifetime data on several fiber/epoxy composite materials subjected to sustained uniaxial tensile loading, to report preliminary results of an accelerated test method for predicting the life of simple composites, and to describe related work in progress on pressure vessels and other filament-wound structures. The lifetime performance of the tested composites was compared by plotting the percent of ultimate strength (applied fiber stress normalized with respect to fiber failure stress in a composite) versus lifetime. In terms of performance in long-term tensile applications, the tested composites are ranked in the following order: graphite/epoxy, Be wire/epoxy, Aramid/epoxy, and S-glass/epoxy. The accelerated test using temperature and stress to simulate the passage of time proves to be encouraging, at least in the case of the Aramid/epoxy composite. The potential of a statistical analysis based on Weibull distribution analyses or a power law relationship is demonstrated.

  5. One-Pot Synthesis of Hydrophilic Superparamagnetic Fe3O4/Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization.

    PubMed

    Ma, Shaohua; Lan, Fang; Yang, Qi; Xie, Liqin; Wu, Yao; Gu, Zhongwei

    2015-01-01

    Uniform superparamagnetic Fe3O4/poly(methyl methacrylate-acrylic acid) (P(MMA-AA)) composite nanoparticles with high saturation magnetization and good hydrophilicity were successfully and directly synthesized via a facile one-pot miniemulsion polymerization approach. The mixture of the ferrofluids, MMA and AA monomers, surfactants and initiator was co-sonicated and emulsified to prepare stable miniemulsion for polymerization. The as-prepared products were characterized by SEM, TEM, FT-IR, XRD, TGA and VSM. The results of SEM indicated that the morphology of the Fe3O4/P(MMA-AA) composite nanoparticles all assumed near spherical geometry with diameters about 60 nm, 60 nm, and 100 nm respectively corresponding to the weight ratios of Fe3O4 to MMA and AA at 1:8, 1:4, and 1:2. The TEM images implied that the Fe3O4/P(MMA-AA) composite nanoparticles showed a perfect core-shell structure with a polymeric shell of about 2 nm thickness and a core encapsulating uniform and close packed Fe3O4 nanoparticles. TGA and VSM showed that the Fe3O4/P(MMA-AA) composite nanoparticles with a maximum saturation magnetization up to 45 emu g(-1) corresponding to the magnetite content of 78% exhibited superparamagntism. The hydrophilic modification and the high saturation magnetization impart a promising potential for biomedical applications to the as-synthesized composite nanoparticles. PMID:26328359

  6. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel.

    PubMed

    Dong, Yixiao; Hassan, Waqar; Zheng, Yu; Saeed, Aram Omer; Cao, Hongliang; Tai, Hongyun; Pandit, Abhay; Wang, Wenxin

    2012-01-01

    Thermoresponsive polymers have been widely used for in situ formed hydrogels in drug delivery and tissue engineering as they are easy to handle and their shape can easily conform to tissue defects. However, non-covalent bonding and mechanical weakness of these hydrogels limit their applications. In this study, a physically and chemically in situ cross-linkable hydrogel system was developed from a novel thermoresponsive hyperbranched PEG based copolymer with multi acrylate functionality, which was synthesized via an 'one pot and one step' in situ deactivation enhanced atom transfer radical co-polymerization of poly(ethylene glycol) diacrylate (PEGDA, M(n) = 258 g mol(-1)), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M(n )= 475 g mol(-1)) and (2-methoxyethoxy) ethyl methacrylate (MEO(2)MA). This hyperbranched copolymer was tailored to have the lower critical solution temperature to form physical gelation around 37°C. Meanwhile, with high level of acrylate functionalities, a chemically cross-linked gel was formed from this copolymer using thiol functional cross-linker of pentaerythritol tetrakis (3-mercaptopropionate) (QT) via thiol-ene Michael addition reaction. Furthermore, a semi-interpenetrated polymer networks (semi-IPN) structure was developed by combining this polymer with hyaluronic acid (HA), leading to an in situ cross-linkable hydrogel with significantly increased porosity, enhanced swelling behavior and improved cell adhesion and viability both in 2D and 3D cell culture models. PMID:22143908

  7. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  8. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  9. Assessment of Composite Delamination Self-Healing Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    2009-01-01

    Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.

  10. Testing and simulation of composite laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  11. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  12. Characterization of Composites Response at High Rates of Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2002-01-01

    The objective of the proposed research is to experimentally study the effect of strain rate on mechanical response (deformation and failure) carbon fiber/epoxy matrix composites. The experimental data provide the information needed for the development of a nonlinear, rate dependent deformation and strength models that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Two types of epoxy were tested each in tension and shear at various strain rate that ranges from 5x10(exp -5), to 700/s. The results show that both the strain rate and the mode of loading affect the epoxy response.

  13. Thick-walled composite tubes under mechanical and hygrothermal loading

    NASA Astrophysics Data System (ADS)

    Wuetrich, C.

    1992-11-01

    The stresses in long thick-walled composite tubes were determined analytically for loading by internal and external pressure, longitudinal forces and twisting moments. Effects of thermal and hygrothermal expansion were also treated. The solution is restricted to tubes built up from one or more layers with macroscopically orthotropic properties. Such layers may be produced, for example, by filament winding or winding of textile reinforcements. It was shown how the elastic and hygrothermal parameters of the macroscopically orthotropic materials may be calculated by homogenization of the properties of uniaxially reinforced materials.

  14. Dynamic properties of a shock loaded tungsten composite

    NASA Astrophysics Data System (ADS)

    Holt, W. H.; Wilson, L. T.; Mock, W.; Simpson, B.

    2000-04-01

    Disks of a 90% tungsten, 9% nickel, 1% cobalt composite have been shock loaded in momentum trapping assemblies using a 40 mm bore gas gun, and recovered in water bags. The specimen disks were 30.5 mm in diameter and 7.2 mm thick. The larger-diameter impactor disks had the same composition. Impact speeds for the three experiments were 0.073, 0.148, and 0.405 km/sec, respectively. The specimen disks were shocked and recovered without fracture only for the two lower impact speeds. Portions of the recovered material for these experiments were machined into specimens for Hopkinson bar measurements. These measurements indicated minor differences in the constitutive response of the shocked and "as received" material.

  15. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  16. Innovative Manufacturing of Carbon Nanotube-Loaded Fibrillar Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lin, R. J. T.; Bhattacharyya, D.; Fakirov, S.

    The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.

  17. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  18. Multi-objective/loading optimization for rotating composite flexbeams

    NASA Technical Reports Server (NTRS)

    Hamilton, Brian K.; Peters, James R.

    1989-01-01

    With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.

  19. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  20. Buckling and Damage Resistance of Transversely-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Wardle, Brian L.

    1998-01-01

    Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into

  1. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  2. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  3. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  4. Composite Vessels for Containment of Extreme Blast Loadings

    SciTech Connect

    Pastrnak, J; Henning, C; Grundler, W; Switzer, V; Hollaway, R; Morrison, J; Hagler, L; Kokko, E; Deteresa, S; Hathcoat, B; Dalder, E

    2004-07-15

    A worldwide trend for explosives testing has been to replace open-air detonations with containment vessels, especially when any hazardous materials are involved. As part of the National Nuclear Security Administration's (NNSA) effort to ensure the safety and reliability of the nation's nuclear stockpile, researchers at Lawrence Livermore National Laboratory have been developing a high performance filament wound composite firing vessel that is nearly radiographically transparent. It was intended to contain a limited number of detonations of metal cased explosive assemblies in radiographic facilities such as the Advanced Hydrodynamic Facility (AHF) being studied by Los Alamos National Laboratory. A 2-meter diameter pressure vessel was designed to contain up to 35 kg (80 lb) of TNT equivalent explosive without leakage. Over the past 5 years a total of three half-scale (1 meter diameter) vessels have been constructed, and two of them were tested to 150% load with 8.2 kg (18-pound) spheres of C4 explosive. The low density and high specific strength advantages used in this composite vessel design may have other additional applications such as transporting sensitive explosives that could otherwise be moved only in very small quantities. Also, it could be used for highly portable, explosive containment systems for law enforcement.

  5. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  6. Response of marine composites subjected to near field blast loading

    NASA Astrophysics Data System (ADS)

    LiVolsi, Frank

    Experimental studies were performed to understand the explosive response of composite panels when exposed to near-field explosive loading in different environments. The panel construction under consideration was an E-glass fiber-reinforced composite laminate infused with vinyl ester resin (Derakane 8084). The panel was layered bi-axially with plain-woven fiber orientations at 0° and 90°. Panel dimensions were approximately 203 mm x 203 mm x 1 mm (8 in x 8 in x 0.04 in). Experiments were carried out with the panel fully clamped in a holding fixture, which was in turn fastened inside a water tank. The fixture was fastened in such a way as to allow for explosive loading experiments in the following environments: water submersion with water backing, water submersion with air backing, and air immersion with air backing. Experiments were performed in room temperature conditions, and additional experiments in the submerged environments were also performed at high and low water temperatures of 40°C and 0°C, respectively. A stereo Digital Image Correlation (DIC) system was employed to capture the full-field dynamic behavior of the panel during the explosive event. Results indicated that the immersion environment contributes significantly to the blast response of the material and to the specimens' appreciable damage characteristics. The water submersion with air backing environment was found to encourage the greatest panel center point deflection and the most significant damage mechanisms around the boundary. The air immersion with air backing environment was found to encourage less center point deflection and exhibited significant impact damage from the explosive capsule. The water submersion with water backing environment encouraged the least panel deflection and minimal interlaminate damage around the panel boundary and center. Water temperature was found to influence the panel center point deflection, but not damage mechanisms. Maximum positive center point

  7. Development of highly-filled, bioactive acrylic-based composite bone cements for orthopedic and craniofacial surgery: Tuning of material properties after incorporation of calcium phosphate and antimicrobial fillers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Lucas Carlos

    Bone cements are used in a variety of healthcare specialties ranging from orthopedics to dentistry to craniofacial surgery to spinal disc reconstruction. These materials need characteristics which mimic their surrounding tissues. Currently available materials have struggled to maintain these necessary characteristics. Poly (methyl methacrylate) is a very high strength bio-inert polymer which has been utilized in healthcare since the 1940's. Calcium phosphate cements are well established as being bone mimicking, but cannot sustain the compressive loads in a weight bearing application. This study sought to solve the problem of currently available bone cements by filling calcium phosphates and antimicrobials into an acrylic polymer matrix. The intended outcome was a material capable of retaining high mechanical stability from the acrylic polymer phase, while becoming sufficiently bone mimicking and antimicrobial. This thesis work presented, characterizes the material properties of the developed materials and eventually isolates a material of interest for future studies.

  8. UV curing of nanoparticle reinforced acrylates

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Flyunt, R.; Czihal, K.; Ernst, H.; Naumov, S.; Buchmeiser, M. R.

    2007-12-01

    To improve the surface hardness of radiation cured acrylate coatings, both silica nanoparticles and alumina particles with a few microns in size have been embedded into acrylate formulations. Regular mixing of nanoparticles into acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification of nanoparticles using trialkoxysilanes, which provide an interface between the two dissimilar materials. Nanoparticles modified by methacryloxypropyltrimethoxysilane (MEMO) and vinyltrimethoxysilane (VTMO), both having polymerisation-active groups, may be crosslinked with the acrylate resin. UV curing of the nanocomposites revealed an unexpected lower reactivity of the vinyl groups of VTMO modified silica compared to MEMO grafted on silica. For VTMO modification, DFT calculations showed a decrease of Mulliken atomic charge for the olefinic carbons pointing to a lower reactivity. For UV cured nano/microhybrid composites, a significant improvement of abrasion resistance was obtained.

  9. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    NASA Astrophysics Data System (ADS)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  10. LDEXPT, an intelligent database system for the Composite Load Spectra project

    NASA Technical Reports Server (NTRS)

    Ho, H.; Newell, J. F.; Hopkins, D.; Chamis, C. C.

    1990-01-01

    The Composite Load Spectra project develops probabilistic models to simulate the probabilistic loads for selected components of a generic space propulsion system. Tremendous information such as engine load variables and their distributions is needed by the simulation program. An intelligent data base system was constructed and integrated with the probabilistic load simulation program to manage and maintain the knowledge base of the Composite Load Spectra project. The intelligent data base system takes care of the data retrieval and storage functions and has expert knowledge on engine load models and associated engine variables. The integration of the intelligent data base into the load simulation program achieves a smooth coupling between the numeric processing (load simulation calculation) and the symbolic processing (intelligent load information management).

  11. Thermal loading in the laser holography nondestructive testing of a composite structure

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Kurtz, R. L.

    1975-01-01

    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material.

  12. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    NASA Astrophysics Data System (ADS)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  13. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  14. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGESBeta

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  15. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  16. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  17. Effect of a silane coupling agent on the optical and the mechanical characteristics of nanodiamond/acrylic resin composites

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Gun; Chun, Yoon-Soo; Lim, Dae-Soon; Kim, Jung Youl

    2014-10-01

    Nanodiamond (ND) is a good candidate for a filler material to fabricate transparent films. This study explores a characterization of the optical and the mechanical properties of ND dispersed polymer films. An attrition milling method was adapted to break ND aggregates, and a silane coupling agent (3-methacryloxypropyltrimethoxysilane) was used to modify the ND surfaces and stabilize the dispersion. Dipentaerylthritol hexaacrylate and pentaerythritol tetraacrylate were used in the polymer matrix, and up to 3 wt.% of ND was added to improve the mechanical properties. Fabricated composites were analyzed and tested using UV-visible spectroscopy for the optical properties and a Micro-Vickers hardness tester and ball-on-disktype friction tester for the mechanical properties. Results show that the transmittance of the ND-added composite increased with decreasing aggregate size. Through the addition of small amounts of NDs, the mechanical properties were greatly improved, the material became 3.5 times as hard, and the wear rate were greatly decreased. Possible mechanisms responsible for the enhancement of the mechanical and the optical properties are discussed.

  18. Injectable, high modulus, and fatigue resistant composite scaffold for load-bearing soft tissue regeneration.

    PubMed

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2013-12-01

    High modulus, two-phase, bicontinuous scaffolds were prepared by photocross-linking an aqueous suspension of chondrocytes and N-methacrylate glycol chitosan with a hydrolyzable, hydrophobic, acrylated star-copolymer. Two acrylated star-copolymers were examined: poly(ε-caprolactone-co-d,l-lactide) (5446DLLACL) and poly(ε-caprolactone-co-trimethylene carbonate) (7030TMCCL). The scaffolds were assessed for injectability, two-phase interconnectivity, fatigue resistance, and long-term static culture behavior. The 7030TMCCL scaffolds demonstrated decreased moduli of 17% after 1 × 10(6) cycles at 30% strain and 5% after 56 days in culture, compared to the 5446DLLACL scaffolds, which exhibited decreases of 58 and 68%, respectively. The 7030TMCCL scaffolds accumulated more extracellular matrix after 56 days of culture (GAG: 20.1 ± 1, collagen: 35.5 ± 1.8 μg) compared to 5446DLLACL scaffolds (GAG: 13.2 ± 0.6, collagen: 6.2 ± 3.4 μg). Overall, the 7030TMCCL-based scaffolds were shown to be better suited for use as a load bearing soft tissue scaffold. PMID:24147621

  19. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  20. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  1. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Everleigh, Carl A.; Moorhead, Arthur J.

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  2. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  3. Delaminations in composite plates under transverse static loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.

    1992-01-01

    Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.

  4. Deformation and failure of transversely loaded composite plates

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Wooh, S. C.

    1985-01-01

    Quasi-isotropic graphite/epoxy clamped circular plates were loaded under control point loading. Deflections and strains at various locations were monitored up to failure. Various damage mechanisms, such as intralaminar matrix cracking, delaminations and fiber breaks, are correlated with the strain records. The damage at various stages of deformation was characterized by means of X-radiography. Results are compared with an approximate isotropic plate theory.

  5. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  6. The acrylic jacket crown.

    PubMed

    Bell, A M

    1975-04-01

    An attempt has been made to cover briefly the many applications of the acrylic jacket crown. It is readily understandable that this type of restoration has many shortcomings but at the same time it has many useful and important applications in dentistry when properly employed. It is hoped that the specialist and generalist alike will have found some new and useful applications of the acrylic jacket crown. PMID:1090464

  7. Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures

    PubMed Central

    Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.

    2008-01-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  8. Effects of simulated functional loading conditions on dentin, composite, and laminate structures.

    PubMed

    Walker, Mary P; Teitelbaum, Heather K; Eick, J David; Williams, Karen B

    2009-02-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Because mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. This investigation utilized relevant parameters (specimen size, loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite "laminate" structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  9. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  10. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates. PMID:26367207

  11. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  12. Optimal overlap length in staggered architecture composites under dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun; Miklavcic, Milan

    2013-01-01

    Hybrid staggered architecture composites, like nacre and bone, are known for two discernible aspects: superior strength and synergistic toughness. What is lacking is the scientific rationale proving suitability of these materials under impact/time dependent loading. The current investigation aims to address the structure-property correlationship of these materials by development of an analytical model under dynamic rates of loading. Existing literature studies address behavior of staggered materials under quasi-static loading conditions. Critical overlap length was computed for three natural composites-nacre, spider-silk and, collagen in bone/tendon, and showed reasonable agreement with experimental data. Applicability of the analytical approach to predict lap-joint strength has been briefly discussed and quantified against experimental data. Choice of nanometer sized building blocks in natural composites has been addressed and explained from shear transfer efficiency point of view. The potentiality of these composites for use as biomimetic protective material under impact loading has been addressed as well.

  13. Deformation and damage of composite plates under impact loading

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Wooh, S. C.

    1986-01-01

    Transient deformation and damage were studied in impacted graphite/epoxy plates. The plates were 8-ply and 16-ply quasi-isotropic laminates clamped around a 12.7 cm diameter circumference. They were instrumented with surface and embedded strain gages and loaded by a 202 gr mass dropped from a height of 1.8 m. The load history and imparted energy were obtained by means of an accelerometer attached to the impactor. Transient strains at various locations through the thickness and at various distances from the loading point were obtained. The characteristic features of the strain records are associated with specific failure modes in the laminate. The deformation history was also correlated with the induced damage as detected by X-radiography and ultrasonics. Impact damage is more extensive in the thicker laminate. Damage takes the form of delaminated strips parallel to the fiber direction in each ply and increasing in length from top to bottom.

  14. Assessment of particulate cellulose epoxy composites manufactured by JMFIL under impact load

    NASA Astrophysics Data System (ADS)

    Srinivasababu, Nadendla

    2015-08-01

    Increase in environmental concern towards sustainable development invites the development of new materials which are eco-friendly to satisfy various engineering needs. The present work introduces a new manufacturing method i.e. "Just Mold Fill and Immediate Loading" to prepare epoxy composites reinforced at different contents of particulate cellulose. The fabricated composites specimens are post processed and machined, tested as per ASTM procedures under impact load.

  15. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  16. Modeling of failure and response to laminated composites subjected to in-plane loads

    NASA Technical Reports Server (NTRS)

    Shahid, Iqbal; Chang, Fu-Kuo

    1993-01-01

    An analytical model was developed for predicting the response of laminated composites with or without a cutout and subjected to in-plane tensile and shear loads. Material damage resulting from the loads in terms of matrix cracking, fiber-matrix shearing, and fiber breakage was considered in the model. Delamination, an out-of-plane failure mode, was excluded from the model.

  17. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    PubMed

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials. PMID:27106158

  18. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, James F.; Ho, Hing W.

    1991-01-01

    This report summarizes the development for: (1) correlation fields; (2) applications to liquid oxygen post; (3) models for pressure fluctuatios and vibration loads fluctuations; (4) additions to expert systems; and (5) scaling criteria. Implementation to computer code is also described. Demonstration sample cases are included with additional applications to engine duct and pipe bend.

  19. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses

    PubMed Central

    Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2011-01-01

    Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different

  20. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    PubMed Central

    Kermanshah, Hamid; Yasini, Esmail; Hoseinifar, Razieh

    2016-01-01

    Background: There are many concerns regarding the marginal seal of composite restorations, especially when composite restorations are subjected to cyclic loading. The aim of this study was to evaluate the effect of cyclic loading on the microleakage of silorane based composite compared with low shrinkage methacrylate-based composites in class V cavities. Materials and Methods: In this in vitro study, class V cavities were prepared on the facial and lingual surfaces of 48 human premolars (96 cavities). The teeth were randomly divided into four groups of 12 teeth (24 cavities) each and restored as follows: Group 1 (Siloran System Adhesive + Filtek P90), Group 2 (All Bond SE + Aelite LS Posterior), Group 3 (Futurabond NR + Grandio), and Group 4 (G-Bond + Kalore-GC). All the specimens were thermocycled for 2000 cycles (5-55°C) and then half of the specimens from each group, were Load cycled. All teeth were immersed in 0.5% basic fuchsine dye, sectioned, and observed under a stereomicroscope. Data were analyzed using Wilcoxon test, Kruskal–Wallis, and Mann–Whitney U-tests. P < 0.05 was considered as significant. Results: In both unloaded and loaded groups, no statistically significant differences were observed among four composites at the occlusal margin, but a significant difference in gingival microleakage was found between Aelite and silorane. Occlusal and gingival microleakage was not affected by cyclic loading in none of the four restorative materials. Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite). In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations. PMID:27274348

  1. Structure of boundaries in composite materials obtained using explosive loading

    NASA Astrophysics Data System (ADS)

    Lysak, V. I.; Kuz'min, S. V.; Krokhalev, A. V.; Grinberg, B. A.

    2013-11-01

    We have presented the results of studying the fine structure of interphase boundaries for a number of composite materials obtained by methods of explosive welding and explosive compacting of powder mixtures. Joints of different metals (titanium-low-carbon steel, copper-tantalum) and metals with refractory carbides (chromium carbide-titanium) have been investigated. Under welding, pairs differed from each other by the type of interaction. It has been found that, in these composites, interphase boundaries exhibit a final thickness on the order of 200 nm, throughout which the composition of the material changes gradually from a composition that corresponds to one of the components of the composite to a composition that corresponds to the second component. It has been shown that the structure of interphase boundaries is complex. With the limited solubility of components along boundaries, two fairly thick crystalline interlayers are detected, the total thickness of which is equal to the total thickness of the boundary; between the interlayers, there is a thin (to 5-7 nm in thickness) interlayer with a crystalline or amorphous structure.

  2. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    SciTech Connect

    Brown, Alexander; Jernigan, Dann A.; Dodd, Amanda B.

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  3. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  4. Effects of heat and moisture on fiberglass composite materials in the load carrying and non-load carrying conditions

    NASA Astrophysics Data System (ADS)

    McClurg, Jack Albert

    The objective set forth in this study was to thoroughly document the effects of heat, moisture, and loading conditions on a variety of pultruded unidirectional fiberglass reinforced composite materials. This study incorporated the use of two environmental control chambers and two water immersion tanks in order to provide the necessary range of environmental exposure conditions. A set of specially designed stainless steel loading fixtures was produced in order to introduce the factor of external loading of the specimens while exposed to the predetermined environmental condition and how that would affect the mechanical and physical properties in question. The properties of interest were the flexural strength (determined using the three-point flexural bending method), flexural modulus (determined using the three-point flexural bending method), and glass transition temperature of the material (determined using differential scanning calorimetry). Other data that was noted during the conditioning and testing of the specimens was the break type (flexural tension, compression, shear, etc...), the change in dimensions (prior to exposure vs. after exposure), and the change in weight (prior to exposure vs. after exposure). Using all of the information that was obtained from this study, a more detailed understanding of how and why fiberglass reinforced materials react the way they do when exposed to moisture and elevated temperature was drawn. This study is different from most others in that it explores the interactions of three independent variables (heat, moisture, and loading condition) on three different fiberglass reinforced composite systems (epoxy, vinylester, and polyester resin).

  5. General Factor Loadings and Specific Effects of the Differential Ability Scales, Second Edition Composites

    ERIC Educational Resources Information Center

    Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III

    2011-01-01

    The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four composites,…

  6. Development of highly loaded root end attachments for composite material high speed flying surfaces

    NASA Astrophysics Data System (ADS)

    Cooper, T. P.; Wright, R. A. S.

    In the design of cantilever composite flying surfaces, one of the most difficult problems to overcome is the interface with the aircraft fuselage. The authors describe some interface methodologies which significantly improve the load introduction at the interface between composite flying surface and a metal fuselage.

  7. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  8. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2015-09-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  9. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; OBrien, T. Kevin; Minguet, Pierre J.

    1999-01-01

    Damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out- of-plane) loading conditions were examined. Specimens consisted of a tapered composite flange bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending . For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. A two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in two locations where delaminations were observed. The analyses showed that unstable delamination propagation is likely to occur in one location at the loads corresponding to matrix ply crack initiation for all three load cases.

  10. Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.

    2004-01-01

    The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.

  11. Mechanical behavior of a continuous fiber reinforced aluminum matrix composite subjected to transverse and thermal loading

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers were investigated. The composite is subjected to both mechanical and cyclic thermal loading. The results of an experimental program indicate that the shakedown concept of structural mechanics provides a means of describing the material behavior. When the loading conditions are within the shakedown region, the material finally responds in an elastic manner after initial plastic response, and for loading conditions outside the shakedown region, the material exhibits a rapid incremental plastic strain accumulation. The failure strain varies by an order of magnitude according to the operating conditions. Hence, for high mechanical and low thermal loading, the failure strains is small; for low mechanical and high thermal loading, the failure strain is large.

  12. Effects of static tensile load on the thermal expansion of Gr/PI composite material

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1981-01-01

    The effect of static tensile load on the thermal expansion of Gr/PI composite material was measured for seven different laminate configurations. A computer program was developed which implements laminate theory in a piecewise linear fashion to predict the coupled nonlinear thermomechanical behavior. Static tensile load significantly affected the thermal expansion characteristics of the laminates tested. This effect is attributed to a fiber instability micromechanical behavior of the constituent materials. Analytical results correlated reasonably well with free thermal expansion tests (no load applied to the specimen). However, correlation was poor for tests with an applied load.

  13. Pull-out fibers from composite materials at high rate of loading

    NASA Technical Reports Server (NTRS)

    Amijima, S.; Fujii, T.

    1981-01-01

    Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.

  14. Mechanics of load transfer at the interface. [from matrix to fiber of composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    The mechanism of load transfer from matrix to fiber though the interface and, as a consequence, the effects of the interface on composite structural integrity are discussed. Specifically, the present work deals with the role of interfacial bonding in composite strength, the dependence of fracture surface on interface bond strength, and methods of measuring and predicting the stress at the interface, the microresidual stress, and load condition effects on the interface bond. The possibility of designing composites with specified bond properties is examined. Many of these effects are illustrated graphically to indicate general trends and to illustrate significant points. The discussion is based on theoretical considerations and is supplemented with pertinent experimental data.

  15. Micromechanical analysis of filamentary metal matrix composites under longitudinal loading

    NASA Technical Reports Server (NTRS)

    Gdoutos, Emmanuel E.; Karalekas, Dimitrios; Daniel, Isaac M.

    1991-01-01

    A two-material composite cylinder model (CCM) was considered for the study of the mechanical behavior at different temperatures of a fiber-reinforced silicon carbide/aluminum (SiC/Al) composite. An elastoplastic analysis of the model was performed in which the fiber was assumed to be linear elastic and the matrix elastoplastic with work-hardening. The analysis was based on the deformation theory of plasticity in conjunction with the von-Mises yield criterion. Experimental stress-strain curves of an SiC/Al composite were obtained at 24 and 288 C (75 and 550 F). The complete three-dimensional stress distribution in the composite using the CCM was determined. It was found that, in addition to longitudinal stresses, transverse stresses in both the fiber and the matrix were developed as a result of the different Poisson's ratios of the two materials. The transverse stresses, although much smaller than the longitudinal stresses, contributed to the plastic deformation of the matrix. The experimental stress-strain curves were favorably compared with the theoretical predictions.

  16. Ultrasonic Attenuation Results of Thermoplastic Resin Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1998-01-01

    As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post

  17. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  18. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  19. Analysis of notched metal matrix composites under tension loading

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    Presented are techniques based on 3-D finite-element analysis for the examination of continuous fiber reinforced metal matrix composites. Examples are shown for specific metal matrix composites such as boron/aluminum and silicon-carbide/aluminum. Specimen stress-strain behavior and stress at first fiber failure were predicted for boron/aluminum laminates containing circular holes and crack-like slits. The predictions compared very well for (+ or - 45) sub 2s laminates. Mesh configuration was shown to have an effect on the calculation of stresses local to the notch. The presence of thin interface layers of matrix material had a significant influence on the slit-tip stress state, causing sharper stress gradients near the notch. Interface layers reduced the slit-tip fibers stresses in a (+ or - 45) sub s silicon-carbide/aluminum laminate but increased them in a (0/90) sub s laminate.

  20. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    SciTech Connect

    Muttalib, Siti Nadzirah Abdul Othman, Nadras Ismail, Hanafi

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  1. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    NASA Astrophysics Data System (ADS)

    Muttalib, Siti Nadzirah Abdul; Othman, Nadras; Ismail, Hanafi

    2015-07-01

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  2. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.

    PubMed

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang

    2016-09-01

    Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. PMID:27209115

  3. The composite method: An improved method for stream-water solute load estimation

    USGS Publications Warehouse

    Aulenbach, Brent T.; Hooper, R.P.

    2006-01-01

    The composite method is an alternative method for estimating stream-water solute loads, combining aspects of two commonly used methods: the regression-model method (which is used by the composite method to predict variations in concentrations between collected samples) and a period-weighted approach (which is used by the composite method to apply the residual concentrations from the regression model over time). The extensive dataset collected at the outlet of the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia, USA, was used in data analyses for illustrative purposes. A bootstrap (subsampling) experiment (using the composite method and the PMRW dataset along with various fixed-interval and large storm sampling schemes) obtained load estimates for the 8-year study period with a magnitude of the bias of less than 1%, even for estimates that included the fewest number of samples. Precisions were always <2% on a study period and annual basis, and <2% precisions were obtained for quarterly and monthly time intervals for estimates that had better sampling. The bias and precision of composite-method load estimates varies depending on the variability in the regression-model residuals, how residuals systematically deviated from the regression model over time, sampling design, and the time interval of the load estimate. The regression-model method did not estimate loads precisely during shorter time intervals, from annually to monthly, because the model could not explain short-term patterns in the observed concentrations. Load estimates using the period-weighted approach typically are biased as a result of sampling distribution and are accurate only with extensive sampling. The formulation of the composite method facilitates exploration of patterns (trends) contained in the unmodelled portion of the load. Published in 2006 by John Wiley & Sons, Ltd.

  4. Stiffener-skin interactions in pressure-loaded composite panels

    NASA Technical Reports Server (NTRS)

    Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.

    1986-01-01

    The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.

  5. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  6. Evaluation of Composite Honeycomb Sandwich Panels Under Compressive Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Fourteen composite honeycomb sandwich panels were tested to failure under compressive loading. The test specimens included panels with both 8 and 24-ply graphite-bismaleimide composite facesheets and both titanium and graphite-polyimide core materials. The panels were designed to have the load introduced through fasteners attached to pairs of steel angles on the ends of the panels to simulate double shear splice joints. The unloaded edges were unconstrained. Test temperatures included room temperature, 250F, and 300F. For the room and 250F temperature tests, the 24-ply specimen failure strains were close to the unnotched allowable strain values and failure loads were well above the design loads. However, failure strains much lower than the unnotched allowable strain values, and failure loads below the design loads were observed with several of the 8-ply specimens. For each individual test temperature, large variations in the failure strains and loads were observed for the 8-ply specimens. Dramatic decreases in the failure strains and loads were observed for the 24-ply specimens as the test temperature was increased from 250F to 300F. All 8-ply specimens appeared to have failed in a facesheet strength failure mode for all test temperatures. The 24-ply specimens displayed appreciably greater amounts of bending prior to failure than the 8-ply specimens, and panel buckling occurred prior to facesheet strength failure for the 24-ply room and 250F temperature tests.

  7. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated. PMID:27501777

  8. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  9. Analysis of notched metal matrix composites under tensile loading

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1989-01-01

    This paper presents techniques based on a three-dimensional finite-element analysis for the analysis of continuous fiber reinforced metal matrix composite. Examples are shown for specific metal matrix composites such as boron/aluminum and silicon-carbide/aluminum. Specimen stress-strain behavior and stress at first fiber failure were predicted for boron/aluminum laminates containing circular holes and crack-like slits. The predictions compared very well with test data for laminates containing 0 deg fibers and reasonably well for (+/-45)2s laminates. Mesh configuration was shown to have an effect on the calculation of stresses local to the notch. The presence of thin interface layers of matrix material had a significant influence on the slit tip stress state, causing sharper stress gradients near the notch. Interface layers reduced the slit-tip fibers stress in a (+/-45)2s silicon-carbide/aluminum laminate but increased them in a (0/90)2s laminate.

  10. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    NASA Astrophysics Data System (ADS)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  11. Experimental investigation of wood fibre cement composite wall panel under axial loading

    NASA Astrophysics Data System (ADS)

    Sadia Mahzabin, Mst; Hamid, Roszilah

    2015-04-01

    Wood fibre cement (WFC) composite wall panels were cast and tested under axial load with 4/6 wood/cement ratio, 0.8 water/cement ratio, three chemical additives and horizontal and vertical reinforcement. Other panels with the same mix design proportion without reinforcement were also tested and compared with the commercially available WFC composite Duralite boards. An experimental result for the Duralite boards, the specimen showed quick failure with lower loading value and also with axial deformation. The WFC panel without reinforcement showed more brittle type of failure in that they were unable to sustain any more loading after reaching the maximum load. The failure for the WFC panel with reinforcement was gradual and this behaviour was attributed to the presence of steel as they act like bridges between cracks preventing sudden failure. The WFC panels without reinforcement results are higher than the theoretical value and also higher than the Duralite board panels.

  12. Thermography inspection for detection and tracking of composite cylinder damage during load testing

    SciTech Connect

    Zalameda, J. N.; Winfree, W. P.; Johnston, P. H.; Seebo, J. P.

    2011-06-23

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to non-immersion ultrasonic results.

  13. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  14. Combined-load stress-strain relationship for advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  15. Load-Bearing Capacity of Fiber-Reinforced Composite Abutments and One-Piece Implants.

    PubMed

    Etxeberria, Marina; Abdulmajeed, Aous A; Escuin, Tomas; Vinas, Miguel; Lassila, Lippo V J; Närhi, Timo O

    2015-06-01

    Fiber-reinforced composites (FRC) can potentially help in a physiologic stress transmission due to its excellent biomechanical matching with living tissues. Novel one-piece FRC implants and abutments with two different fiber orientations were loaded until failure to assess the load-bearing capacity, fracture patterns, and precision of fit. The one-piece FRC implants showed significantly higher load-bearing capacity compared to FRC abutments regardless of the fiber orientation (p < 0.001). For FRC abutments, bidirectional abutments showed significantly higher loads compared to unidirectional abutments (p < 0.001). The type of structure and fiber orientation are strong determinant factors of the load-bearing capacity of FRC implants and abutments. PMID:26373199

  16. Buckling of Laminated Composite Stiffened Panels Subjected to Linearly Varying In-Plane Edge Loading

    NASA Astrophysics Data System (ADS)

    Mallela, Upendra K.; Upadhyay, Akhil

    2014-01-01

    The presence of in-plane loading may cause buckling of stiffened panels. An accurate knowledge of critical buckling load and mode shapes is essential for reliable and lightweight structural design. This paper presents parametric studies on simply supported laminated composite blade-stiffened panels subjected to linearly varying in-plane edge/compressive loading. Studies are carried out by changing the panel orthotropy ratio, stiffener depth, pitch length (number of stiffeners), smeared extensional stiffness ratio of stiffener to that of the plate and load distribution parameter. Based on the studies, a few important parameters influencing the buckling behavior are identified and their significance is discussed. Further, the interaction equations for combined loadings are validated by carrying out numerical studies.

  17. Phytoplankton composition in Dutch coastal waters responds to changes in riverine nutrient loads

    NASA Astrophysics Data System (ADS)

    Prins, T. C.; Desmit, X.; Baretta-Bekker, J. G.

    2012-10-01

    The Southern Bight of the North Sea is a shallow shelf sea, strongly influenced by river-borne nutrient loads. Eutrophication symptoms manifest themselves as high levels of chlorophyll-a and long-lasting, extensive blooms of Phaeocystis globosa, especially in the waters along the continental coast. As a consequence of measures to reduce eutrophication, riverine phosphorus loads have decreased more than 50% in the last two decades, and nitrogen loads show a decrease of ca 30%. While decreases in riverine N and P loads are observed, an increase in summer river-borne loads of silica occurred. Since 1990, The Netherlands has carried out a routine monitoring program in the North Sea, including analysis of phytoplankton composition and carbon biomass. An analysis of these data for the period 1990-2007 shows a trend in phytoplankton composition, toward an increase in diatom biomass, increased bloom frequency and maximum bloom cell numbers of several diatom species, in particular Chaeotoceros socialis, in the coastal waters. These changes coincide with increases in riverine Si loadings and increased Si concentrations in coastal waters as a consequence of changed river loads.

  18. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  19. A review of failure models for ceramic matrix composite laminates under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  20. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading.

    PubMed

    Ku-Herrera, J J; Pacheco-Salazar, O F; Ríos-Soberanis, C R; Domínguez-Rodríguez, G; Avilés, F

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  1. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading

    PubMed Central

    Ku-Herrera, J. J.; Pacheco-Salazar, O. F.; Ríos-Soberanis, C. R.; Domínguez-Rodríguez, G.; Avilés, F.

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  2. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites

    NASA Astrophysics Data System (ADS)

    Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T.

    2000-05-01

    Multiwall carbon nanotubes have been dispersed homogeneously throughout polystyrene matrices by a simple solution-evaporation method without destroying the integrity of the nanotubes. Tensile tests on composite films show that 1 wt % nanotube additions result in 36%-42% and ˜25% increases in elastic modulus and break stress, respectively, indicating significant load transfer across the nanotube-matrix interface. In situ transmission electron microscopy studies provided information regarding composite deformation mechanisms and interfacial bonding between the multiwall nanotubes and polymer matrix.

  3. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  4. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  5. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  6. Loading rate sensitivity of open-hole composite specimens in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, S. J.; Guynn, E. G.; Elber, W.; Whitcomb, J. D.

    1990-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  7. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds. PMID:25123942

  8. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences

  9. Prediction of the response of metal matrix composite laminates under multiaxial loading

    SciTech Connect

    Subramanian, S.; Soni, S.R.; Foringer, M.A.

    1995-12-31

    In this paper, a simple micromechanics model is proposed to predict the response of metal matrix composites under multiaxial loading. The model includes the effects of residual thermal stresses, interphasial yielding and matrix plasticity. In this work, the concentric cylinders model (CCM) developed by Pagano and Tandon has been modified to include effects that are commonly observed in metal matrix composites (MMC). The matrix region is divided into five layers, and the stresses are determined in each of these layers and the fiber and interphase regions using the CCM. Interfacial debonding is modeled using a cylindrical interphase region and evaluating the yielding behavior of this region under thermo-mechanical loading. The nonlinear response of the MMC is predicted by considering progressive yielding of the various matrix layers. An iterative scheme is used to predict the onset and progression of plasticity in each matrix region. At any applied external load (strain), the volume averaged stresses are estimated in each of the constituent region. Results indicate that the predicted response of unidirectional and multidirectional laminates under thermo-mechanical loading agree well with experimental data. The onset of interfacial debonding and plasticity is predicted well by the model for SCS6/Ti 15-3 composites. In addition, the predicted response of SCS6/Ti 15-3 composites at room and elevated temperatures agree well with the experimental data.

  10. Load-induced debonding of FRP composites applied to reinforced concrete

    NASA Astrophysics Data System (ADS)

    Blok, Joel; Brown, Jeff

    2009-05-01

    Fiber-reinforced polymer (FRP) composites are widely used to increase the flexural and shear capacity of reinforced concrete (RC) elements. One potential disadvantage is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for monitoring and evaluating load-induced delamination of FRP composites applied to small scale RC beams. Two beams (3.5 in x 4.5 in x 58 in) were loaded monotonically to failure. Infrared thermography (IRT) inspections were performed at various load levels through failure using a composite phase imaging technique. Two similar beams were tested in fatigue and periodic IRT inspections were performed at 50,000-cycle intervals. Individual phase values for each pixel were designated as "well-bonded", "suspect" or "unbonded" to indicate the quality of FRP bond. Suspect areas included regions of excess thickened-epoxy tack-coat and smaller installation defects in the unloaded specimens. The long-term objective of this research is to develop a practical framework for conducting quantitative IRT inspections of FRP composites applied to RC and incorporating these results into acceptance criteria for new installations and predictions for the remaining service life of in-service FRP systems. This method may also offer insight into the necessity for repairs to in-service systems.

  11. Experimental observation of damage in 8HS fabric composites in tensile loading

    SciTech Connect

    Roy, A.K.

    1994-12-31

    An observation of damage in two different laminates (one symmetric and another unsymmetric) of 8HS fabric composites is made in tensile loading. The damage initiation seems to controlled by the state of local stress field, not by the ply stacking of the laminates. Further, the damage initiation occurred in the vicinity of yarn crimping.

  12. Dynamic Stability Optimization of Laminated Composite Plates under Combined Boundary Loading

    NASA Astrophysics Data System (ADS)

    Shafei, Erfan; Kabir, Mohammad Zaman

    2011-12-01

    Dynamic stability and design optimization of laminated simply supported plates under planar conservative boundary loads are investigated in current study. Examples can be found in internal connecting elements of spacecraft and aerospace structures subjected to edge axial and shear loads. Designation of such elements is function of layup configuration, plate aspect ratio, loading combinations, and layup thickness. An optimum design aims maximum stability load satisfying a predefined stable vibration frequency. The interaction between compound loading and layup angle parameter affects the order of merging vibration modes and may stabilize the dynamic response. Laminated plates are assumed to be angle-plies symmetric to mid-plane surface. Dynamic equilibrium PDE has been solved using kernel integral transformation for modal frequency values and eigenvalue-based orthogonal functions for critical stability loads. The dictating dynamic stability mode is shown to be controlled by geometric stiffness distributions of composite plates. Solution of presented design optimization problem has been done using analytical approach combined with interior penalty multiplier algorithm. The results are verified by FEA approach and stability zones of original and optimized plates are stated as final data. Presented method can help designers to stabilize the dynamic response of composite plates by selecting an optimized layup orientation and thickness for prescribed design circumstances.

  13. A test method to measure the response of composite materials under reversed cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, Charles E.; Simonds, Robert A.; Stinchcomb, Wayne W.

    1989-01-01

    A test method to measure the response of composite materials under reversed cyclic loads is described. The method approximates the long-term response of a component by permitting the composite specimen to respond to the imposed loads and fail in an unconstrained mode rather than in a constrained mode. The method has been successfully used for the reversed cyclic loading of unnotched and notched graphite/epoxy and graphite/PEEK laminates of various stacking sequences. Included in the paper are monotonic tensile and compressive stiffness and strength data at several points in the fatigue lifetime, and damage development information obtained via X-ray radiography for quasi-isotropic T300/5208 and AS4/PEEK laminates with unloaded circular holes.

  14. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors.

    PubMed

    Kougias, P G; Boe, K; Angelidaki, I

    2013-09-01

    Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise increasing the OLR and the concentration of proteins or lipids in the substrate, foaming in biogas reactors was investigated. No foam formation was observed at the OLR of 3.5 g volatile solids/(L-reactor·day). Organic loading was the main factor affecting foam formation in manure digester, while the organic composition, such as content of proteins or lipids were factors that in combination with the organic loading were triggering foaming. More specifically, gelatine could initiate foam formation at a lower OLR than sodium oleate. Moreover, the volume of foam produced by gelatine was relatively stable and was not increased when further increasing either OLR or gelatine concentration in the feed. PMID:23850819

  15. IGFC response to initial fuel cell load for various syngas compositions

    SciTech Connect

    Tucker, David; Hughes, Dimitri O.; Haynes, Comas L.

    2012-01-01

    The system response to an initial electric load of the fuel cell during the startup of a direct-fired fuel cell turbine power system was studied using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory for a range of input fuel compositions. The facility was brought to a steady condition at a temperature deemed adequate to minimize stress on the fuel cell during the initial load transient. A 1D distributed fuel cell model operating in real-time was used to produce individual cell transient temperature profiles during the course of the load change. The process was conducted with humidified hydrogen, and then repeated with various syngas compositions representative of different gasifier technologies. The results provide insight into control strategy requirements for mitigation of expected fuel cell failure modes relevant to available gasifier technology.

  16. Development of a fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1973-01-01

    This experimental program was undertaken to establish a fracture control method for composite tanks with load sharing liners. Uniaxial specimens containing surface flaws were loaded to failure (static fractured) and cycled to failure and the results were compared with burst tests and cyclic life tests of composite tanks having surface flaws present in the load sharing metal liners. The liner materials investigated were Inconel X750 STA, 2219-T62 aluminum and cryostretched 301 stainless steel at room temperature and at 78 K (-320 F) in liquid nitrogen. Differences were observed in comparing the uniaxial and tank test results. These differences should be resolved if an adequate fracture control method is to be developed.

  17. Discrete Meso-Element Simulation of Failure Behavior of Short-Fiber Composites under Shock Loading

    NASA Astrophysics Data System (ADS)

    Tang, Z. P.; Liu, Wenyan; Liu, Yunxin

    1999-06-01

    Recent years, it was paid more attention to better understanding the failure behavior and mechanism of heterogeneous materials at meso- scale level. In this paper, the crack initiation and development in epoxy composite reinforced with short steel fibre under dynamic loading were simulated and analyzed with 2D Discrete Meso-Element Dynamic Method. Results show that cracks initiate at the tips of fibres on the Loading side where stress concentrates. The effective strength of the composite sample is related to shape, orientation, weight percentage of the fibres, and particularly, the bonding strength between fibre and matrix. In the case of low bonding strength, the crack will propagate along the fibre and finally penetrate the whole sample. The differences compared with static loading are also discussed.

  18. The relationship of compliance changes during fatigue loading to the fracture of composite materials

    NASA Technical Reports Server (NTRS)

    Reifsnider, K. L.; Highsmith, A.

    1982-01-01

    The study outlined here is based on measurements of the change in engineering stiffness values induced by the development of damage in composite laminates during quasi-static or cyclic (fatigue) loading. These changes are found to be related to the individual details of the damage events in the laminates, as well as to the residual strength and life of the laminates. It is believed that the stiffness changes can also be used to relate composite material behavior under cyclic loading to its behavior under quasi-static loading. Results are presented for both notched and unnotched laminates. Compliance changes are found to be caused by damage events that bring about both global and local redistributions of stress. It is also found that the redistributions of stress determine the residual strength of the laminate. The quantitative link between compliance changes and fracture strength is the mechanics of the internal stress redistributions.

  19. Behaviour of hybrid jute-glass/epoxy composite tubes subjected to lateral loading

    NASA Astrophysics Data System (ADS)

    Khalid, A. A.

    2015-12-01

    Experimental work on hybrid and non-hybrid composite tubes subjected to lateral loading has been carried out using jute, glass and hybrid jute-glass/epoxy materials. Tubes of 200 mm length with 110 mm inner diameter were fabricated by hand lay-up method to investigate the effect of material used and the number of layers on lateral-load-displacement relations and on the failure mode. Crush force efficiency and the specific energy absorption of the composite tubes were calculated. Results show that the six layers glass/epoxy tubes supported load higher 10.6% than that of hybrid jute-glass/ epoxy made of two layers of jute/epoxy four layers of glass/epoxy. It has been found that the specific energy absorption of the glass/epoxy tubes is found higher respectively 11.6% and 46% than hybrid jute-glass/epoxy and jute/epoxy tubes. The increase in the number of layers from two to six increases the maximum lateral load from 0.53KN to 1.22 KN for jute/epoxy and from 1.35 KN to 3.87 KN for the glass/epoxy tubes. The stacking sequence of the hybrid tubes influenced on the maximum lateral load and the absorbed energy. The maximum load obtained for the six layers jute-glass/epoxy tubes of different staking sequence varies between 1.88 KN to 3.46 KN. Failure mechanisms of the laterally loaded composite tubes were also observed and discussed.

  20. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; O'Brien, T. Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as

  1. Testing and Analysis of Composite Skin/Stringer Debonding under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael; OBrien, Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as

  2. Magnetic Pycnoporus sanguineus-loaded alginate composite beads for removing dye from aqueous solutions.

    PubMed

    Yang, Chih-Hui; Shih, Ming-Cheng; Chiu, Han-Chen; Huang, Keng-Shiang

    2014-01-01

    Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. PMID:24945580

  3. Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.

  4. Prediction of failure envelopes of composite tubes subjected to biaxial loadings

    NASA Astrophysics Data System (ADS)

    Gargiulo, C.; Marchetti, M.; Rizzo, A.

    1996-09-01

    Practical cylindrical structures including pressure vessels, pipes, drive shafts and rochet motors are usually subjected to complex loads involving biaxial or triaxial stress systems. In particular, filamentary composite vessels are used in applications of Space Shuttle tankage, as well as for the storage of fluids in various commercial applications. The object of this work is to provide numerical and experiment data on the strength of filament wound carbon fibre reinforced epoxy resin thin tubes under biaxial loading conditions. Internal or external pressure and axial loads are applied simultaneously to produce a variety of biaxial stress conditions. The effects of the winding angle of the fibre reinforcements on the failure loads of the pipes have been examined. Finite elements and thin shell analysis have been applied to the problem using different failure criteria in order to predict the specimen's failure for a comparison with experimental results.

  5. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  6. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  7. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    SciTech Connect

    Cui, Zhongping; Qi, Ji; Xu, Xinxin Liu, Lu; Wang, Yi

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.

  8. Probabilistic design analysis using Composite Loads Spectra (CLS) coupled with Probabilistic Structural Analysis Methodologies (PSAM)

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Rajagopal, K. R.; Ho, H.

    1989-01-01

    Composite loads spectra (CLS) were applied to generate probabilistic loads for use in the PSAM nonlinear evaluation of stochastic structures under stress (NESSUS) finite element code. The CLS approach allows for quantifying loads as mean values and distributions around a central value rather than maximum or enveloped values typically used in deterministic analysis. NESSUS uses these loads to determine mean and perturbation responses. These results are probabilistically evaluated with the distributional information from CLS using a fast probabilistic integration (FPI) technique to define response distributions. The main example discussed describes a method of obtaining load descriptions and stress response of the second-stage turbine blade of the Space Shuttle Main Engine (SSME) high-pressure fuel turbopump (HPFTP). Additional information is presented on the on-going analysis of the high pressure oxidizer turbopump discharge duct (HPOTP) where probabilistic dynamic loads have been generated and are in the process of being used for dynamic analysis. Example comparisons of load analysis and engine data are furnished for partial verification and/or justification for the methodology.

  9. Modeling Loading/Unloading Hysteresis Behavior of Unidirectional C/SiC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li; Yingdong, Song; Youchao, Sun

    2013-08-01

    The loading/unloading tensile behavior of unidirectional C/SiC ceramic matrix composites at room temperature has been investigated. The loading/unloading stress-strain curve exhibits obvious hysteresis behavior. An approach to model the hysteresis loops of ceramic matrix composites including the effect of fiber failure during tensile loading has been developed. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix cracking space and interface debonded length are obtained by matrix statistical cracking model and fracture mechanics interface debonded criterion. The two-parameter Weibull model is used to describe the fiber strength distribution. The stress carried by the intact and fracture fibers on the matrix crack plane during unloading and subsequent reloading is determined by the Global Load Sharing criterion. Based on the damage mechanisms of fiber sliding relative to matrix during unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are obtained by the fracture mechanics approach. The hysteresis loops of unidirectional C/SiC ceramic matrix composites corresponding to different stress have been predicted.

  10. Design and Evaluation of Composite Fuselage Panels Subjected to Combined Loading Conditions

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rouse, Marshall

    1998-01-01

    Methodologies used in industry for designing transport aircraft composite fuselage structures are discussed. Several aspects of the design methodologies are based on assumptions from metallic fuselage technology which requires that full-scale structures be tested with the actual loading conditions to validate the designs. Composite panels which represent crown and side regions of a fuselage structure are designed using this approach and tested in biaxial tension. Descriptions of the state-of-the-art test facilities used for this structural evaluation are presented. These facilities include a pressure-box test machine and a D-box test fixture in a combined loads test machine which are part of a Combined Loads Test System (COLTS). Nonlinear analysis results for a reference shell and a stiffened composite panel tested in the pressure-box test machine with and without damage are presented. The analytical and test results are compared to assess the ability of the pressure-box test machine to simulate a shell stress state with and without damage. A combined loads test machine for testing aircraft primary structures is described. This test machine includes a D-box test fixture to accommodate curved stiffened panels and the design features of this test fixture are presented. Finite element analysis results for a curved panel to be tested in the D-box test fixture are also discussed.

  11. A Numerical and Experimental Study of Compression-Loaded Composite Panels With Cutouts

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2006-01-01

    Results from a numerical and experimental study on the effects of laminate orthotropy and circular cutout size on the response of compression-loaded composite curved panels are presented. Several 60-in-radius composite panels with four different laminate configurations were tested with cutout diameters that range from 10% to 60% of the panel width. Finite-element analyses were performed for each panel in order to identify the effects boundary conditions, measured initial geometric imperfections and thickness variations had on the nonlinear and buckling behavior of the panels. The compression-loaded panels considered herein exhibited two separate types of behavior depending on the laminate stacking sequence and cutout size. More specifically, some of the panels exhibited the classical snap-through type buckling response; however, some of the panels exhibited a monotonically increasing stable response and achieved compressive loads in excess of twice the predicted linear bifurcation buckling load. In general, the finite-element analyses were able to predict accurately the nonlinear response and buckling loads of the panels and the prebuckling and postbuckling out-of-plane deformations and strains.

  12. Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.

  13. Composition-property relationships for radiopaque composite materials: pre-loaded drug-eluting beads for transarterial chemoembolization.

    PubMed

    Kilcup, Nancy; Tonkopi, Elena; Abraham, Robert J; Boyd, Daniel; Kehoe, Sharon

    2015-07-01

    The purpose of this study was to synthesize and optimize intrinsically radiopaque composite embolic microspheres for sustained release of doxorubicin in drug-eluting bead transarterial chemoembolization. Using a design of experiments approach, 12 radiopaque composites composed of polylactic-co-glycolic acid and a radiopaque glass (ORP5) were screened over a range of compositions and examined for radiopacity (computed tomography) and density. In vitro cell viability was determined using an extract assay derived from each composition against the human hepatocellular carcinoma cell line, HepG2. Mathematical models based on a D-Optimal response surface methodology were used to determine the preferred radiopaque composite. The resulting radiopaque composite was validated and subsequently loaded with doxorubicin between 0 and 1.4% (wt% of polylactic-co-glycolic acid) to yield radiopaque composite drug-eluting beads. Thereafter, the radiopaque composite drug-eluting beads were subjected to an elution study (up to 168 h) to determine doxorubicin release profiles (UV-Vis spectroscopy) and in vitro cell viability. Radiopaque composites evaluated for screening purposes had densities between 1.28 and 1.67 g.cm(-3), radiopacity ranged between 211 and 1450HU and cell viabilities between 91 and 106% were observed. The optimized radiopaque composite comprised 23 wt% polylactic-co-glycolic acid and 60 wt% ORP5 with a corresponding density of 1.63 ± 0.001 g.cm(-3), radiopacity at 1930 ± 44HU and cell viability of 89 ± 7.6%. Radiopaque composite drug-eluting beads provided sustained doxorubicin release over 168 h. In conclusion, the mathematical models allowed for the identification and synthesis of a unique radiopaque composite. The optimized radiopaque composite had similar density and cell viability to commercially available embolic microspheres. It was possible to preload doxorubicin into radiopaque composite drug-eluting beads, such that sustained release

  14. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels.

    PubMed

    Bajpai, S K; Chand, Navin; Soni, Shweta

    2015-01-01

    Drug Gliclazide (Glz) has limited solubility and low bioavailability. In order to obtain a controlled release of this drug and to improve its bioavailability, the drug has been loaded into poly(caprolactone) (PCL)/poly(acrylic acid) (PAAc) hydrogels, prepared by free radical polymerization of acrylic acid in the presence of poly(caprolactone) in acetone medium using azo-isobutyronitrile as initiator and N,N' methylene bisacrylamide as cross-linking agent. The swelling behaviour of these hydrogels has been investigated in the physiological gastric and intestinal fluids to obtain an optimum composition suitable for delivery of a biologically active compound. The gels were loaded with anti-diabetic drug Glz and a detailed investigation of release of drug has been carried out. Various kinetic models have been applied on the release data. Finally, the Albino wistar rats were treated for Streptozotocin plus nicotinamide - induced diabetes using a Glz-loaded PCL/PAAc hydrogel. The results indicated a fair reduction in the glucose level of rats. PMID:26135033

  15. PHEMA based composite cryogels with loaded hydrophobic beads for lysozyme purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil

    2014-11-01

    The purpose of this study is to synthesize megaporous cryogel loaded with hydrophobic affinity beads which can be utilized for the purification of lysozyme from chicken egg-white. N-methacryloyl-(L)-tryptophan methylester (MATrp) was used as the hydrophobic ligand. In the first step, poly(glycidyl methacrylate-N-methacryloyl-(L)-tryptophan methyl-ester) [PGMATrp] beads (2.2 μm in diameter) were produced by dispersion polymerization. In the second step, the poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel loaded with PGMATrp beads [PHEMA/PGMATrp composite cryogel] was polymerized initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) at -12°C. Lysozyme adsorption capacity of the PHEMA/PGMATrp composite cryogel (332.7 mg/g polymer) was improved significantly due to the loading of PGMATrp beads into the cryogel structure. The hydrophobic MATrp comonomer played a vital role in this binding mechanism. The PHEMA/PGMATrp composite cryogel could be used many times without decreasing the lysozyme adsorption amount significantly. The main advantage of the PHEMA/PGMATrp composite cryogel is the high adsorption capacity. PMID:25454758

  16. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  17. Determination of the criteria of controlling the state of stress in composite materials during steplike loading

    NASA Astrophysics Data System (ADS)

    Surzhikov, V. P.; Fedotov, P. I.; Khorsov, N. N.

    2015-03-01

    Criteria for controlling the state of stress in composite materials based on epoxy resin filled with sand are determined using the phenomenon of mechanoelectrical conversion in dielectric materials. The principle of synchronous detection is applied to analyze the experimental results. Reference signals are taken to be the mechanoelectrical conversion pulse at a zero load and the acoustic pulse emitted by a piezoelectric transducer. It is shown that the elimination of low-informative time intervals from responses leads to a quasi-linear dependence of the chosen control criteria on the pressure applied to a sample and to an increase in the sensitivity of the criteria to the applied load.

  18. Fracture Load of Tooth Restored with Fiber Post and Experimental Short Fiber Composite

    PubMed Central

    Bijelic, Jasmina; Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo V.J

    2011-01-01

    Purpose: This study evaluated the load bearing capacity of anatomically designed canines restored with FRC posts and experimental short fiber composite resin (FC). The effect of using three different types of tooth preparation and woven net on the fracture load was also investigated. Further aim was to evaluate the failure mode of each restoration. Material and methods: 80 maxillary frasaco-canines were divided into 10 groups (n=8). The anatomic crowns were cut perpendicular at CEJ of the tooth. Group 1 was composed of teeth with flattened surface. Groups 2, 3 & 4 were prepared of teeth with 2 mm ferrule. In the third group, everStick Net was applied above the ferrule. Group 5 was composed of teeth with large box type preparation. The root canals were enlarged, sandblasted and then surface treated with Stick resin for 5 min. Two types of FRC root canal posts were used. The crowns were prepared either with composite resin or with FC. A static load until failure was applied to the crowns at a 45 degrees angle. Failure modes were visually examined. Results: ANOVA revealed that use of FRC-post and tooth preparation (p<0.001) had significant effect on fracture load of FRC-crown. The crowns made from only FC gave comparable fracture load to groups with FRC-post. No significant difference was found in load-bearing capacity between restorations reinforced with FRC net-substructure and those without (p>0.001). Chi-square test revealed that both, crown design and existence of FRC-post effected significantly fracture types (p<0.001). Conclusion: FC demonstrated similar load bearing capacity with restorations reinforced with FRC post. The presence of ferrule around the tooth increased the load bearing capacity significantly. Abbreviations: EET – endodontically treated teeth; FRC – fiber-reinforced composite; semi-IPN – semi-interpenetrating network; CEJ – cementoenamel junction; FC – experimental short fiber composite; SiC – silicon carbide abrasive paper; N

  19. Effects of loading rate and temperature on dynamic fracture of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Yang, K. H.; Kobayashi, A. S.; Emery, A. F.

    1989-01-01

    A hybrid experimental-numerical procedure was used to determine the dynamic fracture initiation toughnesses and the dynamic stress intensity factors of alumina, TiB2-particulate/SiC-matrix, and SiC(w)/Al2O3-matrix composites at room and elevated temperatures under static and impact loadings. The dynamic fracture initiation toughnesses at room and elevated temperatures were greater than the corresponding static fracture toughness. The crack velocity versus the dynamic stress intensity factor relations showed minor differences due to temperature changes but significant differences due to the change in loading rates.

  20. Nonlinear dynamic response of laminated composite plates subjected to pulse loading

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. K.; Pandey, Ramesh; Shukla, K. K.

    2011-11-01

    An analytical solution methodology for the non-linear dynamic displacement response of laminated composite plates subjected to different types of pulse loading is presented. The mathematical formulation is based on third-order shear deformation plate theory and von-Karman non-linear kinematics. Fast-converging finite double Chebyshev series is employed for evaluating the displacement response. Houbolt time marching scheme is used for temporal discretization and quadratic extrapolation technique is used for linearization. The effects of magnitude and duration of the pulse load, boundary conditions and plate parameters on the central displacement and bending moment responses are studied.

  1. Photo-thermal polymerization of nanotube/polymer composites: Effects of load transfer and mechanical strength

    PubMed Central

    Xu, Peng; Loomis, James; Panchapakesan, Balaji

    2012-01-01

    The authors report a method where in-situ photon assisted heating of multi-wall carbon nanotubes was utilized for enhanced polymerization of the nanotube/polydimethylsiloxane interface that resulted in significant load transfer and improved mechanical properties. Large Raman shifts (20 cm−1 wavenumbers) of the 2D bands were witnessed for near-infrared light polymerized samples, signifying increased load transfer to the nanotubes for up to ∼80% strains. An increase in elastic modulus of ∼130% for 1 wt. % composites is reported for photon assisted crosslinking. PMID:22509070

  2. Dynamic stability of simply supported composite cylindrical shells under partial axial loading

    NASA Astrophysics Data System (ADS)

    Dey, Tanish; Ramachandra, L. S.

    2015-09-01

    The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.

  3. Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Sharba, M. J.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Hanim, M. A. A.

    2015-12-01

    The aim of this work is to investigate the effect of hybridization of kenaf-glass fibers reinforced unsaturated polyester on fatigue life. Three types of composites were fabricated using hands lay-up method, namely, kenaf, glass, and hybrid composites with 30% of weight fraction, the hybrid was mixed with a ratio of kenaf: glass 10:20. Monotonic tests were achieved (Tensile and compression) to determine the fatigue stress levels. Fully reversed fatigue loading was conducted with a stress ratio of -1 and stress levels 55-85% of the ultimate static stresses, all tests were conducted at 10 Hz of frequency. The results proof a positive hybrid composite; also agree with the rule of mixture that can predict the final composite properties. Moreover, it's been observed an improvement in overall mechanical properties of hybrid compared to individual ones.

  4. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  5. Meshless Analysis of Laminated Composite and Sandwich Plates Subjected to Various Types of Loads

    NASA Astrophysics Data System (ADS)

    Singh, Jeeoot; Singh, Sandeep; Shukla, K. K.

    2014-03-01

    The bending analysis of laminated composite and sandwich plates using different radial basis functions and higher-order shear deformation theory is presented. This meshfree technique is insensitive to spatial dimension and considers only a cloud of nodes (centers) for the spatial discretization of both the problem domain and the boundary. Numerical results for simply supported isotropic, symmetric cross-ply composite and sandwich plate are presented. The results are compared with other available results. It is observed that convergence of the polynomial function is faster as compared to other radial basis functions, whereas Gaussian function takes the least solution time. The effect of various types of loadings on sandwich plate is presented.

  6. Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.

    2001-01-01

    Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.

  7. Optimum Design of Composite Sandwich Structures Subjected to Combined Torsion and Bending Loads

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Li, Gangyan; Wang, Chun H.; You, Min

    2012-06-01

    This research is motivated by the increase use of composite sandwich structures in a wide range of industries such as automotive, aerospace and civil infrastructure. To maximise stiffness at minimum weight, the paper develops a minimum weight optimization method for sandwich structure under combined torsion and bending loads. We first extend the minimum-weight design of sandwich structures under bending load to the case of torsional deformation and then present optimum solutions for the combined requirements of both bending and torsional stiffness. Three design cases are identified for a sandwich structure required to meet multiple design constraints of torsion and bending stiffness. The optimum solutions for all three cases are derived. To illustrate the newly developed optimum design solutions, numerical examples are presented for sandwich structures made of either isotropic face skins or orthotropic composite face skins.

  8. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  9. Preparation and characterization of hydrophilic composites AA/EPMA loaded with hydroxyapatite.

    PubMed

    Campos, Yaima; Fuentes, Gastón; Delgado, José A; Almirall, Amisel

    2013-12-01

    Copolymeric composites of acrylamide (AA) and 2,3-epoxypropyl methacrylate (EPMA) with hydroxyapatite (HA) load were studied. Swelling studies reports an anomalous or non-Fickian behavior following a good fitting to a pseudo second order mathematical treatment (α = 0.05, p < 0.0001). The composites showed a strong dependence on pH, related with the variations in the swelling behavior. The addition of load induces a diminution of swelling capacity and an increase of diametric tensile strength (DTS) ranging between 20 and 90 kPa. The calorimetric experiments showed two steps at 78°C and 255°C assigned to water loss and samples Tg. The drug control released was adjusted to a two-term equation obtaining a diffusion coefficient around 10(-5) cm(2) /s. The samples showed a significant bioactivity in vitro and it was certified by SEM, EDS and surface area calculus. PMID:23982885

  10. Optimization of coating diameter of fiber optic sensors embedded in composite structures under arbitrary loading conditions

    NASA Astrophysics Data System (ADS)

    Lammens, Nicolas; Luyckx, Geert; Voet, Eli; van Paepegem, Wim; Degrieck, Joris

    2015-11-01

    Due to mismatches in size and material properties, optical fiber (OF) sensors act as inclusions when embedded in composite hosts. The resulting stress concentrations surrounding the OF sensor may lead to premature failure of the host structure. In this work, a novel technique is presented to determine optimal coating properties for OF sensors embedded in composite structures in order to minimize stress concentrations surrounding these sensors. The method is validated against methodologies available in literature and is shown to produce identical results under these specific circumstances. Compared to the methods in literature, the proposed method is significantly more flexible as it allows the optimization of the coating for any arbitrary load condition. The results of the computations can be reused for any load case in the given combination of host and coating material, reducing the computations to a one time effort for a specific combination of host and coating.