Sample records for act tsca incinerator

  1. Field testing of particulate matter continuous emission monitors at the DOE Oak Ridge TSCA incinerator. Toxic Substances Control Act.

    PubMed

    Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W

    2002-01-01

    A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.

  2. Toxic Substances Control Act (TSCA) and Federal Facilities

    EPA Pesticide Factsheets

    The Toxic Substances Control Act (TSCA) of 1976 provides EPA with authority to require reporting, record-keeping and testing requirements, and restrictions relating to chemical substances and/or mixtures.

  3. Request for Correction 15003 - Information Quality Act request for Correction of the TSCA Work Plan

    EPA Pesticide Factsheets

    This RFC concerns the Information Quality Act request for correction of the TSCA Work Plan for Chemical Assessments: 20154 Update and the TSCA Work Plan Chemicals: Methods Document (February 2012) regarding assessment of phthalic anhydride

  4. TSCA Chemical Substance Inventory

    EPA Pesticide Factsheets

    Section 8 (b) of the Toxic Substances Control Act (TSCA) requires EPA to compile, keep current, and publish a list of each chemical substance that is manufactured or processed in the United States for TSCA uses.

  5. Frequent Questions about TSCA CBI

    EPA Pesticide Factsheets

    General Questions and Answers Concerning Confidential Business Information (CBI) Provisions of the Toxic Substances Control Act (TSCA), as amended by the Frank R. Lautenberg Chemical Safety for the 21st Century Act

  6. Confidential Business Information under TSCA

    EPA Pesticide Factsheets

    This website informs businesses, policymakers, and the public about the confidential business information (CBI) provisions of § 14 of the Toxic Substances Control Act (TSCA), as amended by the Frank R. Lautenberg Chemical Safety for the 21st Century Act.

  7. TSCA traps for the unwary plant manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuryla, M.

    1993-09-01

    Plant managers in the CPI should proceed with caution in making some changes in chemical processes or waste disposal. A number of seemingly routine decisions, often made at the level of the plant manager and even below, can turn into costly compliance traps under the Toxic Substances Control Act (TSCA). TSCA is a federal statute designed to give the U.S. Environmental Protection Agency (EPA) information and control over commercial chemicals. Originally passed in 1976, the regulations it supports have been reworked at various times over the years. EPA is on the hunt for TSCA violators. In a December 1992 blitz,more » EPA assessed combined TSCA penalties of $9 million against 22 major chemical companies, including several of the top 20 international producers. According to a recent EPA press release, these actions are only the first in a series of planned enforcements initiatives. Among the various environmental statutes, TSCA is one of the most costly to violate. TSCA authorizes $23,000-per-day penalties for violations of its rules. EPA's internal penalty policies apply rigid formulas, often resulting in million-dollar assessments for essentially paperwork violations.« less

  8. Chemicals under the Toxic Substances Control Act (TSCA)

    EPA Pesticide Factsheets

    This web area will allow stakeholders to search and view centralized chemical info from various systems. This page will focus on TSCA chemical data such as health and safety studies, risk assessments and hazard characterizations.

  9. 40 CFR 799.9135 - TSCA acute inhalation toxicity with histopathology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9135 TSCA acute inhalation toxicity with... Substances Control Act (TSCA). In the assessment and evaluation of the potential human health effects of chemical substances, it is appropriate to test for acute inhalation toxic effects. The goals of this test...

  10. 40 CFR 799.9135 - TSCA acute inhalation toxicity with histopathology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9135 TSCA acute inhalation toxicity with... Substances Control Act (TSCA). In the assessment and evaluation of the potential human health effects of chemical substances, it is appropriate to test for acute inhalation toxic effects. The goals of this test...

  11. 40 CFR 799.9135 - TSCA acute inhalation toxicity with histopathology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9135 TSCA acute inhalation toxicity with... Substances Control Act (TSCA). In the assessment and evaluation of the potential human health effects of chemical substances, it is appropriate to test for acute inhalation toxic effects. The goals of this test...

  12. Nanoscale Substances on the TSCA Inventory

    EPA Pesticide Factsheets

    This document is to help the regulated community comply with the requirements of the Toxic Substances Control Act (TSCA) Section 5 Premanufacturing Notice (PMN) Program for nanoscale chemical substances.

  13. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federalmore » rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.« less

  14. Filing a Biotechnology Submission under TSCA

    EPA Pesticide Factsheets

    Section 5 of the Toxic Substances Control Act (TSCA) requires the submission of certain information to EPA if a person wishes to commercialize an intergeneric microorganism or Introduce such microorganisms into the environment for research purposes.

  15. 78 FR 48845 - Hydrofluorosilicic Acid in Drinking Water; TSCA Section 21 Petition; Reasons for Agency Response

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... the corrosivity of the water including: Taking further steps to optimize their corrosion control treatment (for water systems serving 50,000 people that have not fully optimized their corrosion control... Control Act (TSCA). The TSCA section 21 petition, dated May 9, 2013, was submitted by American University...

  16. INCINERATION OF SOLID WASTE

    EPA Science Inventory

    The concern over solid waste disposal and dump-site clean-up has resulted in the passage of three major U.S. environmental laws. They are the Resource Conservation and Recovery Act (RCRA) of 1976, Public Law 94-580, the Toxic Substances Control Act (TSCA) of 1976, Public Law 94-4...

  17. 75 FR 5405 - Sixty-Fifth Report of the TSCA Interagency Testing Committee to the Administrator of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    .... SUMMARY: The Toxic Substances Control Act (TSCA) Interagency Testing Committee (ITC) transmitted its Sixty... manufacture (defined by statute to include import) and/or process TSCA-covered chemicals and you may be identified by the North American Industrial Classification System (NAICS) codes 325 and 32411. Because this...

  18. TSCA Chemical Data Reporting Fact Sheet: Articles

    EPA Pesticide Factsheets

    This fact sheet provides guidance on classifying articles under the Toxic Substances Control Act (TSCA) and determining the applicability of EPA’s articles exclusion policy for purposes of the Chemical Data Reporting (CDR) rule. The primary goal of this document is to help the regulated community comply with the requirements of the CDR rule.

  19. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND... section 4 of the Toxic Substances Control Act (TSCA) (15 U.S.C. 2601). (2) Background. The source material... designed to measure numerical aberrations and is not routinely used for that purpose. Chromosome mutations...

  20. Legislative and Regulatory Authority for Reviewing New Chemicals under TSCA

    EPA Pesticide Factsheets

    Section 5 of the Toxic Substances Control Act (TSCA) gives EPA the authority to require anyone who plans to manufacture a new chemical substance for a non-exempt commercial purpose to provide EPA with notice 90 days before initiating the activity.

  1. Questions & Answers for the New Chemicals Program under the Toxic Substances Control Act (TSCA)

    EPA Pesticide Factsheets

    This Questions & Answers document for the New Chemicals Program is intended only to explain the requirements of TSCA section 5 and selected EPA regulations implementing section 5, and to provide useful information to persons subject to these requirements.

  2. Exposure Modeling Tools and Databases for Consideration for Relevance to the Amended TSCA (ISES)

    EPA Science Inventory

    The Agency’s Office of Research and Development (ORD) has a number of ongoing exposure modeling tools and databases. These efforts are anticipated to be useful in supporting ongoing implementation of the amended Toxic Substances Control Act (TSCA). Under ORD’s Chemic...

  3. 20171015 - Generating Exposure-Relevant Measurement Data for Potential Use in Support of TSCA Requirements (ISES)

    EPA Science Inventory

    The EPA Office of Research and Development (ORD) has a number of ongoing projects which generate exposure measurements. These data may inform ongoing implementation of the amended Toxic Substances Control Act (TSCA). Exposure measurements include physical-chemical property inform...

  4. 40 CFR 799.9510 - TSCA bacterial reverse mutation test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA bacterial reverse mutation test... REQUIREMENTS Health Effects Test Guidelines § 799.9510 TSCA bacterial reverse mutation test. (a) Scope. This... mutation test uses amino-acid requiring strains of Salmonella typhimurium and Escherichia coli to detect...

  5. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  6. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  7. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  8. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  9. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  10. Certain Chemical Substances Containing Varying Carbon Chain Lengths (Alkyl Ranges Using the Cx-y Notation) on the TSCA Inventory

    EPA Pesticide Factsheets

    This paper explains the conventions that are applied to certain listings of chemical substances containing ranges of alkyl chain lengths (i.e., carbon chains of varying lengths) for chemical substances on the Toxic Substances Control Act (TSCA)

  11. TSCA Scientific Peer Review Committees

    EPA Pesticide Factsheets

    The SACC will provide independent scientific advice and recommendations to the EPA on the scientific basis for risk assessments, methodologies, and pollution prevention measures and approaches for chemicals regulated under TSCA.

  12. 40 CFR 60.3061 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to combust debris from a disaster or emergency such as a tornado, hurricane, flood, ice storm, high winds, or act of bioterrorism. To qualify for this exclusion, the incinerator or air curtain incinerator...

  13. TSCA Section 21 Petition Requesting EPA to Lower Lead Dust Hazard Standards and Modify the Definition of Lead-based Paint in its Regulations

    EPA Pesticide Factsheets

    This petition requests EPA to lower lead dust hazard standards and modify the definition of lead-based paint in its regulations promulgated under sections 401 and 403 of the Toxic Substances Control Act (TSCA).

  14. 40 CFR 799.9310 - TSCA 90-day oral toxicity in rodents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REQUIREMENTS Health Effects Test Guidelines § 799.9310 TSCA 90-day oral toxicity in rodents. (a) Scope. This... a test substance for a period of 90 days. This study is not capable of determining those effects... exposure. (b) Source. The source material used in developing this TSCA test guideline is the Office of...

  15. 40 CFR 799.9310 - TSCA 90-day oral toxicity in rodents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REQUIREMENTS Health Effects Test Guidelines § 799.9310 TSCA 90-day oral toxicity in rodents. (a) Scope. This... a test substance for a period of 90 days. This study is not capable of determining those effects... exposure. (b) Source. The source material used in developing this TSCA test guideline is the Office of...

  16. 40 CFR 799.9310 - TSCA 90-day oral toxicity in rodents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REQUIREMENTS Health Effects Test Guidelines § 799.9310 TSCA 90-day oral toxicity in rodents. (a) Scope. This... a test substance for a period of 90 days. This study is not capable of determining those effects... exposure. (b) Source. The source material used in developing this TSCA test guideline is the Office of...

  17. 40 CFR 799.9310 - TSCA 90-day oral toxicity in rodents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REQUIREMENTS Health Effects Test Guidelines § 799.9310 TSCA 90-day oral toxicity in rodents. (a) Scope. This... a test substance for a period of 90 days. This study is not capable of determining those effects... exposure. (b) Source. The source material used in developing this TSCA test guideline is the Office of...

  18. 40 CFR 799.9310 - TSCA 90-day oral toxicity in rodents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REQUIREMENTS Health Effects Test Guidelines § 799.9310 TSCA 90-day oral toxicity in rodents. (a) Scope. This... a test substance for a period of 90 days. This study is not capable of determining those effects... exposure. (b) Source. The source material used in developing this TSCA test guideline is the Office of...

  19. TSCA Chemical Data Reporting Fact Sheet: Chemical Substances which are the Subject of Certain TSCA Actions

    EPA Pesticide Factsheets

    This fact sheet provides guidance for people who may be subject to the Chemical Data Reporting (CDR) rule on how their requirements for reporting for 2016 may be affected when chemical substances are the subject of certain TSCA actions.

  20. Partial Updating of TSCA Inventory DataBase; Production and Site Reports; Final Rule

    EPA Pesticide Factsheets

    A partial updating of the TSCA inventory database. The final rule requires manufacturers and importers of certain chemical substances included on the TSCA Chemical Substances Inventory to report current data on the production volume, plant site, etc.

  1. Sunset dates of chemicals subject to final TSCA section 4: test requirements and related section 12(b) actions

    EPA Pesticide Factsheets

    This table lists all chemical substances and mixtures that are and/or have been the subject of final TSCA Section 4 test rules and/or TSCA Section 4 enforceable consent agreements/orders (ECAs) issued under the TSCA Existing Chemicals Testing Program.

  2. Sunset Dates of Chemicals Subject to Final TSCA Section 4 and Related 12(b) Actions

    EPA Pesticide Factsheets

    This Table lists, in ascending chemical Abstract Service (CAS) Registry number order, all chemical substances and mixtures that are and/or have been the subject of final TSCA Section 4 test rules and/or TSCA Section 4 enforceable consent agreements/orders.

  3. Guidance Documents on Substantial Risk Notifications under TSCA

    EPA Pesticide Factsheets

    Guidance documents for TSCA Section 8(e) which states 'Any person who manufactures a chemical substance and obtains information that the chemical is harmful to health or the environment shall inform the EPA.'

  4. 75 FR 49655 - TSCA Inventory Update Reporting Modifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... 6, or that is the subject of an order in effect under TSCA section 5(e), or that is the subject of... respect to the effect of chemical substances and mixtures on health and the environment and that the...

  5. The Massachusetts Toxics Use Reduction Act: a model for nanomaterials regulation?

    NASA Astrophysics Data System (ADS)

    Nash, Jennifer

    2012-08-01

    Nanomaterials exemplify a new class of emerging technologies that have significant economic and social value, pose uncertain health and environmental risks, and are entering the marketplace at a rapid pace. Effective regimes for regulating emerging technologies generate information about known or suspected hazards and draw on private sector expertise to guide managers' behavior toward risk reduction, even in the absence of clear evidence of harm. This paper considers the extent to which the federal Toxic Substances Control Act (TSCA) accomplishes those objectives. It offers the approach of the Massachusetts Toxics Use Reduction Act (TURA) as a possible supplement to TSCA, filling gaps in agency knowledge and private sector capacities. TURA is notable for its focus on chemicals use and hazard and its emphasis on strengthening firms' internal management systems. Given the current deadlock in Congressional efforts to modernize federal laws such as TSCA, the role of state laws like TURA merit attention. Absent definitive information about risk, a governance strategy that generates information and focuses management attention on reducing hazards is worth considering.

  6. TSCA Section 21 Petition Requesting EPA to Promulgate TSCA Section 4 and 8 Rules Concerning Oil and Gas Exploration and Production Chemicals and Mixtures

    EPA Pesticide Factsheets

    This petition requests EPA to promulgate regulations under TSCA Section 4 and 8 rules requiring toxicity testing and reporting of health and safety studies on oil and gas exploration and production chemicals.

  7. 77 FR 75349 - Seventy-First Report of the TSCA Interagency Testing Committee to the Administrator of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Report of the TSCA Interagency Testing Committee to the Administrator of the Environmental Protection...-2012-0820; FRL-9370-9] Seventy-First Report of the TSCA Interagency Testing Committee to the...) Interagency Testing Committee (ITC) transmitted its 71st ITC Report to the EPA Administrator on November 14...

  8. Toxic Substances Control Act Section 8(e): Frequent Questions

    EPA Pesticide Factsheets

    Section 8(e) of the Toxic Substances Control Act (TSCA) requires notification to EPA of information that reasonably supports the conclusion that their substances or mixtures presents a substantial risk of injury to health or the environment.

  9. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  10. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  11. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  12. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  13. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  14. Toxic Substances Control Act Test Submissions 2.0 (TSCATS 2.0)

    EPA Pesticide Factsheets

    The Toxic Substances Control Act Test Submissions 2.0 (TSCATS 2.0) tracks the submissions of health and safety data submitted to the EPA either as required or voluntarily under certain sections of TSCA.

  15. Filing a Significant New Use Notice (SNUN) under TSCA

    EPA Pesticide Factsheets

    Under section 5(a) of TSCA, if EPA promulgates a Significant New Use Rule, a manufacturer or processor wishing to engage in a designated significant new use must submit a Significant New Use Notice to EPA at least 90 days before engaging in the new use.

  16. Test Marketing Exemption (TME) for New Chemical Review under TSCA

    EPA Pesticide Factsheets

    Under section 5 of TSCA, EPA established an exemption for certain chemicals that are manufactured (including imported) for test marketing. You can learn more here about the requirements of this exemption, along with the review and submission process.

  17. The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act.

    PubMed

    Krimsky, Sheldon

    2017-12-01

    After 40 years, the 1976 US Toxic Substances Control Act (TSCA) was revised under the Frank R. Lautenberg Chemical Safety for the 21st Century Act. Its original goals of protecting the public from hazardous chemicals were hindered by complex and cumbersome administrative burdens, data limitations, vulnerabilities in risk assessments, and recurring corporate lawsuits. As a result, countless chemicals were entered into commercial use without toxicological information. Few chemicals of the many identified as potential public health threats were regulated or banned. This paper explores the factors that have worked against a comprehensive and rational policy for regulating toxic chemicals and discusses whether the TSCA revisions offer greater public protection against existing and new chemicals.

  18. The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act

    PubMed Central

    2017-01-01

    After 40 years, the 1976 US Toxic Substances Control Act (TSCA) was revised under the Frank R. Lautenberg Chemical Safety for the 21st Century Act. Its original goals of protecting the public from hazardous chemicals were hindered by complex and cumbersome administrative burdens, data limitations, vulnerabilities in risk assessments, and recurring corporate lawsuits. As a result, countless chemicals were entered into commercial use without toxicological information. Few chemicals of the many identified as potential public health threats were regulated or banned. This paper explores the factors that have worked against a comprehensive and rational policy for regulating toxic chemicals and discusses whether the TSCA revisions offer greater public protection against existing and new chemicals. PMID:29252997

  19. 40 CFR 799.9380 - TSCA reproduction and fertility effects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true TSCA reproduction and fertility effects...-generation reproduction testing and is designed to provide general information concerning the effects of a... subsequent tests. Additionally, since the study design includes in utero as well as postnatal exposure, this...

  20. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... toxicity screening test. 799.9355 Section 799.9355 Protection of Environment ENVIRONMENTAL PROTECTION... AND MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9355 TSCA reproduction/developmental toxicity screening test. (a) Scope—(1) Applicability. This section is intended to meet testing...

  1. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... toxicity screening test. 799.9355 Section 799.9355 Protection of Environment ENVIRONMENTAL PROTECTION... AND MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9355 TSCA reproduction/developmental toxicity screening test. (a) Scope—(1) Applicability. This section is intended to meet testing...

  2. TSCA Section 21 Petition for Section 8(a) Partial Exemption

    EPA Pesticide Factsheets

    This petition requests EPA to amend the TSCA Section 8 Chemical Data Reporting (CDR) partially exempted chemical list set forth in the U.S. Environmental Protection Agency’s (EPA) regulations at 40 C.F.R. Section 711.6(b)(1).

  3. Research and Development Exemption for New Chemical Review under TSCA

    EPA Pesticide Factsheets

    Section 5(h)(3) of TSCA allows EPA to exempt manufacturers of chemical substances from the notice requirements if they manufacture it in small quantities for the purposed of research and development. This page gives an overview of this exemption.

  4. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  5. TSCA Section 21 Petition Requesting EPA to Regulate Lead in Fishing Tackle

    EPA Pesticide Factsheets

    This petition requests EPA to promulgate regulations under section 6 of TSCA to protect the environment from fishing tackle containing lead including fishing weights, sinkers, lures, jigs, and/or other tackle.

  6. TSCA Section 21 Petition Concerning Lead in Paint - Public and Commercial Buildings

    EPA Pesticide Factsheets

    This petition requests that EPA promulgate a rule pursuant to TSCA Section 8(d) requiring submission of certain records related to the Occupational Safety and Health Administration’s construction standard for lead.

  7. 76 FR 27271 - TSCA Inventory Update Reporting Modifications; Submission Period Suspension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... TSCA Inventory Update Reporting Modifications; Submission Period Suspension AGENCY: Environmental... proposed modifications to the IUR regulations. EPA is suspending the next submission period to allow additional time to finalize the proposed modifications to the IUR regulations, and to avoid finalizing...

  8. Reauthorization of Toxic Substances Control Act for fiscal year 1984. Hearing before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Eighth Congress, First Session, April 21, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    A hearing to reauthorize the Toxic Substances Control Act (TSCA) reviewed evidence that few new chemicals introduced into the consumer market are tested for toxicity and that no testing rules have been issued in the seven years of TSCA's existence in contrast to the testing record of some European countries. The 13 witnesses represented the Chamber of Commerce, conservation and environmental groups and agencies, and manufacturers of potentially toxic materials. The latter cited the economic burden on small businesses and the constraints on innovation that TSCA has had. Others stressed potential health hazards from untested materials and the poor recordmore » of TSCA implementation. (DCK)« less

  9. TSCA Section 21 Petition Requesting EPA to Regulate Anthropogenic Emissions Carbon Dioxide

    EPA Pesticide Factsheets

    This petition requests EPA to promulgate regulations under section 6 of TSCA to protect “public health and the environment from the serious harms associated with anthropogenic emissions of carbon dioxide, including ocean acidification.

  10. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aberration test. 799.9537 Section 799.9537 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9537 TSCA in vitro mammalian chromosome aberration test. (a) Scope—(1) Applicability. This section is intended to meet testing requirements under...

  11. New Chemicals Program - Boilerplates for Orders under section 5 of TSCA

    EPA Pesticide Factsheets

    EPA issues orders under section 5 of the TSCA in response to a specific concern. These concerns are often very similar to concerns that have incited prior orders. To prevent this, the Agency created a standard boilerplate for the more frequent concerns.

  12. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  13. TSCA Work Plan: 2012 Scoring of Potential Candidate Chemicals Entering Step 2

    EPA Pesticide Factsheets

    In 2012, EPA scored these chemicals based on hazard, exposure and persistence/bioaccumulation criteria as part of Step 2 in the Work Plan methodology in order to identify candidate chemicals for near-term review and assessment under TSCA.

  14. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  15. 78 FR 66700 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Chemical Testing; Receipt of Test Data AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces EPA's receipt of test data on 21 chemicals. These data were submitted pursuant to 3 test rules issued by EPA under section 4 of the Toxic Substance Control Act (TSCA). The...

  16. Dioxin formation from waste incineration.

    PubMed

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    samples were burned, were analyzed by gas chromatography/mass spectrometry. Formation of total PCDFs was much higher than that of PCDDs in all samples. The total PCDFs comprised 70%-90% of the total dioxin formed. The amount of total PCDFs formed ranged from 0.78 ng/g (newspaper) to 8,490ng/g (PVC burned in high CO concentration). The amount of total PCDDs formed ranged from 0.02ng/g (newspaper) to 430ng/g (PVC). Coplanar PCBs were found at the lowest level of the dioxins formed. Their formation levels ranged from 0ng/g (newspaper) to 77.6ng/g (PVC). It is obvious that the samples with either inorganic or organic chlorides produced much more dioxins than the sample without chlorides when incinerated under similar conditions. It is not clear how inorganic and organic chloride contribute differently to dioxin formation. Among the metals examined, copper seems to have higher activity toward dioxin formation than other metals. It acted not only as a catalyst but also as a transmitter of heterogeneous chlorine. The toxicity equivalence quantity (TEQ) values generally correlated with the amount of chlorine content in the samples and the amount of dioxin formed in exhaust gases from an incinerator. When the same sample was incinerated at different temperatures, however, the sample burned at low temperature yielded a higher TEQ value than did the sample burned at high temperature. The samples that did not contain chlorine or were not combusted with chlorides exhibited low TEQ values. In contrast, samples with high chlorine content, such as PVC (51.3%), gave high TEQ values. Combustion temperatures may play an important role in dioxin formation in exhaust gases from the incineration of waste materials. However, no significant relationship between dioxin formation and chamber temperatures was reported in the core articles. However, It is obvious that dioxin formation occurred at temperatures above 450'C and was reduced significantly at temperatures above 850 degrees C. The reaction

  17. Privacy Impact Assessment for the Confidential Business Information Records Access System for the Toxic Control Substances Act

    EPA Pesticide Factsheets

    This system collects submission data from the Toxic Substances Control Act (TSCA) and contact information for EPA contractors and employees who are CBI cleared. Learn how this data is collected, how it will be used, and the purpose of data collection.

  18. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    PubMed

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. 78 FR 64936 - Dichloromethane and N-Methylpyrrolidone TSCA Chemical Risk Assessment; Notice of Rescheduled...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    .... List of Subjects Environmental protection, Chemicals, Peer review, Risk assessments, Dichloromethane... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPPT-2012-0725; FRL-9902-24] Dichloromethane and N-Methylpyrrolidone TSCA Chemical Risk Assessment; Notice of Rescheduled Public Meetings and Extension of Opportunity...

  20. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  1. HANDBOOK: QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES FOR HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Resource Conservation and Recovery Act regulations for hazardous waste incineration require trial burns by permit applicants. uality Assurance Project Plan (QAPjP) must accompany a trial burn plan with appropriate quality assurance/quality control procedures. uidance on the prepa...

  2. 75 FR 70246 - Lead Fishing Sinkers; Disposition of TSCA Section 21 Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... distribution in commerce of (1) lead bullets and shot; and (2) lead fishing sinkers. On August 27, 2010, EPA denied the first request due to a lack of authority to regulate lead in bullets and shot under TSCA. EPA... commerce of (1) lead bullets and shot; and (2) lead fishing gear. With respect to fishing gear, petitioners...

  3. TSCA Section 5(a)(3)(C) Determination for Microbial Commercial Activity Notice (MCAN) J-16-0036 -- 0041

    EPA Pesticide Factsheets

    This document describes EPA's Microbial Commercial Activity Notice (MCAN) review determination under amended TSCA for J-16-0036 -- J-16-0041, biofuel producing modified microorganisms, with chromosomally-borne modifications.

  4. Waste incineration, Part I: Technology.

    PubMed

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  5. 78 FR 34377 - Trichloroethylene TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPPT-2012-0723; FRL-9389-1] Trichloroethylene TSCA... Trichloroethylene: Degreaser and Arts/Crafts Uses.'' EPA will hold three peer review meetings by web connect and... Risk Assessment for Trichloroethylene: Degreaser and Arts/Crafts Uses.'' Trichloroethylene (TCE) (CASRN...

  6. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  7. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  8. TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals

    EPA Pesticide Factsheets

    TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals -- Brominated Phthalates Cluster Flame Retardants.

  9. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  10. MONITORING OF INCINERATOR EMISSIONS

    EPA Science Inventory

    Monitoring of Incinerator Emissions is a chapter to be included in a book entitled Hazardous Waste Incineration, edited by A. Sarofim and D. Pershing, and published by John Wiley and Sons. he chapter describes stack sampling and analysis procedures in use on hazardous waste incin...

  11. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    PubMed

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  12. 78 FR 52525 - Dichloromethane and N-Methylpyrrolidone TSCA Chemical Risk Assessment; Notice of Public Meetings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Dichloromethane and N-Methylpyrrolidone.'' Dichloromethane and N-Methylpyrrolidone (DCM and NMP) (CASRN 75-09-2... represent and should not be construed to represent any Agency determination or policy. The draft DCM and NMP..., to assemble a panel of experts to evaluate the draft DCM and NMP TSCA risk assessment report for...

  13. In the arc of history: AIHA and the movement to reform the Toxic Substances Control Act.

    PubMed

    Wilson, Michael P

    2012-01-01

    Dr. Michael P. Wilson of UC Berkeley delivered his keynote address before the general assembly of the American Industrial Hygiene Conference and Exhibition (AIHce) in Portland, Oregon, in May 2011. Here, Dr. Wilson again discusses the political and economic drivers of occupational disease in the United States and proposes a role for AIHA in helping to highlight and resolve them. He proposes that until these underlying drivers are acknowledged and ameliorated, the toll of occupational disease will persist, despite the hard work of industrial hygienists in the workplace. Among these drivers, Dr. Wilson points to the decline of labor rights and unionization; economic inequality; economic insecurity; political resistance to public health protections for workers, notably the OSHA and NIOSH programs; and weaknesses in the Federal Toxic Substances Control Act of 1976 (TSCA). Of these, Dr. Wilson calls on the AIHA to participate in the historic effort to rewrite TSCA. He points to weaknesses in TSCA that have produced a chemicals market dominated by the function, price, and performance of chemicals, with little attention given to their health and environmental effects. Under these conditions, he argues, hazardous chemicals have remained economically competitive, and innovation in inherently safer chemicals-in green chemistry-has been held back by a lack of market transparency and public accountability in the industry. TSCA reform has the potential to shift the market toward green chemistry, with long-term implications for occupational disease prevention, industrial investment, and renewed energy in the industrial hygiene profession. Dr. Wilson proposes that, like previous legislative changes in the United States, TSCA reform is likely to occur in response to myriad social pressures, which include the emergence of the European Union's REACH regulation; recent chemicals policy actions in 18 U.S. states; growing support from downstream businesses; increasing public awareness

  14. The utilization of a commercial gloss spray in stabilization of incinerated dental structures.

    PubMed

    Berketa, John; Fauzi, Ahmad; James, Helen; Lake, Anthony; Langlois, Neil

    2015-07-01

    Incinerated human remains may require dental comparison to establish identity. The remains are often fragile and minor forces can damage teeth and facial bones, disrupting anatomical relationships, and impairing the ability to compare with antemortem records. This study evaluated the ability of a commercially available gloss spray to stabilize teeth in incinerated remains. Lower anterior teeth of scavenged sheep mandibles were incinerated in a furnace at a temperature of 500 °C for 35 min. Before a series of vibration tests, the left side of each sample was treated with the spray, with the right side acting as a control. Significant retention of dental data was achieved utilizing the spray in comparison to the non-stabilized sides. This study showed that a commercial clear gloss spray did not affect the ability to document or perform radiographic assessment of restorations, and statistically improved the stability and anatomical relationships of incinerated dental remains in scavenged sheep mandibles. Commercial products, such as the one tested in this study, are readily available and could be deployed at a mass disaster situation. However, the spray should not be used if there is any suspicion that accelerants might be involved at the scene. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  16. Today's challange in MSW incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaux, W.G.

    A decade ago, incinerator ash was of little concern. There wasn't much of it, and it was treated like soil of fill and therefore disposed of without much concern. Today, however, the situation is far different. Waste-to-energy plants reduce the amount of trash they process by 90%, but they require environmentally sound landfills to dispose of residue. This paper examines the management of incinerator ash. At its best, incinerator ash is well burned out; at worst, it is more pyrolized and contains unburned carbon. This latter case is likely following receipt of rain-saturated waste at the incinerator. Ash contains aboutmore » 15 to 20 weight of unburnables; for example metal cans, ceramics, other metals and so on. According to the author, recent work on presence of combustion products in the ash does not show appreciable levels of dioxins leaching form ash.« less

  17. Does incineration turn infectious waste aseptic?

    PubMed

    Kanemitsu, K; Inden, K; Kunishima, H; Ueno, K; Hatta, M; Gunji, Y; Watanabe, I; Kaku, M

    2005-08-01

    Incineration of infectious waste is considered to be biologically safe. We performed basic experiments to confirm that bacillus spores are killed by incineration in a muffle furnace. Biological samples containing 10(6) spores of Bacillus stearothermophilus were placed in stainless steel Petri dishes and then into hot furnaces. The furnace temperature and duration of incineration were 300 degrees C for 15 min, 300 degrees C for 30 min, 500 degrees C for 15 min, 500 degrees C for 30 min and 1100 degrees C for 3 min. We confirmed that all spores of B. stearothermophilus were killed at each of these settings. The effect of incineration seems to be equivalent to that of sterilization, based on the satisfactory sterilization assurance level of 10(-6).

  18. Risks of municipal solid waste incineration: an environmental perspective.

    PubMed

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  19. TSCA Section 5(a)(3)(C) Determination for Microbial Commercial Activity Notice (MCAN) J-17-0001, 0002, 0003, 0004, and 0005

    EPA Pesticide Factsheets

    This document describes EPA's Microbial Commercial Activity Notice (MCAN) review determination under amended TSCA for J-17-0001, 0002, 0003, 0004, and 0005, modified versions of saccharomyches cerevisiae.

  20. Clinical waste incinerators in Cameroon--a case study.

    PubMed

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study. Three incinerators were randomly selected and investigated for site, design and operating standards. Empirical field observation was adopted and data collected through inventory and informal interviews. Bottom ash samples collected from the incinerators were prepared according to standard procedures and analyzed for heavy metals using Inductively Coupled Plasma (ICP) Emission Spectroscopy. Shortcomings associated with site selection, design and operation standards were identified. Chemical analysis revealed that Cr, Cu, Fe, Mn, Ni, Pb, Zn, Mg and Ca were present in the bottom ash with mean concentration ranging from 10 mg/kg for Pb to 178080 mg/kg for Ca. For logistic reasons, feedstock quantity and quality into the incinerators were not investigated. Neither were soil samples around and away from the incinerators. Although highly favored, clinical waste incineration methods in this region have to be reconsidered. A thorough health and environmental impact assessment is suggested before subsequent decisions on choice and disposal site is made. This will curb potential negative impacts to the environment and public health. This article adds a different perspective and sheds additional information to the debate on unsatisfactory clinical waste incinerators in resources-poor countries. Alternative methods to incineration are presented that will be helpful to practitioners.

  1. 40 CFR 60.2886 - What is a new incineration unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... incineration unit? (a) A new incineration unit is an incineration unit subject to this subpart that meets...

  2. 40 CFR 60.2015 - What is a new incineration unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... is a new incineration unit? (a) A new incineration unit is an incineration unit that meets either of...

  3. Questions and Answers for Reporting for the 2006 Partial Updating of the TSCA Chemical Inventory Database: Inorganic Chemicals Addendum

    EPA Pesticide Factsheets

    This document addresses specific questions related to reporting inorganic chemicals under the IUR and is an addendum to the Questions and Answers for Reporting for the 2006 Partial Updating of the TSCA Chemical Inventory Database (Questions and Answers Document).

  4. Biomedical waste management: incineration vs. environmental safety.

    PubMed

    Gautam, V; Thapar, R; Sharma, M

    2010-01-01

    Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  5. 75 FR 47589 - Agency Information Collection Activities; Proposed Collection; Comment Request; Correction of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Inventory; EPA ICR No. 1741.06, OMB Control No. 2070-0145 AGENCY: Environmental Protection Agency (EPA... Control Act (TSCA) Inventory and regulated under TSCA section 8, who had reported to the initial effort to...: ``Correction of Misreported Chemical Substances on the TSCA Inventory'' and identified by EPA ICR No. 1741.06...

  6. 78 FR 41768 - Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21 Petition; Reasons for... processors of oil and gas exploration and production (E&P) chemical substances and mixtures to maintain... interest to you if you manufacture (including import), process, or distribute chemical substances or...

  7. Electrochemical membrane incinerator

    DOEpatents

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  8. Quantifying capital goods for waste incineration.

    PubMed

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  10. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  11. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  12. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  13. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  14. Waste incineration industry and development policies in China.

    PubMed

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Childhood cancers, birthplaces, incinerators and landfill sites.

    PubMed

    Knox, E

    2000-06-01

    In all, 70 municipal incinerators, 307 hospital incinerators and 460 toxic-waste landfill sites in Great Britain were examined for evidence of effluents causing childhood cancers. Municipal incinerators had previously shown significant excesses of adult cancers within 7.5 and 3.0 km. The relative risks for adults had been marginal and an analysis of childhood cancers seemed to offer a more sensitive approach. A newly developed technique of analysis compares distances from suspect sources to the birth addresses and to the death addresses of cancer-children who had moved house. A localized hazard, effective at only one of these times, must be preferentially associated with the corresponding address. This creates an asymmetry of migrations towards or away from age-restricted effective sources. The child-cancer/leukaemia data showed no systematic migration-asymmetries around toxic-waste landfill sites; but showed highly significant excesses of migrations away from birthplaces close to municipal incinerators. Relative risks within 5.0 km of these sites were about 2:1. Hospital incinerators gave analogous results. The ratios greatly exceed findings around 'non-combustion' urban sites. Because of their locations, the specific effects of the municipal incinerators could not be separated clearly from those of adjacent industrial sources of combustion-effluents. Both were probably carcinogenic. Landfill waste sites showed no such effect.

  16. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an air curtain incinerator? 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting a curtain of air...

  17. 40 CFR 60.2992 - What is an existing incineration unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an existing incineration unit... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2992 What is an existing incineration unit? An existing incineration unit is...

  18. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    PubMed

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  20. TSCA Section 21 Petition Requesting EPA to Establish a Process to Amend the List of Natural Sources of Oil and Fat

    EPA Pesticide Factsheets

    This petition requests EPA to to initiate a rulemaking under TSCA Section 83 that would establish a process to amend the list of natural sources of oil and fat in the “Soap and Detergent Association” (SDA) nomenclature system.

  1. Contact Us about Asbestos

    EPA Pesticide Factsheets

    How to contact EPA for more information on asbestos, including state and regional contacts, EPA’s Asbestos Abatement/Management Ombudsman and the Toxic Substances Control Act (TSCA) Assistance Information Service (TSCA Hotline).

  2. Glass-ceramics from municipal incinerator fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccaccini, A.R.; Petitmermet, M.; Wintermantel, E.

    1997-11-01

    In countries where the population density is high and the availability of space for landfilling is limited, such as the west-European countries and Japan, the significance of municipal solid waste incineration, as part of the waste management strategy, is continuously increasing. In Germany and Switzerland, for example, more than {approximately}40% of unrecycled waste is being or will be incinerated. Also, in other countries, including the US, the importance of waste incineration will increase in the next few years. Although incineration reduces the volume of the waste by {approximately} 90%, it leaves considerable amounts of solid residues, such as bottom andmore » boiler ashes, and filter fly ashes. Consequently, new technological options for the decontamination and/or inertization of incinerator filter fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited in standard landfill sites with no risk. The proposed alternatives include immobilization by cement-based techniques, wet chemical treatments and thermal treatments of vitrification. Of these, vitrification is the most promising solution, because, if residues are melted at temperatures > 1,300 C, a relatively inert glass is produced. In the present investigation, glass-ceramics were obtained by a controlled crystallization heat treatment of vitrified incinerator filter fly ashes. The mechanical and other technical properties of the products were measured with special emphasis on assessing their in vitro toxic potential.« less

  3. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessmentmore » perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.« less

  4. 40 CFR 62.15365 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in which combustion occurs. Incinerators of this type can be constructed above or...

  5. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    PubMed

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air... incinerators include both firebox and trench burner units. (b) Air curtain incinerators that burn only the...

  7. Environmental Assessment: Demolish CASS Switch Stations Buildings 644, 645, 646 at Grand Forks Air Force Base

    DTIC Science & Technology

    2006-06-01

    Per Year TSCA Toxic Substance Control Act TSI Thermal System Insulation UAV Unmanned Aerial Vehicle UHF Ultra High Frequency UPS Uninterruptible...Conservation and Recovery Act (RCRA) of 1976 [42 U.S.C. Sec. 6901, et seq.] • Toxic Substances Control Act (TSCA) of 1976 [15 U.S.C. Sec. 2601, et...Corporation (SAIC). Typical hazardous materials include reactive materials such as explosives, ignitables, toxics , and corrosives. Improper storage can

  8. New design incinerator being built

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    A $14 million garbage-burning facility is being built by Reedy Creek Utilities Co. in cooperation with DOE at Lake Buena Vista, Fla., on the edge of Walt Disney World. The nation's first large-volume slagging pyrolysis incinerator will burn municipal waste in a more beneficial way and supply 15% of the amusement park's energy demands. By studying the new incinerators slag-producing capabilities, engineers hope to design similar facilities for isolating low-level nuclear wastes in inert, rocklike slag.

  9. 8. Front (east) side of incinerator and glove boxes. Ash ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Front (east) side of incinerator and glove boxes. Ash canning hood to the left, combustion chamber in the middle, incinerator hood to the right. Looking west. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  10. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.

    PubMed

    Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

    2015-10-01

    Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.

  11. Compliance Testing of Consumat and Fairchild Hiller Silver Reclamation Incinerators, Offutt AFB, Nebraska.

    DTIC Science & Technology

    1989-03-01

    cadmium, lead, mercury, silver and zinc) even though a standard does not exist for these pollutants. Results Indicate that incinerators 1, 2 and 3 are...Personnel or4att, 23 State Regulations 27 InCinerator I Field Data 31 Incinerator 2 Field Data 45 Incinerator 3 Field Data 59 F Incinerator 4 Field Data 73 G...Avaeiabili*y Codes Dist Avai dfldIOr Oist Special A fit Illustrations Figure Title Page 1 Silver Reclamation Incinerator 2 Incinerator - Front View 3

  12. Suppressing effect of goethite on PCDD/F and HCB emissions from plastic materials incineration.

    PubMed

    Jin, Guang-Zhu; Lee, Se-Jin; Kang, Jung-Ho; Chang, Yoon-Seok; Chang, Yoon-Young

    2008-02-01

    Polyethylene (PE) and polyvinyl chloride (PVC) are the leading plastics in total production in the world. The incineration of plastic-based materials forms many chlorinated compounds, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). In this study the addition of goethite (alpha-FeOOH) was investigated to determine its suppressing effect on the emission of PCDD/Fs and hexachlorobenzene (HCB) during the combustion of wastes containing PE and PVC. Goethite was being considered since it acts as a dioxin-suppressing catalyst during incineration. Results showed that incorporation of goethite greatly reduced the generation of PCDD/Fs and HCB in the exhaust gas and fly ash. The concentration of PCDD/Fs in flue gas decreased by 45% for lab-scale and 52% for small incinerator combustion experiments, where the goethite ratios in feed samples were 0.54% and 0.34%, respectively. Under the same conditions, the concentration of HCB in flue gas decreased by 88% and 62%, respectively. The present study showed a possible mechanism of the suppressing effect of the goethite for PCDD/F formation. It is likely that iron chlorides react with particulate carbon to form organo-chlorine compounds and promote PCDD/F formation in the gas phase. XRD analysis of combustion ash revealed that the goethite was partially dehydrated and converted to alpha-Fe(2)O(3) and Fe(3)O(4) but no iron chlorides formation. Therefore the goethite impregnated plastics can contribute the reduction of PCDD/Fs and HCB in the exhaust gas during incineration of MSW.

  13. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  14. 40 CFR 60.2010 - Does this subpart apply to my incineration unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incineration unit? 60.2010 Section 60.2010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After... Applicability § 60.2010 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets...

  15. 40 CFR 60.2885 - Does this subpart apply to my incineration unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incineration unit? 60.2885 Section 60.2885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Other Solid Waste Incineration Units for Which Construction is Commenced After December 9, 2004....2885 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets all the...

  16. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    EPA Science Inventory

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  17. OBSERVATIONS ON WASTE DESTRUCTION IN LIQUID INJECTION INCINERATORS

    EPA Science Inventory

    Various factors affecting the performance of a subscale liquid injection incinerator simulator are discussed. The mechanisms by which waste escapes incineration within the spray flame are investigated for variations in atomization quality, flame stoichiometry. and the initial was...

  18. 77 FR 11158 - Notice of Lodging of Consent Decree Under the Toxic Substances Control Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... chlorinated paraffins and committed to submit premanufacture notices (``PMNs'') for medium and long-chain chlorinated paraffins, pursuant to TSCA Section 5. The proposed Consent Decree prohibits Dover Chemical from manufacturing any chlorinated paraffin product not placed on the TSCA Inventory via the PMN process. The...

  19. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING CFC INCINERATION

    EPA Science Inventory

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) th...

  20. Integrated pneumatic transporter-incinerator-afterburner subsystem development. [for spacecraft waste disposal

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1974-01-01

    The design and fabrication of a prototype automatic transport system to move wastes to an incinerator onboard a spacecraft are described. The commode and debris collector, subsystems to treat noncondensible gases, oxygen supply to incinerator and afterburner, and removal and ash collection from the incinerator are considered, as well as a zero gravity condenser. In-depth performance testing of a totally integrated incineration system and autoclaving as a waste treatment method are included.

  1. EXPERIENCE IN INCINERATION APPLICABLE TO SUPERFUND SITE REMEDIATION

    EPA Science Inventory

    This document can be used as a reference tool for hazardous waste site remediation where incineration is used as a treatment alternative. It provides the user with information garnered from the experiences of others who use incineration. The document presents useful lessons in ev...

  2. [Effects of chlorides on Cd transformation in a simulated grate incinerator during sludge incineration process ].

    PubMed

    Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying

    2014-09-01

    The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.

  3. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  4. Use of QSAR validation principles to enhance predictive approaches in the US EPA ECOSAR model

    EPA Science Inventory

    The US EPA Office of Pollution Prevention and Toxics (OPPT) is responsible for implementing the Toxic Substances Control Act (TSCA). TSCA is the US law that regulates industrial chemicals in the US and OPPT evaluates both new chemicals entering commerce, as well as those chemica...

  5. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    USGS Publications Warehouse

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  6. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  7. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  8. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  9. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  10. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  11. 77 FR 24698 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Environmental Protection Agency (EPA) to support the decision making process for an industrial chemical under the Toxic Substances Control Act (TSCA) (15 U.S.C. 2601). Under TSCA, EPA has the authority to issue... exposure to chemical substances and mixtures. Drugs, cosmetics, foods, food additives, pesticides, and...

  12. 75 FR 4983 - Significant New Use Rules on Certain Chemical Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... 2070-AB27 Significant New Use Rules on Certain Chemical Substances AGENCY: Environmental Protection...) under section 5(a)(2) of the Toxic Substances Control Act (TSCA) for 15 chemical substances which were the subject of premanufacture notices (PMNs). Three of these chemical substances are subject to TSCA...

  13. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    PubMed

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.

  14. Incineration of different types of medical wastes: emission factors for gaseous emissions

    NASA Astrophysics Data System (ADS)

    Alvim-Ferraz, M. C. M.; Afonso, S. A. V.

    Previous research works showed that to protect public health, the hospital incinerators should be provided with air pollution control devices. As most hospital incinerators do not possess such equipment, efficient methodologies should be developed to evaluate the safety of incineration procedure. Emission factors (EF) can be used for an easy estimation of legal parameters. Nevertheless, the actual knowledge is yet very scarce, mainly because EF previously published do not include enough information about the incinerated waste composition, besides considering many different waste classifications. This paper reports the first EF estimated for CO, SO 2, NO x and HCl, associated to the incineration of medical waste, segregated in different types according to the classification of the Portuguese legislation. The results showed that those EF are strongly influenced by incinerated waste composition, directly affected by incinerated waste type, waste classification, segregation practice and management methodology. The correspondence between different waste classifications was analysed comparing the estimated EF with the sole results previously published for specific waste types, being observed that the correspondence is not always possible. The legal limit for pollutant concentrations could be obeyed for NO x, but concentrations were higher than the limit for CO (11-24 times), SO 2 (2-5 times), and HCl (9-200 times), confirming that air pollution control devices must be used to protect human health. The small heating value of medical wastes with compulsory incineration implied the requirement of a bigger amount of auxiliary fuel for their incineration, which affects the emitted amounts of CO, NO x and SO 2 (28, 20 and practically 100% of the respective values were related with fuel combustion). Nevertheless, the incineration of those wastes lead to the smallest amount of emitted pollutants, the emitted amount of SO 2 and NO x reducing to 93% and the emitted amount of CO

  15. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Air Curtain Incinerators § 60.2810 What...

  16. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    PubMed

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  17. 18. Process area room. Incinerator to the left. Filter boxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Process area room. Incinerator to the left. Filter boxes on the right. Looking north towards change room. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  18. Nanomaterial disposal by incineration

    EPA Science Inventory

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  19. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  20. 7. Process areas room. Incinerator and glove boxes (hoods) to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Process areas room. Incinerator and glove boxes (hoods) to the right. Filter boxes to the left. Looking south. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  1. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates by...

  2. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates by...

  3. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates by...

  4. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates by...

  5. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Emission of greenhouse gases from waste incineration in Korea.

    PubMed

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  7. Alkali activation processes for incinerator residues management.

    PubMed

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Review of biosolids management options and co-incineration of a biosolid-derived fuel.

    PubMed

    Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas

    2011-11-01

    This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Region 5 Toxic Substances Control Act Producers

    EPA Pesticide Factsheets

    This dataset represents the query results from the Envirofacts database for facilities known as Chemical Manufacturers, Processors and Formulators (MPFs) with TSCA identification numbers located in Region 5.

  10. The Use of Microwave Incineration to Process Biological Wastes

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  11. 40 CFR 761.70 - Incineration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at EPA Headquarters. The contingency plan indicates what alternative measures the incinerator owner... method has been approved by EPA. (The HCl neutralizing capability of cement kilns is considered to be an...

  12. 40 CFR 761.70 - Incineration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... at EPA Headquarters. The contingency plan indicates what alternative measures the incinerator owner... method has been approved by EPA. (The HCl neutralizing capability of cement kilns is considered to be an...

  13. Incineration of European non-nuclear radioactive waste in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-07-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated.more » This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first of its kind

  14. Dioxins from medical waste incineration: Normal operation and transient conditions.

    PubMed

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  15. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  16. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    PubMed

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  17. APPLICATION OF PULSE COMBUSTION TO SOLID AND HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    The paper discusses the application of pulse combustion to solid and hazardous waste incineration. otary kiln incinerator simulator was retrofitted with a frequency-tunable pulse combustor to enhance the efficiency of combustion. he pulse combustor excites pulsations in the kiln ...

  18. CONTROLLING PCDD/PCDF EMISSIONS FROM INCINERATORS BY FLUE GAS CLEANING

    EPA Science Inventory

    The paper discusses controlling polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDF) emissions from incinerators by flue gas cleaning. New Source performance Standards for municipal waste combustors (MWCs) and guide-lines for existing incinerators in the U.S., proposed on Dec...

  19. Contaminated waste incinerator modification study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, F.

    1995-08-01

    An explosive waste incinerator (EWI) can be installed in the existing Badger AAP Contaminated Waste Processor (CWP). An engineering evaluation of installing a rotary kiln furnace to dispose of waste energetic material has shown the installation to be possible. An extensive literature search was completed to develop the known proven methods of energetic waste disposal. Current incineration practice including thermal treatment alternatives was investigated. Existing and new equipment was reviewed for adequacy. Current CWP operations and hazardous waste to be disposed of were determined. Comparisons were made with other AAP`s EWI.

  20. Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method.

    PubMed

    Rivas Casado, Monica; Serafini, Jan; Glen, John; Angus, Andrew

    2017-03-01

    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A comparative assessment of waste incinerators in the UK.

    PubMed

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A sustainability analysis of an incineration project in Serbia.

    PubMed

    Mikic, Miljan; Naunovic, Zorana

    2013-11-01

    The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.

  3. [Public health risk caused by emissions from refuse incinerators].

    PubMed

    Wassermann, O; Kruse, H

    1995-01-01

    An irresponsible "approval on request" in favour of waste incineration written by a consulting committee of the German Federal Board of Physicians has meanwhile been widely distributed both nationally and internationally. The aim of this politically motivated paper is to dramatically increase the present number of 49 waste incinerators in Germany. It is our duty to warn of this intention. Health problems are known to exist both in workers at waste incinerators and in humans living in their vicinity. Furthermore, in the long run negative impact also to ecosystems should be expected from the emissions. Health problems in patients living downwind of waste incinerators repeatedly have been reported on by physicians. "Lack of statistical significance", often used as counter-argument, is only due to absence of funding of comprehensive epidemiological studies in Germany. Analyses of soil samples reveal the pollution from waste incineration. Considering the pre-load of the region, additional emissions caused by waste incineration and other sources have to be assessed. The application of preventive limit values is imperative. The presently used "limit values", being about 100 times too high, bear an unacceptable risk. Therefore, reliable regional registers of emissions have to be established immediately. Limit values continuously have to be adjusted to the progress of scientific knowledge. In this respect it is imperative to consider that the actual composition of emissions is unknown; isolated risk assessment of single compounds underestimates the total risk; the negative impact, e.g. of dioxins, on both the immune and hormone systems occurs at concentrations 100 times lower than those causing carcinogenic effects; the assumption of "threshold values" is obsolete; a considerable lack of knowledge exists about accumulation in food webs and in ecosystems; the demand of preservation of natural, geogenic situations is indispensable in assessments of soil and water pollution

  4. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    PubMed

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Research and development plan for the Slagging Pyrolysis Incinerator. [For TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance. (DLC)

  6. The Louisiana State University waste-to-energy incinerator

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  7. The Louisiana State University waste-to-energy incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes aremore » produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.« less

  8. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    PubMed

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  9. Waste incineration and adverse birth and neonatal outcomes: a systematic review.

    PubMed

    Ashworth, Danielle C; Elliott, Paul; Toledano, Mireille B

    2014-08-01

    Public concern about potential health risks associated with incineration has prompted studies to investigate the relationship between incineration and risk of cancer, and more recently, birth outcomes. We conducted a systematic review of epidemiologic studies evaluating the relationship between waste incineration and the risk of adverse birth and neonatal outcomes. Literature searches were performed within the MEDLINE database, through PubMed and Ovid interfaces, for the search terms; incineration, birth, reproduction, neonatal, congenital anomalies and all related terms. Here we discuss and critically evaluate the findings of these studies. A comprehensive literature search yielded fourteen studies, encompassing a range of outcomes (including congenital anomalies, birth weight, twinning, stillbirths, sex ratio and infant death), exposure assessment methods and study designs. For congenital anomalies most studies reported no association with proximity to or emissions from waste incinerators and "all anomalies", but weak associations for neural tube and heart defects and stronger associations with facial clefts and urinary tract defects. There is limited evidence for an association between incineration and twinning and no evidence of an association with birth weight, stillbirths or sex ratio, but this may reflect the sparsity of studies exploring these outcomes. The current evidence-base is inconclusive and often limited by problems of exposure assessment, possible residual confounding, lack of statistical power with variability in study design and outcomes. However, we identified a number of higher quality studies reporting significant positive relationships with broad groups of congenital anomalies, warranting further investigation. Future studies should address the identified limitations in order to help improve our understanding of any potential adverse birth outcomes associated with incineration, particularly focussing on broad groups of anomalies, to inform

  10. Incineration for resource recovery in a closed ecological life support system

    NASA Technical Reports Server (NTRS)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  11. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    PubMed

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (<1%). These results are significantly different from those obtained for the incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    PubMed

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of <50 nm extending into the sub-nm range was revealed by electron microscopy analyses. The rapid formation of Ag(0)-NP from Ag2S during sewage sludge incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  13. PILOT-SCALE INCINERATION TEST BURN OF TCDD-CONTAMINATED TRICHLOROPHENOL PRODUCTION WASTE

    EPA Science Inventory

    A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This w...

  14. TRIAL BURN RESULTS AND FUTURE ACTIVITES OF THE EPA MOBILE INCINERATOR

    EPA Science Inventory

    The EPA Mobile Incinerator has demonstrated its ability to successfully destroy dioxin. A trial burn conducted in 1987 demonstrated the incinerator's ability to destroy a wide variety of compounds. The destruction and removal efficiency (DRE) of carbon tetrachloride, hexachloro...

  15. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  16. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  17. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An air... through 60.2974 and are exempt from all other requirements of this subpart. (1) 100 percent wood waste. (2...

  18. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  19. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  20. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An air... through 60.2974 and are exempt from all other requirements of this subpart. (1) 100 percent wood waste. (2...

  1. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it; Gorla, Leopoldo; Nessi, Simone

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determinemore » a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.« less

  2. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain of air across an open, integrated combustion chamber (fire box) or open pit or trench (trench... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is...

  3. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  4. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    PubMed

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    PubMed

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  6. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash.more » Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because

  7. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    PubMed

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Evaluation of volatile organic emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators. PMID:1954928

  9. The impact of incinerators on human health and environment.

    PubMed

    Sharma, Raman; Sharma, Meenakshi; Sharma, Ratika; Sharma, Vivek

    2013-01-01

    Of the total wastes generated by health-care organizations, 10%-25% are biomedical wastes, which are hazardous to humans and the environment and requires specific treatment and management. For decades, incineration was the method of choice for the treatment of such infectious wastes. Incinerator releases a wide variety of pollutants depending on the composition of the waste, which leads to health deterioration and environmental degradation. The significant pollutants emitted are particulate matter, metals, acid gases, oxides of nitrogen, and sulfur, aside from the release of innumerable substances of unknown toxicity. This process of waste incineration poses a significant threat to public health and the environment. The major impact on health is the higher incidence of cancer and respiratory symptoms; other potential effects are congenital abnormalities, hormonal defects, and increase in sex ratio. The effect on the environmental is in the form of global warming, acidification, photochemical ozone or smog formation, eutrophication, and human and animal toxicity. Thus, there is a need to skip to newer, widely accepted, economical, and environment-friendly technologies. The use of hydroclaves and plasma pyrolysis for the incineration of biomedical wastes leads to lesser environmental degradation, negligible health impacts, safe handling of treated wastes, lesser running and maintenance costs, more effective reduction of microorganisms, and safer disposal.

  10. Incinerator Pollution and Child Development in the Taiwan Birth Cohort Study

    PubMed Central

    Lung, For-Wey; Chiang, Tung-Liang; Lin, Shio-Jean; Shu, Bih-Ching

    2013-01-01

    This study aimed to investigate the direct and indirect effects of environmental pollutants on child development and parental concerns. It focused on the pathway relationships among the following factors: living within three kilometers of an incinerator, breastfeeding, place of residence, parental concerns about development, and parent-perceived child development. The Taiwan Birth Cohort Study (TBCS) dataset includes randomized community data on 21,248 children at six, 18, and 36 months of age. The Parental Concern Checklist and the Taiwan Birth Cohort Study-Developmental Instrument were used to measure parental concern and parent-perceived child development. Living within three kilometers of an incinerator increased the risk of children showing delayed development in the gross motor domain at six and 36 months. Although breastfeeding is a protective factor against uneven/delayed developmental disability (U/DDD), children living near an incinerator who were breastfed had an increased risk of U/DDD compared with those who did not live near incinerators. The presence of a local incinerator affected parent-perceived child development directly and indirectly through the mediating factor of breastfeeding. Further follow-up of these children to investigate the long-term effects of specific toxins on their development and later diagnostic categorization is necessary. PMID:23727903

  11. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehmat, A.; Khinkis, M.

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated withmore » ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.« less

  12. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    PubMed Central

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  13. 40 CFR 60.2991 - What incineration units must I address in my State plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What incineration units must I address... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2991 What incineration units must I address in my State...

  14. 40 CFR 60.2989 - Does this subpart directly affect incineration unit owners and operators in my State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incineration unit owners and operators in my State? 60.2989 Section 60.2989 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Other Solid Waste Incineration Units That Commenced... incineration unit owners and operators in my State? (a) No, this subpart does not directly affect incineration...

  15. Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration.

    PubMed

    Won, Sung Wook; Lim, Areum; Yun, Yeoung-Sang

    2013-06-01

    This work reports a direct way to recover metallic palladium with high purity from Pd(II)-sorbed polyethylenimine-modified Corynebacterium glutamicum biosorbent using a combined method of biosorption and incineration. This study is focused on the incineration part which affects the purity of recovered Pd. The incineration temperature and the amount of Pd loaded on the biosorbent were considered as major factors in the incineration process, and their effects were examined. The results showed that both factors significantly affected the enhancement of the recovery efficiency and purity of the recovered Pd. SEM-EDX and XRD analyses were used to confirm that Pd phase existed in the ash. As a result, the recovered Pd was changed from PdO to zero-valent Pd as the incineration temperature was increased from 600 to 900°C. Almost 100% pure metallic Pd was recovered with recovery efficiency above 99.0% under the conditions of 900°C and 136.9 mg/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  17. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  18. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  19. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  20. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  1. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature of...

  2. Compact, closed-loop controlled waste incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadow, K.C.; Seeker, W.R.

    1999-07-01

    Technologies for solid and liquid waste destruction in compact incinerators are being developed in collaboration between industry, universities, and a Government laboratory. This paper reviews progress on one technology, namely active combustion control to achieve efficient and controlled afterburning of air-starved reaction products. This technology which uses synchronized waste gas injection into acoustically stabilized air vortices was transitioned to a simplified afterburner design and practical operational conditions. The full-scale, simplified afterburner, which achieved CO and NO{sub x} emissions of about 30 ppm with a residence time of less than 50 msec, was integrated with a commercially available marine incinerator tomore » increase throughput and reduce emissions. Closed-loop active control with diode laser sensors and novel control strategies was demonstrated on a sub-scale afterburner.« less

  3. Formaldehyde

    EPA Pesticide Factsheets

    Information on formaldehyde and the regulation of formaldehyde emissions from composite wood products under the Formaldehyde Standards for Composite Wood Products Act in the Toxic Substances Control Act (TSCA).

  4. 40 CFR 65.148 - Incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature monitoring device shall be installed in the fire box or in the ductwork immediately downstream of the fire box in a position before any substantial heat exchange occurs. (ii) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the gas stream immediately before...

  5. INVENTORY ANALYSIS AND COST ACCOUNTING OF FACILITY MAINTANANCE IN WASTE INCINERATION

    NASA Astrophysics Data System (ADS)

    Morioka, Tohru; Ozaki, Taira; Kitazume, Keiichi; Yamamoto, Tsukasa

    A solid waste incineration plant consists of so many facilities and mechanical parts that it requires periodic careful maintenance of them for stable solid waste management. The current research investigates maintenance costs of the stoker type incinerator and continuous firing plants in detail and develops an accounting model for maintenance of them. This model is able to distinguish among the costs of inspection, repair and renewal by plant with seven process flaw s and three common factors. Parameters based on real data collected by questionnaire surveys give appropriate results in comparison with other plants and enable to apply the model to plants which incinerates 500 - 600 ton solid waste per day.

  6. PILOT-SCALE INCINERATION OF CONTAMINATED SLUDGES FROM THE BOFORS-NOBEL SUPERFUND SITE

    EPA Science Inventory

    A detailed test program was performed at the U.S. Environmental Protection Agency’s (EPA’s) Incineration Research Facility (IRF) to help determine the effectiveness of incineration in treating two contaminated lagoon sludges from the Bofors-Nobel Superfund site in Mus...

  7. Fate of heavy metals during municipal solid waste incineration.

    PubMed

    Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D

    2002-02-01

    A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.

  8. Incineration of a Commercial Coating with Nano CeO2

    NASA Astrophysics Data System (ADS)

    Le Bihan, Olivier; Ounoughene, Ghania; Meunier, Laurent; Debray, Bruno; Aguerre-Chariol, Olivier

    2017-06-01

    The potential environmental risk arising from the incineration of waste containing nanomaterials is a new field which deserves further attention. Some recent studies have begun to focus on this topic but the data are incomplete. In addition, there is a need to consider real life waste. The present study gives some insight into the fate and behavior of a commercial coating containing a commercial additive (7% w/w) based on nano-CeO2 (aggregates of 10 to 40 nm, with elemental particles of 2-3 nm). The tests have been conducted with a system developed in the frame of the NanoFlueGas project. The test protocol was designed to respect the regulatory criteria of a good combustion in incineration plants (temperature around 850°C, highly ventilated combustion, at least 2 s residence time for the combustion gas in a post-combustion chamber at 850°C, and high oxygen/fuel contact). Time tracking by electric low pressure impaction (ELPI) shows that the incineration produces aerosol with number concentration dominated by sub-100 nm particles. Cerium is observed by TEM and EDS analysis but as a minor compound of a sub-group of particles. No nanoCeO2 particles have been observed in the aerosol. ICP-MS analysis indicates that the residual material consists mainly of CeO2 (60% of the mass). Observation by TEM establishes that this material is in the form of aggregates with individual particle of 40-200 nm and suggests that sintering occurred during incineration. As a conclusion, the lab scale incineration study led mainly to the release of nano-CeO2 in the residual material, as the major component. Its size distribution is different than the one of the nano-CeO2 observed in the initial sample before incineration. Additional research is needed to improve the understanding of nanoCeO2 behavior, and to integrate experiments at lab and real scale.

  9. Numerical simulation of synthesis gas incineration

    NASA Astrophysics Data System (ADS)

    Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.

    2016-04-01

    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.

  10. 33 CFR 159.131 - Safety: Incinerating device.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.131 Safety.... Unitized incineration devices must completely burn to a dry, inert ash, a simultaneous defecation and...

  11. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

    2017-03-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.

  12. TSCA Section 5(a)(3)(C) Determination for Microbial Commercial Activity Notice (MCAN) J-16-0011, J-16-0012, J-16-0013, J-16-0014, J-16-0015, and J-16-0016

    EPA Pesticide Factsheets

    This document describes EPA's Microbial Commercial Activity Notice (MCAN) review determination under amended TSCA for J-16-0011, J-16-0012, J-16-0013, J-16-0014, J-16-0015, and J-16-0016, a biofuel producing organism.

  13. General Substantiation Questions to Support CBI Claims

    EPA Pesticide Factsheets

    General Questions and Answers Concerning Confidential Business Information (CBI) Provisions of the Toxic Substances Control Act (TSCA), as amended by the Frank R. Lautenberg Chemical Safety for the 21st Century Act

  14. Impact of a medical waste incinerator on mercury levels in lagoon fish from a small tropical island in the Western Pacific.

    PubMed

    Denton, Gary R W; Trianni, Michael S; Bearden, Brian G; Houk, Peter C; Starmer, John A

    2011-01-01

    In 2004-2005, several species of marine fish were collected for mercury (Hg) analysis from Saipan Lagoon, Saipan, Commonwealth of the Northern Mariana Islands. Relatively high concentrations were found in representatives from the Hafa Adai Beach area located some distance from known sources of Hg contamination. A follow-up investigation aimed at identifying additional land-based sources of Hg in the area was launched in early 2007. The study identified a medical waste incinerator as the primary source of Hg enrichment. The incinerator was operational for about 20 years before it was closed down by the U.S. Environmental Protection Agency (EPA) in January 2006, for multiple violations of the Clean Air Act. Stormwater runoff from this facility entered a drainage network that discharged into the ocean at the southern end of Hafa Adai Beach, about 1 km away. At the time of this investigation storm drain sediments at the coast were only marginally enriched with mercury although values some 50x above background were detected in drainage deposits a few meters down-gradient of the incinerator site. Mercury concentrations in fish from the Hafa Adai Beach area were also significantly lower than those determined in similar species 3 yr earlier. The implications of the data are briefly discussed.

  15. Reliability, Availability, and Maintainability of the Heat Recovery Incinerator at Naval Station Mayport.

    DTIC Science & Technology

    1984-10-01

    appears to have cost $6.54 to produce 1,000,000 Btu’s of heat. This equation took into account the cost of repair and replacement parts, consumable...waste incineration rate, thermal efficiency, and steam cost . Actual results for incinerating waste to produce steam were: reliability 58% (75% of design...87% of goal); incineration rate 1.75 tons/hr (105% of goal); and cost of steam $6.05/MBtu. The HRI was expected to save $26,600/yr from landfill

  16. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    PubMed

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  17. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.

    PubMed

    Tabata, Tomohiro

    2013-11-01

    Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.

  18. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  19. Introduction to ChemView

    EPA Pesticide Factsheets

    EPA's Existing Chemicals program addresses pollution prevention, risk assessment, and risk management for chemicals in commercial use under the authority of the Toxic Substances Control Act (TSCA) and the Pollution Prevention Act (PPA)

  20. CLOSURE OF A DIOXIN INCINERATION FACILITY

    EPA Science Inventory

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  1. Forensic considerations when dealing with incinerated human dental remains.

    PubMed

    Reesu, Gowri Vijay; Augustine, Jeyaseelan; Urs, Aadithya B

    2015-01-01

    Establishing the human dental identification process relies upon sufficient post-mortem data being recovered to allow for a meaningful comparison with ante-mortem records of the deceased person. Teeth are the most indestructible components of the human body and are structurally unique in their composition. They possess the highest resistance to most environmental effects like fire, desiccation, decomposition and prolonged immersion. In most natural as well as man-made disasters, teeth may provide the only means of positive identification of an otherwise unrecognizable body. It is imperative that dental evidence should not be destroyed through erroneous handling until appropriate radiographs, photographs, or impressions can be fabricated. Proper methods of physical stabilization of incinerated human dental remains should be followed. The maintenance of integrity of extremely fragile structures is crucial to the successful confirmation of identity. In such situations, the forensic dentist must stabilise these teeth before the fragile remains are transported to the mortuary to ensure preservation of possibly vital identification evidence. Thus, while dealing with any incinerated dental remains, a systematic approach must be followed through each stage of evaluation of incinerated dental remains to prevent the loss of potential dental evidence. This paper presents a composite review of various studies on incinerated human dental remains and discusses their impact on the process of human identification and suggests a step by step approach. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    PubMed

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  3. The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.

    PubMed

    Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea

  4. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    PubMed

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current

  5. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.

    PubMed

    Kavouras, P; Pantazopoulou, E; Varitis, S; Vourlias, G; Chrissafis, K; Dimitrakopulos, G P; Mitrakas, M; Zouboulis, A I; Karakostas, Th; Xenidis, A

    2015-01-01

    A tannery sludge, produced from physico-chemical treatment of tannery wastewaters, was incinerated without any pre-treatment process under oxic and anoxic conditions, by controlling the abundance of oxygen. Incineration in oxic conditions was performed at the temperature range from 300°C to 1200°C for duration of 2h, while in anoxic conditions at the temperature range from 400°C to 600°C and varying durations. Incineration under oxic conditions at 500°C resulted in almost total oxidation of Cr(III) to Cr(VI), with CaCrO4 to be the crystalline phase containing Cr(VI). At higher temperatures a part of Cr(VI) was reduced, mainly due to the formation of MgCr2O4. At 1200°C approximately 30% of Cr(VI) was reduced to Cr(III). Incineration under anoxic conditions substantially reduced the extent of oxidation of Cr(III) to Cr(VI). Increase of temperature and duration of incineration lead to increase of Cr(VI) content, while no chromium containing crystalline phase was detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Leaching from solid waste incineration ashes used in cement-treated base layers for pavements.

    PubMed

    Cai, Z; Bager, Dirch H; Christensen, T H

    2004-01-01

    Waste incineration bottom ash and treated flue gas cleaning products mixed with 2.5% of cement (50 kg/m3) were tested in the laboratory in terms of compressive strength and tank leaching tests over a 64-day period. Although the material displayed lower mechanical strength than a reference concrete, the strength still was sufficient for use as a base layer for roads. The metal content in the incineration-residue-based specimens was up to 100 times higher than in the reference concrete, suggesting that the mixed waste incineration residue should be used only for dedicated purposes. The leaching of Cl and Na was increased by a factor of 20-100 from the incineration-residue-based specimens as compared to the reference, while the leaching of K, Ca and SO4 was increased by a factor of 2-10. The leaching of heavy metals was also higher from the incineration-residue-based specimens than from the reference with respect to Cu (50 times), Cd, Pb and Zn (5 times), but not with respect to Cr and Ni. The leaching curves did only allow for a closer evaluation of the leaching process in a few cases. The physical retention of the constituents seemed to be the same in the reference as in the incineration-residue-based specimens. Heavy metal leaching was limited by enhanced chemical retention in the incineration-residue-specimens as compared to the reference. Since no quality criteria in terms of leaching from a monolithic material are currently available, the leaching issue must be evaluated case by case.

  7. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    EPA Science Inventory

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  8. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites.

    PubMed

    Goh, C K; Valavan, S E; Low, T K; Tang, L H

    2016-12-01

    Incineration fly ash, a waste from municipal solid waste incineration plant can be used to replace conventional filler as reinforcing filler to enhance the mechanical strength of a composite. Surface modification was performed on the incineration fly ash before mixing into the soft polymer matrix so as to improve interfacial bond of the filler and epoxy resin. In this study, detailed characterisation of mechanical, morphological and leaching behaviours of municipal solid waste incineration (MSWI) fly ash infused composite has been carried out. Flexural and tensile test was conducted to determine the effect on mechanical properties of the composite by varying the concentration of incineration fly ash filler added into polymer matrix and surface modification of incineration fly ash filler using silane coupling agent and colloidal mesoporous silica (CMS). The results indicated that composite infused with incineration fly ash filler surface treated with CMS shown improvement on the tensile and flexural strengths. In addition, SEM images showed that surface modification of incineration fly ash with colloidal mesoporous silica enhanced the interfacial bonding with polymer resin which explained the improvement of mechanical strength. Leaching test showed result of toxic metals such as Pb, Zn, Fe, Cu, Cr, Cd and Rb immobilised in the polymer matrix of the composite. Hence, the use of MSWI fly ash as reinforcing filler in the composite appears green and sustainable because this approach is a promising opportunity to substitute valuable raw material with MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  10. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  11. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  12. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  13. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  14. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  15. Metallic elements fractionation in municipal solid waste incineration residues

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  16. CFD simulation of MSW combustion and SNCR in a commercial incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Zihong; Li, Jian; Wu, Tingting

    Highlights: • Presented a CFD scheme for modeling MSW incinerator including SNCR process. • Performed a sensitivity analysis of SNCR operating conditions. • Non-uniform distributions of gas velocity, temperature and NO{sub x} in the incinerator. • The injection position of reagent was critical for a desirable performance of SNCR. • A NSR 1.5 was recommended as a compromise of NO{sub x} reduction rates and NH{sub 3} slip. - Abstract: A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and themore » selective non-catalytic reduction (SNCR) process between urea (CO(NH{sub 2}){sub 2}) and NO{sub x}. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NO{sub x} concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NO{sub x} reduction and reasonable NH{sub 3} slip rates. This work provided useful guides to the design

  17. Behavior of cesium in municipal solid waste incineration.

    PubMed

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China.

    PubMed

    Liu, Hong-Tao; Wang, Yan-Wen; Liu, Xiao-Jie; Gao, Ding; Zheng, Guo-di; Lei, Mei; Guo, Guang-Hui; Zheng, Hai-Xia; Kong, Xiang-Juan

    2017-02-01

    Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO 2 e t -1 , while 0.0882 tCO 2 e t -1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.

  19. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification.

    PubMed

    Liu, Yangsheng; Liu, Yushan

    2005-05-15

    The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.

  20. THERMODYNAMIC FUNDAMENTALS USED IN HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Thermodynamics is the basic foundation of many engineeringpractices. nvironmental engineering is no exception, it is usingthermodynamic principles in many applications. n particular,those who are involved in the incineration of various wastes suchas hazardous and municipal wastes...

  1. Waterbury, Conn., Incinerator to Control Mercury Emissions

    EPA Pesticide Factsheets

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  2. Environmental assessment of incinerator residue utilisation.

    PubMed

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  3. Thermodynamic Equilibrium Calculations on Cd Transformation during Sewage Sludge Incineration.

    PubMed

    Liu, Jing-yong; Huang, Limao; Sun, Shuiyu; Ning, Xun'an; Kuo, Jiahong; Sun, Jian; Wang, Yujie; Xie, Wuming

    2016-06-01

    Thermodynamic equilibrium calculations were performed to reveal the distribution of cadmium during the sewage sludge incineration process. During sludge incineration in the presence of major minerals, such as SiO2, Al2O3 and CaO, the strongest effect was exerted by SiO2 on the Cd transformation compared with the effect of others. The stable solid product of CdSiO3 was formed easily with the reaction between Cd and SiO2, which can restrain the emissions of gaseous Cd pollutants. CdCl2 was formed more easily in the presence of chloride during incineration, thus, the volatilization of Cd was advanced by increasing chlorine content. At low temperatures, the volatilization of Cd was restrained due to the formation of the refractory solid metal sulfate. At high temperatures, the speciation of Cd was not affected by the presence of sulfur, but sulfur could affect the formation temperature of gaseous metals.

  4. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Municipal solid waste incineration in China and the issue of acidification: A review.

    PubMed

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  6. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allegrini, Elisa, E-mail: elia@env.dtu.dk; Maresca, Alberto; Olsson, Mikael Emil

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based onmore » a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these

  7. A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators

    PubMed Central

    Ranzi, Andrea; De Leo, Giulio A.; Lauriola, Paolo

    2013-01-01

    Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address). Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i) make full use of pollution dispersion models; (ii) localize population on a fine-scale; and (iii) explicitly account for the presence of potential environmental and socioeconomic confounding. PMID:23840228

  8. Cheminformatics and Computational Chemistry: A Powerful Combination for the Encoding of Process Science

    EPA Science Inventory

    The registration of new chemicals under the Toxicological Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transformation of organic chemicals in natural...

  9. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  10. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    PubMed

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  11. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    PubMed

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    NASA Astrophysics Data System (ADS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  13. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by reference; see 46 CFR 63.05-1). Incinerators in compliance with ISO 13617 (incorporated by...-Determination of carbon-monoxide emissions from stationary sources; (6) ISO 9096 (incorporated by reference; see 46 CFR 63.05-1); and (7) ISO 10396 (incorporated by reference; see 46 CFR 63.05-1). [USCG-2003-16630...

  14. 40 CFR Table 3 to Subpart Llll of... - Operating Parameters for New Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sludge Incineration Units a 3 Table 3 to Subpart LLLL of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for New Sewage Sludge Incineration Units Pt. 60, Subpt. LLLL, Table 3 Table 3 to Subpart LLLL of Part 60—Operating Parameters for New Sewage Sludge Incineration Units a For these...

  15. 40 CFR Table 3 to Subpart Llll of... - Operating Parameters for New Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sludge Incineration Units a 3 Table 3 to Subpart LLLL of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for New Sewage Sludge Incineration Units Pt. 60, Subpt. LLLL, Table 3 Table 3 to Subpart LLLL of Part 60—Operating Parameters for New Sewage Sludge Incineration Units a For these...

  16. Estimation of CO2 emissions from waste incinerators: Comparison of three methods.

    PubMed

    Lee, Hyeyoung; Yi, Seung-Muk; Holsen, Thomas M; Seo, Yong-Seok; Choi, Eunhwa

    2018-03-01

    Climate-relevant CO 2 emissions from waste incineration were compared using three methods: making use of CO 2 concentration data, converting O 2 concentration and waste characteristic data, and using a mass balance method following Intergovernmental Panel on Climate Change (IPCC) guidelines. For the first two methods, CO 2 and O 2 concentrations were measured continuously from 24 to 86 days. The O 2 conversion method in comparison to the direct CO 2 measurement method had a 4.8% mean difference in daily CO 2 emissions for four incinerators where analyzed waste composition data were available. However, the IPCC method had a higher difference of 13% relative to the direct CO 2 measurement method. For three incinerators using designed values for waste composition, the O 2 conversion and IPCC methods in comparison to the direct CO 2 measurement method had mean differences of 7.5% and 89%, respectively. Therefore, the use of O 2 concentration data measured for monitoring air pollutant emissions is an effective method for estimating CO 2 emissions resulting from waste incineration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...

  18. Energy recovery from waste incineration: assessing the importance of district heating networks.

    PubMed

    Fruergaard, T; Christensen, T H; Astrup, T

    2010-07-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1GJ of waste heat delivered substitutes for 1GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO(2) accounts showed significantly different results: waste incineration in one network caused a CO(2) saving of 48 kg CO(2)/GJ energy input while in the other network a load of 43 kg CO(2)/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Generation and distribution of PAHs in the process of medical waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation

  20. Cheminformatics Applications and Physicochemical Property Calculators: A Powerful Combination for the Encoding of Process Science

    EPA Science Inventory

    The registration of new chemicals under the Toxic Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transport and transformation of organic chemicals in n...

  1. Federal Register Notice; Requirements for Inorganic Byproduct Chemical Substances; Notice of Public Meeting

    EPA Pesticide Factsheets

    EPA is planning to establish a Negotiated Rulemaking Committee (Committee) under the Negotiated Rulemaking Act (NRA) as indicated in a Federal Register notice of December 15, 2016, and required by section 8(a)(6) of the Toxic Substances Control Act (TSCA).

  2. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.-W.; Chang, N.-B., E-mail: nchang@mail.ucf.ed; Chen, J.-C.

    2010-07-15

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19more » large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.« less

  3. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    PubMed

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Health-care waste incineration and related dangers to public health: case study of the two teaching and referral hospitals in Kenya.

    PubMed

    Njagi, Nkonge A; Oloo, Mayabi A; Kithinji, J; Kithinji, Magambo J

    2012-12-01

    There are practically no low cost, environmentally friendly options in practice whether incineration, autoclaving, chemical treatment or microwaving (World Health Organisation in Health-care waste management training at national level, [2006] for treatment of health-care waste. In Kenya, incineration is the most popular treatment option for hazardous health-care waste from health-care facilities. It is the choice practiced at both Kenyatta National Hospital, Nairobi and Moi Teaching and Referral Hospital, Eldoret. A study was done on the possible public health risks posed by incineration of the segregated hazardous health-care waste in one of the incinerators in each of the two hospitals. Gaseous emissions were sampled and analyzed for specific gases the equipment was designed and the incinerators Combustion efficiency (CE) established. Combustion temperatures were also recorded. A flue gas analyzer (Model-Testos-350 XL) was used to sample flue gases in an incinerator under study at Kenyatta National Hospital--Nairobi and Moi Teaching and Referral Hospital--Eldoret to assess their incineration efficiency. Flue emissions were sampled when the incinerators were fully operational. However the flue gases sampled in the study, by use of the integrated pump were, oxygen, carbon monoxide, nitrogen dioxide, nitrous oxide, sulphur dioxide and No(x). The incinerator at KNH operated at a mean stack temperature of 746 °C and achieved a CE of 48.1 %. The incinerator at MTRH operated at a mean stack temperature of 811 °C and attained a CE of 60.8 %. The two health-care waste incinerators achieved CE below the specified minimum National limit of 99 %. At the detected stack temperatures, there was a possibility that other than the emissions identified, it was possible that the two incinerators tested released dioxins, furans and antineoplastic (cytotoxic drugs) fumes should the drugs be subjected to incineration in the two units.

  5. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    PubMed

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    NASA Astrophysics Data System (ADS)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  7. Remote sensing of methane and nitrous oxide fluxes from waste incineration.

    PubMed

    Gålfalk, Magnus; Bastviken, David

    2018-05-01

    Incomplete combustion processes lead to the formation of many gaseous byproducts that can be challenging to monitor in flue gas released via chimneys. This study presents ground-based remote sensing approaches to make greenhouse gas (GHG) flux measurements of methane (CH 4 ) and nitrous oxide (N 2 O) from a waste incineration chimney at distances of 150-200 m. The study found emission of N 2 O (corresponding to 30-40 t yr -1 ), which is a consequence of adding the reduction agent urea to decrease NO X emissions due to NO X regulation; a procedure that instead increases N 2 O emissions (which is approximately 300 times more potent as a GHG than CO 2 on a 100-year time scale). CH 4 emissions of 7-11 t yr -1 was also detected from the studied chimney despite the usage of a high incineration temperature. For this particular plant, local knowledge is high and emission estimates at corresponding levels have been reported previously. However, emissions of CH 4 are often not included in GHG emission inventories for waste incineration. This study highlights the importance of monitoring combustion processes, and shows the possibility of surveying CH 4 and N 2 O emissions from waste incineration at distances of several hundred meters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 33 CFR 159.131 - Safety: Incinerating device.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety: Incinerating device. 159.131 Section 159.131 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.131 Safety...

  9. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  10. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  11. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  12. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  13. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  14. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  15. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  16. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  17. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  18. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  19. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  20. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  1. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  2. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  3. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  4. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  5. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  6. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  7. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  8. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  9. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  10. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  11. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  12. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  13. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  14. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  15. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  16. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  17. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  18. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China.

    PubMed

    Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan

    2018-06-01

    As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. 76 FR 80451 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... wastes ERUs were designed to burn. Energy Recovery Units (i.e., units that would be boilers and process... and 241 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed... 2060-AR15 and 2050-AG44 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and...

  20. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Modification or Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only... requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Prior to...

  1. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Modification or Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only... requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Prior to...

  2. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    PubMed

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density <1000 persons (km(2))(-1) produce <500 MJ t(-1) of heat. We also found that external use of such energy for factories, markets, and related use, was noted in cities with a population density of 2000 to 4000 persons (km(2))(-1). Several incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. © The Author(s) 2015.

  3. The benefits of flue gas recirculation in waste incineration.

    PubMed

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  4. Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.

    PubMed

    Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep

    2005-01-01

    Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.

  5. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    PubMed

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  6. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  7. METHODS FOR DETERMINING THE POLYCHLORINATED BIPHENYL EMISSIONS FROM INCINERATION AND CAPACITOR AND TRANSFORMER FILLING PLANTS

    EPA Science Inventory

    Described are methods to measure the polychlorinated biphenyl (PCB) emissions from the stacks of municipal waste, industrial waste, and sewage sludge incinerators and from capacitor and transformer filling plants. The PCB emissions from the incineration plants are collected by im...

  8. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    EPA Science Inventory

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  9. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt. 60... Sewage Sludge Incineration Units a For these operating parameters You must establish these operating...

  10. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt. 60... Sewage Sludge Incineration Units a For these operating parameters You must establish these operating...

  11. EMISSIONS OF TRACE PRODUCTS OF INCOMPLETE COMBUSTION FROM A PILOT-SCALE INCINERATOR SECONDARY COMBUSTION CHAMBER

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CCl4) and dichlorometh...

  12. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands.

    PubMed

    van Dijk, Chris; van Doorn, Wim; van Alfen, Bert

    2015-03-01

    Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the possible impact on human health and the environment still exists. Multiple year (2004-2013) biomonitoring programs were set up around three waste incinerators for early detection of possible effects of stack emissions on the quality of crops and agricultural products. The results showed that the emissions did not affect the quality of crops and cow milk. Concentrations of heavy metals, PAHs and dioxins/PCBs were generally similar to background levels and did not exceed standards for maximum allowable concentrations in foodstuffs (e.g. vegetables and cow milk). Some exceedances of the fluoride standard for cattle feed were found almost every year in the maximum deposition areas of two incinerators. Biomonitoring with leafy vegetables can be used to monitor the real impact of these emissions on agricultural crops and to communicate with all stakeholders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. DECHLORINATION-CONTROLLED POLYCHLORINATED DIBENZOFURAN FROM MUNICIPAL WASTE INCINERATORS

    EPA Science Inventory

    The ability to predict polychlorinated dibenzofuran (PCDF) isomer patterns from municipal waste incinerators (MWIs) enables an understanding of PCDF formation that may provide preventive measures. This work develops a model for the pattern prediction, assuming that the peak rati...

  14. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    NASA Astrophysics Data System (ADS)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  15. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions.

    PubMed

    Lu, Jia-Wei; Zhang, Sukun; Hai, Jing; Lei, Ming

    2017-11-01

    With the rapid expansion of municipal solid waste (MSW) incineration, the applicability, technical status, and future improvement of MSW incineration attract much attention in China. This paper aims to be a sensible response, with the aid of a comparison between China and some representative developed regions including the EU, the U.S., Japan, South Korea, and Taiwan area. A large number of up-to-date data and information are collected to quantitatively and impartially support the comparison, which covers a wider range of key points including spatial distribution, temporal evolution, technologies, emissions, and perspectives. Analysis results show that MSW incineration is not an outdated choice; however, policy making should prevent the potentially insufficient utilization of MSW incinerators. The structure of MSW incineration technologies is changing in China. The ratio of plants using fluidized bed is decreasing due to various realistic reasons. Decision-makers would select suitable combustion technologies by comprehensive assessments, rather than just by costs. Air pollution control systems are improved with the implementation of China's new emission standard. However, MSW incineration in China is currently blamed for substandard emissions. The reasons include the particular elemental compositions of Chinese MSW, the lack of operating experience, deficient fund for compliance with the emission standard, and the lack of reliable supervisory measures. Some perspectives and suggestions from both technical and managerial aspects are given for the compliance with the emission standard. This paper can provide strategic enlightenments for MSW management in China and other developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  17. 40 CFR 710.1 - Scope and compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 710.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS General Provisions § 710.1 Scope and compliance. (a) This part... process chemical substances for commercial purposes under section 8(a) of the Toxic Substances Control Act...

  18. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  19. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  20. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  1. PLANT-SCALE DEMONSTRATION OF SLUDGE INCINERATOR FUEL REDUCTION

    EPA Science Inventory

    A plant-scale demonstration was conducted on 8 sewage sludge incinerators at Indianapolis, Indiana to reduce fuel consumption. More efficient operating mode of operation was developed, instrumentation and controls were added and an operator training program was conducted to reduc...

  2. CONTINUOUS PERFORMANCE MONITORING TECHNIQUES FOR HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    The report describes a study to determine the feasibility of utilizing realtime continuous exhaust measurements of combustion intermediates as a way to monitor incinerator performance. The key issue was to determine if a direct correlation exists between destruction efficiency (D...

  3. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    PubMed

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  4. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  5. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...

  6. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan.

    PubMed

    Kuo, Nae-Wen; Ma, Hwong-Wen; Yang, Ya-Mei; Hsiao, Teng-Yuan; Huang, Chin-Ming

    2007-01-01

    This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.

  7. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  8. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  9. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  10. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  11. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  12. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  13. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  14. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  15. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  16. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  17. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  18. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  19. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  20. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  1. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  2. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  3. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  4. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  5. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  6. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  7. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  8. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  9. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  10. Evaluation of resource recovery from waste incineration residues--the case of zinc.

    PubMed

    Fellner, J; Lederer, J; Purgar, A; Winterstetter, A; Rechberger, H; Winter, F; Laner, D

    2015-03-01

    Solid residues generated at European Waste to Energy plants contain altogether about 69,000 t/a of Zn, of which more than 50% accumulates in air pollution control residues, mainly boiler and filter ashes. Intensive research activities aiming at Zn recovery from such residues recently resulted in a technical scale Zn recovery plant at a Swiss waste incinerator. By acidic leaching and subsequent electrolysis this technology (FLUREC) allows generating metallic Zn of purity>99.9%. In the present paper the economic viability of the FLUREC technology with respect to Zn recovery from different solid residues of waste incineration has been investigated and subsequently been categorised according to the mineral resource classification scheme of McKelvey. The results of the analysis demonstrate that recovery costs for Zn are highly dependent on the costs for current fly ash disposal (e.g. cost for subsurface landfilling). Assuming current disposal practice costs of 220€/ton fly ash, resulting recovery costs for Zn are generally higher than its current market price of 1.6€/kg Zn. With respect to the resource classification this outcome indicates that none of the identified Zn resources present in incineration residues can be economically extracted and thus cannot be classified as a reserve. Only for about 4800 t/a of Zn an extraction would be marginally economic, meaning that recovery costs are only slightly (less than 20%) higher than the current market price for Zn. For the remaining Zn resources production costs are between 1.5 and 4 times (7900 t/a Zn) and 10-80 times (55,300 t/a Zn) higher than the current market value. The economic potential for Zn recovery from waste incineration residues is highest for filter ashes generated at grate incinerators equipped with wet air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  13. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  14. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  15. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  16. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  17. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    PubMed

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in

  18. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    PubMed

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.

  19. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...

  20. MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR

    EPA Science Inventory

    A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...

  1. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  2. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  3. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  4. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  5. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  6. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  7. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  8. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn...

  9. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn...

  10. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  11. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  12. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  13. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  14. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  15. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  16. HANDBOOK: OPERATION AND MAINTENANCE OF HOSPITAL WASTE INCINERATORS

    EPA Science Inventory

    Proper operation of the incinerator will reduce the emissions of most of these pollutants. ir pollution control devices are available to further control these pollutants. ecause of the national interest in hospital medical waste and the need for technology application, the Center...

  17. MINIMIZATION OF TRANSIENT EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Transient emissions of organics can occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in a batch-wise fashion. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation...

  18. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME I: TECHNICAL RESULTS

    EPA Science Inventory

    A five week series of pilot-scale incineration tests, using a synthetic waste feed, was performed at the Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator. Eight tests studied the fate of five ha...

  19. FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER. VOLUME 1. TECHNICAL RESULTS.

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  20. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  1. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  2. Sludge Incineration. Multiple Hearth. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…

  3. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  4. 77 FR 54863 - Polychlorinated Biphenyls (PCBs): Revisions to Manifesting Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... and Recovery Act (RCRA) Uniform Hazardous Waste Manifest, under the Toxic Substances Control Act (TSCA... implement the Uniform Hazardous Waste Manifest form were promulgated on March, 4, 2005. DATES: Written... governmental jurisdiction that is a government of a city, county, town, school district or special district...

  5. SUPERFUND TREATABILITY CLEARINGHOUSE: INCINERATION TEST OF EXPLOSIVES CONTAMINATED SOILS AT SAVANNA ARMY DEPOT ACTIVITY, SAVANNA, ILLINOIS

    EPA Science Inventory

    The primary objective of these tests was to demonstrate the effectiveness of incineration as a decontamination method for explosives contaminated sails. A pilot-scale rotary kiln incinerator, manufactured by ThermAll, Inc., was used to treat both sandy and clayey...

  6. OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facifity that houses a pilot-scale rotary kiln incineration system (RKS) and the associated waste handling, emission control, process control, and safety equ...

  7. DO WASTE INCINERATORS INDUCE ADVERSE RESPIRATORY EFFECTS? AN AIR QUALITY AND EPIDEMIOLOGICAL STUDY OF SIX COMMUNITIES

    EPA Science Inventory

    The purpose of this study was to measure simultaneously air quality and respiratory function and symptoms in populations living in the neighborhood of waste incinerators, and to estimate the contribution of incinerator emissions to the particulate air mass in these neighborhoods....

  8. PARAMETRIC EVALUATION OF VOC/HAP (VOLATILE ORGANIC COMPOUNDS-HAZARDOUS/TOXIC AIR POLLUTANTS) DESTRUCTION VIA CATALYTIC INCINERATION

    EPA Science Inventory

    The report describes the use of a pilot-scale catalytic incineration unit/solvent generation system to investigate the effectiveness of catalytic incineration as a way to destroy volatile organic compounds (VOCs) and hazardous/toxic air pollutants (HAPs). Objectives of the study ...

  9. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    PubMed Central

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of <0.01 μg/m3. Proximity and modelled PM10 concentrations for both MSWIs at postcode level were highly correlated when using continuous measures (Spearman correlation coefficients ~ 0.7) but showed poor agreement for categorical measures (deciles or quintiles, Cohen's kappa coefficients ≤ 0.5). Conclusion. To provide the most appropriate estimate of ambient exposure from MSWIs, it is essential that incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  10. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initial introduction of hazardous waste to the incinerator and ending with initiation of the trial burn... standards of § 264.343, based on the Regional Administrator's engineering judgment. The Regional... Regional Administrator's engineering judgement. (4) For the remaining duration of the permit, the operating...

  11. Eco-efficiency assessment of options for metal recovery from incineration residues: a conceptual framework.

    PubMed

    Meylan, Grégoire; Spoerri, Andy

    2014-01-01

    Residues from municipal solid waste (MSW) incineration in Switzerland have been a hot topic in recent years, both in the research and practice communities. Regarded by many as an economically and environmentally sound solution to this issue, technological retrofitting of existing grate incinerators has the dual purpose of enhancing the metal recovery of bottom and fly ashes and improving the inertization of residues to be landfilled. How does context influence the economic and environmental performance of this particular technological option? Under which conditions would this technological option be implemented nationwide in the future? What are stakeholders' views on sustainable transitions of MSW incineration? We propose a three-stage methodological procedure to address these questions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Characterization of Offgas Generated During Calcination of Incinerator Ash Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigent, H.L.; Vienna, J.D.; Darab, J.G.

    1999-01-28

    The Pacific Northwest National Laboratory (PNNL), in cooperation with the Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC), developed a recommended flowsheet for the processing of plutonium-bearing incinerator ash stored at the Rocky Flats Environmental Technology Site (RFETS) (Lucy et al. 1998). This flowsheet involves a calcination pretreatment step, the purpose of which is to remove carbonaceous material from the incinerator ash. Removal of this material reduced the probability of process upsets, improved product quality, and increases ash waste loading. As part of the continued development of the recommended flowsheet, PNNL performed a series of tests tomore » characterize the offgas generated during the calcination process.« less

  13. 77 FR 24403 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    .../Infectious Waste Incinerators'' (HMIWI). The Illinois Environmental Protection Agency (IEPA) submitted the... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2012-0087; FRL-9663-4] Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated Facilities and...

  14. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... PERFORMANCE FOR NEW STATIONARY SOURCES Operator Training and Qualification Air Curtain Incinerators That Burn... incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  15. 40 CFR 710.25 - Chemical substances for which information must be reported.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting... the Master Inventory File at the beginning of a reporting period described in § 710.33, unless the...

  16. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 77 FR 24405 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Incinerators'' (HMIWI). The Indiana Department of Environmental Management (IDEM) submitted the revised State... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2012-0086; FRL-9663-2] Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated Facilities and...

  18. PILOT-SCALE INCINERATION OF PCB-CONTAMINATED SEDIMENTS FROM THE NEW BEDFORD HARBOR HOT SPOT SUPERFUND SITE

    EPA Science Inventory

    Testing was performed at the EPA's Incineration Research Facility (IRF) to determine the incinerability of contaminated marine sediment from the Hot Spot in the New Bedford Harbor Superfund Site. he contaminants at this site were PCBs, at concentrations up to >200,000 mg/kg, and ...

  19. 40 CFR 795.120 - Gammarid acute toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... culture container. The control group shall be exposed to the same dilution water, conditions and... CONTROL ACT (CONTINUED) PROVISIONAL TEST GUIDELINES Provisional Environmental Effects Guidelines § 795.120... under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et seq...

  20. 40 CFR 795.120 - Gammarid acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... culture container. The control group shall be exposed to the same dilution water, conditions and... CONTROL ACT (CONTINUED) PROVISIONAL TEST GUIDELINES Provisional Environmental Effects Guidelines § 795.120... under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et seq...

  1. 40 CFR 795.120 - Gammarid acute toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... culture container. The control group shall be exposed to the same dilution water, conditions and... CONTROL ACT (CONTINUED) PROVISIONAL TEST GUIDELINES Provisional Environmental Effects Guidelines § 795.120... under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et seq...

  2. 40 CFR 795.120 - Gammarid acute toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... culture container. The control group shall be exposed to the same dilution water, conditions and... CONTROL ACT (CONTINUED) PROVISIONAL TEST GUIDELINES Provisional Environmental Effects Guidelines § 795.120... under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et seq...

  3. 40 CFR 795.120 - Gammarid acute toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... culture container. The control group shall be exposed to the same dilution water, conditions and... CONTROL ACT (CONTINUED) PROVISIONAL TEST GUIDELINES Provisional Environmental Effects Guidelines § 795.120... under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003 (15 U.S.C. 2601 et seq...

  4. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14820 How must I monitor opacity for air curtain incinerators that burn 100 percent...

  5. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14820 How must I monitor opacity for air curtain incinerators that burn 100 percent...

  6. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14820 How must I monitor opacity for air curtain incinerators that burn 100 percent...

  7. Behavior of TiO₂ nanoparticles during incineration of solid paint waste: a lab-scale test.

    PubMed

    Massari, Andrea; Beggio, Marta; Hreglich, Sandro; Marin, Riccardo; Zuin, Stefano

    2014-10-01

    In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products' life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products. In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950°C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 78 FR 28051 - Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed On or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ...This action finalizes amendments to the federal plan and the new source performance standards for hospital/medical/infectious waste incinerators. This final action implements national standards promulgated in the 2009 amendments to the hospital/medical/infectious waste incinerator emissions guidelines that will result in reductions in emissions of certain pollutants from all affected units.

  9. 40 CFR 710.45 - Chemical substances for which information must be reported.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS Inventory Update Reporting for... substance which is in the Master Inventory File at the beginning of a submission period described in § 710...

  10. Basic Information for the Review of New Chemicals

    EPA Pesticide Factsheets

    Mandated by section 5 of the Toxic Substances Control Act (TSCA), EPA's New Chemicals program helps manage the potential risk to human health and the environment from chemicals new to the marketplace.

  11. 40 CFR 710.50 - Activities for which reporting is not required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS Inventory Update Reporting for 2006 and Beyond... article. (c) The person manufactured the chemical substance described in § 710.45 in a manner described in...

  12. 40 CFR 710.30 - Activities for which reporting is not required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting § 710.30... person imported the chemical substance described in § 710.25 as part of an article, (c) The person...

  13. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste...

  14. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste...

  15. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  16. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  17. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  18. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  19. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  20. Naugatuck, Conn. Incinerator to Control Mercury Emissions Under Settlement

    EPA Pesticide Factsheets

    Equipment to limit the amount of mercury pollution sent into the atmosphere will be installed at an incinerator owned by Naugatuck, Conn., if an agreement between the USEPA, the U.S. Department of Justice, the Borough of Naugatuck...

  1. Aluminium recovery from waste incineration bottom ash, and its oxidation level.

    PubMed

    Biganzoli, Laura; Grosso, Mario

    2013-09-01

    The recovery of aluminium (Al) scraps from waste incineration bottom ash is becoming a common practice in waste management. However, during the incineration process, Al in the waste undergoes oxidation processes that reduce its recycling potential. This article investigates the behaviour of Al scraps in the furnace of two selected grate-fired waste-to-energy plants and the amount recoverable from the bottom ash. About 21-23% of the Al fed to the furnace with the residual waste was recovered and potentially recycled from the bottom ash. Out of this amount, 76-87% was found in the bottom ash fraction above 5 mm and thus can be recovered with standard eddy current separation technology. These values depend on the characteristics and the mechanical strength of the Al items in the residual waste. Considering Al packaging materials, about 81% of the Al in cans can be recovered from the bottom ash as an ingot, but this amount decreases to 51% for trays, 27% for a mix of aluminium and poly-laminated foils and 47% for paper-laminated foils. This shows that the recovery of Al from the incineration residues increases proportionally to the thickness of the packaging.

  2. Directed Laplacians For Fuzzy Autocatalytic Set Of Fuzzy Graph Type-3 Of An Incineration Process

    NASA Astrophysics Data System (ADS)

    Ahmad, Tahir; Baharun, Sabariah; Bakar, Sumarni Abu

    2010-11-01

    Fuzzy Autocatalytic Set (FACS) of Fuzzy Graph Type-3 was used in the modeling of a clinical waste incineration process in Malacca. FACS provided more accurate explanations of the incineration process than using crisp graph. In this paper we explore further FACS. Directed and combinatorial Laplacian of FACS are developed and their basic properties are presented.

  3. A Critical Evaluation of Waste Incineration Plants in Wuhan (China) Based on Site Selection, Environmental Influence, Public Health and Public Participation

    PubMed Central

    Hu, Hui; Li, Xiang; Nguyen, Anh Dung; Kavan, Philip

    2015-01-01

    With the rapid development of the waste incineration industry in China, top priority has been given to the problem of pollution caused by waste incineration. This study is the first attempt to assess all the waste incineration plants in Wuhan, the only national key city in central China, in terms of environmental impact, site selection, public health and public participation. By using a multi-criterion assessment model for economic, social, public health and environmental effects, this study indicates these incineration plants are established without much consideration of the local residents’ health and environment. A location analysis is also applied and some influences of waste incineration plants are illustrated. This study further introduces a signaling game model to prove that public participation is a necessary condition for improving the environmental impact assessment and increasing total welfare of different interest groups in China. This study finally offers some corresponding recommendations for improving the environmental impact assessments of waste incineration projects. PMID:26184242

  4. A Critical Evaluation of Waste Incineration Plants in Wuhan (China) Based on Site Selection, Environmental Influence, Public Health and Public Participation.

    PubMed

    Hu, Hui; Li, Xiang; Nguyen, Anh Dung; Kavan, Philip

    2015-07-08

    With the rapid development of the waste incineration industry in China, top priority has been given to the problem of pollution caused by waste incineration. This study is the first attempt to assess all the waste incineration plants in Wuhan, the only national key city in central China, in terms of environmental impact, site selection, public health and public participation. By using a multi-criterion assessment model for economic, social, public health and environmental effects, this study indicates these incineration plants are established without much consideration of the local residents' health and environment. A location analysis is also applied and some influences of waste incineration plants are illustrated. This study further introduces a signaling game model to prove that public participation is a necessary condition for improving the environmental impact assessment and increasing total welfare of different interest groups in China. This study finally offers some corresponding recommendations for improving the environmental impact assessments of waste incineration projects.

  5. System for Removing Pollutants from Incinerator Exhaust

    NASA Technical Reports Server (NTRS)

    Wickham, David t.; Bahr, James; Dubovik, Rita; Gebhard, Steven C.; Lind, Jeffrey

    2008-01-01

    A system for removing pollutants -- primarily sulfur dioxide and mixed oxides of nitrogen (NOx) -- from incinerator exhaust has been demonstrated. The system is also designed secondarily to remove particles, hydrocarbons, and CO. The system is intended for use in an enclosed environment, for which a prior NOx-and-SO2-removal system designed for industrial settings would not be suitable.

  6. A Comparison of Organic Emissions from Hazardous Waste Incinerators Versus the 1990 Toxics Release Inventory Air Releases

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition to hazardous waste incineration (HWI). One of the reasons cited for t...

  7. 40 CFR 710.28 - Persons who must report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting § 710.28 Persons who must... responsible for importing the substance and which controls the import transaction. The import site may in some...

  8. 40 CFR 745.87 - Enforcement and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Residential Property... criminal sanctions pursuant to TSCA section 16 (15 U.S.C. 2615) for each violation. (e) Lead-based paint is...

  9. 40 CFR 745.87 - Enforcement and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Residential Property... criminal sanctions pursuant to TSCA section 16 (15 U.S.C. 2615) for each violation. (e) Lead-based paint is...

  10. 40 CFR 745.87 - Enforcement and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Residential Property... criminal sanctions pursuant to TSCA section 16 (15 U.S.C. 2615) for each violation. (e) Lead-based paint is...

  11. 40 CFR 745.87 - Enforcement and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Residential Property... criminal sanctions pursuant to TSCA section 16 (15 U.S.C. 2615) for each violation. (e) Lead-based paint is...

  12. 40 CFR 745.87 - Enforcement and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Residential Property... criminal sanctions pursuant to TSCA section 16 (15 U.S.C. 2615) for each violation. (e) Lead-based paint is...

  13. 40 CFR 797.1930 - Mysid shrimp acute toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in a control group. (ii) Acclimation. (A) Any change in the temperature and chemistry of the dilution... SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1930... test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C...

  14. 40 CFR 797.1930 - Mysid shrimp acute toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in a control group. (ii) Acclimation. (A) Any change in the temperature and chemistry of the dilution... SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1930... test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C...

  15. 40 CFR 797.1930 - Mysid shrimp acute toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in a control group. (ii) Acclimation. (A) Any change in the temperature and chemistry of the dilution... SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1930... test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C...

  16. 40 CFR 797.1930 - Mysid shrimp acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in a control group. (ii) Acclimation. (A) Any change in the temperature and chemistry of the dilution... SUBSTANCES CONTROL ACT (CONTINUED) ENVIRONMENTAL EFFECTS TESTING GUIDELINES Aquatic Guidelines § 797.1930... test regulations under the Toxic Substances Control Act (TSCA) (Pub. L. 94-469, 90 Stat. 2003, 15 U.S.C...

  17. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION

    EPA Science Inventory

    The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...

  18. Use of a non-volatile agent to stabilize severely incinerated dental remains.

    PubMed

    Berketa, John; James, Helen; Langlois, Neil; Richards, Lindsay; Pigou, Paul

    2015-06-01

    The aim of this study was to identify volatile-free products that would be suitable for stabilizing incinerated dental remains at the scene of an incident, and that would not compromise any postmortem examination. The anterior mandibles of sheep were incinerated, sprayed unilaterally with stabilizing agents, vibrated for 30 s, and assessed. The effect of the stabilizing solutions on radiographic examination was also recorded. Tests for volatility and the effect on human mandibles were also conducted. A flour/water mixture of one part flour to two parts water, and a paste mixture of one part Clag™ glue to one part water both produced significant stabilization results. The flour mixture left an opaque layer on the samples that it was applied to, which still allowed dental examination, but the glue paste mixture resulted in a clearer layer. Both solutions allowed radiographic examination and were free of volatiles. Diluted Clag™ paste, when sprayed on to incinerated remains, assists in their stabilization for transportation. When Clag™ paste is unavailable a mixture of two parts water to one part plain flour could be utilized for stabilization.

  19. Incineration as a method for resource recovery from inedible biomass in a Controlled Ecological Life Support System.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1995-01-01

    Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more

  20. Incineration as a Method for Resource Recovery from Inedible Biomass in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai

    1995-01-01

    Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more

  1. 40 CFR 60.1910 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in which...

  2. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    NASA Astrophysics Data System (ADS)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  3. Federal Register notice: Isopropanol; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule, under section 4 of the Toxic Substances Control Act (TSCA), requiring manufacturers and processors of isopropanol (CAS No. 87-83-0) to perform testing for health effects.

  4. 40 CFR 710.48 - Persons who must report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS Inventory Update Reporting for 2006 and Beyond § 710.48... importing the substance and which controls the import transaction. The import site may in some cases be the...

  5. 2-Ethylhexanoic Acid; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule, under section 4 of the Toxic Substances Control Act (TSCA), requiring manufacturers and processors of 2-ethylhexanoic acid (EHA, CAS No. 149-57-5) to conduct testing.

  6. Testing Consent Agreement for N-methylpyrrolidone

    EPA Pesticide Factsheets

    EPA has signed an Enforceable Consent Agreement (ECA) pursuant to the Toxic Substances Control Act (TSCA), 15 U.S.C. 2601 et seq., with Arco Chemical Company, BASF Corporation, and International Specialty Products Company.

  7. Federal Register notice: Propylene Oxide; Testing Requirements

    EPA Pesticide Factsheets

    This final rule promulgated under section 4(a) of the Toxic Substances Control Act (TSCA) requires manufacturers and processors of propylene oxide (CAS No. 75-58-9) to test this chemical for developmental toxicity.

  8. 2-Mercaptobenzothiazole; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule, under section 4 of the Toxic Substances Control Act (TSCA) requiring manufacturers and processors of 2-mercaptobenzothiazole (MBT, CAS No. 149—30-4) to perform testing.

  9. Toxic Substances; Mesityl Oxide; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule establishing testing requirements under section 4(a) of the Toxic Substances Control Act (TSCA) for manufacturers and processors of mesityl oxide (MO; CAS No. 141-97-7).

  10. Testing Consent Order For Bisphenol A Diglycidyl Ether

    EPA Pesticide Factsheets

    EPA has issued a Testing Consent Order that incorporates an Enforceable Consent Agreement (ECA) pursuant to the Toxic Substances Control Act (TSCA), with the Dow Chemical Company, Shell Oil Company, and Ciba-Geigy Corporation.

  11. DECISION ANALYSIS OF INCINERATION COSTS IN SUPERFUND SITE REMEDIATION

    EPA Science Inventory

    This study examines the decision-making process of the remedial design (RD) phase of on-site incineration projects conducted at Superfund sites. Decisions made during RD affect the cost and schedule of remedial action (RA). Decision analysis techniques are used to determine the...

  12. METAL AEROSOL FORMATION IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper describes experiments performed using an 82 kW (280,000 Btu/hr) refractory-lined horizontal tunnel combustor to examine the aerosol particle size distribution (PSD) produced by simulated nickel, cadmium, and lead wastes injected into an incineration environment. Metal c...

  13. 40 CFR 60.2245 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for....2260). (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent mixture of only wood...

  14. 40 CFR 763.97 - Compliance and enforcement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.97 Compliance and enforcement. (a... Title II of the Act should direct the complaint to the Governor of the State or the EPA Asbestos... identified as a citizen complaint pursuant to section 207(d) of Title II of TSCA. The EPA Asbestos Ombudsman...

  15. 40 CFR 763.97 - Compliance and enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.97 Compliance and enforcement. (a... Title II of the Act should direct the complaint to the Governor of the State or the EPA Asbestos... identified as a citizen complaint pursuant to section 207(d) of Title II of TSCA. The EPA Asbestos Ombudsman...

  16. 40 CFR 763.97 - Compliance and enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.97 Compliance and enforcement. (a... Title II of the Act should direct the complaint to the Governor of the State or the EPA Asbestos... identified as a citizen complaint pursuant to section 207(d) of Title II of TSCA. The EPA Asbestos Ombudsman...

  17. 40 CFR 763.97 - Compliance and enforcement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.97 Compliance and enforcement. (a... Title II of the Act should direct the complaint to the Governor of the State or the EPA Asbestos... identified as a citizen complaint pursuant to section 207(d) of Title II of TSCA. The EPA Asbestos Ombudsman...

  18. 40 CFR 763.97 - Compliance and enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools § 763.97 Compliance and enforcement. (a... Title II of the Act should direct the complaint to the Governor of the State or the EPA Asbestos... identified as a citizen complaint pursuant to section 207(d) of Title II of TSCA. The EPA Asbestos Ombudsman...

  19. Adverse pregnancy outcomes around incinerators and crematoriums in Cumbria, north west England, 1956–93

    PubMed Central

    Dummer, T; Dickinson, H; Parker, L

    2003-01-01

    Study objective: To investigate the risk of stillbirth, neonatal death, and lethal congenital anomaly among babies of mothers living close to incinerators and crematoriums in Cumbria, north west England, 1956–93. Design: Retrospective cohort study. Logistic regression was used to investigate the risk of each outcome in relation to proximity at birth to incinerators and crematoriums, adjusting for social class, year of birth, birth order, and multiple births. Continuous odds ratios for trend with proximity to sites were estimated. Setting: All 3234 stillbirths, 2663 neonatal deaths, and 1569 lethal congenital anomalies among the 244 758 births to mothers living in Cumbria, 1956–1993. Main results: After adjustment for social class, year of birth, birth order, and multiple births, there was an increased risk of lethal congenital anomaly, in particular spina bifida (odds ratio 1.17, 95% CI: 1.07 to 1.28) and heart defects (odds ratio 1.12, 95% CI: 1.03 to 1.22) around incinerators and an increased risk of stillbirth (odds ratio 1.04, 95% CI: 1.01 to 1.07) and anencephalus (odds ratio 1.05, 95% CI: 1.00 to 1.10) around crematoriums. Conclusions: The authors cannot infer a causal effect from the statistical associations reported in this study. However, as there are few published studies with which to compare our results, the risk of spina bifida, heart defects, stillbirth, and anencephalus in relation to proximity to incinerators and crematoriums should be investigated further, in particular because of the increased use of incineration as a method of waste disposal. PMID:12775795

  20. Request for Available Information on Chlorinated Paraffins Submitted as Pre-Manufacture Notices (PMNs)

    EPA Pesticide Factsheets

    EPA is requesting new available data on certain chlorinated paraffins in different industries and for different uses, to inform the risk assessments for chlorinated paraffins submitted as Toxic Substances Control Act (TSCA) Premanufacture Notices (PMNs).

  1. 40 CFR 710.57 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS Inventory Update Reporting for 2006 and Beyond § 710.57... period must be retained for a period of 5 years beginning on the last day of the submission period...

  2. POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...

  3. [MSW incineration fly ash melting by DSC-DTA].

    PubMed

    Li, Rundong; Chi, Yong; Li, Shuiqing; Wang, Lei; Yan, Jianhua; Cen, Kefa

    2002-07-01

    Melting characteristics of two kinds of municipal solid waste incineration(MSWI) fly ash were studied in this paper by high temperature differential scanning calorimetry and differential temperature analysis. MSWI fly ash was considered as hazardous waste because it contains heavy metals and dioxins. The experiments were performed in either N2 or O2 atmosphere in temperature range of 20 degrees C-1450 degrees C at various heating rates. Two different MSW incineration fly ashes used in the experiments were collected from our country and France respectively. The process of fly ash melting exhibits two reactions occurring at temperature ranges of about 480 degrees C-670 degrees C and 1136 degrees C-1231 degrees C, respectively. The latent heat of polymorphic transformation and fusion were approximately 20 kJ/kg and 700 kJ/kg, while the total heat required for melting process was about 1800 kJ/kg. The paper also studied effect of CaO to melting. A heat flux thermodynamic model for fly ash melting was put forward and it agrees well with experimental data.

  4. Urinary metabolites of phosphate flame retardants in workers occupied with e-waste recycling and incineration.

    PubMed

    Yan, Xiao; Zheng, Xiaobo; Wang, Meihuan; Zheng, Jing; Xu, Rongfa; Zhuang, Xi; Lin, Ying; Ren, Mingzhong

    2018-06-01

    Urinary metabolites of phosphate flame retardants (PFRs) were determined in workers from an electronic waste (e-waste) recycling site and an incineration plant, in order to assess the PFR exposure risks of workers occupied with e-waste recycling and incineration. Bis(2-chloroethyl) phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP) were the most frequently detected chemicals (82-93%). The median concentrations of BCEP, BDCIPP, and DPHP were 1.77, 0.23, and 0.70 ng/mL, and 1.44, 0.22, and 0.11 ng/mL in samples from the e-waste site and the incineration plant, respectively. Dibutyl phosphate (DBP) was detected in all samples from the incineration plant, with a median level of 0.30 ng/mL. The concentrations of BDCIPP (r = -0.31, p < 0.05) were significantly correlated with the occupational exposure time rather than age in workers from the e-waste site. Negative and significant correlations were also observed between the concentrations of BCEP (r = -0.42, p < 0.05), BDCIPP (r = -0.37, p < 0.05), and DPHP (r = -0.37, p < 0.05) and occupational exposure time rather than age in workers from the incineration plant. No gender differences were observed in levels of PFR metabolites in urine samples (p > 0.05). Concentrations of BDCIPP in female were significantly correlated with occupational exposure time (r = -0.507, p < 0.01). Concentrations of PFR metabolites in male were not significantly correlated with age or occupational exposure time (p > 0.05). Overall, the workers with occupational exposure to PFRs had different profiles of urinary PFR metabolites. The age, occupational exposure time, and gender seemed not to be main factors mediating the exposure to PFRs for workers occupied with e-waste recycling and incineration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Fair fund distribution for a municipal incinerator using GIS-based fuzzy analytic hierarchy process.

    PubMed

    Chang, Ni-Bin; Chang, Ying-Hsi; Chen, Ho-Wen

    2009-01-01

    Burning municipal solid waste (MSW) can generate energy and reduce the waste volume, which delivers benefits to society through resources conservation. But current practices by society are not sustainable because the associated environmental impacts of waste incineration on urbanized regions have been a long-standing concern in local communities. Public reluctance with regard to accepting the incinerators as typical utilities often results in an intensive debate concerning how much welfare is lost for those residents living in the vicinity of those incinerators. As the measure of welfare change with respect to environmental quality constraints nearby these incinerators remains critical, new arguments related to how to allocate the fair fund among affected communities became a focal point in environmental management. Given the fact that most County fair fund rules allow a great deal of flexibility for redistribution, little is known about what type of methodology may be a good fit to determine the distribution of such a fair fund under uncertainty. This paper purports to demonstrate a system-based approach that helps any fair fund distribution, which is made with respect to residents' possible claim for fair damages due to the installation of a new incinerator. Holding a case study using integrated geographic information system (GIS) and fuzzy analytic hierarchy process (FAHP) for finding out the most appropriate distribution strategy between two neighboring towns in Taipei County, Taiwan demonstrates the application potential. Participants in determining the use of a fair fund also follow a highly democratic procedure where all stakeholders involved eventually express a high level of satisfaction with the results facilitating the final decision making process. It ensures that plans for the distribution of such a fair fund were carefully thought out and justified with a multi-faceted nature that covers political, socio-economic, technical, environmental, public

  6. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions.

    PubMed

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-12-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative for the European Union member countries were considered. For AD, biogas utilisation with a biogas engine was considered and two potential situations investigated - biogas combustion with (1) combined heat and power production (CHP) and (2) electricity production only. For incineration, four technology options currently available in Europe were covered: (1) an average incinerator with CHP production, (2) an average incinerator with mainly electricity production, (3) an average incinerator with mainly heat production and (4) a state-of-the art incinerator with CHP working at high energy recovery efficiencies. The study was performed using a life cycle assessment in its consequential approach. Furthermore, the role of waste-sorting guidelines (defined by the material fractions allowed for SSOHW) in relation to GWP of treating overall SSOHW with AD was investigated. A case-study of treating 1tonne of SSOHW under framework conditions in Denmark was conducted. Under the given assumptions, vegetable food waste was the only material fraction which was always better for AD compared to incineration. For animal food waste, kitchen tissue, vegetation waste and dirty paper, AD utilisation was better unless it was compared to a highly efficient incinerator. Material fractions such as moulded fibres and dirty cardboard were attractive for AD, albeit only when AD with CHP and incineration with mainly heat production were compared. Animal straw, in contrast, was always better to incinerate. Considering the total amounts of individual material fractions in waste generated within households in Denmark, food waste (both animal and vegetable derived) and kitchen tissue are the main material

  7. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    ERIC Educational Resources Information Center

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  8. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    PubMed

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  9. Anthraquinone Final Reporting and Recordkeeping Requirements and Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final rule, under section 4 of the Toxic Substances Control Act (TSCA), requiring manufacturers and processors of 9,10-anthraquinone (CAS No. 84—65—1), hereinafter anthraquinone, to perform testing.

  10. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    EPA Science Inventory

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  11. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  12. Polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in the serum samples of workers at continuously burning municipal waste incinerators in Japan

    PubMed Central

    Kumagai, S.; Koda, S.; Miyakita, T.; Yamaguchi, H.; Katagi, K.; Yasuda, N.

    2000-01-01

    OBJECTIVES—To find whether concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in serum increased in workers at municipal incinerators that burn continuously.
METHODS—30 Workers employed at three municipal waste incineration plants (incinerator workers) and 30 control workers were studied. The incinerator workers had worn dust masks or airline masks during the periodic repair work inside the incinerators. Previous job, dietary habit, smoking habit, distance from residence to the incineration plant, and body weight and height were obtained from a questionnaire survey. Concentrations of PCDDs/PCDFs were measured in the serum of the workers and the dust deposited in the plants. The influence of various factors on serum concentrations of PCDDs/PCDFs was examined by multiple regression analysis.
RESULTS—Dust analysis showed the greatest amount of octachlorodibenzo-p-dioxin (OCDD), followed by 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), 1,2,3,4,6,7,8-heptachlorodibenzofuran (HpCDF), and octachlorodibenzofuran (OCDF). The toxicity equivalents (TEQs) of PCDDs and PCDFs in the deposited dust were 4.8, 1.0, and 6.4 ng TEQs/g, respectively, for plants A, B, and C. The mean serum TEQs of PCDDs and PCDFs in the incinerator workers and control workers were 19.2 and 22.9 pg TEQs/g lipid, respectively, for area A, 28.8 and 24.5 pg TEQs/g lipid for area B, and 23.4 and 23.6 pg TEQs/g lipid for area C. No significant differences were found between the incinerator workers and the controls for TEQs of PCDDs and PCDFs separately, and TEQs of PCDDs and PCDFs together. However, the serum 1,2,3,4,6,7,8-HpCDF concentration was significantly higher in the incinerator workers than in the controls for all the three areas. When the exposure index to 1,2,3,4,6,7,8-HpCDF is defined as the product of the concentration of 1,2,3,4,6,7,8-HpCDF in the deposited dust and duration of employment, the concentration of 1

  13. Emission of greenhouse gases from controlled incineration of cattle manure.

    PubMed

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  14. Incineration of nuclear waste by accelerator

    NASA Astrophysics Data System (ADS)

    Martino, J.; Fioni, G.; Leray, S.

    1998-10-01

    An important international effort is devoted to find a suitable solution to incinerate radioactive nuclear waste issued from conventional power plants and from nuclear disarmament. Practically all innovative projects consist of a sub critical system driven by an external neutron source obtained by spallation induced by a high intensity proton accelerator irradiating a heavy target. New nuclear data measurements are necessary for the realization of these systems, in particular a good knowledge of the spallation process and of the neutron cross sections for transuranic elements are essential.

  15. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants.

    PubMed

    Raclavská, Helena; Corsaro, Agnieszka; Hartmann-Koval, Silvie; Juchelková, Dagmar

    2017-12-01

    The management of an increasing amount of municipal waste via incineration has been gaining traction. Fly ash as a by-product of incineration of municipal solid waste is considered a hazardous waste due to the elevated content of various elements. The enrichment and distribution of 24 elements in fly ash from three wastes incinerators were evaluated. Two coarse (>100 μm and <100 μm) and five sub-sieve (12-16, 16-23, 23-34, 34-49, and 49-100 μm) particle size fractions separated on a cyclosizer system were analyzed. An enhancement in the enrichment factor was observed in all samples for the majority of elements in >100 μm range compared with <100 μm range. The enrichment factor of individual elements varied considerably within the samples as well as the sub-sieve particle size ranges. These variations were attributed primarily to: (i) the vaporization and condensation mechanisms, (ii) the different design of incineration plants, (iii) incineration properties, (iv) the type of material being incinerated, and (v) the affinity of elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. TRANSFORMATION AND FATE OF NANOMATERIALS DURING WASTEWATER TREATMENT AND INCINERATION

    EPA Science Inventory

    This research will produce new data about the characteristics and fate of nanomaterials during biological wastewater treatment and incineration. Such knowledge is necessary for estimating exposure to nanomaterials and developing life cycle risk assessments of nanomaterials. To...

  17. [Epidemiologic study of the health effects of atmospheric waste from an industrial and household refuse incineration plant].

    PubMed

    Zmirou, D; Parent, B; Potelon, J L

    1984-01-01

    This article describes a 1981 study of the health effects of air pollution caused by incineration of industrial and household wastes. The study lasted 2 months and took place in a village of France's Isère department. A retrospective comparison was made of the consumption of medicines for respiratory problems over a 2-year period among 3 matched groups of residents. The groups represented 3 areas of the village situated, respectively, at 200 meters, 1 kilometer and 2 kilometers from the incinerator (the relative distance from the incinerator being used as an indicator of degree of exposure). The consumption of medicines was determined by analyzing Social Security forms filed by the residents after each purchase. The study revealed a strong heterogeneity in the consumption of medicines among the 3 groups: the variances in the number of medicines prescribed decrease significantly (p less than 1%, Bartlett test) as the distance of the residents' homes from the incinerator increases. The authors attribute this fact to the presence, in the group most directly exposed to the pollution, of subjects most affected by the respiratory effects of the polluted air. The mean levels of consumption of medicines (non parametric test) did not reveal any significant differences, though they ranged from 1 to 2.4. With these results in hand, the public health authorities fixed new norms for the operation of the incinerator.

  18. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

  19. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and yard...

  20. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...