Note: This page contains sample records for the topic actin-activated myosin atpase from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Myoblast myosin phosphorylation is a prerequisite for actin-activation  

Microsoft Academic Search

CYTOPLASMIC myosins are found in most non-muscle cellular systems studied to date1. In vertebrates these myosins are composed of two heavy chains of 200,000 molecular weight (MW) and four light chains, two each of 20,000 and 15,000 MW. A number of cytoplasmic myosins, as well as skeletal, smooth, and cardiac muscle myosin, can be enzymatically phosphorylated2-6. That is, those light

Stylianos P. Scordilis; Robert S. Adelstein

1977-01-01

2

The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA.  

PubMed

Myosin VIIA is an unconventional myosin, responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Here, we studied the molecular mechanism of regulation of myosin VIIA, which is currently unknown. Although it was originally thought that myosin VIIA is a dimeric myosin, our electron microscopic (EM) observations revealed that full-length Drosophila myosin VIIA (DM7A) is a monomer. Interestingly, the tail domain markedly inhibits the actin-activated ATPase activity of tailless DM7A at low Ca(2+) but not high Ca(2+). By examining various deletion constructs, we found that deletion of the distal IQ domain, the C-terminal region of the tail, and the N-terminal region of the tail abolishes the tail-induced inhibition of ATPase activity. Single-particle EM analysis of full-length DM7A at low Ca(2+) suggests that the tail folds back on to the head, where it contacts both the motor core domain and the neck domain, forming an inhibited conformation. We concluded that unconventional myosin that may be present a monomer in the cell can be regulated by intramolecular interaction of the tail with the head. PMID:19423668

Umeki, Nobuhisa; Jung, Hyun Suk; Watanabe, Shinya; Sakai, Tsuyoshi; Li, Xiang-dong; Ikebe, Reiko; Craig, Roger; Ikebe, Mitsuo

2009-05-07

3

ATPase activity of myosin in hair bundles of the bullfrog's sacculus.  

PubMed Central

Mechanoelectrical transduction by a hair cell displays adaptation, which is thought to occur as myosin-based molecular motors within the mechanically sensitive hair bundle adjust the tension transmitted to transduction channels. To assess the enzymatic capabilities of the myosin isozymes in hair bundles, we examined the actin-dependent ATPase activity of bundles isolated from the bullfrog's sacculus. Separation of 32P-labeled inorganic phosphate from unreacted [gamma-32P]ATP by thin-layer chromatography enabled us to measure the liberation of as little as 0.1 fmol phosphate. To distinguish the Mg(2+)-ATPase activity of myosin isozymes from that of other hair-bundle enzymes, we inhibited the interaction of hair-bundle myosin with actin and determined the reduction in ATPase activity. N-ethylmaleimide (NEM) decreased neither physiologically measured adaptation nor the nucleotide-hydrolytic activity of a 120-kDa protein thought to be myosin 1 beta. The NEM-insensitive, actin-activated ATPase activity of myosin increased from 1.0 fmol x s-1 in 1 mM EGTA to 2.3 fmol x s-1 in 10 microM Ca2+. This activity was largely inhibited by calmidazolium, but was unaffected by the addition of exogenous calmodulin. These results, which indicate that hair bundles contain enzymatically active, Ca(2+)-sensitive myosin molecules, are consistent with the role of Ca2+ in adaptation and with the hypothesis that myosin forms the hair cell's adaptation motor. Images FIGURE 1 FIGURE 3

Burlacu, S; Tap, W D; Lumpkin, E A; Hudspeth, A J

1997-01-01

4

Inhibition of Myosin ATPase by Vanadate Ion  

Microsoft Academic Search

Inhibition of the myosin ATPase by vanadate ion (Vi) has been studied in 90 mM NaCl\\/5 mM MgCl2\\/20 mM Tris\\\\cdot HCl, pH 8.5, at 25 degrees C. Although the onset of inhibition during the assay is slow and dependent upon Vi concentration (kapp≈ 0.3 M-1 s-1), the final level of inhibition approaches 100%, provided the Vi concentration is in slight

Charles C. Goodno

1979-01-01

5

Effect of Phosphorylation of Smooth Muscle Myosin on Actin Activation and Ca2+ Regulation  

Microsoft Academic Search

A 35-70% ammonium sulfate fraction of smooth muscle actomyosin was prepared from guinea pig vas deferens. This fraction also contains a smooth muscle myosin kinase and a phosphatase that phosphorylates and dephosphorylates, respectively, the 20,000-dalton light chain of smooth muscle myosin. Phosphorylated and dephosphorylated smooth muscle myosin were purified from this ammonium sulfate fraction by gel filtration, which also separated

Samuel Chacko; Mary Anne Conti; Robert S. Adelstein

1977-01-01

6

Separation of large mammalian ventricular myosin differing in ATPase activity.  

PubMed

To investigate a possible heterogeneity of human ventricular myosin, papillary muscles of patients with valvular dysfunction were examined using a modified native gel electrophoresis. Myosin was separated into 2 components termed VA and VB, whereby the VA to VB proportion appeared to depend on the ventricular load. The proportion of the faster migrating band VA was correlated (P<0.05) with end-diastolic pressure and the aortic pressure-cardiac index product. The regression based on these variables accounted for 67% of the variation in VA (R2=0.67). The VA proportion was, however, not significantly correlated with cardiac norepinephrine concentration. The ATPase activity of the 2 components of myosin was assessed from the Ca3(PO4)2 precipitation by incubating the gel in the presence of ATP and CaCl2. The ATPase activity of VA was 60% of that of VB. The VA and VB forms were observed also in the cat (31.4% VA), dog (32.1% VA), pig (28.5% VA), wild pig (33.7% VA), and roe deer (30.5% VA). VA and VB were not detected in the rat exhibiting the 3 isoforms V1, V2, and V3, rabbit (100% V3), and hare (86% V1). The data demonstrate a heterogeneity of large mammalian ventricular myosin, whereby an increased cardiac load appeared to be associated with a higher myosin VA proportion that exhibited a reduced ATPase activity. PMID:17612641

Rupp, Heinz; Maisch, Bernhard

7

Chemical Decoupling of ATPase Activation and Force Production from the Contractile Cycle in Myosin by Steric Hindrance of Lever-Arm Movement  

PubMed Central

The myosin motor protein generates force in muscle by hydrolyzing Adenosine 5?-triphosphate (ATP) while interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for energy transduction, ATP binding and hydrolysis in the catalytic domain drives the relative movement of the lever arm. Actin binding and reversal of the lever-arm movement (power stroke) applies force to actin. These domains interface at the reactive lysine, Lys84, where trinitrophenylation (TNP-Lys84-S1) was observed in this work to block actin activation of myosin ATPase and in vitro sliding of actin over myosin. TNP-Lys84-S1's properties and interactions with actin were examined to determine how trinitrophenylation causes these effects. Weak and strong actin binding, the rate of mantADP release from actomyosin, and actomyosin dissociation by ATP were equivalent in TNP-Lys84-S1 and native S1. Molecular dynamics calculations indicate that lever-arm movement inhibition during ATP hydrolysis and the power stroke is caused by steric clashes between TNP and the converter or lever-arm domains. Together these findings suggest that TNP uncouples actin activation of myosin ATPase and the power stroke from other steps in the contraction cycle by inhibiting the converter and lever-arm domain movements.

Muhlrad, Andras; Peyser, Y. Michael; Nili, Mahta; Ajtai, Katalin; Reisler, Emil; Burghardt, Thomas P.

2003-01-01

8

Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability  

PubMed Central

Summary We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ~60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence ~15% or ~8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ~35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from one-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in two-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In one-week-old adults, flight capability is lost. Thus altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.

Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.

2010-01-01

9

A novel actin binding site of myosin required for effective muscle contraction  

Microsoft Academic Search

F-actin serves as a track for myosin's motor functions and activates its ATPase activity by several orders of magnitude, enabling actomyosin to produce effective force against load. Although actin activation is a ubiquitous property of all myosin isoforms, the molecular mechanism and physiological role of this activation are unclear. Here we describe a conserved actin-binding region of myosin named the

Boglárka H Várkuti; Zhenhui Yang; Bálint Kintses; Péter Erdélyi; Irén Bárdos-Nagy; Attila L Kovács; Péter Hári; Miklós Kellermayer; Tibor Vellai; András Málnási-Csizmadia

2012-01-01

10

Functional Analysis of Myosin Mutations That Cause Familial Hypertrophic Cardiomyopathy  

Microsoft Academic Search

We have studied the actin-activated ATPase activities of three mutations in the motor domain of the myosin heavy chain that cause familial hypertrophic cardiomyopathy. We placed these mutations in rodent ?-cardiac myosin to establish the relevance of using rodent systems for studying the biochemical mechanisms of the human disease. We also wished to determine whether the biochemical defects in these

Osha Roopnarine; Leslie A. Leinwand

1998-01-01

11

Essential light chain modulates phosphorylation-dependent regulation of smooth muscle myosin.  

PubMed

To examine the functional role of the essential light chain (ELC) in the phosphorylation-dependent regulation of smooth muscle myosin, we replace the native light chain in smooth muscle myosin with bacterially expressed chimeric ELCs in which one or two of the four helix-loop-helix domains of chicken gizzard ELC were substituted by the corresponding domains of scallop (Aquipecten irradians) ELC. All of these myosins, regardless of the ELC mutations or regulatory light chain (RLC) phosphorylation, showed normal subunit constitutions and NH(4)(+)/EDTA-ATPase activities, both of which were similar to those of native myosin. None of the ELC mutations changed the actin-activated ATPase activity of myosin in the absence of RLC phosphorylation. However, in the presence of RLC phosphorylation, the substitution of domain 1 or 2 in the ELC significantly decreased the actin-activated ATPase activity, whereas the substitution of both of these domains did not change the activity. In contrast to myosin, the domain 2 substitution in the ELC did not affect the actin-activated ATPase activity of single-headed myosin subfragment 1. These results suggest an interhead interaction between domains 1 and 2 of ELCs which is required to attain the full actin-activated ATPase activity of smooth muscle myosin in the presence of RLC phosphorylation. PMID:11983069

Katoh, Tsuyoshi; Konishi, Kaoru; Yazawa, Michio

2002-05-01

12

Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry.  

PubMed

We examined the Ca(2+)-dependent regulation of brush border (BB) myosin-I by probing the possible roles of the calmodulin (CM) light chains. BB myosin-I MgATPase activity, sensitivity to chymotryptic digestion, and mechanochemical properties were assessed using 1-10 microM Ca2+ and in the presence of exogenously added CM since it has been proposed that this myosin is regulated by calcium-induced CM dissociation from the 119-kD heavy chain. Each of these BB myosin-I properties were dramatically altered by the same threshold of 2-3 microM Ca2+. Enzymatically active NH2-terminal proteolytic fragments of BB myosin-I which lack the CM binding domains (the 78-kD peptide) differ from CM-containing peptides in that the former is completely insensitive to Ca2+. Furthermore, the 78-kD peptide exhibits high levels of MgATPase activity which are comparable to that observed for BB myosin-I in the presence of Ca2+. This suggests that Ca2+ regulates BB myosin-I MgATPase by binding directly to the CM light chains, and that CM acts to repress endogenous MgATPase activity. Ca(2+)-induced CM dissociation from BB myosin-I can be prevented by the addition of exogenous CM. Under these conditions Ca2+ causes a reversible slowing of motility. In contrast, in the absence of exogenous CM, motility is stopped by Ca2+. We demonstrate this reversible slowing is not due to the presence of inactive BB myosin-I molecules exerting a "braking" effect on motile filaments. However, we did observe Ca(2+)-independent slowing of motility by acidic phospholipids, suggesting that factors other than Ca2+ and CM content can affect the mechanochemical properties of BB myosin-I. PMID:8335688

Wolenski, J S; Hayden, S M; Forscher, P; Mooseker, M S

1993-08-01

13

Carp expresses fast skeletal myosin isoforms with altered motor functions and structural stabilities to compensate for changes in environmental temperature  

Microsoft Academic Search

1.1. Myosin and its subfragment-1 (Sl) from carp acclimated to 10°C showed higher actin-activated Mg2+-ATPase activity and lower thermostability than their counterparts from carp acclimated to 30°C. Accordingly, filament velocity for the 10°C-acclimated carp myosin was higher at any measuring temperatures from 3 to 23°C than that for the 30°C-acclimated carp myosin.2.2. Three types of cDNA clones encoding myosin heavy

Shugo Watabe; Yasushi Hirayama; Misako Nakaya; Makoto Kakinuma; Kiyoshi Kikuchi; Xiao-Feng Guo; Satoshi Kanoh; Shigeru Chaen; Tatsuo Ooi

1997-01-01

14

Brain myosin-V is a two-headed unconventional myosin with motor activity.  

PubMed

Chicken myosin-V is a member of a recently recognized class of myosins distinct from both the myosins-I and the myosins-II. We report here the purification, electron microscopic visualization, and motor properties of a protein of this class. Myosin-V molecules consist of two heads attached to an approximately 30 nm stalk that ends in a globular region of unknown function. Myosin-V binds to and decorates F-actin, has actin-activated magnesium-ATPase activity, and is a barbed-end-directed motor capable of moving actin filaments at rates of up to 400 nm/s. Myosin-V does not form filaments. Each myosin-V heavy chain is associated with approximately four calmodulin light chains as well as two less abundant proteins of 23 and 17 kd. PMID:8402892

Cheney, R E; O'Shea, M K; Heuser, J E; Coelho, M V; Wolenski, J S; Espreafico, E M; Forscher, P; Larson, R E; Mooseker, M S

1993-10-01

15

Characterization of the motor activity of mammalian myosin VIIA.  

PubMed

Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor. PMID:12466270

Inoue, Akira; Ikebe, Mitsuo

2002-12-03

16

Local energetic regulation of sarcoplasmic and myosin ATPase is differently impaired in rats with heart failure  

PubMed Central

Local control of ATP/ADP ratio is essential for efficient functioning of cellular ATPases. Since creatine kinase (CK) activity and mitochondrial content are reduced in heart failure (HF), and cardiomyocyte ultrastructure is altered, we hypothesized that these changes may affect the local energetic control of two major cardiac ATPases, the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and the myosin ATPase. Heart failure was induced by aortic stenosis in rats. Electron microscopy confirmed that failing cardiomyocytes had intracellular disorganization, with fewer contacts between mitochondria and myofibrils. Despite normal SERCA protein content, spontaneous Ca2+ release measurements using Fluo-4 on saponin-permeabilized cardiomyocytes showed a lower SR loading in HF even when endogenous CK and mitochondria were fully activated. Similarly, in permeabilized fibres, SR Ca2+ loading supported by SR-bound CK and mitochondria was significantly reduced in HF (by 49% and 40%, respectively, 43% when both systems were activated, P < 0.05). Alkaline phosphatase treatment had no effect, but glycolytic substrates normalized calcium loading in HF to the sham level. The control by CK and mitochondria of the local ATP/ADP ratio close to the myosin ATPase (estimated by rigor tension) was also significantly impaired in HF fibres (by 32% and 46%, respectively). However, while the contributions of mitochondria and CK to local ATP regeneration were equally depressed in HF for the control of SERCA, mitochondrial contribution was more severely impaired than CK (P < 0.05) with respect to myofilament regulation. These data show that local energetic regulation of essential ATPases is severely impaired in heart failure, and undergoes a complex remodelling as a result of a decreased activity of the ATP-generating systems and cytoarchitecture disorganization.

Joubert, Frederic; Wilding, James R; Fortin, Dominique; Domergue-Dupont, Valerie; Novotova, Marta; Ventura-Clapier, Renee; Veksler, Vladimir

2008-01-01

17

Allosteric Communication in Dictyostelium Myosin II  

PubMed Central

Myosin’s affinities for nucleotides and actin are reciprocal. Actin-binding substantially reduces the affinity of ATP for myosin, but the effect of actin on myosin’s ADP affinity is quite variable among myosin isoforms, serving as the principal mechanism for tuning the actomyosin system to specific physiological purposes. To understand the structural basis of this variable relationship between actin and ADP binding, we studied several constructs of the catalytic domain of Dictyostelium myosin II, varying their length (from the N-terminal origin) and cysteine content. The constructs varied considerably in their actin-activated ATPase activity and in the effect of actin on ADP affinity. Actin had no significant effect on ADP affinity for a single-cysteine catalytic domain construct, a double-cysteine construct partially restored the actin-dependence of ADP binding, and restoration of all native Cys restored it further, but full restoration of function (similar to that of skeletal muscle myosin II) was obtained only by adding all native Cys and an artificial lever arm extension. Pyrene-actin fluorescence confirmed these effects on ADP binding to actomyosin. We conclude that myosin’s Cys content and lever arm both allosterically modulate the reciprocal affinities of myosin for ADP and actin, a key determinant of the biological functions of myosin isoforms.

Guhathakurta, Piyali; Prochniewicz, Ewa; Muretta, Joseph M.; Titus, Margaret A.; Thomas, David D.

2013-01-01

18

Myosin Mg-ATPase of molluscan muscles is slightly activated by F-actin under catch state in vitro.  

PubMed

Molluscan muscle twitchin, a titin/connectin-related giant protein, regulates interactions between actin and myosin filaments at low Ca(2+) concentrations. When it is dephosphorylated, actin filaments tightly bind to myosin filaments, resulting in the catch state known as the state of high passive tension with very low energy consumption. Yet when twitchin is phosphorylated actin filaments detach from the myosin filaments, resulting in relaxation of the catch. Here, steady-state Mg-ATPase activities of purified myosin were measured under various conditions: without twitchin, with dephosphorylated twitchin, or with phosphorylated twitchin; with or without phalloidin-stabilized F-actin; and at various Ca(2+) concentrations. At low Ca(2+) concentration, Mg-ATPase was activated by F-actin only in the presence of dephosphorylated twitchin (catch state). The activation was about two orders lower than that fully activated by Ca(2+) and F-actin. In the absence of F-actin, twitchin and its phosphorylation state did not affect Mg-ATPase activities in any of the conditions we tested. Based on these results, we propose a molecular mechanism for the catch, where twitchin alone does not interact with the myosin catalytic motor domain but its complex with F-actin does, forming the bridge between actin and myosin filaments and the myosin slowly hydrolyzes Mg-ATP in the catch state. PMID:23535935

Yamada, Akira; Yoshio, Maki; Oiwa, Kazuhiro

2013-03-28

19

Contraction Characteristics and ATPase Activity of Skeletal Muscle Fibers in the Presence of Antibody to Myosin Subfragment 2  

Microsoft Academic Search

To investigate the role of the myosin hinge region in muscle contraction, we examined the contraction characteristics and Mg-ATPase activity of glycerinated muscle fibers prepared from rabbit psoas in the presence and absence of polyclonal antibody directed against the subfragment 2 (S-2) region of myosin. The antibody-induced reduction of Ca2+-activated isometric force was always accompanied by a parallel decrease of

Haruo Sugi; Takakazu Kobayashi; Thomas Gross; Kazunari Noguchi; Trudy Karr; William F. Harrirington

1992-01-01

20

Modification of myosin isozymes and SR Ca 2+ -pump ATPase of the diabetic rat heart by lipid-lowering interventions  

Microsoft Academic Search

To define metabolic influences on cardiac myosin expression and sarcoplasmic reticulum (SR) Ca2+-stimulated ATPase streptozotocin-diabetic rats were treated for 9–10 wk with etomoxir, an inhibitor of carnitine palmitoyl transferase I (CPT-1) and fatty acid synthesis, or an antilipolytic drug, acipimox. Etomoxir reduced myosin V3 of diabetic rats but did not normalize it. However, the high serum triglyceride, free-fatty acid and

Heinz Rupp; Vijayan Elimban; Naranjan S. Dhalla

1994-01-01

21

Orthovanadate and Orthophosphate Inhibit Muscle Force via Two Different Pathways of the Myosin ATPase Cycle  

PubMed Central

Measurements of the half-sarcomere stiffness during activation of skinned fibers from rabbit psoas (sarcomere length 2.5 ?m, temperature 12°C) indicate that addition of 0.1 mM orthovanadate (Vi) to the solution produces a drop to ?1/2 in number of force-generating myosin motors, proportional to the drop in steady isometric force (T0), an effect similar to that produced by the addition of 10 mM phosphate (Pi). However, in contrast to Pi, Vi does not change the rate of isometric force development. The depression of T0 in a series of activations in presence of Vi is consistent with an apparent second-order rate constant of ?1 × 103 M?1 s?1. The rate constant of T0 recovery in a series of activations after removal of Vi is 3.5 × 10?2 s?1. These results, together with the finding in the literature that the ATPase rate is reduced by Vi in proportion to isometric force, are reproduced with a kinetic model of the acto-myosin cross-bridge cycle where binding of Vi to the force-generating actomyosin-ADP state induces detachment from actin to form a stable myosin-ADP-Vi complex that is not able to complete the hydrolysis cycle and reenters the cycle only via reattachment to actin upon activation in Vi-free solution.

Caremani, Marco; Lehman, Steve; Lombardi, Vincenzo; Linari, Marco

2011-01-01

22

Fluorescence labeling and computational analysis of the strut of myosin’s 50 kDa cleft  

Microsoft Academic Search

A new fluorescent labeling procedure specific for the strut sequence of myosin subfragment-1’s 50kDa cleft was developed using CY3 N-hydroxy succinimidyl ester as a hydrophobic tag and hydrophobic interaction chromatography to purify the major labeled species which retained actin-activated ATPase activity. Stern–Volmer analysis suggests that the CY3 is in close proximity to basic residues, consistent with inspection of the mapped

Ravi Kumar Gawalapu; Douglas D. Root

2006-01-01

23

The structural coupling between ATPase activation and recovery stroke in the myosin II motor  

SciTech Connect

Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.

Koppole, Sampath [University of Heidelberg; Smith, Jeremy C [ORNL; Fischer, S. [University of Heidelberg

2007-07-01

24

Ca2+- activated myosin- ATPases, creatine and adenylate kinases regulate mitochondrial function according to myofibre type in rabbit  

PubMed Central

Mitochondrial respiration rates and their regulation by ADP, AMP and creatine, were studied at different free Ca2+ concentrations (0.1 versus 0.4 ?m) on permeabilized fibre bundles of rabbit skeletal muscles differing in their myosin heavy chain profiles. Four fibre bundle types were obtained: pure types I and IIx, and mixed types IIax (approximately 50% IIa and 50% IIx fibres) and IIb+ (60% IIb fibres, plus IIx and IIa). At rest, pure type I fibres displayed a much higher apparent Km for ADP (212 ?m) than IIx fibres (8 ?m). Within the IIax and IIb+ mixed fibre bundle types, two KADPm values were observed (70 ?m and 5 ?m). Comparison between pure IIx and mixed types indicates that the intermediate Km of 70 ?m most probably corresponds to the mitochondrial affinity for ADP in IIa fibres, the lowest Km for ADP (5 ?m) corresponding to IIx and IIb types. Activation of mitochondrial creatine and adenylate kinase reactions stimulated mitochondrial respiration only in type I and IIax fibre bundles, indicating an efficient coupling between both kinases and ADP rephosphorylation in type I and, likely, IIa fibres, since no effect was observed in pure IIx fibres. Following Ca2+-induced activation of myosin-ATPase, an increase in mitochondrial sensitivity to ADP of 45% and 250% was observed in type IIax and I bundles, respectively, an effect mostly prevented by addition of vanadate, an inhibitor of myosin-ATPase. Ca2+-induced activation of myosin-ATPase also prevented the stimulation of respiration rates by creatine and AMP in I and IIax bundles. In addition to differential regulation of mitochondrial respiration and energy transfer systems at rest in I and IIa versus IIx and IIb muscle fibres, our results indicate a regulation of phosphotransfer systems by Ca2+ via the stimulation of myosin-ATPases in type I and IIa fibres of rabbit muscles.

Gueguen, N; Lefaucheur, L; Ecolan, P; Fillaut, M; Herpin, P

2005-01-01

25

Characteristics of light chains of Chara myosin revealed by immunological investigation.  

PubMed

Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca??-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively. PMID:22687741

Kakei, Toshihito; Sumiyoshi, Hiroki; Higashi-Fujime, Sugie

2012-01-01

26

Characteristics of light chains of Chara myosin revealed by immunological investigation  

PubMed Central

Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca++-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively.

KAKEI, Toshihito; SUMIYOSHI, Hiroki; HIGASHI-FUJIME, Sugie

2012-01-01

27

Calcium and cargoes as regulators of myosin 5a activity  

SciTech Connect

Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins.

Sellers, James R. [Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762 (United States)], E-mail: sellersj@nhlbi.nih.gov; Thirumurugan, Kavitha [Institute of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Sakamoto, Takeshi [Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762 (United States); Hammer, John A. [Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762 (United States); Knight, Peter J. [Institute of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

2008-04-25

28

SH-1 modification of rabbit myosin interferes with calcium regulation.  

PubMed

The reactive thiol of the myosin head, SH-1, can be selectively labelled in glycerinated rabbit muscle fibres. This residue has been used as an attachment site for either fluorescent or spectroscopic probes which report on head movements and orientations in various functional states of muscle. We have specifically modified SH-1 in vitro, using purified rabbit myosin and conditions similar to those employed in the labelling of muscle fibres (low ionic strength [40 mM NaCl] at 4 degrees C), with stoichiometric amounts of either [14C]-iodoacetamide, 5-(2[iodoacetyl)amino)ethyl) aminonaphthalene-1- sulphonic acid (IAEDANS), or 4-(2-iodoacetamido-2,2,6,6-tetramethyl piperidinooxyl (IASL). The specificity of modification was determined by measuring the well-defined alterations in the high salt ATPase activities of myosin and by localizing both IAAm and IAEDANS to the 20-kDa C-terminal subfragment 1 (S1) which contains SH-1. The low ionic strength actin-activated Mg2+-ATPase of SH-1-modified rabbit myosin was measured in the presence of the thin filament regulatory, complex, troponin-tropomyosin. A significant increase in this activity in the absence of calcium, concomitant with a decrease in activity in the presence of calcium, was observed as the extent of SH-1 modification was incrementally increased from zero to one mole of label bound per mole of SH-1. The elevated myosin Mg2+-ATPase, which results from SH-1 modification, does not account for the increased actin-activated Mg2+-ATPase in resting conditions (i.e. in the absence of calcium).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2523409

Titus, M A; Ashiba, G; Szent-Györgyi, A G

1989-02-01

29

G146V Mutation at the Hinge Region of Actin Reveals a Myosin Class-specific Requirement of Actin Conformations for Motility*  

PubMed Central

The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes.

Noguchi, Taro Q. P.; Komori, Tomotaka; Umeki, Nobuhisa; Demizu, Noriyuki; Ito, Kohji; Iwane, Atsuko Hikikoshi; Tokuraku, Kiyotaka; Yanagida, Toshio; Uyeda, Taro Q. P.

2012-01-01

30

G146V mutation at the hinge region of actin reveals a myosin class-specific requirement of actin conformations for motility.  

PubMed

The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes. PMID:22637580

Noguchi, Taro Q P; Komori, Tomotaka; Umeki, Nobuhisa; Demizu, Noriyuki; Ito, Kohji; Iwane, Atsuko Hikikoshi; Tokuraku, Kiyotaka; Yanagida, Toshio; Uyeda, Taro Q P

2012-05-27

31

A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap  

Microsoft Academic Search

Two smooth muscle myosin heavy chain isoforms differ by a 7-amino- acid insert in a flexible surface loop located near the nucleotide binding site. The non-inserted isoform is predominantly found in tonic muscle, while the inserted isoform is mainly found in phasic muscle. The inserted isoform has twice the actin-activated ATPase activity and actin filament velocity in the in vitro

Anne-Marie Lauzon; Matthew J. Tyska; Arthur S. Rovner; Yelena Freyzon; David M. Warshaw; Kathleen M. Trybus

1998-01-01

32

Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension.  

PubMed

Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells. PMID:16186105

Henn, Arnon; De La Cruz, Enrique M

2005-09-26

33

The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle  

Microsoft Academic Search

Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response\\u000a to exposure to cold or to overfeeding. The identification of the “furnace” that is responsible for increased heat generation\\u000a in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX),\\u000a with a

Roger Cooke

2011-01-01

34

The effect of myosin sulphydryl modification on the mechanics of fibre contraction.  

PubMed

Glycerinated rabbit psoas fibres have been modified with paramagnetic probes ( IASL and MSL) which react selectively with the reactive sulphydryl on the myosin head. The extent of SH-1 modification was monitored by extracting myosin and measuring its ATPase activity in the presence of EDTA and of Ca2+. The isometric tension, stiffness, maximum velocity of contraction (slack test), and the force-velocity relation was measured as a function of the degree of SH-1 modification. Reaction of up to 50% of SH-1, i.e. 50% reduction in the K+-EDTA ATPase activity of extracted myosin, produced little change (less than 10%) in any of the fibre parameters. Modification of 75% of the SH-1 sites produced small decreases (15-30%) in the magnitude of all parameters, while reaction of more than 90% of SH-1 required long reaction times and produced decreases of 40-75%. In all cases the velocities of contraction decreased in parallel with the decrease in tension, while the decrease in stiffness was less pronounced. We conclude that a large fraction of muscle fibre SH-1 groups can be modified without greatly affecting the mechanical performance of the fibre. At least a portion of the decrease in fibre parameters that is observed at high levels of SH-1 modification can be attributed to modification of other sulphydryls by the probes. The reaction of both SH-1 and nonspecific sulphydryls abolishes myosin ATPase activity, and can account for approximately one half of the decrease in fibre parameters that is observed at high degrees of sulphydryl modification. We conclude that the modification of SH-1 does not greatly affect the function of a myosin head in the filament array of a fibre. This is in contrast to results obtained in vitro where SH-1 modification alters several rates in the interaction of myosin with ATP and decreases the actin-activated ATPase activity of myosin subfragments. PMID:6144694

Crowder, M S; Cooke, R

1984-04-01

35

A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells  

PubMed Central

Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or ‘gating’ in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI–impaired hair cells, and ultimately leading to deafness.

Dror, Amiel A.; Song, Lin; Ron, Uri; Tan, Joshua T.; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H. Lee; de Angelis, Martin Hrabe; Steel, Karen P.; Avraham, Karen B.

2008-01-01

36

A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells.  

PubMed

Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness. PMID:18833301

Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B

2008-10-03

37

Calmodulin Bound to the First IQ Motif Is Responsible for Calcium-dependent Regulation of Myosin 5a*  

PubMed Central

Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca2+-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca2+ and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca2+ regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca2+-dependent regulation and how the head-tail interaction is affected by Ca2+. Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca2+ regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca2+ regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca2+ induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.

Lu, Zekuan; Shen, Mei; Cao, Yang; Zhang, Hai-Man; Yao, Lin-Lin; Li, Xiang-dong

2012-01-01

38

Calmodulin bound to the first IQ motif is responsible for calcium-dependent regulation of myosin 5a.  

PubMed

Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function. PMID:22437832

Lu, Zekuan; Shen, Mei; Cao, Yang; Zhang, Hai-Man; Yao, Lin-Lin; Li, Xiang-dong

2012-03-21

39

Quantification and localization of phosphorylated myosin I isoforms in Acanthamoeba castellanii  

PubMed Central

The actin-activated Mg(2+)-ATPase activities of the three myosin I isoforms in Acanthamoeba castellanii are significantly expressed only after phosphorylation of a single site in the myosin I heavy chain. Synthetic phosphorylated and unphosphorylated peptides corresponding to the phosphorylation site sequences, which differ for the three myosin I isoforms, were used to raise isoform-specific antibodies that recognized only the phosphorylated myosin I or the total myosin I isoform (phosphorylated and unphosphorylated), respectively. With these antisera, the amounts of total and phosphorylated isoform were quantified, the phosphomyosin I isoforms localized, and the compartmental distribution of the phosphomyosin isoforms determined. Myosin IA, which was almost entirely in the actin-rich cortex, was 70- 100% phosphorylated and particularly enriched under phagocytic cups. Myosins IB and IC were predominantly associated with plasma membranes and large vacuole membranes, where they were only 10-20% phosphorylated, whereas cytoplasmic myosins IB and IC, like cytoplasmic myosin IA, were mostly phosphorylated (60-100%). Moreover, phosphomyosin IB was concentrated in actively motile regions of the plasma membrane. More than 20-fold more phosphomyosin IC and 10-fold more F-actin were associated with the membranes of contracting contractile vacuoles (CV) than of filling CVs. As the total amount of CV-associated myosin IC remained constant, it must be phosphorylated at the start of CV contraction. These data extend previous proposals for the specific functions of myosin I isozymes in Acanthamoeba (Baines, I.C., H. Brzeska, and E.D. Korn. 1992. J. Cell Biol. 119: 1193-1203): phosphomyosin IA in phagocytosis, phosphomyosin IB in phagocytosis and pinocytosis, and phosphomyosin IC in contraction of the CV.

1995-01-01

40

Mutating the Converter–Relay Interface of Drosophila Myosin Perturbs ATPase Activity, Actin Motility, Myofibril Stability and Flight Ability  

Microsoft Academic Search

We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration.

William A. Kronert; Girish C. Melkani; Anju Melkani; Sanford I. Bernstein

2010-01-01

41

Functional Characterization of Human Myosin-18A and Its Interaction with F-actin and GOLPH3.  

PubMed

Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton. PMID:23990465

Taft, Manuel H; Behrmann, Elmar; Munske-Weidemann, Lena-Christin; Thiel, Claudia; Raunser, Stefan; Manstein, Dietmar J

2013-08-29

42

Effects of nonenzymatic glycation of subfragment-1 of myosin on interactions with actin.  

PubMed

Nonenzymatic bonding of reducing sugars to subfragment-1 of myosin (S-1) resulted in a reduction in actin-activated S-1 ATPase activity. Fructose caused a greater reduction than glucose. The Km for binding of actin to S-1 was significantly increased with sugar derivatization. In addition, sugar derivatization lowered the ability of S-1 to promote polymerization of G-actin. Western blot analysis demonstrated that glucose was nonenzymatically incorporated into the 50 and 20 kilodalton (kDa) fragments of S-1 with preponderance in the 20-kDa fragment. The reduced affinity of derivatized myosin for actin is indicated by the increased Km, the reduced ability to stimulate actin polymerization, and the positive Western blot reaction in the 20-kDa fragment. PMID:1449728

Brown, M R; Knull, H R

1992-07-01

43

Conservation within the myosin motor domain: implications for structure and function  

Microsoft Academic Search

Background Myosins are motors that use energy supplied by ATP to travel along actin filaments. The structure of myosin is known, but the actin-binding site is not well defined, and the mechanisms by which actin activates ATP hydrolysis by myosin, and myosin moves relative to the actin filament, developing force, are not fully understood. Previous phylogenetic analyses of the motor

M Jamie TV Cope; James Whisstock; Ivan Rayment; John Kendrick-Jones

1996-01-01

44

An axoplasmic myosin with a calmodulin-like light chain.  

PubMed Central

Organelles in the axoplasm from the squid giant axon move along exogenous actin filaments toward their barbed ends. An approximately 235-kDa protein, the only band recognized by a pan-myosin antibody in Western blots of isolated axoplasmic organelles, has been previously proposed to be a motor for these movements. Here, we purify this approximately 235-kDa protein (p235) from axoplasm and demonstrate that it is a myosin, because it is recognized by a pan-myosin antibody and has an actin-activated Mg-ATPase activity per mg of protein 40-fold higher than that of axoplasm. By low-angle rotary shadowing, p235 differs from myosin II and it does not form bipolar filaments in low salt. The amino acid sequence of a 17-kDa protein that copurifies with p235 shows that it is a squid optic lobe calcium-binding protein, which is more similar by amino acid sequence to calmodulin (69% identity) than to the light chains of myosin II (33% identity). A polyclonal antibody to this light chain was raised by using a synthetic peptide representing the calcium binding domain least similar to calmodulin. We then cloned this light chain by reverse transcriptase-PCR and showed that this antibody recognizes the bacterially expressed protein but not brain calmodulin. In Western blots of sucrose gradient fractions, the 17-kDa protein is found in the organelle fraction, suggesting that it is a light chain of the p235 myosin that is also associated with organelles. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4

Bearer, E L; DeGiorgis, J A; Jaffe, H; Medeiros, N A; Reese, T S

1996-01-01

45

HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity.  

PubMed

Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac ?- and ?-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K(m) for the actin-activated ATPase activity of both ?- and ?-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of ?-myosin by 20% and ?-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:21177250

Samant, Sadhana A; Courson, David S; Sundaresan, Nagalingam R; Pillai, Vinodkumar B; Tan, Minjia; Zhao, Yingming; Shroff, Sanjeev G; Rock, Ronald S; Gupta, Mahesh P

2010-12-21

46

HDAC3-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*  

PubMed Central

Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac ?- and ?-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of both ?- and ?-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of ?-myosin by 20% and ?-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.

Samant, Sadhana A.; Courson, David S.; Sundaresan, Nagalingam R.; Pillai, Vinodkumar B.; Tan, Minjia; Zhao, Yingming; Shroff, Sanjeev G.; Rock, Ronald S.; Gupta, Mahesh P.

2011-01-01

47

Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis  

PubMed Central

To understand how cytokinesis is regulated during mitosis, we tested cyclin-p34cdc2 for myosin-II kinase activity, and investigated the mitotic-specific phosphorylation of myosin-II in lysates of Xenopus eggs. Purified cyclin-p34cdc2 phosphorylated the regulatory light chain of cytoplasmic and smooth muscle myosin-II in vitro on serine-1 or serine-2 and threonine-9, sites known to inhibit the actin-activated myosin ATPase activity of smooth muscle and nonmuscle myosin (Nishikawa, M., J. R. Sellers, R. S. Adelstein, and H. Hidaka. 1984. J. Biol. Chem. 259:8808-8814; Bengur, A. R., A. E. Robinson, E. Appella, and J. R. Sellers. 1987. J. Biol. Chem. 262:7613-7617; Ikebe, M., and S. Reardon. 1990. Biochemistry. 29:2713-2720). Serine-1 or -2 of the regulatory light chain of Xenopus cytoplasmic myosin-II was also phosphorylated in Xenopus egg lysates stabilized in metaphase, but not in interphase. Inhibition of myosin-II by cyclin-p34cdc2 during prophase and metaphase could delay cytokinesis until chromosome segregation is initiated and thus determine the timing of cytokinesis relative to earlier events in mitosis.

1992-01-01

48

Molecular Basis of Dynamic Relocalization of Dictyostelium Myosin IB*  

PubMed Central

Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP2/PIP3). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP2/PIP3 similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP2/PIP3 concentration in the plasma membrane and cytoplasmic F-actin.

Brzeska, Hanna; Guag, Jake; Preston, G. Michael; Titus, Margaret A.; Korn, Edward D.

2012-01-01

49

Molecular basis of dynamic relocalization of Dictyostelium myosin IB.  

PubMed

Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP(2)/PIP(3)). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP(2)/PIP(3) similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP(2)/PIP(3) concentration in the plasma membrane and cytoplasmic F-actin. PMID:22367211

Brzeska, Hanna; Guag, Jake; Preston, G Michael; Titus, Margaret A; Korn, Edward D

2012-02-24

50

Cardiac contractile dysfunction in Lep \\/ Lep obesity is accompanied by NADPH oxidase activation, oxidative modification of sarco(endo)plasmic reticulum Ca 2+ ATPase and myosin heavy chain isozyme switch  

Microsoft Academic Search

Aims\\/hypothesis  Obesity is an independent risk factor for heart diseases but the underlying mechanism is not clear. This study examined cardiac contraction, oxidative stress, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and the myosin heavy chain (MHC) isoform switch in obese mice.Methods  Mechanical properties were evaluated in ventricular myocytes from C57BL\\/6J lean and Lep\\/Lep obese mice (formerly known as ob\\/ob mice), including

S.-Y. Li; X. Yang; A. F. Ceylan-Isik; M. Du; N. Sreejayan; J. Ren

2006-01-01

51

Myosin types in human skeletal muscle fibers  

Microsoft Academic Search

By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and

R. Billeter; H. Weber; H. Lutz; H. Howald; H. M. Eppenberger; E. Jenny

1980-01-01

52

Localization and topography of antigenic domains within the heavy chain of smooth muscle myosin  

PubMed Central

We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody.antigen] complexes. Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin-S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S- 2:light meromyosin junction. Localization of TGM-2 to the carboxy- terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development.

1985-01-01

53

Structural and functional impact of site-directed methionine oxidation in myosin.  

PubMed

We have examined the structural and functional effects of site-directed methionine oxidation in Dictyostelium (Dicty) myosin II using mutagenesis, in vitro oxidation, and site-directed spin-labeling for electron paramagnetic resonance (EPR). Protein oxidation by reactive oxygen and nitrogen species is critical for normal cellular function, but oxidative stress has been implicated in disease progression and biological aging. Our goal is to bridge understanding of protein oxidation and muscle dysfunction with molecular-level insights into actomyosin interaction. In order to focus on methionine oxidation and to facilitate site-directed spectroscopy, we started with a Cys-lite version of Dicty myosin II. For Dicty myosin containing native methionines, peroxide treatment decreased actin-activated myosin ATPase activity, consistent with the decline in actomyosin function previously observed in biologically aged or peroxide-treated muscle. Methionine-to-leucine mutations, used to protect specific sites from oxidation, identified a single methionine that is functionally sensitive to oxidation: M394, near the myosin cardiomyopathy loop in the actin-binding interface. Previously characterized myosin labeling sites for spectroscopy in the force-producing region and actin-binding cleft were examined; spin-label mobility and distance measurements in the actin-binding cleft were sensitive to oxidation, but particularly in the presence of actin. Overall secondary structure and thermal stability were unaffected by oxidation. We conclude that the oxidation-induced structural change in myosin includes a redistribution of existing structural states of the actin-binding cleft. These results will be applicable to the many biological and therapeutic contexts in which a detailed understanding of protein oxidation as well as function and structure relationships is sought. PMID:21988699

Klein, Jennifer C; Moen, Rebecca J; Smith, Evan A; Titus, Margaret A; Thomas, David D

2011-11-08

54

Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece  

PubMed Central

Acanthamoeba myosin II (AMII) has two heavy chains ending in a 27-residue nonhelical tailpiece and two pairs of light chains. In a companion article, we show that five, and only five, serine residues can be phosphorylated both in vitro and in vivo: Ser639 in surface loop 2 of the motor domain and serines 1489, 1494, 1499, and 1504 in the nonhelical tailpiece of the heavy chains. In that paper, we show that phosphorylation of Ser639 down-regulates the actin-activated MgATPase activity of AMII and that phosphorylation of the serines in the nonhelical tailpiece has no effect on enzymatic activity. Here we show that bipolar tetrameric, hexameric, and octameric minifilaments of AMII with the nonhelical tailpiece serines either phosphorylated or mutated to glutamate have longer bare zones and more tightly clustered heads than minifilaments of unphosphorylated AMII, irrespective of the phosphorylation state of Ser639. Although antiparallel dimers of phosphorylated and unphosphorylated myosins are indistinguishable, phosphorylation inhibits dimerization and filament assembly. Therefore, the different structures of tetramers, hexamers, and octamers of phosphorylated and unphosphorylated AMII must be caused by differences in the longitudinal stagger of phosphorylated and unphosphorylated bipolar dimers and tetramers. Thus, although the actin-activated MgATPase activity of AMII is regulated by phosphorylation of Ser639 in loop 2 of the motor domain, the structure of AMII minifilaments is regulated by phosphorylation of one or more of four serines in the nonhelical tailpiece of the heavy chain.

Liu, Xiong; Hong, Myoung-Soon; Shu, Shi; Yu, Shuhua; Korn, Edward D.

2013-01-01

55

Identification and Functional Study of a New Missense Mutation in the Motor Head Domain of Myosin VIIA in a Family with Autosomal Dominant Hearing Impairment (DFNA11)  

PubMed Central

The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G?A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed.

Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei

2013-01-01

56

Chemical Decoupling of ATPase Activation and Force Production from the Contractile Cycle in Myosin by Steric Hindrance of Lever-Arm Movement  

Microsoft Academic Search

The myosin motor protein generates force in muscle by hydrolyzing Adenosine 5?-triphosphate (ATP) while interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for energy transduction, ATP binding and hydrolysis in the catalytic domain drives

Andras Muhlrad; Y. Michael Peyser; Mahta Nili; Katalin Ajtai; Emil Reisler; Thomas P. Burghardt

2003-01-01

57

Determinants of ion specificity on EF-hands sites. Conversion of the Ca2+/Mg2+ site of smooth muscle myosin regulatory light chain into a Ca(2+)-specific site.  

PubMed

Calcium binding proteins mediate a large number of cellular processes. These processes respond to micromolar fluctuations of cytosolic calcium in the presence of a large excess of magnesium. The metal binding sites present in these proteins are either calcium-specific (regulatory sites) or capable of binding both calcium and magnesium (structural sites). Using site-directed mutagenesis we were able to convert the single Ca2+/Mg2+ site present in chicken smooth muscle myosin regulatory light chain (RLC) into a Ca(2+)-specific site. The replacement of the aspartic acid present in the 12th position (-Z coordinating position) of the metal binding loop with a glutamic acid increases calcium affinity and abolishes magnesium binding, rendering the site calcium-specific. To explain this observation, we hypothesize that restrictions on the ability of side chains to change conformation, contributing one (for Mg2+ binding) or two (for Ca2+ binding) coordinations could alter the metal specificity in EF-hands. Other mutations which decrease or abolish calcium binding have also been characterized. When used to substitute the endogenous scallop myosin RLC, these mutants were capable of restoring the Ca2+ regulation to the actin-activated myosin ATPase demonstrating that in these hybrid myosins, the regulatory function of the Ca(2+)-specific site (present on the essential light chain) does not depend on the occupancy of the Ca2+/Mg2+ site (present on the regulatory light chain). PMID:7896823

da Silva, A C; Kendrick-Jones, J; Reinach, F C

1995-03-24

58

Regulation of Fission Yeast Myosin-II Function and Contractile Ring Dynamics by Regulatory Light-Chain and Heavy-Chain Phosphorylation  

PubMed Central

We investigated the role of regulatory light-chain (Rlc1p) and heavy-chain phosphorylation in controlling fission yeast myosin-II (Myo2p) motor activity and function during cytokinesis. Phosphorylation of Rlc1p leads to a fourfold increase in Myo2p's in vitro motility rate, which ensures effective contractile ring constriction and function. Surprisingly, unlike with smooth muscle and nonmuscle myosin-II, RLC phosphorylation does not influence the actin-activated ATPase activity of Myo2p. A truncated form of Rlc1p lacking its extended N-terminal regulatory region (including phosphorylation sites) supported maximal Myo2p in vitro motility rates and normal contractile ring function. Thus, the unphosphorylated N-terminal extension of Rlc1p can uncouple the ATPase and motility activities of Myo2p. We confirmed the identity of one out of two putative heavy-chain phosphorylation sites previously reported to control Myo2p function and cytokinesis. Although in vitro studies indicated that phosphorylation at Ser-1444 is not needed for Myo2p motor activity, phosphorylation at this site promotes the initiation of contractile ring constriction.

Sladewski, Thomas E.; Previs, Michael J.

2009-01-01

59

[Neurotrophic control of myosin synthesis in guinea pig slow muscle].  

PubMed

After experimental cease of neurotrophic control of skeletal muscle by denervation no changes in myosin ATP-ase histochemistry and immunohistochemical profile in slow (m. soleus) muscle of guinea pig were found. All muscle fibers in intact muscle fibers). However after colchicine blockade of axoplasmic transport in this slow muscle some muscle fibers reacting with monoclonal antibodies against fast myosin heavy chain were found. At the same time no changes in histochemical ATP-ase profile were observed. Validity of myosin ATP-ase histochemistry for muscle fibers typing as well as possible influence of nerve activity and neurotrophic control itself were discussed. PMID:1713081

Valiullin, V V; Islamov, R R; Valiullina, M E; Poletaev, G I

1991-02-01

60

A high-performance liquid chromatography assay for quantification of cardiac myosin heavy chain isoform protein expression  

Microsoft Academic Search

Stress signaling in the myocardium results in enhanced expression of fetal ?-myosin heavy chain (?-MyHC) and reduced expression of adult ?-myosin heavy chain (?-MyHC), with the net outcome of diminished myofibrillar ATPase activity and impaired contractility. Pharmacological approaches aimed at preventing this myosin isoform “switch” could provide therapeutic benefit to patients with heart failure. Myosin isoform protein expression is typically

Douglas D. Lemon; Philip J. Papst; Kristin Joly; Craig F. Plato; Timothy A. McKinsey

2011-01-01

61

Antibodies directed against N-terminal residues on actin do not block acto-myosin binding  

SciTech Connect

Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, the authors have prepared polyclonal antisera against a synthetic /sup 14/C-peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (..cap alpha..-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the ..cap alpha..-N-terminal peptide. The ..cap alpha..-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. The results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.

Miller, L.; Kalnoski, M.; Yunossi, Z.; Bulinski, J.C.; Reisler, E.

1987-09-22

62

Myosin V: regulation by calcium, calmodulin, and the tail domain  

Microsoft Academic Search

alcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due

Dimitry N. Krementsov; Elena B. Krementsova; Kathleen M. Trybus

2004-01-01

63

Human erythrocyte myosin: identification and purification  

PubMed Central

Human erythrocytes contain an Mr 200,000 polypeptide that cross-reacts specifically with affinity-purified antibodies to the Mr 200,000 heavy chain of human platelet myosin. Immunofluorescence staining of formaldehyde-fixed erythrocytes demonstrated that the immunoreactive myosin polypeptide is present in all cells and is localized in a punctate pattern throughout the cell. Between 20-40% of the immunoreactive myosin polypeptide remained associated with the membranes after hemolysis and preparation of ghosts, suggesting that it may be bound to the membrane cytoskeleton as well as being present in the cytosol. The immunoreactive myosin polypeptide was purified from the hemolysate to approximately 85% purity by DEAE-cellulose chromatography followed by gel filtration on Sephacryl S-400. The purified protein is an authentic vertebrate myosin with two globular heads at the end of a rod-like tail approximately 150-nm long, as visualized by rotary shadowing of individual molecules, and with two light chains (Mr 25,000 and 19,500) in association with the Mr 200,000 heavy chain. Peptide maps of the Mr 200,000 heavy chains of erythrocyte and platelet myosin were seen to be nearly identical, but the proteins are distinct since the platelet myosin light chains migrate differently on SDS gels (Mr 20,000 and 17,000). The erythrocyte myosin formed bipolar filaments 0.3-0.4-micron long at physiological salt concentrations and exhibited a characteristic pattern of myosin ATPase activities with EDTA, Ca++, and Mg++-ATPase activities in 0.5 M KCl of 0.38, 0.48, and less than 0.01 mumol/min per mg. The Mg++-ATPase activity of erythrocyte myosin in 0.06 M KCl (less than 0.01 mumol/min per mg) was not stimulated by the addition of rabbit muscle F-actin. The erythrocyte myosin was present in about 6,000 copies per cell, in a ratio of 80 actin monomers for every myosin molecule, which is an amount comparable to actin/myosin ratios in other nonmuscle cells. The erythrocyte myosin could function together with tropomyosin on the erythrocyte membrane (Fowler, V.M., and V. Bennett, 1984, J. Biol. Chem., 259:5978-5989) in an actomyosin contractile apparatus responsible for ATP-dependent changes in erythrocyte shape.

1985-01-01

64

A Hearing-Loss Associated Myo1c Mutation (R156W) Decreases the Myosin Duty Ratio and Force Sensitivity†  

PubMed Central

Myo1c is a member of the myosin superfamily that has been proposed to function as the adaptation motor in vestibular and auditory hair cells. A recent study identified a myo1c point mutation (R156W) in a person with bilateral sensorineural hearing loss. This mutated residue is located at the start of the highly conserved switch-1 region, which is a crucial element for the binding of nucleotide. We characterized the key steps on the ATPase pathway at 37 °C using recombinant wild-type (myo1c3IQ) and mutant myo1c (R156W-myo1c3IQ) constructs that consist of the motor domain and three IQ motifs. The R156W mutation only moderately affects the rates of ATP binding, ATP-induced actomyosin dissociation, and ADP release. The actin-activated ATPase rate of the mutant is inhibited > 4-fold, which is likely due to a decrease in the rate of phosphate release. The rate of actin gliding, as measured by the in vitro motility assay, is unaffected by the mutation at high myosin surface densities, but actin gliding is substantially reduced at low surface densities of R156W-myo1c3IQ. We used a frictional-loading assay to measure the affect of resisting forces on the rate of actin gliding and found that R156W-myo1c3IQ is less force sensitive than myo1c3IQ. Taken together, these results indicate that myo1c with the R156W mutation has a lower duty ratio than the wild-type protein and motile properties that are less sensitive to resisting forces.

Lin, Tianming; Greenberg, Michael J.; Moore, Jeffrey R.; Ostap, E. Michael

2011-01-01

65

Functional role of loop 2 in myosin V.  

PubMed

Myosin V is molecular motor that is capable of moving processively along actin filaments. The kinetics of monomeric myosin V containing a single IQ domain (MV 1IQ) differ from nonprocessive myosin II in that actin affinity is higher, phosphate release is extremely rapid, and ADP release is rate-limiting. We generated two mutants of myosin V by altering loop 2, a surface loop in the actin-binding region thought to alter actin affinity and phosphate release in myosin II, to determine the role that this loop plays in the kinetic tuning of myosin V. The loop 2 mutants altered the apparent affinity for actin (K(ATPase)) without altering the maximum ATPase rate (V(MAX)). Transient kinetic analysis determined that the rate of binding to actin, as well as the affinity for actin, was dependent on the net positive charge of loop 2, while other steps in the ATPase cycle were unchanged. The maximum rate of phosphate release was unchanged, but the affinity for actin in the M.ADP.Pi-state was dramatically altered by the mutations in loop 2. Thus, loop 2 is important for allowing myosin V to bind to actin with a relatively high affinity in the weak binding states but does not play a direct role in the product release steps. The ability to maintain a high affinity for actin in the weak binding states may prevent diffusion away from the actin filament and increase the degree of processive motion of myosin V. PMID:14992598

Yengo, Christopher M; Sweeney, H Lee

2004-03-01

66

Actin and Myosin in Pea Tendrils 1  

PubMed Central

We demonstrate here the presence of actin and myosin in pea (Pisum sativum L.) tendrils. The molecular weight of tendril actin is 43,000, the same as rabbit skeletal muscle actin. The native molecular weight of tendril myosin is about 440,000. Tendril myosin is composed of two heavy chains of molecular weight approximately 165,000 and four (two pairs) light chains of 17,000 and 15,000. At high ionic strength, the ATPase activity of pea tendril myosin is activated by K+-EDTA and Ca2+ and is inhibited by Mg2+. At low ionic strength, the Mg2+-ATPase activity of pea tendril myosin is activated by rabbit skeletal muscle F-actin. Superprecipitation occurred after incubation at room temperature when ATP was added to the crude actomyosin extract. It is suggested that the interaction of actin and myosin may play a role in the coiling movement of pea tendril. Images Figure 1 Figure 3 Figure 4

Ma, Yong-Ze; Yen, Lung-Fei

1989-01-01

67

Modification of interface between regulatory and essential light chains hampers phosphorylation-dependent activation of smooth muscle myosin.  

PubMed

We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation. PMID:22549781

Ni, Shaowei; Hong, Feng; Haldeman, Brian D; Baker, Josh E; Facemyer, Kevin C; Cremo, Christine R

2012-05-01

68

Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities [published erratum appears in J Cell Biol 1997 Jul 14;138(1):215  

PubMed Central

There are two isoforms of the vertebrate nonmuscle myosin heavy chain, MHC-A and MHC-B, that are encoded by two separate genes. We compared the enzymatic activities as well as the subcellular localizations of these isoforms in Xenopus cells. MHC-A and MHC-B were purified from cells by immunoprecipitation with isoform-specific peptide antibodies followed by elution with their cognate peptides. Using an in vitro motility assay, we found that the velocity of movement of actin filaments by MHC-A was 3.3-fold faster than that by MHC-B. Likewise, the Vmax of the actin-activated Mg(2+)-ATPase activity of MHC-A was 2.6- fold greater than that of MHC-B. Immunofluorescence microscopy demonstrated distinct localizations for MHC-A and MHC-B. In interphase cells, MHC-B was present in the cell cortex and diffusely arranged in the cytoplasm. In highly polarized, rapidly migrating interphase cells, the lamellipodium was dramatically enriched for MHC-B suggesting a possible involvement of MHC-B based contractions in leading edge extension and/or retraction. In contrast, MHC-A was absent from the cell periphery and was arranged in a fibrillar staining pattern in the cytoplasm. The two myosin heavy chain isoforms also had distinct localizations throughout mitosis. During prophase, the MHC-B redistributed to the nuclear membrane, and then resumed its interphase localization by metaphase. MHC-A, while diffuse within the cytoplasm at all stages of mitosis, also localized to the mitotic spindle in two different cultured cell lines as well as in Xenopus blastomeres. During telophase both isoforms colocalized to the contractile ring. The different subcellular localizations of MHC-A and MHC-B, together with the data demonstrating that these myosins have markedly different enzymatic activities, strongly suggests that they have different functions.

1996-01-01

69

The transformation of myosin in cross-innervated rat muscles  

PubMed Central

1. The characteristics of isometric twitch and tetanic contractions have been determined for normal (N-EDL, N-SOL), self-innervated (S-EDL, S-SOL) and cross-innervated (X-EDL, X-SOL) extensor digitorum longus (EDL) and soleus (SOL) muscles of the rat at 35° C. The muscles were then used for biochemical analyses of properties of myosin and actomyosin. 2. The ATPase activities of myosin and actomyosin of X-EDL decreased to the level of those of N-SOL or S-SOL, and the ATPase activities of X-SOL approached those of N-EDL or S-EDL. Of the various ATPase activities, the actin- and Mg2+-activated ATPase activity of myosin and the Mg2+-activated ATPase activity of actomyosin showed the highest degree of correlation with the intrinsic speed of shortening of the muscles. 3. Myosin of normal, self-innervated, and cross-innervated muscles combined with F-actin superprecipitated at rates which were proportional to the speed of muscle contraction. 4. The pH profile curve and the ATP-induced dinitrophenylation reaction revealed that the structure of myosin of X-EDL was altered to that of N-SOL or S-SOL, and the structure of myosin of X-SOL was modified to that of N-EDL or S-EDL. 5. No differences were found in the yield of myosin of normal, self-innervated, and cross-innervated extensor digitorum longus and soleus muscles.

Barany, M.; Close, R. I.

1971-01-01

70

Calcium regulates scallop muscle by changing myosin flexibility  

Microsoft Academic Search

Muscle myosins are molecular motors that convert the chemical free energy available from ATP hydrolysis into mechanical displacement\\u000a of actin filaments, bringing about muscle contraction. Myosin cross-bridges exert force on actin filaments during a cycle\\u000a of attached and detached states that are coupled to each round of ATP hydrolysis. Contraction and ATPase activity of the striated\\u000a adductor muscle of scallop

Vian Azzu; David Yadin; Hitesh Patel; Franca Fraternali; Peter D. Chantler; Justin E. Molloy

2006-01-01

71

Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed  

PubMed Central

SUMMARY The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

Shaffer, Justin F.; Kier, William M.

2012-01-01

72

Distinct Functional Interactions between Actin Isoforms and Nonsarcomeric Myosins  

PubMed Central

Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic ?- and ?-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle ?-actin, cytoplasmic ?-actin, and cytoplasmic ?-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of ?-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by ?-actin and myosin-7A by ?-actin. Our results indicate that ?- and ?-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

Muller, Mirco; Diensthuber, Ralph P.; Chizhov, Igor; Claus, Peter; Heissler, Sarah M.; Preller, Matthias; Taft, Manuel H.; Manstein, Dietmar J.

2013-01-01

73

Alternative relay and converter domains tune native muscle myosin isoform function in Drosophila  

PubMed Central

Myosin isoforms help define muscle-specific contractile and structural properties. Alternative splicing of myosin heavy chain gene transcripts in Drosophila melanogaster yields muscle-specific isoforms and highlights alternative domains that fine tune myosin function. To gain insight into how native myosin is tuned, we expressed three embryonic myosin isoforms in indirect flight muscles lacking endogenous myosin. These isoforms differ in their relay and/or converter domains. We analyzed isoform-specific ATPase activities, in vitro actin motility and myofibril structure/stability. We find that dorsal acute body wall muscle myosin (EMB-9c11d) shows a significant increase in MgATPase Vmax and actin sliding velocity, as well as abnormal myofibril assembly compared to cardioblast myosin (EMB-11d). These properties differ as a result of alternative exon-9 encoded relay domains that are hypothesized to communicate signals among the ATP binding pocket, actin-biding site and the converter domain. Further, EMB-11d shows significantly reduced levels of basal Ca- and MgATPase as well as MgATPase Vmax compared to EMB (expressed in a multitude of body wall muscles). EMB-11d also induces increased actin sliding velocity and stabilizes myofibril structure compared to EMB. These differences arise from exon 11-encoded alternative converter domains that are proposed to reposition the lever arm during the power and recovery strokes. We conclude that relay and converter domains of native myosin isoforms fine-tune ATPase activity, actin motility and muscle ultrastructure. This verifies and extends previous studies with chimeric molecules and indicates that interactions of the relay and converter during the contractile cycle are key to myosin isoform-specific kinetic and mechanical functions.

Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.

2012-01-01

74

Myosin drives retrograde F-actin flow in neuronal growth cones.  

PubMed

Actin filaments assembled at the leading edge of neuronal growth cones are centripetally transported via retrograde F-actin flow, a process fundamental to growth cone guidance and other forms of directed cell motility. Here we investigated the role of myosins in retrograde flow, using two distinct modes of myosin inhibition: microinjection of NEM inactivated myosin S1 fragments, or treatment with 2,3-butanedione-2-monoxime, and inhibitor of myosin ATPase. Both treatments resulted in dose-dependent attenuation of retrograde F-actin flow and growth of filopodia. Growth was cytochalasin sensitive and directly proportional to the degree of myosin inhibition, suggesting that retrograde flow results from superimposition of two independent processes: actin assembly and myosin-based filament retraction. These results provide the first direct evidence for myosin involvement in neuronal growth cone function. PMID:8607995

Lin, C H; Espreafico, E M; Mooseker, M S; Forscher, P

1996-04-01

75

Myosins and deafness.  

PubMed

The discovery in the past few years of a huge diversity within the myosin superfamily has been coupled with an understanding of the role of these motor proteins in various cellular functions. Extensive studies have revealed that myosin isoforms are not only involved in muscle contraction but also in crucial functions of many specialized mammalian cells such as melanocytes, kidney and intestinal brush border microvilli, nerve growth cones or inner ear hair cells. A search for genes involved in the pathology of human genetic deafness resulted in identification of three novel myosins: myosin VI, myosin VIIA and, very recently, myosin XV. The structure, tissue and cellular distribution of these myosin isoforms, as well as mutations detected within their genes that have been found to affect the hearing process, are described in this review. PMID:10471988

Redowicz, M J

1999-04-01

76

Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells  

PubMed Central

SUMMARY Human ES cells are the pluripotent precursor of the three embryonic germ layers. Human ES cells exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ES cells are prevented from reattaching and forming colonies, their viability is significantly reduced. Here we show that actin-myosin contraction is a critical effector of the cell death response to human ES cell dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ES cells. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ES cells.

Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel; Thomson, James A.

2010-01-01

77

Unconventional myosins acting unconventionally.  

PubMed

Unconventional myosins are proteins that bind actin filaments in an ATP-regulated manner. Because of their association with membranes, they have traditionally been viewed as motors that function primarily to transport membranous organelles along actin filaments. Recently, however, a wealth of roles for myosins that are not obviously related to organelle transport have been uncovered, including organization of F-actin, mitotic spindle regulation and gene transcription. Furthermore, it has also become apparent that the motor domains of different myosins vary strikingly in their biophysical attributes. We suggest that the assumption that most unconventional myosins function primarily as organelle transporters might be misguided. PMID:19406643

Woolner, Sarah; Bement, William M

2009-05-04

78

Identification of myosin in a flowering plant, Egeria densa.  

PubMed

A myosin-like protein was extracted and partially purified from a flowering plant, Egeria densa. It had no p-nitrophenyl phosphatase activity, but exhibited EDTA(K+)-ATPase [EC 3.6.1.3] activity at high ionic strength. Its molecular weight as estimated by gel filtration was 4-5 X 10(5). The presence of a heavy chain (MW = about 1.8 X 10(5)) was indicated by SDS-gel electrophoresis. Egeria myosin aggregated in an environment of low ionic strength and formed bipolar filaments. It bound with skeletal muscle F-actin with a periodicity of 40 nm. PMID:154512

Ohsuka, K; Inoue, A

1979-02-01

79

Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins  

SciTech Connect

The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0/sup 0/C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain.

Maruta, H.; Korn, E.D.

1981-01-10

80

Myosins in cell junctions  

PubMed Central

The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.

Liu, Katy C.; Cheney, Richard E.

2012-01-01

81

Hybrids of Physarum myosin light chains and desensitized scallop myofibrils  

PubMed Central

The two light chains of Physarum myosin have been purified in a 1:1 ratio with a yield of 0.5-1 mg/100 g of plasmodium and a purity of 40- 70%; the major contaminant is a 42,000-dalton protein. The 17,700 Mr Physarum myosin light chain (PhLC1) binds to scallop myofibrils, providing the regulatory light chains (ScRLC) have been removed. The 16,500 Mr light (PhLC2) does not bind to scallop myofibrils. The calcium control of scallop myosin ATPase is lost by the removal of one of the two ScRLC's and restored equally well by the binding of either PhLC1 or rabbit skeletal myosin light chains. When both ScRLC's are removed, replacement by two plasmodial light chains does not restore calcium control as platelet or scallop light chains do. Purified plasmodial actomyosin does not bind calcium in 10(-6) M free calcium, 1 mM MgCl2. No tropomyosin was isolated from Physarum by standard methods. Because the Physarum myosin light chains can substitute only partially for light chains from myosin linked systems, because calcium does not bind to the actomyosin, and because tropomyosin is apparently absent, the regulation of plasmodial actomyosin by micromolar Ca++ may involve other mechanisms, possibly phosphorylation.

1981-01-01

82

Hybrids of Physarum myosin light chains and desensitized scallop myofibrils.  

PubMed

The two light chains of Physarum myosin have been purified in a 1:1 ratio with a yield of 0.5-1 mg/100 g of plasmodium and a purity of 40-70%; the major contaminant is a 42,000-dalton protein. The 17,700 Mr Physarum myosin light chain (PhLC1) binds to scallop myofibrils, providing the regulatory light chains (ScRLC) have been removed. The 16,500 Mr light (PhLC2) does not bind to scallop myofibrils. The calcium control of scallop myosin ATPase is lost by the removal of one of the two ScRLC's and restored equally well by the binding of either PhLC1 or rabbit skeletal myosin light chains. When both ScRLC's are removed, replacement by two plasmodial light chains does not restore calcium control as platelet or scallop light chains do. Purified plasmodial actomyosin does not bind calcium in 10(-6) M free calcium, 1 mM MgCl2. No tropomyosin was isolated from Physarum by standard methods. Because the Physarum myosin light chains can substitute only partially for light chains from myosin linked systems, because calcium does not bind to the actomyosin, and because tropomyosin is apparently absent, the regulation of plasmodial actomyosin by micromolar Ca++ may involve other mechanisms, possibly phosphorylation. PMID:6457052

Nachmias, V T

1981-08-01

83

Expression of a myosin regulatory light chain phosphorylation site mutant complements the cytokinesis and developmental defects of Dictyostelium RMLC null cells  

Microsoft Academic Search

In a number of systems phosphorylation of the regulatory light chain (RMLC) of myosin regulates the activity of myosin. In smooth muscle and ver- tebrate nonmuscle systems RMLC phosphorylation is required for contractile activity. In Dictyostelium dis- coideum phosphorylation of the RMLC regulates both ATPase activity and motor function. We have deter- mined the site of phosphorylation on the Dictyostelium

Bruce D. Ostrow; Pengxin Chen; Rex L. Chisholm

1994-01-01

84

Mechanism and Specificity of Pentachloropseudilin-mediated Inhibition of Myosin Motor Activity*  

PubMed Central

Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC50 values are in the range from 1 to 5 ?m for mammalian class-1 myosins and greater than 90 ?m for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway.

Chinthalapudi, Krishna; Taft, Manuel H.; Martin, Rene; Heissler, Sarah M.; Preller, Matthias; Hartmann, Falk K.; Brandstaetter, Hemma; Kendrick-Jones, John; Tsiavaliaris, Georgios; Gutzeit, Herwig O.; Fedorov, Roman; Buss, Folma; Knolker, Hans-Joachim; Coluccio, Lynne M.; Manstein, Dietmar J.

2011-01-01

85

Head-Head and Head-Tail Interaction: A General Mechanism for Switching Off Myosin II Activity in Cells  

PubMed Central

Intramolecular interaction between myosin heads, blocking key sites involved in actin-binding and ATPase activity, appears to be a critical mechanism for switching off vertebrate smooth-muscle myosin molecules, leading to relaxation. We have tested the hypothesis that this interaction is a general mechanism for switching off myosin II–based motile activity in both muscle and nonmuscle cells. Electron microscopic images of negatively stained myosin II molecules were analyzed by single particle image processing. Molecules from invertebrate striated muscles with phosphorylation-dependent regulation showed head–head interactions in the off-state similar to those in vertebrate smooth muscle. A similar structure was observed in nonmuscle myosin II (also phosphorylation-regulated). Surprisingly, myosins from vertebrate skeletal and cardiac muscle, which are not intrinsically regulated, undergo similar head–head interactions in relaxing conditions. In all of these myosins, we also observe conserved interactions between the ‘blocked’ myosin head and the myosin tail, which may contribute to the switched-off state. These results suggest that intramolecular head–head and head-tail interactions are a general mechanism both for inducing muscle relaxation and for switching off myosin II–based motile activity in nonmuscle cells. These interactions are broken when myosin is activated.

Jung, Hyun Suk; Komatsu, Satoshi; Ikebe, Mitsuo

2008-01-01

86

Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles  

PubMed Central

Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders.

Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

2008-01-01

87

Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system  

PubMed Central

Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization.

Caldwell, James T.; Melkani, Girish C.; Huxford, Tom; Bernstein, Sanford I.

2011-01-01

88

The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation  

PubMed Central

Phosphorylation of the myosin regulatory light chain (RLC) in skeletal muscle has been proposed to act as a molecular memory of recent activation by increasing the rate of force development, ATPase activity, and isometric force at submaximal activation in fibers. It has been proposed that these effects stem from phosphorylation-induced movement of myosin heads away from the thick filament backbone. In this study, we examined the molecular effects of skeletal muscle myosin RLC phosphorylation using in vitro motility assays. We showed that, independently of the thick filament backbone, the velocity of skeletal muscle myosin is decreased upon phosphorylation due to an increase in the myosin duty cycle. Furthermore, we did not observe a phosphorylation-dependent shift in calcium sensitivity in the absence of the myosin thick filament. These data suggest that phosphorylation-induced movement of myosin heads away from the thick filament backbone explains only part of the observed phosphorylation-induced changes in myosin mechanics. Last, we showed that the duty cycle of skeletal muscle myosin is strain dependent, consistent with the notion that strain slows the rate of ADP release in striated muscle.

Greenberg, Michael J.; Mealy, Tanya R.; Watt, James D.; Jones, Michelle; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

2009-01-01

89

The binding of divalent cations to myosin.  

PubMed

Centrifuge transport, equilibrium dialysis, and electron paramagnetic resonance studies on the binding of Mn2+ to myosin revealed two sets of noninteracting binding sites which are characterized at low ionic strength (0.016 M KCl) by affinity constants of 10(6) M-1 (Class I) and 10(3) M-1 (Class II), respectively. At 0.6 M KCl concentration, the affinity of Mn2+ for both sets of sites is reduced. The maximum number of binding sites is 2 for the high affinity and 20 to 25 for the low affinity set. Other divalent metal ions displace Mn2+ from the high affinity sites in the following order of effectiveness: Ca greater than Mg = Zn = Co greater than Sr greater than Ni. The inhibitory effects of Mg2+ and Ca2+ upon the Mn2+ binding are competitive with inhibitor constants of 0.75 to 1 mM which is similar to that of the low affinity divalent metal ion binding sites. Exposure of myosin to 37 degrees partially inhibits Mn2+ binding to Class I parallel with inhibition of ATPase activity. The binding of Mn2+ to the high affinity binding sites is not significantly influenced by ADP or PPi, although Mn2+ increases the affinity of ADP binding to myosin at high ionic strength. PMID:1158863

Beinfeld, M C; Bryce, D A; Kochavy, D; Martonosi, A

1975-08-25

90

Rotary ATPases  

PubMed Central

Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors.

Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

2013-01-01

91

Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery.  

PubMed

During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV colocalize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK (ML-7) or MEK (U0126), but not by inhibiting Rho-kinase with Y-27632. Flag-tagged L-MLCK co-localizes in cortical bundles with EGFP-SV, and kinase-dead L-MLCK disorganizes these bundles. The L-MLCK- and myosin-binding site in SV, SV1-171, rearranges and co-localizes with mono- and di-phosphorylated myosin light chain and with L-MLCK, but not with the short form of MLCK (S-MLCK) or with myosin phosphatase. Thus, the membrane protein SV apparently contributes to myosin II assembly during cell spreading by modulating myosin II regulation by L-MLCK. PMID:17925381

Takizawa, Norio; Ikebe, Reiko; Ikebe, Mitsuo; Luna, Elizabeth J

2007-10-09

92

Myosin-I nomenclature.  

PubMed

We suggest that the vertebrate myosin-I field adopt a common nomenclature system based on the names adopted by the Human Genome Organization (HUGO). At present, the myosin-I nomenclature is very confusing; not only are several systems in use, but several different genes have been given the same name. Despite their faults, we believe that the names adopted by the HUGO nomenclature group for genome annotation are the best compromise, and we recommend universal adoption. PMID:11724811

Gillespie, P G; Albanesi, J P; Bahler, M; Bement, W M; Berg, J S; Burgess, D R; Burnside, B; Cheney, R E; Corey, D P; Coudrier, E; de Lanerolle, P; Hammer, J A; Hasson, T; Holt, J R; Hudspeth, A J; Ikebe, M; Kendrick-Jones, J; Korn, E D; Li, R; Mercer, J A; Milligan, R A; Mooseker, M S; Ostap, E M; Petit, C; Pollard, T D; Sellers, J R; Soldati, T; Titus, M A

2001-11-26

93

Plant Myosins VIII, XI, And XIII  

Microsoft Academic Search

There are three classes of myosins in plants: myosins VIII, XI, and XIII. Myosins VIII and XI are widely distributed and found\\u000a not only in higher plants, but also in Chlamydomonas, while myosin XIII is found only in Acetabularia. Biochemical studies have been done mainly on myosin XI, which is the most abundantly expressed myosin in plants.

Keiichi Yamamoto

94

Involvement of myosin in intracellular motility and cytomorphogenesis in Micrasterias.  

PubMed

Myosin was detected on Western blots of Micrasterias denticulata extracts by use of antibodies from different sources. Inhibitors with different targets of the actomyosin system, such as the myosin ATPase-blockers N-ethylmaleimide (NEM) and 2,3-butanedione monoxime (BDM), or the myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexhydro-1,4-diazapine (ML7), had similar effects on intracellular motility during cell development in the green alga Micrasterias, thus pointing towards a participation of myosin in these processes. The drugs markedly altered the mode of postmitotic nuclear migration, slowed down cytoplasmic streaming, changed cell pattern development and prevented normal chloroplast distribution and spreading into the growing semicell. In addition, an increase and dilatations in ER cisternae and marked morphological changes of the Golgi system were observed by transmission electron microscopy after exposure of growing cells to BDM. Neither BDM nor ML7 exhibited any effect on the distribution or arrangement of the cortical F-actin network nor on the F-actin basket around the nucleus, characteristic of untreated growing Micrasterias cells (J Cell Sci 107 (1994) 1929). This is particularly interesting since BDM caused disintegration of the microtubule system co-localized to the F-actin cage during normal nuclear migration. Together with the fact that other microtubules not connected to the F-actin system remained uninfluenced by BDM, this observation is evidence of an integrative function of myosin between the cytoskeleton elements. PMID:14642529

Oertel, Anke; Holzinger, Andreas; Lütz-Meindl, Ursula

2003-01-01

95

Muscle and nonmuscle myosins probed by a spin label at equivalent sites in the force-generating domain  

PubMed Central

We have engineered a mutant of Dictyostelium discoideum (Dicty) myosin II that contains the same fast-reacting “SH1” thiol as in muscle myosin, spin-labeled it, and performed electron paramagnetic resonance (EPR) to compare the structure of the force-generating region of the two myosins. Dicty myosin serves as a model system for muscle myosin because of greater ease of mutagenesis, expression, and crystallization. The catalytic domains of these myosins have nearly identical crystal structures in the apo state, but there are significant differences in ATPase kinetics, and there are no crystal structures of skeletal muscle myosin with bound nucleotides, so another structural technique is needed. Previous EPR studies, with a spin label attached to SH1 in muscle myosin, have resolved the key structural states of this region. Therefore, we have performed identical experiments on both myosins spin-labeled at equivalent sites. Spectra were identical for the two myosins in the apo and ADP-bound states. With bound ADP and phosphate analogs, (i) both proteins exhibit two resolved structural states (prepowerstroke, postpowerstroke) in a single biochemical state (defined by the bound nucleotide), and (ii) these structural states are essentially identical in the two myosins but (iii) are occupied to different extents as a function of the biochemical state. We conclude that (i) myosin structural and biochemical states do not have a one-to-one correspondence, and (ii) Dicty myosin can serve as a good analog for structural studies of muscle myosin only if differences in the coupling between biochemical and structural states are taken into account.

Agafonov, Roman V.; Nesmelov, Yuri E.; Titus, Margaret A.; Thomas, David D.

2008-01-01

96

The working stroke upon myosin-nucleotide complexes binding to actin  

PubMed Central

For many years, it has been known that myosin binds to actin tightly, but it had not been possible to devise a muscle fiber experiment to determine whether this binding energy is directly coupled to the working stroke of the actomyosin crossbridge cycle. Addressing the question at the single-molecule level with optical tweezers allows the problem to be resolved. We have compared the working stroke on the binding of four myosin complexes (myosin, myosin-ADP, myosin-pyrophosphate, and myosin-adenyl-5?yl imidodiphosphate) with that observed while hydrolyzing ATP. None of the four was observed to give a working stroke significantly different from zero. A working stroke (5.4 nm) was observed only with ATP, which indicates that the other states bind to actin in a rigor-like conformation and that myosin products (M.ADP.Pi), the state that binds to actin during ATPase activity, binds in a different, prestroke conformation. We conclude that myosin, while dissociated from actin, must be able to take up at least two mechanical conformations and show that our results are consistent with these conformations corresponding to the two states characterized at high resolution, which are commonly referred to in terms of having open and closed nucleotide binding pockets.

Steffen, Walter; Smith, David; Sleep, John

2003-01-01

97

Coevolution of head, neck, and tail domains of myosin heavy chains  

PubMed Central

Myosins, a large family of actin-based motors, have one or two heavy chains with one or more light chains associated with each heavy chain. The heavy chains have a (generally) N-terminal head domain with an ATPase and actin-binding site, followed by a neck domain to which the light chains bind, and a C-terminal tail domain through which the heavy chains self-associate and/or bind the myosin to its cargo. Approximately 140 members of the myosin superfamily have been grouped into 17 classes based on the sequences of their head domains. I now show that a phylogenetic tree based on the sequences of the combined neck and tail domains groups 144 myosins, with a few exceptions, into the same 17 classes. For the nine myosin classes that have multiple members, phylogenetic trees based on the head domain or the combined neck/tail domains are either identical or very similar. For class II myosins, very similar phylogenetic trees are obtained for the head, neck, and tail domains of 47 heavy chains and for 29 essential light chains and 19 regulatory light chains. These data strongly suggest that the head, neck, and tail domains of all myosin heavy chains, and light chains at least of class II myosins, have coevolved and are likely to be functionally interdependent, consistent with biochemical evidence showing that regulated actin-dependent MgATPase activity of Dictyostelium myosin II requires isoform specific interactions between the heavy chain head and tail and light chains.

Korn, Edward D.

2000-01-01

98

Inverse interaction between tropomyosin and phosphorylated myosin in the presence or absence of caldesmon.  

PubMed

In the present study, co-sedimentation assay, intrinsic fluorescence intensity measurement, and Mg²?-ATPase activity analysis were carried out to investigate the direct effect of tropomyosin (TM) on unphosphorylated myosin (UM) or phosphorylated myosin (PM) in the presence or absence of caldesmon (CaD). Results showed that TM significantly decreased the sedimentation, intrinsic fluorescence intensity, and the Mg²?-ATPase activity of PM, but not UM. In the presence of CaD, TM also significantly decreased these parameters irrespective of myosin phosphorylation, suggesting that the interaction between TM and CaD abolished the effects of TM on PM or UM and that there was an inverse interaction between TM and PM, characterized by the decreased PM sedimentation and intrinsic fluorescence intensity. PMID:23665794

Zhang, Ying; Zhang, Houli; Tang, Zeyao; Kohama, Kazuhiro; Lin, Yuan

2013-05-10

99

Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis.  

PubMed

We have measured the conventional electron paramagnetic resonance (EPR) spectrum of spin-labeled myosin filaments as a function of the nucleotide occupancy of the active site of the enzyme. The probe used was 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (IASL), which reacts specifically with sulfhydryl 1 of the myosin head. In the absence of nucleotide, the probe remains strongly immobilized (rigidly attached to the myosin head) so that no nanosecond rotational motions are detectable. When MgADP is added to IASL-labeled myosin filaments (T = 20 degrees C), the probe mobility increases slightly. During steady-state MgADP hydrolysis (T = 20 degrees C), the probe undergoes large-amplitude nanosecond rotational motion. These results are consistent with previous studies of myosin monomers, heavy meromyosin, and myosin subfragment 1. Isoclinic points observed in overlays of sequential EPR spectra recorded during ATP hydrolysis strongly suggest that the probes fall into two motional classes, separated by approximately an order of magnitude in effective rotational correlation time. Both of the observed states are distinct from the conformation of myosin in the absence of nucleotides, and the spectrum of the less mobile population is indistinguishable from that observed in the presence of MgADP. The addition of ADP and vanadate to IASL-myosin gives rise to two motional classes virtually identical with those observed in the presence of ATP, but the relative concentrations of the spin populations are significantly different. We have quantitated the percentage of myosin in each motional state during ATP hydrolysis. The result agrees well with the predicted percentages in the two predominant chemical states in the myosin ATPase cycle. Spectra obtained in the presence of nucleotide analogues permit us to assign the conformational states to specific chemical states. We propose that the two motional classes represent two distinct local conformations of myosin that are in exchange with one another during the ATP hydrolysis reaction cycle. PMID:3030402

Barnett, V A; Thomas, D D

1987-01-13

100

T cell receptor signaling and immunological synapse stability require myosin IIA  

PubMed Central

Immunological synapses are initiated by signaling in discrete T cell receptor (TCR) microclusters and play an important role in T cell differentiation and effector functions. Synapse formation involves orchestrated motion of microclusters toward the center of the contact area with the antigen-presenting cell. Microcluster movement is associated with centripetal actin flow, but the role of motor proteins is unknown. Here we show that myosin IIA was necessary for complete assembly and movement of TCR microclusters and that activated myosin IIA was recruited to the synapse. In the absence of myosin IIA or its ATPase activity, T cell signaling was interrupted downstream of Lck and the synapse was destabilized. Thus, TCR signaling and subsequent immunological synapse formation are active processes dependent on myosin IIA.

Ilani, Tal; Vasiliver-Shamis, Gaia; Vardhana, Santosh; Bretscher, Anthony; Dustin, Michael L.

2009-01-01

101

Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness  

PubMed Central

Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.

Wang, Yang; Melkani, Girish C.; Suggs, Jennifer A.; Melkani, Anju; Kronert, William A.; Cammarato, Anthony; Bernstein, Sanford I.

2012-01-01

102

Evidence for myosin motors on organelles in squid axoplasm.  

PubMed Central

Squid axoplasm has proved a rich source for the identification of motors involved in organelle transport. Recently, squid axoplasmic organelles have been shown to move on invisible tracks that are sensitive to cytochalasin, suggesting that these tracks are actin filaments. Here, an assay is described that permits observation of organelles moving on unipolar actin bundles. This assay is used to demonstrate that axoplasmic organelles move on actin filaments in the barbed-end direction, suggesting the presence of a myosin motor on axoplasmic organelles. Indeed, axoplasm contains actin-dependent ATPase activity, and a pan-myosin antibody recognized at least four bands in Western blots of axoplasm. An approximately 235-kDa band copurified in sucrose gradients with KI-extracted axoplasmic organelles, and the myosin antibody stained the organelle surfaces by immunogold electron microscopy. The myosin is present on the surface of at least some axoplasmic organelles and thus may be involved in their transport through the axoplasm, their movement through the cortical actin in the synapse, or some other aspect of axonal function. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4

Bearer, E L; DeGiorgis, J A; Bodner, R A; Kao, A W; Reese, T S

1993-01-01

103

Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom  

PubMed Central

The control systems regulating muscle contraction in approximately 100 organisms have been categorized. Both myosin control and actin control operate simultaneously in the majority of invertebrates tested. These include insects, chelicerates, most crustaceans, annelids, priapulids, nematodes, and some sipunculids. Single myosin control is present in the muscles of molluscs, brachiopods, echinoderms, echiuroids, and nemertine worms. Single actin control was found in the fast muscles of decapods, in mysidacea, in a single sipunculid species, and in vertebrate striated muscles. Classification is based on functional tests that include measurements of the calcium dependence of the actomyosin ATPase activity in the presence and the absence of purified rabbit actin and myosin. In addition, isolated thin filaments and myosins were also analyzed. Molluscs lack actin control since troponin is not present in sufficient quantities. Even though the functional tests indicate the complete lack of myosin control in vertebrate striated muscle, it is difficult to exclude unambiguously the in vivo existence of this regulation. Both control systems have been found in animals from phyla which evolved early. We cannot ascribe any simple correlation between ATPase activity, muscle structure, and regulatory mechanisms.

1975-01-01

104

Functional diversity among a family of human skeletal muscle myosin motors  

PubMed Central

Human skeletal muscle fibers express five highly conserved type-II myosin heavy chain (MyHC) genes in distinct spatial and temporal patterns. In addition, the human genome contains an intact sixth gene, MyHC-IIb, which is thought under most circumstances not to be expressed. The physiological and biochemical properties of individual muscle fibers correlate with the predominantly expressed MyHC isoform, but a functional analysis of homogenous skeletal muscle myosin isoforms has not been possible. This is due to the difficulties of separating the multiple isoforms usually coexpressed in muscle fibers, as well as the lack of an expression system that produces active recombinant type II skeletal muscle myosin. In this study we describe a mammalian muscle cell expression system and the functional analysis of all six recombinant human type II skeletal muscle myosin isoforms. The diverse biochemical activities and actin-filament velocities of these myosins indicate that they likely have distinct functions in muscle. Our data also show that ATPase activity and motility are generally correlated for human skeletal muscle myosins. The exception, MyHC-IIb, encodes a protein that is high in ATPase activity but slow in motility; this is the first functional analysis of the protein from this gene. In addition, the developmental isoforms, hypothesized to have low ATPase activity, were indistinguishable from adult-fast MyHC-IIa and the specialized MyHC-Extraocular isoform, that was predicted to be the fastest of all six isoforms but was functionally similar to the slower isoforms.

Resnicow, Daniel I.; Deacon, John C.; Warrick, Hans M.; Spudich, James A.; Leinwand, Leslie A.

2010-01-01

105

Myosin motors: missing structures and hidden springs  

Microsoft Academic Search

High-resolution structures of the motor domain of myosin II and lower resolution actin–myosin structures have led to the ‘swinging lever arm’ model for myosin force generation. The available kinetic data are not all easily reconciled with this model and understanding the final details of the myosin motor mechanism must await actin–myosin co-crystals. The observation that myosin can populate multiple states

Anne Houdusse; H Lee Sweeney

2001-01-01

106

A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a.  

PubMed

The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands. PMID:23650521

Nagy, Nikolett T; Chakraborty, Saikat; Harami, Gábor M; Sellers, James R; Sakamoto, Takeshi; Kovács, Mihály

2013-05-01

107

A Subdomain Interaction at the Base of the Lever Allosterically Tunes the Mechanochemical Mechanism of Myosin 5a  

PubMed Central

The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands.

Nagy, Nikolett T.; Chakraborty, Saikat; Harami, Gabor M.; Sellers, James R.; Sakamoto, Takeshi; Kovacs, Mihaly

2013-01-01

108

Effects of anti-myosin drugs on anaphase chromosome movement and cytokinesis in crane-fly primary spermatocytes.  

PubMed

To investigate whether myosin is involved in crane-fly primary spermatocyte division, we studied the effects of myosin inhibitors on chromosome movement and on cytokinesis. With respect to chromosome movement, the myosin ATPase inhibitor 2,3-butanedione 2-monoxime (BDM) added during autosomal anaphase reversibly perturbed the movements of all autosomes: autosomes stopped, slowed, or moved backwards during treatment. BDM added before anaphase onset altered chromosome movement less than when BDM was added during anaphase: chromosome movements only rarely were stopped. They often were normal initially and then, if altered at all, were slowed. To confirm that the effects of BDM were due to myosin inhibition, we treated cells with ML-7, a drug that inhibits myosin light chain kinase (MLCK), an enzyme necessary to activate myosin. ML-7 affected anaphase movement only when added in early prometaphase: this treatment prevented chromosome attachment to the spindle. We treated cells with H-7 as a control for possible non-myosin effects of ML-7. H-7, which has a lower affinity than ML-7 for MLCK but a higher affinity than ML-7 for other potential targets, had no effect. These data confirm that the BDM effect is on myosin and indicate that the myosin used for chromosome movement is activated near the start of prometaphase. With respect to cytokinesis, BDM did not block furrow initiation but did block subsequent contraction of the contractile ring. When BDM was added after initiation of the furrow, the contractile ring either stalled or relaxed. ML-7 blocked contractile ring contraction when added at all stages after autosomal anaphase onset, including when added during cytokinesis. H-7 had no effect. These results confirm that the effects of BDM are on myosin and indicate that the myosin used for cytokinesis is activated starting from autosomal anaphase and continuing throughout cytokinesis. PMID:11807939

Silverman-Gavrila, R V; Forer, A

2001-12-01

109

Mapping of Unconventional Myosins in Mouse and Human  

Microsoft Academic Search

Myosins are molecular motors that move along filamentous actin. Seven classes of myosin are expressed in vertebrates: conventional myosin, or myosin-II, as well as the 6 unconventional myosin classes -I, -V, -VI, -VII, -IX, and -X. We have mapped in mouse 22 probes encompassing all known unconventional myosins and, as a result, have identified 16 potential unconventional myosin genes. These

Tama Hasson; Joseph F. Skowron; Debra J. Gilbert; Karen B. Avraham; William L. Perry; William M. Bement; Blake L. Anderson; Elliott H. Sherr; Zheng-Yi Chen; Lloyd A. Greene; David C. Ward; David P. Corey; Mark S. Mooseker; Neal G. Copeland; Nancy A. Jenkins

1996-01-01

110

Phosphorylation of a Single Head of Smooth Muscle Myosin Activates the Whole Molecule†  

PubMed Central

Regulatory light chain (RLC) phosphorylation activates smooth and non-muscle myosin IIs, but it has not been established if phosphorylation of one head turns on the whole molecule. Baculovirus expression and affinity chromatography were used to isolate heavy meromyosin (HMM) containing one phosphorylated and one dephosphorylated RLC (1-P HMM). Motility and steady-state ATPase assays indicated that 1-P HMM is nearly as active as HMM with two phosphorylated heads (2-P HMM). Single turnover experiments further showed that both the dephosphorylated and phosphorylated heads of 1-P HMM can be activated by actin. Singly-phosphorylated full-length myosin was also an active species with two cycling heads. Our results suggest that phosphorylation of one RLC abolishes the asymmetric inhibited state formed by dephosphorylated myosin, allowing activation of both the phosphorylated and dephosphorylated heads. These findings help explain how smooth muscles are able to generate high levels of stress with low phosphorylation levels.

Rovner, Arthur S.; Fagnant, Patricia M.; Trybus, Kathleen M.

2008-01-01

111

Myosin Class XIV And Other Myosins In Protists  

Microsoft Academic Search

Myosins are actin-based molecular motors that convert chemical energy released by ATP hydrolysis into directed movement along\\u000a tracks of actin filaments. They are found in eukaryotes and are implicated in a number of important cell functions, such as\\u000a nuclear and cell division, transport of molecules, vesicles, and organelles, signal transduction, and motility. The myosin\\u000a superfamily was previously described as containing

Karine FrÉnal; Bernardo J. Foth; Dominique Soldati

112

Azidoblebbistatin, a photoreactive myosin inhibitor  

PubMed Central

Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ? 50 ?M) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 ?M). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions.

Kepiro, Miklos; Varkuti, Boglarka H.; Bodor, Andrea; Hegyi, Gyorgy; Drahos, Laszlo; Kovacs, Mihaly; Malnasi-Csizmadia, Andras

2012-01-01

113

Visualization of the mechanochemical coupling in myosin V using deac-aminoATP  

NASA Astrophysics Data System (ADS)

MyosinV is a twoheaded motor, which moves processively along an actin with ADP-release as the rate limiting step. The kinetic cycles of the two heads are gated by the internal strain each places on the other Mechanical studies suggest that there is tight coupling (i.e., one ATP is hydrolyzed per power stroke). We investigated the coordination between the ATPase mechanism of the two heads-myosin Va and directly visualized the binding and dissociation of nucleotide molecules, while simultaneously observing the stepping motion of the myosin V as it moved along an actin filament. To do this, we used an fluorescent labeled ATP analog, deac-aminoATP, which shows a 20fold increase in fluorescent intensity when bound to the active site of myosinV I directly demonstrate tight coupling between myosin V movement and the binding and dissociation of nucleotide by simultaneously imaging with near nanometre precision. Supported by K99/R00 NIH grant.

Sakaoto, Takeshi; Webb, Martin; Forgacs, Eva; White, Howard; Sellers, Jim

2010-03-01

114

Effects of SH1 and SH2 modifications on myosin: similarities and differences.  

PubMed Central

The properties of myosin modified at the SH2 group (Cys-697) were studied and compared with the previously reported properties of myosin modified at the SH1 group (Cys-707). 4-[N-[(iodoacetoxy)ethyl]-N methylamino]-7-nitrobenz-2-oxa-1, 3-diazole (IANBD) was used for selective modification of the SH2 group on myosin. SH2-labeled heavy meromyosin (SH2-HMM), similar to SH1-labeled HMM (SH1-HMM), did not propel actin filaments in the in vitro motility assays. SH1- and SH2-HMM produced similar amounts of load in the mixtures with unmodified HMM; the sliding speed of actin filaments gradually decreased with an increase in the fraction of either one of the modified HMMs in the mixture. In analogy to SH1-labeled myosin subfragment 1 (SH1-S1), SH2-labeled S1 (SH2-S1) activated regulated actin in the in vitro motility assays. SH2 modification inhibited Mg-ATPase of S1 and its activation by actin. The weak binding of S1 to actin was unaffected whereas the strong binding was weakened by SH2 modification. Overall, our results demonstrate similar behavior of SH1- and SH2-modified myosin heads in the in vitro motility assays despite some differences in their enzymatic properties. The effects of these modifications are ascribed to the location of the SH1-SH2 helix relative to other functional centers of S1.

Bobkova, E A; Bobkov, A A; Levitsky, D I; Reisler, E

1999-01-01

115

Transient detection of spin-labeled myosin subfragment 1 conformational states during ATP hydrolysis.  

PubMed

We have used time-resolved electron paramagnetic resonance spectroscopy and caged ATP to detect nucleotide-induced changes in the conformational state of spin-labeled myosin heads (IASL-S1). Changes in the internal rotational dynamics of IASL-S1 were monitored with millisecond time resolution during the pre-steady-state phase of ATP hydrolysis. The changes in the internal protein dynamics were rigorously correlated with specific biochemical kinetic transitions, allowing us to observe directly the dynamic sequence of structural changes in IASL-S1 during the binding and hydrolysis of ATP. When caged ATP was photolyzed (producing 500 microM ATP) in the presence of 100 microM IASL-S1, the EPR signal intensity rose transiently to the steady-state ATPase level, indicating increased rotational motion about the SH1 region of the myosin head. Kinetic and spectral analyses have resolved two phases of this transient, one representing the population of the M*.ATP state and the other representing the population of the M**.ADP.Pi state. We conclude that two motionally distinct states of the myosin head are present during ATP hydrolysis and that these states represent distinct conformational states that can be correlated with specific biochemical intermediates. Since specific labeling of myosin heads with IASL has been achieved in skinned muscle fibers, this study establishes the feasibility for the first direct detection and resolution of myosin's conformational transients during muscle contraction. PMID:8392368

Ostap, E M; White, H D; Thomas, D D

1993-07-01

116

Identification and characterization of ATPase activity associated with maize (Zea mays) annexins.  

PubMed Central

An ATPase activity is associated with maize (Zea mays) annexins. It has a pH optimum of 6.0, shows Michaelis-Menten kinetics and is not stimulated by Ca2+, Mg2+, EDTA or KCl; it is not inhibited by vanadate, molybdate, nitrate or azide, but N-ethylmaleimide inhibits by approximately 30% at 1-2 mM. These properties indicate that the activity is unlike other ATPases, although it has many features in common with the myosin ATPase. Gel filtration shows that the ATPase activity is mainly associated with a 68 kDa protein that is extracted with the p33/p35 annexins and cross-reacts with antibodies to these proteins. Images Figure 3

McClung, A D; Carroll, A D; Battey, N H

1994-01-01

117

Resolution of three structural states of spin-labeled myosin in contracting muscle.  

PubMed Central

We have used electron paramagnetic resonance (EPR) spectroscopy to detect ATP- and calcium-induced changes in the structure of spin-labeled myosin heads in glycerinated rabbit psoas muscle fibers in key physiological states. The probe was a nitroxide iodoacetamide derivative attached selectively to myosin SH1 (Cys 707), the conventional EPR spectra of which have been shown to resolve several conformational states of the myosin ATPase cycle, on the basis of nanosecond rotational motion within the protein. Spectra were acquired in rigor and during the steady-state phases of relaxation and isometric contraction. Spectral components corresponding to specific conformational states and biochemical intermediates were detected and assigned by reference to EPR spectra of trapped kinetic intermediates. In the absence of ATP, all of the myosin heads were rigidly attached to the thin filament, and only a single conformation was detected, in which there was no sub-microsecond probe motion. In relaxation, the EPR spectrum resolved two conformations of the myosin head that are distinct from rigor. These structural states were virtually identical to those observed previously for isolated myosin and were assigned to the populations of the M*.ATP and M**.ADP.Pi states. During isometric contraction, the EPR spectrum resolves the same two conformations observed in relaxation, plus a small fraction (20-30%) of heads in the oriented actin-bound conformation that is observed in rigor. This rigor-like component is a calcium-dependent, actin-bound state that may represent force-generating cross-bridges. As the spin label is located near the nucleotide-binding pocket in a region proposed to be pivotal for large-scale force-generating structural changes in myosin, we propose that the observed spectroscopic changes indicate directly the key steps in energy transduction in the molecular motor of contracting muscle. Images FIGURE 7

Ostap, E M; Barnett, V A; Thomas, D D

1995-01-01

118

Unshadowed myosin molecules: STEM mass-maps of myosin heads.  

PubMed Central

Myosin molecules were directly visualized without heavy metal shadowing by scanning transmission electron microscopy (STEM) under low dose conditions. The general appearance and dimensions of heavy metal-free molecules were similar to those of shadowed myosin, either after freeze-drying without or air-drying with glycerol. Two characteristic configurations of myosin head regions were found, a first type showing two pear-shaped heads with narrow necks and a second type showing two heads connected by an extra mass in the central regulatory domain where the light chains are located. The mass of the latter type (mol. wt. = 265 +/- 39 kd) is in excellent accordance with biochemical data whereas the mass of the first type is somewhat lower (mol. wt. 219 +/- 44 kd). Images Fig. 1. Fig. 2. Fig. 3. Fig. 4.

Walzthony, D; Bahler, M; Eppenberger, H M; Wallimann, T; Engel, A

1984-01-01

119

Regulation and expression of metazoan unconventional myosins  

Microsoft Academic Search

Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3–16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and

Anna M. Sokac; William M. Bement

2000-01-01

120

Directional Mechanosensing in Myosin VI  

NASA Astrophysics Data System (ADS)

Myosin is a family of versatile motor proteins that perform various tasks, such as organelle transport, anchoring and cell deformation. Although the general mechanism of the motors has been fairly well established, details on dynamic aspects like force response of the motor, and force propagation are yet to be fully understood. In this poster, we present the response of the ATP binding region to force exerted on the tail domain in order to test the proposed tension-dependent gating mechanism of myosin VI processive motion. We employed the Self-Organized Polymer model in a computer simulation to explore the effect. Current results show that the ATP binding domain of myosin VI indeed exhibits tension dependence -- both structurally and dynamically.

Yang, Yubo; Tehver, Riina

2013-03-01

121

Inhibitory Regulation of Higher-Plant Myosin by Ca2+ Ions1  

PubMed Central

Myosin isolated from the pollen tubes of lily (Lilium longiflorum) is composed of a 170-kD heavy chain (E. Yokota and T. Shimmen [1994] Protoplasma 177: 153–162). Both the motile activity in vitro and the F-actin-stimulated ATPase activity of this myosin were inhibited by Ca2+ at concentrations higher than 10?6 m. In the Ca2+ range between 10?6 and 10?5 m, inhibition of the motile activity was reversible. In contrast, inhibition by more than 10?5 m Ca2+ was not reversible upon Ca2+ removal. An 18-kD polypeptide that showed the same mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that of spinach calmodulin (CaM) was present in this myosin fraction. This polypeptide showed a mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a Ca2+-dependent manner. Furthermore, this polypeptide was recognized by antiserum against spinach CaM. By immunoprecipitation using antiserum against the 170-kD heavy chain, the 18-kD polypeptide was coprecipitated with the 170-kD heavy chain, provided that the Ca2+ concentration was low, indicating that this 18-kD polypeptide is bound to the 170-kD myosin heavy chain. However, the 18-kD polypeptide was dissociated from the 170-kD heavy chain at high Ca2+ concentrations, which irreversibly inhibited the motile activity of this myosin. From these results, it is suggested that the 18-kD polypeptide, which is likely to be CaM, is associated with the 170-kD heavy chain as a light chain. It is also suggested that this polypeptide is involved in the regulation of this myosin by Ca2+. This is the first biochemical basis, to our knowledge, for Ca2+ regulation of cytoplasmic streaming in higher plants.

Yokota, Etsuo; Muto, Shoshi; Shimmen, Teruo

1999-01-01

122

Mn(2+)-nucleotide coordination at the myosin active site as detected by pulsed electron paramagnetic resonance.  

PubMed

Pulsed electron paramagnetic resonance at the microwave K(a) band (~30 GHz) was used to study the coordination of adenosine nucleotides to Mn(2+) at the active site of myosin ATPase and in solution. We have found that the electron spin echo (ESE) field sweep, electron-nuclear double resonance (ENDOR) and ESE envelope modulation (ESEEM) techniques are not sufficiently specific for reliable differentiation between the solvated and myosin-bound Mn·nucleotide complexes. Therefore, to directly detect binding of the Mn·nucleotide to myosin, we used nonhydrolizable nucleotide analogs, site-directed spin labeling, and pulsed electron-electron double resonance to detect spin probe-manganese dipolar interaction. We found that under substoichiometric conditions, both Mn·AMPPNP and Mn·ADP·AlF(4) form a complex with myosin, and Mn·ADP does not form such a complex. This correlates well with the biological dissociation of Mg·ADP from myosin after the hydrolysis of ATP. The analysis of (31)P ENDOR spectra reveals that in Mn·AMPPNP, Mn·ATP, and Mn·ADP at myosin or in solution, the nucleotide is coordinated to Mn(2+) by two phosphate groups, whereas in Mn·ADP·AlF(4), only one phosphate group is coordinated. The observation of two phosphates and one nitrogen in the coordination sphere of Mn·ADP in solution by ESEEM spectroscopy suggests that a significant population of Mn ions is coordinated by two ADP molecules, one of which is coordinated by phosphates, and the other one, by a nitrogen atom. The developed approach will be generally useful for monitoring the metal-protein binding when such binding does not provide reliable spectroscopic signatures. PMID:23121488

Astashkin, Andrei V; Nesmelov, Yuri E

2012-11-13

123

Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions  

SciTech Connect

Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.

Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A. (UPENN); (Duke); (MRCLMB); (FSU); (Jikei-Med)

2010-10-22

124

Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions  

PubMed Central

Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.

Wu, Shenping; Liu, Jun; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

2010-01-01

125

Regulation and expression of metazoan unconventional myosins.  

PubMed

Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3-16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and cytokinesis and have been studied intensively for many years in both uni- and multicellular organisms, unconventional myosins have only been subject to analysis in metazoan systems for a short time. Here we critically review what is known about unconventional myosin regulation, function, and expression. Several points emerge from this analysis. First, in spite of the high relative conservation of motor domains among the myosin classes, significant differences are found in biochemical and enzymatic properties of these motor domains. Second, the idea that characteristic distributions of unconventional myosins are solely dependent on the myosin tail domain is almost certainly an oversimplification. Third, the notion that most unconventional myosins function as transport motors for membranous organelles is challenged by recent data. Finally, we present a scheme that clarifies relationships between various modes of myosin regulation. PMID:10965469

Sokac, A M; Bement, W M

2000-01-01

126

Myosin VI: cellular functions and motor properties.  

PubMed Central

Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed.

Roberts, Rhys; Lister, Ida; Schmitz, Stephan; Walker, Matthew; Veigel, Claudia; Trinick, John; Buss, Folma; Kendrick-Jones, John

2004-01-01

127

Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human ?-cardiac myosin motor function  

PubMed Central

Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including ?-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human ?-cardiac myosin. We found that this mutation causes a ?30% decrease in the maximum ATPase of the human ?-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human ?-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle.

Sommese, Ruth F.; Sung, Jongmin; Nag, Suman; Sutton, Shirley; Deacon, John C.; Choe, Elizabeth; Leinwand, Leslie A.; Ruppel, Kathleen; Spudich, James A.

2013-01-01

128

The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor  

SciTech Connect

Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by {approx}60 degrees. This recovery stroke is coupled to the activation of myosin's ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a see-saw motion of the relay helix, followed by a piston/seesaw motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery stroke by using Principal Component Analysis. This reveals that the only principal motions of these two helices that make a large amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions.

Mesentean, Sidonia [University of Heidelberg; Koppole, Sampath [University of Heidelberg; Smith, Jeremy C [ORNL; Fischer, S. [University of Heidelberg

2006-12-01

129

Graphical Evaluation of Alkylation of Myosin's SH1 and SH2  

PubMed Central

Previous assertions about the effect of alkylation of SH1 and SH2 on the myosin high-salt calcium and EDTA ATPases have been summarized, and a simple procedure for obtaining the fractional labeling of SH1 and SH2 after treatment of myosin with alkylating agents has been derived. A simple graphical procedure for illustrating the degree of preference of a particular alkylating agent for SH1 over SH2 has also been developed. The procedures we developed were validated by applying them to two previously studied compounds, 4-(2-iodoacetamido)-TEMPO and 2,4-dinitrofluorobenzine, and then were used to determine a procedure for maximizing the extent of labeling of SH1 alone by N-phenylmaleimide, a compound not previously studied in this manner. It was found that ?80% of the SH1 sites could be alkylated without significant alkylation of SH2.

Xie, Ling; Li, Wan Xia; Barnett, Vincent A.; Schoenberg, Mark

1997-01-01

130

CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES  

PubMed Central

Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-? to MHC-? ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-? and MHC-?. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes.

Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.

2010-01-01

131

The 2?- O- and 3?- O-Cy3-EDA-ATP(ADP) Complexes with Myosin Subfragment1 are Spectroscopically Distinct  

Microsoft Academic Search

Ribose-modified highly-fluorescent sulfoindocyanine ATP and ADP analogs, 2?(3?)-O-Cy3-EDA-AT(D)P, with kinetics similar to AT(D)P, enable myosin and actomyosin ATPase enzymology with single substrate molecules. Stopped-flow studies recording both fluorescence and anisotropy during binding to skeletal muscle myosin subfragment-1 (S1) and subsequent single-turnover decay of steady-state intermediates showed that on complex formation, 2?-O- isomer fluorescence quenched by 5%, anisotropy increased from 0.208

Kazuhiro Oiwa; David M. Jameson; John C. Croney; Colin T. Davis; John F. Eccleston; Michael Anson

2003-01-01

132

Myosin assembly: the power of multiubiquitylation.  

PubMed

Ubiquitylation provides a means of targeting substrate proteins for degradation by the proteasome. Novel findings in C. elegans (Hoppe et al., 2004, this issue of Cell) establish that two ubiquitin-ligases team up to multiubiquitylate the myosin chaperone UNC-45, suggesting a novel link between regulated protein degradation and myosin assembly. PMID:15294151

Gönczy, Pierre

2004-08-01

133

Cross-reactivity of termite myosin; a potential allergen  

Technology Transfer Automated Retrieval System (TEKTRAN)

Myosin and myosin isoforms are common food allergens in crustaceans; such as, shrimp, lobster, and crab. Allergy to Shellfish is a prevalent and potentially long lasting disorder that can severely affect health and quality of life. Myosin and myosin isoforms of dust mites and cockroaches are simil...

134

Effect of Inorganic Phosphate on the Force and Number of Myosin Cross-Bridges During the Isometric Contraction of Permeabilized Muscle Fibers from Rabbit Psoas  

Microsoft Academic Search

The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction

Marco Caremani; Jody Dantzig; Yale E. Goldman; Vincenzo Lombardi; Marco Linari

2008-01-01

135

Homology model of nonmuscle myosin heavy chain IIA and binding mode analysis with its inhibitor blebbistatin.  

PubMed

Nonmuscle myosin heavy chain IIA (NMMHC IIA, gene code: MYH9) plays a critical role in physiological and pathological functions. A homology model of NMMHC IIA was constructed based on the crystal structure of smooth muscle myosin II. Blebbistatin, a myosin II ATPase inhibitor, had been found to bind to NMMHC IIA with Leu228 as the important amino acid residue and van der Waals contacts as the main force of the interaction. The final complex demonstrated that the destruction of the salt bridge occurred between the Arg204 and Glu427 residues when blebbistatin was present. Molecular dynamic simulation of the complex showed that the binding affinity of blebbistatin to NMMHC IIA was strongly sensitive to the nucleotide binding region and actin binding region. The disturbance of the two regions increased the enhancement of the binding cavity with blebbistatin and resulted in a slightly more expanded conformation in the nucleotide binding region and actin binding region. A combined pharmacophore- and docking-based virtual screening was performed to identify several saponins as potential inhibitors for NMMHC IIA. These findings introduce new insights on the binding mode of blebbistatin and NMMHC IIA and novel leading compounds from natural products for NMMHC IIA-related diseases. PMID:23315199

Lv, Yanni; Lu, Shuai; Lu, Tao; Kou, Junping; Yu, Boyang

2013-01-13

136

Structure and Dynamics of the Force-Generating Domain of Myosin Probed by Multifrequency Electron Paramagnetic Resonance  

PubMed Central

Spin-labeling and multifrequency EPR spectroscopy were used to probe the dynamic local structure of skeletal myosin in the region of force generation. Subfragment 1 (S1) of rabbit skeletal myosin was labeled with an iodoacetamide spin label at C707 (SH1). X- and W-band EPR spectra were recorded for the apo state and in the presence of ADP and nucleotide analogs. EPR spectra were analyzed in terms of spin-label rotational motion within myosin by fitting them with simulated spectra. Two models were considered: rapid-limit oscillation (spectrum-dependent on the orientational distribution only) and slow restricted motion (spectrum-dependent on the rotational correlation time and the orientational distribution). The global analysis of spectra obtained at two microwave frequencies (9.4 GHz and 94 GHz) produced clear support for the second model and enabled detailed determination of rates and amplitudes of rotational motion and resolution of multiple conformational states. The apo biochemical state is well-described by a single structural state of myosin (M) with very restricted slow motion of the spin label. The ADP-bound biochemical state of myosin also reveals a single structural state (M*, shown previously to be the same as the post-powerstroke ATP-bound state), with less restricted slow motion of the spin label. In contrast, the extra resolution available at 94 GHz reveals that the EPR spectrum of the S1.ADP.Vi-bound biochemical state of myosin, which presumably mimics the S1.ADP.Pi state, is resolved clearly into three spectral components (structural states). One state is indistinguishable from that of the ADP-bound state (M*) and is characterized by moderate restriction and slow motion, with a mole fraction of 16%. The remaining 84% (M**) contains two additional components and is characterized by fast rotation about the x axis of the spin label. After analyzing EPR spectra, myosin ATPase activity, and available structural information for myosin II, we conclude that post-powerstroke and pre-powerstroke structural states (M* and M**) coexist in the S1.ADP.Vi biochemical state. We propose that the pre-powerstroke state M** is characterized by two structural states that could reflect flexibility between the converter and N-terminal domains of myosin.

Nesmelov, Yuri E.; Agafonov, Roman V.; Burr, Adam R.; Weber, Ralph T.; Thomas, David D.

2008-01-01

137

Myosin phosphatase and myosin phosphorylation in differentiating C2C12 cells  

Microsoft Academic Search

C2C12 cells offer a useful model to study the differentiation of non-muscle cells to skeletal muscle cells. Myosin phosphorylation\\u000a and changes in related enzymes, with an emphasis on myosin phosphatase (MP) were analyzed over the first 6 days of C2C12 differentiation.\\u000a There was a transition from myosin phosphatase target subunit 1 (MYPT1), predominant in the non-muscle cells to increased\\u000a expression

Yue Wu; Ferenc Erd?di; Andrea Murányi; Kevin D. Nullmeyer; Ronald M. Lynch; David J. Hartshorne

2003-01-01

138

An integrated in vitro and in situ study of kinetics of myosin II from frog skeletal muscle  

PubMed Central

A new efficient protocol for extraction and conservation of myosin II from frog skeletal muscle made it possible to preserve the myosin functionality for a week and apply single molecule techniques to the molecular motor that has been best characterized for its mechanical, structural and energetic parameters in situ. With the in vitro motility assay, we estimated the sliding velocity of actin on frog myosin II (VF) and its modulation by pH, myosin density, temperature (range 4–30°C) and substrate concentration. VF was 8.88 ± 0.26 ?m s?1 at 30.6°C and decreased to 1.60 ± 0.09 ?m s?1 at 4.5°C. The in vitro mechanical and kinetic parameters were integrated with the in situ parameters of frog muscle myosin working in arrays in each half-sarcomere. By comparing VF with the shortening velocities determined in intact frog muscle fibres under different loads and their dependence on temperature, we found that VF is 40–50% less than the fibre unloaded shortening velocity (V0) at the same temperature and we determined the load that explains the reduced value of VF. With this integrated approach we could define fundamental kinetic steps of the acto-myosin ATPase cycle in situ and their relation with mechanical steps. In particular we found that at 5°C the rate of ADP release calculated using the step size estimated from in situ experiments accounts for the rate of detachment of motors during steady shortening under low loads.

Elangovan, R; Capitanio, M; Melli, L; Pavone, F S; Lombardi, V; Piazzesi, G

2012-01-01

139

Cardiomyopathy-linked myosin regulatory light chain mutations disrupt myosin strain-dependent biochemistry  

PubMed Central

Familial hypertrophic cardiomyopathy (FHC) is caused by mutations in sarcomeric proteins including the myosin regulatory light chain (RLC). Two such FHC mutations, R58Q and N47K, located near the cationic binding site of the RLC, have been identified from population studies. To examine the molecular basis for the observed phenotypes, we exchanged endogenous RLC from native porcine cardiac myosin with recombinant human ventricular wild type (WT) or FHC mutant RLC and examined the ability of the reconstituted myosin to propel actin filament sliding using the in vitro motility assay. We find that, whereas the mutant myosins are indistinguishable from the controls (WT or native myosin) under unloaded conditions, both R58Q- and N47K-exchanged myosins show reductions in force and power output compared with WT or native myosin. We also show that the changes in loaded kinetics are a result of mutation-induced loss of myosin strain sensitivity of ADP affinity. We propose that the R58Q and N47K mutations alter the mechanical properties of the myosin neck region, leading to altered load-dependent kinetics that may explain the observed mutant-induced FHC phenotypes.

Greenberg, Michael J.; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

2010-01-01

140

Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer.  

PubMed

The upper 50-kDa region of myosin may be critical for coupling between the nucleotide- and actin-binding regions. We introduced a tetracysteine motif in the upper 50-kDa domain (residues 292-297) of myosin V containing a single IQ domain (MV 1IQ), allowing us to label this site with the fluorescein biarscenical hairpin-binding dye (FlAsH) (MV 1IQ FlAsH). The enzymatic properties of MV 1IQ FlAsH were similar to those of unlabeled MV 1IQ except for a 3-fold reduced ADP-release rate. MV 1IQ FlAsH was also capable of moving actin filaments in the in vitro motility assay. To examine rotation of the upper 50-kDa region, we determined the difference in the degree of energy transfer from N-methylanthraniloyl (mant)-labeled nucleotides to FlAsH in both steady-state and transient kinetic experiments. The energy transfer efficiency was higher with mant-ATP (0.65 +/- 0.02) compared with mant-ADP (0.55 +/- 0.02) in the absence of actin. Stopped-flow measurements suggested that the energy transfer efficiency decreased with phosphate release (0.04 s(-1)) in the absence of actin. In contrast, upon mixing MV 1IQ FlAsH in the ADP.P(i) state with actin, a decrease in the energy transfer signal was observed at a rate of 13 s(-1), similar to the ADP release rate. Our results demonstrate there was no change in the energy transfer signal upon actin-activated phosphate release and suggest that actin binding alters the dynamics of the upper 50-kDa region, which may be critical for the ability of myosin to bind tightly to both ADP and actin. PMID:16377637

Sun, Mingxuan; Oakes, Judy L; Ananthanarayanan, Shobana K; Hawley, Katherine H; Tsien, Roger Y; Adams, Stephen R; Yengo, Christopher M

2005-12-23

141

Postnatal regulation of myosin heavy chain isoform expression and metabolic enzyme activity by nutrition.  

PubMed

Development of muscle is critically dependent on several hormones which in turn are regulated by nutritional status. We therefore determined the impact of mild postnatal undernutrition on key markers of myofibre function: type I slow myosin heavy chain (MyHC) isoform, myosin ATPase, succinate dehydrogenase and alpha-glycerophosphate dehydrogenase. In situ hybridization, immunocytochemistry and enzyme histochemistry were used to assess functionally distinct muscles from 6-week-old pigs which had been fed an optimal (6% (60 g food/kg body weight per d)) or low (2% (20 g food/kg per d)) intake for 3 weeks, and kept at 26 degrees C. Nutritional status had striking muscle-specific influences on contractile and metabolic properties of myofibres, and especially on myosin isoform expression. A low food intake upregulated slow MyHC mRNA and protein levels in rhomboideus by 53% (P < 0.01) and 18% (P < 0.05) respectively; effects in longissimus dorsi, soleus and diaphragm were not significant. The oxidative capacity of all muscles increased on the low intake, albeit to varying extents: longissimus dorsi (55%), rhomboideus (30%), soleus (21%), diaphragm (7%). Proportions of slow oxidative fibres increased at the expense of fast glycolytic fibres. These novel findings suggest a critical role for postnatal nutrition in regulating myosin gene expression and muscle phenotype. They have important implications for optimal development of human infants: on a low intake, energetic efficiency will increase and the integrated response to many metabolic and growth hormones will alter, since both are dependent on myofibre type. Mechanisms underlying these changes probably involve complex interactions between hormones acting as nutritional signals and differential effects on their cell membrane receptors or nuclear receptors. PMID:11029969

White, P; Cattaneo, D; Dauncey, M J

2000-08-01

142

Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.  

PubMed Central

We measured isotonic sliding distance of single skinned fibers from rabbit psoas muscle when known and limited amounts of ATP were made available to the contractile apparatus. The fibers were immersed in paraffin oil at 20 degrees C, and laser pulse photolysis of caged ATP within the fiber initiated the contraction. The amount of ATP released was measured by photolyzing 3H-ATP within fibers, separating the reaction products by high-pressure liquid chromatography, and then counting the effluent peaks by liquid scintillation. The fiber stiffness was monitored to estimate the proportion of thick and thin filament sites interacting during filament sliding. The interaction distance, Di, defined as the sliding distance while a myosin head interacts with actin in the thin filament per ATP molecule hydrolyzed, was estimated from the shortening distance, the number of ATP molecules hydrolyzed by the myosin heads, and the stiffness. Di increased from 11 to 60 nm as the isotonic tension was reduced from 80% to 6% of the isometric tension. Velocity and Di increased with the concentration of ATP available. As isotonic load was increased, the interaction distance decreased linearly with decrease of the shortening velocity and extrapolated to 8 nm at zero velocity. Extrapolation of the relationship between Di and velocity to saturating ATP concentration suggests that Di reaches 100-190 nm at high shortening velocity. The interaction distance corresponds to the sliding distance while cross-bridges are producing positive (working) force plus the distance while they are dragging (producing negative forces). The results indicate that the working and drag distances increase as the velocity increases. Because Di is larger than the size of either the myosin head or the actin monomer, the results suggest that for each ATPase cycle, a myosin head interacts mechanically with several actin monomers either while working or while producing drag.

Higuchi, H; Goldman, Y E

1995-01-01

143

The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.  

PubMed

Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60 degrees . This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer. PMID:17275022

Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, Stefan

2006-12-23

144

The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.  

SciTech Connect

Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60{sup o}. This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.

Mesentean, Sidonia [University of Heidelberg; Koppole, Sampath [University of Heidelberg; Smith, Jeremy C [ORNL; Fischer, S. [University of Heidelberg

2007-03-01

145

Motoring around the plant cell: insights from plant myosins.  

PubMed

Organelle movement in plants cells is extremely dynamic. Movement is driven by the acto-myosin system. Higher plant myosins fall into two classes: classes XI and VIII. Localization studies have highlighted that myosins are present throughout the cytosol, label motile puncta and decorate the nuclear envelope and plasma membrane. Functional studies through expression of dominant-negative myosin variants, RNAi (RNA interference) and T-DNA insertional analysis have shown that class XI myosins are required for organelle movement. Intriguingly, organelle movement is also linked to Arabidopsis growth and development. The present review tackles current findings relating to plant organelle movement and the role of myosins. PMID:20491672

Sparkes, Imogen A

2010-06-01

146

Statistical mechanics of myosin molecular motors in skeletal muscles.  

PubMed

Statistical mechanics provides the link between microscopic properties of matter and its bulk properties. The grand canonical ensemble formalism was applied to contracting rat skeletal muscles, the soleus (SOL, n = 30) and the extensor digitalis longus (EDL, n = 30). Huxley's equations were used to calculate force (pi) per single crossbridge (CB), probabilities of six steps of the CB cycle, and peak muscle efficiency (Eff(max)). SOL and EDL were shown to be in near-equilibrium (CB cycle affinity 2.5 kJ/mol) and stationary state (linearity between CB cycle affinity and myosin ATPase rate). The molecular partition function (z) was higher in EDL (1.126+/-0.005) than in SOL (1.050+/-0.003). Both pi and Eff(max) were lower in EDL (8.3+/-0.1 pN and 38.1+/-0.2%, respectively) than in SOL (9.2+/-0.1 pN and 42.3+/-0.2%, respectively). The most populated step of the CB cycle was the last detached state (D3) (probability P(D3): 0.890+/-0.004 in EDL and 0.953+/-0.002 in SOL). In each muscle group, both pi and Eff(max) linearly decreased with z and statistical entropy and increased with P(D3). We concluded that statistical mechanics and Huxley's formalism provided a powerful combination for establishing an analytical link between chemomechanical properties of CBs, molecular partition function and statistical entropy. PMID:15882700

Lecarpentier, Y; Blanc, F-X; Quillard, J; Hébert, J-L; Krokidis, X; Coirault, C

2005-03-19

147

F1-ATPase changes its conformations upon phosphate release.  

PubMed

Motor proteins, myosin, and kinesin have gamma-phosphate sensors in the switch II loop that play key roles in conformational changes that support motility. Here we report that a rotary motor, F1-ATPase, also changes its conformations upon phosphate release. The tryptophan mutation was introduced into Arg-333 in the beta subunit of F1-ATPase from thermophilic Bacillus PS3 as a probe of conformational changes. This residue interacts with the switch II loop (residues 308-315) of the beta subunit in a nucleotide-bound conformation. The addition of ATP to the mutant F1 subcomplex alpha3beta(R333W)3gamma caused transient increase and subsequent decay of the Trp fluorescence. The increase was caused by conformational changes on ATP binding. The rate of decay agreed well with that of phosphate release monitored by phosphate-binding protein assays. This is the first evidence that the beta subunit changes its conformation upon phosphate release, which may share a common mechanism of exerting motility with other motor proteins. PMID:11880367

Masaike, Tomoko; Muneyuki, Eiro; Noji, Hiroyuki; Kinosita, Kazuhiko; Yoshida, Masasuke

2002-03-05

148

Relationship of the Membrane ATPase from Halobacterium saccharovorum to Vacuolar ATPases.  

National Technical Information Service (NTIS)

Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhi...

H. Stan-Lotter E. J. Bowman L. I. Hochstein

1991-01-01

149

Myosin phosphatase is inactivated by caspase-3 cleavage and phosphorylation of myosin phosphatase targeting subunit 1 during apoptosis  

PubMed Central

In nonapoptotic cells, the phosphorylation level of myosin II is constantly maintained by myosin kinases and myosin phosphatase. During apoptosis, caspase-3–activated Rho-associated protein kinase I triggers hyperphosphorylation of myosin II, leading to membrane blebbing. Although inhibition of myosin phosphatase could also contribute to myosin II phosphorylation, little is known about the regulation of myosin phosphatase in apoptosis. In this study, we have demonstrated that, in apoptotic cells, the myosin-binding domain of myosin phosphatase targeting subunit 1 (MYPT1) is cleaved by caspase-3 at Asp-884, and the cleaved MYPT1 is strongly phosphorylated at Thr-696 and Thr-853, phosphorylation of which is known to inhibit myosin II binding. Expression of the caspase-3 cleaved form of MYPT1 that lacked the C-terminal end in HeLa cells caused the dissociation of MYPT1 from actin stress fibers. The dephosphorylation activity of myosin phosphatase immunoprecipitated from the apoptotic cells was lower than that from the nonapoptotic control cells. These results suggest that down-regulation of MYPT1 may play a role in promoting hyperphosphorylation of myosin II by inhibiting the dephosphorylation of myosin II during apoptosis.

Iwasaki, Takahiro; Katayama, Takeshi; Kohama, Kazuhiro; Endo, Yaeta; Sawasaki, Tatsuya

2013-01-01

150

Myosin phosphatase is inactivated by caspase-3 cleavage and phosphorylation of myosin phosphatase targeting subunit 1 during apoptosis.  

PubMed

In nonapoptotic cells, the phosphorylation level of myosin II is constantly maintained by myosin kinases and myosin phosphatase. During apoptosis, caspase-3-activated Rho-associated protein kinase I triggers hyperphosphorylation of myosin II, leading to membrane blebbing. Although inhibition of myosin phosphatase could also contribute to myosin II phosphorylation, little is known about the regulation of myosin phosphatase in apoptosis. In this study, we have demonstrated that, in apoptotic cells, the myosin-binding domain of myosin phosphatase targeting subunit 1 (MYPT1) is cleaved by caspase-3 at Asp-884, and the cleaved MYPT1 is strongly phosphorylated at Thr-696 and Thr-853, phosphorylation of which is known to inhibit myosin II binding. Expression of the caspase-3 cleaved form of MYPT1 that lacked the C-terminal end in HeLa cells caused the dissociation of MYPT1 from actin stress fibers. The dephosphorylation activity of myosin phosphatase immunoprecipitated from the apoptotic cells was lower than that from the nonapoptotic control cells. These results suggest that down-regulation of MYPT1 may play a role in promoting hyperphosphorylation of myosin II by inhibiting the dephosphorylation of myosin II during apoptosis. PMID:23345589

Iwasaki, Takahiro; Katayama, Takeshi; Kohama, Kazuhiro; Endo, Yaeta; Sawasaki, Tatsuya

2013-01-23

151

Luminescence resonance energy transfer measurements in myosin.  

PubMed Central

Myosin is thought to generate force by a rotation between the relative orientations of two domains. Direct measurements of distances between the domains could potentially confirm and quantify these conformational changes, but efforts have been hampered by the large distances involved. Here we show that luminescence resonance energy transfer (LRET), which uses a luminescent lanthanide as the energy-transfer donor, is capable of measuring these long distances. Specifically, we measure distances between the catalytic domain (Cys707) and regulatory light chain domain (Cys108) of the myosin head. An energy transfer efficiency of 21.2 +/- 1.9% is measured in the myosin complex without nucleotide or actin, corresponding to a distance of 73 A, consistent with the crystal structure of Rayment et al. Upon binding to actin, the energy transfer efficiency decreases by 4.5 +/- 1.0%, indicating a conformational change in myosin that involves a relative rotation and/or translation of Cys707 relative to the light chain domain. Addition of ADP also alters the energy transfer efficiency, likely through a rotation of the probe attached to Cys707. These results demonstrate that LRET is capable of making accurate measurements on the relatively large actomyosin complex, and is capable of detecting conformational changes between the catalytic and light chain domains of myosin.

Burmeister Getz, E; Cooke, R; Selvin, P R

1998-01-01

152

Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics  

SciTech Connect

The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

2009-07-01

153

Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics  

PubMed Central

The subfragment 2/light meromyosin “hinge” region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

2009-01-01

154

Plant-Specific Myosin XI, a Molecular Perspective.  

PubMed

In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin-myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear. To achieve a better understanding of the plant-specific actin-myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana. Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation. PMID:22973289

Tominaga, Motoki; Nakano, Akihiko

2012-09-10

155

Plant-Specific Myosin XI, a Molecular Perspective  

PubMed Central

In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actin–myosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear. To achieve a better understanding of the plant-specific actin–myosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana. Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation.

Tominaga, Motoki; Nakano, Akihiko

2012-01-01

156

Atomic model of a myosin filament in the relaxed state  

Microsoft Academic Search

Contraction of muscle involves the cyclic interaction of myosin heads on the thick filaments with actin subunits in the thin filaments(1). Muscles relax when this interaction is blocked by molecular switches on either or both filaments(2). Insight into the relaxed ( switched OFF) structure of myosin has come from electron microscopic studies of smooth muscle myosin molecules, which are regulated

John L. Woodhead; Fa-Qing Zhao; Roger Craig; Edward H. Egelman; Lorenzo Alamo; R. Padron

2005-01-01

157

Purification of native myosin filaments from muscle.  

PubMed Central

Analysis of the structure and function of native thick (myosin-containing) filaments of muscle has been hampered in the past by the difficulty of obtaining a pure preparation. We have developed a simple method for purifying native myosin filaments from muscle filament suspensions. The method involves severing thin (actin-containing) filaments into short segments using a Ca(2+)-insensitive fragment of gelsolin, followed by differential centrifugation to purify the thick filaments. By gel electrophoresis, the purified thick filaments show myosin heavy and light chains together with nonmyosin thick filament components. Contamination with actin is below 3.5%. Electron microscopy demonstrates intact thick filaments, with helical cross-bridge order preserved, and essentially complete removal of thin filaments. The method has been developed for striated muscles but can also be used in a modified form to remove contaminating thin filaments from native smooth muscle myofibrils. Such preparations should be useful for thick filament structural and biochemical studies.

Hidalgo, C; Padron, R; Horowitz, R; Zhao, F Q; Craig, R

2001-01-01

158

Duplex RNA activated ATPases (DRAs)  

PubMed Central

Double-stranded RNAs are an important class of functional macromolecules in living systems. They are usually found as part of highly specialized intracellular machines that control diverse cellular events, ranging from virus replication, antiviral defense, RNA interference, to regulation of gene activities and genomic integrity. Within different intracellular machines, the RNA duplex is often found in association with specific RNA-dependent ATPases, including Dicer, RIG-I and DRH-3 proteins. These duplex RNA-activated ATPases represent an emerging group of motor proteins within the large and diverse super family 2 nucleic acid-dependent ATPases (which are historically defined as SF2 helicases). The duplex RNA-activated ATPases share characteristic molecular features for duplex RNA recognition, including motifs (e.g., motifs IIa and Vc) and an insertion domain (HEL2i), and they require double-strand RNA binding for their enzymatic activities. Proteins in this family undergo large conformational changes concomitant with RNA binding, ATP binding and ATP hydrolysis in order to achieve their functions, which include the release of signaling domains and the recruitment of partner proteins. The duplex RNA-activated ATPases represent a distinct and fascinating group of nanomechanical molecular motors that are essential for duplex RNA sensing and processing in diverse cellular pathways.

Luo, Dahai; Kohlway, Andrew; Pyle, Anna Marie

2013-01-01

159

Human myosin-IXb, an unconventional myosin with a chimerin-like rho\\/rac GTPase-activating protein domain in its tail  

Microsoft Academic Search

The full-length primary structure and expression profile of a novel unconventional myosin heavy chain, human myosin-IXb, is described. The primary structure of this myosin predicts a 229 kDa protein that together with its recently described rat homolog, myr 5, is the ninth class of myosins to be identified. In comparison to skeletal muscle myosin-II, the myosin-IXb 'head' has two unusual

J. A. Wirth; K. A. Jensen; P. L. Post; W. M. Bement; M. S. Mooseker

1996-01-01

160

4-Hydroxynonenal inhibits Na +-K +ATPase  

Microsoft Academic Search

4-Hydroxynonenal binds rapidly to Na+-K+-ATPase, and this was accompanied by a decrease in measurable sulfhydryl groups and a loss of enzyme activity. The I50 value for Na+-K+-ATPase inhibition by 4-hydroxynonenal was found to be 120 ?M. Although the sulfhydryl groups could be completely restored with ?-mercaptoethanol during the reaction of the Na+K+-ATPase-HNE-adduct, the Na+-K+-ATPase activity was only partially restored by

Werner G. Siems; Sharon J. Hapner; Frederik J. G. M. Van Kuijk

1996-01-01

161

Regulation of myosin-VI targeting to endocytic compartments.  

PubMed

Myosin-VI has been implicated in endocytic trafficking at both the clathrin-coated and uncoated vesicle stages. The identification of alternative splice forms led to the suggestion that splicing defines the vesicle type to which myosin-VI is recruited. In contrast to this hypothesis, we find that in all cell types examined, myosin-VI is associated with uncoated endocytic vesicles, regardless of splice form. GIPC, a PDZ-domain containing adapter protein, co-assembles with myosin-VI on these vesicles. Myosin-VI is only recruited to clathrin-coated vesicles in cells that express high levels of Dab2, a clathrin-binding adapter protein. Overexpression of Dab2 is sufficient to reroute myosin-VI to clathrin-coated pits in cells where myosin-VI is normally associated with uncoated vesicles. In normal rat kidney (NRK) cells, which express high endogenous levels of Dab2, splicing of the globular tail domain further modulates targeting of ectopically expressed myosin-VI. Although myosin-VI can be recruited to clathrin-coated pits, we find no requirement for myosin-VI motor activity in endocytosis in NRK cells. Instead, our data suggest that myosin-VI recruitment to clathrin-coated pits may be an early step in the recruitment of GIPC to the vesicle surface. PMID:15355515

Dance, Amber L; Miller, Matthew; Seragaki, Shinobu; Aryal, Prafulla; White, Breanne; Aschenbrenner, Laura; Hasson, Tama

2004-10-01

162

Myosin VI Is Required for Targeted Membrane Transport during Cytokinesis  

PubMed Central

Myosin VI plays important roles in endocytic and exocytic membrane-trafficking pathways in cells. Because recent work has highlighted the importance of targeted membrane transport during cytokinesis, we investigated whether myosin VI plays a role in this process during cell division. In dividing cells, myosin VI undergoes dramatic changes in localization: in prophase, myosin VI is recruited to the spindle poles; and in cytokinesis, myosin VI is targeted to the walls of the ingressing cleavage furrow, with a dramatic concentration in the midbody region. Furthermore, myosin VI is present on vesicles moving into and out of the cytoplasmic bridge connecting the two daughter cells. Inhibition of myosin VI activity by small interfering RNA (siRNA)-mediated knockdown or by overexpression of dominant-negative myosin VI tail leads to a delay in metaphase progression and a defect in cytokinesis. GAIP-interacting protein COOH terminus (GIPC), a myosin VI binding partner, is associated with the function(s) of myosin VI in dividing cells. Loss of GIPC in siRNA knockdown cells results in a more than fourfold increase in the number of multinucleated cells. Our results suggest that myosin VI has novel functions in mitosis and that it plays an essential role in targeted membrane transport during cytokinesis.

Arden, Susan D.; Puri, Claudia; Au, Josephine Sui-Yan; Kendrick-Jones, John

2007-01-01

163

The effect of polyethylene glycol on the mechanics and ATPase activity of active muscle fibers.  

PubMed

We have used polyethylene glycol (PEG) to perturb the actomyosin interaction in active skinned muscle fibers. PEG is known to potentiate protein-protein interactions, including the binding of myosin to actin. The addition of 5% w/v PEG (MW 300 or 4000) to active fibers increased fiber tension and decreased shortening velocity and ATPase activity, all by 25-40%. Variation in [ADP] or [ATP] showed that the addition of PEG had little effect on the dissociation of the cross-bridge at the end of the power stroke. Myosin complexed with ADP and the phosphate analog V(i) or AlF(4) binds weakly to actin and is an analog of a pre-power-stroke state. PEG substantially enhances binding of these states both in active fibers and in solution. Titration of force with increasing [P(i)] showed that PEG increased the free energy available to drive the power stroke by about the same amount as it increased the free energy available from the formation of the actomyosin bond. Thus PEG potentiates the binding of myosin to actin in active fibers, and it provides a method for enhancing populations of some states for structural or mechanical studies, particularly those of the normally weakly bound transient states that precede the power stroke. PMID:10653805

Chinn, M K; Myburgh, K H; Pham, T; Franks-Skiba, K; Cooke, R

2000-02-01

164

Polymorphism of myosin light chains. An electrophoretic and immunological study of rabbit skeletal-muscle myosins.  

PubMed Central

Antibodies specific for rabbit fast-twitch-muscle myosin LCIF light chain were purified by affinity chromatography and characterized by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA) and a gel-electrophoresis-derived assay (GEDELISA). The antibodies did not cross-react with myosin heavy chains, and were weakly cross-reactive with the LC2F [5,5'-dithio-(2-nitrobenzoic acid)-dissociated] light chain and with all classes of dissociated light chains (LC1Sa, LC1Sb and LC2S), as well as with the whole myosin, from hind-limb slow-twitch muscle. The immunoreactivity of myosins with a truly mixed light-chain pattern (e.g. vastus lateralis and gastrocnemius) correlated with percentage content of fast-twitch-muscle-type light chains. A more extensive immunoreactivity was observed with diaphragm and masseter myosins, which were also characterized, respectively, by a relative or absolute deficiency of LC1Sa light chain. Furthermore, it was found that the LC1Sb light chain of masseter myosin is antigenically different from its slow-twitch-muscle myosin analogue, and is immunologically related to the LC1F light chain. Rabbit masseter muscle from its metabolic and physiological properties and the content, activity and immunological properties of sarcoplasmic-reticulum adenosine triphosphatase, is classified as a red, predominantly fast-twitch, muscle. Therefore our results suggest that the two antigenically different iso-forms of LC1Sb light chain are associated with the myosins of fast-twitch red and slow-twitch red fibres respectively. Images Fig. 2. Fig. 5. Fig. 6.

Biral, D; Damiani, E; Volpe, P; Salviati, G; Margreth, A

1982-01-01

165

Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle  

Microsoft Academic Search

Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+\\/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a

James T. Stull; Kristine E. Kamm; Rene Vandenboom

2011-01-01

166

Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction  

Microsoft Academic Search

Repetitive stimulation potentiates contractile tension of fast-twitch skeletal muscle. We examined the role of myosin regulatory light chain (RLC) phosphorylation in this physiological response by ablating Ca2+\\/calmodulin-dependent skeletal muscle myosin light chain kinase (MLCK) gene expression. Western blot and quantitative-PCR showed that MLCK is expressed predominantly in fast-twitch skeletal muscle fibers with insignificant amounts in heart and smooth muscle. In

Gang Zhi; Jeffrey W. Ryder; Jian Huang; Peiguo Ding; Yue Chen; Yingming Zhao; Kristine E. Kamm; James T. Stull

2005-01-01

167

Phosphorylation of human skeletal muscle myosin  

SciTech Connect

Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

1986-03-01

168

Myosin Light Chain Mono- and Di-Phosphorylation Differentially Regulate Adhesion and Polarity in Migrating Cells  

PubMed Central

Myosin II is a critical regulator of cell migration that generates polarity, controls protrusion, and promotes adhesion maturation and retraction of the rear. Myosin II has an ATPase motor domain that is regulated by phosphorylation of the regulatory light chain (RLC) on Thr18 and Ser19. Here, we address the activation and specific function of the two phosphorylation states of the RLC, mono- (S19) and/or di-phosphorylation (T18+S19), in cell polarity and adhesion. Specific phospho-antibodies reveal that adhesion to fibronectin via the ?5?1 integrin promotes localized mono- and di-phosphorylation of the RLC that follow different kinetics. Using phospho-mimetic mutants, we show that mono-phosphorylation promotes adhesion maturation in protrusions resulting in focal adhesions throughout the cell. In contrast, di-phosphorylation produces large, stable actomyosin bundles and large, non-dynamic adhesions that define the rear. Finally, RLC phosphorylation regulates the assembly and stability of MIIB, but not MIIA. Our data reveal a novel mechanism by which the degree of phosphorylation of the RLC differentially controls cell adhesion and polarity.

Vicente-Manzanares, Miguel; Horwitz, Alan Rick

2010-01-01

169

Effects of low-level ?-myosin heavy chain expression on contractile kinetics in porcine myocardium  

PubMed Central

Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ?10% ?-MHC on a predominantly ?-MHC background, while in failing human ventricles ?-MHC is virtually eliminated, suggesting that low-level ?-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (fapp) and detachment (gapp) in porcine myocardium expressing either 100% ?-MHC or 100% ?-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (?100% ?-MHC) and left ventricular (?100% ?-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (ktr) in solutions of varying Ca2+ concentration. The rate of ATP utilization and ktr were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated fapp to be ?10-fold higher in ?- compared with ?-MHC, while gapp was 8-fold higher in ?-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% ?-MHC increases the maximal rate of rise of force (dF/dtmax) by 92% compared with 0% ?-MHC. These results suggest that low-level expression of ?-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium.

Razumova, Maria V.; Stelzer, Julian E.; Norman, Holly S.; Moss, Richard L.

2011-01-01

170

Class VI Myosin Moves Processively along Actin Filaments Backward with Large Steps  

Microsoft Academic Search

Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large (?36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large (?36 nm) steps and it is believed that myosin V strides along the actin helical repeat

So Nishikawa; Kazuaki Homma; Yasunori Komori; Mitsuhiro Iwaki; Tetsuichi Wazawa; Atsuko Hikikoshi Iwone; Junya Saito; Reiko Ikebe; Eisaku Katayama; Toshio Yanagida; Mitsuo Ikebe

2002-01-01

171

The effect of myosin antibody on the division of starfish blastomeres  

Microsoft Academic Search

Antiserum against starfish egg myosin was produced in rabbits. Antibody specific- ity to myosin was demonstrated by Ouchterlony's immunodiffusion test and by immunoelectrophoresis in the presence of sodium dodecylsulfate (SDS). The latter technique showed that the antibody binds to both heavy and light chains of egg myosin. Furthermore, the antibody reacted with starfish sperm myosin and starfish adult muscle myosin

ISSEI MABUCHI; MAKOTO OKUNO

1977-01-01

172

Comparison of orientation and rotational motion of skeletal muscle cross-bridges containing phosphorylated and dephosphorylated myosin regulatory light chain.  

PubMed

Calcium binding to thin filaments is a major element controlling active force generation in striated muscles. Recent evidence suggests that processes other than Ca(2+) binding, such as phosphorylation of myosin regulatory light chain (RLC) also controls contraction of vertebrate striated muscle (Cooke, R. (2011) Biophys. Rev. 3, 33-45). Electron paramagnetic resonance (EPR) studies using nucleotide analog spin label probes showed that dephosphorylated myosin heads are highly ordered in the relaxed fibers and have very low ATPase activity. This ordered structure of myosin cross-bridges disappears with the phosphorylation of RLC (Stewart, M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 430-435). The slower ATPase activity in the dephosporylated moiety has been defined as a new super-relaxed state (SRX). It can be observed in both skeletal and cardiac muscle fibers (Hooijman, P., Stewart, M. A., and Cooke, R. (2011) Biophys. J. 100, 1969-1976). Given the importance of the finding that suggests a novel pathway of regulation of skeletal muscle, we aim to examine the effects of phosphorylation on cross-bridge orientation and rotational motion. We find that: (i) relaxed cross-bridges, but not active ones, are statistically better ordered in muscle where the RLC is dephosporylated compared with phosphorylated RLC; (ii) relaxed phosphorylated and dephosphorylated cross-bridges rotate equally slowly; and (iii) active phosphorylated cross-bridges rotate considerably faster than dephosphorylated ones during isometric contraction but the duty cycle remained the same, suggesting that both phosphorylated and dephosphorylated muscles develop the same isometric tension at full Ca(2+) saturation. A simple theory was developed to account for this fact. PMID:23319584

Midde, Krishna; Rich, Ryan; Marandos, Peter; Fudala, Rafal; Li, Amy; Gryczynski, Ignacy; Borejdo, Julian

2013-01-14

173

Myosin VI Stabilizes an Actin Network during Drosophila Spermatid Individualization  

PubMed Central

Here, we demonstrate a new function of myosin VI using observations of Drosophila spermatid individualization in vivo. We find that myosin VI stabilizes a branched actin network in actin structures (cones) that mediate the separation of the syncytial spermatids. In a myosin VI mutant, the cones do not accumulate F-actin during cone movement, whereas overexpression of myosin VI leads to bigger cones with more F-actin. Myosin subfragment 1-fragment decoration demonstrated that the actin cone is made up of two regions: a dense meshwork at the front and parallel bundles at the rear. The majority of the actin filaments were oriented with their pointed ends facing in the direction of cone movement. Our data also demonstrate that myosin VI binds to the cone front using its motor domain. Fluorescence recovery after photobleach experiments using green fluorescent protein-myosin VI revealed that myosin VI remains bound to F-actin for minutes, suggesting its role is tethering, rather than transporting cargo. We hypothesize that myosin VI protects the actin cone structure either by cross-linking actin filaments or anchoring regulatory molecules at the cone front. These observations uncover a novel mechanism mediated by myosin VI for stabilizing long-lived actin structures in cells.

Lenartowska, Marta; Miller, Kathryn G.

2006-01-01

174

[Calcium ions in the regulation of acto-myosin interactions].  

PubMed

Muscle contraction and different forms of motility of nonmuscle cells depend on cyclic interactions between actin filaments and myosin motors. Calcium ions are the main intracellular signal, which induces activation of actin-myosin interactions. Depending on the cell type and the class of myosin, the molecular mechanisms of regulation are different and take place on two levels - actin filament and myosin. In striated muscle, the actin thin filament is regulated by the troponin-tropomyosin complex. In smooth muscle and nonmuscle cells, actin filaments are predominantly regulated by caldesmon. The control of myosin activity in these cells also depends on the myosin light chain phosphorylation and the phosphorylation of the heavy chain. Direct binding of calcium ions to the myosin light chains (which could be calmodulin molecules) was observed in myosin from molluscan muscle and in some unconventional myosins. Intensive world-wide studies allow us to understand details of the mechanisms of actin-myosin interactions. In this article, we present the contemporary view on these mechanisms. PMID:23662437

Moraczewska, Joanna; Sliwi?ska, Ma?gorzata; Redowicz, Maria Jolanta

2012-01-01

175

Conformational changes due to calcium-induced calmodulin dissociation in brush border myosin I-decorated F-actin revealed by cryoelectron microscopy and image analysis.  

PubMed

Brush border myosin I (BBMI) is a single-headed molecular motor. Its catalytic domain exhibits extensive sequence homology to the catalytic domain of myosin II, while its tail lacks the coiled-coil nature of myosin II. The BBMI tail domain contains at least three IQ motifs and binds calmodulin. Addition of calcium removes one of these calmodulin light chains, with effects on ATPase activity and motility in in vitro assays. Using the techniques of cryoelectron microscopy and helical image analysis we have calculated three-dimensional (3D) maps of BBMI-decorated actin filaments prepared in the presence and absence of calcium. The 3D maps describe a BBMI catalytic domain that is strikingly similar to the catalytic domain of myosin II subfragment 1 (S1), with the exception of a short amino-terminal region of the heavy chain, which is absent from BBMI. The tail domains of BBMI and S1 are highly divergent in structure, continuing on from their respective motor domains with very different geometries. Addition of calcium to BBMI, and the concomitant loss of a calmodulin light chain, results in an extensive reorganization of mass in the tail domain. PMID:9217259

Whittaker, M; Milligan, R A

1997-06-20

176

Three-dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity  

PubMed Central

Summary Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLC). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free-head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens reveals that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal here has been to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction reveals intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC, and fitted to the reconstruction an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 crystal structure. The fitting suggests an intramolecular interaction between the cardiomyopathy loop of the free-head and its own S2 and two intermolecular interactions—between the cardio-loop of the free head and the ELC of the blocked head, and between the Leu-305 - Gln-327 “interaction loop” (loop I) of the free-head and the N-terminal fragment of the RLC of the blocked-head. These interactions, added to those previously described, would help to switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.

Alamo, Lorenzo; Wriggers, Willy; Pinto, Antonio; Bartoli, Fulvia; Salazar, Leiria; Zhao, Fa-Qing; Craig, Roger; Padron, Raul

2008-01-01

177

Phosphate release coupled to rotary motion of F1-ATPase.  

PubMed

F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped molecular motor formed by three ??-dimers creates torque on its central ?-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomistic conformation of the intermediate state following the 40° substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the ?-subunit in the hydrolysis direction, the nucleotide-free ??E interface forming the "empty" E site loosens and singly charged Pi readily escapes to the P loop. By contrast, the interface stays closed with doubly charged Pi. The ?-rotation tightens the ATP-bound ??TP interface, as required for hydrolysis. The calculated rate for the outward release of doubly charged Pi from the ??E interface 120° after ATP hydrolysis closely matches the ?1-ms functional timescale. Conversely, Pi release from the ADP-bound ??DP interface postulated in earlier models would occur through a kinetically infeasible inward-directed pathway. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystallographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40° substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin despite the different functional motions. PMID:24062450

Okazaki, Kei-Ichi; Hummer, Gerhard

2013-09-23

178

Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density  

PubMed Central

The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L–null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H–null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons.

Rao, Mala V.; Engle, Linda J.; Mohan, Panaiyur S.; Yuan, Aidong; Qiu, Dike; Cataldo, Anne; Hassinger, Linda; Jacobsen, Stephen; Lee, Virginia M-Y.; Andreadis, Athena; Julien, Jean-Pierre; Bridgman, Paul C.; Nixon, Ralph A.

2002-01-01

179

Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.  

PubMed

Myofibrillar protein from pork Longissimus muscle was oxidatively stressed for 2 and 24 h at 4 °C with mixed 10 ?M FeCl(3)/100 ?M ascorbic acid/1, 5, or 10 mM H(2)O(2) (which produces hydroxyl radicals) and then treated with microbial transglutaminase (MTG) (E:S = 1:20) for 2 h at 4 °C. Oxidation induced significant protein structural changes (P < 0.05) as evidenced by suppressed K-ATPase activity, elevated Ca-ATPase activity, increased carbonyl and disulfide contents, and reduced conformational stability, all in a H(2)O(2) dose-dependent manner. The structural alterations, notably with mild oxidation, led to stronger MTG catalysis. More substantial amine reductions (19.8-27.6%) at 1 mM H(2)O(2) occurred as compared to 11.6% in nonoxidized samples (P < 0.05) after MTG treatment. This coincided with more pronounced losses of myosin in oxidized samples (up to 33.2%) as compared to 21.1% in nonoxidized (P < 0.05), which was attributed to glutamine-lysine cross-linking as suggested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PMID:22809283

Li, Chunqiang; Xiong, Youling L; Chen, Jie

2012-07-31

180

Precise Positioning of Myosin VI on Endocytic Vesicles In Vivo  

PubMed Central

Myosin VI has been studied in both a monomeric and a dimeric form in vitro. Because the functional characteristics of the motor are dramatically different for these two forms, it is important to understand whether myosin VI heavy chains are brought together on endocytic vesicles. We have used fluorescence anisotropy measurements to detect fluorescence resonance energy transfer between identical fluorophores (homoFRET) resulting from myosin VI heavy chains being brought into close proximity. We observed that, when associated with clathrin-mediated endocytic vesicles, myosin VI heavy chains are precisely positioned to bring their tail domains in close proximity. Our data show that on endocytic vesicles, myosin VI heavy chains are brought together in an orientation that previous in vitro studies have shown causes dimerization of the motor. Our results are therefore consistent with vesicle-associated myosin VI existing as a processive dimer, capable of its known trafficking function.

Hasson, Tama; Spudich, James A; Mayor, Satyajit

2007-01-01

181

Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics  

NASA Astrophysics Data System (ADS)

The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

2013-03-01

182

Metal Switch-controlled Myosin II from Dictyostelium discoideum Supports Closure of Nucleotide Pocket during ATP Binding Coupled to Detachment from Actin Filaments.  

PubMed

G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region. PMID:23960071

Cochran, Jared C; Thompson, Morgan E; Kull, F Jon

2013-08-19

183

Potential roles of myosin VI in cell motility  

PubMed Central

There is now increasing evidence that myosin motor proteins together with the dynamic actin filament machinery and associated adhesion proteins play crucial roles in the events leading to motility at the leading edge of migrating cells. Myosins exist as a large superfamily of diverse ATP-dependent motors and in this review we will focus on the unique minus-end directed myosin VI, briefly discussing its potential functions in cell motility

Chibalina, MV; Puri, C; Kendrick-Jones, J; Buss, F

2012-01-01

184

Formation of reverse rigor chevrons by myosin heads  

Microsoft Academic Search

THE uniform angle and conformation of myosin subfragment 1 (S1) bound to actin filaments (F-actin) attest to the precise alignment and stereospecificity of the binding of these two contractile proteins1,2. Because actin filaments are polar3, myosin heads must swing or rotate about the head-tail junction in order to bind. Electron microscopy of isolated thick filaments4 and of myosin molecules5 suggests

Mary C. Reedy; Clifford Beall; Eric Fyrberg

1989-01-01

185

Myosin Vb Is Associated with Plasma Membrane Recycling Systems  

Microsoft Academic Search

Myosin Va is associated with discrete vesicle populations in a number of cell types, but little is known of the function of myosin Vb. Yeast two-hybrid screening of a rabbit parietal cell cDNA library with dominant active Rab11a (Rab11aS20V) identified myosin Vb as an interacting protein for Rab11a, a marker for plasma membrane recycling systems. The isolated clone, corresponding to

Lynne A. Lapierre; Ravindra Kumar; Chadwick M. Hales; Jennifer Navarre; Sheela G. Bhartur; Jason O. Burnette; D. William; John A. Mercer; Martin Bahler; James R. Goldenring

2001-01-01

186

ActoMyosin Drug Effects and Aqueous Outflow Function  

Microsoft Academic Search

PIJKPOSI-:. Previous studies have identified the cytoskeletal proteins actin and tubulin as potential cellular targets in the trabecular meshwork for novel glaucoma therapy. The authors and others have hypothesized that acto-myosin interactions may be important for outflow function. The current study was conducted to evaluate 2,3-butanedione 2-monoxime (BDM), a compound that interferes with acto-myosin function through the myosin adenosine triphosphata.se

David L Epstein; Laura-Leigh Rowlette; Bruce C. Roberts

187

Energetics of conformational transition in proteolytically nicked myosin S-1  

Microsoft Academic Search

Force production in muscle contraction results from structural changes in myosin crossbridges. During ATP hydrolysis myosin crossbridges exhibit at least two conformational states referred to as prepower stroke and postpower stroke respectively. Conformational changes in myosin proteolytic fragment S-1, which represent cross-bridges were studied in this research using UV absorption difference spectroscopy and ¹⁹F NMR. The heavy chain of S-1

Kamath

1987-01-01

188

Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.  

PubMed

Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A), national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training) and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training). Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC) composition. Significant differences (P<0.05) regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX) and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX) and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX). Unexpectedly, endurance athletes (group B) such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C) such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A). We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training. PMID:15493580

Zawadowska, B; Majerczak, J; Semik, D; Karasinski, J; Kolodziejski, L; Kilarski, W M; Duda, K; Zoladz, J A

2004-01-01

189

Localization of unconventional myosins V and VI in neuronal growth cones.  

PubMed

Class V and VI myosins, two of the six known classes of actin-based motor genes expressed in vertebrate brain (Class I, II, V, VI, IX, and XV), have been suggested to be organelle motors. In this report, the neuronal expression and subcellular localization of chicken brain myosin V and myosin VI is examined. Both myosins are expressed in brain during embryogenesis. In cultured dorsal root ganglion (DRG) neurons, immunolocalization of myosin V and myosin VI revealed a similar distribution for these two myosins. Both are present within cell bodies, neurites and growth cones. Both of these myosins exhibit punctate labeling patterns that are found in the same subcellular region as microtubules in growth cone central domains. In peripheral growth cone domains, where individual puncta are more readily resolved, we observe a similar number of myosin V and myosin VI puncta. However, less than 20% of myosin V and myosin VI puncta colocalize with each other in the peripheral domains. After live cell extraction, punctate staining of myosin V and myosin VI is reduced in peripheral domains. However, we do not detect such changes in the central domains, suggesting that these myosins are associated with cytoskeletal/organelle structures. In peripheral growth cone domains myosin VI exhibits a higher extractability than myosin V. This difference between myosin V and VI was also found in a biochemical growth cone particle preparation from brain, suggesting that a significant portion of these two motors has a distinct subcellular distribution. PMID:10645976

Suter, D M; Espindola, F S; Lin, C H; Forscher, P; Mooseker, M S

2000-02-15

190

Decreased activity of Ca(++)-ATPase and Na(+)/K(+)-ATPase during aging in humans.  

PubMed

Aging is a biological process characterized by a progressive functional impairment which is associated with increased susceptibility to a variety of diseases. The main purpose of this study is to understand the gender-based relationship between human aging and activities of two erythrocyte membranes bound enzymes, Ca(++)-ATPase and Na(+)/K(+)-ATPase. Ca(++)-ATPase and Na(+)/K(+)-ATPase activities were determined as per the previous reports. Statistical differences were analyzed with Student's t test. Our results show a significant (p<0.0001) decrease in the Ca(++)-ATPase and Na(+)/K(+)-ATPase activities in males and females as a function of age. We also correlate the activities of ATPases with total antioxidant capacity of the plasma in term of ferric reducing ability of plasma values. The Ca(++)-ATPase and Na(+)/K(+)-ATPase activities positively correlated with ferric reducing ability of plasma value. No significant differences in the ATPase activity between males and females were observed. Decreased activity of Ca(++)-ATPase and Na(+)/K(+)-ATPase during human aging may be due to increased free radical generation which leads to oxidative stress and alter the erythrocyte membrane transport function and other activities. Our results emphasize the need to establish age-dependent reference values for membrane bound enzymes in studies involving its role in different disease conditions. PMID:23483411

Maurya, Pawan Kumar; Prakash, Siya

2013-03-13

191

A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase).  

PubMed

The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPase has a structure and mechanism of action similar to F-ATPase and several of their subunits probably evolved from common ancestors. In eukaryotic cells, F-ATPase is confined to the semiautonomous organelles, chloroplasts and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the protonmotive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. It was the survival of the yeast mutant without the active enzyme and yeast genetics that allowed the identification of genuine subunits of the V-ATPase. It also revealed special properties of individual subunits, factors that are involved in the enzyme's biogenesis and assembly, as well as the involvement of V-ATPase in the secretory pathway, endocytosis, and respiration. It may be the insect V-ATPase that unconventionally resides in the plasma membrane of their midgut, that will give the first structure resolution of this complex. PMID:14635774

Nelson, Nathan

2003-08-01

192

Myosin-X Induces Filopodia by Multiple Elongation Mechanism*  

PubMed Central

Filopodia are actin-rich finger-like cytoplasmic projections extending from the leading edge of cells. Unconventional myosin-X is involved in the protrusion of filopodia. However, the underlying mechanism of myosin-X-induced filopodia formation is obscure. Here, we studied the movements of myosin-X during filopodia protrusion using a total internal reflection microscope to clarify the mechanism of myosin-X-induced filopodia formation. Myosin-X was recruited to the discrete site at the leading edge where it assembles with exponential kinetics before the filopodia extension. The myosin-X-induced filopodia showed repeated extension-retraction cycles with each extension of 2.4 ?m, which was critical to produce long filopodia. Myosin-X, lacking the FERM domain, could move to the tip as does the wild type. However, it was transported toward the cell body during filopodia retraction, did not undergo multiple extension-retraction cycles, and failed to produce long filopodia. During the filopodia protrusion, the single molecules of full-length myosin-X moved within filopodia. The majority of the fluorescence spots showed two-step photobleaching, suggesting that the moving myosin-X is a dimer. Deletion of the FERM domain did not change the movement at the single molecule level with the same velocity of ?600 nm/s as wild-type, suggesting that the myosin-X in filopodia moves without interaction with the attached membrane via the FERM domain. Based upon these results, we have proposed a model of myosin-X-induced filopodia protrusion.

Watanabe, Tomonobu M.; Tokuo, Hiroshi; Gonda, Kohsuke; Higuchi, Hideo; Ikebe, Mitsuo

2010-01-01

193

Inhibition of Actomyosin ATPase by Vanadate  

Microsoft Academic Search

Actin-myosin subfragment-1 (SF-1) or actin-heavy meromyosin is dissociated by the binding of ADP and vanadate (Vi) under conditions such that ADP alone does not dissociate the complex. The association constant of the stable complex M\\\\cdot ADP\\\\cdot Vi{}dagger, in which M indicates myosin [Goodno, C. C. (1979) Proc. Natl. Acad. Sci. USA 76, 2620-2624] with actin is smaller than the average

C. C. Goodno; E. W. Taylor

1982-01-01

194

Nonmuscle myosin dependent synthesis of type I collagen  

PubMed Central

Type I collagen is the most abundant protein in human body synthesized in all tissues as the heterotrimer of two ?1(I) and one ?2(I) polypeptides. Here we show that intact nonmuscle myosin filaments are required for synthesis of heterotrimeric type I collagen. Conserved 5? stem-loop in collagen ?1(I) and ?2(I) mRNAs binds RNA binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion collagen ?1(I) homotrimer, in diminished intracellular colocalization of collagen ?1(I) and ?2(I) polypeptides, which is required for folding of the heterotrimer, and in their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes and there is a subset of polysomes involved in myosin dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen ?1(I) and ?2(I) polypeptides. We postulate that LARP6/myosin dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating translation of collagen mRNAs.

Cai, Le; Fritz, Dillon; Stefanovic, Lela; Stefanovic, Branko

2010-01-01

195

Myosin XI is essential for tip growth in Physcomitrella patens.  

PubMed

Class XI myosins are plant specific and responsible for cytoplasmic streaming. Because of the large number of myosin XI genes in angiosperms, it has been difficult to determine their precise role, particularly with respect to tip growth. The moss Physcomitrella patens provides an ideal system to study myosin XI function. P. patens has only two myosin XI genes, and these genes encode proteins that are 94% identical to each other. To determine their role in tip growth, we used RNA interference to specifically silence each myosin XI gene using 5' untranslated region sequences. We discovered that the two myosin XI genes are functionally redundant, since silencing of either gene does not affect growth or polarity. However, simultaneous silencing of both myosin XIs results in severely stunted plants composed of small rounded cells. Although similar to the phenotype resulting from silencing of other actin-associated proteins, we show that this phenotype is not due to altered actin dynamics. Consistent with a role in tip growth, we show that a functional, full-length fusion of monomeric enhanced green fluorescent protein (mEGFP) to myosin XI accumulates at a subcortical, apical region of actively growing protonemal cells. PMID:20525854

Vidali, Luis; Burkart, Graham M; Augustine, Robert C; Kerdavid, Erin; Tüzel, Erkan; Bezanilla, Magdalena

2010-06-04

196

MYOSIN ISOENZYMES AS MOLECULAR MARKERS FOR MUSCLE PHYSIOLOGY  

Microsoft Academic Search

SUMMARY Myosin is a major component of skeletal muscle and it plays a central role in determining the physiological performance of adult tissue. Developing muscles contain myosin molecules which are different from the adult forms, and these isoenzymes have been found to be characteristic markers of the diverse physiological and pathological states of muscle tissue. The differences between these isoenzymes

ROBERT G. WHALEN

197

Walking mechanism of the intracellular cargo transporter myosin V  

Microsoft Academic Search

Motor proteins of the myosin, kinesin and dynein families transport vesicles and other cargo along tracks of actin filaments or microtubules through the cytoplasm of cells. The mechanism by which myosin V, a motor involved in several types of intracellular transport, moves processively along actin filaments, has recently been the subject of many single molecule biophysical studies. Details of the

Stephan Schmitz; Jayne Smith-Palmer; Takeshi Sakamoto; James R. Sellers; Claudia Veigel

2006-01-01

198

Myosin-X: a MyTH-FERM myosin at the tips of filopodia  

PubMed Central

Myosin-X (Myo10) is an unconventional myosin with MyTH4-FERM domains that is best known for its striking localization to the tips of filopodia and its ability to induce filopodia. Although the head domain of Myo10 enables it to function as an actin-based motor, its tail contains binding sites for several molecules with central roles in cell biology, including phosphatidylinositol (3,4,5)-trisphosphate, microtubules and integrins. Myo10 also undergoes fascinating long-range movements within filopodia, which appear to represent a newly recognized system of transport. Myo10 is also unusual in that it is a myosin with important roles in the spindle, a microtubule-based structure. Exciting new studies have begun to reveal the structure and single-molecule properties of this intriguing myosin, as well as its mechanisms of regulation and induction of filopodia. At the cellular and organismal level, growing evidence demonstrates that Myo10 has crucial functions in numerous processes ranging from invadopodia formation to cell migration.

Kerber, Michael L.; Cheney, Richard E.

2011-01-01

199

Interaction between myosin and a trace amount of caldesmon.  

PubMed

Caldesmon (CaD) is known as an actin binding protein. In this study, we proposed that a trace amount of caldesmon (TACD) could highly, efficiently, interact with myosin by producing a 'domino-like cascade' and characterized that TACD (lowest caldesmon/myosin molar ratio: 1/10,000) significantly increased precipitations and intrinsic tryptophan fluorescence intensity of myosin in both phosphorylated and unphosphorylated states compared to the base controls (P < 0.01). Actin-blocked TACD-myosin interaction, suggesting that it functioned as a negative regulator. Since CaD is not an enzyme, the in vivo significance of the highly efficient TACD-myosin interaction needs further investigation. PMID:21729927

Zhang, Ying; Tang, Ze-Yao; Kohama, Kazuhiro; Lin, Yuan

2011-07-04

200

Molecular Characterization of Myosin Phosphatase in Endothelium  

PubMed Central

The phosphorylation status of myosin light chain (MLC) is regulated by both MLC kinases and type 1 Ser/Thr phosphatase (PPase 1), MLC phosphatase (MLCP) activities. The activity of the catalytic subunit of MLCP (CS1?) towards myosin depends on its associated regulatory subunit, namely myosin PPase targeting subunit 1 (MYPT1). Our previously published data strongly suggested the involvement of MLCP in endothelial cell (EC) barrier regulation. In this paper, our new data demonstrates that inhibition of MLCP by either CS1? or MYPT1 siRNA-based depletion results in significant attenuation of purine nucleotide (ATP and adenosine)-induced EC barrier enhancement. Consistent with the data, thrombin-induced EC F-actin stress fiber formation and permeability increase were attenuated by the ectopic expression of constitutively active (C/A) MYPT1. The data demonstrated for the first time direct involvement of MLCP in EC barrier enhancement/protection. Cloning of MYPT1 in human pulmonary artery EC (HPAEC) revealed the presence of two MYPT1 isoforms, long and variant 2 (V2) lacking 56 amino acids from 553 to 609 of human MYPT1 long, which were previously identified in HeLa and HEK 293 cells. Our data demonstrated that in Cos-7 cells ectopically-expressed EC MYPT1 isoforms co-immunoprecipitated with intact CS1? suggesting the importance of PPase 1 activity for the formation of functional complex of MYPT1/CS1?. Interestingly, MYPT1 V2 shows decreased binding affinity compared to MYPT1 long for radixin (novel MLCP substrate and a member of ERM family proteins). These results suggest functional difference between EC MYPT1 isoforms in the regulation of MLCP activity and cytoskeleton.

Kim, Kyung-mi; Csortos, Csilla; Czikora, Istvan; Fulton, David; Umapathy, Nagavedi S.; Olah, Gabor; Verin, Alexander D.

2011-01-01

201

Atomic model of the human cardiac muscle myosin filament  

PubMed Central

Of all the myosin filaments in muscle, the most important in terms of human health, and so far the least studied, are those in the human heart. Here we report a 3D single-particle analysis of electron micrograph images of negatively stained myosin filaments isolated from human cardiac muscle in the normal (undiseased) relaxed state. The resulting 28-Å resolution 3D reconstruction shows axial and azimuthal (no radial) myosin head perturbations within the 429-Å axial repeat, with rotations between successive 132 Å-, 148 Å-, and 149 Å-spaced crowns of heads close to 60°, 35°, and 25° (all would be 40° in an unperturbed three-stranded helix). We have defined the myosin head atomic arrangements within the three crown levels and have modeled the organization of myosin subfragment 2 and the possible locations of the 39 Å-spaced domains of titin and the cardiac isoform of myosin-binding protein-C on the surface of the myosin filament backbone. Best fits were obtained with head conformations on all crowns close to the structure of the two-headed myosin molecule of vertebrate chicken smooth muscle in the dephosphorylated relaxed state. Individual crowns show differences in head-pair tilts and subfragment 2 orientations, which, together with the observed perturbations, result in different intercrown head interactions, including one not reported before. Analysis of the interactions between the myosin heads, the cardiac isoform of myosin-binding protein-C, and titin will aid in understanding of the structural effects of mutations in these proteins known to be associated with human cardiomyopathies.

AL-Khayat, Hind A.; Kensler, Robert W.; Squire, John M.; Marston, Steven B.; Morris, Edward P.

2013-01-01

202

Novel Myosin Heavy Chain Kinase Involved in Disassembly of Myosin II Filaments and Efficient Cleavage in Mitotic Dictyostelium Cells  

PubMed Central

We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.

Nagasaki, Akira; Itoh, Go; Yumura, Shigehiko; Uyeda, Taro Q.P.

2002-01-01

203

Evolution of Plant P-Type ATPases  

PubMed Central

Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na+ and H+ pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na+ pumps (P2C and P2D ATPases) as well as a primitive H+-ATPase. Both Na+ and H+ pumps also co-exist in the moss P. patens, which has a P2D Na+-ATPase. In contrast to the primitive H+-ATPases in chlorophytes and P. patens, the H+-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H+ pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

Pedersen, Christian N. S.; Axelsen, Kristian B.; Harper, Jeffrey F.; Palmgren, Michael G.

2012-01-01

204

Evolution of plant p-type ATPases.  

PubMed

Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na(+) and H(+) pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na(+) pumps (P2C and P2D ATPases) as well as a primitive H(+)-ATPase. Both Na(+) and H(+) pumps also co-exist in the moss P. patens, which has a P2D Na(+)-ATPase. In contrast to the primitive H(+)-ATPases in chlorophytes and P. patens, the H(+)-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H(+) pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps. PMID:22629273

Pedersen, Christian N S; Axelsen, Kristian B; Harper, Jeffrey F; Palmgren, Michael G

2012-02-21

205

Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport  

Microsoft Academic Search

Myosins are eukaryotic molecular motors moving along actin filaments. Only a small set of myosin classes is present in plants, in which myosins have been found to play a role in cytoplasmic streaming and chloroplast movement. Whereas most studies have been done on green algae, more recent data suggest a role of higher plant myosin at the postcytokinetic cell wall.

Carola Holweg; Peter Nick

2004-01-01

206

Mechanism of inhibition of cytoplasmic streaming by a myosin inhibitor, 2,3-butanedione monoxime  

Microsoft Academic Search

Summary On the basis of the inhibition of myosin by 2,3-butanedione monoxime (BDM), the protein's involvement in various cell activities is discussed. However, it has not been established whether BDM inhibits plant myosin. In the present study, the effect of BDM on isolated plant myosin was analyzed in vitro. The sliding between myosin from lily (Lilium longiflorum) pollen tubes and

M. Tominaga; E. Yokota; S. Sonobe; T. Shimmen

2000-01-01

207

Identification and Localization of Myosin Superfamily Members in Fish Retina and Retinal Pigmented Epithelium  

PubMed Central

Myosins are cytoskeletal motors critical for generating the forces necessary for establishing cell structure and mediating actin-dependent cell motility. In each cell type a multitude of myosins are expressed, each myosin contributing to aspects of morphogenesis, transport, or motility occurring in that cell type. To examine the roles of myosins in individual retinal cell types, we first used polymerase chain reaction (PCR) screening to identify myosins expressed in retina and retinal pigmented epithelium (RPE), followed by immunohistochemistry to examine the cellular and subcellular localizations of seven of these expressed myosins. In the myosin PCR screen of cDNA from striped bass retina and striped bass RPE, we amplified 17 distinct myosins from eight myosin classes from retinal cDNA and 11 distinct myosins from seven myosin classes from RPE cDNA. By using antibodies specific for myosins IIA, IIB, IIIA, IIIB, VI, VIIA, and IXB, we examined the localization patterns of these myosins in retinas and RPE of fish, and in isolated inner/outer segment fragments of green sunfish photoreceptors. Each of the myosins exhibited unique expression patterns in fish retina. Individual cell types expressed multiple myosin family members, some of which colocalized within a particular cell type. Because much is known about the functions and properties of these myosins from studies in other systems, their cellular and subcellular localization patterns in the retina help us understand which roles they might play in the vertebrate retina and RPE.

Lin-Jones, Jennifer; Sohlberg, Lorraine; Dose, Andrea; Breckler, Jennifer; Hillman, David W.; Burnside, Beth

2009-01-01

208

Three myosin V structures delineate essential features of chemo-mechanical transduction  

Microsoft Academic Search

The molecular motor, myosin, undergoes conformational changes in order to convert chemical energy into force production. Based on kinetic and structural considera- tions, we assert that three crystal forms of the myosin V motor delineate the conformational changes that myosin motors undergo upon detachment from actin. First, a motor domain structure demonstrates that nucleotide- free myosin V adopts a specific

Pierre-Damien Coureux; H Lee Sweeney; Anne Houdusse

2004-01-01

209

The core of the motor domain determines the direction of myosin movement  

Microsoft Academic Search

Myosins constitute a superfamily of at least 18 known classes of molecular motors that move along actin filaments. Myosins move towards the plus end of F-actin filaments; however, it was shown recently that a certain class of myosin, class VI myosin, moves towards the opposite end of F-actin, that is, in the minus direction. As there is a large, unique

Kazuaki Homma; Misako Yoshimura; Junya Saito; Reiko Ikebe; Mitsuo Ikebe

2001-01-01

210

In vitro motilities of the unconventional myosins, brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity.  

PubMed

Two types of in vitro motility assays are currently used for examining the mechanochemical properties of purified myosins. The Nitella bead movement assay (Sheetz and Spudich: Nature 303:31-35, 1983) allows determination of both velocity and directionality of movement, but is of limited utility because of the fragile nature of the dissected Nitella internodal cells. On the other hand, the sliding actin filament assay (Kron and Spudich: Proc. Natl. Acad. Sci. U.S.A. 83:6272-6276, 1986) is technically much simpler to perform than the Nitella assay, and is suitable for the study of numerous physiological parameters. As it is currently used, however, the sliding actin filament assay does not indicate the directionality of motor movement. Previous studies have demonstrated that the velocities of filament-forming conventional myosins-II from either muscle or nonmuscle cells are comparable in both motility assays (Umemoto and Sellers: J. Biol. Chem. 265:14864-14869, 1990). However, similar studies using unconventional myosins are lacking. In the present report we have compared the rates of two structurally distinct unconventional myosins: brush border (BB) myosin-I and chick brain (CB) myosin-V (p190-calmodulin), using the sliding actin filament and Nitella-based in vitro motility assays. These two unconventional myosins differ from conventional myosins in that they appear unable to associate into bipolar filaments, and have extended rod-like neck domains which bind multiple calmodulin light chains in a Ca(2+)-sensitive manner.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8376949

Wolenski, J S; Cheney, R E; Forscher, P; Mooseker, M S

1993-09-15

211

Enhancement of Force Generated by Individual Myosin Heads in Skinned Rabbit Psoas Muscle Fibers at Low Ionic Strength  

PubMed Central

Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength ? from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction.

Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

2013-01-01

212

Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.  

PubMed

Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength ? from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080

Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

2013-05-15

213

Saturation transfer electron parametric resonance of an indane-dione spin-label. Calibration with hemoglobin and application to myosin rotational dynamics.  

PubMed Central

We have used a recently synthesized indane-dione spin label (2-[-oxyl-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methenyl]in dane-1,3-dione (InVSL) to study the rotational dynamics of myosin, with saturation-transfer electron paramagnetic resonance (ST-EPR). To determine effective rotational correlation times (tau effr) from InVSL spectra, reference spectra corresponding to known correlation times (tau r) were obtained from InVSL-hemoglobin undergoing isotropic rotational motion in aqueous glycerol solutions. These spectra were used to generate plots of spectral parameters vs. tau r. These plots should be used to analyze ST-EPR spectra of InVSL bound to other proteins, because the spectra are different from those of tempo-maleimide-spin-labeled hemoglobin, which have been used previously as ST-EPR standards. InVSL was covalently attached to the head (subfragment-1; S1) of myosin. EPR spectra and K/EDTA-ATPase activity showed that 70-95% of the heads were labeled, with > or = 90% of the label bound to either cys 707 (SH1) or cys 697 (SH2). ST-EPR spectra of InVSL-S1 attached to glass beads, bound to actin in myofibrils, or precipitated with ammonium sulfate indicated no submillisecond rotational motion. Therefore, InVSL is rigidly immobilized on the protein so that it reports the global rotation of the myosin head. The ST-EPR spectra of InVSL-myosin monomers and filaments indicated tau effr values of 4 and 13 microseconds, respectively, showing that myosin heads undergo microsecond segmental rotations that are more restricted in filaments than in monomers. The observed tau effr values are longer than those previously obtained with other spin labels bound to myosin heads, probably because InVSL binds more rigidly to the protein and/or with a different orientation. Further EPR studies of InVSL-myosin in solution and in muscle fibers should prove complementary to previous work with other labels.

Roopnarine, O; Hideg, K; Thomas, D D

1993-01-01

214

LOCALIZATION OF MYOSIN FILAMENTS IN SMOOTH MUSCLE  

PubMed Central

Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.

Kelly, Robert E.; Rice, Robert V.

1968-01-01

215

Tripolyphosphate hydrolysis by bovine fast and slow myosin subfragment 1 isoforms  

PubMed Central

Polyphosphates are used in the meat industry to increase the water holding capacity of meat products. Tripolyphosphate (TPP) is a commonly used polyphosphate and it is metabolized into pyrophosphate and monophosphate in meat. The enzymes responsible for its metabolism have not been fully characterized. The motor domain of myosin (subfragment 1 or S1) is a likely candidate. The objectives of this study were to determine if bovine S1 hydrolyzes TPP, to characterize the TPPase activity of the fast (cutaneous trunci) and slow (masseter) isoforms, and to determine the influence of pH on S1 TPPase activity. S1 hydrolyzed TPP and in comparison with ATP as substrate, it hydrolyzed TPP 16 – 32% more slowly. Fast S1 hydrolyzed both substrates faster compared to slow S1 and the difference between the isoforms was greater with TPP as the substrate. The Vmax was 0.94 and 5.0 nmole Pi/mg S1 protein/min while the Km was 0.38 and 0.90 mM TPP for slow and fast S1, respectively. Pyrophosphate was a strong inhibitor of TPPase activity with a Ki of 88 and 8.3 ?M PPi for fast and slow S1 isoforms, respectively. Both ATPase and TPPase activities were influenced by pH with the activity being higher at low pH for both fast and slow S1 isoforms. The activity at pH 5.4 was 1.5 to 4 fold higher than that at pH 7.6 for the different isoforms and substrates. These data show that myosin S1 readily hydrolyzes TPP and suggest that it is a major TPPase in meat.

Yamazaki, Marie; Shen, Qingwu W.; Swartz, Darl R.

2010-01-01

216

Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).  

PubMed

Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. PMID:23152195

Hazimihalis, P J; Gorvet, M A; Butcher, M T

2012-11-14

217

Effects of Pathogenic Proline Mutations on Myosin Assembly  

PubMed Central

Laing distal myopathy (MPD1) is a genetically dominant myopathy characterized by early and selective weakness of the distal muscles. Mutations in the MYH7 gene encoding for the ?-myosin heavy chain are the underlying genetic cause of MPD1. However, their pathogenic mechanisms are currently unknown. Here we measure the biological effects of the R1500P and L1706P MPD1 mutations in different cellular systems. We show that, while the two mutations inhibit myosin self-assembly in non-muscle cells, they do not prevent incorporation of the mutant myosin into sarcomeres. Nevertheless, we find that the L1706P mutation affects proper anti-parallel myosin association by accumulating in the bare zone of the sarcomere. Furthermore, bimolecular fluorescence complementation assay (BiFC) shows that the alpha-helix containing the R1500P mutation folds into homodimeric (mutant/mutant) and heterodimeric (mutant/WT) myosin molecules that are competent for sarcomere incorporation. Both mutations also form aggregates consisting of cytoplasmic vacuoles surrounding paracrystalline arrays, and amorphous rod-like inclusions that sequester WT myosin. Myosin aggregates were also detected in transgenic nematodes expressing the R1500P mutation. By showing that the two MPD1 mutations can have dominant effects on distinct components of the contractile apparatus, our data provide the first insights into the pathogenesis of the disease.

Buvoli, Massimo; Buvoli, Ada; Leinwand, Leslie A.

2011-01-01

218

Phenolic antioxidant scavenging of myosin radicals generated by hypervalent myoglobin.  

PubMed

The scavenging activity of extracts of green tea (GTE), white grape (WGE), and rosemary (RE), all plant material with high phenolic content, and of the phenolic compounds 4-methylcatechol (4-MC), (+)-catechin, and carnosic acid toward long-lived myosin radicals generated by reaction with H2O2-activated myoglobin at room temperature (pH 7.5, I=1.0) was investigated by freeze-quench ESR spectroscopy. Myosin radicals were generated by incubating 16 ?M myosin, 800 ?M metmyoglobin, and 800 ?M H2O2 for 10 min, and the phenolic extracts were subsequently added (1% (w/w) phenolic compounds relative to myosin). GTE was able to scavenge myosin radicals and reduce the radical intensity by 65%. Furthermore, a low concentration of 4-MC (33 ?M) was found to increase the radical concentration when added to the myosin radicals, whereas a higher concentration of 4-MC and catechin (330 ?M) was found to scavenge myosin radicals and reduce the overall radical concentration by ?65%. PMID:23163579

Jongberg, Sisse; Lund, Marianne N; Østdal, Henrik; Skibsted, Leif H

2012-11-27

219

A myosin motor that selects bundled actin for motility  

PubMed Central

Eukaryotic cells organize their contents through trafficking along cytoskeletal filaments. The leading edge of a typical metazoan cytoskeleton consists of a dense and complex arrangement of cortical actin. A dendritic mesh is found across the broad lamellopodium, with long parallel bundles at microspikes and filopodia. It is currently unclear whether and how myosin motors identify the few actin filaments that lead to the correct destination, when presented with many similar alternatives within the cortex. Here we show that myosin X, an actin-based motor that concentrates at the distal tips of filopodia, selects the fascin-actin bundle at the filopodial core for motility. Myosin X moves individual actin filaments poorly in vitro, often supercoiling actin into plectonemes. However, single myosin X motors move robustly and processively along fascin-actin bundles. This selection requires only parallel, closely spaced filaments, as myosin X is also processive on artificial actin bundles formed by molecular crowding. Myosin X filopodial localization is perturbed in fascin-depleted HeLa cells, demonstrating that fascin bundles also direct motility in vivo. Our results demonstrate that myosin X recognizes the local structural arrangement of filaments in long bundles, providing a mechanism for sorting cargo to distant target sites.

Nagy, Stanislav; Ricca, Benjamin L.; Norstrom, Melanie F.; Courson, David S.; Brawley, Crista M.; Smithback, Philip A.; Rock, Ronald S.

2008-01-01

220

A myosin motor that selects bundled actin for motility.  

PubMed

Eukaryotic cells organize their contents through trafficking along cytoskeletal filaments. The leading edge of a typical metazoan cytoskeleton consists of a dense and complex arrangement of cortical actin. A dendritic mesh is found across the broad lamellopodium, with long parallel bundles at microspikes and filopodia. It is currently unclear whether and how myosin motors identify the few actin filaments that lead to the correct destination, when presented with many similar alternatives within the cortex. Here we show that myosin X, an actin-based motor that concentrates at the distal tips of filopodia, selects the fascin-actin bundle at the filopodial core for motility. Myosin X moves individual actin filaments poorly in vitro, often supercoiling actin into plectonemes. However, single myosin X motors move robustly and processively along fascin-actin bundles. This selection requires only parallel, closely spaced filaments, as myosin X is also processive on artificial actin bundles formed by molecular crowding. Myosin X filopodial localization is perturbed in fascin-depleted HeLa cells, demonstrating that fascin bundles also direct motility in vivo. Our results demonstrate that myosin X recognizes the local structural arrangement of filaments in long bundles, providing a mechanism for sorting cargo to distant target sites. PMID:18599451

Nagy, Stanislav; Ricca, Benjamin L; Norstrom, Melanie F; Courson, David S; Brawley, Crista M; Smithback, Philip A; Rock, Ronald S

2008-07-03

221

Self-Organization of Myosin II in Reconstituted Actomyosin Bundles  

PubMed Central

Cells assemble a variety of bundled actomyosin structures in the cytoskeleton for activities such as cell-shape regulation, force production, and cytokinesis. Although these linear structures exhibit varied architecture, two common organizational themes are a punctate distribution of myosin II and distinct patterns of actin polarity. The mechanisms that cells use to assemble and maintain these organizational features are poorly understood. To study these, we reconstituted actomyosin bundles in vitro that contained only actin filaments and myosin II. Upon addition of ATP, the bundles contracted and the uniformly distributed myosin spontaneously reorganized into discrete clusters. We developed a mathematical model in which the motion of myosin II filaments is governed by the polarities of the actin filaments with which they interact. The model showed that the assembly of myosins into clusters is driven by their tendency to migrate to locations with zero net actin filament polarity. With no fitting parameters, the predicted distribution of myosin cluster separations was in close agreement with our experiments, including a ?3/2 power law decay for intermediate length scales. Thus, without an organizing template or accessory proteins, a minimal bundle of actin and myosin has the inherent capacity to self-organize into a heterogeneous banded structure.

Stachowiak, Matthew R.; McCall, Patrick M.; Thoresen, Todd; Balcioglu, Hayri E.; Kasiewicz, Lisa; Gardel, Margaret L.; O'Shaughnessy, Ben

2012-01-01

222

Different degrees of lever arm rotation control myosin step size  

PubMed Central

Myosins are actin-based motors that are generally believed to move by amplifying small structural changes in the core motor domain via a lever arm rotation of the light chain binding domain. However, the lack of a quantitative agreement between observed step sizes and the length of the proposed lever arms from different myosins challenges this view. We analyzed the step size of rat myosin 1d (Myo1d) and surprisingly found that this myosin takes unexpectedly large steps in comparison to other myosins. Engineering the length of the light chain binding domain of rat Myo1d resulted in a linear increase of step size in relation to the putative lever arm length, indicative of a lever arm rotation of the light chain binding domain. The extrapolated pivoting point resided in the same region of the rat Myo1d head domain as in conventional myosins. Therefore, rat Myo1d achieves its larger working stroke by a large calculated ?90° rotation of the light chain binding domain. These results demonstrate that differences in myosin step sizes are not only controlled by lever arm length, but also by substantial differences in the degree of lever arm rotation.

Kohler, Danny; Ruff, Christine; Meyhofer, Edgar; Bahler, Martin

2003-01-01

223

Influences of somatotropin on Na(+)-K(+)-ATPase, Mg(2+)-ATPase and Ca(2+)-ATPases of Porcine visceral tissues.  

PubMed

Two experiments were conducted to determine the overall influence of porcine somatotropin (pST) administration on the specific activity of visceral tissue ATPases. Pigs were fed a corn-soybean meal-skim milk-based diet approximately 85% of ad libitum, such that for each experiment, control and pST-treated pigs consumed similar amounts of feed. As observed for pigs chronically treated with pST, enhanced growth of visceral tissues was evident in pigs treated for 6 and 14 days (d) with pST. The specific activity of detergent-activated Na(+)-K(+)-ATPase (ouabain-sensitive adenosine triphosphatase activity) was determined in fresh tissue homogenates prepared from liver, heart, kidney and duodenum. Treatment with pST was associated with a 19% increase in Na(+)-K(+)-ATPase-specific activity in the liver; specific activity of Mg(2+)-ATPase was not influenced by pST. Whole liver Na(+)-K(+)-ATPase and Mg(2+)-ATPase activities were 35% and 25% greater, respectively, in somatotropin-treated pigs. The specific activities of Na(+)-K(+)-ATPase in heart, kidney and duodenum were similar for controls and pigs treated for 14 d with pST. The specific activities of high- and low-affinity Ca(2+)-ATPase in kidney medulla were 20 and 26% lower, respectively, in pigs treated for 14 d with pST compared with controls. In contrast, Ca(2+)-ATPases in other tissues, including kidney cortex, were not influenced by pST treatment. These data indicate that some of the observed increase in energy expenditure associated with pST treatment may be attributable to increased organ size as well as to enhanced hepatic Na+ and K+ flux. While Na(+)-K(+)-ATPase activity is specifically enhanced in the liver, pST does not appear to be a general Na(+)-K(+)-ATPase activator in all tissues and may be associated with depressed activity of Ca(2+)-ATPases in the kidney. PMID:8896328

Caperna, T J; Gavelek, D

1996-09-01

224

Fluorescence lifetime imaging reveals that the environment of the ATP binding site of myosin in muscle senses force.  

PubMed

Fluorescence lifetime imaging microscopy is used to demonstrate that different loads applied to a muscle fiber change the microenvironment of the nucleotide binding pocket of myosin. Permeabilized skeletal muscle fibers in rigor were labeled with a fluorescent ATP analog, 3'-DEAC-propylenediamine (pda)-ATP (3'-O-{N-[3-(7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP), which was hydrolyzed to the diphosphate. Cycles of small-amplitude stretches and releases (<1% of muscle segment length) were synchronized with fluorescence lifetime imaging and force measurements to correlate the effect of force on the lifetime of the ATP analog bound to the actomyosin complex. Analysis of the fluorescence decay resolved two lifetimes, corresponding to the free nucleotide DEAC-pda-ATP (?(1) = 0.47 ± 0.03 ns; mean ± SD) and nucleotide bound to the actomyosin complex (?(2) = 2.21 ± 0.06 ns at low strain). Whereas ?(1) did not change with force, ?(2) showed a linear dependence with the force applied to the muscle of 0.43 ± 0.05 ps/kPa. Hence, the molecular environment of the nucleotide binding pocket of myosin is directly affected by a change of length applied at the ends of the fiber segments. These changes may help explain how force modulates the actomyosin ATPase cycle and thus the physiology and energetics of contraction. PMID:20923650

Ibanez-Garcia, Delisa; Requejo-Isidro, Jose; Webb, Martin R; West, Timothy G; French, Paul; Ferenczi, Michael A

2010-10-01

225

Fluorescence Lifetime Imaging Reveals that the Environment of the ATP Binding Site of Myosin in Muscle Senses Force  

PubMed Central

Fluorescence lifetime imaging microscopy is used to demonstrate that different loads applied to a muscle fiber change the microenvironment of the nucleotide binding pocket of myosin. Permeabilized skeletal muscle fibers in rigor were labeled with a fluorescent ATP analog, 3?-DEAC-propylenediamine (pda)-ATP (3?-O-{N-[3-(7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP), which was hydrolyzed to the diphosphate. Cycles of small-amplitude stretches and releases (<1% of muscle segment length) were synchronized with fluorescence lifetime imaging and force measurements to correlate the effect of force on the lifetime of the ATP analog bound to the actomyosin complex. Analysis of the fluorescence decay resolved two lifetimes, corresponding to the free nucleotide DEAC-pda-ATP (?1 = 0.47 ± 0.03 ns; mean ± SD) and nucleotide bound to the actomyosin complex (?2 = 2.21 ± 0.06 ns at low strain). Whereas ?1 did not change with force, ?2 showed a linear dependence with the force applied to the muscle of 0.43 ± 0.05 ps/kPa. Hence, the molecular environment of the nucleotide binding pocket of myosin is directly affected by a change of length applied at the ends of the fiber segments. These changes may help explain how force modulates the actomyosin ATPase cycle and thus the physiology and energetics of contraction.

Ibanez-Garcia, Delisa; Requejo-Isidro, Jose; Webb, Martin R.; West, Timothy G.; French, Paul; Ferenczi, Michael A.

2010-01-01

226

Single-molecule studies of unconventional motor protein myosin VI  

NASA Astrophysics Data System (ADS)

Myosin VI is one of the myosin superfamily members that are actin-based molecular motors. It has received special attention due to its distinct features as compared to other myosins, such as its opposite directionality and a much larger step size than expected given the length of its "leg". This dissertation presents the author.s graduate work of several single-molecule studies on myosin VI. Special attention was paid to some of myosin VI.s tail domains that consist of proximal tail (PT), medial tail (MT), distal tail (DT) domains and cargo-binding domain (CBD). The functional form of myosin VI in cells is still under debate. Although full length myosin VI proteins in cytosolic extracts of cells were monomers from earlier studies, there are several reasons why it is now believed that myosin VI could exist as a dimer. If this is true and dimerization occurs, the next logical question would be which parts of myosin VI are dimerization regions? One model claimed that the CBD is the sole dimerization region. A competing model claimed that there must be another region that could be involved in dimerization, based on their observation that a construct without the CBD could still dimerize. Our single-molecule experiment with progressively truncated myosin VI constructs showed that the MT domain is a dimerization region, supporting the latter model. Additional single-molecule experiments and molecular dynamics (MD) simulation done with our collaborators suggest that electrostatic salt bridges formed between positive and negative amino acid residues are mainly responsible for the MT domain dimerization. After resolving this, we are left with another important question which is how myosin VI can take such a large step. Recent crystal structure showed that one of the tail domains preceding the MT domain, called the PT domain, is a three-helix bundle. The most easily conceivable way might be an unfolding of the three-helix bundle upon dimerization, allowing the protein to stretch and reach a larger distance. The single-molecule stepping data with mutant full-length construct that lacks two helices out of three in the PT domain tell that it is indeed the case. In this dissertation, more details of myosin VI PT/MT domain experiments will be explored along with background information on the single-molecule experiment methods used in these studies.

Kim, HyeongJun

227

Myosin-V stepping kinetics: A molecular model for processivity  

PubMed Central

Myosin-V is a molecular motor that moves processively along its actin track. We have used a feedback-enhanced optical trap to examine the stepping kinetics of this movement. By analyzing the distribution of time periods separating discrete ?36-nm mechanical steps, we characterize the number and duration of rate-limiting biochemical transitions preceding each such step. These data show that myosin-V is a tightly coupled motor whose cycle time is limited by ADP release. On the basis of these results, we propose a model for myosin-V processivity.

Rief, Matthias; Rock, Ronald S.; Mehta, Amit D.; Mooseker, Mark S.; Cheney, Richard E.; Spudich, James A.

2000-01-01

228

Extensive conformational transitions are required to turn on ATP hydrolysis in myosin  

PubMed Central

Conventional myosin is representative of biomolecular motors in which the hydrolysis of Adenosine triphosphate (ATP) is coupled to large-scale structural transitions both in and remote from the active site. The mechanism that underlies such “mechanochemical coupling”, especially the causal relationship between the hydrolysis and the allosteric structural changes, has remained elusive despite extensive experimental and computational analyses. In this study, using combined quantum mechanical and molecular mechanical (QM/MM) simulations and different conformations of the myosin motor domain, we provide evidence to support that regulation of ATP hydrolysis activity is not limited to residues in the immediate environment of the ? phosphate. Specifically, we illustrate that efficient hydrolysis of ATP depends not only on the proper orientation of the lytic water but also the structural stability of several nearby residues, especially the Arg238-Glu459 salt-bridge (the numbering of residues follows the myosin II in Dictyostelium discoideum) and the water molecule that spans this salt-bridge and the lytic water. More importantly, by comparing the hydrolysis activity in two motor conformations with very similar active site (i.e., Switch-I and II) configurations, which distinguishes this work from our previous study, the results clearly indicate that the ability of these residues to make their crucial electrostatic stabilization relies on the configuration of residues in the nearby N-terminus of the relay helix and the “wedge loop”. Without the structural support from those motifs, residues in a closed active site in the post-rigor motor domain undergo subtle structural variations that lead to consistently higher calculated ATP hydrolysis barriers than in the pre-powerstroke state. In other words, starting from the post-rigor state, turning on the ATPase activity requires not only displacement of Switch II to close the active site but also structural transitions in the N-terminus of the relay helix and the “wedge loop”, which have been proposed previously to be ultimately coupled to the rotation of the converter subdomain 40 Å away.

Yang, Yang; Yu, Haibo; Cui, Qiang

2009-01-01

229

Orientation of intermediate nucleotide states of indane dione spin-labeled myosin heads in muscle fibers.  

PubMed Central

We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain. Images Scheme 2

Roopnarine, O; Thomas, D D

1996-01-01

230

Myosin Filament Structure and Myosin Crossbridge Dynamics in Fish and Insect Muscles  

Microsoft Academic Search

\\u000a The muscle crossbridge power stroke on actin appears to involve a change in angle between the actin-attached motor domain\\u000a and the neck region of the myosin heads (the ‘tilting neck hypothesis’). However, this mechanism has not been proved beyond\\u000a doubt and a reasonable question to ask is how actual proof might be achieved. This is essentially a structural question. The

John M. Squire; Hind A. AL-Khayat; Jeffrey J. Harford; Liam Hudson; Tom C. Irving; Carlo Knupp; Ngai-Shing Mok; Michael K. Reedy

231

Na,K-ATPase and V-ATPase in ovarian follicles of Drosophila melanogaster.  

PubMed

Uncovering the cause and meaning of bioelectric phenomena in developing systems requires investigations of the distribution and activity of ion-transport mechanisms. In order to identify and localize ion pumps in ovarian follicles of Drosophila, we used immunofluorescence microscopy, immunoelectron microscopy, subcellular fractionation, immunoblots, and acridine-orange staining. We applied various antibodies directed against the Na,K-pump (Na,K-ATPase) and against vacuolar-type proton pumps (V-ATPase). During all phases of oogenesis, Na,K-ATPase were found in apical and lateral follicle-cell membranes and, during rapid follicle growth (beginning with stage 10), also in nurse-cell membranes and in the oolemma. V-ATPase were detected in various cytoplasmic vesicles and in yolk spheres and, beginning with stage 10, also in apical follicle-cell membranes and in the oolemma. Given these and earlier results, we propose that: 1) V-ATPase coupled to secondary active antiporters represent the ouabain-intensitive potassium pumps described previously; 2) both Na,K-ATPase and V-ATPase are involved in bioelectric phenomena as well as in osmoregulation and follicle growth, especially during stages 10-12; 3) organelle-associated V-ATPase play a role in vesicle acidification and in yolk processing; and 4) the channel-forming protein ductin is a component of both V-ATPase and gap junctions in ovarian follicles of Drosophila. PMID:10399824

Bohrmann, J; Braun, B

1999-03-01

232

Alteration of Cross-Bridge Kinetics by Myosin Light Chain Phosphorylation in Rabbit Skeletal Muscle: Implications for Regulation of Actin-Myosin Interaction  

Microsoft Academic Search

Myosin light chain phosphorylation in permeable skeletal muscle fibers increases isometric force and the rate of force production at submaximal levels of calcium activation; myosin light chain phosphorylation may underlie the increased rate and extent of force production associated with isometric twitch potentiation in intact fibers. To understand the mechanism by which myosin light chain phosphorylation manifests these effects, we

H. Lee Sweeney; James T. Stull

1990-01-01

233

Functional roles for myosin 1c in cellular signaling pathways  

PubMed Central

Cellular signaling pathways underlie the transfer of information throughout the cell and to adjoining cells and so govern most critical cellular functions. Increasing evidence points to the molecular motor myosin 1c as a prominent player in many signaling cascades, from the integrin-dependent signaling involved in cell migration to the signaling events underlying insulin resistance. Myosin 1c functions on these pathways both via an important role in regulating lipid raft recycling and also via direct involvement in signaling cascades. This review provides an overview of the functional involvement of myosin 1c in cellular signaling and discusses the possible potential for myosin 1c as a target for drug-based treatments for human diseases.

Bond, Lisa M.; Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

2013-01-01

234

Dual role of myosin II during Drosophila imaginal disc metamorphosis  

PubMed Central

The motor protein non-muscle myosin II is a major driver of the movements that sculpt three dimensional organs from two dimensional epithelia. The machinery of morphogenesis is well established but the logic of its control remains unclear in complex organs. Here we use live imaging and ex vivo culture to report a dual role of myosin II in regulating the development of the Drosophila wing. First, myosin II drives the contraction of a ring of cells that surround the squamous peripodial epithelium, providing the force to fold the whole disc through about 90°. Second, myosin II is needed to allow the squamous cells to expand and then retract at the end of eversion. The combination of genetics and live imaging allows us to describe and understand the tissue dynamics, and the logic of force generation needed to transform a relatively simple imaginal disc into a more complex and three-dimensional adult wing.

Aldaz, Silvia; Escudero, Luis M.; Freeman, Matthew

2013-01-01

235

Calponin in Non-Muscle Cells  

Microsoft Academic Search

Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and non-muscle cells. Calponin is an\\u000a inhibitor of the actin-activated myosin ATPase. Three isoforms of calponin have been found in the vertebrates. Whereas the\\u000a role of calponin in regulating smooth muscle contractility has been extensively investigated, the function and regulation\\u000a of calponin in non-muscle cells is much less understood.

Kai-Chun Wu; J.-P. Jin

2008-01-01

236

Identification of an organelle receptor for myosin-Va  

Microsoft Academic Search

Little is known about how molecular motors bind to their vesicular cargo. Here we show that myosin-Va, an actin-based vesicle motor, binds to one of its cargoes, the melanosome, by interacting with a receptor–protein complex containing Rab27a and melanophilin, a postulated Rab27a effector. Rab27a binds to the melanosome first and then recruits melanophilin, which in turn recruits myosin-Va. Melanophilin creates

Xufeng S. Wu; Kang Rao; Hong Zhang; Fei Wang; James R. Sellers; Lydia E. Matesic; Neal G. Copeland; Nancy A. Jenkins; John A. Hammer

2002-01-01

237

Orienting actin filaments for directional motility of processive myosin motors.  

PubMed

To utilize molecular motors in manmade systems, it is necessary to control the motors' motion. We describe a technique to orient actin filaments so that their barbed ends point in the same direction, enabling same-type motors to travel unidirectionally. Myosin-V and myosin-VI were observed to travel, respectively, toward and away from the filaments' barbed ends. When both motors were present, they occasionally passed each other while "walking" in opposite directions along single actin filaments. PMID:23240631

Yuan, Jinzhou; Pillarisetti, Anand; Goldman, Yale E; Bau, Haim H

2012-12-19

238

Location of the head-tail junction of myosin  

Microsoft Academic Search

The tails of double-headed myosin mole- cules consist of an alpha-helical\\/coiled-coil structure composed of two identical polypeptides with a heptad repeat of hydrophobic amino acids that starts immedi- ately after a conserved proline near position 847. Both muscle and nonmuscle myosins have this heptad repeat and it has been assumed that proline 847 is physically located at the head-tail junction.

David L. Rimm; John H. Sinard; Thomas D. Pollard

1989-01-01

239

Variable surface loops and myosin activity: Accessories to a motor  

Microsoft Academic Search

The catalytic head of myosin is a globular structure that has historically been divided into three segments of 25, 50, and 20 kDa. The solvent-exposed, proteolytically-sensitive surface loops of myosin that join these three segments are highly variable in their sequences. While surface loops have not traditionally been thought to affect enzymatic activities, these loops lie near the ATP and

Coleen T. Murphy; James A. Spudich

2000-01-01

240

Walking mechanism of the intracellular cargo transporter myosin V  

NASA Astrophysics Data System (ADS)

Motor proteins of the myosin, kinesin and dynein families transport vesicles and other cargo along tracks of actin filaments or microtubules through the cytoplasm of cells. The mechanism by which myosin V, a motor involved in several types of intracellular transport, moves processively along actin filaments, has recently been the subject of many single molecule biophysical studies. Details of the molecular mechanisms by which this molecular motor operates are starting to emerge.

Schmitz, Stephan; Smith-Palmer, Jayne; Sakamoto, Takeshi; Sellers, James R.; Veigel, Claudia

2006-08-01

241

Structural Biology of Rad50 ATPase  

Microsoft Academic Search

To clarify the key role of Rad50 in DNA double-strand break repair (DSBR), we biochemically and structurally characterized ATP-bound and ATP-free Rad50 catalytic domain (Rad50cd) from Pyrococcus furiosus. Rad50cd displays ATPase activity plus ATP-controlled dimerization and DNA binding activities. Rad50cd crystal structures identify probable protein and DNA interfaces and reveal an ABC-ATPase fold, linking Rad50 molecular mechanisms to ABC transporters,

Karl-Peter Hopfner; Annette Karcher; David S. Shin; Lisa Craig; L. Matthew Arthur; James P. Carney; John A. Tainer

2000-01-01

242

Structure and Regulation of the Vacuolar ATPases  

PubMed Central

Summary The vacuolar (H+)-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V1) that carries out ATP hydrolysis and an integral domain (V0) responsible for proton transport. V1 contains eight subunits (A-H) while V0 contains six subunits (a,c,c’,c”,d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V1 drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c,c’ and c”), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V0 drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V1 and V0 domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.

Cipriano, Daniel J.; Wang, Yanru; Bond, Sarah; Hinton, Ayana; Jefferies, Kevin C.; Qi, Jie; Forgac, Michael

2008-01-01

243

Kdp-ATPase of Escherichia coli  

Microsoft Academic Search

Kdp-ATPase consists of three large protein subunits each having a distinct function. The 72-kD KdpB energy-coupling sub-unit is homologous to other P-type ATPases, and is the site of acylphosphorylation. Evidence points to Asp307 as the site of phosphorylation. The 59-kD KdpA subunit, predicted to span the membrane 12 times, appears to bind K+ for transport and to form the transmembrane

Karlheinz Altendorf; Wolfgang Epstein

1994-01-01

244

A monomeric myosin VI with a large working stroke  

PubMed Central

Myosin VI is involved in a wide variety of intracellular processes such as endocytosis, secretion and cell migration. Unlike almost all other myosins so far studied, it moves towards the minus end of actin filaments and is therefore likely to have unique cellular properties. However, its mechanism of force production and movement is not understood. Under our experimental conditions, both expressed full-length and native myosin VI are monomeric. Electron microscopy using negative staining revealed that the addition of ATP induces a large conformational change in the neck/tail region of the expressed molecule. Using an optical tweezers-based force transducer we found that expressed myosin VI is nonprocessive and produces a large working stroke of 18 nm. Since the neck region of myosin VI is short (it contains only a single IQ motif), it is difficult to reconcile the 18 nm working stroke with the classical ‘lever arm mechanism', unless other structures in the molecule contribute to the effective lever. A possible model to explain the large working stroke of myosin VI is presented.

Lister, Ida; Schmitz, Stephan; Walker, Matthew; Trinick, John; Buss, Folma; Veigel, Claudia; Kendrick-Jones, John

2004-01-01

245

How myosin VI coordinates its heads during processive movement  

PubMed Central

A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm positions are reversed. Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding to the lead head once it has released its ADP. The structural basis for this unique gating mechanism involves an insert near the nucleotide binding pocket that is found only in class VI myosin. Reverse strain greatly favors binding of ADP to the lead head, which makes it possible for myosin VI to function as a processive transporter as well as an actin-based anchor. While this mechanism is unlike that of any other myosin superfamily member, it bears remarkable similarities to that of another processive motor from a different superfamily—kinesin I.

Sweeney, H Lee; Park, Hyokeun; Zong, Alan B; Yang, Zhaohui; Selvin, Paul R; Rosenfeld, Steven S

2007-01-01

246

Structure of androcam supports specialized interactions with myosin VI.  

PubMed

Androcam replaces calmodulin as a tissue-specific myosin VI light chain on the actin cones that mediate D. melanogaster spermatid individualization. We show that the androcam structure and its binding to the myosin VI structural (Insert 2) and regulatory (IQ) light chain sites are distinct from those of calmodulin and provide a basis for specialized myosin VI function. The androcam N lobe noncanonically binds a single Ca(2+) and is locked in a "closed" conformation, causing androcam to contact the Insert 2 site with its C lobe only. Androcam replacing calmodulin at Insert 2 will increase myosin VI lever arm flexibility, which may favor the compact monomeric form of myosin VI that functions on the actin cones by facilitating the collapse of the C-terminal region onto the motor domain. The tethered androcam N lobe could stabilize the monomer through contacts with C-terminal portions of the motor or recruit other components to the actin cones. Androcam binds the IQ site at all calcium levels, constitutively mimicking a conformation adopted by calmodulin only at intermediate calcium levels. Thus, androcam replacing calmodulin at IQ will abolish a Ca(2+)-regulated, calmodulin-mediated myosin VI structural change. We propose that the N lobe prevents androcam from interfering with other calmodulin-mediated Ca(2+) signaling events. We discuss how gene duplication and mutations that selectively stabilize one of the many conformations available to calmodulin support the molecular evolution of structurally and functionally distinct calmodulin-like proteins. PMID:22851764

Joshi, Mehul K; Moran, Sean; Beckingham, Kathleen M; MacKenzie, Kevin R

2012-07-31

247

Determination of spin-label orientation within the myosin head.  

PubMed Central

Current methods of analyzing EPR spectra of spin-labeled muscle fibers allow the determination of spin-label orientation within the fiber, rather than the orientation of the myosin head itself. In order to describe the orientational distribution of spin labeled myosin heads within the muscle fibers, the orientation of the spin label within the myosin head must be known. The iodoacetamide label orientation in the myosin head was determined to be (16.8 degrees, 28.3 degrees, 4.2 degrees) or (16.6 degrees, 72.0 degrees, 4.3 degrees). These Eulerian angles were obtained from the analysis of EPR spectra of fibers decorated with labeled myosin heads in the absence of ATP, with the assumption that the head's tilt angle is 40 degrees, as observed in a recent EM study [Pollard, T., Bhandari, D., Maupin, P., Wachsstock, D., Weeds, A. & Zot, H. (1993) Biophys. J. 64, 454-471]. Knowledge of spin-label orientation will allow for quantitative determination of myosin head orientation in the various states of the contractile cycle. Images

Fajer, P G

1994-01-01

248

Functional characterization of the human myosin-7a motor domain.  

PubMed

Myosin-7a participates in auditory and visual processes. Defects in MYO7A, the gene encoding the myosin-7a heavy chain, are causative for Usher syndrome 1B, the most frequent cause of deaf-blindness in humans. In the present study, we performed a detailed kinetic and functional characterization of the isolated human myosin-7a motor domain to elucidate the details of chemomechanical coupling and the regulation of motor function. A rate-limiting, slow ADP release step causes long lifetimes of strong actin-binding intermediates and results in a high duty ratio. Moreover, our results reveal a Mg(2+)-sensitive regulatory mechanism tuning the kinetic and mechanical properties of the myosin-7a motor domain. We obtained direct evidence that changes in the concentration of free Mg(2+) ions affect the motor properties of human myosin-7a using an in vitro motility assay system. Our results suggest that in a cellular environment, compartment-specific fluctuations in free Mg(2+) ions can mediate the conditional switching of myosin-7a between cargo moving and tension bearing modes. PMID:21687988

Heissler, Sarah M; Manstein, Dietmar J

2011-06-18

249

Substructure and accessory proteins in scallop myosin filaments  

PubMed Central

Native myosin filaments from scallop striated muscle fray into subfilaments of approximately 100-A diameter when exposed to solutions of low ionic strength. The number of subfilaments appears to be five to seven (close to the sevenfold rotational symmetry of the native filament), and the subfilaments probably coil around one another. Synthetic filaments assembled from purified scallop myosin at roughly physiological ionic strength have diameters similar to those of native filaments, but are much longer. They too can be frayed into subfilaments at low ionic strength. Synthetic filaments share what may be an important regulatory property with native filaments: an order- disorder transition in the helical arrangement of myosin cross-bridges that is induced on activation by calcium, removal of nucleotide, or modification of a myosin head sulfhydryl. Some native filaments from scallop striated muscle carry short "end filaments" protruding from their tips, comparable to the structures associated with vertebrate striated muscle myosin filaments. Gell electrophoresis of scallop muscle homogenates reveals the presence of high molecular weight proteins that may include the invertebrate counterpart of titin, a component of the vertebrate end filament. Although the myosin molecule itself may contain much of the information required to direct its assembly, other factors acting in vivo, including interactions with accessory proteins, probably contribute to the assembly of a precisely defined thick filament during myofibrillogenesis.

1989-01-01

250

Characterization of an actin-myosin head interface in the 40-113 region of actin using specific antibodies as probes.  

PubMed Central

Evidence for the participation of the 1-7 and 18-28 N-terminal sequences of actin at different steps of actin-myosin interaction process is well documented in the literature. Cross-linking of the rigor complex between filamentous actin and skeletal-muscle myosin subfragment 1 was accomplished by the carboxy-group-directed zero-length protein cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodi-imide. After chaotropic depolymerization and thrombin digestion, which cleaves only actin, the covalent complex with Mr 100,000 was characterized by PAGE. The linkage was identified as being between myosin subfragment 1 (S-1) heavy chain and actin-(1-28)-peptide. The purified complex retained in toto its ability to combine reversibly with fresh filamentous actin, but showed a decrease in the Vmax. of actin-dependent Mg2(+)-ATPase. By using e.l.i.s.a., S-1 was observed to bind to coated monomeric actin or its 1-226 N-terminal peptide. This interaction strongly interfered with the binding of antibodies directed against the 95-113 actin sequence. Moreover, S-1 was able to bind with coated purified actin-(40-113)-peptide. Finally, antibodies directed against the 18-28 and 95-113 actin sequence, which strongly interfered with S1 binding, were unable to compete with each other. These results suggest that two topologically independent regions are involved in the actin-myosin interface: one located in the conserved 18-28 sequence and the other near residues 95-113, including the variable residue at position 89. Other experiments support the 'multisite interface model', where the two actin sites could modulate each other during S-1 interaction. Images Fig. 1. Fig. 4.

Labbe, J P; Mejean, C; Benyamin, Y; Roustan, C

1990-01-01

251

UNC-45/CRO1/She4p (UCS) Protein Forms Elongated Dimer and Joins Two Myosin Heads Near Their Actin Binding Region  

SciTech Connect

UNC-45/CRO1/She4p (UCS) proteins have variously been proposed to affect the folding, stability, and ATPase activity of myosins. They are the only proteins known to interact directly with the motor domain. To gain more insight into UCS function, we determined the atomic structure of the yeast UCS protein, She4p, at 2.9 {angstrom} resolution. We found that 16 helical repeats are organized into an L-shaped superhelix with an amphipathic N-terminal helix dangling off the short arm of the L-shaped molecule. In the crystal, She4p forms a 193-{angstrom}-long, zigzag-shaped dimer through three distinct and evolutionary conserved interfaces. We have identified She4p's C-terminal region as a ligand for a 27-residue-long epitope on the myosin motor domain. Remarkably, this region consists of two adjacent, but distinct, binding epitopes localized at the nucleotide-responsive cleft between the nucleotide- and actin-filament-binding sites. One epitope is situated inside the cleft, the other outside the cleft. After ATP hydrolysis and Pi ejection, the cleft narrows at its base from 20 to 12 {angstrom} thereby occluding the inside the cleft epitope, while leaving the adjacent, outside the cleft binding epitope accessible to UCS binding. Hence, one cycle of higher and lower binding affinity would accompany one ATP hydrolysis cycle and a single step in the walk on an actin filament rope. We propose that a UCS dimer links two myosins at their motor domains and thereby functions as one of the determinants for step size of myosin on actin filaments.

H Shi; G Blobel

2011-12-31

252

Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle  

NASA Astrophysics Data System (ADS)

The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

Bandman, Everett

1985-02-01

253

Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin  

Microsoft Academic Search

Phosphorylation of skeletal myosin regulatory light chain (RLC) occurs in fatigue and may play a role in the inhibition of\\u000a shortening velocities observed in vivo. Forces and shortening velocities were measured in permeabilized rabbit psoas fibers\\u000a with either phosphorylated or dephosphorylated RLCs and in the presence or absence of the myosin inhibitor blebbistatin. Addition\\u000a of 20 ?M blebbistatin decreased tensions by

Melanie Stewart; Kathy Franks-Skiba; Roger Cooke

2009-01-01

254

Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation  

Microsoft Academic Search

The phosphorylation of regulatory myosin light chains by the Ca2÷\\/calmodulin-dependent enzyme myosin light chain kinase (MLCK) has been shown to be essential and sufficient for initiation of endothelial cell retraction in saponin permeabilized monolayers (Wysolmerski, R. B., and D. Lagunoff. 1990. Proc. Natl. Acad. Sci. USA. 87:16-20). We now report the effects of thrombin stimulation on human umbilical vein endo-

Zoe M. Goeckeler; Robert B. Wysolmerski

1995-01-01

255

N-Methyl-D-aspartate Receptor Subunits Are Non-myosin Targets of Myosin Regulatory Light Chain*  

PubMed Central

Excitatory synapses contain multiple members of the myosin superfamily of molecular motors for which functions have not been assigned. In this study we characterized the molecular determinants of myosin regulatory light chain (RLC) binding to two major subunits of the N-methyl-d-aspartate receptor (NR). Myosin RLC bound to NR subunits in a manner that could be distinguished from the interaction of RLC with the neck region of non-muscle myosin II-B (NMII-B) heavy chain; NR-RLC interactions did not require the addition of magnesium, were maintained in the absence of the fourth EF-hand domain of the light chain, and were sensitive to RLC phosphorylation. Equilibrium fluorescence spectroscopy experiments indicate that the affinity of myosin RLC for NR1 is high (30 nm) in the context of the isolated light chain. Binding was not favored in the context of a recombinant NMII-B subfragment one, indicating that if the RLC is already bound to NMII-B it is unlikely to form a bridge between two binding partners. We report that sequence similarity in the “GXXXR” portion of the incomplete IQ2 motif found in NMII heavy chain isoforms likely contributes to recognition of NR2A as a non-myosin target of the RLC. Using site-directed mutagenesis to disrupt NR2A-RLC binding in intact cells, we find that RLC interactions facilitate trafficking of NR1/NR2A receptors to the cell membrane. We suggest that myosin RLC can adopt target-dependent conformations and that a role for this light chain in protein trafficking may be independent of the myosin II complex.

Bajaj, Gaurav; Zhang, Yong; Schimerlik, Michael I.; Hau, Andrew M.; Yang, Jing; Filtz, Theresa M.; Kioussi, Chrissa; Ishmael, Jane E.

2009-01-01

256

Ultra-fast Chara myosin: A test case for the swinging lever arm model for force production by myosin  

Microsoft Academic Search

Recent breakthroughs and technological improvements are rapidly generating evidence supporting the “swinging lever arm model”\\u000a for force production by myosin. Unlike previous models, this model posits that the globular domain of the myosin motor binds\\u000a to actin with a constant orientation during force generation. Movement of the neck domain of the motor is hypothesized to\\u000a occur relative to the globular

Taro Q. P. Uyeda

1996-01-01

257

The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K(+)-ATPase rather than with basolateral anion exchanger AE2.  

PubMed Central

A unique feature of the choroid plexus as a single-layer epithelium is its localization of Na+K(+)-ATPase at its apical (lumenal) surface. In contrast, a band 3 (AE1)-related anion exchanger protein has been localized to the basolateral surface of the choroid plexus. Both Na+K(+)-ATPase and AE1 in other tissues have been shown to bind via ankyrin to the spectrin-actin-based membrane cytoskeleton. Since linkage of integral membrane proteins to the membrane cytoskeleton is important for their restriction to specialized domains of the cell surface, we investigated the polarity of the choroid plexus membrane cytoskeleton. We developed isoform-specific antibodies to confirm the identity of choroid plexus band 3-related polypeptide as AE2. We demonstrated that ankyrin, fodrin/spectrin, actin, myosin, and alpha-actinin are predominantly apical in choroid plexus and preferentially colocalize with apical Na+K(+)-ATPase rather than with basolateral anion exchanger AE2. Colchicine administration did not alter the polarity of apical cytoskeletal and transport proteins or basolateral AE2 in choroid plexus, suggesting that biosynthetic targeting of these proteins is not microtubule dependent. In choroid plexus papilloma, Na+K(+)-ATPase and AE2 were decreased in amount and failed to preserve their polarized distributions. Images

Alper, S L; Stuart-Tilley, A; Simmons, C F; Brown, D; Drenckhahn, D

1994-01-01

258

Independent mobility of catalytic and regulatory domains of myosin heads  

PubMed Central

The recent determination of the myosin head atomic structure has led to a new model of muscle contraction, according to which mechanical torque is generated in the catalytic domain and amplified by the lever arm made of the regulatory domain [Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. & Rayment, I. (1995) Biochemistry 34, 8960–8972]. A crucial aspect of this model is the ability of the regulatory domain to move independently of the catalytic domain. Saturation transfer–EPR measurements of mobility of these two domains in myosin filaments give strong support for this notion. The catalytic domain of the myosin head was labeled at Cys-707 with indane dione spin label; the regulatory domain was labeled at the single cysteine residue of the essential light chain and exchanged into myosin. The mobility of the regulatory domain in myosin filaments was characterized by an effective rotational correlation time (?R) between 24 and 48 ?s. In contrast, the mobility of the catalytic domain was found to be ?R = 5–9 ?s. This difference in mobility between the two domains existed only in the filament form of myosin. In the monomeric form, or when bound to actin, the mobility of the two domains in myosin was indistinguishable, with ?R = 1–4 ?s and >1,000 ?s, respectively. Therefore, the observed difference in filaments cannot be ascribed to differences in local conformations of the spin-labeled sites. The most straightforward interpretation suggests a flexible hinge between the two domains, which would have to stiffen before force could be generated.

Adhikari, Bishow; Hideg, Kalman; Fajer, Piotr G.

1997-01-01

259

Structured post-IQ domain governs selectivity of myosin X for fascin-actin bundles.  

PubMed

Without guidance cues, cytoskeletal motors would traffic components to the wrong destination with disastrous consequences for the cell. Recently, we identified a motor protein, myosin X, that identifies bundled actin filaments for transport. These bundles direct myosin X to a unique destination, the tips of cellular filopodia. Because the structural and kinetic features that drive bundle selection are unknown, we employed a domain-swapping approach with the nonselective myosin V to identify the selectivity module of myosin X. We found a surprising role of the myosin X tail region (post-IQ) in supporting long runs on bundles. Moreover, the myosin X head is adapted for initiating processive runs on bundles. We found that the tail is structured and biases the orientation of the two myosin X heads because a targeted insertion that introduces flexibility in the tail abolishes selectivity. Together, these results suggest how myosin motors may manage to read cellular addresses. PMID:20538587

Nagy, Stanislav; Rock, Ronald S

2010-06-10

260

Structured Post-IQ Domain Governs Selectivity of Myosin X for Fascin-Actin Bundles*  

PubMed Central

Without guidance cues, cytoskeletal motors would traffic components to the wrong destination with disastrous consequences for the cell. Recently, we identified a motor protein, myosin X, that identifies bundled actin filaments for transport. These bundles direct myosin X to a unique destination, the tips of cellular filopodia. Because the structural and kinetic features that drive bundle selection are unknown, we employed a domain-swapping approach with the nonselective myosin V to identify the selectivity module of myosin X. We found a surprising role of the myosin X tail region (post-IQ) in supporting long runs on bundles. Moreover, the myosin X head is adapted for initiating processive runs on bundles. We found that the tail is structured and biases the orientation of the two myosin X heads because a targeted insertion that introduces flexibility in the tail abolishes selectivity. Together, these results suggest how myosin motors may manage to read cellular addresses.

Nagy, Stanislav; Rock, Ronald S.

2010-01-01

261

Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.  

PubMed

Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model. PMID:11781333

Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

2002-01-07

262

Identification and Characterization of Higher Plant Myosins Responsible for Cytoplasmic Streaming  

Microsoft Academic Search

in vitro   using these myosins and of localization studies using antiserum raised against each heavy chain, we suggested that both myosins\\u000a are molecular motors for generating the motive force for cytoplasmic streaming in higher plant cells. The 170-kDa myosin is\\u000a expressed not only in somatic cells but also in germinating pollen. In contrast, the 175-kDa myosin is distributed only in

Etsuo Yokota

2000-01-01

263

Protection Against Osmotic Stress by cGMP-Mediated Myosin Phosphorylation  

Microsoft Academic Search

Conventional myosin functions universally as a generator of motive force in eukaryotic cells. Analysis of mutants of the microorganism Dictyostelium discoideum revealed that myosin also provides resistance against high external osmolarities. An osmo-induced increase of intracellular guanosine 3',5'-monophosphate was shown to mediate phosphorylation of three threonine residues on the myosin tail, which caused a relocalization of myosin required to resist

Hidekazu Kuwayama; Maria Ecke; Günther Gerisch; Peter J. M. van Haastert

1996-01-01

264

Influence of salt and pyrophosphate on bovine fast and slow myosin S1 dissociation from actin  

Microsoft Academic Search

The kinetics of myosin dissociation from actin was investigated and also the impact of salt, MgPPi, and myosin heavy chain isoform on myosin subfragment 1 (S1) dissociation from actin using purified proteins and fluorescence spectroscopy. Both NaCl and MgPPi increased myosin S1 dissociation rate. When salt concentrations increased from 0.1 to 1.0M, the dissociation rate of S1 from bovine masseter

Qingwu W. Shen; Darl R. Swartz

2010-01-01

265

Polarized Distribution of Intracellular Components by Class V Myosins in Saccharomyces cerevisiae  

Microsoft Academic Search

The budding yeast Saccharomyces cerevisiae has three classes of myosins corresponding to three actin structures: class I myosin for endocytic actin structure, actin patches; class II myosin for contraction of the actomyosin contractile ring around the bud neck; and class V myosin for transport along a cable-like actin structure (actin cables), extending toward the growing cortex. Myo2p and Myo4p constitute

Yasushi Matsui

2003-01-01

266

DOC2\\/DAB2 Is the Binding Partner of Myosin VI  

Microsoft Academic Search

Myosin VI is a molecular motor that moves processively along actin filaments and is believed to play a role in cargo movement in cells. Here we found that DOC-2\\/DAB2, a signaling molecule inhibiting the Ras cascade, binds to myosin VI at the globular tail domain. DOC-2\\/DAB2 binds stoichiometrically to myosin VI with one molecule per one myosin VI heavy chain.

Akira Inoue; Osamu Sato; Kazuaki Homma; Mitsuo Ikebe

2002-01-01

267

Structural Basis for Myosin V Discrimination Between Distinct Cargoes  

SciTech Connect

Myosin V molecular motors move cargoes on actin filaments. A myosin V may move multiple cargoes to distinct places at different times. The cargoes attach to the globular tail of myosin V via cargo-specific receptors. Here we report the crystal structure at 2.2 {angstrom} of the myosin V globular tail. The overall tertiary structure has not been previously observed. There are several patches of highly conserved regions distributed on the surface of the tail. These are candidate attachment sites for cargo-specific receptors. Indeed, we identified a region of five conserved surface residues that are solely required for vacuole inheritance. Likewise, we identified a region of five conserved surface residues that are required for secretory vesicle movement, but not vacuole movement. These two regions are at opposite ends of the oblong-shaped cargo-binding domain, and moreover are offset by 180{sup o}. The fact that the cargo-binding areas are distant from each other and simultaneously exposed on the surface of the globular tail suggests that major targets for the regulation of cargo attachment are organelle-specific myosin V receptors.

Pashkova,N.; Jin, Y.; Ramaswamy, S.; Weisman, L.

2006-01-01

268

Kinetic characterization of the weak binding states of myosin V.  

PubMed

Myosin V is a molecular motor shown to move processively along actin filaments. We investigated the properties of the weak binding states of monomeric myosin V containing a single IQ domain (MV 1IQ) to determine if the affinities of these states are increased as compared to conventional myosin. Further, using a combination of non-hydrolyzable nucleotide analogues and mutations that block ATP hydrolysis, we sought to probe the states that are populated during ATP-induced dissociation of actomyosin. MV 1IQ binds actin with a K(d) = 4 microM in the presence of ATP gamma S at 50 mM KCl, which is 10-20-fold tighter than that of nonprocessive class II myosins. Mutations within the switch II region trapped MV 1IQ in two distinct M.ATP states with very different actin binding affinities (K(d) = 0.2 and 2 microM). Actin binding may change the conformation of the switch II region, suggesting that elements of the nucleotide binding pocket will be in a different conformation when bound to actin than is seen in any of the myosin crystal structures to date. PMID:12081502

Yengo, Christopher M; De la Cruz, Enrique M; Safer, Daniel; Ostap, E Michael; Sweeney, H Lee

2002-07-01

269

Collective dynamics of elastically coupled myosin V motors.  

PubMed

Characterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin. As in studies of multiple kinesins, the run lengths produced by two myosins are only slightly larger than those of single motor molecules. This suggests that internal strain within the complexes, due to asynchronous motor stepping and the resultant stretching of motor linkages, yields net negative cooperative behaviors. In contrast to multiple kinesins, multiple myosin complexes move with appreciably lower velocities than a single-myosin molecule. Although similar trends are predicted by a discrete state stochastic model of collective motor dynamics, these analyses also suggest that multiple myosin velocities and run lengths depend on both the compliance and the effective size of their cargo. Moreover, it is proposed that this unique collective behavior occurs because the large step size and relatively small stalling force of myoVa leads to a high sensitivity of motor stepping rates to strain. PMID:22718762

Lu, Hailong; Efremov, Artem K; Bookwalter, Carol S; Krementsova, Elena B; Driver, Jonathan W; Trybus, Kathleen M; Diehl, Michael R

2012-06-20

270

Myosin II-Mediated Focal Adhesion Maturation Is Tension Insensitive  

PubMed Central

Myosin II motors drive changes in focal adhesion morphology and composition in a “maturation process” that is crucial for regulating adhesion dynamics and signaling guiding cell adhesion, migration and fate. The underlying mechanisms of maturation, however, have been obscured by the intermingled effects of myosin II on lamellar actin architecture, dynamics and force transmission. Here, we show that focal adhesion growth rate stays constant even when cellular tension is reduced by 75%. Focal adhesion growth halts only when myosin stresses are sufficiently low to impair actin retrograde flow. Focal adhesion lifetime is reduced at low levels of cellular tension, but adhesion stability can be rescued at low levels of force by over-expression of ?-actinin or constitutively active Dia1. Our work identifies a minimal myosin activity threshold that is necessary to drive lamellar actin retrograde flow is sufficient to permit focal adhesion elongation. Above this nominal threshold, myosin-mediated actin organization and dynamics regulate focal adhesion growth and stability in a force-insensitive fashion.

Stricker, Jonathan; Beckham, Yvonne; Davidson, Michael W.; Gardel, Margaret L.

2013-01-01

271

Myosin light chain kinase phosphorylation in tracheal smooth muscle  

SciTech Connect

Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in {sup 32}P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.

Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

1990-09-25

272

Pulsed actin-myosin network contractions drive apical constriction  

PubMed Central

Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis1, 2. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and Non-Muscle Myosin-II (myosin) belt underlying adherens junctions3–7. However, it is unclear whether other force-generating mechanisms can drive this process. Here, we use real-time imaging and quantitative image analysis of Drosophila gastrulation to show that apical constriction of ventral furrow cells is pulsed. Repeated constrictions, which are asynchronous between neighboring cells, are interrupted by pauses in which the constricted state of the cell apex is maintained. In contrast to the purse-string model, constriction pulses are powered by actin-myosin network contractions that occur at the medial apical cortex and pull discrete adherens junction sites inward. The transcription factors Twist and Snail differentially regulate pulsed constriction. Expression of snail initiates actin-myosin network contractions while expression of twist stabilizes the constricted state of the cell apex. Our results suggest a new model for apical constriction in which a cortical actin-myosin cytoskeleton functions as a developmentally controlled sub-cellular ratchet to incrementally reduce apical area.

Martin, Adam C.; Kaschube, Matthias; Wieschaus, Eric F.

2009-01-01

273

Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.  

PubMed Central

The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism.

Arruda, Ana Paula; Da-Silva, Wagner S; Carvalho, Denise P; De Meis, Leopoldo

2003-01-01

274

Biosynthesis of the tonoplast H sup + -ATPase  

SciTech Connect

To determine whether the tonoplast H{sup +}-ATPase was differentially synthesized in oat seedlings, sections were labeled in vivo with ({sup 35}S)-methionine and ATPase subunits were immunoprecipitated. Subunits were detected in all portions of the seedling with the exception of the seed. The intracellular site of synthesis for two peripheral ATPase subunits was investigated. RNA encoding the 72 kDa (catalytic) subunit was found in membrane-bound polysomes. In contrast, message for the 60 kDa subunit was found on free polysomes. Polypeptides synthesized in vivo or obtained from RNA translated in vitro exhibited no apparent size differences, suggesting the absence of cleaved precursors for the 72 or 60 kDa subunits.

Randall, S.K. (McGill Univ., Montreal, Quebec (Canada)); Sze, H. (Univ. of Maryland, College Park (USA))

1989-04-01

275

PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa.  

PubMed

By using the yeast two-hybrid technique, we identified a candidate protein ligand of the myosin 1c tail, PHR1, and found that this protein can also bind to the myosin VIIa tail. PHR1 is an integral membrane protein that contains a pleckstrin homology (PH) domain. Myosin 1c and myosin VIIa are two unconventional myosins present in the inner ear sensory cells. We showed that PHR1 immunoprecipitates with either myosin tail by using protein extracts from cotransfected HEK293 cells. In vitro binding assays confirmed that PHR1 directly interacts with these two myosins. In both cases the binding involves the PH domain. In vitro interactions between PHR1 and the myosin tails were not affected by the presence or absence of Ca2+ and calmodulin. Finally, we found that PHR1 is able to dimerise. As PHR1 is expressed in the vestibular and cochlear sensory cells, its direct interactions with the myosin 1c and VIIa tails are likely to play a role in anchoring the actin cytoskeleton to the plasma membrane of these cells. Moreover, as both myosins have been implicated in the mechanotransduction slow adaptation process that takes place in the hair bundles, we propose that PHR1 is also involved in this process. PMID:15976448

Etournay, Raphaël; El-Amraoui, Aziz; Bahloul, Amel; Blanchard, Stéphane; Roux, Isabelle; Pézeron, Guillaume; Michalski, Nicolas; Daviet, Laurent; Hardelin, Jean-Pierre; Legrain, Pierre; Petit, Christine

2005-07-01

276

Unconstrained Steps of Myosin VI Appear Longest among Known Molecular Motors  

Microsoft Academic Search

Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance

M. Yusuf Ali; Kazuaki Homma; Atsuko Hikikoshi Iwane; Kengo Adachi; Hiroyasu Itoh; Kazuhiko Kinosita Jr.; Toshio Yanagida; Mitsuo Ikebez

2004-01-01

277

Walking to work: roles for class V myosins as cargo transporters  

Microsoft Academic Search

Cells use molecular motors, such as myosins, to move, position and segregate their organelles. Class V myosins possess biochemical and structural properties that should make them ideal actin-based cargo transporters. Indeed, studies show that class V myosins function as cargo transporters in yeast, moving a range of organelles, such as the vacuole, peroxisomes and secretory vesicles. There is also increasing

John A. Hammer; James R. Sellers

2011-01-01

278

Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei  

Microsoft Academic Search

Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei.

Diana Spitznagel; John F. O'Rourke; Neal Leddy; Orla Hanrahan; Derek P. Nolan; Magdalena Bezanilla

2010-01-01

279

Diversity of the pufferfish Takifugu rubripes fast skeletal myosin heavy chain genes  

Microsoft Academic Search

Myosin is a highly conserved, ubiquitous actin-based molecular motor that is distributed as diverse as from prokaryotes to mammalian tissues. Among various types in the myosin family proteins, class II, also called sarcomeric, myosin is a classical, conventional molecule that has been extensively studies on its functional and structural properties. It consists of two heavy chains (MYH) of about 200

Shugo Watabe; Daisuke Ikeda

2006-01-01

280

Dynamics of Myosin-Driven Skeletal Muscle Contraction: I. Steady-State Force Generation  

Microsoft Academic Search

Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and

Ganhui Lan; Sean X. Sun

2005-01-01

281

A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis  

Microsoft Academic Search

Myosin VI has been implicated in membrane dynamics in several organisms. The mechanism of its participation in membrane events is not clear. We have used spermatogenesis in Drosophila to investigate myosin VI's in vivo role. We demonstrate that myosin VI colocalizes with and is required for the accumulation of the actin polymerization regulatory proteins, cortactin and arp2\\/3 complex, on actin

Aaron D. Rogat; Kathryn G. Miller

2002-01-01

282

Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules.  

PubMed

Myosin VI is a reverse-direction molecular motor implicated in membrane transport events. Because myosin VI is most highly expressed in the kidney, we investigated its renal localization by using high-resolution immunocytochemical and biochemical methods. Indirect immunofluorescence microscopy revealed myosin VI at the base of the brush border in proximal tubule cells. Horseradish peroxidase uptake studies, which labeled endosomes, and double staining for clathrin adapter protein-2 showed that myosin VI was closely associated with the intermicrovillar (IMV) coated-pit region of the brush border. Localization of myosin VI to the IMV region was confirmed at the electron microscopic level by colloidal gold labeling of ultrathin cryosections. In addition, antigen retrieval demonstrated a small but significant pool of myosin VI on the microvilli. To confirm the association of myosin VI with the IMV compartment, these membranes were separated from other membrane compartments by using 15-25% OptiPrep density gradients. Immunoblotting of the gradient fractions confirmed that myosin VI was enriched with markers for the IMV microdomain of the brush border, suggesting that myosin VI associates with proteins in this compartment. Finally, we examined the expression of myosin VI during nephron development. We found myosin VI present in a diffuse cytoplasmic pattern at stage II (S-shaped body phase) and that it was only redistributed fully to the brush border in the stage IV nephron. These studies support a model for myosin VI function in the endocytic process of the proximal tubule. PMID:11934687

Biemesderfer, Daniel; Mentone, Sue Ann; Mooseker, Mark; Hasson, Tama

2002-05-01

283

Excessive Myosin Activity in Mbs Mutants Causes Photoreceptor Movement Out of the Drosophila Eye Disc Epithelium  

Microsoft Academic Search

Neuronal cells must extend a motile growth cone while maintaining the cell body in its original position. In migrating cells, myosin contraction provides the driving force that pulls the rear of the cell toward the leading edge. We have characterized the function of myosin light chain phosphatase, which down-regulates myosin activity, in Drosophila photoreceptor neurons. Mutations in the gene encoding

Arnold Lee; Jessica E. Treisman

2004-01-01

284

Myosin VI is an actin-based motor that moves backwards  

Microsoft Academic Search

Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3,4,5,6) have shown that small movements within

Amber L. Wells; Abel W. Lin; Li-Qiong Chen; Daniel Safer; Shane M. Cain; Tama Hasson; Bridget O. Carragher; Ronald A. Milligan; H. Lee Sweeney

1999-01-01

285

Vacuolar H + ATPase—an enzyme for all seasons  

Microsoft Academic Search

The life of every eukaryotic cell depends on the function of vacuolar H+-ATPase (V-ATPase). Because of its complexity and its challenging properties, the study of this enzyme has lagged behind that\\u000a of its close relative, F-ATPase. We now know that V-ATPase is vital for many more physiological and biochemical processes\\u000a than anticipated when the enzyme was discovered a few decades

Shai Saroussi; Nathan Nelson

2009-01-01

286

The Ca 2+ -transport ATPases in smooth muscle  

Microsoft Academic Search

Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin

F. Wuytack; L. Raeymaekers; R. Casteels

1985-01-01

287

Calcium and Magnesium ATPase Activities in Women with Varying BMIs  

Microsoft Academic Search

Objective: Intracellular calcium (Ca) is increased in obese humans, and magnesium (Mg)-ATPase activity is increased in monosodium glutamate-induced obese rats. The aims of this study were to test the hypotheses that Ca-ATPase activity is negatively correlated with BMI, and that Mg-ATPase activity is positively correlated with BMI and Ca-ATPase activity in obese women.Research Methods and Procedures: Thirty healthy adult women,

Jennifer A. Nasser; Sami A. Hashim; Paul A. Lachance

2004-01-01

288

Expression of the Human Menkes ATPase in Xenopus laevis Oocytes  

Microsoft Academic Search

* Corresponding author Menkes disease is an X-linked disorder of copper metabolism that is usually fatal. The affected gene has recently been cloned and encodes one of the two human copper ATPases. If the Menkes ATPase is de- fective, copper is trapped in the intestinal mucosa, leading to systemic copper deficiency. In order to study copper transport by this ATPase

Karl-Dimiter Bissig; Sharon La Fontaine; Julian F. B. Mercer; Marc Solioz

2001-01-01

289

Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone.  

PubMed

The myosin family of motor proteins is implicated in mediating actin-based growth cone motility, but the roles of many myosins remain unclear. We previously implicated myosin 1c (M1c; formerly myosin I beta) in the retention of lamellipodia (Wang et al., 1996). Here we address the role of myosin II (MII) in chick dorsal root ganglion neuronal growth cone motility and the contribution of M1c and MII to retrograde F-actin flow using chromophore-assisted laser inactivation (CALI). CALI of MII reduced neurite outgrowth and growth cone area by 25%, suggesting a role for MII in lamellipodial expansion. Micro-CALI of MII caused a rapid reduction in local lamellipodial protrusion in growth cones with no effects on filopodial dynamics. This is opposite to micro-CALI of M1c, which caused an increase in lamellipodial protrusion. We used fiduciary beads (Forscher et al., 1992) to observe retrograde F-actin flow during the acute loss of M1c or MII. Micro-CALI of M1c reduced retrograde bead flow by 76%, whereas micro-CALI of MII or the MIIB isoform did not. Thus, M1c and MIIB serve opposite and nonredundant roles in regulating lamellipodial dynamics, and M1c activity is specifically required for retrograde F-actin flow. PMID:12356865

Diefenbach, Thomas J; Latham, Vaughan M; Yimlamai, Dean; Liu, Canwen A; Herman, Ira M; Jay, Daniel G

2002-09-30

290

Myosin-II Tails Confer Unique Functions in Schizosaccharomyces pombe: Characterization of a Novel Myosin-II Tail  

PubMed Central

Schizosaccharomyces pombe has two myosin-IIs, Myo2p and Myp2p, which both concentrate in the cleavage furrow during cytokinesis. We studied the phenotype of mutant myosin-II strains to examine whether these myosins have overlapping functions in the cell. myo2+ is essential. myp2+ cannot rescue loss of myo2+ even at elevated levels of expression. myp2+ is required under specific nutritional conditions; thus myo2+ cannot rescue under these conditions. Studies with chimeras show that the tails rather than the structurally similar heads determine the gene-specific functions of myp2+ and myo2+. The Myo2p tail is a rod-shaped coiled-coil dimer that aggregates in low salt like other myosin-II tails. The Myp2p tail is monomeric in high salt and is insoluble in low salt. Biophysical properties of the full-length Myp2p tail and smaller subdomains indicate that two predicted coiled-coil regions fold back on themselves to form a rod-shaped antiparallel coiled coil. This suggests that Myp2p is the first type II myosin with only one head. The C-terminal two-thirds of Myp2p tail are essential for function in vivo and may interact with components of the salt response pathway.

Bezanilla, Magdalena; Pollard, Thomas D.

2000-01-01

291

Coarse-Grained Simulation of Myosin-V Movement  

PubMed Central

We describe the development of a hierarchic modelling method applied to simulating the processive movement of the myosin-V molecular motor protein along an actin filament track. In the hierarchic model, three different levels of protein structure resolution are represented: secondary structure, domain, and protein, with the level of detail changing according to the degree of interaction among the molecules. The integrity of the system is maintained using a tree of spatially organised bounding volumes and distance constraints. Although applied to an actin-myosin system, the hierarchic framework is general enough so that it may easily be adapted to a number of other large biomolecular systems containing in the order of 100 proteins. We compared the simulation results with biophysical data, and despite the lack of atomic detail in our model, we find good agreement and can even suggest some refinements to the current model of myosin-V motion.

Katsimitsoulia, Zoe; Taylor, William R.

2012-01-01

292

Leveraging the membrane-cytoskeleton interface with myosin-1  

PubMed Central

Class 1 myosins are small motor proteins with the ability to simultaneously bind to actin filaments and cellular membranes. Given their ability to generate mechanical force, and their high prevalence in many cell types, these molecules are well positioned to carry out a number of important biological functions at the interface of membrane and the actin cytoskeleton. Indeed, recent studies implicate these motors in endocytosis, exocytosis, release of extracellular vesicles, and the regulation of tension between membrane and the cytoskeleton. Many class 1 myosins also exhibit a load-dependent mechano-chemical cycle that enables them to maintain tension for long periods of time without hydrolyzing ATP. These properties put myosins-1 in a unique position to regulate dynamic membrane-cytoskeleton interactions and respond to physical forces during these events.

McConnell, Russell E.; Tyska, Matthew J.

2010-01-01

293

The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles  

Microsoft Academic Search

Around 40 P-type ATPases have been identified in Arabidopsis and rice, for which the genomes are known. None seems to exchange sodium and potassium, as does the animal Na+\\/K+-ATPase. Instead, plants, together with fungi, possess a proton pumping ATPase (H+-ATPase), which couples ATP hydrolysis to proton transport out of the cell, and so establishes an electrochemical gradient\\u000a across the plasma

Geoffrey Duby; Marc Boutry

2009-01-01

294

Actin cores of hair-cell stereocilia support myosin motility.  

PubMed Central

The actin cores of hair-cell stereocilia were tested as a substrate for the movement of myosin-coated beads in an in vitro assay. Large numbers of stereocilia from bullfrog sacculi and semicircular canals were isolated by blotting onto coverglasses and were demembranated to expose the polar actin tracks of their cytoskeletal cores. Silica or polystyrene beads, coated with thick filaments of chicken skeletal muscle myosin, were added to this core preparation in the presence of ATP. Myosin-coated beads could reach some of the cores by diffusion alone, but the efficiency and precision of the assay were improved considerably by the use of "optical tweezers" (a gradient-force optical trap) to deposit the beads directly on the cores. Beads applied in this fashion bound and moved unidirectionally at 1-2 microns/s, escaping the retarding force of the trap. Actin filaments within the stereocilia are cross-linked by fimbrin, but this did not appear to interfere with the motility of myosin. Beads coated with optic-lobe kinesin were also tested for movement; these bound and moved unidirectionally at 0.1-0.2 microns/s when applied to microtubule-based kinociliary cores, but not when applied to actin-based stereociliary cores. Our results are consistent with, and lend support to, a model for hair cell adaptation in which a molecular motor such as myosin maintains tension on the mechanically gated transduction channels. Optical tweezers and video-enhanced differential interference contrast optics provide high efficiency and improved optical resolution for the in vitro analysis of myosin motility. Images

Shepherd, G M; Corey, D P; Block, S M

1990-01-01

295

Photocleavage of myosin subfragment 1 by vanadate  

SciTech Connect

The heavy chain of myosin's subfragment 1 (S1) was cleaved at two distinct sites (termed V1 and V2) after irradiation with UV light in the presence of millimolar concentrations of vanadate and in the absence of nucleotides or divalent metals. The V1 site cleavage appeared to be identical with the previously described active site cleavage at serine-180, which is effected by irradiation of a photomodified form of the S1-MgADP-Vi complex. The V2 site was cleaved specifically, without cleavage at the V1 site, first by formation of the light-stable S1-Co2+ADP-Vi complex at the active site and then by irradiation in the presence of millimolar vanadate. By gel electrophoresis, the V2 site was localized to a region about 20 kDa from the COOH terminus of the S1 heavy chain. From the results of tryptic digestion experiments, the COOH-terminal V2 cleavage peptide appeared to contain lysine-636 in the linker region between the 50- and 20-kDa tryptic peptides of the heavy chain. This site appeared to be the same site cleaved by irradiation of S1 (not complexed with Co2+ADP-Vi) in the presence of millimolar vanadate as previously described. Cleavage at the V2 site was inhibited by Co2+ but was not significantly affected by the presence of nucleotides or Mg2+ ions. Tris buffer significantly inhibited V2 cleavage. From the results of UV-visible absorption, 51V NMR, and frozen-solution EPR spectral experiments, it was concluded that irradiation with UV light reduced vanadate +5 to the +4 oxidation state, which was then protected from rapid reoxidation by O2 by complexation with the Tris buffer. The relatively stable reduced form or forms of vanadium were not competent to cleave S1 at either the V1 or the V2 site.

Cremo, C.R.; Long, G.T.; Grammer, J.C. (Colorado College, Colorado Springs (USA))

1990-08-28

296

Transport of Myosin II to the Equatorial Region without Its Own Motor Activity in Mitotic Dictyostelium Cells  

Microsoft Academic Search

Fluorescently labeled myosin moved and accumulated circumferentially in the equatorial region of dividing Dictyostelium cells within a time course of 4 min, followed by con- traction of the contractile ring. To investigate the mechanism of this transport process, we have expressed three mutant myosins that cannot hydrolyze ATP in myosin null cells. Immunofluorescence staining showed that these mutant myosins were

Shigehiko Yumura; Taro Q. P. Uyeda

1997-01-01

297

Maleimidobenzoyl-G-actin: Structural properties and interaction with skeletal myosin subfragment-1  

SciTech Connect

The authors have investigated various structural and interaction properties of maleimidobenzoyl-G-actin (MBS-actin), a new, internally cross-linked G-actin derivative that does not exhibit, at moderate protein concentration, the salt-and myosin subfragment 1 (S-1)--induced polymerizations of G-actin and reacts reversibly and covalently in solution with S-1 at or near the F-actin binding region of the heavy chain. The far-ultraviolet CD spectrum and {alpha}-helix content of the MBS-actin were identical with those displayed by native G-actin. {sup 45}Ca{sup 2+} measurements showed the same content of tightly bound Ca{sup 2+} in MBS-actin as in G-actin and the EDTA treatment of the modified protein promoted the same red shift of the intrinsic fluorescence spectrum as observed with native G-actin. Incubation of concentrated MBS-actin solutions with 100 mM KCl+5 mM MgCl{sub 2} led to the polymerization of the actin derivative when the critical monomer concentration reached 1.6mg/mL, at 25{degree}C, pH 8.0. The MBS-F-actin formed activated the Mg{sup 2+}-ATPase of S-1 to the same extent as native F-actin. The MBS-G-actin exhibited a DNase I inhibitor activity very close to that found with native G-actin and was to be at all affected by its specific covalent conjugation to S-1. This finding led them to isolate, for the first time, by gel filtration, a ternary complex comprising DNase I tightly bound to MBS-actin cross-linked to the S-1 heavy chain, demonstrating that S-1 and DNase I bind at distinct sites on G-actin. Collectively, the data illustrate further the nativeness of the MBS-G-actin and its potential use in solution studies of the actin-myosin head interactions.

Bettache, N.; Bertrand, R.; Kassab, R. (Universite de Montpellier (France))

1990-09-25

298

Sorting of the Yeast Vacuolar-type, Proton-translocating ATPase Enzyme Complex (V-ATPase)  

PubMed Central

Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W83KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W83KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W83KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.

Finnigan, Gregory C.; Cronan, Glen E.; Park, Hae J.; Srinivasan, Sankaranarayanan; Quiocho, Florante A.; Stevens, Tom H.

2012-01-01

299

The UCS Domain Protein She4p Binds to Myosin Motor Domains and Is Essential for Class I and Class V Myosin Function  

Microsoft Academic Search

Background: Myosins are motor proteins involved in processes like cell motility, vesicle transport, or cytokinesis. In a variety of organisms, a novel group of proteins forming the UCS (UNC-45\\/CRO1\\/SHE4) domain-containing family are essential for proper myosin function. The Saccharomyces cerevisae UCS domain protein She4p is involved in two myosin-requiring events, endocytosis and mRNA localization.Results: In contrast to UCS domain proteins

Stefanie Wesche; Marc Arnold; Ralf-Peter Jansen

2003-01-01

300

A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain1 and Inhibits Myosin Motor Activity  

Microsoft Academic Search

Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of

Aoife T. Heaslip; Jacqueline M. Leung; Kimberly L. Carey; Federica Catti; David M. Warshaw; Nicholas J. Westwood; Bryan A. Ballif; Gary E. Ward

2010-01-01

301

Sodium-stimulated ATPase in Streptococcus faecalis.  

PubMed Central

We measured Na+-stimulated ATPase activity in a mutant of Streptococcus faecalis defective in the generation of proton motive force. The activity in membrane vesicles was 62.1 +/- 5.9 nmol of phosphate produced per min per mg of protein when cells were grown on medium containing 0.12 M Na+. Activity decreased as the concentration of Na+ in the growth medium decreased. The decrease in enzyme activity corresponded to the decrease in transport activity for Na+ in both whole cells and membrane vesicles. The effects of pH on both activities were identical. Thus, it is suggested that Na+ movement is mediated by this enzyme. Sodium extrusion and ATPase activity in the wild-type strain were markedly lower than those observed in the mutant strain. Elevated activities of both Na+ extrusion and Na+-stimulated ATPase could be detected in the wild-type strain when cells were grown in the absence of proton motive force. Thus, we propose that the level of ATPase is increased by dissipation of the proton motive force.

Kinoshita, N; Unemoto, T; Kobayashi, H

1984-01-01

302

Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition.  

PubMed

The vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, has come into focus as an attractive target in cancer invasion. However, little is known about the role of V-ATPase in cell death, and especially the underlying mechanisms remain mostly unknown. We used the myxobacterial macrolide archazolid B, a potent inhibitor of the V-ATPase, as an experimental drug as well as a chemical tool to decipher V-ATPase-related cell death signaling. We found that archazolid induced apoptosis in highly invasive tumor cells at nanomolar concentrations which was executed by the mitochondrial pathway. Prior to apoptosis induction archazolid led to the activation of a cellular stress response including activation of the hypoxia-inducible factor-1? (HIF1?) and autophagy. Autophagy, which was demonstrated by degradation of p62 or fusion of autophagosomes with lysosomes, was induced at low concentrations of archazolid that not yet increase pH in lysosomes. HIF1? was induced due to energy stress shown by a decline of the ATP level and followed by a shutdown of energy-consuming processes. As silencing HIF1? increases apoptosis, the cellular stress response was suggested to be a survival mechanism. We conclude that archazolid leads to energy stress which activates adaptive mechanisms like autophagy mediated by HIF1? and finally leads to apoptosis. We propose V-ATPase as a promising drugable target in cancer therapy caught up at the interplay of apoptosis, autophagy, and cellular/metabolic stress. PMID:23168408

von Schwarzenberg, Karin; Wiedmann, Romina M; Oak, Prajakta; Schulz, Sabine; Zischka, Hans; Wanner, Gerhard; Efferth, Thomas; Trauner, Dirk; Vollmar, Angelika M

2012-11-20

303

CHARACTERIZATION OF TIGHTLY-ASSOCIATED SMOOTH MUSCLE MYOSIN-MYOSIN LIGHT CHAIN KINASE-CALMODULIN COMPLEXES*  

PubMed Central

A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by smooth muscle myosin light chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM (up-SMM) from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ~ 23–37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at ~1 nM free [Ca2+]. There were two MLCK pools that bound unphosphorylated SMM with Kd ~10 ?M and 0.2 ?M and phosphorylated SMM with a Kd ~ 20 ?M and 0.2 ?M. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca2+ and phosphorylation of SMM occurred at a pCa50 of 6.1 and Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip ELISA assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.

Hong, Feng; Haldeman, Brian D.; John, Olivia A.; Brewer, Paul D.; Wu, Yi-Ying; Ni, Shaowei; Wilson, David P.; Walsh, Michael P.; Baker, Jonathan E.; Cremo, Christine R.

2009-01-01

304

Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement  

PubMed Central

Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise.

Fabian, Lacramioara; Troscianczuk, Joanna; Forer, Arthur

2007-01-01

305

Association of myosin I alpha with endosomes and lysosomes in mammalian cells.  

PubMed

Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIalpha) is associated with endosomes and lysosomes. We show that the overproduction of MMIalpha or the production of nonfunctional truncated MMIalpha affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIalpha, promote the dissociation of MMIalpha from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIalpha might therefore be involved in membrane trafficking occurring between endosomes and lysosomes. PMID:10233157

Raposo, G; Cordonnier, M N; Tenza, D; Menichi, B; Dürrbach, A; Louvard, D; Coudrier, E

1999-05-01

306

Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity.  

PubMed

Natural killer (NK) cells are innate immune lymphocytes that provide critical defense against virally infected and transformed cells. NK-cell cytotoxicity requires the formation of an F-actin rich immunologic synapse (IS), as well as the polarization of perforin-containing lytic granules to the IS and secretion of their contents at the IS. It was reported previously that NK-cell cytotoxicity requires nonmuscle myosin IIA function and that granule-associated myosin IIA mediates the interaction of granules with F-actin at the IS. In the present study, we evaluate the nature of the association of myosin IIA with lytic granules. Using NK cells from patients with mutations in myosin IIA, we found that the nonhelical tailpiece is required for NK-cell cytotoxicity and for the phosphorylation of granule-associated myosin IIA. Ultra-resolution imaging techniques demonstrated that single myosin IIA molecules associate with NK-cell lytic granules via the nonhelical tailpiece. Phosphorylation of myosin IIA at residue serine 1943 (S1943) in the tailpiece is needed for this linkage. This defines a novel mechanism for myosin II function, in which myosin IIA can act as a single-molecule actin motor, claiming granules as cargo through tail-dependent phosphorylation for the execution of a pre-final step in human NK-cell cytotoxicity. PMID:22123909

Sanborn, Keri B; Mace, Emily M; Rak, Gregory D; Difeo, Analisa; Martignetti, John A; Pecci, Alessandro; Bussel, James B; Favier, Rémi; Orange, Jordan S

2011-11-24

307

Functional consequence of mutation in rat cardiac troponin T is affected differently by myosin heavy chain isoforms  

PubMed Central

Cardiac troponin T (cTnT) is an essential component of the thin filament regulatory unit (RU) that regulates Ca2+ activation of tension in the heart muscle. Because there is coupling between the RU and myosin crossbridges, the functional outcome of cardiomyopathy-related mutations in cTnT may be modified by the type of myosin heavy chain (MHC) isoform. Ca2+ activation of tension and ATPase activity were measured in muscle fibres from normal rat hearts containing ?-MHC isoform and propylthiouracil (PTU)-treated rat hearts containing ?-MHC isoform. Muscle fibres from normal and PTU-treated rat hearts were reconstituted with two different mutations in rat cTnT; the deletion of Glu162 (cTnTE162DEL) and the deletion of Lys211 (cTnTK211DEL). ?-MHC and ?-MHC isoforms had contrasting impact on tension-dependent ATP consumption (tension cost) in cTnTE162DEL and cTnTK211DEL reconstituted muscle fibres. Significant increases in tension cost in ?-MHC-containing muscle fibres corresponded to 17% (P < 0.01) and 23% (P < 0.001) when reconstituted with cTnTE162DEL and cTnTK211DEL, respectively. In contrast, tension cost decreased when these two cTnT mutants were reconstituted in muscle fibres containing ?-MHC; by approximately 24% (P < 0.05) when reconstituted with cTnTE162DEL and by approximately 17% (P = 0.09) when reconstituted with cTnTK211DEL. Such differences in tension cost were substantiated by the mechano-dynamic analysis of cTnT mutant reconstituted muscle fibres from normal and PTU-treated rat hearts. Our observation demonstrates that qualitative changes in MHC isoform alters the nature of cardiac myofilament dysfunction induced by mutations in cTnT.

Tschirgi, Matthew L; Rajapakse, Indika; Chandra, Murali

2006-01-01

308

A marine algal Na(+)-activated ATPase possesses an immunologically identical epitope to Na+,K(+)-ATPase.  

PubMed

Immunological homology was investigated between Heterosigma akashiwo (a marine algae) Na(+)-activated ATPase and animal Na+,K(+)-ATPase. The former polypeptide [(1989) Plant Cell Physiol. 30, 923-928] reacted with anti-serum raised against the amino-terminal half of the pig kidney Na+,K(+)-ATPase alpha subunit. It is suggested that the Na+,K(+)-ATPase epitope within the amino-terminal region is conserved in the plant Na(+)-activated ATPase, and the region containing the epitope may be important for Na ion transport. PMID:1381322

Wada, M; Urayama, O; Satoh, S; Hara, Y; Ikawa, Y; Fujii, T

1992-09-14

309

Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains  

PubMed Central

Background Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. Results The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins. The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree. Conclusion Dictyostelium contains thirteen myosins together with 6–8 MLCs (myosin light chain) to assist in a variety of actin-based processes in the cell. Although they are homologous to myosins of higher eukaryotes, the myosins of Dictyostelium should be considered with care as models for specific functions of vertebrate myosins.

Kollmar, Martin

2006-01-01

310

Rotational model for actin filament alignment by myosin.  

PubMed

Dynamics of the actomyosin cytoskeleton regulate cellular processes such as secretion, cell division, cell motility, and shape change. Actomyosin dynamics are themselves regulated by proteins that control actin filament polymerization and depolymerization, and myosin motor contractility. Previous theoretical work has focused on translational movement of actin filaments but has not considered the role of filament rotation. Since filament rotational movements are likely sources of forces that direct cell shape change and movement we explicitly model the dynamics of actin filament rotation as myosin II motors traverse filament pairs, drawing them into alignment. Using Monte Carlo simulations we find an optimal motor velocity for alignment of actin filaments. In addition, when we introduce polymerization and depolymerization of actin filaments, we find that alignment is reduced and the filament arrays exist in a stable, asynchronous state. Further analysis with continuum models allows us to investigate factors contributing to the stability of filament arrays and their ability to generate force. Interestingly, we find that two different morphologies of F-actin arrays generate the same amount of force. We also identify a phase transition to alignment which occurs when either polymerization rates are reduced or motor velocities are optimized. We have extended our analysis to include a maximum allowed stretch of the myosin motors, and a non-uniform length for filaments leading to little change in the qualitative results. Through the integration of simulations and continuum analysis, we are able to approach the problem of understanding rotational alignment of actin filaments by myosin II motors. PMID:22326473

Miller, Callie J; Bard Ermentrout, G; Davidson, Lance A

2012-02-05

311

Engineering controllable bidirectional molecular motors based on myosin  

NASA Astrophysics Data System (ADS)

Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

2012-04-01

312

Engineering controllable bidirectional molecular motors based on myosin  

PubMed Central

Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14.

Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

2012-01-01

313

Force generation by kinesin and myosin cytoskeletal motor proteins.  

PubMed

Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central ?-sheet - proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins - is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, explaining the essential role of switch I in hydrolysis. Comparison of the motor power strokes reveals that each stroke begins with the force-amplifying structure oriented opposite to the direction of rotation or swing. Motors undergo changes in their mechanochemical cycles in response to small-molecule inhibitors, several of which bind to kinesins by induced fit, trapping the motors in a state that resembles a force-producing conformation. An unusual motor activator specifically increases mechanical output by cardiac myosin, potentially providing valuable information about its mechanism of function. Further study is essential to understand motor mechanochemical coupling and energy transduction, and could lead to new therapies to treat human disease. PMID:23487037

Kull, F Jon; Endow, Sharyn A

2013-03-13

314

Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction  

SciTech Connect

Monoclonal antibody R11D10 to human cardiac myosin, which also cross-reacted with canine cardiac myosin, was used to demonstrate in vivo localization and visualization by gamma scintigraphy of experimental myocardial infarction. R11D10 Fab with a Ka of 5 X 10(8) M-1 was labeled with technetium-99m (99mTc) by the dithionite reduction method of technetium pertechnetate, via a bifunctional chelating agent, diethylene triamine pentaacetic acid (DTPA). Uptake of 99mTc R11D10 Fab in the infarct can be visualized as early as 2 h after intravenous administration. Comparison of R11D10 uptake to thallium-201, an analogue of potassium which is sequestered by normal myocardium, showed an inverse relation (r . -0.75, -0.87, -0.89), similar to that obtained with 125I labeled polyclonal antimyosin Fab. Ratios of R11D10 Fab in the infarct to normal myocardium were as high as 30:1 where access of antibody to antigen was not blood flow limited. However, with severe blood-flow restriction, the ratios were lower at about 10:1. Despite the theoretical limitation of a single epitope per myosin molecule available for binding by R11D10 Fab, the immense excess of myosin in the infarcted myocardium allowed adequate concentration of radiolabeled R11D10 for visualization of the infarct by external gamma scintiscanning.

Khaw, B.A.; Mattis, J.A.; Melincoff, G.; Strauss, H.W.; Gold, H.K.; Haber, E.

1984-01-01

315

Characterization of a Myosin VII MyTH/FERM domain  

PubMed Central

A group of closely related myosins are characterized by the presence of at least one MyTH/FERM (myosin talin homology 4; band 4.1, ezrin, radixin, moesin) domain in their C-terminal tails. This domain interacts with a variety of binding partners, and mutations in either the MyTH4 or FERM domains of myosin VII and XV result in deafness, highlighting the functional importance of each domain. The N-terminal MyTH/FERM region of Dictyostelium myosin VII (M7) has been isolated as a first step toward gaining insight into the function of this domain and its interaction with binding partners. The M7 MyTH4/FERM domain (MF1) binds to both actin and microtubules in vitro, with dissociation constants of 13.7 and 1.7 ?M, respectively. Gel filtration and UV spectroscopy reveal that MF1 exists as a monomer in solution and forms a well-folded, compact conformation with a high degree of secondary structure. These results indicate that MF1 forms an integrated structural domain that serves to couple actin filaments and microtubules in specific regions of the cytoskeleton.

Moen, Rebecca J.; Johnsrud, Daniel O.; Thomas, David D.; Titus, Margaret A.

2011-01-01

316

Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium.  

PubMed Central

Using quantitative RT-PCR in RNA from right ventricular (RV) endomyocardial biopsies from intact nonfailing hearts, and subjects with moderate RV failure from primary pulmonary hypertension (PPH) or idiopathic dilated cardiomyopathy (IDC), we measured expression of genes involved in regulation of contractility or hypertrophy. Gene expression was also assessed in LV (left ventricular) and RV free wall and RV endomyocardium of hearts from end-stage IDC subjects undergoing heart transplantation or from nonfailing donors. In intact failing hearts, downregulation of beta1-receptor mRNA and protein, upregulation of atrial natriuretic peptide mRNA expression, and increased myocyte diameter indicated similar degrees of failure and hypertrophy in the IDC and PPH phenotypes. The only molecular phenotypic difference between PPH and IDC RVs was upregulation of beta2-receptor gene expression in PPH but not IDC. The major new findings were that (a) both nonfailing intact and explanted human ventricular myocardium expressed substantial amounts of alpha-myosin heavy chain mRNA (alpha-MHC, 23-34% of total), and (b) in heart failure alpha-MHC was downregulated (by 67-84%) and beta-MHC gene expression was upregulated. We conclude that at the mRNA level nonfailing human heart expresses substantial alpha-MHC. In myocardial failure this alteration in gene expression of MHC isoforms, if translated into protein expression, would decrease myosin ATPase enzyme velocity and slow speed of contraction.

Lowes, B D; Minobe, W; Abraham, W T; Rizeq, M N; Bohlmeyer, T J; Quaife, R A; Roden, R L; Dutcher, D L; Robertson, A D; Voelkel, N F; Badesch, D B; Groves, B M; Gilbert, E M; Bristow, M R

1997-01-01

317

The RhoA-Rok-Myosin II Pathway is Involved in Extracellular Matrix-Mediated Regulation of Prolactin Signaling in Mammary Epithelial Cells  

PubMed Central

In mammary epithelial cells (MECs), prolactin-induced signaling and gene expression requires integrin-mediated cell adhesion to basement membrane (BM). In the absence of proper cell–BM interactions, for example, culturing cells on collagen-coated plastic dishes, signal propagation is substantially impaired. Here we demonstrate that the RhoA-Rok-myosin II pathway accounts for the ineffectiveness of prolactin signaling in MECs cultured on collagen I. Under these culture conditions, the RhoA pathway is activated, leading to downregulation of prolactin receptor expression and reduced prolactin signaling. Enforced activation of RhoA in MECs cultured on BM suppresses prolactin receptor levels, and prevents prolactin-induced Stat5 tyrosine phosphorylation and ?-casein expression. Overexpression of dominant negative RhoA in MECs cultured on collagen I, or inhibiting Rok activity, increases prolactin receptor expression, and enhances prolactin signaling. In addition, inhibition of myosin II ATPase activity by blebbistatin also exerts a beneficial effect on prolactin receptor expression and prolactin signaling, suggesting that tension exerted by the collagen substratum, in collaboration with the RhoA-Rok-myosin II pathway, contributes to the failure of prolactin signaling. Furthermore, MECs cultured on laminin-coated plastic have similar morphology and response to prolactin as those cultured on collagen I. They display high levels of RhoA activity and are inefficient in prolactin signaling, stressing the importance of matrix stiffness in signal transduction. Our results reveal that RhoA has a central role in determining the fate decisions of MECs in response to cell–matrix interactions. J. Cell. Physiol. 227: 1553–1560, 2012. © 2011 Wiley Periodicals, Inc.

Du, Jyun-Yi; Chen, Meng-Chi; Hsu, Tsai-Ching; Wang, Jen-Hsing; Brackenbury, Lisa; Lin, Ting-Hui; Wu, Yi-Ying; Yang, Zhihong; Streuli, Charles H; Lee, Yi-Ju

2012-01-01

318

cGMP-dependent protein kinase I? regulates breast cancer cell migration and invasion via interaction with the actin/myosin-associated protein caldesmon.  

PubMed

The two isoforms of type I cGMP-dependent protein kinase (PKGI? and PKGI?) differ in their first ?100 amino acids, giving each isoform unique dimerization and autoinhibitory domains. The dimerization domains form coiled-coil structures and serve as platforms for isoform-specific protein-protein interactions. Using the PKGI? dimerization domain as an affinity probe in a proteomic screen, we identified the actin/myosin-associated protein caldesmon (CaD) as a PKGI?-specific binding protein. PKGI? phosphorylated human CaD on serine 12 in vitro and in intact cells. Phosphorylation on serine 12 or mutation of serine 12 to glutamic acid (S12E) reduced the interaction between CaD and myosin IIA. Because CaD inhibits myosin ATPase activity and regulates cell motility, we examined the effects of PKGI? and CaD on cell migration and invasion. Inhibition of the NO/cGMP/PKG pathway reduced migration and invasion of human breast cancer cells, whereas PKG activation enhanced their motility and invasion. siRNA-mediated knockdown of endogenous CaD had pro-migratory and pro-invasive effects in human breast cancer cells. Reconstituting cells with wild-type CaD slowed migration and invasion; however, CaD containing a phospho-mimetic S12E mutation failed to reverse the pro-migratory and pro-invasive activity of CaD depletion. Our data suggest that PKGI? enhances breast cancer cell motility and invasive capacity, at least in part, by phosphorylating CaD. These findings identify a pro-migratory and pro-invasive function for PKGI? in human breast cancer cells, suggesting that PKGI? is a potential target for breast cancer treatment. PMID:23418348

Schwappacher, Raphaela; Rangaswami, Hema; Su-Yuo, Jacqueline; Hassad, Aaron; Spitler, Ryan; Casteel, Darren E

2013-02-15

319

N-lobe dynamics of myosin light chain dictates its mode of interaction with myosin V IQ1.  

PubMed

Myosin V motors regulate secretion and cell division in eukaryotes. How MyoV activity is differentially regulated by essential and calmodulin light chain binding remains unclear. We have used NMR spectroscopy to compare the dynamic behavior of Mlc1p, a budding yeast essential light chain, with that of the Xenopus laevis calmodulin. Both proteins have a similar structure and bind similar target proteins but differ in the mechanism by which they interact with the myosin V IQ1. This interaction is essential for MyoV activity. Here, we show that the rigid conformation of the loop connecting the two EF-hand motifs of the Mlc1p N-lobe explains its differential ability to interact with myosin V IQ1. Moreover, we show that the maintenance of the N-lobe structure is required for the essential function of Mlc1p in vivo. These data show that the core characteristics of myosin light chain N-lobes differentiate Mlc1p and calmodulin binding capability. PMID:18975975

Amata, Irene; Gallo, Mariana; Pennestri, Matteo; Paci, Maurizio; Ragnini-Wilson, Antonella; Cicero, Daniel O

2008-11-25

320

Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains  

Microsoft Academic Search

Abstract. Recent biochemical studies of p190, a cal- modulin,(CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of prop- erties with myosins (Espindola, E S., E. M. Esprea- rico, M. V. Coelho, A. R. Martins, E R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J.

Enilza M. Espreafico; Richard E. Cheney; Michela Matteoli; Alexandra A. C. Nascimento; Pietro V. De Camilli; Roy E. Larson; Mark S. Mooseker

1992-01-01

321

Photoaffinity labeling of myosin subfragment-one-with 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate  

SciTech Connect

The photoaffinity analogue 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz/sub 2/ATP) contains the photoreactive benzophenone group esterified at the 2' or 3' hydroxyl groups of ribose. MgBz/sub 2/ADP has a single binding site on skeletal myosin chymotryptic subfragment-one (SF/sub 1/) with a binding constant of 3.2 x 10/sup 5/ M/sup -1/. Bz/sub 2/ATP is also a substrate for the ATPase activity of SF/sub 1/ in the presence of different cations. The irradiation of SF/sub 1/ with (/sup 3/H)Bz/sub 2/ATP photoinactivates the ATPase activity with concomitant incorporation of the analogue into the enzyme. Polyacrylamide gel electrophoresis of photolabeled SF/sub 1/ after milk trypsin digestion shows that all three tryptic peptides, 25 K, 50K, and 20 K, and both light chains are labeled. The presence of ATP during irradiation reduces labeling of the 50 K peptide only indicating that the other peptides are non-specifically labeled. To reduce the non-specific labeling (/sup 3/H)Bz/sub 2/ATP is trapped on SF/sub 1/ by cross-linking the two reactive thiols, SH/sub 1/ and SH/sub 2/, by N,N'-p-phenylene dimaleimide or Co(II)/Co(III) phenanthroline complexes. The Co(II)/Co(III) phenanthroline modified (/sup 14/C)Bz/sub 2/ATP-SF/sub 1/, after proteolytic digestion, yields five labeled peptides which were purified by gel filtration and high performance liquid chromatography.

Mahmood, R.

1985-01-01

322

Actin Structure-Dependent Stepping of Myosin 5a and 10 during Processive Movement.  

PubMed

How myosin 10, an unconventional myosin, walks processively along actin is still controversial. Here, we used single molecule fluorescence techniques, TIRF and FIONA, to study the motility and the stepping mechanism of dimerized myosin 10 heavy-meromyosin-like fragment on both single actin filaments and two-dimensional F-actin rafts cross-linked by fascin or ?-actinin. As a control, we also tracked and analyzed the stepping behavior of the well characterized processive motor myosin 5a. We have shown that myosin 10 moves processively along both single actin filaments and F-actin rafts with a step size of 31 nm. Moreover, myosin 10 moves more processively on fascin-F-actin rafts than on ?-actinin-F-actin rafts, whereas myosin 5a shows no such selectivity. Finally, on fascin-F-actin rafts, myosin 10 has more frequent side steps to adjacent actin filaments than myosin 5a in the F-actin rafts. Together, these results reveal further single molecule features of myosin 10 on various actin structures, which may help to understand its cellular functions. PMID:24069366

Bao, Jianjun; Huck, Daniel; Gunther, Laura K; Sellers, James R; Sakamoto, Takeshi

2013-09-19

323

Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains.  

PubMed

Myosin-1c plays an essential role in adaptation of hair-cell mechanoelectrical transduction. To mediate adaptation, myosin-1c must interact directly or indirectly with other components of the transduction apparatus, including the mechanically gated transduction channel. As a first step toward identifying myosin-1c receptors, we used recombinant myosin-1c fragments to identify specific binding sites in hair cells and to biochemically characterize their interaction with myosin-1c. Myosin-1c fragments bound to tips of hair-cell stereocilia, the location of transduction and adaptation. Surprisingly, this interaction did not depend on the C-terminal tail of myosin-1c, proposed previously to be the receptor-binding site of the molecule. Instead, the interaction of myosin-1c with stereociliary receptors depended on its calmodulin-binding IQ domains. This interaction was blocked by calmodulin, which probably bound to a previously unoccupied IQ domain of myosin-1c. The calcium-sensitive binding of calmodulin to myosin-1c may therefore modulate the interaction of the adaptation motor with other components of the transduction apparatus. PMID:11923413

Cyr, Janet L; Dumont, Rachel A; Gillespie, Peter G

2002-04-01

324

Asymmetric myosin binding to the thin filament as revealed by a fluorescent nanocircuit.  

PubMed

The interplay between myosin, actin, and striated muscle regulatory proteins involves complex cooperative interactions that propagate along the thin filament. A repeating unit of the tropomyosin dimer, troponin heterotrimer, and the actin protofilament heptamer is sometimes assumed to be able to bind myosin at any of its seven actins when activated even though the regulatory proteins are asymmetrically positioned along this repeating unit. Analysis of the impact of this asymmetry on actin and myosin interactions by sensitized emission luminescence resonance energy transfer spectroscopy and a unique fluorescent nanocircuit design reveals that the troponin affects the structure and function of myosin heads bound nearby in a different manner than myosin heads bound further away from the troponin. To test this hypothesis, a fluorescent nanocircuit reported the position of the myosin lever arm only when the myosin was bound adjacent to the troponin, or in controls, only when the myosin was bound distant from the troponin. Confirming the hypothesis, the myosin lever arm is predominantly in the pre powerstroke orientation when bound near troponin, but is predominantly in the post powerstroke orientation when bound distant from troponin. These data are consistent with the hypothesis that troponin is responsible for the formation of myosin binding target zones along the thin filament. PMID:23274408

Coffee Castro-Zena, Pilar G; Root, Douglas D

2012-12-27

325

Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos  

PubMed Central

The nuclei of early syncytial Drosophila embryos migrate dramatically toward the poles. The cellular mechanisms driving this process, called axial expansion, are unclear, but myosin II activity is required. By following regulatory myosin light chain (RLC)–green fluorescent protein dynamics in living embryos, we observed cycles of myosin recruitment to the cortex synchronized with mitotic cycles. Cortical myosin is first seen in a patch at the anterocentral part of the embryo at cycle 4. With each succeeding cycle, the patch expands poleward, dispersing at the beginning of each mitosis and reassembling at the end of telophase. Each cycle of actin and myosin recruitment is accompanied by a cortical contraction. The cortical myosin cycle does not require microtubules but correlates inversely with Cdc2/cyclinB (mitosis-promoting factor) activity. A mutant RLC lacking inhibitory phosphorylation sites was fully functional with no effect on the cortical myosin cycle, indicating that Cdc2 must be modulating myosin activity by some other mechanism. An inhibitor of Rho kinase blocks the cortical myosin recruitment cycles and provokes a concomitant failure of axial expansion. These studies suggest a model in which cycles of myosin-mediated contraction and relaxation, tightly linked to Cdc2 and Rho kinase activity, are directly responsible for the axial expansion of the syncytial nuclei.

Royou, Anne; Sullivan, William; Karess, Roger

2002-01-01

326

Actin Structure-Dependent Stepping of Myosin 5a and 10 during Processive Movement  

PubMed Central

How myosin 10, an unconventional myosin, walks processively along actin is still controversial. Here, we used single molecule fluorescence techniques, TIRF and FIONA, to study the motility and the stepping mechanism of dimerized myosin 10 heavy-meromyosin-like fragment on both single actin filaments and two-dimensional F-actin rafts cross-linked by fascin or ?-actinin. As a control, we also tracked and analyzed the stepping behavior of the well characterized processive motor myosin 5a. We have shown that myosin 10 moves processively along both single actin filaments and F-actin rafts with a step size of 31 nm. Moreover, myosin 10 moves more processively on fascin-F-actin rafts than on ?-actinin-F-actin rafts, whereas myosin 5a shows no such selectivity. Finally, on fascin-F-actin rafts, myosin 10 has more frequent side steps to adjacent actin filaments than myosin 5a in the F-actin rafts. Together, these results reveal further single molecule features of myosin 10 on various actin structures, which may help to understand its cellular functions.

Gunther, Laura K.; Sellers, James R.; Sakamoto, Takeshi

2013-01-01

327

Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements  

PubMed Central

In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin’s force-dependent properties, provide detailed insight into the kinetics of myosin’s mechanochemical interaction with actin. However, it has been difficult to reconcile these single-molecule observations with the behavior of myosin in an ensemble. Here, using a combination of simulations and theory, we show that the kinetic mechanism derived from single-molecule experiments describes ensemble behavior; but the connection between single molecule and ensemble is complex. In particular, even in the absence of external force, internal forces generated between myosin molecules in a large ensemble accelerate ADP release and increase how far actin moves during a single myosin attachment. These myosin-induced changes in strong binding lifetime and attachment distance cause measurable properties, such as actin speed in the motility assay, to vary depending on the number of myosin molecules interacting with an actin filament. This ensemble-size effect challenges the simple detachment limited model of motility, because even when motility speed is limited by ADP release, increasing attachment rate can increase motility speed.

Walcott, Sam; Warshaw, David M.; Debold, Edward P.

2012-01-01

328

Assembly of thick filaments and myofibrils occurs in the absence of the myosin head.  

PubMed Central

We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the C-terminal tailpiece. Both isoforms of headless myosin co-assemble with endogenous full-length myosin in wild-type muscle cells. However, rod polypeptides interfere with muscle function and cause a flightless phenotype. Electron microscopy demonstrates that this results from an antimorphic effect upon myofibril assembly. Thick filaments assemble when the myosin rod is expressed in mutant indirect flight muscles where no full-length myosin heavy chain is produced. These filaments show the characteristic hollow cross-section observed in wild type. The headless thick filaments can assemble with thin filaments into hexagonally packed arrays resembling normal myofibrils. However, thick filament length as well as sarcomere length and myofibril shape are abnormal. Therefore, thick filament assembly and many aspects of myofibrillogenesis are independent of the myosin head and these processes are regulated by the myosin rod and tailpiece. However, interaction of the myosin head with other myofibrillar components is necessary for defining filament length and myofibril dimensions.

Cripps, R M; Suggs, J A; Bernstein, S I

1999-01-01

329

Gelsolin and Non-muscle Myosin IIA Interact to Mediate Calcium-regulated Collagen Phagocytosis*  

PubMed Central

The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca2+ and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca2+]i, which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca2+]i were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca2+]i, also required gelsolin. Ionomycin-induced increases of [Ca2+]i overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca2+-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis.

Arora, Pamma D.; Wang, Yongqiang; Janmey, Paul A.; Bresnick, Anne; Yin, Helen L.; McCulloch, Christopher A.

2011-01-01

330

Multiple myosins are required to coordinate actin assembly with coat compression during compensatory endocytosis.  

PubMed

Actin is involved in endocytosis in organisms ranging from yeast to mammals. In activated Xenopus eggs, exocytosing cortical granules (CGs) are surrounded by actin "coats," which compress the exocytosing compartments, resulting in compensatory endocytosis. Here, we examined the roles of two myosins in actin coat compression. Myosin-2 is recruited to exocytosing CGs late in coat compression. Inhibition of myosin-2 slows coat compression without affecting actin assembly. This differs from phenotype induced by inhibition of actin assembly, where exocytosing CGs are trapped at the plasma membrane (PM) completely. Thus, coat compression is likely driven in part by actin assembly itself, but it requires myosin-2 for efficient completion. In contrast to myosin-2, the long-tailed myosin-1e is recruited to exocytosing CGs immediately after egg activation. Perturbation of myosin-1e results in partial actin coat assembly and induces CG collapse into the PM. Intriguingly, simultaneous inhibition of actin assembly and myosin-1e prevents CG collapse. Together, the results show that myosin-1e and myosin-2 are part of an intricate machinery that coordinates coat compression at exocytosing CGs. PMID:17699600

Yu, Hoi-Ying E; Bement, William M

2007-08-15

331

Gene expression pattern of myosin Va during spermatogenesis of Chinese mitten crab, Eriocheir sinensis.  

PubMed

Myosin Va is an F-actin dependent molecular motor with multiple functions that are essential for acrosome formation in mouse spermiogenesis. The spermatozoon of the crab has a complicated acrosome surrounded by a cup-shaped nucleus. In the present study, the myosin Va cDNA was cloned from the testis of the Chinese mitten crab Eriocheir sinensis using degenerate PCR and rapid amplification of cDNA ends (RACE). The myosin Va cDNA consists of a 125 bp 5'-untranslated region (5' UTR), a 5331 bp open reading frame (ORF) and a 590 bp 3' UTR. The putative myosin Va protein contains the head domain, neck domain and tail domain. Multiple alignment and phylogenetic tree showed that E. sinensis myosin Va is more closely related to the vertebrate myosin Va than to the invertebrate myosin V. E. sinensis myosin Va was expressed in various tissues. In situ hybridization demonstrated that myosin Va mRNA is located in the entire process of spermatogenesis. Quantitative real-time PCR indicated that the expression level at the mitotic and meiotic phases is higher than the spermiogenesis phase. Taken together, our work suggests that myosin Va may function in E. sinensis spermatogenesis. PMID:22846366

Sun, Xiao; Mao, Hai-Tao; Yang, Wan-Xi

2012-07-27

332

Nonmuscle myosin IIA is associated with poor prognosis of esophageal squamous cancer.  

PubMed

Nonmuscle myosin IIA (myosin IIA) is a force-producing protein involved in the process of cell migration. Its expression has been considered as a bad prognostic indicator in stage I lung adenocarcinoma. However, the expression and clinical significance of myosin IIA in esophageal cancer has not been explored. In this study, we investigate the expression level of myosin IIA in 50 esophageal squamous cancer and 30 adjacent normal esophageal tissues by immunohistochemical staining and correlated its expression with clinicopathological features. Myosin IIA was expressed in all esophageal squamous cancer tissues (100%) and 8 of 30 adjacent normal tissues (26.7%, P = 0.000). In cancer tissues, elevated myosin IIA expression level was significantly correlated with increasing metastatic lymph nodes, poorer cancer differentiation, and advanced tumor stage. Further univariate analysis suggested that strong myosin IIA expression was associated with a significantly shorter overall survival (P = 0.021). In addition, MYH9 SiRNA was transfected into esophageal squamous cancer cell line (KYSE-510) to study the role of myosin IIA in cell migration. SiRNA-mediated depletion of myosin IIA in KYSE-510 cells significantly increased cell-matrix adhesion and attenuated cell migration ability (P = 0.000). In conclusion, these findings indicate that overexpression of myosin IIA may contribute to the progression and poor prognosis of esophageal squamous cancer, and this effect may be associated with increased cancer cell migration. PMID:21951916

Xia, Z-K; Yuan, Y-C; Yin, N; Yin, B-L; Tan, Z-P; Hu, Y-R

2011-09-23

333

Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments  

PubMed Central

In smooth muscles there is no organized sarcomere structure wherein the relative movement of myosin filaments and actin filaments has been documented during contraction. Using the recently developed in vitro assay for myosin-coated bead movement (Sheetz, M.P., and J.A. Spudich, 1983, Nature (Lond.)., 303:31-35), we were able to quantitate the rate of movement of both phosphorylated and unphosphorylated smooth muscle myosin on ordered actin filaments derived from the giant alga, Nitella. We found that movement of turkey gizzard smooth muscle myosin on actin filaments depended upon the phosphorylation of the 20-kD myosin light chains. About 95% of the beads coated with phosphorylated myosin moved at velocities between 0.15 and 0.4 micron/s, depending upon the preparation. With unphosphorylated myosin, only 3% of the beads moved and then at a velocity of only approximately 0.01-0.04 micron/s. The effects of phosphorylation were fully reversible after dephosphorylation with a phosphatase prepared from smooth muscle. Analysis of the velocity of movement as a function of phosphorylation level indicated that phosphorylation of both heads of a myosin molecule was required for movement and that unphosphorylated myosin appears to decrease the rate of movement of phosphorylated myosin. Mixing of phosphorylated smooth muscle myosin with skeletal muscle myosin which moves at 2 microns/s resulted in a decreased rate of bead movement, suggesting that the more slowly cycling smooth muscle myosin is primarily determining the velocity of movement in such mixtures.

1985-01-01

334

Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II  

PubMed Central

Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A). It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK) and myosin light chain kinase (MLCK), which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

2010-01-01

335

A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells  

Microsoft Academic Search

Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser

Ronna Hertzano; Ella Shalit; Agnieszka K. Rzadzinska; Amiel A. Dror; Lin Song; Uri Ron; Joshua T. Tan; Alina Starovolsky Shitrit; Helmut Fuchs; Tama Hasson; Nir Ben-Tal; H. Lee Sweeney; Martin Hrabe de Angelis; Karen P. Steel; Karen B. Avraham

2008-01-01

336

Human cardiac myosin light chains: Sequence comparisons between myosin LC1 and LC2 from normal and idiopathic dilated cardiomyopathic hearts  

Microsoft Academic Search

The primary structures of light chains isolated from the human myocardium with idiopathic dilated cardiomyopathy (IDC) were determined and compared with the sequence structures of myosin light chains obtained from control human heart myosin. Sequences were determined by chemical analysis and the identity of N-terminal residues established by mass spectrometry. The N-terminal residues in essential (ELC) and regulatory (RLC) light

John C. Holt; James B. Caulfield; Paul Norton; Peter D. Chantler; Henry S. Slayter; Sarkis S. Margossian

1995-01-01

337

A novel biosensor for mercuric ions based on motor proteins  

NASA Astrophysics Data System (ADS)

We explored the potential for use of the contractile proteins, actin and myosin, as biosensors of solutions containing mercury ions. We demonstrate that the reaction of HgCl2 with myosin rapidly inhibits actin-activated myosin ATPase activity. Mercuric ions inhibit the in vitro analog of contraction, namely the ATP-initiated superprecipitation of the reconstituted actomyosin complex. Hg reduces both the rate and extent of this reaction. Direct observation of the propulsive movement of actin filaments (10 nm in diameter and 1 ?m long) in a motility assay driven by a proteolytic fragment of myosin (heavy meromyosin or HMM) is also inhibited by mercuric ions. Thus, we have demonstrated the biochemical, biophysical and nanotechnological basis of what may prove to be a useful nano-device.

Martinez, R.; Kekic, Murat; Buljan, Vlado; Nicolau, Dan V.; dos Remedios, Cristobal G.

2004-03-01

338

Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules  

PubMed Central

We determined the crystal structure of the motor domain of the fast fungal kinesin from Neurospora crassa (NcKin). The structure has several unique features. (i) Loop 11 in the switch 2 region is ordered and enables one to describe the complete nucleotide-binding pocket, including three inter-switch salt bridges between switch 1 and 2. (ii) Loop 9 in the switch 1 region bends outwards, making the nucleotide-binding pocket very wide. The displacement in switch 1 resembles that of the G-protein ras complexed with its guanosine nucleotide exchange factor. (iii) Loop 5 in the entrance to the nucleotide-binding pocket is remarkably long and interacts with the ribose of ATP. (iv) The linker and neck region is not well defined, indicating that it is mobile. (v) Image reconstructions of ice-embedded microtubules decorated with NcKin show that it interacts with several tubulin subunits, including a central ?-tubulin monomer and the two flanking ?-tubulin monomers within the microtubule protofilament. Comparison of NcKin with other kinesins, myosin and G-proteins suggests that the rate-limiting step of ADP release is accelerated in the fungal kinesin and accounts for the unusually high velocity and ATPase activity.

Song, Y.-H.; Marx, A.; Muller, J.; Woehlke, G.; Schliwa, M.; Krebs, A.; Hoenger, A.; Mandelkow, E.

2001-01-01

339

[ATPase activity of Neisseria gonorrhoeae and Staphylococcus aureus strains].  

PubMed

It has been established that membrane vesicles of gonococci possess ATPase activity within 0.05-0.14 mmol of ATP during 60 min per 1 mg of protein and for staphylococcus--within 0.07-0.19 mmol of ATP for 60 min per 1 mg of protein. The identity in all the kinetic parameters is observed for all the studied gonococcus strains: Na+ and Ca2+ ions inhibit ATPase activity within 12-19%; Mg2+ ions increase the ATPase activity 2-2.5 times. Dicyclohexylcarboimide, a specific ATPase inhibitor, suppresses ATPase activity by 50-70%. ATPase activity in the strains of bacteria containing antibiotic-resistant plasmids is established to increase 1.2-2.8 times for gonococcus and 1.2-2.7 for staphylococcus as compared to sensitive ones. PMID:11785416

Skliar, T V; Krysenko, A V; Kozitskaia, S N; Gavriliuk, V G; Vinnikov, A I

340

Cloning of the cDNA encoding the myosin heavy chain of a vertebrate cellular myosin.  

PubMed Central

The complete amino acid sequence of a vertebrate cellular myosin heavy chain (MHC; 1,959 amino acids, 226 kDa) has been deduced by using cDNA clones from a chicken intestinal epithelial cell library. RNA blot analysis of kidney, spleen, brain, liver, and intestinal epithelial cells as well as smooth muscle cells from the aorta and gizzard indicates the presence of a 7.3-kilobase (kb) message that is larger than the message for chicken smooth and striated muscle MHC. The chicken intestinal epithelial cell MHC shows overall similarity in primary structure to other MHCs in the areas of the reactive thiol residues and in areas contributing to the ATP binding site and actin binding site. The globular head domain is followed by an alpha-helical coiled-coil region, and as in smooth muscle MHC there is a short uncoiled sequence at the carboxyl terminus of the molecule. Comparison of amino acid sequences in the rod regions between human and chicken cellular MHCs shows a remarkable 92% identity. Images

Shohet, R V; Conti, M A; Kawamoto, S; Preston, Y A; Brill, D A; Adelstein, R S

1989-01-01

341

ATPase activities in partially purified membranes of Acetabularia  

Microsoft Academic Search

Partly purified membranes (with plasmalemma material) of Acetabularia mediterranea were studied with respect to ATPase activity in alkali- and Ca++-free media and its sensitivity to pH (5 – 9), oligomycin (200 ?g\\/mg protein), 100 ?M N-N'-dicyclohexylcarbodiimide (DCCD), and 50 ?M vanadate. Besides activities which may originate from mitochondrial H+ ATPase (oligomycin-sensitive, alkaline pH optimum) and tonoplast H+ ATPase (DCCD-sensitive, pH

V. Goldfarb; D. Gradmann

1983-01-01

342

The Mechanochemistry of V-ATPase Proton Pumps  

Microsoft Academic Search

The vacuolar H+-ATPases (V-ATPases) are a universal class of proton pumps that are structurally similar to the F-ATPases. Both protein families are characterized by a membrane-bound segment (Vo, Fo) responsible for the translocation of protons, and a soluble portion, (V1, F1), which supplies the energy for translocation by hydrolyzing ATP. Here we present a mechanochemical model for the functioning of

Michael Grabe; Hongyun Wang; George Oster

2000-01-01

343

Effect of nitroso compounds on Na\\/K-ATPase  

Microsoft Academic Search

Thiol containing NO?-derivatives were found to inhibit the activity of brain and kidney Na\\/K-ATPase. S-Nitrosogluthatione demonstrated only minor inhibiting activity, while dinitrosyl iron complexes (DNIC) with cysteine or glutathione were much more effective. Brain Na\\/K-ATPase is more vulnerable to inhibiting action than kidney Na\\/K-ATPase. Inhibition of the activity is accompanied by a decrease in amount of protein thiol groups and

Alexander A Boldyrev; Elena R Bulygina; Galina G Kramarenko; Anatoly F Vanin

1997-01-01

344

Evolutionary history and higher order classification of AAA+ ATPases  

Microsoft Academic Search

The AAA+ ATPases are enzymes containing a P-loop NTPase domain, and function as molecular chaperones, ATPase subunits of proteases, helicases or nucleic-acid-stimulated ATPases. All available sequences and structures of AAA+ protein domains were compared with the aim of identifying the definitive sequence and structure features of these domains and inferring the principal events in their evolution. An evolutionary classification of

Lakshminarayan M Iyer; Detlef D Leipe; Eugene V Koonin; L Aravind

2004-01-01

345

Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae  

Microsoft Academic Search

1.The distribution of ATPase and several marker enzymes was examined after differential and sucrose gradient centrifugation of yeast homogenates.2.An ATPase activity not sensitive to oligomycin is found exclusively associated with a particulate fraction equilibrating at densities of 1.23–1.25. This particulate material shows the chemical and enzymatic characteristics of the yeast plasma membrane.3.The pH optimum of the plasma membrane ATPase is

Ramón Serrano

1978-01-01

346

Na+/K(+)-ATPase regulation by neurotransmitters.  

PubMed

A long period of experimental work has led to the conclusion that Na+/K(+)-ATPase is the enzymatic version of the Na+/K+ pump. This enzymatic system is in charge of various important cell functions. Among them cationic equilibrium and recovering of resting membrane potential in neurons is relevant. A tetrameric ensemble of peptides conform the system known as alpha and beta subunits. The alpha subunit is subdivided in alpha 1, alpha 2 and alpha 3, according to different location and properties. Regulatory factors intrinsic to the Na+/K(+)-ATPase system are: ATP, Na+ and Mg2+ concentrations inside the cell, and K+ outside. The enzyme activity is also regulated by extrinsic factors like some hormones (insulin and thyroxine). Induction of gene expression or post-translational modifications of the preexisting pool of the enzyme are the basic mechanisms of regulation proposed. Other extrinsic factors that seem to regulate the enzyme activity are some neurotransmitters. Among them the most extensively studied are catecholamines, mainly norepinephrine (NE) and lately serotonin (5-HT). The mechanism suggested for NE activation of the enzyme seems to involve specific receptors or a non-specific chelating action related to the catechol group that would relieve the inhibition by divalent cations. Another possibility is that NE removes an endogenous inhibitory factor present in the cytoplasm. The Na+/K(+)-ATPase is activated also by 5-HT. In vivo pharmacological and nutriological manipulations of brain 5-HT are accompanied by parallel responses of Na+/K(+)-ATPase activity. Serotonin agonists do activate the enzyme and antagonists neutralize the activation. In vitro there is a different dose dependent activation, according to the brain region. The mechanism involved seems to implicate a specific receptor system. Serotonin-Na+/K(+)-ATPase interaction in the rat brain is probably of functional relevance because it disappears in amygdaloid kindling. Also it seems to influence the ionic regulation of the pigment transport mechanism in crayfish photoreceptors. In relation to other neurotransmitters, a weak response to histamine was observed with acetylcholine, GABA and glutamic acid, the results were negative. PMID:1363908

Hernández-R, J

1992-01-01

347

Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin  

PubMed Central

Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca2+-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI–specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane.

Tomatis, Vanesa M.; Papadopulos, Andreas; Malintan, Nancy T.; Martin, Sally; Wallis, Tristan; Gormal, Rachel S.; Kendrick-Jones, John; Buss, Folma

2013-01-01

348

Myosin 1E interacts with synaptojanin-1 and dynamin via its SH3 domain  

PubMed Central

Myosin 1E is one of two “long-tailed” human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E colocalizes with clathrin- and dynamin-containing puncta at the plasma membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor-mediated endocytosis.

Krendel, Mira; Osterweil, Emily K.; Mooseker, Mark S.

2007-01-01

349

Fluorescent Actin Filaments Move on Myosin Fixed to a Glass Surface  

NASA Astrophysics Data System (ADS)

Single actin filaments stabilized with fluorescent phalloidin exhibit ATP-dependent movement on myosin filaments fixed to a surface. At pH 7.4 and 24 degrees C, the rates of movement average 3-4 ? m/s with skeletal muscle myosin and 1-2 ? m/s with Dictyostelium myosin. These rates are very similar to those measured in our previous myosin movement assays. The rates of movement are relatively independent of the type of actin used. The filament velocity shows a broad pH optimum between 7.0 and 9.0, and the concentration of ATP required for half-maximal velocity is 50 ? M. Evidence was obtained to suggest that movement of actin over myosin requires at most the number of heads in a single thick filament. This system provides a practical, quantitative myosin-movement assay with purified proteins.

Kron, Stephen J.; Spudich, James A.

1986-09-01

350

Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro  

PubMed Central

Although it is generally believed that phosphorylation of the regulatory light chain of myosin is required before smooth muscle can develop force, it is not known if the overall degree of phosphorylation can also modulate the rate at which cross-bridges cycle. To address this question, an in vitro motility assay was used to observe the motion of single actin filaments interacting with smooth muscle myosin copolymers composed of varying ratios of phosphorylated and unphosphorylated myosin. The results suggest that unphosphorylated myosin acts as a load to slow down the rate at which actin is moved by the faster cycling phosphorylated cross-bridges. Myosin that was chemically modified to generate a noncycling analogue of the "weakly" bound conformation was similarly able to slow down phosphorylated myosin. The observed modulation of actin velocity as a function of copolymer composition can be accounted for by a model based on mechanical interactions between cross-bridges.

1990-01-01

351

Mosaic Complementation Demonstrates a Regulatory Role for Myosin VIIa in Actin Dynamics of Stereocilia? †  

PubMed Central

We have developed a bacterial artificial chromosome transgenesis approach that allowed the expression of myosin VIIa from the mouse X chromosome. We demonstrated the complementation of the Myo7a null mutant phenotype producing a fine mosaic of two types of sensory hair cells within inner ear epithelia of hemizygous transgenic females due to X inactivation. Direct comparisons between neighboring auditory hair cells that were different only with respect to myosin VIIa expression revealed that mutant stereocilia are significantly longer than those of their complemented counterparts. Myosin VIIa-deficient hair cells showed an abnormally persistent tip localization of whirlin, a protein directly linked to elongation of stereocilia, in stereocilia. Furthermore, myosin VIIa localized at the tips of all abnormally short stereocilia of mice deficient for either myosin XVa or whirlin. Our results strongly suggest that myosin VIIa regulates the establishment of a setpoint for stereocilium heights, and this novel role may influence their normal staircase-like arrangement within a bundle.

Prosser, Haydn M.; Rzadzinska, Agnieszka K.; Steel, Karen P.; Bradley, Allan

2008-01-01

352

Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.  

PubMed

The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme. PMID:22695678

Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

2012-06-14

353

Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs  

PubMed Central

Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states.

Wickman, G R; Julian, L; Mardilovich, K; Schumacher, S; Munro, J; Rath, N; Zander, S AL; Mleczak, A; Sumpton, D; Morrice, N; Bienvenut, W V; Olson, M F

2013-01-01

354

Rate-limiting step in the actomyosin adenosinetriphosphatase cycle: studies with myosin subfragment 1 cross-linked to actin  

SciTech Connect

Although there is agreement that actomyosin can hydrolyze ATP without dissociation of the actin from myosin, there is still controversy about the nature of the rate-limiting step in the ATPase cycle. Two models, which differ in their rate-limiting step, can account for the kinetic data. In the four-state model, which has four states containing bound ATP or ADP . Pi, the rate-limiting step is ATP hydrolysis (A . M . ATP in equilibrium A . M . ADP . Pi). In the six-state model, which the authors previously proposed, the rate-limiting step is a conformational change which occurs before Pi release but after ATP hydrolysis. A difference between these models is that only the four-state model predicts that almost no acto-subfragment 1 (S-1) . ADP . Pi complex will be formed when ATP is mixed with acto . S-1. In the present study, the authors determined the amount of acto . S-1 . ADP . Pi formed when ATP is mixed with S-1 cross-linked to actin. The amount of acto . S-1 . ADP . Pi was determined both from intrinsic fluorescence enhancement and from direct measurement of Pi. They found that at mu = 0.013 M, the fluorescence magnitude in the presence of ATP of the cross-linked actin . S-1 preparation was about 50% of the value obtained with S-1, while at mu = 0.053 M the fluorescence magnitude was about 70% of that obtained with S-1.

Stein, L.A.; Greene, L.E.; Chock, P.B.; Eisenberg, E.

1985-03-12

355

Purification and characterization of myosin-tripolyphosphatase from rabbit Psoas major muscle: Research note  

Microsoft Academic Search

In this study, we investigated the tripolyphosphatase (TPPase) activity responsible for the hydrolysis of tripolyphosphates (TPP) in rabbit Psoas major muscle tissue. After a series of extraction and purification steps, myosin was identified to be a TPPase. Optimum pH and temperature for myosin-TPPase activity were 6.0 and 35°C, respectively. We also found that myosin-TPPase activity was significantly influenced by Mg2+

Hongguo Jin; Youling Xiong; Zengqi Peng; Yan He; Rongrong Wang; Guanghong Zhou

2011-01-01

356

Presence of embryonic myosin in normal postural muscles of the adult rat  

Microsoft Academic Search

Indirect immunofluorescence was used to localize embryonic myosin heavy chains in soleus, adductor longus, tibialis anterior, plantaris, and extensor digitorum longus muscles of 6-month-old rats. A monoclonal antibody (2B6), specifically recognizing rat embryonic myosin, was applied to unfixed, transverse, frozen sections. The number of embryonic myosin-positive (EMP) extrafusal fibers was expressed as a percentage of the total number of fibers.

Linda J. Wanek; Mikel H. Snow

1995-01-01

357

Restricted Expression of Cardiac Myosin Genes Reveals Regulated Aspects of Heart Tube Assembly in Zebrafish  

Microsoft Academic Search

The embryonic vertebrate heart is divided into two major chambers, an anterior ventricle and a posterior atrium. Although the fundamental differences between ventricular and atrial tissues are well documented, it is not known when and how cardiac anterior–posterior (A–P) patterning occurs. The expression patterns of two zebrafish cardiac myosin genes, cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy

Deborah Yelon; Sally A. Horne; Didier Y. R. Stainier

1999-01-01

358

ATP-dependent movement of myosin in vitro: characterization of a quantitative assay  

Microsoft Academic Search

Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP-dependent movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to understand better the basis for the movement, we have defined the factors that affect the myosin- bead velocity.

MICHAEL P. SHEETZ; REBECCA CHASAN; JAMES A. SPUDICH

1984-01-01

359

Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons  

Microsoft Academic Search

Extension of the endoplasmic reticulum (ER) into dendritic spines of Purkinje neurons is required for cerebellar synaptic plasticity and is disrupted in animals with null mutations in Myo5a, the gene encoding myosin-Va. We show here that myosin-Va acts as a point-to-point organelle transporter to pull ER as cargo into Purkinje neuron spines. Specifically, myosin-Va accumulates at the ER tip as

Wolfgang Wagner; Stephan D. Brenowitz; John A. Hammer

2010-01-01

360

Human Myosin V Gene Produces Different Transcripts in a Cell Type-Specific Manner  

Microsoft Academic Search

In mice, tissue-specific alternative splicing of the myosin V gene in the C-terminal tail domain is well documented with exclusion of exon F from brain transcripts, but present in skin, particularly in melanocytes. As alternative splicing of the myosin V C-terminal tail domain in human tissues is undocumented, we studied the presence of myosin V splice forms in different types

Jo Lambert; Jean Marie Naeyaert; Tom Callens; Anne De Paepe; Ludwine Messiaen

1998-01-01

361

Changes in Na + , K + ATPase Activity and Alpha 3 Subunit Expression in CNS After Administration of Na + , K + ATPase Inhibitors  

Microsoft Academic Search

The expression of Na+, K+-ATPase ?3 subunit and synaptosomal membrane Na+, K+-ATPase activity were analyzed after administration of ouabain and endobain E, respectively commercial and endogenous Na+, K+-ATPase inhibitors. Wistar rats received intracerebroventricularly ouabain or endobain E dissolved in saline solution or Tris–HCl,\\u000a respectively or the vehicles (controls). Two days later, animals were decapitated, cerebral cortex and hippocampus removed\\u000a and

María Geraldina Bersier; Clara Peña; Georgina Rodríguez de Lores Arnaiz

2011-01-01

362

Reverse actin sliding triggers strong myosin binding that moves tropomyosin  

SciTech Connect

Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

2008-09-03

363

Myosin Heavy-Chain Composition of the Human Hyoglossus Muscle  

Microsoft Academic Search

The human tongue muscle hyoglossus (HG) is active in oromotor behaviors encompassing a wide range of tongue movement speeds.\\u000a Here we test the hypothesis that the human HG is composed of “uncommon” myosin heavy-chain (MHC) isoforms MHCembryonic, MHCneonatal,\\u000a and MHCslow tonic as has been reported for other head and neck muscles active during kinematically diverse behaviors. Following\\u000a reaction of human

Alan J. Sokoloff; Megan Daugherty; Haiyan Li

2010-01-01

364

Myosin heavy chain isoform distribution in single fibres of bodybuilders  

Microsoft Academic Search

The purpose of this study was to investigate the long-term effects of high intensity resistance training on myosin heavy chain\\u000a (MHC) isoform composition of single fibres. Muscle biopsies were obtained from the right vastus lateralis of eight bodybuilders\\u000a (BB) and seven physical education students (PES). Histochemical analyses were used to determine the fibre type distribution\\u000a and the fibre cross-sectional area.

Nikolaos Kesidis; Thomas I. Metaxas; Ioannis S. Vrabas; Panagiotis Stefanidis; Efstratios Vamvakoudis; Kosmas Christoulas; Athanasios Mandroukas; Dimitrios Balasas; Konstantinos Mandroukas

2008-01-01

365

Rotational Model for Actin Filament Alignment by Myosin  

PubMed Central

Dynamics of the actomyosin cytoskeleton regulate cellular processes such as secretion, cell division, cell motility, and shape change. Actomyosin dynamics are themselves regulated by proteins that control actin filament polymerization and depolymerization, and myosin motor contractility. Previous theoretical work has focused on translational movement of actin filaments but has not considered the role of filament rotation. Since filament rotational movements are likely sources of forces that direct cell shape change and movement we explicitly model the dynamics of actin filament rotation as myosin II motors traverse filament pairs, drawing them into alignment. Using Monte Carlo simulations we find an optimal motor velocity for alignment of actin filaments. In addition, when we introduce polymerization and depolymerization of actin filaments, we find that alignment is reduced and the filament arrays exist in a stable, asynchronous state. Further analysis with continuum models allow us to investigate factors contributing to the stability of filament arrays and their ability to generate force. Interestingly, we find that two different morphologies of F-actin arrays generate the same amount of force. We also identify a phase transition to alignment occurs when either polymerization rates are reduced or motor velocities are optimized. We have extended our analysis to include a maximum allowed stretch of the myosin motors, and a non-uniform length for filaments leading to little change in the qualitative results. Through the integration of simulations and continuum analysis, we are able to approach the problem of understanding rotational alignment of actin filaments by myosin II motors in a truly unique way.

Miller, Callie J; Ermentrout, G Bard; Davidson, Lance A

2012-01-01

366

Stepwise Sliding of Single Actin and Myosin Filaments  

PubMed Central

Dynamics of sliding were explored in isolated actin and myosin filaments. Sliding occurs in steps. The steps are integer multiples of 2.7 nm, which is equal to the monomeric repeat along the actin filament. When filaments were forced to slide in the reverse direction, the size paradigm was the same. This size paradigm is parallel to that seen in the kinesin-microtubule system, where step size is an integer multiple of the tubulin repeat along the microtubule.

Liu, Xiumei; Pollack, Gerald H.

2004-01-01

367

Pseudosubstrate Flexibility in Chicken Smooth Muscle Myosin Light Chain Kinase  

Microsoft Academic Search

Chicken smooth muscle myosin light chain kinase pseudosubstrate is contained within the C-terminal region of the sequence MLCK(774-807)amide. It forms a helical conformation which interacts with the connecting peptide contained within the N-terminal portion of the sequence. These regions are linked by a well-defined turn around Ser-787 which supports a model of pseudosubstrate regulation involving the hinging of the pseudosubstrate

Julian A. Barden; Bruce E. Kemp

1996-01-01

368

Neurofilament Transport Is Dependent on Actin and Myosin  

Microsoft Academic Search

Real-time analyses have revealed that some newly synthesized neurofilament (NF) subunits translocate into and along axonal neurites by moving along the inner plasma membrane surface, suggesting that they may translocate against the submembrane actin cortex. We therefore examined whether or not NF axonal transport was dependent on actin and myosin. Perturbation of filamentous actin in NB2a\\/d1 cells with cytochalasin B

Cheolwha Jung; Teresa M. Chylinski; Aurea Pimenta; Daniela Ortiz; Thomas B. Shea

2004-01-01

369

COMMENTARY Visualizing myosin's power stroke in muscle contraction  

Microsoft Academic Search

The long-standing swinging crossbridge or lever arm hypothesis for the motor action of myosin heads finds support in recent results from 3-D tomograms of insect flight muscle (IFM) fast frozen during active contraction and from both fluorescence polarization and X-ray diffraction during rapid stretches or releases of isometrically contracting fibers. The latter provide direct evidence for lever arm movements synchronous

Mary C. Reedy

2000-01-01

370

Recent advances in understanding plant myosin function: life in the fast lane.  

PubMed

Plant myosins are required for organelle movement, and a role in actin organization has recently come to light. Myosin mutants display several gross morphological phenotypes, the most severe being dwarfism and reduced fecundity, and there is a correlation between reduced organelle movement and morphological defects. This review aims to discuss recent findings in plants relating to the role of myosins in actin dynamics, development, and organelle movement, more specifically the endoplasmic reticulum (ER). One overarching theme is that there still appear to be more questions than answers relating to plant myosin function and regulation. PMID:21772028

Sparkes, Imogen

2011-07-19

371

Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-actin  

PubMed Central

Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi) as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile endoplasmic reticulum (ER) subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.

Peremyslov, Valera V.; Klocko, Amy L.; Fowler, John E.; Dolja, Valerian V.

2012-01-01

372

Myosin VI Regulates Actin Structure Specialization through Conserved Cargo-Binding Domain Sites  

PubMed Central

Actin structures are often stable, remaining unchanged in organization for the lifetime of a differentiated cell. Little is known about stable actin structure formation, organization, or maintenance. During Drosophila spermatid individualization, long-lived actin cones mediate cellular remodeling. Myosin VI is necessary for building the dense meshwork at the cones' fronts. We test several ideas for myosin VI's mechanism of action using domain deletions or site-specific mutations of myosin VI. The head (motor) and globular tail (cargo-binding) domains were both needed for localization at the cone front and dense meshwork formation. Several conserved partner-binding sites in the globular tail previously identified in vertebrate myosin VI were critical for function in cones. Localization and promotion of proper actin organization were separable properties of myosin VI. A vertebrate myosin VI was able to localize and function, indicating that functional properties are conserved. Our data eliminate several models for myosin VI's mechanism of action and suggest its role is controlling organization and action of actin assembly regulators through interactions at conserved sites. The Drosophila orthologues of interaction partners previously identified for vertebrate myosin VI are likely not required, indicating novel partners mediate this effect. These data demonstrate that generating an organized and functional actin structure in this cell requires multiple activities coordinated by myosin VI.

Isaji, Mamiko; Lenartowska, Marta; Noguchi, Tatsuhiko; Frank, Deborah J.; Miller, Kathryn G.

2011-01-01

373

Differential Expression of Unconventional Myosins in Apoptotic and Regenerating Chick Hair Cells Confirms Two Regeneration Mechanisms  

PubMed Central

Hair cells of the inner ear are damaged by intense noise, aging, and aminoglycoside antibiotics. Gentamicin causes oxidative damage to hair cells, inducing apoptosis. In mammals, hair cell loss results in a permanent deficit in hearing and balance. In contrast, avians can regenerate lost hair cells to restore auditory and vestibular function. This study examined the changes of myosin VI and myosin VIIa, two unconventional myosins that are critical for normal hair cell formation and function, during hair cell death and regeneration. During the late stages of apoptosis, damaged hair cells are ejected from the sensory epithelium. There was a 4–5-fold increase in the labeling intensity of both myosins and a redistribution of myosin VI into the stereocilia bundle, concurrent with ejection. Two separate mechanisms were observed during hair cell regeneration. Proliferating supporting cells began DNA synthesis 60 hours after gentamicin treatment and peaked at 72 hours postgentamicin treatment. Some of these mitotically produced cells began to differentiate into hair cells at 108 hours after gentamicin (36 hours after bromodeoxyuridine (BrdU) administration), as demonstrated by the colabeling of myosin VI and BrdU. Myosin VIIa was not expressed in the new hair cells until 120 hours after gentamicin. Moreover, a population of supporting cells expressed myosin VI at 78 hours after gentamicin treatment and myosin VIIa at 90 hours. These cells did not label for BrdU and differentiated far too early to be of mitotic origin, suggesting they arose by direct transdifferentiation of supporting cells into hair cells.

DUNCAN, LUKE J.; MANGIARDI, DOMINIC A.; MATSUI, JONATHAN I.; ANDERSON, JULIA K.; McLAUGHLIN-WILLIAMSON, KATE; COTANCHE, DOUGLAS A.

2008-01-01

374

Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales  

PubMed Central

Cell cortices rearrange dynamically to complete cytokinesis, crawlin response to chemoattractant, build tissues, and make neuronal connections. Highly enriched in the cell cortex, actin, myosin II, and actin crosslinkers facilitate cortical movements. Because cortical behavior is the consequence of nanoscale biochemical events, it is essential to probe the cortex at this level. Here, we use high-resolution laser-based particle tracking to examine how myosin II mechanochemistry and dynacortin-mediated actin crosslinking control cortex dynamics in Dictyostelium. Consistent with its low duty ratio, myosin II does not directly drive active bead motility. Instead, myosin II and dynacortin antagonistically regulate other active processes in the living cortex.

Girard, Kristine D.; Kuo, Scot C.; Robinson, Douglas N.

2006-01-01

375

Structural and molecular conformation of myosin in intact muscle fibers by second harmonic generation  

NASA Astrophysics Data System (ADS)

Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 ?m and 4.0 ?m. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.

Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.

2009-02-01

376

Microscopic model of the actin-myosin interaction in muscular contractions.  

PubMed

We define and study a detailed many body model for the muscular contraction taking into account the various myosin heads. The state of the system is defined by the position of the actin and by an internal coordinate of rotation for each myosin head. We write a system of Fokker-Planck equations and calculate the average for the position, the number of attached myosin heads, and the total force exerted on the actin. We also study the correlation between these quantities, in particular between the number of attached myosin heads and the force on the actin. PMID:14995605

Gaveau, B; Moreau, M; Schuman, B

2004-01-30

377

Submillisecond rotational dynamics of spin-labeled myosin heads in myofibrils.  

PubMed Central

The rotational motion of crossbridges, formed when myosin heads bind to actin, is an essential element of most molecular models of muscle contraction. To obtain direct information about this molecular motion, we have performed saturation transfer EPR experiments in which spin labels were selectively and rigidly attached to myosin heads in purified myosin and in glycerinated myofibrils. In synthetic myosin filaments, in the absence of actin, the spectra indicated rapid rotational motion of heads characterized by an effective correlation time of 10 microseconds. By contrast, little or no submillisecond rotational motion was observed when isolated myosin heads (subfragment-1) were attached to glass beads or to F-actin, indicating that the bond between the myosin head and actin is quite rigid on this time scale. A similar immobilization of heads was observed in spin-labeled myofibrils in rigor. Therefore, we conclude that virtually all of the myosin heads in a rigor myofibril are immobilized, apparently owing to attachment of heads to actin. Addition of ATP to myofibrils, either in the presence or absence of 0.1 mM Ca2+, produced spectra similar to those observed for myosin filaments in the absence of actin, indicating rapid submillisecond rotational motion. These results indicate that either (a) most of the myosin heads are detached at any instant in relaxed or activated myofibrils or (b) attached heads bearing the products of ATP hydrolysis rotate as rapidly as detached heads.

Thomas, D D; Ishiwata, S; Seidel, J C; Gergely, J

1980-01-01

378

Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis  

PubMed Central

The swinging crossbridge hypothesis states that energy from ATP hydrolysis is transduced to mechanical movement of the myosin head while bound to actin. The light chain-binding region of myosin is thought to act as a lever arm that amplifies movements near the catalytic site. This model has been challenged by findings that myosin VI takes larger steps along actin filaments than early interpretations of its structure seem to allow. We now know that myosin VI does indeed operate by an unusual ~ 180° lever arm swing and achieves its large step size using special structural features in its tail domain.

Spudich, James A.; Sivaramakrishnan, Sivaraj

2010-01-01

379

Chimeric myosin regulatory light chains identify the subdomain responsible for regulatory function.  

PubMed Central

Regulatory light chains, located on the 'motor' head domains of myosin, belong to the family of Ca2+ binding proteins that consist of four 'EF-hand' subdomains. Vertebrate regulatory light chains can be divided into two functional classes: (i) in smooth/non-muscle myosins, phosphorylation of the light chains by a calcium/calmodulin-dependent kinase regulates both interaction of the myosin head with actin and assembly of the myosin into filaments, (ii) the light chains of skeletal muscle myosins are similarly phosphorylated, but they play no apparent role in regulation. To discover the basis for the difference in regulatory properties of these two classes of light chains, we have synthesized in Escherichia coli, chimeric mutants composed of subdomains derived from the regulatory light chains of chicken skeletal and smooth muscle myosins. The regulatory capability of these mutants was analysed by their ability to regulate molluscan myosin. Using this test system, we identified the third subdomain of the regulatory light chain as being responsible for controlling not only the actin-myosin interaction, but also myosin filament assembly. Images

Rowe, T; Kendrick-Jones, J

1992-01-01

380

Myosin VI contributes to synaptic transmission and development at the Drosophila neuromuscular junction  

PubMed Central

Background Myosin VI, encoded by jaguar (jar) in Drosophila melanogaster, is a unique member of the myosin superfamily of actin-based motor proteins. Myosin VI is the only myosin known to move towards the minus or pointed ends of actin filaments. Although Myosin VI has been implicated in numerous cellular processes as both an anchor and a transporter, little is known about the role of Myosin VI in the nervous system. We previously recovered jar in a screen for genes that modify neuromuscular junction (NMJ) development and here we report on the genetic analysis of Myosin VI in synaptic development and function using loss of function jar alleles. Results Our experiments on Drosophila third instar larvae revealed decreased locomotor activity, a decrease in NMJ length, a reduction in synaptic bouton number, and altered synaptic vesicle localization in jar mutants. Furthermore, our studies of synaptic transmission revealed alterations in both basal synaptic transmission and short-term plasticity at the jar mutant neuromuscular synapse. Conclusions Altogether these findings indicate that Myosin VI is important for proper synaptic function and morphology. Myosin VI may be functioning as an anchor to tether vesicles to the bouton periphery and, thereby, participating in the regulation of synaptic vesicle mobilization during synaptic transmission.

2011-01-01

381

ATP-synthesis in archaea: Structure-function relations of the halobacterial A-ATPase  

Microsoft Academic Search

The archaeal (A)-ATPase has been described as a chimeric energy converter with close relationship to both the vacuolar ATPase class in higher eukaryotes and the coupling factor (F)-ATPase class in eubacteria, mitochondria and chloroplasts. With respect to their structure and some inhibitor responses, A-ATPases are more closely related to the vacuolar ATPase type than to F-ATPase. Their function, ATP synthesis

Susanne Bickel-Sandkötter; Volker Wagner; Dietmar Schumann

1998-01-01

382

Influence of lever structure on myosin 5a walking  

PubMed Central

Using electron microscopy and image processing, we have observed myosin 5a modified with lever arms of different lengths (four, six, and eight calmodulin-binding IQ domains) and orientations walking along actin filaments. Step lengths were dependent on lever length: 8IQ > 6IQ > 4IQ, which is consistent with myosin 5a having evolved to walk straight along actin. Lead heads were mostly in the prepowerstroke state, tethered there by the trail head. However, improved image processing showed that in 5–10% of molecules the lead motor was in the postpowerstroke state. This is a unique attached state of myosin, where the motor domain has completed its powerstroke at the expense of severe lever distortion, but with little cargo movement. Postpowerstroke lead heads were seen in both wild-type and modified lever molecules, mostly where there was least strain. These data allow the strain dependence of the equilibrium between pre- and postpowerstroke conformations to be measured. Slow rates of ADP dissociation observed from lead heads of these molecules can be explained by the unfavorable equilibrium between the pre- and postpowerstroke conformations preceding ADP loss.

Oke, Olusola A.; Burgess, Stan A.; Forgacs, Eva; Knight, Peter J.; Sakamoto, Takeshi; Sellers, James R.; White, Howard; Trinick, John

2010-01-01

383

Myosin Vs organize actin cables in fission yeast.  

PubMed

Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces. PMID:23051734

Lo Presti, Libera; Chang, Fred; Martin, Sophie G

2012-10-10

384

Myosin light chain kinase in microvascular endothelial barrier function  

PubMed Central

Microvascular barrier dysfunction is implicated in the initiation and progression of inflammation, posttraumatic complications, sepsis, ischaemia–reperfusion injury, atherosclerosis, and diabetes. Under physiological conditions, a precise equilibrium between endothelial cell–cell adhesion and actin–myosin-based centripetal tension tightly controls the semi-permeability of microvascular barriers. Myosin light chain kinase (MLCK) plays an important role in maintaining the equilibrium by phosphorylating myosin light chain (MLC), thereby inducing actomyosin contractility and weakening endothelial cell–cell adhesion. MLCK is activated by numerous physiological factors and inflammatory or angiogenic mediators, causing vascular hyperpermeability. In this review, we discuss experimental evidence supporting the crucial role of MLCK in the hyperpermeability response to key cell signalling events during inflammation. At the cellular level, in vitro studies of cultured endothelial monolayers treated with MLCK inhibitors or transfected with specific inhibiting peptides have demonstrated that induction of endothelial MLCK activity is necessary for hyperpermeability. Ex vivo studies of live microvessels, enabled by development of the isolated, perfused venule method, support the importance of MLCK in endothelial permeability regulation in an environment that more closely resembles in vivo tissues. Finally, the role of MLCK in vascular hyperpermeability has been confirmed with in vivo studies of animal disease models and the use of transgenic MLCK210 knockout mice. These approaches provide a more complete view of the role of MLCK in vascular barrier dysfunction.

Shen, Qiang; Rigor, Robert R.; Pivetti, Christopher D.; Wu, Mack H.; Yuan, Sarah Y.

2010-01-01

385

Myosin I Is Required for Hypha Formation in Candida albicans†  

PubMed Central

The pathogenic yeast Candida albicans can undergo a dramatic change in morphology from round yeast cells to long filamentous cells called hyphae. We have cloned the CaMYO5 gene encoding the only myosin I in C. albicans. A strain with a deletion of both copies of CaMYO5 is viable but cannot form hyphae under all hypha-inducing conditions tested. This mutant exhibits a higher frequency of random budding and a depolarized distribution of cortical actin patches relative to the wild-type strain. We found that polar budding, polarized localization of cortical actin patches, and hypha formation are dependent on a specific phosphorylation site on myosin I, called the “TEDS-rule” site. Mutation of this serine 366 to alanine gives rise to the null mutant phenotype, while a S366D mutation, the product of which mimics a phosphorylated serine, allows hypha formation. However, the S366D mutation still causes a depolarized distribution of cortical actin patches in budding cells, similar to that in the null mutant. The localization of CaMyo5-GFP together with cortical actin patches at the bud and hyphal tips is also dependent on serine 366. Intriguingly, the cortical actin patches in the majority of the hyphae of the mutant expressing Camyo5S366D were depolarized, suggesting that although their distribution is dependent on myosin I localization, polarized cortical actin patches may not be required for hypha formation.

Oberholzer, U.; Marcil, A.; Leberer, E.; Thomas, D. Y.; Whiteway, M.

2002-01-01

386

Energetics of conformational transition in proteolytically nicked myosin S-1  

SciTech Connect

Force production in muscle contraction results from structural changes in myosin crossbridges. During ATP hydrolysis myosin crossbridges exhibit at least two conformational states referred to as prepower stroke and postpower stroke respectively. Conformational changes in myosin proteolytic fragment S-1, which represent cross-bridges were studied in this research using UV absorption difference spectroscopy and /sup 19/F NMR. The heavy chain of S-1 is nicked, but left intact, by trypsin and several other proteases at different sites under controlled conditions. This was used to localize the site for non-denaturational reversible conformational change observed in S-1. Two specific tryptic S-1 fragments nicked at one and two sites have been used here, i.e., 27k-70k and 27k-50k-20k. Differential scanning calorimetric (DSC) studies of chymotryptic S-1 and trypsin treated S-1 indicate that the thermal stability of S-1 is unaffected by nicking. Nucleotide induced conformational changes were monitored with the UV difference absorption of tryptophan residues. The difference spectra induced by ATP differed from that induced by ADP. AMPPNP induced both forms of the spectra by varying temperature. When the 50k-20k junction was intact the non-denaturational structural transition between S1 states was retained.

Kamath, U.G.

1987-01-01

387

Effect of Inorganic Phosphate on the Force and Number of Myosin Cross-Bridges During the Isometric Contraction of Permeabilized Muscle Fibers from Rabbit Psoas  

PubMed Central

The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction (temperature 12°C, sarcomere length 2.5 ?m). Changes in the hs strain were measured by imposing length steps or small 4 kHz oscillations on the fibers in control solution (without added Pi) and in solution with 3–20 mM added Pi. At the plateau of the isometric contraction in control solution, the hs stiffness is 22.8 ± 1.1 kPa nm?1. Taking the filament compliance into account, the total stiffness of the array of myosin cross-bridges in the hs (e) is 40.7 ± 3.7 kPa nm?1. An increase in [Pi] decreases the stiffness of the cross-bridge array in proportion to the isometric force, indicating that the force of the cross-bridge remains constant independently of [Pi]. The rate constant of isometric force development after a period of unloaded shortening (rF) is 23.5 ± 1.0 s?1 in control solution and increases monotonically with [Pi], attaining a maximum value of 48.6 ± 0.9 s?1 at 20 mM [Pi], in agreement with the idea that Pi release is a relatively fast step after force generation by the myosin cross-bridge. During isometric force development at any [Pi], e and thus the number of attached cross-bridges increase in proportion to the force, indicating that, independently of the speed of the process that leads to myosin attachment to actin, there is no significant (>1 ms) delay between generation of stiffness and generation of force by the cross-bridges.

Caremani, Marco; Dantzig, Jody; Goldman, Yale E.; Lombardi, Vincenzo; Linari, Marco

2008-01-01

388

Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B).  

PubMed Central

Myosin VIIA is a motor molecule with a conserved head domain and tail region unique to myosin VIIA, which probably defines its unique function in vivo. In an attempt to further characterize myosin VIIA function we set out to identify molecule(s) that specifically associate with it. We demonstrate that 17 and 55 kDa proteins from mouse kidney and cochlea co-purify with myosin VIIA on affinity columns carrying immobilized anti-myosin VIIA antibody. N-terminal sequencing and immunoblotting analysis identified the 17 kDa protein as calmodulin, whereas MS and immunoblotting analysis identified the 55 kDa protein as microtubule-associated protein-2B (MAP-2B). Myosin VIIA can also be co-immunoprecipitated from kidney homogenate using anti-calmodulin or anti-MAP2 (recognizing isoforms 2A and 2B) antibodies, confirming the strong association between calmodulin and myosin VIIA and between MAP-2B and myosin VIIA. Myosin VIIA binds to calmodulin with an apparent K(d) of 10(-9) M. Scatchard analysis of the binding of myosin VIIA to MAP-2B provided evidence for two binding sites, with K(d) values of 10(-10) and 10(-9) M, which have been mapped to medial and C-terminal tail domains of myosin VIIA. The characterization of the interaction of calmodulin and MAP-2B with myosin VIIA provides new insights into the function of myosin VIIA.

Todorov, P T; Hardisty, R E; Brown, S D

2001-01-01

389

Regulation and Isoform Function of the V-ATPases  

PubMed Central

The vacuolar (H+)-ATPases are ATP-dependent proton pumps that function to acidify intracellular compartments and, in some cases, transport protons across the plasma membrane of eukaryotic cells. Intracellular V-ATPases play an important role in such normal physiological processes as receptor-mediated endocytosis, intracellular membrane traffic, pro-hormone processing, protein degradation and the coupled uptake of small molecules, such as neurotransmitters. They also function in the entry of various pathogenic agents, including many envelope viruses, like influenza virus, and toxins, like anthrax toxin. Plasma membrane V-ATPases function in renal pH homeostasis, bone resorption and sperm maturation, as well as in various disease processes, including renal tubular acidosis, osteopetrosis and tumor metastasis. V-ATPases are composed of a peripheral V1 domain containing eight different subunits that is responsible for ATP hydrolysis and an integral V0 domain containing six different subunits that translocates protons. In mammalian cells most of the V-ATPase subunits exist in multiple isoforms which are often expressed in a tissue specific manner. Isoforms of one of the V0 subunits (subunit a) have been shown to possess information that targets the V-ATPase to distinct cellular destinations. Mutations in isoforms of subunit a lead to the human diseases osteopetrosis and renal tubular acidosis. A number of mechanisms are employed to regulate V-ATPase activity in vivo, including reversible dissociation of the V1 and V0 domains, control of the tightness of coupling of proton transport and ATP hydrolysis and selective targeting of V-ATPases to distinct cellular membranes. Isoforms of subunit a are involved in regulation both by control of coupling and by selective targeting. This review will begin with a brief introduction to the function, structure and mechanism of the V-ATPases followed by a discussion of the role of V-ATPase subunit isoforms and the mechanisms involved in regulation of V-ATPase activity.

Toei, Masashi; Saum, Regina; Forgac, Michael

2010-01-01

390

The Structure of Isolated Cardiac Myosin Thick Filaments from Cardiac Myosin Binding Protein-C Knockout Mice  

Microsoft Academic Search

Mutations in the thick filament associated protein cardiac myosin binding protein-C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C is thought to play both a structural and a regulatory role in the contraction of cardiac muscle, detailed information about the role of this protein in stability of the thick filament and maintenance of the ordered helical arrangement

Robert W. Kensler; Samantha P. Harris

2008-01-01

391

A distinct subclass of mammalian striated myosins: structure and molecular evolution of "superfast" or masticatory myosin heavy chain.  

PubMed

"Superfast" or masticatory myosin is the molecular motor in the powerful and specialized jaw-closing muscles of carnivores, folivores, and frugivores. This myosin presumably underpins the unusual high force and moderate shortening velocity of muscle fibers expressing it. Here, we report the cloning and sequencing of the cDNA encoding the full-length masticatory myosin heavy chain (MyHC) from cat temporalis muscle. This was obtained by immunoscreening a cDNA expression library and RACE-PCR (rapid amplification of cDNA ends-PCR). Sequence comparisons at the DNA and amino acid levels show that masticatory MyHC has less than 70% homology to known striated MyHCs, compared with 87-96% between other mammalian fast isoforms themselves. Nucleotide substitution rates at the nonsynonymous sites between masticatory MyHC and other mammalian striated MyHCs are considerably higher than between these striated MyHCs themselves. Phylogenetic analysis revealed that masticatory MyHC diverged from invertebrate MyHC before the avian cardiac MyHC subclass and the mammalian fast/developmental and slow/cardiac MyHC subclasses. Masticatory MyHC is thus a distinct new subclass of vertebrate striated myosins. The early divergence from invertebrate MyHC, combined with immunochemical evidence of its expression in reptilian and shark jaw-closing muscles, suggests that masticatory MyHC evolved in early gnathostomes, driven by benefits derived from powerful jaw closure. During the mammalian radiation, some taxa continued to express it, while others adapted to new types of food and eating habits by replacing masticatory MyHC with more appropriate isoforms normally found in limb and cardiac muscles. PMID:12399928

Qin, Han; Hsu, Michael K H; Morris, Brian J; Hoh, Joseph F Y

2002-11-01

392

Myosin individualized: single nucleotide polymorphisms in energy transduction  

PubMed Central

Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC). Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs) affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these domains are engineered by evolution to be too-robust to be disturbed by otherwise intrusive sequence changes. Two functional sub-domains are SNP-free or relatively SNP-deficient but contain many disease implicated mutants. These sub-domains are apparently highly sensitive to any missense substitution suggesting they have failed to evolve a robust sequence paradigm for performing their function.

2010-01-01

393

Intersubunit rotation in active F-ATPase  

NASA Astrophysics Data System (ADS)

THE enzyme ATP synthase, or F-ATPase, is present in the membranes of bacteria, chloroplasts and mitochondria. Its structure is bipartite, with a proton-conducting, integral membrane portion, F0, and a peripheral portion, F1. Solubilized F1 is composed of five different subunits, (??)3???, and is active as an ATPase1,2. The function of F-ATPase is to couple proton translocation through F0 with ATP synthesis in F1 (ref. 3). Several lines of evidence support the spontaneous formation of ATP on F1 (refs 4,5) and its endergonic release6 at cooperative and rotating (or at least alternating) sites7. The release of ATP at the expense of protonmotive force might involve mechanical energy transduction from F0 into F1 by rotation of the smaller subunits (mainly ?) within (??)3, the catalytic hexagon of F1 as suggested by electron microscopy8, by X-ray crystal structure analysis9 and by the use of cleavable crosslinkers10. Here we record an intersubunit rotation in real time in the functional enzyme by applying polarized absorption relaxation after photobleaching to immobilized F1 with eosin-labelled ?. We observe the rotation of ? relative to immobilized (??)3 in a timespan of 100 ms, compatible with the rate of ATP hydrolysis by immobilized F1. Its angular range, which is of at least 200 degrees, favours a triple-site mechanism of catalysis7,11, with ? acting as a crankshaft in (??)3. The rotation of ? is blocked when ATP is substituted with its non-hydrolysable analogue AMP-PNP.

Sabbert, D.; Engelbrecht, S.; Junge, W.

1996-06-01

394

Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin.  

PubMed

Phosphorylation of skeletal myosin regulatory light chain (RLC) occurs in fatigue and may play a role in the inhibition of shortening velocities observed in vivo. Forces and shortening velocities were measured in permeabilized rabbit psoas fibers with either phosphorylated or dephosphorylated RLCs and in the presence or absence of the myosin inhibitor blebbistatin. Addition of 20 microM blebbistatin decreased tensions by approximately 80% in fibers, independent of phosphorylation. In blebbistatin maximal shortening velocities (V(max)) at 30 degrees C, were decreased by 45% (3.2 +/- 0.34 vs. 5.8 +/- 0.18 lengths/s) in phosphorylated fibers but were not inhibited in dephosphorylated fibers (6.0 +/- 0.30 vs. 5.4 +/- 0.30). In the presence of 20 microM blebbistatin, K(m) for V(max) as a function of [ATP] was lower for phosphorylated fibers than for dephosphorylated fibers (50 +/- 20 vs. 330 +/- 84 microM) indicating that the apparent binding of ATP is stronger in these fibers. Phosphorylation of RLC in situ during fiber preparation or by addition of myosin light chain kinase yielded similar data. RLC phosphorylation inhibited velocity in blebbistatin at both 30 and 10 degrees C, unlike previous reports where RLC phosphorylation only affected shortening velocities at higher temperatures. PMID:19125340

Stewart, Melanie; Franks-Skiba, Kathy; Cooke, Roger

2009