Science.gov

Sample records for actin-activated myosin atpase

  1. Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.

    PubMed

    Liu, Xiong; Lee, Duck-Yeon; Cai, Shutao; Yu, Shuhua; Shu, Shi; Levine, Rodney L; Korn, Edward D

    2013-01-01

    It had been proposed previously that only filamentous forms of Acanthamoeba myosin II have actin-activated MgATPase activity and that this activity is inhibited by phosphorylation of up to four serine residues in a repeating sequence in the C-terminal nonhelical tailpiece of the two heavy chains. We have reinvestigated these issues using recombinant WT and mutant myosins. Contrary to the earlier proposal, we show that two nonfilamentous forms of Acanthamoeba myosin II, heavy meromyosin and myosin subfragment 1, have actin-activated MgATPase that is down-regulated by phosphorylation. By mass spectroscopy, we identified five serines in the heavy chains that can be phosphorylated by a partially purified kinase preparation in vitro and also are phosphorylated in endogenous myosin isolated from the amoebae: four serines in the nonhelical tailpiece and Ser639 in loop 2 of the motor domain. S639A mutants of both subfragment 1 and full-length myosin had actin-activated MgATPase that was not inhibited by phosphorylation of the serines in the nonhelical tailpiece or their mutation to glutamic acid or aspartic acid. Conversely, S639D mutants of both subfragment 1 and full-length myosin were inactive, irrespective of the phosphorylation state of the serines in the nonhelical tailpiece. To our knowledge, this is the first example of regulation of the actin-activated MgATPase activity of any myosin by modification of surface loop 2. PMID:23248278

  2. Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain.

    PubMed

    Muretta, Joseph M; Petersen, Karl J; Thomas, David D

    2013-04-30

    We have used transient kinetics, nanosecond time-resolved fluorescence resonance energy transfer (FRET), and kinetics simulations to resolve a structural transition in the Dictyostelium myosin II relay helix during the actin-activated power stroke. The relay helix plays a critical role in force generation in myosin, coupling biochemical changes in the ATPase site with the force-transducing rotation of the myosin light-chain domain. Previous research in the absence of actin showed that ATP binding to myosin induces a dynamic equilibrium between a bent prepower stroke state of the relay helix and a straight postpower stroke state, which dominates in the absence of ATP or when ADP is bound. We now ask whether actin binding reverses this transition and if so, how this reversal is coordinated with actin-activated phosphate release. We labeled a Cys-lite Dictyostelium myosin II motor domain with donor and acceptor probes at two engineered Cys residues designed to detect relay helix bending. We then performed transient time-resolved FRET following stopped-flow mixing of actin with labeled myosin, preincubated with ATP. We determined the kinetics of actin-activated phosphate release, using fluorescent phosphate-binding protein. The results show that actin binding to the myosin.ADP.P complex straightens the relay helix before phosphate dissociation. This actin-activated relay helix straightening is reversible, but phosphate irreversibly dissociates from the postpower stroke state, preventing reversal of the power stroke. Thus, relay helix straightening gates phosphate dissociation, whereas phosphate dissociation provides the thermodynamic driving force underlying force production. PMID:23589853

  3. ATPase activity of myosin in hair bundles of the bullfrog's sacculus.

    PubMed Central

    Burlacu, S; Tap, W D; Lumpkin, E A; Hudspeth, A J

    1997-01-01

    Mechanoelectrical transduction by a hair cell displays adaptation, which is thought to occur as myosin-based molecular motors within the mechanically sensitive hair bundle adjust the tension transmitted to transduction channels. To assess the enzymatic capabilities of the myosin isozymes in hair bundles, we examined the actin-dependent ATPase activity of bundles isolated from the bullfrog's sacculus. Separation of 32P-labeled inorganic phosphate from unreacted [gamma-32P]ATP by thin-layer chromatography enabled us to measure the liberation of as little as 0.1 fmol phosphate. To distinguish the Mg(2+)-ATPase activity of myosin isozymes from that of other hair-bundle enzymes, we inhibited the interaction of hair-bundle myosin with actin and determined the reduction in ATPase activity. N-ethylmaleimide (NEM) decreased neither physiologically measured adaptation nor the nucleotide-hydrolytic activity of a 120-kDa protein thought to be myosin 1 beta. The NEM-insensitive, actin-activated ATPase activity of myosin increased from 1.0 fmol x s-1 in 1 mM EGTA to 2.3 fmol x s-1 in 10 microM Ca2+. This activity was largely inhibited by calmidazolium, but was unaffected by the addition of exogenous calmodulin. These results, which indicate that hair bundles contain enzymatically active, Ca(2+)-sensitive myosin molecules, are consistent with the role of Ca2+ in adaptation and with the hypothesis that myosin forms the hair cell's adaptation motor. Images FIGURE 1 FIGURE 3 PMID:8994611

  4. Separation of large mammalian ventricular myosin differing in ATPase activity.

    PubMed

    Rupp, Heinz; Maisch, Bernhard

    2007-01-01

    To investigate a possible heterogeneity of human ventricular myosin, papillary muscles of patients with valvular dysfunction were examined using a modified native gel electrophoresis. Myosin was separated into 2 components termed VA and VB, whereby the VA to VB proportion appeared to depend on the ventricular load. The proportion of the faster migrating band VA was correlated (P<0.05) with end-diastolic pressure and the aortic pressure-cardiac index product. The regression based on these variables accounted for 67% of the variation in VA (R2=0.67). The VA proportion was, however, not significantly correlated with cardiac norepinephrine concentration. The ATPase activity of the 2 components of myosin was assessed from the Ca3(PO4)2 precipitation by incubating the gel in the presence of ATP and CaCl2. The ATPase activity of VA was 60% of that of VB. The VA and VB forms were observed also in the cat (31.4% VA), dog (32.1% VA), pig (28.5% VA), wild pig (33.7% VA), and roe deer (30.5% VA). VA and VB were not detected in the rat exhibiting the 3 isoforms V1, V2, and V3, rabbit (100% V3), and hare (86% V1). The data demonstrate a heterogeneity of large mammalian ventricular myosin, whereby an increased cardiac load appeared to be associated with a higher myosin VA proportion that exhibited a reduced ATPase activity. PMID:17612641

  5. Theoretical models for cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin.

    PubMed Central

    Hill, T L; Eisenberg, E; Chalovich, J M

    1981-01-01

    Recent theoretical work on the cooperative equilibrium binding of myosin subfragment-1-ADP to regulated actin, as influenced by Ca2+, is extended here to the cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Exact solution of the general steady-state problem will require Monte Carlo calculations. Three interrelated special cases are discussed in some detail and sample computer (not Monte Carlo) solutions are given. The eventual objective is to apply these considerations to in vitro experimental data and to in vivo muscle models. PMID:6455170

  6. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle.

    PubMed

    Cooke, Roger

    2011-03-01

    Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels. PMID:21516138

  7. Mouse Myosin-19 Is a Plus-end-directed, High-duty Ratio Molecular Motor*

    PubMed Central

    Lu, Zekuan; Ma, Xiao-Nan; Zhang, Hai-Man; Ji, Huan-Hong; Ding, Hao; Zhang, Jie; Luo, Dan; Sun, Yujie; Li, Xiang-dong

    2014-01-01

    Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament. PMID:24825904

  8. Myocyte contractility can be maintained by storing cells with the myosin ATPase inhibitor 2,3 butanedione monoxime

    PubMed Central

    Chung, Charles S; Mechas, Charles; Campbell, Kenneth S

    2015-01-01

    Isolated intact myocytes can be used to investigate contractile mechanisms and to screen new therapeutic compounds. These experiments typically require euthanizing an animal and isolating fresh cells each day or analyzing cultured myocytes, which quickly lose their rod-shaped morphology. Recent data suggest that the viability of canine myocytes can be prolonged using low temperature and N-benzyl-p-toluene sulfonamide (an inhibitor of skeletal myosin ATPase). We performed similar studies in rat myocytes in order to test whether the cardiac myosin ATPase inhibitors 2,3-Butanedione monoxime (BDM) and blebbistatin help to maintain cell-level function over multiple days. Myocytes were isolated from rats and separated into batches that were stored at 4C in a HEPES-buffered solution that contained 0.5mmol L?1 Ca2+ and (1) no myosin ATPase inhibitors; (2) 10mmol L?1 BDM; or (3) 3?mol L?1 blebbistatin. Functional viability of myocytes was assessed up to 3days after the isolation by measuring calcium transients and unloaded shortening profiles induced by electrical stimuli in inhibitor-free Tyrode's solution. Cells stored without myosin ATPase inhibitors had altered morphology (fewer rod-shaped cells, shorter diastolic sarcomere lengths, and membrane blebbing) and were not viable for contractile assays after 24h. Cells stored in BDM maintained morphology and contractile function for 48h. Storage in blebbistatin maintained cell morphology for 72h but inhibited contractility. These data show that storing cells with myosin ATPase inhibitors can extend the viability of myocytes that will be used for functional assays. This may help to refine and reduce the use of animals in experiments. PMID:26116551

  9. The structural coupling between ATPase activation and recovery stroke in the myosin II motor

    SciTech Connect

    Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-07-01

    Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.

  10. Spatial proximity of ATP-sensitive tryptophanyl residue(s) and Cys-697 in myosin ATPase.

    PubMed

    Hiratsuka, T

    1992-07-25

    The reactive thiol Cys-697 (SH2) in myosin ATPase was labeled with a fluorescent analog of maleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) (Hiratsuka, T. (1992) J. Biol. Chem. 267, 14941-14948). Although the tryptophan fluorescence of myosin subfragment-1 (S-1) was slightly affected by incorporation of the MIANS fluorophore, the tryptophan fluorescence of the resultant S-1 derivative (MIANS-S-1) was enhanced by ATP in a manner similar to that of unlabeled S-1. The quenching of tryptophan fluorescence of MIANS-S-1 was shown to result from a transfer of the excitation energy from tryptophanyl residue(s) to the MIANS fluorophore attached to SH2, which absorbed and fluoresced maximally at 325 and 418 nm, respectively. The energy transfer measurements were performed in the presence of acrylamide and compared to those performed in the absence of the quencher. The energy transfer efficiencies were found to be unaltered by acrylamide, indicating that the observed fluorescence energy transfer is originated exclusively from the tryptophanyl residue(s) that are not affected by acrylamide, i.e. the ATP-sensitive tryptophanyl residue(s) of S-1 (Torgerson, P. M. (1984) Biochemistry 23, 3002-3007). The distance between the tryptophanyl residue(s) and Cys-697 was calculated to be 27 A assuming a single donor-acceptor pair. Trp-510 is proposed to be one of the ATP-sensitive tryptophanyl residues. PMID:1386083

  11. Does Interaction between the Motor and Regulatory Domains of the Myosin Head Occur during ATPase Cycle? Evidence from Thermal Unfolding Studies on Myosin Subfragment 1

    PubMed Central

    Logvinova, Daria S.; Markov, Denis I.; Nikolaeva, Olga P.; Sluchanko, Nikolai N.; Ushakov, Dmitry S.; Levitsky, Dmitrii I.

    2015-01-01

    Myosin head (myosin subfragment 1, S1) consists of two major structural domains, the motor (or catalytic) domain and the regulatory domain. Functioning of the myosin head as a molecular motor is believed to involve a rotation of the regulatory domain (lever arm) relative to the motor domain during the ATPase cycle. According to predictions, this rotation can be accompanied by an interaction between the motor domain and the C-terminus of the essential light chain (ELC) associated with the regulatory domain. To check this assumption, we applied differential scanning calorimetry (DSC) combined with temperature dependences of fluorescence to study changes in thermal unfolding and the domain structure of S1, which occur upon formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx that mimic S1 ATPase intermediate states S1**-ADP-Pi and S1*-ATP, respectively. To identify the thermal transitions on the DSC profiles (i.e. to assign them to the structural domains of S1), we compared the DSC data with temperature-induced changes in fluorescence of either tryptophan residues, located only in the motor domain, or recombinant ELC mutants (light chain 1 isoform), which were first fluorescently labeled at different positions in their C-terminal half and then introduced into the S1 regulatory domain. We show that formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx significantly stabilizes not only the motor domain, but also the regulatory domain of the S1 molecule implying interdomain interaction via ELC. This is consistent with the previously proposed concepts and also adds some new interesting details to the molecular mechanism of the myosin ATPase cycle. PMID:26356744

  12. Does Interaction between the Motor and Regulatory Domains of the Myosin Head Occur during ATPase Cycle? Evidence from Thermal Unfolding Studies on Myosin Subfragment 1.

    PubMed

    Logvinova, Daria S; Markov, Denis I; Nikolaeva, Olga P; Sluchanko, Nikolai N; Ushakov, Dmitry S; Levitsky, Dmitrii I

    2015-01-01

    Myosin head (myosin subfragment 1, S1) consists of two major structural domains, the motor (or catalytic) domain and the regulatory domain. Functioning of the myosin head as a molecular motor is believed to involve a rotation of the regulatory domain (lever arm) relative to the motor domain during the ATPase cycle. According to predictions, this rotation can be accompanied by an interaction between the motor domain and the C-terminus of the essential light chain (ELC) associated with the regulatory domain. To check this assumption, we applied differential scanning calorimetry (DSC) combined with temperature dependences of fluorescence to study changes in thermal unfolding and the domain structure of S1, which occur upon formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx that mimic S1 ATPase intermediate states S1**-ADP-Pi and S1*-ATP, respectively. To identify the thermal transitions on the DSC profiles (i.e. to assign them to the structural domains of S1), we compared the DSC data with temperature-induced changes in fluorescence of either tryptophan residues, located only in the motor domain, or recombinant ELC mutants (light chain 1 isoform), which were first fluorescently labeled at different positions in their C-terminal half and then introduced into the S1 regulatory domain. We show that formation of the ternary complexes S1-ADP-AlF4- and S1-ADP-BeFx significantly stabilizes not only the motor domain, but also the regulatory domain of the S1 molecule implying interdomain interaction via ELC. This is consistent with the previously proposed concepts and also adds some new interesting details to the molecular mechanism of the myosin ATPase cycle. PMID:26356744

  13. Electron microscopic visualization of the ATPase site of myosin by photoaffinity labeling with a biotinylated photoreactive ADP analog.

    PubMed Central

    Sutoh, K; Yamamoto, K; Wakabayashi, T

    1986-01-01

    An ADP analog carrying a biotin moiety and a photoreactive group was synthesized. In the presence of vanadate ion (Vi), the analog was tightly trapped into the ATPase site of heavy meromyosin (HMM) or myosin subfragment 1 (S1) in an ADP analog/ATPase site molar ratio of 1:1. UV illumination on the HMM (or S1)-Vi-ADP analog complex resulted in covalent incorporation of the analog into the ATPase site. About 15% of the trapped analog was crosslinked to HMM or S1. Mapping of the crosslinking site of the analog showed that the N-terminal Mr 25,000 segment of the heavy chain participated in binding the ADP analog. The biotin moiety of the analog covalently incorporated into the ATPase site was visualized in electron microscopy by attaching an avidin oligomer. Rotary-shadowed images of the HMM-avidin complex revealed that the crosslinked ADP analog was located about 140 A from the head-rod junction on the head. The result indicates that the ATPase site of myosin is about 140 A apart from the head-rod junction along the head. Images PMID:2934740

  14. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis. PMID:26519311

  15. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin.

    PubMed

    Ishijima, A; Kojima, H; Funatsu, T; Tokunaga, M; Higuchi, H; Tanaka, H; Yanagida, T

    1998-01-23

    We have developed a technique that allows mechanical and ligand-binding events in a single myosin molecule to be monitored simultaneously. We describe how steps in the ATPase reaction are temporally related to mechanical events at the single molecule level. The results show that the force generation does not always coincide with the release of bound nucleotide, presumably ADP. Instead the myosin head produces force several hundreds of milliseconds after bound nucleotide is released. This finding does not support the widely accepted view that force generation is directly coupled to the release of bound ligands. It suggests that myosin has a hysteresis or memory state, which stores chemical energy from ATP hydrolysis. PMID:9458041

  16. Inhibiting Myosin-ATPase Reveals Dynamic Range of Mitochondrial Respiratory Control in Skeletal Muscle

    PubMed Central

    Perry, Christopher G.R.; Kane, Daniel A.; Lin, Chien-Te; Kozy, Rachel; Cathey, Brook L.; Lark, Daniel S.; Kane, Constance L.; Brophy, Patricia M.; Gavin, Timothy P; Anderson, Ethan J.; Neufer, P. Darrell

    2013-01-01

    Assessment of mitochondrial ADP-stimulated respiratory kinetics in permeabilized skeletal myofibres (PmFB) is increasingly used in clinical diagnostic and basic research settings. However, estimates of the Km for ADP vary considerably (?20-300 ?M) and tend to overestimate respiration at rest. Noting PmFBs spontaneously contract during respiration experiments, we systematically determined the impact of contraction, temperature and oxygenation on ADP-stimulated respiratory kinetics. Blebbistatin (BLEB), a myosin II ATPase inhibitor, blocked contraction under all conditions and yielded high Km values for ADP of >?250 and ?80 ?M in red and white rat PmFB, respectively. In the absence of BLEB, PmFB contracted and the Km for ADP decreased by ?2 to 10-fold in a temperature-dependent manner. PmFB were sensitive to hyperoxia (increased Km) in the absence of BLEB (contracted) at 30C but not 37C. In PmFB from humans, contraction elicited high sensitivity to ADP (m <100 ?M) whereas blocking contraction (+BLEB) and including PCr:Cr = 2 to mimic the resting energetic state yielded a Km for ADP = ?1560 ?M, consistent with estimates of in vivo resting respiratory rates of <1% maximum. These results demonstrate the sensitivity of muscle to ADP varies over a wide range in relation to contractile state and cellular energy charge, providing evidence that enzymatic coupling of energy transfer within skeletal muscle becomes more efficient in the working state. PMID:21554250

  17. Redox-sensitive residue in the actin-binding interface of myosin

    PubMed Central

    Moen, Rebecca J.; Cornea, Sinziana; Oseid, Daniel E.; Binder, Benjamin P.; Klein, Jennifer C.; Thomas, David D.

    2014-01-01

    We have examined the chemical and functional reversibility of oxidative modification in myosin. Redox regulation has emerged as a crucial modulator of protein function, with particular relevance to aging. We previously identified a single methionine residue in Dictyostelium discoideum (Dicty) myosin II (M394, near the myosin cardiomyopathy loop in the actin-binding interface) that is functionally sensitive to oxidation. We now show that oxidation of M394 is reversible by methionine sulfoxide reductase (Msr), restoring actin-activated ATPase activity. Sequence alignment reveals that M394 of Dicty myosin II is a cysteine residue in all human isoforms of skeletal and cardiac myosin. Using Dicty myosin II as a model for site-specific redox sensitivity of this Cys residue, the M394C mutant can be glutathionylated in vitro, resulting in reversible inhibition of actin-activated ATPase activity, with effects similar to those of methionine oxidation at this site. This work illustrates the potential for myosin to function as a redox sensor in both non-muscle and muscle cells, modulating motility/contractility in response to oxidative stress. PMID:25264102

  18. Redox-sensitive residue in the actin-binding interface of myosin.

    PubMed

    Moen, Rebecca J; Cornea, Sinziana; Oseid, Daniel E; Binder, Benjamin P; Klein, Jennifer C; Thomas, David D

    2014-10-24

    We have examined the chemical and functional reversibility of oxidative modification in myosin. Redox regulation has emerged as a crucial modulator of protein function, with particular relevance to aging. We previously identified a single methionine residue in Dictyostelium discoideum (Dicty) myosin II (M394, near the myosin cardiomyopathy loop in the actin-binding interface) that is functionally sensitive to oxidation. We now show that oxidation of M394 is reversible by methionine sulfoxide reductase (Msr), restoring actin-activated ATPase activity. Sequence alignment reveals that M394 of Dicty myosin II is a cysteine residue in all human isoforms of skeletal and cardiac myosin. Using Dicty myosin II as a model for site-specific redox sensitivity of this Cys residue, the M394C mutant can be glutathionylated in vitro, resulting in reversible inhibition of actin-activated ATPase activity, with effects similar to those of methionine oxidation at this site. This work illustrates the potential for myosin to function as a redox sensor in both non-muscle and muscle cells, modulating motility/contractility in response to oxidative stress. PMID:25264102

  19. Purification and characterization of a sea urchin egg Ca2+-calmodulin-dependent kinase with myosin light chain phosphorylating activity.

    PubMed

    Chou, Y H; Rebhun, L I

    1986-04-25

    The crude actomyosin precipitate from sea urchin (Arbacia punctulata) egg extracts contains Ca2+-sensitive myosin light chain kinase activity. Activity can be further increased by exogenous calmodulin (CaM). Egg myosin light chain kinase activity is purified from total egg extract by fractionating on three different chromatographic columns: DEAE ion exchange, gel filtration on Sephacryl-300, and Affi-Gel-CaM affinity. The purified egg kinase depends totally on Ca2+ and CaM for activity. Unphosphorylated egg myosin has very little actin-activated ATPase. After phosphorylation of the phosphorylable light chain by either egg kinase or gizzard myosin light chain kinase, the actin-activated ATPase of egg myosin is enhanced several fold. However, the egg kinase bears some unique characteristics which are very different from conventional myosin light chain kinases of differentiated tissues. The purified egg kinase has a native molecular mass of 405 kDa, while on sodium dodecyl sulfate-polyacrylamide electrophoresis it shows a single subunit of 56 kDa. The affinity of egg kinase for CaM (Ka = 0.4 microM) is relatively weaker than that of the gizzard myosin light chain kinase. The egg kinase autophosphorylates in the presence of Ca2+ and CaM and has a rather broad substrate specificity. The possible relationship between this egg Ca2+-CaM-dependent kinase and the Ca2+-CaM-dependent kinases from brain and liver is discussed. PMID:2937787

  20. Removal of the cardiac myosin regulatory light chain increases isometric force production

    PubMed Central

    Pant, Kiran; Watt, James; Greenberg, Michael; Jones, Michelle; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

    2009-01-01

    The myosin neck, which is supported by the interactions between light chains and the underlying ?-helical heavy chain, is thought to act as a lever arm to amplify movements originating in the globular motor domain. Here, we studied the role of the cardiac myosin regulatory light chains (RLCs) in the capacity of myosin to produce force using a novel optical-trap-based isometric force in vitro motility assay. We measured the isometric force and actin filament velocity for native porcine cardiac (PC) myosin, RLC-depleted PC (PCdepl) myosin, and PC myosin reconstituted with recombinant bacterially expressed human cardiac RLC (PCrecon). RLC depletion reduced unloaded actin filament velocity by 58% and enhanced the myosin-based isometric force ?2-fold. No significant change between PC and PCdepl preparations was observed in the maximal rate of actin-activated myosin ATPase activity. Reconstitution of PCdepl myosin with human RLC partially restored the velocity and force levels to near untreated values. The reduction in unloaded velocity after RLC extraction is consistent with the myosin neck acting as a lever, while the enhancement in isometric force can be directly related to enhancement of unitary force. The force data are consistent with a model in which the neck region behaves as a cantilevered beam.Pant, K., Watt, J., Greenberg, M., Jones, M., Szczesna-Cordary, D., Moore, J. R. Removal of the cardiac myosin regulatory light chain increases isometric force production. PMID:19470801

  1. p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba?myosin?I

    PubMed Central

    Brzeska, Hanna; Knaus, Ulla?G.; Wang, Zhen-Yuan; Bokoch, Gary?M.; Korn, Edward?D.

    1997-01-01

    Acanthamoeba class I myosins are unconventional, single-headed myosins that express actin-activated Mg2+-ATPase and in vitro motility activities only when a single serine or threonine in the heavy chain is phosphorylated by myosin I heavy chain kinase (MIHCK). Some other, but not most, class I myosins have the same consensus phosphorylation site sequence, and the two known class VI myosins have a phosphorylatable residue in the homologous position, where most myosins have an aspartate or glutamate residue. Recently, we found that the catalytic domain of Acanthamoeba MIHCK has extensive sequence similarity to the p21-activated kinase (PAK)/STE20 family of kinases from mammals and yeast, which are activated by small GTP-binding proteins. The physiological substrates of the PAK/STE20 kinases are not well characterized. In this paper we show that PAK1 has similar substrate specificity as MIHCK when assayed against synthetic substrates and that PAK1 phosphorylates the heavy chain (1 mol of Pi per mol) and activates Acanthamoeba myosin I as MIHCK does. These results, together with the known involvement of Acanthamoeba myosin I, yeast myosin I, STE20, PAK, and small GTP-binding proteins in membrane- and cytoskeleton-associated morphogenetic transformations and activities, suggest that myosins may be physiological substrates for the PAK/STE20 family and thus mediators of these events. PMID:9037011

  2. Molecular Characterization and Subcellular Localization of Arabidopsis Class VIII Myosin, ATM1*

    PubMed Central

    Haraguchi, Takeshi; Tominaga, Motoki; Matsumoto, Rie; Sato, Kei; Nakano, Akihiko; Yamamoto, Keiichi; Ito, Kohji

    2014-01-01

    Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg2+-ATPase activity (Vmax = 4 s−1), although their affinities for actin were high (Kactin = 4 μm). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 μm/s, respectively, from which the value for full-length ATM1 is calculated to be ∼0.2 μm/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was ∼90%. ADP dissociation from the actin·ATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s−1, respectively). Physiological concentrations of free Mg2+ modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis. PMID:24637024

  3. Myosin IIB and F-actin control apical vacuolar morphology and histamine-induced trafficking of H-K-ATPase-containing tubulovesicles in gastric parietal cells

    PubMed Central

    Crothers, James M.; Rosen, Jared E.; Nakada, Stephanie L.; Rakholia, Milap; Okamoto, Curtis T.; Forte, John G.; Machen, Terry E.

    2014-01-01

    Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle. PMID:24578340

  4. Analytical Comparison of Natural and Pharmaceutical Ventricular Myosin Activators

    PubMed Central

    2015-01-01

    Ventricular myosin (?Mys) is the motor protein in cardiac muscle generating force using ATP hydrolysis free energy to translate actin. In the cardiac muscle sarcomere, myosin and actin filaments interact cyclically and undergo rapid relative translation facilitated by the low duty cycle motor. It contrasts with high duty cycle processive myosins for which persistent actin association is the priority. The only pharmaceutical ?Mys activator, omecamtive mecarbil (OM), upregulates cardiac contractility in vivo and is undergoing testing for heart failure therapy. In vitro ?Mys step-size, motility velocity, and actin-activated myosin ATPase were measured to determine duty cycle in the absence and presence of OM. A new parameter, the relative step-frequency, was introduced and measured to characterize ?Mys motility due to the involvement of its three unitary step-sizes. Step-size and relative step-frequency were measured using the Qdot assay. OM decreases motility velocity 10-fold without affecting step-size, indicating a large increase in duty cycle converting ?Mys to a near processive myosin. The OM conversion dramatically increases force and modestly increases power over the native ?Mys. Contrasting motility modification due to OM with that from the natural myosin activator, specific ?Mys phosphorylation, provides insight into their respective activation mechanisms and indicates the boilerplate screening characteristics desired for pharmaceutical ?Mys activators. New analytics introduced here for the fast and efficient Qdot motility assay create a promising method for high-throughput screening of motor proteins and their modulators. PMID:25068717

  5. Kinetic model for isometric contraction in smooth muscle on the basis of myosin phosphorylation hypothesis.

    PubMed Central

    Kato, S; Osa, T; Ogasawara, T

    1984-01-01

    A kinetic model was proposed to simulate an isometric contraction curve in smooth muscle on the basis of the myosin phosphorylation hypothesis. The Ca2+-calmodulin-dependent activation of myosin light-chain kinase and the phosphorylation-dephosphorylation reaction of myosin were mathematically treated. Solving the kinetic equations at a steady state, we could calculate the relationship between the Ca2+ concentration and the myosin phosphorylation. Assuming that two-head-phosphorylated myosin has an actin-activated Mg2+-ATPase activity and that this state corresponds to an active state, we computed the time courses of the myosin phosphorylation and the active state for various Ca2+ transients. The time course of the active state was converted into that of isometric tension by use of Sandow's model composed of a contractile element and a series elastic component. The model could simulate not only the isometric contraction curves for any given Ca2+ transient but also the following experimental results: the calmodulin-dependent shift of the Ca2+ sensitivity of isometric tension observed in skinned muscle fibers, the disagreement between the Ca2+ sensitivity of myosin phosphorylation and that of isometric tension at a steady state, and the disagreement between the time course of myosin phosphorylation and that of isometric tension development. PMID:6547623

  6. Movement of Cys-697 in myosin ATPase associated with ATP hydrolysis.

    PubMed

    Hiratsuka, T

    1992-07-25

    To detect movement of Cys-697 (SH2) in myosin subfragment-1 (S-1) associated with ATP hydrolysis, SH2 was labeled with the environmentally sensitive fluorescent analog of maleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS). Complex formation of S-1 labeled at Cys-697 with MIANS (MIANS-S-1) with adenyl-5'-yl imidodiphosphate and ADP resulted in a significant decrease in the fluorescence intensity of approximately 40 and 30%, respectively. When ATP was added to MIANS-S-1, the fluorescence intensity decreased rapidly by approximately 40%, and this fluorescence level was maintained during the steady state of ATP hydrolysis. As the substrate was used up, the fluorescence intensity increased to approximately 70% of the original value. These results together with model experiments with MIANS-N-acetylcysteine indicate that in the presence of ATP, the MIANS fluorophore attached to SH2 is located in a less hydrophobic environment than is the fluorophore in the absence of ligand and that the hydrolysis of ATP enhances hydrophobicity around the fluorophore. Acrylamide fluorescence quenching studies of MIANS-S-1 confirmed these results, indicating that addition of ATP and ADP to MIANS-S-1 results in an increase in the Stern-Volmer quenching constant of the fluorophore by factors of approximately 3 and 2.5, respectively. The present observations suggest that binding of ATP causes a movement of SH2 toward the protein surface, whereas it goes back into the protein interior after ATP hydrolysis. The results also confirmed previous observations by a chemical cross-linking approach (Hiratsuka, T. (1987) Biochemistry 26, 3168-3173). PMID:1386082

  7. Filamentous smooth muscle myosin is regulated by phosphorylation

    PubMed Central

    1989-01-01

    The enzymatic activity of filamentous dephosphorylated smooth muscle myosin has been difficult to determine because the polymer disassembles to the folded conformation in the presence of MgATP. Monoclonal antirod antibodies were used here to "fix" dephosphorylated myosin in the filamentous state. The steady-state actin-activated ATPase of phosphorylated filaments was 30-100-fold higher than that of antibody- stabilized dephosphorylated filaments, suggesting that phosphorylation can activate ATPase activity independent of changes in assembly. The degree of regulation may exceed 100-fold, because steady-state measurements slightly overestimate the rate of product release from dephosphorylated filaments. Single-turnover experiments in the absence of actin showed that although dephosphorylated folded myosin released products at the low rate of 0.0005 s-1 (Cross, R. A., K. E. Cross, A. Sobieszek. 1986. EMBO [Eur. Mol. Biol. Organ.] J. 5:2637-2641) the rate of product release from dephosphorylated filaments was only 3-12-fold higher, depending on the ionic strength. The addition of actin did not increase this rate to any appreciable extent. Dephosphorylated filaments and dephosphorylated heavy meromyosin (Sellers, J. R. 1985. J. Biol. Chem. 260:15815-15819) thus have similar low rates of phosphate release both in the presence and absence of actin. These results show that light chain phosphorylation alone, without invoking other mechanisms, is an effective switch for regulating the activity of smooth muscle myosin filaments. PMID:2531749

  8. Kinetic characterization of a monomeric unconventional myosin V construct.

    PubMed

    Trybus, K M; Krementsova, E; Freyzon, Y

    1999-09-24

    An expressed, monomeric murine myosin V construct composed of the motor domain and two calmodulin-binding IQ motifs (MD(2IQ)) was used to assess the regulatory and kinetic properties of this unconventional myosin. In EGTA, the actin-activated ATPase activity of MD(2IQ) was 7.4 +/- 1.6 s(-1) with a K(app) of approximately 1 microM (37 degrees C), and the velocity of actin movement was approximately 0.3 micrometer/s (30 degrees C). Calcium inhibited both of these activities, but the addition of calmodulin restored the values to approximately 70% of control, indicating that calmodulin dissociation caused inhibition. In contrast to myosin II, MD(2IQ) is highly associated with actin at physiological ionic strength in the presence of ATP, but the motor is in a weakly bound conformation based on the pyrene-actin signal. The rate of dissociation of acto-MD(2IQ) by ATP is fast (>850 s(-1)), and ATP hydrolysis occurs at approximately 200 s(-1). The affinity of acto-MD(2IQ) for ADP is somewhat higher than that of smooth S1, and ADP dissociates more slowly. Actin does not cause a large increase in the rate of ADP release, nor does the presence of ADP appreciably alter the affinity of MD(2IQ) for actin. These kinetic data suggest that monomeric myosin V is not processive. PMID:10488077

  9. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.

    PubMed

    Brizendine, Richard K; Alcala, Diego B; Carter, Michael S; Haldeman, Brian D; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-09-01

    It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley's 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Brny [Brny M (1967) J Gen Physiol 50(6, Suppl):197-218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin. We have observed smooth muscle myosin filaments of different length and head number (N) moving over surface-attached F-actin in vitro. Fitting filament velocities (V) vs. N to a detachment-limited model using the myosin step size d=8 nm gave an ADP release rate 8.5-fold faster and ton (myosin's attached time) and r (duty ratio) ?10-fold lower than previously reported. In contrast, these data were accurately fit to an attachment-limited model, V=Nvd, over the range of N found in all muscle types. At nonphysiologically high N, V=L/ton rather than d/ton, where L is related to the length of myosin's subfragment 2. The attachment-limited model also fit well to the [ATP] dependence of V for myosin-rod cofilaments at three fixed N. Previously published V0 vs. vmax values for 24 different muscles were accurately fit to the attachment-limited model using widely accepted values for r and N, giving d=11.1 nm. Therefore, in contrast with Huxley's model, we conclude that V0 is limited by the actin-myosin attachment rate. PMID:26294254

  10. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on ?-myosin cross-bridge mechanics.

    PubMed

    Farman, Gerrie P; Muthu, Priya; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2014-12-15

    Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of ?-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant ?-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM. PMID:25324513

  11. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on ?-myosin cross-bridge mechanics

    PubMed Central

    Farman, Gerrie P.; Muthu, Priya; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta

    2014-01-01

    Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of ?-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant ?-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM. PMID:25324513

  12. The Kinetics Underlying the Velocity of Smooth Muscle Myosin Filament Sliding on Actin Filaments in Vitro*

    PubMed Central

    Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2014-01-01

    Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ?0.63 ?m long and contain ?176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276

  13. Drosophila melanogaster Myosin-18 Represents a Highly Divergent Motor with Actin Tethering Properties*

    PubMed Central

    Guzik-Lendrum, Stephanie; Nagy, Attila; Takagi, Yasuharu; Houdusse, Anne; Sellers, James R.

    2011-01-01

    The gene encoding Drosophila myosin-18 is complex and can potentially yield six alternatively spliced mRNAs. One of the major features of this myosin is an N-terminal PDZ domain that is included in some of the predicted alternatively spliced products. To explore the biochemical properties of this protein, we engineered two minimal motor domain (MMD)-like constructs, one that contains the N-terminal PDZ (myosin-18 M-PDZ) domain and one that does not (myosin-18 M-?PDZ). These two constructs were expressed in the baculovirus/Sf9 system. The results suggest that Drosophila myosin-18 is highly divergent from most other myosins in the superfamily. Neither of the MMD constructs had an actin-activated MgATPase activity, nor did they even bind ATP. Both myosin-18 M-PDZ and M-?PDZ proteins bound to actin with Kd values of 2.61 and 1.04 ?m, respectively, but only about 5075% of the protein bound to actin even at high actin concentrations. Unbound proteins from these actin binding assays reiterated the 60% saturation maximum, suggesting an equilibrium between actin-binding and non-actin-binding conformations of Drosophila myosin-18 in vitro. Neither the binding affinity nor the substoichiometric binding was significantly affected by ATP. Optical trapping of single molecules in three-bead assays showed short lived interactions of the myosin-18 motors with actin filaments. Combined, these data suggest that this highly divergent motor may function as an actin tethering protein. PMID:21498886

  14. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges

    PubMed Central

    Brizendine, Richard K.; Alcala, Diego B.; Carter, Michael S.; Haldeman, Brian D.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.

    2015-01-01

    It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley’s 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol 50(6, Suppl):197–218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin. We have observed smooth muscle myosin filaments of different length and head number (N) moving over surface-attached F-actin in vitro. Fitting filament velocities (V) vs. N to a detachment-limited model using the myosin step size d = 8 nm gave an ADP release rate 8.5-fold faster and ton (myosin’s attached time) and r (duty ratio) ∼10-fold lower than previously reported. In contrast, these data were accurately fit to an attachment-limited model, V = N·v·d, over the range of N found in all muscle types. At nonphysiologically high N, V = L/ton rather than d/ton, where L is related to the length of myosin’s subfragment 2. The attachment-limited model also fit well to the [ATP] dependence of V for myosin-rod cofilaments at three fixed N. Previously published V0 vs. vmax values for 24 different muscles were accurately fit to the attachment-limited model using widely accepted values for r and N, giving d = 11.1 nm. Therefore, in contrast with Huxley’s model, we conclude that V0 is limited by the actin–myosin attachment rate. PMID:26294254

  15. Molecular Basis of Dynamic Relocalization of Dictyostelium Myosin IB*

    PubMed Central

    Brzeska, Hanna; Guag, Jake; Preston, G. Michael; Titus, Margaret A.; Korn, Edward D.

    2012-01-01

    Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP2/PIP3). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP2/PIP3 similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP2/PIP3 concentration in the plasma membrane and cytoplasmic F-actin. PMID:22367211

  16. Regulation of the actin-myosin interaction by titin.

    PubMed

    Niederlnder, Nicolas; Raynaud, Fabrice; Astier, Catherine; Chaussepied, Patrick

    2004-11-01

    Titin is known to interact with actin thin filaments within the I-band region of striated muscle sarcomeres. In this study, we have used a titin fragment of 800 kDa (T800) purified from striated skeletal muscle to measure the effect of this interaction on the functional properties of the actin-myosin complex. MALDI-TOF MS revealed that T800 contains the entire titin PEVK (Pro, Glu, Val, Lys-rich) domain. In the presence of tropomyosin-troponin, T800 increased the sliding velocity (both average and maximum values) of actin filaments on heavy-meromyosin (HMM)-coated surfaces and dramatically decreased the number of stationary filaments. These results were correlated with a 30% reduction in actin-activated HMM ATPase activity and with an inhibition of HMM binding to actin N-terminal residues as shown by chemical cross-linking. At the same time, T800 did not affect the efficiency of the Ca(2+)-controlled on/off switch, nor did it alter the overall binding energetics of HMM to actin, as revealed by cosedimentation experiments. These data are consistent with a competitive effect of PEVK domain-containing T800 on the electrostatic contacts at the actin-HMM interface. They also suggest that titin may participate in the regulation of the active tension generated by the actin-myosin complex. PMID:15560799

  17. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    SciTech Connect

    Gomibuchi, Yuki; Uyeda, Taro Q.P.; Wakabayashi, Takeyuki; Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA) of the replaced amino acid molecule. Because 1/K{sub app} reflects the affinity of F-actin for the myosin–ADP-phosphate intermediate (M.ADP.Pi) through the weak binding, these data suggest that the bulkiness or the aromatic nature of the tyrosin-143 is important for the initial binding of the M.ADP.Pi intermediate with F-actin but not for later processes such as the phosphate release.

  18. Antibodies directed against N-terminal residues on actin do not block acto-myosin binding

    SciTech Connect

    Miller, L.; Kalnoski, M.; Yunossi, Z.; Bulinski, J.C.; Reisler, E.

    1987-09-22

    Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, the authors have prepared polyclonal antisera against a synthetic /sup 14/C-peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (..cap alpha..-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the ..cap alpha..-N-terminal peptide. The ..cap alpha..-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. The results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.

  19. Interaction of F-actin with synthetic peptides spanning the loop region of human cardiac beta-myosin heavy chain containing Arg403.

    PubMed

    Bartegi, A; Roustan, C; Chavanieu, A; Kassab, R; Fattoum, A

    1997-12-01

    The atomic model of the F-actin-myosin subfragment 1 complex (acto-S-1) from skeletal muscle suggests that the transition of the complex from a weakly to a strongly binding state, generating mechanical force during the contractile cycle, may involve the attachment of the upper 50-kDa subdomain of myosin subfragment 1 (S-1) to the interface between subdomains 1 and 3 of actin. For the human cardiac myosin, this putative interaction would take place at the ordered loop including Arg403 of the beta-heavy chain sequence, a residue whose mutation into Gln is known to elicit a severe hypertrophic cardiomyopathy caused by a decrease of the rate of the actomyosin ATPase activity. Moreover, in several nonmuscle myosins the replacement of a Glu residue within the homolog loop by Ser or Thr also results in the reduction of the actomyosin ATPase rate that is alleviated by phosphorylation. As an approach to the characterization of the unknown interaction properties of F-actin with this particular S-1 loop region, we have synthesized four 17-residue peptides corresponding to the sequence Gly398-Gly414 of the human beta-cardiac myosin. Three peptides included Arg403 (GG17) or Gln403 (GG17Q) or Ser409 (GG17S) and the fourth peptide (GG17sc) was a scrambled version of the normal GG17 sequence. Using fluorescence polarization, cosedimentation analyses and photocross-linking, we show that the three former peptides, but not the scrambled sequence, directly associate in solution to F-actin, at a nearly physiological ionic strength, with almost identical affinities (Kd approximately 40 microM). The binding strength of the F-actin-GG17 peptide complex was increased fivefold (Kd = 8 microM) in the presence of subsaturating concentrations of added skeletal S-1 relative to actin, without apparent competition between the peptide and S-1. Each of the three actin-binding peptides inhibited the steady-state actin-activated MgATPase of skeletal S-1 by specifically decreasing about twofold the Vmax of the reaction without changing the actin affinity for the S-1-ATP intermediate. Cosedimentation assays indicated the binding of about 0.65 mol peptide/mol actin under conditions inducing 70% inhibition. Collectively, the data point to a specific and stoichiometric interaction of the peptides with F-actin that uncouples its binding to S-1 from ATP hydrolysis, probably by interfering with the proper attachment of the S-1 loop segment to the interdomain connection of actin. PMID:9428702

  20. Ventricular Myosin Modifies In Vitro Step-Size When Phosphorylated

    PubMed Central

    Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.

    2014-01-01

    Cardiac and skeletal muscle myosins have the central role in contraction transducing ATP free energy into the mechanical work of moving actin. Myosin has a motor domain containing ATP and actin binding sites and a lever-arm that undergoes rotation impelling bound actin. The lever-arm converts torque generated in the motor into the linear displacement known as step-size. The myosin lever-arm is stabilized by bound essential and regulatory light chains (ELC and RLC). RLC phosphorylation at S15 is linked to modified lever-arm mechanical characteristics contributing to myosin filament based contraction regulation and to the response of the muscle to disease. Myosin step-size was measured using a novel quantum dot (Qdot) assay that previously confirmed a 5 nm step-size for fast skeletal myosin and multiple unitary steps, most frequently 5 and 8 nm, and a rare 3 nm displacement for ? cardiac myosin (?Mys). S15 phosphorylation in ?Mys is now shown to change step-size distribution by advancing the 8 nm step frequency. After phosphorylation, the 8 nm step is the dominant myosin step-size resulting in significant gain in the average step-size. An increase in myosin step-size will increase the amount of work produced per ATPase cycle. The results indicate that RLC phosphorylation modulates work production per ATPase cycle suggesting the mechanism for contraction regulation by the myosin filament. PMID:24726887

  1. Preparation and Characterization of Myosin Proteins.

    ERIC Educational Resources Information Center

    Caldwell, Elizabeth; Eftink, Maurice R.

    1985-01-01

    Students complete five experimental projects at the end of a senior-level biochemistry course which involves the isolation and characterization of myosin and its water-soluble subfragments. Procedures used and results obtained are provided for such projects as viscosity and ATPase measurements and gel electrophoresis experiments. (JN)

  2. Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*

    PubMed Central

    Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.

    2013-01-01

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986

  3. Oridonin suppress cell migration via regulation of nonmuscle myosin IIA.

    PubMed

    Li, Yin-Chao; Sun, Mo-Ran; Zhao, Yi-Hong; Fu, Xian-Zu; Xu, Hai-Wei; Liu, Ji-Feng

    2014-10-01

    Oridonin, which is isolated from Chinese herb Rabdosia rubescens (Hemsl.) Hara, has been implicated in regulation of tumor cell migration and invasion. In this study, treatment with oridonin enhanced the phosphorylation of myosin regulatory light chain (T18/S19) that regulates the ATPase activity of myosin IIA. Meanwhile, stress fibers were significantly more prominent after oridonin incubation, which impaired cell migration in transwell migration assays. All of these effects may be caused by the decreased interaction between myosin IIA and myosin phosphatase complex, but not kinases. Our data provide clear evidence of this novel pharmacological function for oridonin in treating cancer cell migration. PMID:25297007

  4. Thiol groups of gizzard myosin heavy chains

    SciTech Connect

    Bailin, G.

    1986-05-01

    Proteolysis of phosphorylated and /sup 3/H-labeled dinitrophenylated chicken gizzard myosin with trypsin released major fragments of M/sub r/ 25,000, 50,000 and 66,000 in a 1:1 ratio. They contained 57% of the dinitrophenyl (N/sub 2/ph) group bound to thiols of the heavy chains; 28% of the label was bound to the light chains. The fragments of M/sub r/ 25,000 and M/sub r/ 66,000 were dinitrophenylated predominantly when the K/sup +/-ATPase activity was inhibited. Thiolysis of phosphorylated and dinitrophenylated myosin with 2-mercaptoethanol removed 60% and 25% of the N/sub 2/ph group from the N-terminal and M/sub r/ 66,000 fragments of the heavy chain, respectively, when 48% of the K/sup +/-ATPase activity was restored. Papain proteolysis of the tryptic digest of modified myosin released a C-terminal segment from the fragment of M/sub r/ 66,000 and it contained most of the remaining label. Proteolysis of /sup 3/H-labeled dinitrophenylated myosin alone resulted in the same digestion pattern but less of the label was bound to the heavy chain fragments. In this case, restoration of enzymic activity occurred in thiolyzed dinitrophenylated myosin when the N/sub 2/ph group was removed from the light chains, predominantly. Conformational changes in gizzard myosin, mediated by phosphorylation, altered the reactivity of the thiols in specific fragments of the heavy chain. Thiol groups of the N- and C-terminal heavy chain regions are involved in maintaining the ATPase activity of myosin.

  5. Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin.

    PubMed

    Zhang, Ying; Kawamichi, Hozumi; Tanaka, Hideyuki; Yoshiyama, Shinji; Kohama, Kazuhiro; Nakamura, Akio

    2012-08-01

    We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin. PMID:22648562

  6. Loop 2 of Limulus myosin III is phosphorylated by protein kinase A and autophosphorylation

    PubMed Central

    Kempler, Karen; Tth, Judit; Yamashita, Roxanne; Mapel, Gretchen; Robinson, Kimberly; Cardasis, Helene; Stevens, Stanley; Sellers, James R.; Battelle, Barbara-Anne

    2008-01-01

    Little is known about the functions of class III unconventional myosins although, with an N-terminal kinase domain, they are potentially both signaling and motor proteins. Limulus myosin III is particularly interesting because it is a phosphoprotein abundant in photoreceptors that becomes more heavily phosphorylated at night by protein kinase A. This enhanced nighttime phosphorylation occurs in response to signals from an endogenous circadian clock and correlates with dramatic changes in photoreceptor structure and function. We seek to understand the role of Limulus myosin III and its phosphorylation in photoreceptors. Here we determined the sites that become phosphorylated in Limulus myosin III and investigated its kinase, actin binding and myosin ATPase activities. We show that Limulus myosin III exhibits kinase activity and that a major site for both protein kinase A and autophosphorylation is located within loop 2 of the myosin domain, an important actin binding region. We also identify the phosphorylation of an additional protein kinase A and autophosphorylation site near, and a predicted protein kinase C site within, loop 2. We show that the kinase domain of Limulus myosin III shares some pharmacological properties with protein kinase A, and that it is a potential opsin kinase. Finally, we demonstrate that Limulus myosin III binds actin but lacks ATPase activity. We conclude that Limulus myosin III is an actin-binding and signaling protein and speculate that interactions between actin and Limulus myosin III are regulated by both second messenger mediated and autophosphorylation of its myosin domain within and near loop 2. PMID:17367164

  7. Myosins V and VI increase actin filament flexural rigidity through a weak to strong binding transition

    NASA Astrophysics Data System (ADS)

    McCullough, Brannon; Cao, Wenxiang; de La Cruz, Enrique

    2012-02-01

    Myosins are ATPase molecular motors that couple ATP hydrolysis with force generation along actin filaments. Myosin alters the torsional dynamics of actin filaments, which may contribute to aspects of force generation and nucleotide-dependent stability of the actin-myosin complex. We measured how biochemical ATPase-cycle intermediate states of high-duty myosins V and VI affect the flexural rigidity of actin filaments by analyzing the angular correlation of thermally driven shape fluctuations. Both myosins increase the flexural rigidity of actin filaments in a manner that depends on the chemical state of bound adenine nucleotide. High binding affinity states increase the flexural rigidity of actin filaments more than weak binding states. These results indicate that actin filaments may flex during myosin cycling to allow bound motors to coordinate stepping.

  8. Physical and enzymatic properties of myosin from porcine brain.

    PubMed Central

    Hobbs, D S; Frederiksen, D W

    1980-01-01

    Porcine brain myosin is a cytoplasmic protein similar to, but distinct from, its muscle counterpart. It has a high K+-ATPase activity at high ionic strength in EDTA and a low Mg+2-ATPase activity that is activated fivefold by either porcine brain or rabbit skeletal muscle actin. The molecule consists of three classes of subunits, with molecular weights of approximately 195,000 , 19,000, and 16,000. Brain myosin contains less glutamic acid, less lysine, and more threonine, serine, proline, and tyrosine than skeletal muscle myosin. The brain myosin extinction coefficient at 278 nm is 0.810 cm2/mg. Hydrodynamic studies yield an S020,w of 4.95S, a D020,w of 1.07 x 10(-7) cm2/s for brain myosin, and indicate that the molecules aggregate at high ionic strength. The molecular weight of the molecule, as calculated from extrapolation of D020,w/S20,w to zero concentration, is 444,000. The intrinsic viscosity of brain myosin is 0.191 ml/mg. These data are consistent with a highly asymmetric molecular species. Circular dichroism spectroscopy indicates that brain myosin is 58-60% alpha-helical in the presence of Ca+2 ions, and that removal of Ca+2 causes a small change in the spectrum. PMID:6114756

  9. Effect of hindlimb unweighting on single soleus fiber maximal shortening velocity and ATPase activity

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Fitts, R. H.

    1993-01-01

    The effect of hindlimb unweighting (HU) for 1 to 3 wks on the shortening velocity of a soleus fiber, its ATPase content, and the relative contents of the slow and fast myosin was investigated by measuring fiber force, V(0), ATPase activity, and myosin content in SDS protein profiles of a single rat soleus fiber suspended between a motor arm and a transducer. It was found that HU induces a progressive increase in fiber V(0) that is likely caused, at least in part, by an increase in the fiber's myofibrillar ATPase activity. The HU-induced increases in V(0) and ATPase were associated with the presence of a greater percentage of fast type IIa fibers. However, a large population of fibers after 1, 2, and 3 wks of HU showed increases in V(0) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers.

  10. Phalloidin perturbs the interaction of human non-muscle myosin isoforms 2A and 2C1 with F-actin.

    PubMed

    Diensthuber, Ralph P; Mller, Mirco; Heissler, Sarah M; Taft, Manuel H; Chizhov, Igor; Manstein, Dietmar J

    2011-03-01

    Phalloidin and fluorescently labeled phalloidin analogs are established reagents to stabilize and mark actin filaments for the investigation of acto-myosin interactions. In the present study, we employed transient and steady-state kinetic measurements as well as in vitro motility assays to show that phalloidin perturbs the productive interaction of human non-muscle myosin-2A and -2C1 with filamentous actin. Phalloidin binding to F-actin results in faster dissociation of the complex formed with non-muscle myosin-2A and -2C1, reduced actin-activated ATP turnover, and slower velocity of actin filaments in the in vitro motility assay. In contrast, phalloidin binding to F-actin does not affect the interaction with human non-muscle myosin isoform 2B and Dictyostelium myosin-2 and myosin-5b. PMID:21295570

  11. An Unusual Transduction Pathway in Human Tonic Smooth Muscle Myosin

    PubMed Central

    Halstead, Miriam F.; Ajtai, Katalin; Penheiter, Alan R.; Spencer, Joshua D.; Zheng, Ye; Morrison, Emma A.; Burghardt, Thomas P.

    2007-01-01

    The motor protein myosin binds actin and ATP, producing work by causing relative translation of the proteins while transducing ATP free energy. Smooth muscle myosin has one of four heavy chains encoded by the MYH11 gene that differ at the C-terminus and in the active site for ATPase due to alternate splicing. A seven-amino-acid active site insert in phasic muscle myosin is absent from the tonic isoform. Fluorescence increase in the nucleotide sensitive tryptophan (NST) accompanies nucleotide binding and hydrolysis in several myosin isoforms implying it results from a common origin within the motor. A wild-type tonic myosin (smA) construct of the enzymatic head domain (subfragment 1 or S1) has seven tryptophan residues and nucleotide-induced fluorescence enhancement like other myosins. Three smA mutants probe the molecular basis for the fluorescence enhancement. W506+ contains one tryptophan at position 506 homologous to the NST in other myosins. W506F has the native tryptophans except phenylalanine replaces W506, and W506+(Y499F) is W506+ with phenylalanine replacing Y499. W506+ lacks nucleotide-induced fluorescence enhancement probably eliminating W506 as the NST. W506F has impaired ATPase activity but retains nucleotide-induced fluorescence enhancement. Y499F replacement in W506+ partially rescues nucleotide sensitivity demonstrating the role of Y499 as an NST facilitator. The exceptional response of W506 to active site conformation opens the possibility that phasic and tonic isoforms differ in how influences from active site ATPase propagate through the protein network. PMID:17704147

  12. Two ATPases

    PubMed Central

    Senior, Alan E.

    2012-01-01

    In this article, I reflect on research on two ATPases. The first is F1F0-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization. PMID:22822068

  13. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells

    PubMed Central

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel; Thomson, James A.

    2010-01-01

    SUMMARY Human ES cells are the pluripotent precursor of the three embryonic germ layers. Human ES cells exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ES cells are prevented from reattaching and forming colonies, their viability is significantly reduced. Here we show that actin-myosin contraction is a critical effector of the cell death response to human ES cell dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ES cells. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ES cells. PMID:20682449

  14. Calponin-calmodulin interaction: properties and effects on smooth and skeletal muscle actin binding and actomyosin ATPases.

    PubMed

    Winder, S J; Walsh, M P; Vasulka, C; Johnson, J D

    1993-12-01

    Smooth muscle calponin bound to the biologically active fluorescent calmodulin [2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid-calmodulin] (MIANS.CaM) with a Kd of 80 nM and produced a 3.4-fold fluorescence enhancement. PKC-phosphorylated calponin (1.3 mol of Pi/mol) bound to CaM with approximately 15-fold lower affinity. Calponin inhibited CaM (10 nM) activation of the Ca(2+)-/CaM-activated cyclic nucleotide phosphodiesterase (PDE) with an IC50 of 138 nM. The calponin-CaM interaction was Ca(2+)-dependent: half-maximal binding of calponin to MIANS.CaM occurred at pCa 6.6 with a Hill coefficient of 2.4. Stopped-flow fluorescence kinetic analysis demonstrated that EGTA chelation of Ca2+ from CaM disrupted the MIANS.CaM-calponin complex at a rate of 1 s-1. Calponin bound MIANS.CaM at a rate of (6.0 +/- 1.8) x 10(6) M-1s-1, and melittin and unlabeled brain CaM both disrupted the MIANS.CaM-calponin complex at a rate of 0.3 +/- 0.1 s-1. These studies suggest that calponin binds CaM with 80-fold lower affinity than myosin light-chain kinase and that calponin associates with CaM much slower than it associates with caldesmon or myosin light-chain kinase. The physiological relevance of the CaM-calponin interaction was evaluated by analysis of the effects of Ca(2+)-CaM on (i) the interaction of calponin with actin and (ii) calponin-mediated inhibition of actin-activated myosin MgATPase activity. Ca(2+)-CaM half-maximally inhibited calponin (2 microM) binding to smooth and skeletal muscle actins (9 microM) at 5.4 and 11 microM CaM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8241189

  15. Rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  16. Direct real-time detection of the structural and biochemical events in the myosin power stroke.

    PubMed

    Muretta, Joseph M; Rohde, John A; Johnsrud, Daniel O; Cornea, Sinziana; Thomas, David D

    2015-11-17

    A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the thermodynamic drive for force generation, actin-activated phosphate release, and the weak-to-strong actin-binding transition. We find that actin initiates the power stroke before phosphate dissociation and not after, as many models propose. This result supports a model for muscle contraction in which power output and efficiency are tuned by the distribution of myosin structural states. This technology should have wide application to other systems in which questions about the temporal coupling of allosteric structural and biochemical transitions remain unanswered. PMID:26578772

  17. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    SciTech Connect

    Maruta, H.; Korn, E.D.

    1981-01-10

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0/sup 0/C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain.

  18. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells. PMID:25355676

  19. Hybrid and non-hybrid actomyosins reconstituted with actin, myosin and tropomyosin from skeletal and catch muscles.

    PubMed

    Shelud'ko, Nikolay S; Vyatchin, Ilya G; Lazarev, Stanislav S; Shevchenko, Ulyana V

    2015-08-21

    In this study, we investigated hybrid and non-hybrid actomyosin models including key contractile proteins: actin, myosin, and tropomyosin. These proteins were isolated from the rabbit skeletal muscle and the catch muscle of the mussel Crenomytilus grayanus. Our results confirmed literature data on an unusual ability of bivalve's tropomyosin to inhibit Mg-ATPase activity of skeletal muscle actomyosin. We have shown that the degree of inhibition depends on the environmental conditions and may vary within a wide range. The inhibitory effect of mussel tropomyosin was not detected in non-hybrid model (mussel myosin + mussel actin + mussel tropomyosin). This effect was revealed only in hybrid models containing mussel tropomyosin + rabbit (or mussel) actin + rabbit myosin. We assume that mussel and rabbit myosins have mismatched binding sites for actin. In addition, mussel tropomyosin interacting with actin is able to close the binding sites of rabbit myosin with actin, which leads to inhibition of Mg-ATPase activity. PMID:26166820

  20. cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery

    PubMed Central

    Rembold, Christopher M; Foster, D Brian; Strauss, John D; Wingard, Christopher J; Van Eyk, Jennifer E

    2000-01-01

    Nitrovasodilators such as nitroglycerine, via production of nitric oxide and an increase in [cGMP], can induce arterial smooth muscle relaxation without proportional reduction in myosin light chain (MLC) phosphorylation or myoplasmic [Ca2+]. These findings suggest that regulatory systems, other than MLC phosphorylation and Ca2+, partially mediate nitroglycerine-induced relaxation.In swine carotid artery, we found that a membrane-permeant cGMP analogue induced relaxation without MLC dephosphorylation, suggesting that cGMP mediated the relaxation.Nitroglycerine-induced relaxation was associated with a reduction in O2 consumption, suggesting that the interaction between phosphorylated myosin and the thin filament was inhibited.Nitroglycerine-induced relaxation was associated with a 10-fold increase in the phosphorylation of a protein on Ser16. We identified this protein as heat shock protein 20 (HSP20), a member of a family of proteins known to bind to thin filaments.When homogenates of nitroglycerine-relaxed tissues were centrifuged at 6000 g, phosphorylated HSP20 preferentially sedimented in the pellet, suggesting that phosphorylation of HSP20 may increase its affinity for the thin filament.We noted that a domain of HSP20 is partially homologous to the minimum inhibitory sequence of skeletal troponin I. The peptide HSP20110-121, which contains this domain, bound to actin-containing filaments only in the presence of tropomyosin, a characteristic of troponin I. High concentrations of HSP20110-121 abolished Ca2+-activated force in skinned swine carotid artery. HSP20110-121 also partially decreased actin-activated myosin S1 ATPase activity.These data suggest that cGMP-mediated phosphorylation of HSP20 on Ser16 may have a role in smooth muscle relaxation without MLC dephosphorylation. HSP20 contains an actin-binding sequence at amino acid residues 110121 that inhibited force production in skinned carotid artery. We hypothesize that phosphorylation of HSP20 regulates force independent of MLC phosphorylation via binding of HSP20 to thin filaments and inhibition of cross-bridge cycling. PMID:10790164

  1. Precipitation of kidney myosin IIA and IIB by freezing.

    PubMed

    Dias, Decivaldo dos Santos; da Cruz, Grabriel Costa Nunes; de Sousa, Marcelo Valle; Coelho, Milton Vieira

    2011-03-01

    Actomyosin precipitation is a critical step in the purification of myosins. In this work, the objective was to precipitate rat kidney actomyosin and isolate myosin by freezing and thawing the soluble fraction. Kidney was homogenized in imidazole buffer, centrifuged at 45000 g for 30 min, and the supernatant was frozen at -20C for 48 h. The supernatant was thawed at 4C, centrifuged at 45000 g for 30 min and the precipitate washed twice with imidazole buffer pH 7.0 (with and without Triton X-100, respectively). The resulting precipitate presented a polypeptide profile in SDS/PAGE characteristic of actomyosin and expressed Mg- and K/EDTA-ATPase activity. The actomyosin complex was solubilized with ATP and Mg, and the main polypeptide, p200, was purified in a DEAE-Sepharose column. p200 was marked with anti-myosin II, co-sedimented with F-actin in the absence, but not in the presence, of ATP and was identified by MS/MS with a high Mascot score for myosin IIA. The analysis identified peptides exclusive of myosin IIB, but detected no peptides exclusive of myosin IIC. PMID:21080907

  2. Minimal Mechanochemical Model for the Processivity of Myosin VI

    NASA Astrophysics Data System (ADS)

    Yang, Yubo; Lowe, Ian; Tehver, Riina

    2014-03-01

    Myosin VI is an ATPase responsible for force generation in cells. It dimerizes upon actin binding, and is proposed to walk along the actin filament. Single headed reaction mechanism of myosin VI is well understood but much of its walking mechanism remains unclear. We aim to construct a minimum model for the myosin VI walking mechanism and explore the minimal requirements for processivity. We constructed a kinetic model for the stepping mechanism of Myosin VI using minimum assumptions. The kinetics of the myosin VI dimer is modeled as a three state linear reaction network with reaction rates extracted from relevant experiments. The time limiting step in in-vitro experiments (low APT concentration) is the diffusion of detached head. In this process the myosin dimer is modeled as a tethered polymer with a flexible joint at the dimerization site. The relevance of this polymer model is checked with coarse-grained simulation. We found that the motor maintains processivity for a wide range of kinetic parameters, however long persistence length for the lever arm is crucial for processivity especially under resistive load.

  3. The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II.

    PubMed

    Bloemink, Marieke J; Melkani, Girish C; Bernstein, Sanford I; Geeves, Michael A

    2016-01-22

    The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis. PMID:26586917

  4. The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II*

    PubMed Central

    Bloemink, Marieke J.; Melkani, Girish C.; Bernstein, Sanford I.; Geeves, Michael A.

    2016-01-01

    The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25–30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis. PMID:26586917

  5. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Lguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  6. Myosin heavy chain isoforms and smooth muscle function.

    PubMed

    Paul, R J; Hewett, T E; Martin, A F

    1991-01-01

    Using isoform specific antibodies we have verified the presence of two distinct muscle type myosin heavy chain isoforms in rat uterine muscle. We have shown that an endogenous protease can cleave a small 4 kDa region from the C-terminal of the SM1 isoform which generates a pSM1 species which comigrates with the SM2 isoform on low density SDS gels. While this cleavage can complicate isoform identification, more importantly, this cleavage was associated with a substantial increase in the actomyosin ATPase. Thus we have identified a domain at the C-terminal which may be involved in regulation of the ATPase activity. Interestingly, it is at this C-terminal, tail region of the smooth muscle myosin molecule where the only known isoform specific sequence differences are located. In skinned smooth muscle fibers of rat uterine muscle, we have also shown that differences in myosin heavy chain distribution, induced by beta-estradiol treatment of ovariectomized rats, are correlated with changes in unloaded shortening velocity. Thus our work suggests that the functional significance of myosin heavy chain isoforms in smooth muscle may be similar to that observed in striated muscle. PMID:1803896

  7. Myosin-I nomenclature.

    PubMed

    Gillespie, P G; Albanesi, J P; Bahler, M; Bement, W M; Berg, J S; Burgess, D R; Burnside, B; Cheney, R E; Corey, D P; Coudrier, E; de Lanerolle, P; Hammer, J A; Hasson, T; Holt, J R; Hudspeth, A J; Ikebe, M; Kendrick-Jones, J; Korn, E D; Li, R; Mercer, J A; Milligan, R A; Mooseker, M S; Ostap, E M; Petit, C; Pollard, T D; Sellers, J R; Soldati, T; Titus, M A

    2001-11-26

    We suggest that the vertebrate myosin-I field adopt a common nomenclature system based on the names adopted by the Human Genome Organization (HUGO). At present, the myosin-I nomenclature is very confusing; not only are several systems in use, but several different genes have been given the same name. Despite their faults, we believe that the names adopted by the HUGO nomenclature group for genome annotation are the best compromise, and we recommend universal adoption. PMID:11724811

  8. Myosin VI deafness mutation prevents the initiation of processive runs on actin

    PubMed Central

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M.; Sweeney, H. Lee

    2015-01-01

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations. PMID:25751888

  9. Preliminary results of the ATPase reaction pathway of skeletal muscle myofibrils

    NASA Astrophysics Data System (ADS)

    Houadjeto, M.; Barman, T.; Travers, F.

    1991-05-01

    The ATPases of activated and relaxed rabbit psoas myofibrils were studied by the rapid flow quench method in a solvent of near physiological pH and ionic strength. Both types of myofibrils bind and hydrolyze ATP with transient kinetics very similar to those found with myosin. But the kcat of activated myofibrils was 100 that with the relaxed myofibrils. Relaxed myofibrils and myosin could not be distinguished kinetically.

  10. Ultraslow Myosin Molecular Motors of Placental Contractile Stem Villi in Humans

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Lecarpentier, Edouard; Guerin, Catherine; Hbert, Jean-Louis; Arsalane, Abdelilah; Moumen, Abdelouahab; Krokidis, Xnophon; Michel, Francine; Timbely, Oumar

    2014-01-01

    Human placental stem villi (PSV) present contractile properties. In vitro mechanics were investigated in 40 human PSV. Contraction of PSV was induced by both KCl exposure (n?=?20) and electrical tetanic stimulation (n?=?20). Isotonic contractions were registered at several load levels ranging from zero-load up to isometric load. The tension-velocity relationship was found to be hyperbolic. This made it possible to apply the A. Huxley formalism for determining the rate constants for myosin cross-bridge (CB) attachment and detachment, CB single force, catalytic constant, myosin content, and maximum myosin ATPase activity. These molecular characteristics of myosin CBs did not differ under either KCl exposure or tetanus. A comparative approach was established from studies previously published in the literature and driven by mean of a similar method. As compared to that described in mammalian striated muscles, we showed that in human PSV, myosin CB rate constants for attachment and detachment were about 103 times lower whereas myosin ATPase activity was 105 times lower. Up to now, CB kinetics of contractile cells arranged along the long axis of the placental sheath appeared to be the slowest ever observed in any mammalian contractile tissue. PMID:25268142

  11. Mechanochemical tuning of myosin-I by the N-terminal region

    PubMed Central

    Greenberg, Michael J.; Lin, Tianming; Shuman, Henry; Ostap, E. Michael

    2015-01-01

    Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes. Myo1b has the properties of a tension-sensing anchor, slowing its actin-detachment kinetics by two orders of magnitude with just 1 pN of resisting force, whereas Myo1c has the properties of a slow transporter, generating power without slowing under 1-pN loads that would stall Myo1b. To examine the structural elements that lead to differences in force sensing, we used single-molecule and ensemble kinetic techniques to show that the myosin-I N-terminal region (NTR) plays a critical role in tuning myosin-I mechanochemistry. We found that replacing the Myo1c NTR with the Myo1b NTR changes the identity of the primary force-sensitive transition of Myo1c, resulting in sensitivity to forces of <2 pN. Additionally, we found that the NTR plays an important role in stabilizing the postpower-stroke conformation. These results identify the NTR as an important structural element in myosin force sensing and suggest a mechanism for generating diversity of function among myosin isoforms. PMID:26056287

  12. The apparently negatively cooperative phosphorylation of smooth muscle myosin at low ionic strength is related to its filamentous state.

    PubMed

    Sellers, J R; Chock, P B; Adelstein, R S

    1983-12-10

    The correlation curve between phosphorylation and MgATPase activity suggests that the 20,000-dalton light chain of both heads of a smooth muscle myosin or heavy meromyosin (HMM) molecule must be phosphorylated before the MgATPase activity of either head can be activated by actin. The two heads of HMM appear to be phosphorylated randomly at equal rates, while those of myosin are phosphorylated in a negatively cooperative manner (Persechini, A., and Hartshorne, D.J. (1981) Science, 213, 1383-1385; Ikebe, M., Ogihara, S., and Tonomura, Y. (1982) J. Biochem. 91, 1809-1812). We have investigated the cause of this difference between HMM and myosin. We find that if myosin is first phosphorylated at high ionic strength (0.6 M KCl), where it is monomeric, and then assayed for MgATPase activity (in 0.05 M KCl), the data support a model where the two heads are phosphorylated randomly with equal rates (i.e. similarly to HMM). The correlation curves between MgATPase activity and dephosphorylation of fully phosphorylated myosin, both in a filamentous and monomeric state, are also best explained by a model where dephosphorylation of one head is sufficient to deactivate the entire molecule. With monomeric myosin, the dephosphorylation appears to occur randomly with equal rates, whereas with filamentous myosin the dephosphorylation appears to be negatively cooperative. The correlation between dephosphorylation of HMM and its MgATPase activity is more complex and is consistent with a positively cooperative dephosphorylation. Direct analyses of the time courses of phosphorylation of HMM and monomeric myosin show that a single exponential is sufficient to fit the data through greater than 90% of the reaction. However, when phosphorylation is carried out at low ionic strength (0.02 M KCl), where myosin is present as filaments, the time course consists of two exponential functions where the rate constant for the phosphorylation of one myosin head is 6-10 times greater than that for the other head which is located on the same molecule. This suggests that when myosin is polymerized into filaments the two previously indistinguishable heads either become nonequivalent or are subject to head-head interactions leading to a negatively cooperative phosphorylation reaction. PMID:6139378

  13. Local heat activation of single myosins based on optical trapping of gold nanoparticles.

    PubMed

    Iwaki, Mitsuhiro; Iwane, Atsuko H; Ikezaki, Keigo; Yanagida, Toshio

    2015-04-01

    Myosin is a mechano-enzyme that hydrolyzes ATP in order to move unidirectionally along actin filaments. Here we show by single molecule imaging that myosin V motion can be activated by local heat. We constructed a dark-field microscopy that included optical tweezers to monitor 80 nm gold nanoparticles (GNP) bound to single myosin V molecules with nanometer and submillisecond accuracy. We observed 34 nm processive steps along actin filaments like those seen when using 200 nm polystyrene beads (PB) but dwell times (ATPase activity) that were 4.5 times faster. Further, by using DNA nanotechnology (DNA origami) and myosin V as a nanometric thermometer, the temperature gradient surrounding optically trapped GNP could be estimated with nanometer accuracy. We propose our single molecule measurement system should advance quantitative analysis of the thermal control of biological and artificial systems like nanoscale thermal ratchet motors. PMID:25736894

  14. Dynamic Structure Change due to ATP Hydrolysis in the Motor Domain of Myosin: Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kawakubo, Tatsuyuki; Okada, Okimasa; Minami, Tomoyuki

    2007-07-01

    The muscle contraction is caused by directed movement of the myosin head along the actin filament. This movement is triggered by ATP hydrolysis, which occurs in the motor domain of myosin. The mechanism for its intra-molecular process remains unknown because of a lack of way to observe vibrational motions of each atom in a myosin molecule. We have carried out 10-ns, all-atom molecular dynamics (MD) simulations to examine what kinds of dynamic structure changes of the motor domain are produced by the energy released from an ATP hydrolysis. The result revealed that a disturbance due to the ATP hydrolysis enhances collective motions of atoms at the actin-binding site and the junction with the neck, both of which are relevant to the movement of the myosin head along the actin filament. Further, an ATP hydrolysis was found to open the gate to the ATPase pocket for the following ATP molecule to easily get into there.

  15. Evidence for myosin motors on organelles in squid axoplasm.

    PubMed Central

    Bearer, E L; DeGiorgis, J A; Bodner, R A; Kao, A W; Reese, T S

    1993-01-01

    Squid axoplasm has proved a rich source for the identification of motors involved in organelle transport. Recently, squid axoplasmic organelles have been shown to move on invisible tracks that are sensitive to cytochalasin, suggesting that these tracks are actin filaments. Here, an assay is described that permits observation of organelles moving on unipolar actin bundles. This assay is used to demonstrate that axoplasmic organelles move on actin filaments in the barbed-end direction, suggesting the presence of a myosin motor on axoplasmic organelles. Indeed, axoplasm contains actin-dependent ATPase activity, and a pan-myosin antibody recognized at least four bands in Western blots of axoplasm. An approximately 235-kDa band copurified in sucrose gradients with KI-extracted axoplasmic organelles, and the myosin antibody stained the organelle surfaces by immunogold electron microscopy. The myosin is present on the surface of at least some axoplasmic organelles and thus may be involved in their transport through the axoplasm, their movement through the cortical actin in the synapse, or some other aspect of axonal function. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8248236

  16. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

    PubMed Central

    Nag, Suman; Sommese, Ruth F.; Ujfalusi, Zoltan; Combs, Ariana; Langer, Stephen; Sutton, Shirley; Leinwand, Leslie A.; Geeves, Michael A.; Ruppel, Kathleen M.; Spudich, James A.

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca2+-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation. PMID:26601291

  17. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function.

    PubMed

    Nag, Suman; Sommese, Ruth F; Ujfalusi, Zoltan; Combs, Ariana; Langer, Stephen; Sutton, Shirley; Leinwand, Leslie A; Geeves, Michael A; Ruppel, Kathleen M; Spudich, James A

    2015-10-01

    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation. PMID:26601291

  18. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom

    PubMed Central

    1975-01-01

    The control systems regulating muscle contraction in approximately 100 organisms have been categorized. Both myosin control and actin control operate simultaneously in the majority of invertebrates tested. These include insects, chelicerates, most crustaceans, annelids, priapulids, nematodes, and some sipunculids. Single myosin control is present in the muscles of molluscs, brachiopods, echinoderms, echiuroids, and nemertine worms. Single actin control was found in the fast muscles of decapods, in mysidacea, in a single sipunculid species, and in vertebrate striated muscles. Classification is based on functional tests that include measurements of the calcium dependence of the actomyosin ATPase activity in the presence and the absence of purified rabbit actin and myosin. In addition, isolated thin filaments and myosins were also analyzed. Molluscs lack actin control since troponin is not present in sufficient quantities. Even though the functional tests indicate the complete lack of myosin control in vertebrate striated muscle, it is difficult to exclude unambiguously the in vivo existence of this regulation. Both control systems have been found in animals from phyla which evolved early. We cannot ascribe any simple correlation between ATPase activity, muscle structure, and regulatory mechanisms. PMID:125778

  19. Functional diversity among a family of human skeletal muscle myosin motors

    PubMed Central

    Resnicow, Daniel I.; Deacon, John C.; Warrick, Hans M.; Spudich, James A.; Leinwand, Leslie A.

    2010-01-01

    Human skeletal muscle fibers express five highly conserved type-II myosin heavy chain (MyHC) genes in distinct spatial and temporal patterns. In addition, the human genome contains an intact sixth gene, MyHC-IIb, which is thought under most circumstances not to be expressed. The physiological and biochemical properties of individual muscle fibers correlate with the predominantly expressed MyHC isoform, but a functional analysis of homogenous skeletal muscle myosin isoforms has not been possible. This is due to the difficulties of separating the multiple isoforms usually coexpressed in muscle fibers, as well as the lack of an expression system that produces active recombinant type II skeletal muscle myosin. In this study we describe a mammalian muscle cell expression system and the functional analysis of all six recombinant human type II skeletal muscle myosin isoforms. The diverse biochemical activities and actin-filament velocities of these myosins indicate that they likely have distinct functions in muscle. Our data also show that ATPase activity and motility are generally correlated for human skeletal muscle myosins. The exception, MyHC-IIb, encodes a protein that is high in ATPase activity but slow in motility; this is the first functional analysis of the protein from this gene. In addition, the developmental isoforms, hypothesized to have low ATPase activity, were indistinguishable from adult-fast MyHC-IIa and the specialized MyHC-Extraocular isoform, that was predicted to be the fastest of all six isoforms but was functionally similar to the slower isoforms. PMID:20080549

  20. The myosin inhibitor blebbistatin stabilizes the super-relaxed state in skeletal muscle.

    PubMed

    Wilson, Clyde; Naber, Nariman; Pate, Edward; Cooke, Roger

    2014-10-01

    The super-relaxed state of myosin (SRX), in which the myosin ATPase activity is strongly inhibited, has been observed in a variety of muscle types. It has been proposed that myosin heads in this state are inhibited by binding to the core of the thick filament in a structure known as the interacting-heads motif. The myosin inhibitor blebbistatin has been shown in structural studies to stabilize the binding of myosin heads to the thick filament, and here we have utilized measurements of single ATP turnovers to show that blebbistatin also stabilizes the SRX in both fast and slow skeletal muscle, providing further support for the proposal that myosin heads in the SRX are also in the interacting-heads motif. We find that the SRX is stabilized using blebbistatin even in conditions that normally destabilize it, e.g., rigor ADP. Using blebbistatin we show that spin-labeled nucleotides bound to myosin have an oriented spectrum in the SRX in both slow and fast skeletal muscle. This is to our knowledge the first observation of oriented spin probes on the myosin motor domain in relaxed skeletal muscle fibers. The spectra for skeletal muscle with blebbistatin are similar to those observed in relaxed tarantula fibers in the absence of blebbistatin, demonstrating that the structure of the SRX is similar in different muscle types and in the presence and absence of blebbistatin. The mobility of spin probes attached to nucleotides bound to myosin shows that the conformation of the nucleotide site is closed in the SRX. PMID:25296316

  1. The Myosin Inhibitor Blebbistatin Stabilizes the Super-Relaxed State in Skeletal Muscle

    PubMed Central

    Wilson, Clyde; Naber, Nariman; Pate, Edward; Cooke, Roger

    2014-01-01

    The super-relaxed state of myosin (SRX), in which the myosin ATPase activity is strongly inhibited, has been observed in a variety of muscle types. It has been proposed that myosin heads in this state are inhibited by binding to the core of the thick filament in a structure known as the interacting-heads motif. The myosin inhibitor blebbistatin has been shown in structural studies to stabilize the binding of myosin heads to the thick filament, and here we have utilized measurements of single ATP turnovers to show that blebbistatin also stabilizes the SRX in both fast and slow skeletal muscle, providing further support for the proposal that myosin heads in the SRX are also in the interacting-heads motif. We find that the SRX is stabilized using blebbistatin even in conditions that normally destabilize it, e.g., rigor ADP. Using blebbistatin we show that spin-labeled nucleotides bound to myosin have an oriented spectrum in the SRX in both slow and fast skeletal muscle. This is to our knowledge the first observation of oriented spin probes on the myosin motor domain in relaxed skeletal muscle fibers. The spectra for skeletal muscle with blebbistatin are similar to those observed in relaxed tarantula fibers in the absence of blebbistatin, demonstrating that the structure of the SRX is similar in different muscle types and in the presence and absence of blebbistatin. The mobility of spin probes attached to nucleotides bound to myosin shows that the conformation of the nucleotide site is closed in the SRX. PMID:25296316

  2. UCS Protein Rng3p Is Essential for Myosin-II Motor Activity during Cytokinesis in Fission Yeast

    PubMed Central

    Stark, Benjamin C.; James, Michael L.; Pollard, Luther W.; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors. PMID:24244528

  3. A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a.

    PubMed

    Nagy, Nikolett T; Chakraborty, Saikat; Harami, Gbor M; Sellers, James R; Sakamoto, Takeshi; Kovcs, Mihly

    2013-01-01

    The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands. PMID:23650521

  4. A Subdomain Interaction at the Base of the Lever Allosterically Tunes the Mechanochemical Mechanism of Myosin 5a

    PubMed Central

    Nagy, Nikolett T.; Chakraborty, Saikat; Harami, Gbor M.; Sellers, James R.; Sakamoto, Takeshi; Kovcs, Mihly

    2013-01-01

    The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands. PMID:23650521

  5. Effect of Hindlimb Unweighting on Single Soleus Fiber Maximal Shortening Velocity and ATPase Activity

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Fitts, R. H.

    1993-01-01

    This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.

  6. A dithio-coupled kinase and ATPase assay.

    PubMed

    Chiku, Taurai; Pullela, Phani Kumar; Sem, Daniel S

    2006-10-01

    Kinases and ATPases produce adenosine diphosphate (ADP) as a common product, so an assay that detects ADP would provide a universal means for activity-based screening of enzymes in these families. Because it is known that most kinases accept ATPbetaS (sulfur on the beta-phosphorous) as a substrate in place of adenosine triphosphate (ATP), the authors have developed a continuous assay using this substrate, with detection of the ADPbetaS product using dithio reagents. Such an assay is possible because dithio groups react selectively with ADPbetaS and not with ATPbetaS. Thiol detection was done using both Ellman's reagent (DTNB) and a recently developed fluorescent dithio reagent, DSSA. Therefore, the assay can be run in both absorbance and fluorescence detection modes. The assay was used to perform steady-state kinetic analyses of both hexokinase and myosin ATPase. It was also used to demonstrate the diastereoselectivity of hexokinase (R) and myosin ATPase (S) for the isomers of ATPbetaS, consistent with previous results. When run in fluorescence mode using a plate reader, an average Z' value of 0.54 was obtained, suggesting the assay is appropriate for high-throughput screening. PMID:16943391

  7. A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse

    NASA Technical Reports Server (NTRS)

    Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.

    1981-01-01

    Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.

  8. Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications

    PubMed Central

    Woodhead, John L.; Zhao, Fa-Qing; Craig, Roger

    2013-01-01

    Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca2+ binding to the essential light chains, contributing to onoff switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated by Ca2+ binding. Cryo-electron microscopy and single-particle image reconstruction of Ca2+-regulated (scallop) filaments reveals a helical array of myosin head-pair motifs above the filament surface. Docking of atomic models of scallop myosin head domains into the motifs reveals that the heads interact in a similar way to those in phosphorylation-regulated filaments. The results imply that the two major evolutionary branches of myosin regulationinvolving phosphorylation or Ca2+ bindingshare a common structural mechanism for switching off thick-filament activity in relaxed muscle. We suggest that the Ca2+-binding mechanism evolved from the more ancient phosphorylation-based system to enable rapid response of myosin-regulated muscles to activation. Although the motifs are similar in both systems, the scallop structure is more tilted and higher above the filament backbone, leading to different intermolecular interactions. The reconstruction reveals how the myosin tail emerges from the motif, connecting the heads to the filament backbone, and shows that the backbone is built from supramolecular assemblies of myosin tails. The reconstruction provides a native structural context for understanding past biochemical and biophysical studies of this model Ca2+-regulated myosin. PMID:23650385

  9. Role of the lever arm in the processive stepping of myosin V

    PubMed Central

    Purcell, Thomas J.; Morris, Carl; Spudich, James A.; Sweeney, H. Lee

    2002-01-01

    Myosin V is a two-headed molecular motor that binds six light chains per heavy chain, which creates unusually long lever arms. This motor moves processively along its actin track in discrete 36-nm steps. Our model is that one head of the two-headed myosin V tightly binds to actin and swings its long lever arm through a large angle, providing a stroke. We created single-headed constructs with different-size lever arms and show that stroke size is proportional to lever arm length. In a two-headed molecule, the stroke provides the directional bias, after which the unbound head diffuses to find its binding site, 36 nm forward. Our two-headed construct with all six light chains per head reconstitutes the 36-nm processive step seen in tissue-purified myosin V. Two-headed myosin V molecules with only four light chains per head are still processive, but their step size is reduced to 24 nm. A further reduction in the length of the lever arms to one light chain per head results in a motor that is unable to walk processively. This motor produces single small ?6-nm strokes, and ATPase and pyrene actin quench measurements show that only one of the heads of this dimer rapidly binds to actin for a given binding event. These data show that for myosin V with its normal proximal tail domain, both heads and a long lever arm are required for large, processive steps. PMID:12386339

  10. Effects of SH1 and SH2 modifications on myosin: similarities and differences.

    PubMed

    Bobkova, E A; Bobkov, A A; Levitsky, D I; Reisler, E

    1999-02-01

    The properties of myosin modified at the SH2 group (Cys-697) were studied and compared with the previously reported properties of myosin modified at the SH1 group (Cys-707). 4-[N-[(iodoacetoxy)ethyl]-N methylamino]-7-nitrobenz-2-oxa-1, 3-diazole (IANBD) was used for selective modification of the SH2 group on myosin. SH2-labeled heavy meromyosin (SH2-HMM), similar to SH1-labeled HMM (SH1-HMM), did not propel actin filaments in the in vitro motility assays. SH1- and SH2-HMM produced similar amounts of load in the mixtures with unmodified HMM; the sliding speed of actin filaments gradually decreased with an increase in the fraction of either one of the modified HMMs in the mixture. In analogy to SH1-labeled myosin subfragment 1 (SH1-S1), SH2-labeled S1 (SH2-S1) activated regulated actin in the in vitro motility assays. SH2 modification inhibited Mg-ATPase of S1 and its activation by actin. The weak binding of S1 to actin was unaffected whereas the strong binding was weakened by SH2 modification. Overall, our results demonstrate similar behavior of SH1- and SH2-modified myosin heads in the in vitro motility assays despite some differences in their enzymatic properties. The effects of these modifications are ascribed to the location of the SH1-SH2 helix relative to other functional centers of S1. PMID:9916031

  11. Histochemical and myosin composition of vampire bat (Desmodus rotundus) pectoralis muscle targets a unique locomotory niche.

    PubMed

    Hermanson, J W; Cobb, M A; Schutt, W A; Muradali, F; Ryan, J M

    1993-09-01

    The vampire bat pectoralis muscle contains at least four fiber types distributed in a nonhomogeneous pattern. One of these fiber types, here termed IIe, can be elucidated only by adenosine triphosphatase (ATPase) histochemistry combined with reactions against antifast and antislow myosin antibodies. The histochemical and immunohistochemical observations indicate a well-developed specialization of function within specific regions of the muscle. In parallel, analyses of native myosin isoforms and myosin heavy chain isoforms indicate two points. First, the histochemical "type IIe" fiber is predominant in cranial portions of the muscle, and myosin extracted from these regions exhibits a unique electrophoretic mobility not observed in the myosin isoforms of more traditional laboratory mammals. Second, the type I fibers are confined to the pectoralis abdominalis muscle and a small adjacent region of the caudal part of the pectoralis. This pattern of type I fiber distribution is considered a derived character state compared to muscle histochemical phenotype and isoform composition in the pectoralis muscles of other phyllostomids we have studied (Artibeus jamaicensis, Artibeus lituratus, Carollia perspicillata). We relate this to the unique locomotory needs of the common vampire bat, Desmodus rotundus. PMID:8230235

  12. A 170 kDa polypeptide from mung bean shares multiple epitopes with rabbit skeletal myosin and binds ADP-agarose.

    PubMed

    Qiao, L; Jablonsky, P P; Elliott, J; Williamson, R E

    1994-11-01

    A 170 kDa polypeptide that has been partially purified from mung beans is retained by ADP-agarose even in the absence of divalent cations when most non-myosin ATPases and kinases do not bind. Attempts to demonstrate a myosin-like ATPase activity were inconclusive, however, and the protein accounts at most for only a small part of the total K+ EDTA ATPase activity of mung bean extracts. All four monoclonal antibodies raised to the 170 kDa polypeptide react with rabbit skeletal muscle myosin and localize the 170 kDa polypeptide in mung bean root tip cells to the actin-containing phragmoplast and to sites dispersed throughout the cytoplasm which probably include some but not all actin cables. These 4 monoclonals and 3 commercially available antimyosin monoclonals all recognise rabbit skeletal myosin and 160-170 kDa proteins that are present in two other angiosperms tested. In addition, a 158 kDa protein of mung bean reacts with only one antibody and does not bind ADP-agarose. We conclude that strong but not yet conclusive evidence points to the 160-170 kDa proteins of angiosperms being a widely conserved form of myosin heavy chain. PMID:7534549

  13. Genetics Home Reference: Myosin storage myopathy

    MedlinePLUS

    ... the major component of the thick filament in muscle cell structures called sarcomeres. Sarcomeres, which are made up ... cardiac ; cell ; contraction ; gait ; gene ; inclusion body ; inherited ; muscle cell ; mutation ; myosin ; myosin heavy chain ; prevalence ; protein ; skeletal ...

  14. Heavy chain of Acanthamoeba myosine IB is a fusion of myosin-like and non-myosin-like sequences

    SciTech Connect

    Jung, G.; Korn, E.D.; Hammer, J.A. III

    1987-10-01

    Acanthamoeba castellanii myosins IA and IB demonstrate the catalytic properties of a myosin and can support analogues of contractile and motile activity in vitro, but their single, low molecular weight heavy chains, roughly globular shapes, and inabilities to self-assemble into filaments make them structurally atypical myosins. The authors present the complete amino acid sequence of the 128-kDa myosin IB heavy chain, which they deduced from the nucleotide sequence of the gene and which reveals that the polypeptide is a fusion of myosin-like and non-myosin-like sequences. Specifically, the amino-terminal approx. 76 kDa of amino acid sequence is highly similar to the globular head sequences of conventional myosins. By contrast, the remaining approx. 51 kDa of sequence shows no similarity to any portion of conventional myosin sequences, contains regions that are rich in glycine, proline, and alanine residues, and lacks the distinctive sequence characteristics of an ..cap alpha..-helical, coiled-coil structure. They conclude, therefore, that the protein is composed of a myosin globular head fused not to the typical coiled-coil rod-like myosin tail structure but rather to an unusual carboxyl-terminal domain. These results support the conclusion that filamentous myosin is not required for force generation and provide a further perspective on the structural requirements for myosin function. Finally, they find a striking conservation of intron/exon structure between this gene and a vertebrate muscle myosin gene. They discuss this observation in relation to the evolutionary origin of the myosin IB gene and the antiquity of myosin gene intron/exon structure.

  15. Directional Mechanosensing in Myosin VI

    NASA Astrophysics Data System (ADS)

    Yang, Yubo; Tehver, Riina

    2013-03-01

    Myosin is a family of versatile motor proteins that perform various tasks, such as organelle transport, anchoring and cell deformation. Although the general mechanism of the motors has been fairly well established, details on dynamic aspects like force response of the motor, and force propagation are yet to be fully understood. In this poster, we present the response of the ATP binding region to force exerted on the tail domain in order to test the proposed tension-dependent gating mechanism of myosin VI processive motion. We employed the Self-Organized Polymer model in a computer simulation to explore the effect. Current results show that the ATP binding domain of myosin VI indeed exhibits tension dependence - both structurally and dynamically.

  16. ATPase-coupled release control from polyion complex capsules encapsulating muscle proteins.

    PubMed

    Sugiura, Kousuke; Ohkawa, Kousaku; Hirai, Toshihiro; Fujii, Toshihiro

    2007-04-10

    In the present study, a muscle contractile protein complex, actomyosin, has been successfully encapsulated into gellan-chitosan polyion complex (PIC) capsules. The recovery of the myosin-ATPase activity is approximately 50% and the Mg2+-ATPase activity is stimulated by the presence of F-actin, which implies the formation of the actomyosin complex inside the capsule. Furthermore, encapsulation could protect the myosin, F-actin, and actomyosin inside from hydrolysis by proteases. Two small proteins, myoglobin and cytochrome c, have been used in the release tests. The release of myoglobin is not affected by the ionic strength of the external solution, while the release of cytochrome c increases with increasing ionic strength. The maximal releases are found in the external pH solution close to the isoelectric points of each protein. The Mg2+-ATP complex itself reduces the release percentages of the small proteins from the PIC capsule. The release amounts further decrease when coexisting with Mg2+-ATP and the encapsulated actomyosin, which indicates the release regulation by actomyosin. The present study suggests that the ATPase-coupled sliding motion of the myosin-F-actin filaments modifies the pore size of the polymer networks in the PIC capsule membranes. PMID:17429832

  17. Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V.

    PubMed

    Trivedi, Darshan V; Muretta, Joseph M; Swenson, Anja M; Davis, Jonathon P; Thomas, David D; Yengo, Christopher M

    2015-11-24

    Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor-acceptor pairs to examine the kinetics of lever arm swing during the recovery and power stroke phases of the ATPase cycle. During the recovery stroke the lever arm swing is tightly coupled to priming the active site for ATP hydrolysis. The lever arm swing during the power stroke occurs in two steps, a fast step that occurs before phosphate release and a slow step that occurs before ADP release. Time-resolved FRET demonstrates a 20-Å change in distance between the pre- and postpower stroke states and shows that the lever arm is more dynamic in the postpower stroke state. Our results suggest myosin binding to actin in the ADP.Pi complex triggers a rapid power stroke that gates the release of phosphate, whereas a second slower power stroke may be important for mediating strain sensitivity. PMID:26553992

  18. Small molecule-mediated refolding and activation of myosin motor function

    PubMed Central

    Radke, Michael B; Taft, Manuel H; Stapel, Britta; Hilfiker-Kleiner, Denise; Preller, Matthias; Manstein, Dietmar J

    2014-01-01

    The small molecule EMD 57033 has been shown to stimulate the actomyosin ATPase activity and contractility of myofilaments. Here, we show that EMD 57033 binds to an allosteric pocket in the myosin motor domain. EMD 57033-binding protects myosin against heat stress and thermal denaturation. In the presence of EMD 57033, ATP hydrolysis, coupling between actin and nucleotide binding sites, and actin affinity in the presence of ATP are increased more than 10-fold. Addition of EMD 57033 to heat-inactivated ?-cardiac myosin is followed by refolding and reactivation of ATPase and motile activities. In heat-stressed cardiomyocytes expression of the stress-marker atrial natriuretic peptide is suppressed by EMD 57033. Thus, EMD 57033 displays a much wider spectrum of activities than those previously associated with small, drug-like compounds. Allosteric effectors that mediate refolding and enhance enzymatic function have the potential to improve the treatment of heart failure, myopathies, and protein misfolding diseases. DOI: http://dx.doi.org/10.7554/eLife.01603.001 PMID:24520162

  19. Interaction of the endocytic scaffold protein Pan1 with the type I myosins contributes to the late stages of endocytosis.

    PubMed

    Barker, Sarah L; Lee, Linda; Pierce, B Daniel; Maldonado-Bez, Lymarie; Drubin, David G; Wendland, Beverly

    2007-08-01

    The yeast endocytic scaffold Pan1 contains an uncharacterized proline-rich domain (PRD) at its carboxy (C)-terminus. We report that the pan1-20 temperature-sensitive allele has a disrupted PRD due to a frame-shift mutation in the open reading frame of the domain. To reveal redundantly masked functions of the PRD, synthetic genetic array screens with a pan1DeltaPRD strain found genetic interactions with alleles of ACT1, LAS17 and a deletion of SLA1. Through a yeast two-hybrid screen, the Src homology 3 domains of the type I myosins, Myo3 and Myo5, were identified as binding partners for the C-terminus of Pan1. In vitro and in vivo assays validated this interaction. The relative timing of recruitment of Pan1-green fluorescent protein (GFP) and Myo3/5-red fluorescent protein (RFP) at nascent endocytic sites was revealed by two-color real-time fluorescence microscopy; the type I myosins join Pan1 at cortical patches at a late stage of internalization, preceding the inward movement of Pan1 and its disassembly. In cells lacking the Pan1 PRD, we observed an increased lifetime of Myo5-GFP at the cortex. Finally, Pan1 PRD enhanced the actin polymerization activity of Myo5-Vrp1 complexes in vitro. We propose that Pan1 and the type I myosins interactions promote an actin activity important at a late stage in endocytic internalization. PMID:17522383

  20. Unregulated smooth-muscle myosin in human intestinal neoplasia

    PubMed Central

    Alhopuro, Pia; Phichith, Denis; Tuupanen, Sari; Sammalkorpi, Heli; Nybondas, Miranda; Saharinen, Juha; Robinson, James P.; Yang, Zhaohui; Chen, Li-Qiong; Orntoft, Torben; Mecklin, Jukka-Pekka; Jrvinen, Heikki; Eng, Charis; Moeslein, Gabriela; Shibata, Darryl; Houlston, Richard S.; Lucassen, Anneke; Tomlinson, Ian P. M.; Launonen, Virpi; Ristimki, Ari; Arango, Diego; Karhu, Auli; Sweeney, H. Lee; Aaltonen, Lauri A.

    2008-01-01

    A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human PeutzJeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we searched for MYH11 mutations in patients with colorectal cancer (CRC), PJS and JP. We found somatic protein-elongating frameshift mutations in 55% of CRCs displaying microsatellite instability and in the germ-line of one individual with PJS. Additionally, two somatic missense mutations were found in one microsatellite stable CRC. These two missense mutations, R501L and K1044N, and the frameshift mutations were functionally evaluated. All mutations resulted in unregulated molecules displaying constitutive motor activity, similar to the mutant myosin underlying mlt. Thus, MYH11 mutations appear to contribute also to human intestinal neoplasia. Unregulated MYH11 may affect the cellular energy balance or disturb cell lineage decisions in tumor progenitor cells. These data challenge our view on MYH11 as a passive differentiation marker functioning in muscle contraction and add to our understanding of intestinal neoplasia. PMID:18391202

  1. A New Role for Myosin II in Vesicle Fission

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis. PMID:24959909

  2. A small molecule species specifically inhibits Fusarium myosin I.

    PubMed

    Zhang, Chengqi; Chen, Yun; Yin, Yanni; Ji, Huan-Hong; Shim, Won-Bo; Hou, Yiping; Zhou, Mingguo; Li, Xiang-Dong; Ma, Zhonghua

    2015-08-01

    Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease of cereal crops worldwide. Recently, a novel fungicide JS399-19 has been launched into the marketplace to manage FHB. It is compelling that JS399-19 shows highly inhibitory activity towards some Fusarium species, but not to other fungi, indicating that it is an environmentally compatible fungicide. To explore the mode of action of this species-specific compound, we conducted a whole-genome transcript profiling together with genetic and biochemical assays, and discovered that JS399-19 targets the myosin I of F.?graminearum (FgMyo1). FgMyo1 is essential for F.?graminearum growth. A point mutation S217L or E420K in FgMyo1 is responsible for F.?graminearum resistance to JS399-19. In addition, transformation of F.?graminearum with the myosin I gene of Magnaporthe grisea, the causal agent of rice blast, also led to JS399-19 resistance. JS399-19 strongly inhibits the ATPase activity of the wild-type FgMyo1, but not the mutated FgMyo1(S217L/E420K) . These results provide us a new insight into the design of species-specific antifungal compounds. Furthermore, our strategy can be applied to identify novel drug targets in various pathogenic organisms. PMID:25404531

  3. Inhibitory Regulation of Higher-Plant Myosin by Ca2+ Ions1

    PubMed Central

    Yokota, Etsuo; Muto, Shoshi; Shimmen, Teruo

    1999-01-01

    Myosin isolated from the pollen tubes of lily (Lilium longiflorum) is composed of a 170-kD heavy chain (E. Yokota and T. Shimmen [1994] Protoplasma 177: 153162). Both the motile activity in vitro and the F-actin-stimulated ATPase activity of this myosin were inhibited by Ca2+ at concentrations higher than 10?6 m. In the Ca2+ range between 10?6 and 10?5 m, inhibition of the motile activity was reversible. In contrast, inhibition by more than 10?5 m Ca2+ was not reversible upon Ca2+ removal. An 18-kD polypeptide that showed the same mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that of spinach calmodulin (CaM) was present in this myosin fraction. This polypeptide showed a mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a Ca2+-dependent manner. Furthermore, this polypeptide was recognized by antiserum against spinach CaM. By immunoprecipitation using antiserum against the 170-kD heavy chain, the 18-kD polypeptide was coprecipitated with the 170-kD heavy chain, provided that the Ca2+ concentration was low, indicating that this 18-kD polypeptide is bound to the 170-kD myosin heavy chain. However, the 18-kD polypeptide was dissociated from the 170-kD heavy chain at high Ca2+ concentrations, which irreversibly inhibited the motile activity of this myosin. From these results, it is suggested that the 18-kD polypeptide, which is likely to be CaM, is associated with the 170-kD heavy chain as a light chain. It is also suggested that this polypeptide is involved in the regulation of this myosin by Ca2+. This is the first biochemical basis, to our knowledge, for Ca2+ regulation of cytoplasmic streaming in higher plants. PMID:9880365

  4. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    SciTech Connect

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.

  5. Mn2+Nucleotide Coordination at the Myosin Active Site As Detected by Pulsed Electron Paramagnetic Resonance

    PubMed Central

    Astashkin, Andrei V.; Nesmelov, Yuri E.

    2013-01-01

    Pulsed electron paramagnetic resonance at the microwave Ka band (~30 GHz) was used to study the coordination of adenosine nucleotides to Mn2+ at the active site of myosin ATPase and in solution. We have found that the electron spin echo (ESE) field sweep, electronnuclear double resonance (ENDOR) and ESE envelope modulation (ESEEM) techniques are not sufficiently specific for reliable differentiation between the solvated and myosin-bound Mnnucleotide complexes. Therefore, to directly detect binding of the Mnnucleotide to myosin, we used nonhydrolizable nucleotide analogs, site-directed spin labeling, and pulsed electronelectron double resonance to detect spin probemanganese dipolar interaction. We found that under substoichiometric conditions, both MnAMPPNP and MnADPAlF4 form a complex with myosin, and MnADP does not form such a complex. This correlates well with the biological dissociation of MgADP from myosin after the hydrolysis of ATP. The analysis of 31P ENDOR spectra reveals that in MnAMPPNP, MnATP, and MnADP at myosin or in solution, the nucleotide is coordinated to Mn2+ by two phosphate groups, whereas in MnADPAlF4, only one phosphate group is coordinated. The observation of two phosphates and one nitrogen in the coordination sphere of MnADP in solution by ESEEM spectroscopy suggests that a significant population of Mn ions is coordinated by two ADP molecules, one of which is coordinated by phosphates, and the other one, by a nitrogen atom. The developed approach will be generally useful for monitoring the metalprotein binding when such binding does not provide reliable spectroscopic signatures. PMID:23121488

  6. Myosin Light Chainactivating Phosphorylation Sites Are Required for Oogenesis in Drosophila

    PubMed Central

    Jordan, Pascale; Karess, Roger

    1997-01-01

    The Drosophila spaghetti squash (sqh) gene encodes the regulatory myosin light chain (RMLC) of nonmuscle myosin II. Biochemical analysis of vertebrate nonmuscle and smooth muscle myosin II has established that phosphorylation of certain amino acids of the RMLC greatly increases the actin-dependent myosin ATPase and motor activity of myosin in vitro. We have assessed the in vivo importance of these sites, which in Drosophila correspond to serine-21 and threonine-20, by creating a series of transgenes in which these specific amino acids were altered. The phenotypes of the transgenes were examined in an otherwise null mutant background during oocyte development in Drosophila females. Germ line cystoblasts entirely lacking a functional sqh gene show severe defects in proliferation and cytokinesis. The ring canals, cytoplasmic bridges linking the oocyte to the nurse cells in the egg chamber, are abnormal, suggesting a role of myosin II in their establishment or maintenance. In addition, numerous aggregates of myosin heavy chain accumulate in the sqh null cells. Mutant sqh transgene sqh-A20, A21 in which both serine-21 and threonine-20 have been replaced by alanines behaves in most respects identically to the null allele in this system, with the exception that no heavy chain aggregates are found. In contrast, expression of sqh-A21, in which only the primary phosphorylation target serine-21 site is altered, partially restores functionality to germ line myosin II, allowing cystoblast division and oocyte development, albeit with some cytokinesis failure, defects in the rapid cytoplasmic transport from nurse cells to cytoplasm characteristic of late stage oogenesis, and some damaged ring canals. Substituting a glutamate for the serine-21 (mutant sqh-E21) allows oogenesis to be completed with minimal defects, producing eggs that can develop normally to produce fertile adults. Flies expressing sqh-A20, in which only the secondary phosphorylation site is absent, appear to be entirely wild type. Taken together, this genetic evidence argues that phosphorylation at serine-21 is critical to RMLC function in activating myosin II in vivo, but that the function can be partially provided by phosphorylation at threonine-20. PMID:9412474

  7. Electron microscopic recording of myosin head power stroke in hydrated myosin filaments

    PubMed Central

    Sugi, Haruo; Chaen, Shigeru; Akimoto, Tsuyoshi; Minoda, Hiroki; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Sugiura, Seiryo

    2015-01-01

    Muscle contraction results from cyclic attachment and detachment between myosin heads and actin filaments, coupled with ATP hydrolysis. Despite extensive studies, however, the amplitude of myosin head power stroke still remains to be a mystery. Using the gas environmental chamber, we have succeeded in recording the power stroke of position-marked myosin heads in hydrated mixture of actin and myosin filaments in a nearly isometric condition, in which myosin heads do not produce gross myofilament sliding, but only stretch adjacent elastic structures. On application of ATP, individual myosin heads move by ~3.3 nm at the distal region, and by ~2.5 nm at the proximal region of myosin head catalytic domain. After exhaustion of applied ATP, individual myosin heads return towards their initial position. At low ionic strength, the amplitude of myosin head power stroke increases to >4 nm at both distal and proximal regions of myosin heads catalytic domain, being consistent with the report that the force generated by individual myosin heads in muscle fibers is enhanced at low ionic strength. The advantages of the present study over other in vitro motility assay systems, using myosin heads detached from myosin filaments, are discussed. PMID:26498981

  8. CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES

    PubMed Central

    Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.

    2010-01-01

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-? to MHC-? ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-? and MHC-?. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes. PMID:20359464

  9. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle

    NASA Astrophysics Data System (ADS)

    Yanagida, Toshio; Arata, Toshiaki; Oosawa, Fumio

    1985-07-01

    Muscle contraction results from a sliding movement of actin filaments induced by myosin crossbridges on hydrolysis of ATP1,2, and many non-muscle cells are thought to move using a similar mechanism3-5. The molecular mechanism of muscle contraction, however, is not completely understood6,7. One of the major problems is the mechanochemical coupling at high velocity under near-zero load8-13. Here, we report measurements of the sliding distance of an actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle in an unloaded condition. We used single sarcomeres from which the Z-lines, structures which anchor the thin filaments in the sarcomere, had been completely removed by calcium-activated neutral protease (CANP)14 and trypsin, and measured both the sliding velocity of single actin filaments along myosin filaments and the ATPase activity during sliding. Our results show that the average sliding distance of the actin filament is >=600 Å during one ATP cycle, much longer than the length of power stroke of myosin crossbridges deduced from mechanical studies of muscle, which is of the order of 80 Å (for example, ref. 15).

  10. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor

    SciTech Connect

    Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2006-12-01

    Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by {approx}60 degrees. This recovery stroke is coupled to the activation of myosin's ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a see-saw motion of the relay helix, followed by a piston/seesaw motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery stroke by using Principal Component Analysis. This reveals that the only principal motions of these two helices that make a large amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions.

  11. Myosin V from Drosophila reveals diversity of motor mechanisms within the myosin V family.

    PubMed

    Tth, Judit; Kovcs, Mihly; Wang, Fei; Nyitray, Lszl; Sellers, James R

    2005-08-26

    Myosin V is the best characterized vesicle transporter in vertebrates, but it has been unknown as to whether all members of the myosin V family share a common, evolutionarily conserved mechanism of action. Here we show that myosin V from Drosophila has a strikingly different motor mechanism from that of vertebrate myosin Va, and it is a nonprocessive, ensemble motor. Our steady-state and transient kinetic measurements on single-headed constructs reveal that a single Drosophila myosin V molecule spends most of its mechanochemical cycle time detached from actin, therefore it has to function in processive units that comprise several molecules. Accordingly, in in vitro motility assays, double-headed Drosophila myosin V requires high surface concentrations to exhibit a continuous translocation of actin filaments. Our comparison between vertebrate and fly myosin V demonstrates that the well preserved function of myosin V motors in cytoplasmic transport can be accomplished by markedly different underlying mechanisms. PMID:15980429

  12. Dynamics of myosin replacement in skeletal muscle cells.

    PubMed

    Ojima, Koichi; Ichimura, Emi; Yasukawa, Yuya; Wakamatsu, Jun-Ichi; Nishimura, Takanori

    2015-11-15

    Highly organized thick filaments in skeletal muscle cells are formed from ?300 myosin molecules. Each thick-filament-associated myosin molecule is thought to be constantly exchanged. However, the mechanism of myosin replacement remains unclear, as does the source of myosin for substitution. Here, we investigated the dynamics of myosin exchange in the myofibrils of cultured myotubes by fluorescent recovery after photobleaching and found that myofibrillar myosin is actively replaced with an exchange half-life of ?3 h. Myosin replacement was not disrupted by the absence of the microtubule system or by actomyosin interactions, suggesting that known cytoskeletal systems are dispensable for myosin substitution. Intriguingly, myosin replacement was independent of myosin binding protein C, which links myosin molecules together to form thick filaments. This implies that an individual myosin molecule rather than a thick filament functions as an exchange unit. Furthermore, the myosin substitution rate was decreased by the inhibition of protein synthesis, suggesting that newly synthesized myosin, as well as preexisting cytosolic myosin, contributes to myosin replacement in myofibrils. Notably, incorporation and release of myosin occurred simultaneously in myofibrils, but rapid myosin release from myofibrils was observed without protein synthesis. Collectively, our results indicate that myosin shuttles between myofibrils and the nonmyofibrillar cytosol to maintain a dynamic equilibrium in skeletal muscle cells. PMID:26377314

  13. Myosin lever arm directs collective motion on cellular actin network

    PubMed Central

    Hariadi, Rizal F.; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-01-01

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions. PMID:24591646

  14. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  15. Regulation of myosin expression during myotome formation.

    PubMed

    Sacks, Loren D; Cann, Gordon M; Nikovits, William; Conlon, Sandra; Espinoza, Nora R; Stockdale, Frank E

    2003-08-01

    The first skeletal muscle fibers to form in vertebrate embryos appear in the somitic myotome. PCR analysis and in situ hybridization with isoform-specific probes reveal differences in the temporal appearance and spatial distribution of fast and slow myosin heavy chain mRNA transcripts within myotomal fibers. Embryonic fast myosin heavy chain was the first isoform expressed, followed rapidly by slow myosin heavy chains 1 and 3, with slow myosin heavy chain 2 appearing several hours later. Neonatal fast myosin heavy chain is not expressed in myotomal fibers. Although transcripts of embryonic fast myosin heavy chain were always distributed throughout the length of myotomal fibers, the mRNA for each slow myosin heavy chain isoform was initially restricted to the centrally located myotomal fiber nuclei. As development proceeded, slow myosin heavy chain transcripts spread throughout the length of myotomal fibers in order of their appearance. Explants of segments from embryos containing neural tube, notochord and somites 7-10, when incubated overnight, become innervated by motor neurons from the neural tube and express all four myosin heavy chain genes. Removal of the neural tube and/or notochord from explants prior to incubation or addition of d-tubocurare to intact explants prevented expression of slow myosin chain 2 but expression of genes encoding the other myosin heavy chain isoforms was unaffected. Thus, expression of slow myosin heavy chain 2 is dependent on functional innervation, whereas expression of embryonic fast and slow myosin heavy chain 1 and 3 are innervation independent. Implantation of sonic-hedgehog-soaked beads in vivo increased the accumulation of both fast and slow myosin heavy chain transcripts, as well as overall myotome size and individual fiber size, but had no effect on myotomal fiber phenotype. Transcripts encoding embryonic fast myosin heavy chain first appear ventrolaterally in the myotome, whereas slow myosin heavy chain transcripts first appear in fibers positioned midway between the ventrolateral and dorsomedial lips of the myotome. Therefore, models of epaxial myotome formation must account for the positioning of the oldest fibers in the more ventral-lateral region of the myotome and the youngest fibers in the dorsomedial region. PMID:12810587

  16. Myosin II Dynamics during Embryo Morphogenesis

    NASA Astrophysics Data System (ADS)

    Kasza, Karen

    2013-03-01

    During embryonic morphogenesis, the myosin II motor protein generates forces that help to shape tissues, organs, and the overall body form. In one dramatic example in the Drosophila melanogaster embryo, the epithelial tissue that will give rise to the body of the adult animal elongates more than two-fold along the head-to-tail axis in less than an hour. This elongation is accomplished primarily through directional rearrangements of cells within the plane of the tissue. Just prior to elongation, polarized assemblies of myosin II accumulate perpendicular to the elongation axis. The contractile forces generated by myosin activity orient cell movements along a common axis, promoting local cell rearrangements that contribute to global tissue elongation. The molecular and mechanical mechanisms by which myosin drives this massive change in embryo shape are poorly understood. To investigate these mechanisms, we generated a collection of transgenic flies expressing variants of myosin II with altered motor function and regulation. We found that variants that are predicted to have increased myosin activity cause defects in tissue elongation. Using biophysical approaches, we found that these myosin variants also have decreased turnover dynamics within cells. To explore the mechanisms by which molecular-level myosin dynamics are translated into tissue-level elongation, we are using time-lapse confocal imaging to observe cell movements in embryos with altered myosin activity. We are utilizing computational approaches to quantify the dynamics and directionality of myosin localization and cell rearrangements. These studies will help elucidate how myosin-generated forces control cell movements within tissues. This work is in collaboration with J. Zallen at the Sloan-Kettering Institute.

  17. Oxidation-initiated myosin subfragment cross-linking and structural instability differences between white and red muscle fiber types.

    PubMed

    Liu, Changqi; Xiong, Youling L

    2015-02-01

    Both white and red muscles are commonly used in meat processing, and protein cross-linking, which may be affected by oxidants, is a key factor affecting the product quality. In this study, myofibrillar proteins (MPs) extracted from postrigor chicken Pectoralis major (PM, predominantly white) and Gastrocnemius (GN, predominantly red) muscles were subjected to a OH-oxidizing system (10 ?M FeCl3 , 0.1 mM ascorbic acid, with 0, 5, 10, or 20 mM H2 O2 ) at pH 6.2, 4C for 18 h. The solubility of nonoxidized (control) PM MPs (63%) was higher than that of control GN MPs (41%). After oxidation with OH generated at 5 mM H2 O2 , protein solubility decreased by 46% and 21% for PM and GN, respectively, due to aggregation. Chemical and electrophoretic analyses indicated H2 O2 -dose-dependent losses of sulfhydryls and the concomitant formation of disulfides which were more pronounced in PM protein samples. Oxidation favored cross-linking of myosin rod or tail in PM MPs compared to an equal susceptibility of myosin subfragment-1 (s-1) and rod to OH in GN MPs. Both Ca- and K-ATPase activities in GN myosin were more sensitive to OH than their PM counterparts, indicating a less stable s-1 region of GN myosin to oxidation. The uncoiling of rods from PM myosin was more rapid than that in GN myosin during heating. Oxidation induced cross-linking via disulfide bonds hindered the unfolding of rod, particularly in PM myosin. These data revealed the molecular events that underscore the necessity of meat processing and formulation control based on muscle fiber types. PMID:25604073

  18. The myosin converter domain modulates muscle performance.

    PubMed

    Swank, Douglas M; Knowles, Aileen F; Suggs, Jennifer A; Sarsoza, Floyd; Lee, Annie; Maughan, David W; Bernstein, Sanford I

    2002-04-01

    Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands. PMID:11901423

  19. Antimony-Phosphomolybdate ATPase Assay.

    PubMed

    Bartolommei, Gianluca; Tadini-Buoninsegni, Francesco

    2016-01-01

    Hydrolytic activity is an important functional parameter of enzymes like adenosinetriphosphatases (ATPases). It is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. Here, we describe a molybdenum-based protocol that makes use of potassium antimony (III) oxide tartrate and may be valuable in biochemical and biomedical investigations of ATPase enzymes as well as in high-throughput drug screening. This method has been successfully applied to native and recombinant ATPases. PMID:26695027

  20. Differential localization of myosin and myosin phosphatase subunits in smooth muscle cells and migrating fibroblasts.

    PubMed Central

    Murata, K; Hirano, K; Villa-Moruzzi, E; Hartshorne, D J; Brautigan, D L

    1997-01-01

    Myosin II light chains (MLC20) are phosphorylated by a Ca2+/calmodulin-activated kinase and dephosphorylated by a phosphatase that has been purified as a trimer containing the delta isoform of type 1 catalytic subunit (PP1C delta), a myosin-binding 130-kDa subunit (M130) and a 20-kDa subunit. The distribution of M130 and PP1C as well as myosin II was examined in smooth muscle cells and fibroblasts by immunofluorescence microscopy and immunoblotting after differential extraction. Myosin and M130 colocalized with actin stress fibers in permeabilized cells. However, in nonpermeabilized cells the staining for myosin and M130 was different, with myosin mostly at the periphery of the cell and the M130 appearing diffusely throughout the cytoplasm. Accordingly, most M130 was recovered in a soluble fraction during permeabilization of cells, but the conditions used affected the solubility of both M130 and myosin. The PP1C alpha isoform colocalized with M130 and also was in the nucleus, whereas the PP1C delta isoform was localized prominently in the nucleus and in focal adhesions. In migrating cells, M130 concentrated in the tailing edge and was depleted from the leading half of the cell, where double staining showed myosin II was present. Because the tailing edge of migrating cells is known to contain phosphorylated myosin, inhibition of myosin LC20 phosphatase, probably by phosphorylation of the M130 subunit, may be required for cell migration. Images PMID:9247646

  1. Cross-reactivity of termite myosin; a potential allergen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myosin and myosin isoforms are common food allergens in crustaceans; such as, shrimp, lobster, and crab. Allergy to Shellfish is a prevalent and potentially long lasting disorder that can severely affect health and quality of life. Myosin and myosin isoforms of dust mites and cockroaches are simil...

  2. Coupling of Two Non-processive Myosin 5c Dimers Enables Processive Stepping along Actin Filaments

    PubMed Central

    Gunther, Laura K.; Furuta, Ken'ya; Bao, Jianjun; Urbanowski, Monica K.; Kojima, Hiroaki; White, Howard D.; Sakamoto, Takeshi

    2014-01-01

    Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 3036?nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells. PMID:24809456

  3. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschlger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  4. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    PubMed Central

    Markov, Denis I.; Zubov, Eugene O.; Nikolaeva, Olga P.; Kurganov, Boris I.; Levitsky, Dmitrii I.

    2010-01-01

    We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS) to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl). Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain. PMID:21151434

  5. Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages

    SciTech Connect

    Mykles, D.L.

    1985-01-01

    Fast and slow muscles from the claws and abdomen of the American lobster Homarus americanus were examined for adenosine triphosphatase (ATPase) activity and for differences in myofibrillar proteins. Both myosin and actomyosin ATPase were correlated with fiber composition and contractile speed. Four distinct patterns of myofibrilla proteins observed in sodium dodecyl sulfate-polyacrylamide gels were distinguished by different assemblages of regulatory and contractile protein variants. A total of three species of troponin-T, five species of troponin-I, and three species of troponin-C were observed. Lobster myosins contained two groups of light chains (LC), termed alpha and beta. There were three ..cap alpha..-LC variants and two ..beta..-LC variants. There were no apparent differences in myosin heavy chain, actin, and tropomyosin. Only paramyosin showed a pattern completely consistent with muscle fiber type: slow fibers contained a species (105 kD) slightly smaller than the principle variant (110 kD) in fast fibers. It is proposed that the type of paramyosin present could provide a biochemical marker to identify the fiber composition of muscles that have not been fully characterized. The diversity of troponin and myosin LC variants suggests that subtle differences in physiological performance exist within the broader categories of fast- and slow-twitch muscles. 31 references, 6 figures, 2 tables.

  6. Blebbistatin, a myosin II inhibitor, suppresses contraction and disrupts contractile filaments organization of skinned taenia cecum from guinea pig.

    PubMed

    Watanabe, Masaru; Yumoto, Masatoshi; Tanaka, Hideyuki; Wang, Hon Hui; Katayama, Takeshi; Yoshiyama, Shinji; Black, Jason; Thatcher, Sean E; Kohama, Kazuhiro

    2010-05-01

    To explore the precise mechanisms of the inhibitory effects of blebbistatin, a potent inhibitor of myosin II, on smooth muscle contraction, we studied the blebbistatin effects on the mechanical properties and the structure of contractile filaments of skinned (cell membrane permeabilized) preparations from guinea pig taenia cecum. Blebbistatin at 10 microM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration but had little effects on the Ca(2+)-induced myosin light chain phosphorylation. Blebbistatin also suppressed the 10 and 2.75 mM Mg(2+)-induced, "myosin light chain phosphorylation-independent" tension development at more than 10 microM. Furthermore, blebbistatin induced conformational change of smooth muscle myosin (SMM) and disrupted arrangement of SMM and thin filaments, resulting in inhibition of actin-SMM interaction irrespective of activation with Ca(2+). In addition, blebbistatin partially inhibited Mg(2+)-ATPase activity of native actomyosin from guinea pig taenia cecum at around 10 microM. These results suggested that blebbistatin suppressed skinned smooth muscle contraction through disruption of structure of SMM by the agent. PMID:20164381

  7. Duplex RNA activated ATPases (DRAs)

    PubMed Central

    Luo, Dahai; Kohlway, Andrew; Pyle, Anna Marie

    2013-01-01

    Double-stranded RNAs are an important class of functional macromolecules in living systems. They are usually found as part of highly specialized intracellular machines that control diverse cellular events, ranging from virus replication, antiviral defense, RNA interference, to regulation of gene activities and genomic integrity. Within different intracellular machines, the RNA duplex is often found in association with specific RNA-dependent ATPases, including Dicer, RIG-I and DRH-3 proteins. These duplex RNA-activated ATPases represent an emerging group of motor proteins within the large and diverse super family 2 nucleic acid-dependent ATPases (which are historically defined as SF2 helicases). The duplex RNA-activated ATPases share characteristic molecular features for duplex RNA recognition, including motifs (e.g., motifs IIa and Vc) and an insertion domain (HEL2i), and they require double-strand RNA binding for their enzymatic activities. Proteins in this family undergo large conformational changes concomitant with RNA binding, ATP binding and ATP hydrolysis in order to achieve their functions, which include the release of signaling domains and the recruitment of partner proteins. The duplex RNA-activated ATPases represent a distinct and fascinating group of nanomechanical molecular motors that are essential for duplex RNA sensing and processing in diverse cellular pathways. PMID:23228901

  8. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.

    SciTech Connect

    Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-03-01

    Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60{sup o}. This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.

  9. The 3-(bromoacetamido)-propylamine hydrochloride: A novel sulfhydryl reagent and its future potential in the configurational study of S1-myosin

    NASA Technical Reports Server (NTRS)

    Sharma, Prasanta; Cheung, Herbert C.

    1989-01-01

    Configurational study of S1-Myosin is an important step towards understanding force generation in muscle contraction. Previously reported NMR studies were corroborated. A new compound was synthesized, 3-(Bromoacetamido)-propylamine hydrochloride. Its potential as a sulfhydryl reagent provides an indirect but elegant approach towards future structural elucidation of S1-Myosin. The preliminary investigation has shown that this compound, BAAP, reacted with S1 in the absence of MgADP. The modified enzyme had a 2-fold increase in CaATPase activity and no detectable K-EDTA ATPase activity. Reaction of BAAP with S1 in the presence of MgADP resulted in a modified enzyme which retained a Ca-ATPase activity that was about 60 percent of the unmodified S1 and had essentially zero K-EDTA ATPase activity. Sulfhydryl titration indicated that about 1.5 and 3.5 SH groups per S1 molecule were blocked by BAAP in the absence and presence of MgADP, respectively. When coupled to a carboxyl group of EDTA, the resulting reagent could become a useful SH reagent in which chelated paramagnetic or luminescent lanthanide ions can be exploited to probe S1 conformation.

  10. The unique enzymatic and mechanistic properties of plant myosins.

    PubMed

    Henn, Arnon; Sadot, Einat

    2014-12-01

    Myosins are molecular motors that move along actin-filament tracks. Plants express two main classes of myosins, myosin VIII and myosin XI. Along with their relatively conserved sequence and functions, plant myosins have acquired some unique features. Myosin VIII has the enzymatic characteristics of a tension sensor and/or a tension generator, similar to functions found in other eukaryotes. Interestingly, class XI plant myosins have gained a novel function that consists of propelling the exceptionally rapid cytoplasmic streaming. This specific class includes the fastest known translocating molecular motors, which can reach an extremely high velocity of about 60?ms(-1). However, the enzymatic properties and mechanistic basis for these remarkable manifestations are not yet fully understood. Here we review recent progress in understanding the uniqueness of plant myosins, while emphasizing the unanswered questions. PMID:25435181

  11. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    SciTech Connect

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  12. Myosin regulatory light chain phosphorylation enhances cardiac ?-myosin in vitro motility under load.

    PubMed

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2015-08-15

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an ?-actinin frictional load. Porcine cardiac ?-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level. PMID:26116789

  13. Hypertrophic Cardiomyopathy Associated Lys104Glu Mutation in the Myosin Regulatory Light Chain Causes Diastolic Disturbance in Mice

    PubMed Central

    Huang, Wenrui; Liang, Jingsheng; Kazmierczak, Katarzyna; Muthu, Priya; Duggal, Divya; Farman, Gerrie P.; Sorensen, Lars; Pozios, Iraklis; Abraham, Theodore P.; Moore, Jeffrey R.; Borejdo, Julian; Szczesna-Cordary, Danuta

    2014-01-01

    We have examined, for the first time, the effects of the familial hypertrophic cardiomyopathy (HCM)- associated Lys104Glu mutation in the myosin regulatory light chain (RLC). Transgenic mice expressing the Lys104Glu substitution (Tg-MUT) were generated and the results compared to Tg-WT (wild-type human ventricular RLC) mice. Echocardiography with pulse wave Doppler in 6 month-old Tg-MUT showed early signs of diastolic disturbance with significantly reduced E/A transmitral velocities ratio. Invasive hemodynamics in 6 month-old Tg-MUT mice also demonstrated a borderline significant prolonged isovolumic relaxation time (Tau) and a tendency for slower rate of pressure decline, suggesting alterations in diastolic function in Tg-MUT. Six month-old mutant animals had no LV hypertrophy; however, at >13 months they displayed significant hypertrophy and fibrosis. In skinned papillary muscles from 5-6 month-old mice a mutation induced reduction in maximal tension and slower muscle relaxation rates were observed. Mutated cross-bridges showed increased rates of binding to the thin filaments and a faster rate of the power stroke. In addition, ~2-fold lower level of RLC phosphorylation was observed in the mutant compared to Tg-WT. In line with the higher mitochondrial content seen in Tg-MUT hearts, the MUT-myosin ATPase activity was significantly higher than WT-myosin, indicating increased energy consumption. In the in vitro motility assay, MUT-myosin produced higher actin sliding velocity under zero load, but the velocity drastically decreased with applied load in the MUT vs. WT myosin. Our results suggest that diastolic disturbance (impaired muscle relaxation, lower E/A) and inefficiency of energy use (reduced contractile force and faster ATP consumption) may underlie the Lys104Glu-mediated HCM phenotype. PMID:24992035

  14. Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice.

    PubMed

    Huang, Wenrui; Liang, Jingsheng; Kazmierczak, Katarzyna; Muthu, Priya; Duggal, Divya; Farman, Gerrie P; Sorensen, Lars; Pozios, Iraklis; Abraham, Theodore P; Moore, Jeffrey R; Borejdo, Julian; Szczesna-Cordary, Danuta

    2014-09-01

    We have examined, for the first time, the effects of the familial hypertrophic cardiomyopathy (HCM)-associated Lys104Glu mutation in the myosin regulatory light chain (RLC). Transgenic mice expressing the Lys104Glu substitution (Tg-MUT) were generated and the results were compared to Tg-WT (wild-type human ventricular RLC) mice. Echocardiography with pulse wave Doppler in 6month-old Tg-MUT showed early signs of diastolic disturbance with significantly reduced E/A transmitral velocities ratio. Invasive hemodynamics in 6month-old Tg-MUT mice also demonstrated a borderline significant prolonged isovolumic relaxation time (Tau) and a tendency for slower rate of pressure decline, suggesting alterations in diastolic function in Tg-MUT. Six month-old mutant animals had no LV hypertrophy; however, at >13months they displayed significant hypertrophy and fibrosis. In skinned papillary muscles from 5 to 6month-old mice a mutation induced reduction in maximal tension and slower muscle relaxation rates were observed. Mutated cross-bridges showed increased rates of binding to the thin filaments and a faster rate of the power stroke. In addition, ~2-fold lower level of RLC phosphorylation was observed in the mutant compared to Tg-WT. In line with the higher mitochondrial content seen in Tg-MUT hearts, the MUT-myosin ATPase activity was significantly higher than WT-myosin, indicating increased energy consumption. In the in vitro motility assay, MUT-myosin produced higher actin sliding velocity under zero load, but the velocity drastically decreased with applied load in the MUT vs. WT myosin. Our results suggest that diastolic disturbance (impaired muscle relaxation, lower E/A) and inefficiency of energy use (reduced contractile force and faster ATP consumption) may underlie the Lys104Glu-mediated HCM phenotype. PMID:24992035

  15. Plant-Specific Myosin XI, a Molecular Perspective

    PubMed Central

    Tominaga, Motoki; Nakano, Akihiko

    2012-01-01

    In eukaryotic cells, organelle movement, positioning, and communications are critical for maintaining cellular functions and are highly regulated by intracellular trafficking. Directional movement of motor proteins along the cytoskeleton is one of the key regulators of such trafficking. Most plants have developed a unique actinmyosin system for intracellular trafficking. Although the composition of myosin motors in angiosperms is limited to plant-specific myosin classes VIII and XI, there are large families of myosins, especially in class XI, suggesting functional diversification among class XI members. However, the molecular properties and regulation of each myosin XI member remains unclear. To achieve a better understanding of the plant-specific actinmyosin system, the characterization of myosin XI members at the molecular level is essential. In the first half of this review, we summarize the molecular properties of tobacco 175-kDa myosin XI, and in the later half, we focus on myosin XI members in Arabidopsis thaliana. Through detailed comparison of the functional domains of these myosins with the functional domain of myosin V, we look for possible diversification in enzymatic and mechanical properties among myosin XI members concomitant with their regulation. PMID:22973289

  16. Biological motors: Conventional and Unconventional Myosins

    NASA Astrophysics Data System (ADS)

    Goldman, Yale E.

    2006-03-01

    Molecular motors are smart, soft machines that regulate their dynamics and energy consumption for efficient tuning to their cell-biological role and mechanics of their cargo. The efficiency is derived partly from harnessing the chaotic thermal fluctuations nano-scale machines experience, rather than struggle against them. Reciprocal coupling between the enzymatic chemistry, structural changes, and mechanical steps is expected from the thermodynamics of an energy-transducing nano-machine. Strong evidence for this bidirectional coupling exists for muscle (conventional) myosin and unconventional myosins. The structural dynamics of myosin leading to translocation along actin are detectable by Optical Trap Mechanical Nanometry (OTNM), Single-Molecule Fluorescence Polarization Microscopy (SMFPM), Fluorescence Imaging at One Nanometer Accuracy (FIONA) and various combinations of these methods. We are in an Acronym Rich Environment (ARE). Progress and puzzles make this a lively research area.

  17. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

  18. Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Hochstein, Lawrence I.; Bowman, Emma J.

    1991-01-01

    Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-chloro-7-nitrobenzofurazan inhibited the halobacterial ATPase also in a nucleotide-protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggest that this halobacterial ATPase may have conserved structural features from both the vacuolar and the F-type ATPases.

  19. Relationship of the Membrane ATPase from Halobacterium saccharovorum to Vacuolar ATPases

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Bowman, Emma J.; Hochstein, Lawrence I.

    1991-01-01

    Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-Chloro-7-nitrobenzofurazan in- hibited the hatobacterial ATPase also in a nucleotide- protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggested that this halobacterial ATPase may have conserved structural features from both the vacuotar and the F-type ATPases.

  20. Unconventional myosins in cell movement, membrane traffic, and signal transduction.

    PubMed

    Mermall, V; Post, P L; Mooseker, M S

    1998-01-23

    In the past few years genetic, biochemical, and cytolocalization data have implicated members of the myosin superfamily of actin-based molecular motors in a variety of cellular functions including membrane trafficking, cell movements, and signal transduction. The importance of myosins is illustrated by the identification of myosin genes as targets for disease-causing mutations. The task at hand is to decipher how the multitude of myosins function at both the molecular and cellular level-a task facilitated by our understanding of myosin structure and function in muscle. PMID:9438839

  1. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load

    PubMed Central

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

    2016-01-01

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin’s ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31–41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level. PMID:26116789

  2. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  3. Effects of low-level ?-myosin heavy chain expression on contractile kinetics in porcine myocardium

    PubMed Central

    Razumova, Maria V.; Stelzer, Julian E.; Norman, Holly S.; Moss, Richard L.

    2011-01-01

    Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ?10% ?-MHC on a predominantly ?-MHC background, while in failing human ventricles ?-MHC is virtually eliminated, suggesting that low-level ?-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (fapp) and detachment (gapp) in porcine myocardium expressing either 100% ?-MHC or 100% ?-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (?100% ?-MHC) and left ventricular (?100% ?-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (ktr) in solutions of varying Ca2+ concentration. The rate of ATP utilization and ktr were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated fapp to be ?10-fold higher in ?- compared with ?-MHC, while gapp was 8-fold higher in ?-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% ?-MHC increases the maximal rate of rise of force (dF/dtmax) by 92% compared with 0% ?-MHC. These results suggest that low-level expression of ?-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium. PMID:21217059

  4. Indirect myosin immunocytochemistry for the identification of fibre types in equine skeletal muscle

    NASA Technical Reports Server (NTRS)

    Sinha, A. K.; Rose, R. J.; Pozgaj, I.; Hoh, J. F.

    1992-01-01

    The histochemical ATPase method for muscle fibre typing was first described by Brooke and Kaiser in 1970. However, problems have been found with the subdivision of type II fibres using this technique. To determine whether indirect myosin immunocytochemistry using anti-slow (5-4D), anti-fast (1A10) and anti-fast red (5-2B) monoclonal antibodies with cross reactivity for type I, II and IIa fibres, respectively, in a number of species, could identify three fibre types in equine skeletal muscle, data on fibre type composition and fibre size obtained using the two different techniques were compared. Results indicate that different myosin heavy chains can coexist in single equine muscle fibres. Type I and type II fibres were identified by immunocytochemistry, but subdivision of type II fibres was not possible. Although the percentage of type I and type II fibres was not significantly different for the two techniques, a few fibres reacted with both the 1A10 and 5-4D antibodies.

  5. Tissue-specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain.

    PubMed Central

    Babij, P

    1993-01-01

    Previous work demonstrated that the rabbit smooth muscle myosin heavy chain gene showed sequence divergence at the 25kDa/50kDa junction of the S1 subfragment when compared to chicken gizzard and chicken epithelial nonmuscle myosin. RNase protection analysis with a probe spanning this region detected two partially protected fragments which were not present in RNA from vascular tissue and only found in RNA from visceral tissue. The polymerase chain reaction was used to amplify a 162bp product from primers spanning the putative region of divergence and DNA sequence analysis revealed a seven amino acid insertion not previously detected in other characterised cDNA clones. RNase protection analysis using the PCR product as probe showed that the inserted sequence was expressed exclusively in RNA from visceral tissue. Similar RNA analysis showed that the visceral isoform was not expressed in 20 day fetal rabbit smooth muscle tissues. These results indicated that the new visceral isoform was expressed in a tissue-specific and developmentally regulated manner. Genomic DNA sequencing and mapping of the exon-intron boundaries showed that the visceral isoform was the product of cassette-type alternative splicing. The inclusion of a visceral-specific sequence near the Mg-ATPase domain and at the 25kDa/50kDa junction suggests that the visceral isoform may be important for myosin function in smooth muscle cells. Images PMID:8464739

  6. Comparison of orientation and rotational motion of skeletal muscle cross-bridges containing phosphorylated and dephosphorylated myosin regulatory light chain.

    PubMed

    Midde, Krishna; Rich, Ryan; Marandos, Peter; Fudala, Rafal; Li, Amy; Gryczynski, Ignacy; Borejdo, Julian

    2013-03-01

    Calcium binding to thin filaments is a major element controlling active force generation in striated muscles. Recent evidence suggests that processes other than Ca(2+) binding, such as phosphorylation of myosin regulatory light chain (RLC) also controls contraction of vertebrate striated muscle (Cooke, R. (2011) Biophys. Rev. 3, 33-45). Electron paramagnetic resonance (EPR) studies using nucleotide analog spin label probes showed that dephosphorylated myosin heads are highly ordered in the relaxed fibers and have very low ATPase activity. This ordered structure of myosin cross-bridges disappears with the phosphorylation of RLC (Stewart, M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 430-435). The slower ATPase activity in the dephosporylated moiety has been defined as a new super-relaxed state (SRX). It can be observed in both skeletal and cardiac muscle fibers (Hooijman, P., Stewart, M. A., and Cooke, R. (2011) Biophys. J. 100, 1969-1976). Given the importance of the finding that suggests a novel pathway of regulation of skeletal muscle, we aim to examine the effects of phosphorylation on cross-bridge orientation and rotational motion. We find that: (i) relaxed cross-bridges, but not active ones, are statistically better ordered in muscle where the RLC is dephosporylated compared with phosphorylated RLC; (ii) relaxed phosphorylated and dephosphorylated cross-bridges rotate equally slowly; and (iii) active phosphorylated cross-bridges rotate considerably faster than dephosphorylated ones during isometric contraction but the duty cycle remained the same, suggesting that both phosphorylated and dephosphorylated muscles develop the same isometric tension at full Ca(2+) saturation. A simple theory was developed to account for this fact. PMID:23319584

  7. Conformational changes at the highly reactive cystein and lysine regions of skeletal muscle myosin induced by formation of transition state analogues.

    PubMed

    Maruta, S; Homma, K; Ohki, T

    1998-09-01

    Myosin forms stable ternary complexes with Mg2+-ADP and phosphate analogues of aluminum fluoride (AlF4-), beryllium fluoride (BeFn), and scandium fluoride (ScFn). These complexes are distinct from each other and may mimic different transient states in the ATPase cycle [Maruta et al. (1993) J. Biol. Chem. 268, 7093-7100]. Regions of skeletal muscle myosin containing the highly reactive residues Cys 707 (SH1), Cys 697 (SH2), and lysine 83 (RLR) dramatically alter their local conformation when myosin hydrolyzes ATP, and these changes may reflect formation of a series of transient intermediates during ATP hydrolysis. We used the fluorescent probes 4-fluoro-7-sulfamoylbezofurazan, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and trinitrobenzene-sulfonate, which bind to SH1, SH2, and RLR, respectively, to examine differences in local conformations within myosin.ADP.phosphate analogue (BeFn, Vi, AlF4-, and ScFn) complexes. It was observed that the ternary complexes had SH1 conformations similar to those seen on S-1 in the presence of ATP. In contrast, local conformations in the SH2 and RLR regions of S-1.ADP.BeFn were different from those in corresponding regions of S-1.ADP.AlF4- or ScFn. These results suggest that SH1 and SH2 move distinctly during ATP hydrolysis and that the local conformations of the SH2 and RLR regions more sensitively reflect different transient states. PMID:9722668

  8. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  9. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    PubMed

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times within bilaterian evolution. PMID:24498429

  10. Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic ?-cells

    PubMed Central

    Han, Young-Eun; Lim, Ajin; Park, Sun-Hyun; Chang, Sunghoe; Lee, Suk-Ho; Ho, Won-Kyung

    2015-01-01

    AMP-activated protein kinase (AMPK) is a metabolic sensor activated during metabolic stress and it regulates various enzymes and cellular processes to maintain metabolic homeostasis. We previously reported that activation of AMPK by glucose deprivation (GD) and leptin increases KATP currents by increasing the surface levels of KATP channel proteins in pancreatic ?-cells. Here, we show that the signaling mechanisms that mediate actin cytoskeleton remodeling are closely associated with AMPK-induced KATP channel trafficking. Using F-actin staining with Alexa 633-conjugated phalloidin, we observed that dense cortical actin filaments present in INS-1 cells cultured in 11?mM glucose were disrupted by GD or leptin treatment. These changes were blocked by inhibiting AMPK using compound C or siAMPK and mimicked by activating AMPK using AICAR, indicating that cytoskeletal remodeling induced by GD or leptin was mediated by AMPK signaling. AMPK activation led to the activation of Rac GTPase and the phosphorylation of myosin regulatory light chain (MRLC). AMPK-dependent actin remodeling induced by GD or leptin was abolished by the inhibition of Rac with a Rac inhibitor (NSC23766), siRac1 or siRac2, and by inhibition of myosin II with a myosin ATPase inhibitor (blebbistatin). Immunocytochemistry, surface biotinylation and electrophysiological analyses of KATP channel activity and membrane potentials revealed that AMPK-dependent KATP channel trafficking to the plasma membrane was also inhibited by NSC23766 or blebbistatin. Taken together, these results indicate that AMPK/Rac-dependent cytoskeletal remodeling associated with myosin II motor function promotes the translocation of KATP channels to the plasma membrane in pancreatic ?-cells. PMID:26471000

  11. Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic β-cells.

    PubMed

    Han, Young-Eun; Lim, Ajin; Park, Sun-Hyun; Chang, Sunghoe; Lee, Suk-Ho; Ho, Won-Kyung

    2015-01-01

    AMP-activated protein kinase (AMPK) is a metabolic sensor activated during metabolic stress and it regulates various enzymes and cellular processes to maintain metabolic homeostasis. We previously reported that activation of AMPK by glucose deprivation (GD) and leptin increases KATP currents by increasing the surface levels of KATP channel proteins in pancreatic β-cells. Here, we show that the signaling mechanisms that mediate actin cytoskeleton remodeling are closely associated with AMPK-induced KATP channel trafficking. Using F-actin staining with Alexa 633-conjugated phalloidin, we observed that dense cortical actin filaments present in INS-1 cells cultured in 11 mM glucose were disrupted by GD or leptin treatment. These changes were blocked by inhibiting AMPK using compound C or siAMPK and mimicked by activating AMPK using AICAR, indicating that cytoskeletal remodeling induced by GD or leptin was mediated by AMPK signaling. AMPK activation led to the activation of Rac GTPase and the phosphorylation of myosin regulatory light chain (MRLC). AMPK-dependent actin remodeling induced by GD or leptin was abolished by the inhibition of Rac with a Rac inhibitor (NSC23766), siRac1 or siRac2, and by inhibition of myosin II with a myosin ATPase inhibitor (blebbistatin). Immunocytochemistry, surface biotinylation and electrophysiological analyses of KATP channel activity and membrane potentials revealed that AMPK-dependent KATP channel trafficking to the plasma membrane was also inhibited by NSC23766 or blebbistatin. Taken together, these results indicate that AMPK/Rac-dependent cytoskeletal remodeling associated with myosin II motor function promotes the translocation of KATP channels to the plasma membrane in pancreatic β-cells. PMID:26471000

  12. Shared Gene Structures and Clusters of Mutually Exclusive Spliced Exons within the Metazoan Muscle Myosin Heavy Chain Genes

    PubMed Central

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times within bilaterian evolution. PMID:24498429

  13. Metal Switch-controlled Myosin II from Dictyostelium discoideum Supports Closure of Nucleotide Pocket during ATP Binding Coupled to Detachment from Actin Filaments*

    PubMed Central

    Cochran, Jared C.; Thompson, Morgan E.; Kull, F. Jon

    2013-01-01

    G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg2+) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg2+- or Mn2+-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn2+, providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that actoS237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn2+ rescues this effect to near wild-type activity. 2?(3?)-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region. PMID:23960071

  14. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments.

    PubMed

    Cochran, Jared C; Thompson, Morgan E; Kull, F Jon

    2013-09-27

    G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that actoS237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region. PMID:23960071

  15. Myosin light chain kinases and phosphatase in mitosis and cytokinesis

    PubMed Central

    Matsumura, Fumio; Yamakita, Yoshihiko; Yamashiro, Shigeko

    2011-01-01

    Summary At mitosis, cells undergo drastic alterations in morphology and cytoskeletal organization including cell rounding during prophase, mitotic spindle assembly during prometaphase and metaphase, chromatid segregation in anaphase, and cytokinesis during telophase. It is well established that myosin II is a motor responsible for cytokinesis. Recent reports have indicated that myosin II is also involved in spindle assembly and karyokinesis. In this review, we summarize current understanding of the functions of myosin II in mitosis and cytokinesis of higher eukaryotes, and discuss the roles of possible upstream molecules that control myosin II in these mitotic events. PMID:21396909

  16. Location of the head-tail junction of myosin

    PubMed Central

    1989-01-01

    The tails of double-headed myosin molecules consist of an alpha- helical/coiled-coil structure composed of two identical polypeptides with a heptad repeat of hydrophobic amino acids that starts immediately after a conserved proline near position 847. Both muscle and nonmuscle myosins have this heptad repeat and it has been assumed that proline 847 is physically located at the head-tail junction. We present two lines of evidence that this assumption is incorrect. First, we localized the binding sites of several monoclonal antibodies on Acanthamoeba myosin-II both physically, by electron microscopy, and chemically, with a series of truncated myosin-II peptides produced in bacteria. These data indicate that the head-tail junction is located near residue 900. Second, we compared the lengths of two truncated recombinant myosin-II tails with native myosin-II. The distances from the NH2 termini to the tips of these short tails confirms the rise per residue (0.148 nm/residue) and establishes that the 86-nm tail of myosin-II must start near residue 900. We propose that the first 53 residues of heptad repeat of Acanthamoeba myosin-II and other myosins are located in the heads and the proteolytic separation of S-1 from rod occurs within the heads. PMID:2715178

  17. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation

    PubMed Central

    Fusi, Luca; Huang, Zhe; Irving, Malcolm

    2015-01-01

    In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads. PMID:26287630

  18. Evidence for three fast myosin heavy chain isoforms in type II skeletal muscle fibers in the adult llama (Lama glama).

    PubMed

    Graziotti, G H; Ríos, C M; Rivero, J L

    2001-08-01

    Skeletal muscle fiber types classified on the basis of their content of different myosin heavy chain (MHC) isoforms were analyzed in samples from hindlimb muscles of adult sedentary llamas (Lama glama) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry, and quantitative histochemistry of fiber metabolic and size properties. The immunohistochemical technique allowed the separation of four pure (i.e., expressing a unique MHC isoform) muscle fiber types: one slow-twitch (Type I) and three fast-twitch (Type II) phenotypes. The same four major fiber types could be objectively discriminated with two serial sections stained for mATPase after acid (pH 4.5) and alkaline (pH 10.5) preincubations. The three fast-twitch fiber types were tentatively designated as IIA, IIX, and IIB on the basis of the homologies of their immunoreactivities, acid denaturation of their mATPase activity, size, and metabolic properties expressed at the cellular level with the corresponding isoforms of rat and horse muscles. Acid stability of their mATPase activity increased in the rank order IIA>IIX>IIB. The same was true for size and glycolytic capacity, whereas oxidative capacity decreased in the same rank order IIA>IIX>IIB. In addition to these four pure fibers (I, IIA, IIX, and IIB), four other fiber types with hybrid phenotypes containing two (I+IIA, IIAX, and IIXB) or three (IIAXB) MHCs were immunohistochemically delineated. These frequent phenotypes (40% of the semitendinosus muscle fiber composition) had overlapped mATPase staining intensities with their corresponding pure fiber types, so they could not be delineated by mATPase histochemistry. Expression of the three fast adult MHC isoforms was spatially regulated around islets of Type I fibers, with concentric circles of fibers expressing MHC-IIA, then MHC-IIX, and peripherally MHC-IIB. This study demonstrates that three adult fast Type II MHC isoproteins are expressed in skeletal muscle fibers of the llama. The general assumption that the very fast MHC-IIB isoform is expressed only in small mammals can be rejected. PMID:11457931

  19. Palytoxin acts on Na(+),K (+)-ATPase but not nongastric H(+),K (+)-ATPase.

    PubMed

    Guennoun-Lehmann, Saida; Fonseca, James E; Horisberger, Jean-Daniel; Rakowski, Robert F

    2007-04-01

    Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase alpha(2)- and Na,K-ATPase beta(2)-subunits; Bufo Na,K-ATPase alpha(1)- and Na,K-ATPase beta(2)-subunits; and Bufo Na,K-ATPase beta(2)-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 microM ouabain. Functional expression was confirmed by measuring (86)Rb uptake. PTX (5 nM: ) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo beta(2)-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase alpha(1)-subunit and Na,K-ATPase beta(1)-subunit; rat Na,K-ATPase alpha(2)-subunit and Na,K-ATPase beta(2)-subunit; and rat Na,K-ATPase beta(1)- or Na,K-ATPase beta(2)-subunit alone. Measurement of increases in (86)Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKalpha(1)/NKbeta(1) and NKalpha(2)/NKbeta(2). Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKalpha(1)/NKbeta(1) exposed to 100 nM PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKbeta(1)- or rat NKbeta(2)-subunit alone. However, in HeLa cells expressing rat NKalpha(2)/NKbeta(2), outward current was observed after pump activation by 20 mM K(+) and a large membrane conductance increase occurred after 100 nM PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase. PMID:17639367

  20. Palytoxin acts on Na+,K+-ATPase but not non-gastric H+,K+-ATPase

    PubMed Central

    Guennoun-Lehmann, Saida; Fonseca, James E.; Horisberger, Jean-Daniel; Rakowski, Robert F.

    2007-01-01

    Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on non-gastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μM ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nM) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1 or Na,K-ATPase β2 subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K- and H,K-pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nM PTX showed no significant increase of membrane current and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1 or rat NKβ2 subunits alone. However, in HeLa Cells expressing rat NKα2 NKβ2, outward current was observed after pump activation by 20 mM K+ and a large membrane conductance increase occurred after 100 nM PTX. We conclude that non-gastric H,K-ATPases are not sensitive to palytoxin when expressed in these cells whereas palytoxin does act on Na,K-ATPase. PMID:17639367

  1. [Lability of coupling between proton translocase and ATPase of mitochondrial H+-ATPase complex].

    PubMed

    Gorskaia, I A; Shol'ts, K F; Moreva, S A

    1979-06-01

    The interrelationship between the ATPase and H+-translocase functions of mitochondrial H+-ATPase was studied. The efficiency of the functioning was estimated by the value of coupling coefficient (Kc), which is represented by a ratio of proton translocation rate versus ATP coupling hydrolysis rate. It was shown that under conditions of increased concentrations of ATP and low concentrations of oligomycin the value of Kc is decreased. The increase in the concentration of valinomycin results in an increase of Kc. It was also found that the H+-ATPase activity shows a considerable increase during incubation of mitochondria, reaching its maximum with respect to both functions 1--2 min after addition of ATP. The data obtained are indicative of a lack of tight coupling between the H+-translocase and ATPase functions of mitochondrial H+-ATPase. The mechanism of action of H+-ATPase is discussed. PMID:37932

  2. Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts

    SciTech Connect

    Yao, GuanFeng; Feng, HaoTian; Cai, YanLing; Qi, WeiLi; Kong, KangMei . E-mail: kangmeikong@21cn.com

    2007-06-15

    V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V{sub 1} domain responsible for ATP hydrolysis and integral V{sub 0} domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.

  3. Myosin-X: a MyTH-FERM myosin at the tips of filopodia

    PubMed Central

    Kerber, Michael L.; Cheney, Richard E.

    2011-01-01

    Myosin-X (Myo10) is an unconventional myosin with MyTH4-FERM domains that is best known for its striking localization to the tips of filopodia and its ability to induce filopodia. Although the head domain of Myo10 enables it to function as an actin-based motor, its tail contains binding sites for several molecules with central roles in cell biology, including phosphatidylinositol (3,4,5)-trisphosphate, microtubules and integrins. Myo10 also undergoes fascinating long-range movements within filopodia, which appear to represent a newly recognized system of transport. Myo10 is also unusual in that it is a myosin with important roles in the spindle, a microtubule-based structure. Exciting new studies have begun to reveal the structure and single-molecule properties of this intriguing myosin, as well as its mechanisms of regulation and induction of filopodia. At the cellular and organismal level, growing evidence demonstrates that Myo10 has crucial functions in numerous processes ranging from invadopodia formation to cell migration. PMID:22124140

  4. Sodium, potassium-atpases in algae and oomycetes.

    PubMed

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells. PMID:16167182

  5. Unconventional myosin traffic in cells reveals a selective actin cytoskeleton

    PubMed Central

    Brawley, Crista M.; Rock, Ronald S.

    2009-01-01

    Eukaryotic cells have a self-organizing cytoskeleton where motors transport cargoes along cytoskeletal tracks. To understand the sorting process, we developed a system to observe single-molecule motility in a cellular context. We followed myosin classes V, VI, and X on triton-extracted actin cytoskeletons from Drosophila S2, mammalian COS-7, and mammalian U2OS cells. We find that these cells vary considerably in their global traffic patterns. The S2 and U2OS cells have regions of actin that either enhance or inhibit specific myosin classes. U2OS cells allow for 1 motor class, myosin VI, to move along stress fiber bundles, while motility of myosin V and X are suppressed. Myosin X motors are recruited to filopodia and the lamellar edge in S2 cells, whereas myosin VI motility is excluded from the same regions. Furthermore, we also see different velocities of myosin V motors in central regions of S2 cells, suggesting regional control of motor motility by the actin cytoskeleton. We also find unexpected features of the actin cytoskeletal network, including a population of reversed filaments with the barbed-end toward the cell center. This myosin motor regulation demonstrates that native actin cytoskeletons are more than just a collection of filaments. PMID:19478066

  6. Myosin filament 3D structure in mammalian cardiac muscle?

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2נ430 long, each of which was treated as an independent particle. The resulting 40 resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 repeat, with successive crown rotations of approximately 60, 60 and 0, rather than the regular 40 for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  7. Regulation of myosin II activity by actin architecture

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Stam, Samantha; McCall, Patrick; Munro, Edwin; Gardel, Margaret

    2015-03-01

    Networks of actin filaments containing myosin II motors generate forces and motions that promote biological processes such as cell division, motility, and cargo transport. In cells, actin filaments are arranged in various structures from disordered meshworks to tight bundles. Clusters of myosin II motors, known as myosin filaments, crosslink and generate force on neighboring actin filaments. We hypothesized that the local actin architecture controls the magnitude and duration of force generated by myosin II motors. We used fluorescence imaging to directly measure the mobility of myosin II filaments on actin networks and bundles with varying actin filament polarity, orientation, spacing, and length. On unipolar bundles, myosin exhibits fast, unidirectional motion consistent with their unloaded gliding speed. On mixed polarity bundles, myosin speed is reduced by one order of magnitude and marked by direction switching and trapping. Increasing filament spacing and bundle flexibility reduces the duration of trapping and enhances the mobility of motors. Simulations indicate that stable trapping is a signature of large generated forces while increased mobility indicates force release. Our data underscore that the efficiency of force generation by myosin motors in an actin network depends sensitively on its architecture and suggests actin crosslinking proteins are tuned to optimize actomyosin contractility.

  8. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Day, I. S.

    2001-01-01

    BACKGROUND: Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS: Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS: Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.

  9. Effect of a myosin regulatory light chain mutation K104E on actin-myosin interactions.

    PubMed

    Duggal, D; Nagwekar, J; Rich, R; Huang, W; Midde, K; Fudala, R; Das, H; Gryczynski, I; Szczesna-Cordary, D; Borejdo, J

    2015-05-15

    Familial hypertrophic cardiomyopathy (FHC) is the most common cause of sudden cardiac death in young individuals. Molecular mechanisms underlying this disorder are largely unknown; this study aims at revealing how disruptions in actin-myosin interactions can play a role in this disorder. Cross-bridge (XB) kinetics and the degree of order were examined in contracting myofibrils from the ex vivo left ventricles of transgenic (Tg) mice expressing FHC regulatory light chain (RLC) mutation K104E. Because the degree of order and the kinetics are best studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs in an ex vivo ventricle was minimized to ∼20. Autofluorescence and photobleaching were minimized by labeling the myosin lever arm with a relatively long-lived red-emitting dye containing a chromophore system encapsulated in a cyclic macromolecule. Mutated XBs were significantly better ordered during steady-state contraction and during rigor, but the mutation had no effect on the degree of order in relaxed myofibrils. The K104E mutation increased the rate of XB binding to thin filaments and the rate of execution of the power stroke. The stopped-flow experiments revealed a significantly faster observed dissociation rate in Tg-K104E vs. Tg-wild-type (WT) myosin and a smaller second-order ATP-binding rate for the K104E compared with WT myosin. Collectively, our data indicate that the mutation-induced changes in the interaction of myosin with actin during the contraction-relaxation cycle may contribute to altered contractility and the development of FHC. PMID:25770245

  10. On the kinetics that moves Myosin V

    NASA Astrophysics Data System (ADS)

    Maes, Christian; O'Kelly de Galway, Winny

    2015-10-01

    Molecular motor proteins such as Myosin V, Dynein or Kinesin are no ratchets, at least not with a flashing asymmetric potential; the crucial asymmetry is in the dynamical activity. We make that explicit in terms of a simple Markov model, emphasizing the kinetic (and non-thermodynamic) aspects of stochastic transport. The analysis shows the presence of a fluctuation symmetry in that part of the dynamical activity which is antisymmetric under reversal of trailing and leading head of the motor. The direction of the motor motion is determined by it.

  11. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  12. Skeletal muscle myosin is the autoantigen for experimental autoimmune myositis.

    PubMed

    Nemoto, Hiroshi; Bhopale, Mahendra K; Constantinescu, Cris S; Schotland, Donald; Rostami, Abdolmohamad

    2003-06-01

    Experimental autoimmune myositis (EAM) is a rodent model for human inflammatory muscle disease (IMD). It can be induced by immunization of rodents with skeletal muscle homogenate and adjuvant. The specific myositogenic autoantigen has not been clearly identified although some evidence points to skeletal muscle myosin. In this report we strengthen this evidence, showing that Lewis rats immunized with purified skeletal muscle myosin develop EAM with the same pattern and severity as EAM induced by whole rabbit skeletal muscle homogenate (WRM). Multiple inflammatory lesions are detected histopathologically in the biceps, quadriceps, and gastrocnemius muscles. Myosin-reactive T cells from animals immunized either with myosin or with WRM have similar patterns of antigen-induced proliferation. The results show that myosin, a component of skeletal muscle, is at least one autoantigen in EAM. PMID:12782010

  13. Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation.

    PubMed

    Ren, Yixin; West-Foyle, Hoku; Surcel, Alexandra; Miller, Christopher; Robinson, Douglas N

    2014-12-15

    How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system. PMID:25318674

  14. Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation

    PubMed Central

    Ren, Yixin; West-Foyle, Hoku; Surcel, Alexandra; Miller, Christopher; Robinson, Douglas N.

    2014-01-01

    How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system. PMID:25318674

  15. Structural divergence of the rotary ATPases.

    PubMed

    Muench, Stephen P; Trinick, John; Harrison, Michael A

    2011-08-01

    The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F₁F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H⁺-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A₁A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines. PMID:21426606

  16. Identification and Localization of Myosin Superfamily Members in Fish Retina and Retinal Pigmented Epithelium

    PubMed Central

    Lin-Jones, Jennifer; Sohlberg, Lorraine; Dos, Andra; Breckler, Jennifer; Hillman, David W.; Burnside, Beth

    2009-01-01

    Myosins are cytoskeletal motors critical for generating the forces necessary for establishing cell structure and mediating actin-dependent cell motility. In each cell type a multitude of myosins are expressed, each myosin contributing to aspects of morphogenesis, transport, or motility occurring in that cell type. To examine the roles of myosins in individual retinal cell types, we first used polymerase chain reaction (PCR) screening to identify myosins expressed in retina and retinal pigmented epithelium (RPE), followed by immunohistochemistry to examine the cellular and subcellular localizations of seven of these expressed myosins. In the myosin PCR screen of cDNA from striped bass retina and striped bass RPE, we amplified 17 distinct myosins from eight myosin classes from retinal cDNA and 11 distinct myosins from seven myosin classes from RPE cDNA. By using antibodies specific for myosins IIA, IIB, IIIA, IIIB, VI, VIIA, and IXB, we examined the localization patterns of these myosins in retinas and RPE of fish, and in isolated inner/outer segment fragments of green sunfish photoreceptors. Each of the myosins exhibited unique expression patterns in fish retina. Individual cell types expressed multiple myosin family members, some of which colocalized within a particular cell type. Because much is known about the functions and properties of these myosins from studies in other systems, their cellular and subcellular localization patterns in the retina help us understand which roles they might play in the vertebrate retina and RPE. PMID:19137585

  17. Saturation transfer electron parametric resonance of an indane-dione spin-label. Calibration with hemoglobin and application to myosin rotational dynamics.

    PubMed Central

    Roopnarine, O; Hideg, K; Thomas, D D

    1993-01-01

    We have used a recently synthesized indane-dione spin label (2-[-oxyl-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methenyl]in dane-1,3-dione (InVSL) to study the rotational dynamics of myosin, with saturation-transfer electron paramagnetic resonance (ST-EPR). To determine effective rotational correlation times (tau effr) from InVSL spectra, reference spectra corresponding to known correlation times (tau r) were obtained from InVSL-hemoglobin undergoing isotropic rotational motion in aqueous glycerol solutions. These spectra were used to generate plots of spectral parameters vs. tau r. These plots should be used to analyze ST-EPR spectra of InVSL bound to other proteins, because the spectra are different from those of tempo-maleimide-spin-labeled hemoglobin, which have been used previously as ST-EPR standards. InVSL was covalently attached to the head (subfragment-1; S1) of myosin. EPR spectra and K/EDTA-ATPase activity showed that 70-95% of the heads were labeled, with > or = 90% of the label bound to either cys 707 (SH1) or cys 697 (SH2). ST-EPR spectra of InVSL-S1 attached to glass beads, bound to actin in myofibrils, or precipitated with ammonium sulfate indicated no submillisecond rotational motion. Therefore, InVSL is rigidly immobilized on the protein so that it reports the global rotation of the myosin head. The ST-EPR spectra of InVSL-myosin monomers and filaments indicated tau effr values of 4 and 13 microseconds, respectively, showing that myosin heads undergo microsecond segmental rotations that are more restricted in filaments than in monomers. The observed tau effr values are longer than those previously obtained with other spin labels bound to myosin heads, probably because InVSL binds more rigidly to the protein and/or with a different orientation. Further EPR studies of InVSL-myosin in solution and in muscle fibers should prove complementary to previous work with other labels. PMID:8396449

  18. Accessibility of Myofilament Cysteines and Effects on ATPase Depend on the Activation State during Exposure to Oxidants

    PubMed Central

    Gross, Sean M.; Lehman, Steven L.

    2013-01-01

    Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types. PMID:23894416

  19. Stochastic dynamics and mechanosensitivity of myosin II minifilaments

    NASA Astrophysics Data System (ADS)

    Albert, Philipp J.; Erdmann, Thorsten; Schwarz, Ulrich S.

    2014-09-01

    Tissue cells are in a state of permanent mechanical tension that is maintained mainly by myosin II minifilaments, which are bipolar assemblies of tens of myosin II molecular motors contracting actin networks and bundles. Here we introduce a stochastic model for myosin II minifilaments as two small myosin II motor ensembles engaging in a stochastic tug-of-war. Each of the two ensembles is described by the parallel cluster model that allows us to use exact stochastic simulations and at the same time to keep important molecular details of the myosin II cross-bridge cycle. Our simulation and analytical results reveal a strong dependence of myosin II minifilament dynamics on environmental stiffness that is reminiscent of the cellular response to substrate stiffness. For small stiffness, minifilaments form transient crosslinks exerting short spikes of force with negligible mean. For large stiffness, minifilaments form near permanent crosslinks exerting a mean force which hardly depends on environmental elasticity. This functional switch arises because dissociation after the power stroke is suppressed by force (catch bonding) and because ensembles can no longer perform the power stroke at large forces. Symmetric myosin II minifilaments perform a random walk with an effective diffusion constant which decreases with increasing ensemble size, as demonstrated for rigid substrates with an analytical treatment.

  20. The role of myosin phosphorylation in anaphase chromosome movement.

    PubMed

    Sheykhani, Rozhan; Shirodkar, Purnata V; Forer, Arthur

    2013-01-01

    This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production. Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin. PMID:23566798

  1. Phosphate and ADP differently inhibit coordinated smooth muscle myosin groups.

    PubMed

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B; Mackey, Michael C; Lauzon, Anne-Marie

    2015-02-01

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 ?m. Smooth muscle myosin filaments are exponentially distributed with ?150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (?) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ? and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state. PMID:25650929

  2. Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups

    PubMed Central

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B.; Mackey, Michael C.; Lauzon, Anne-Marie

    2015-01-01

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo—suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state. PMID:25650929

  3. Is the Paracoccus halodenitrificans ATPase a chimeric enzyme?

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1996-01-01

    Membranes from Paracoccus halodenitrificans contain an ATPase that is most active in the absence of NaCl. The most unusual characteristic of the enzyme is its pattern of sensitivity to various inhibitors. Azide and rhodamine 6G, inhibitors of F1F0-ATPases, inhibit ATP hydrolysis as do bafilomycin A1, concanamycin A (folimycin), N-ethylmaleimide, and p-chloromercuriphenylsulfonate which are inhibitors of vacuolar ATPases. This indiscriminate sensitivity suggests that this ATPase may be a hybrid and that caution should be exercised when using inhibition as a diagnostic for distinguishing between F1F0-ATPases and vacuolar ATPases.

  4. Determination of rate constants for turnover of myosin isoforms in rat myocardium: implications for in vivo contractile kinetics

    PubMed Central

    Locher, Matthew R.; Razumova, Maria V.; Stelzer, Julian E.; Norman, Holly S.; Patel, Jitandrakumar R.; Moss, Richard L.

    2009-01-01

    The ventricles of small mammals express mostly ?-myosin heavy chain (?-MHC), a fast isoform, whereas the ventricles of large mammals, including humans, express ?10% ?-MHC on a predominately ?-MHC (slow isoform) background. In failing human ventricles, the amount of ?-MHC is dramatically reduced, leading to the hypothesis that even small amounts of ?-MHC on a predominately ?-MHC background confer significantly higher rates of force development in healthy ventricles. To test this hypothesis, it is necessary to determine the fundamental rate constants of cross-bridge attachment (fapp) and detachment (gapp) for myosins composed of 100% ?-MHC or ?-MHC, which can then be used to calculate twitch time courses for muscles expressing variable ratios of MHC isoforms. In the present study, rat skinned trabeculae expressing either 100% ?-MHC or 100% ?-MHC were used to measure ATPase activity, isometric force, and the rate constant of force redevelopment (ktr) in solutions of varying Ca2+ concentrations. The rate of ATP utilization was ?2.5-fold higher in preparations expressing 100% ?-MHC compared with those expressing only ?-MHC, whereas ktr was 2-fold faster in the ?-MHC myocardium. From these variables, we calculated fapp to be approximately threefold higher for ?-MHC than ?-MHC and gapp to be twofold higher in ?-MHC. Mathematical modeling of isometric twitches predicted that small increases in ?-MHC significantly increased the rate of force development. These results suggest that low-level expression of ?-MHC has significant effects on contraction kinetics. PMID:19395549

  5. N-Terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size.

    PubMed

    Wang, Yihua; Ajtai, Katalin; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Burghardt, Thomas P

    2016-01-12

    Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (?mys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ?19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine ?mys (?17?mys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (?43?mys). Step-size and step-frequency were measured using the Qdot motility assay. Both ?17?mys and ?43?mys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method. PMID:26671638

  6. Intermolecular Autophosphorylation Regulates Myosin IIIa Activity and Localization in Parallel Actin Bundles*

    PubMed Central

    Quintero, Omar A.; Moore, Judy E.; Unrath, William C.; Manor, Uri; Salles, Felipe T.; Grati, M'hamed; Kachar, Bechara; Yengo, Christopher M.

    2010-01-01

    Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 ?m, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A. PMID:20826793

  7. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    SciTech Connect

    Minoda, Hiroki; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 ; Okabe, Tatsuhiro; Inayoshi, Yuhri; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Katayama, Eisaku; Wakabayashi, Takeyuki; Akimoto, Tsuyoshi; Sugi, Haruo

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  8. Principles of Unconventional Myosin Function and Targeting

    PubMed Central

    Hartman, M. Amanda; Finan, Dina; Sivaramakrishnan, Sivaraj; Spudich, James A.

    2016-01-01

    Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins’ roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels. PMID:21639800

  9. Dual role of myosin II during Drosophila imaginal disc metamorphosis.

    PubMed

    Aldaz, Silvia; Escudero, Luis M; Freeman, Matthew

    2013-01-01

    The motor protein non-muscle myosin II is a major driver of the movements that sculpt three-dimensional organs from two-dimensional epithelia. The machinery of morphogenesis is well established but the logic of its control remains unclear in complex organs. Here we use live imaging and ex vivo culture to report a dual role of myosin II in regulating the development of the Drosophila wing. First, myosin II drives the contraction of a ring of cells that surround the squamous peripodial epithelium, providing the force to fold the whole disc through about 90. Second, myosin II is needed to allow the squamous cells to expand and then retract at the end of eversion. The combination of genetics and live imaging allows us to describe and understand the tissue dynamics, and the logic of force generation needed to transform a relatively simple imaginal disc into a more complex and three-dimensional adult wing. PMID:23612302

  10. Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity

    PubMed Central

    Egan, Paul; Moore, Jeffrey; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2015-01-01

    In complex systems with stochastic components, systems laws often emerge that describe higher level behavior regardless of lower level component configurations. In this paper, emergent laws for describing mechanochemical systems are investigated for processive myosin-actin motility systems. On the basis of prior experimental evidence that longer processive lifetimes are enabled by larger myosin ensembles, it is hypothesized that emergent scaling laws could coincide with myosin-actin contact probability or system energy consumption. Because processivity is difficult to predict analytically and measure experimentally, agent-based computational techniques are developed to simulate processive myosin ensembles and produce novel processive lifetime measurements. It is demonstrated that only systems energy relationships hold regardless of isoform configurations or ensemble size, and a unified expression for predicting processive lifetime is revealed. The finding of such laws provides insight for how patterns emerge in stochastic mechanochemical systems, while also informing understanding and engineering of complex biological systems. PMID:25885169

  11. Localization of myosin-V in the centrosome

    PubMed Central

    Espreafico, Enilza M.; Coling, Donald E.; Tsakraklides, Vasiliki; Krogh, Karin; Wolenski, Joseph S.; Kalinec, Gilda; Kachar, Bechara

    1998-01-01

    The perinuclear localization of myosin-V was investigated in a variety of cultured mammalian cells and in primary cultures of rat hippocampus. In all cells investigated, myosin-V immunoreactivity was associated with the centrosome. In interphase cells, myosin-V was found in pericentriolar material, and in both mother and daughter centrioles. These results were obtained by using two different fixation protocols with three different affinity-purified antibodies that recognized a single band in Western blots. During cell division, myosin-V staining was intense throughout the cytoplasm and was concentrated in a trail between migrating centrioles and in the mitotic spindle poles and spindle fibers. The centrosome targeting site was determined to reside within the globular tail domain, because centrosome association also was observed in living cells transfected with DNA encoding the tail domain fused with a green fluorescent protein tag, but not in cells transfected with the vector encoding green fluorescent protein by itself. PMID:9671730

  12. Biosynthesis of the tonoplast H sup + -ATPase

    SciTech Connect

    Randall, S.K. ); Sze, H. )

    1989-04-01

    To determine whether the tonoplast H{sup +}-ATPase was differentially synthesized in oat seedlings, sections were labeled in vivo with ({sup 35}S)-methionine and ATPase subunits were immunoprecipitated. Subunits were detected in all portions of the seedling with the exception of the seed. The intracellular site of synthesis for two peripheral ATPase subunits was investigated. RNA encoding the 72 kDa (catalytic) subunit was found in membrane-bound polysomes. In contrast, message for the 60 kDa subunit was found on free polysomes. Polypeptides synthesized in vivo or obtained from RNA translated in vitro exhibited no apparent size differences, suggesting the absence of cleaved precursors for the 72 or 60 kDa subunits.

  13. ATPase Activity Measurements Using Radiolabeled ATP.

    PubMed

    Swarts, Herman G P; Koenderink, Jan B

    2016-01-01

    ATP provides the energy that is essential for all P-type ATPases to actively transport their substrates against an existing gradient. This ATP hydrolysis can be measured using different methods. Here, we describe a method that uses radiolabeled [γ-(32)P]ATP, which is hydrolyzed by P-type ATPases to ADP and (32)Pi. Activated charcoal is used to bind the excess of [γ-(32)P]ATP, which can be separated from the unbound (32)Pi by centrifugation. With this method, a wide range (0.1 μM-10 mM) of ATP can be used. In addition, we also describe in detail how ATP hydrolysis is translated into ATPase activity. PMID:26695028

  14. Melanophilin Stimulates Myosin-5a Motor Function by Allosterically Inhibiting the Interaction between the Head and Tail of Myosin-5a

    PubMed Central

    Yao, Lin-Lin; Cao, Qing-Juan; Zhang, Hai-Man; Zhang, Jie; Cao, Yang; Li, Xiang-dong

    2015-01-01

    The tail-inhibition model is generally accepted for the regulation of myosin-5a motor function. Inhibited myosin-5a is in a folded conformation in which its globular tail domain (GTD) interacts with its head and inhibits its motor function, and high Ca2+ or cargo binding may reduce the interaction between the GTD and the head of myosin-5a, thus activating motor activity. Although it is well established that myosin-5a motor function is regulated by Ca2+, little is known about the effects of cargo binding. We previously reported that melanophilin (Mlph), a myosin-5a cargo-binding protein, is capable of activating myosin-5a motor function. Here, we report that Mlph-GTBDP, a 26 amino-acid-long peptide of Mlph, is sufficient for activating myosin-5a motor function. We demonstrate that Mlph-GTBDP abolishes the interaction between the head and GTD of myosin-5a, thereby inducing a folded-to-extended conformation transition for myosin-5a and activating its motor function. Mutagenesis of the GTD shows that the GTD uses two distinct, non-overlapping regions to interact with Mlph-GTBDP and the head of myosin-5a. We propose that the GTD is an allosteric protein and that Mlph allosterically inhibits the interaction between the GTD and head of myosin-5a, thereby activating myosin-5a motor function. PMID:26039755

  15. Walking mechanism of the intracellular cargo transporter myosin V

    NASA Astrophysics Data System (ADS)

    Schmitz, Stephan; Smith-Palmer, Jayne; Sakamoto, Takeshi; Sellers, James R.; Veigel, Claudia

    2006-08-01

    Motor proteins of the myosin, kinesin and dynein families transport vesicles and other cargo along tracks of actin filaments or microtubules through the cytoplasm of cells. The mechanism by which myosin V, a motor involved in several types of intracellular transport, moves processively along actin filaments, has recently been the subject of many single molecule biophysical studies. Details of the molecular mechanisms by which this molecular motor operates are starting to emerge.

  16. [Molecular and functional diversity of NA,K-ATPase and renal H,K-ATPases].

    PubMed

    Jaisser, F

    1996-01-01

    Potassium homeostasis is a determinant factor in the maintenance of many vital functions. Cell excitability, for instance, in striate and cardiac muscle, as well as in neurons, is dependent upon the ratio of potassium levels on either side of the plasmic membrane. Acute or chronic mechanisms of adjustment to disorders of bodily potassium balance exist in muscle, the kidney and distal colon. Na+K(+)-ATPase is involved in potassium transfers between the extracellular and intracellular compartments, in particular in muscle, enabling the creation of an appropriate trans-membrane K gradient. Na+K(+)-ATPase also participates in the development and maintenance of a transmembrane potassium electrochemical gradient necessary for potassium secretion processes in the kidney or distal colon. Colonic and renal H+K(+)-ATPases, so-called non-gastric H+K(+)-ATPases, are involved in the absorption of potassium from the gastrointestinal lumen or urinary fluid. They have an important role to play during chronic disorders, e.g. chronic bodily potassium depletion. Renal H+K(+)-ATPases and Na+K-ATPase are P-ATPases, consisting of a heterodimer of two alpha and beta sub-units. Several isoforms have been identified, on both a molecular and functional basis, for both the alpha and beta sub-unit. These two ATPases form part of the Na+K(+)-ATPase/H+K(+)-ATPase gene group. These pumps share many structural and functional similarities, but also particular functional specificities, probably involved in separate physiological roles for each isoform. Four isoforms of the alpha sub-unit and two isoforms of the beta sub-unit of Na+K(+)-ATPase have been identified. Sensitivity to ouabain, a Na+K(+)-ATPase inhibitor, differs according to the alpha isoform present in the alpha beta heterodimer. It is also involved in the catalytic cycle and influences pump potassium affinity. Several H+K(+)-ATPases have been identified from a molecular standpoint: gastric H+K(+)-ATPases and a colonic H+K(+)-ATPase found more recently. Recent studies have shown that both these H+K(+)-ATPases exist in the kidney. "Gastric" H+K(+)-ATPase is active along the entire length of the collecting tubule, in rats exposed to a normal potassium intake. In contrast, colonic H+K(+)-ATPase is active only in the cells of the external medullary collecting duct. This activity cannot be detected in animals on a standard diet but is very powerfully induced by potassium depletion. Activity is independent of steroidal status and of aldosterone in particular. Identification of a molecular homologue in the bladder of the amphibian Bufo marinus (the functional equivalent of the cortical collecting duct of mammals) has enabled the development of functional tests by activity in the oocyte of Xenopus laevis. The use this functional approach has shown that bladder H+K(+)-ATPase, just like that of rat distal colon, is sensitive to ouabain, an inhibitor considered up to now to be specific to Na+K(+)-ATPase. In contrast, this H+K(+)-ATPase shows little or no sensitivity to Sch 28080, a "classical" gastric H+K(+)-ATPase inhibitor. It thus seems that two H+K(+)-ATPases, different from a molecular standpoint, exist in rat kidney. They differ in terms of their cellular activity, regulation and functional properties. This is strongly suggestive of a specific role of each of them in potassium homeostasis, a role which remains to be defined. The use of genetically modified animals, as well as of physiological studies more focussed on this question, should provide clarification of the specific functional role of each isoform of the alpha and beta sub-units of renal H+K(+)-ATPases and Na+K(+)-ATPase. Extrapolation of these results to human pathophysiology is quite another challenge. Control of Na+K(+)-ATPase activity by endoouabain and its effects on cardiovascular pathophysiology must be identified. An H+K(+)-ATPase with molecular and functional characteristics similar to those of amphibian bladder and rat colon H+K(+)-A PMID:9019667

  17. Myocardial Na,K-ATPase: Clinical aspects

    PubMed Central

    Kjeldsen, Keld

    2003-01-01

    The specific binding of digitalis glycosides to Na,K-ATPase is used as a tool for Na,K-ATPase quantification with high accuracy and precision. In myocardial biopsies from patients with heart failure, total Na,K-ATPase concentration is decreased by around 40%; a correlation exists between a decrease in heart function and a decrease in Na,K-ATPase concentration. During digitalization, around 30% of remaining pumps are occupied by digoxin. Myocardial Na,K-ATPase is also influenced by other drugs used for the treatment of heart failure. Thus, potassium loss during diuretic therapy has been found to reduce myocardial Na,K-ATPase, whereas angiotensin-converting enzyme inhibitors may stimulate Na,K pump activity. Furthermore, hyperaldosteronism induced by heart failure has been found to decrease Na,K-ATPase activity. Accordingly, treatment with the aldosterone antagonist, spironolactone, may also influence Na,K-ATPase activity. The importance of Na,K pump modulation with heart disease, inhibition in digitalization and other effects of medication should be considered in the context of sodium, potassium and calcium regulation. It is recommended that digoxin be administered to heart failure patients who, after institution of mortality-reducing therapy, still have heart failure symptoms, and that the therapy be continued if symptoms are revealed or reduced. Digitalis glycosides are the only safe inotropic drugs for oral use that improve hemodynamics in heart failure. An important aspect of myocardial Na,K pump affection in heart disease is its influence on extracellular potassium (Ke) homeostasis. Two important aspects should be considered: potassium handling among myocytes, and effects of potassium entering the extracellular space of the heart via the bloodstream. It should be noted that both of these aspects of Ke homeostasis are affected by regulatory aspects, eg, regulation of the Na,K pump by physiological and pathophysiological conditions, as well as by medical treatments. Digitalization has been shown to affect both parameters. Furthermore, in experimental animals, potassium loading and depletion are found to significantly affect Ke handling. The effects of potassium depletion are of special interest because this condition often occurs in patients treated with diuretics. In human congenital long QT syndrome caused by mutations in genes coding for potassium channels, exercise and potassium depletion are well known for their potential to elicit arrhythmias and sudden death. There is a need for further evaluation of the dynamic aspects of potassium handling in the heart, as well as in the periphery. It is recommended that resting plasma potassium be maintained at around 4 mmol/L. PMID:19641704

  18. Fast and slow myosins as markers of muscle injury

    PubMed Central

    Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cuss, R

    2008-01-01

    Objective: The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Methods: Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. Results: The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. Conclusions: The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making. PMID:18070807

  19. An invertebrate smooth muscle with striated muscle myosin filaments.

    PubMed

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-10-20

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  20. Contribution of myosin II activity to cell spreading dynamics.

    PubMed

    Nisenholz, Noam; Paknikar, Aishwarya; Köster, Sarah; Zemel, Assaf

    2016-01-14

    Myosin II activity and actin polymerization at the leading edge of the cell are known to be essential sources of cellular stress. However, a quantitative account of their separate contributions is still lacking; so is the influence of the coupling between the two phenomena on cell spreading dynamics. We present a simple analytic elastic theory of cell spreading dynamics that quantitatively demonstrates how actin polymerization and myosin activity cooperate in the generation of cellular stress during spreading. Consistent with experiments, myosin activity is assumed to polarize in response to the stresses generated during spreading. The characteristic response time and the overall spreading time are predicted to determine different evolution profiles of cell spreading dynamics. These include, a (regular) monotonic increase of cell projected area with time, a non-monotonic (overshooting) profile with a maximum, and damped oscillatory modes. In addition, two populations of myosin II motors are distinguished based on their location in the lamella; those located above the major adhesion zone at the cell periphery are shown to facilitate spreading whereas those in deeper regions of the lamella are shown to oppose spreading. We demonstrate that the attenuation of myosin activity in the two regions may result in reciprocal effects on spreading. These findings provide important new insight into the function of myosin II motors in the course of spreading. PMID:26481613

  1. Rotation, structure, and classification of prokaryotic V-ATPase.

    PubMed

    Yokoyama, Ken; Imamura, Hiromi

    2005-12-01

    The prokaryotic V-type ATPase/synthases (prokaryotic V-ATPases) have simpler subunit compositions than eukaryotic V-ATPases, and thus are useful subjects for studying chemical, physical and structural properties of V-ATPase. In this review, we focus on the results of recent studies on the structure/function relationships in the V-ATPase from the eubacterium Thermus thermophilus. First, we describe single-molecule analyses of T. thermophilus V-ATPase. Using the single-molecule technique, it was established that the V-ATPase is a rotary motor. Second, we discuss arrangement of subunits in V-ATPase. Third, the crystal structure of the C-subunit (homolog of eukaryotic d-subunit) is described. This funnel-shape subunit appears to cap the proteolipid ring in the V(0) domain in order to accommodate the V(1) central stalk. This structure seems essential for the regulatory reversible association/dissociation of the V(1) and the V(0) domains. Last, we discuss classification of the V-ATPase family. We propose that the term prokaryotic V-ATPases should be used rather than the term archaeal-type ATPase (A-ATPase). PMID:16691473

  2. UNC-45/CRO1/She4p (UCS) Protein Forms Elongated Dimer and Joins Two Myosin Heads Near Their Actin Binding Region

    SciTech Connect

    H Shi; G Blobel

    2011-12-31

    UNC-45/CRO1/She4p (UCS) proteins have variously been proposed to affect the folding, stability, and ATPase activity of myosins. They are the only proteins known to interact directly with the motor domain. To gain more insight into UCS function, we determined the atomic structure of the yeast UCS protein, She4p, at 2.9 {angstrom} resolution. We found that 16 helical repeats are organized into an L-shaped superhelix with an amphipathic N-terminal helix dangling off the short arm of the L-shaped molecule. In the crystal, She4p forms a 193-{angstrom}-long, zigzag-shaped dimer through three distinct and evolutionary conserved interfaces. We have identified She4p's C-terminal region as a ligand for a 27-residue-long epitope on the myosin motor domain. Remarkably, this region consists of two adjacent, but distinct, binding epitopes localized at the nucleotide-responsive cleft between the nucleotide- and actin-filament-binding sites. One epitope is situated inside the cleft, the other outside the cleft. After ATP hydrolysis and Pi ejection, the cleft narrows at its base from 20 to 12 {angstrom} thereby occluding the inside the cleft epitope, while leaving the adjacent, outside the cleft binding epitope accessible to UCS binding. Hence, one cycle of higher and lower binding affinity would accompany one ATP hydrolysis cycle and a single step in the walk on an actin filament rope. We propose that a UCS dimer links two myosins at their motor domains and thereby functions as one of the determinants for step size of myosin on actin filaments.

  3. N-Methyl-D-aspartate Receptor Subunits Are Non-myosin Targets of Myosin Regulatory Light Chain*

    PubMed Central

    Bajaj, Gaurav; Zhang, Yong; Schimerlik, Michael I.; Hau, Andrew M.; Yang, Jing; Filtz, Theresa M.; Kioussi, Chrissa; Ishmael, Jane E.

    2009-01-01

    Excitatory synapses contain multiple members of the myosin superfamily of molecular motors for which functions have not been assigned. In this study we characterized the molecular determinants of myosin regulatory light chain (RLC) binding to two major subunits of the N-methyl-d-aspartate receptor (NR). Myosin RLC bound to NR subunits in a manner that could be distinguished from the interaction of RLC with the neck region of non-muscle myosin II-B (NMII-B) heavy chain; NR-RLC interactions did not require the addition of magnesium, were maintained in the absence of the fourth EF-hand domain of the light chain, and were sensitive to RLC phosphorylation. Equilibrium fluorescence spectroscopy experiments indicate that the affinity of myosin RLC for NR1 is high (30 nm) in the context of the isolated light chain. Binding was not favored in the context of a recombinant NMII-B subfragment one, indicating that if the RLC is already bound to NMII-B it is unlikely to form a bridge between two binding partners. We report that sequence similarity in the GXXXR portion of the incomplete IQ2 motif found in NMII heavy chain isoforms likely contributes to recognition of NR2A as a non-myosin target of the RLC. Using site-directed mutagenesis to disrupt NR2A-RLC binding in intact cells, we find that RLC interactions facilitate trafficking of NR1/NR2A receptors to the cell membrane. We suggest that myosin RLC can adopt target-dependent conformations and that a role for this light chain in protein trafficking may be independent of the myosin II complex. PMID:18945678

  4. Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Bandman, Everett

    1985-02-01

    The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

  5. The mechanism of Torsin ATPase activation.

    PubMed

    Brown, Rebecca S H; Zhao, Chenguang; Chase, Anna R; Wang, Jimin; Schlieker, Christian

    2014-11-11

    Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsin-activator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism. PMID:25352667

  6. The mechanism of Torsin ATPase activation

    PubMed Central

    Brown, Rebecca S. H.; Zhao, Chenguang; Chase, Anna R.; Wang, Jimin; Schlieker, Christian

    2014-01-01

    Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsinactivator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism. PMID:25352667

  7. Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1985-01-01

    Membranes from Halobacterium saccharovorum contained a cryptic ATPase which required Mg(2+) or Mn(2+) and was activated by Triton X-100. The optimal pH for ATP hydrolysis was 9-10. ATP or GTP were hydrolyzed at the same rate while ITP, CTP, and UTP were hydrolyzed at about half that rate. The products of ATP hydrolysis were ADP and phosphate. The ATPase required high concentrations (3.5 M) of NaCl for maximum activity. ADP was a competitive inhibitor of the activity, with an apparent Ki of 50 micro-M. Dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis. The inhibition was marginal at the optimum pH of the enzyme. When the ATPase was preincubated with DCCD at varying pH values, but assayed at the optimal pH for activity, DCCD inhibition was observed to increase with increasing acidity of the preincubation medium. DCCD inhibition was also dependent on time of preincubation, and protein and DCCD concentrations. When preincubated at pH 6.0 for 4 h at a protein:DCCD ratio of 40 (w/w), ATPase activity was inhibited 90 percent.

  8. Functions of plant-specific myosin XI: from intracellular motility to plant postures.

    PubMed

    Ueda, Haruko; Tamura, Kentaro; Hara-Nishimura, Ikuko

    2015-12-01

    The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture. PMID:26432645

  9. Reciprocal and dynamic polarization of planar cell polarity core components and myosin.

    PubMed

    Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C

    2015-01-01

    The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. PMID:25866928

  10. Comprehensive physical mechanism of two-headed biomotor myosin V

    NASA Astrophysics Data System (ADS)

    Xu, Yuzhi; Wang, Zhisong

    2009-12-01

    Two-headed biomotor myosin V autonomously coordinates its two identical heads in fuel consumption and mechanical stepping, so that the dimerized motor as a whole gains the capability of processive, unidirectional movement along cytoskeletal filament. How the dimer-level functions like sustained direction rectification and autonomous coordination emerge out of physical principles poses an outstanding question pertinent to motor protein biology as well as the nascent field of bioinspired nanomotors. Here the comprehensive physical mechanism for myosin V motor is identified by a dimer-level free-energy analysis that is methodologically calibrated against experimental data. A hallmark of the identified mechanism is a mechanically mediated symmetry breaking that occurs at the dimer level and prevails against ubiquitous thermal fluctuations. Another character is the onset of substantial free-energy gaps between major dimer-track binding configurations. The symmetry breaking is the basis for myosin V's directional rectification, and the energy gaps facilitate autonomous head-head coordination. The mechanism explains the experimental finding that myosin V makes ATP-independent consecutive steps under high opposing loads but not under pushing loads. Interestingly, myosin V and another major biomotor kinesin 1 are found to share essentially the same core mechanism but for distinctly different working regimes.

  11. Structural Basis for Myosin V Discrimination Between Distinct Cargoes

    SciTech Connect

    Pashkova,N.; Jin, Y.; Ramaswamy, S.; Weisman, L.

    2006-01-01

    Myosin V molecular motors move cargoes on actin filaments. A myosin V may move multiple cargoes to distinct places at different times. The cargoes attach to the globular tail of myosin V via cargo-specific receptors. Here we report the crystal structure at 2.2 {angstrom} of the myosin V globular tail. The overall tertiary structure has not been previously observed. There are several patches of highly conserved regions distributed on the surface of the tail. These are candidate attachment sites for cargo-specific receptors. Indeed, we identified a region of five conserved surface residues that are solely required for vacuole inheritance. Likewise, we identified a region of five conserved surface residues that are required for secretory vesicle movement, but not vacuole movement. These two regions are at opposite ends of the oblong-shaped cargo-binding domain, and moreover are offset by 180{sup o}. The fact that the cargo-binding areas are distant from each other and simultaneously exposed on the surface of the globular tail suggests that major targets for the regulation of cargo attachment are organelle-specific myosin V receptors.

  12. Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes.

    PubMed

    Baker, Nicola; Hamilton, Graham; Wilkes, Jonathan M; Hutchinson, Sebastian; Barrett, Michael P; Horn, David

    2015-07-21

    Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the compartmentalized two-sector rotary ATPases. PMID:26150481

  13. Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes

    PubMed Central

    Baker, Nicola; Hamilton, Graham; Wilkes, Jonathan M.; Hutchinson, Sebastian; Barrett, Michael P.; Horn, David

    2015-01-01

    Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-?-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the compartmentalized two-sector rotary ATPases. PMID:26150481

  14. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains

    PubMed Central

    1992-01-01

    Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid sequence identity with a 723-aa protein from mouse brain reported to be a glutamic acid decarboxylase. The neck region of chicken myosin-V, which contains the IQ-motifs, was demonstrated to contain the binding sites for CM by analyzing CM binding to bacterially expressed fusion proteins containing the head, neck, and tail domains. Immunolocalization of myosin-V in brain and in cultured cells revealed an unusual distribution for this myosin in both neurons and nonneuronal cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1469047

  15. Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle.

    PubMed

    Wu, X; Rao, K; Bowers, M B; Copeland, N G; Jenkins, N A; Hammer, J A

    2001-03-01

    The peripheral accumulation of melanosomes characteristic of wild-type mouse melanocytes is driven by a cooperative process involving long-range, bidirectional, microtubule-dependent movements coupled to capture and local movement in the actin-rich periphery by myosin Va, the product of the dilute locus. Genetic evidence suggests that Rab27a, the product of the ashen locus, functions with myosin Va in this process. Here we show that ashen melanocytes, like dilute melanocytes, exhibit normal dendritic morphology and melanosome biogenesis, an abnormal accumulation of end-stage melanosomes in the cell center, and rapid, bidirectional, microtubule-dependent melanosome movements between the cell center and the periphery. This phenotype suggests that ashen melanocytes, like dilute melanocytes, are defective in peripheral melanosome capture. Consistent with this, introduction into ashen melanocytes of cDNAs encoding wild-type and GTP-bound versions of Rab27a restores the peripheral accumulation of melanosomes in a microtubule-dependent manner. Conversely, introduction into wild-type melanocytes of the GDP-bound version of Rab27a generates an ashen/dilute phenotype. Rab27a colocalizes with end-stage melanosomes in wild-type cells, and is most concentrated in melanosome-rich dendritic tips, where it also colocalizes with myosin Va. Finally, neither endogenous myosin Va nor an expressed, GFP-tagged, myosin Va tail domain fusion protein colocalize with melanosomes in ashen melanocytes, in contrast to that seen previously in wild-type cells. These results argue that Rab27a serves to enable the myosinVa-dependent capture of melanosomes delivered to the periphery by bidirectional, microtubule-dependent transport, and that it does so by recruiting the myosin to the melanosome surface. We suggest that Rab27a, in its GTP-bound and melanosome-associated form, predominates in the periphery, and that it is this form that recruits the myosin, enabling capture. These results argue that Rab27a serves as a myosin Va 'receptor', and add to the growing evidence that Rab GTPases regulate vesicle motors as well as SNARE pairing. PMID:11228153

  16. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo.

    PubMed

    Wu, Fan; Guo, Xiaohua; Xu, Jing; Wang, Weiju; Li, Bingling; Huang, Qiaobing; Su, Lei; Xu, Qiulin

    2016-03-01

    We have previously reported that advanced glycation end products activated Rho-associated protein kinase and p38 mitogen-activated protein kinase, causing endothelial hyperpermeability. However, the mechanisms involved were not fully clarified. Here, we explored the role of myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability. Myosin light chain phosphorylation significantly increased by advanced glycation end products in endothelial cells in a time- and dose-dependent manner, indicating that myosin light chain phosphorylation is involved in the advanced glycation end product pathway. Advanced glycation end products also induced myosin phosphatase-targeting subunit 1 phosphorylation, and small interfering RNA knockdown of the receptor for advanced glycation end products, or blocking myosin light chain kinase with its inhibitor, ML-7, or small interfering RNA abated advanced glycation end product-induced myosin light chain phosphorylation. Advanced glycation end product-induced F-actin rearrangement and endothelial hyperpermeability were also diminished by inhibition of receptor for advanced glycation end product or myosin light chain kinase signalling. Moreover, inhibiting myosin light chain kinase with ML-7 or blocking receptor for advanced glycation end product with its neutralizing antibody attenuated advanced glycation end product-induced microvascular hyperpermeability. Our findings suggest a novel role for myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability. PMID:26607798

  17. Effect of N-Terminal Extension of Cardiac Troponin I on the Ca(2+) Regulation of ATP Binding and ADP Dissociation of Myosin II in Native Cardiac Myofibrils.

    PubMed

    Gunther, Laura K; Feng, Han-Zhong; Wei, Hongguang; Raupp, Justin; Jin, Jian-Ping; Sakamoto, Takeshi

    2016-03-29

    Cardiac troponin I (cTnI) has a unique N-terminal extension that plays a role in modifying the calcium regulation of cardiac muscle contraction. Restrictive cleavage of the N-terminal extension of cTnI occurs under stress conditions as a physiological adaptation. Recent studies have shown that in comparison with controls, transgenic mouse cardiac myofibrils containing cTnI lacking the N-terminal extension (cTnI-ND) had a lower sensitivity to calcium activation of ATPase, resulting in enhanced ventricular relaxation and cardiac function. To investigate which step(s) of the ATPase cycle is regulated by the N-terminal extension of cTnI, here we studied the calcium dependence of cardiac myosin II ATPase kinetics in isolated cardiac myofibrils. ATP binding and ADP dissociation rates were measured by using stopped-flow spectrofluorimetry with mant-dATP and mant-dADP, respectively. We found that the second-order mant-dATP binding rate of cTnI-ND mouse cardiac myofibrils was 3-fold faster than that of wild-type myofibrils at low Ca(2+) concentrations. The ADP dissociation rate of cTnI-ND myofibrils was positively dependent on calcium concentration, while the wild-type controls were not significantly affected. These data from experiments using native cardiac myofibrils under physiological conditions indicate that modification of the N-terminal extension of cTnI plays a role in the calcium regulation of the kinetics of actomyosin ATPase. PMID:26862665

  18. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone

    PubMed Central

    Diefenbach, Thomas J.; Latham, Vaughan M.; Yimlamai, Dean; Liu, Canwen A.; Herman, Ira M.; Jay, Daniel G.

    2002-01-01

    The myosin family of motor proteins is implicated in mediating actin-based growth cone motility, but the roles of many myosins remain unclear. We previously implicated myosin 1c (M1c; formerly myosin I?) in the retention of lamellipodia (Wang et al., 1996). Here we address the role of myosin II (MII) in chick dorsal root ganglion neuronal growth cone motility and the contribution of M1c and MII to retrograde F-actin flow using chromophore-assisted laser inactivation (CALI). CALI of MII reduced neurite outgrowth and growth cone area by 25%, suggesting a role for MII in lamellipodial expansion. Micro-CALI of MII caused a rapid reduction in local lamellipodial protrusion in growth cones with no effects on filopodial dynamics. This is opposite to micro-CALI of M1c, which caused an increase in lamellipodial protrusion. We used fiduciary beads (Forscher et al., 1992) to observe retrograde F-actin flow during the acute loss of M1c or MII. Micro-CALI of M1c reduced retrograde bead flow by 76%, whereas micro-CALI of MII or the MIIB isoform did not. Thus, M1c and MIIB serve opposite and nonredundant roles in regulating lamellipodial dynamics, and M1c activity is specifically required for retrograde F-actin flow. PMID:12356865

  19. Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism.

    PubMed

    Chen, Chen; Tao, Tao; Wen, Cheng; He, Wei-Qi; Qiao, Yan-Ning; Gao, Yun-Qian; Chen, Xin; Wang, Pei; Chen, Cai-Ping; Zhao, Wei; Chen, Hua-Qun; Ye, An-Pei; Peng, Ya-Jing; Zhu, Min-Sheng

    2014-10-10

    Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration. PMID:25122766

  20. A monoclonal antibody to the embryonic myosin heavy chain of rat skeletal muscle.

    PubMed

    Gambke, B; Rubinstein, N A

    1984-10-10

    A monoclonal antibody, 2B6, has been prepared against the embryonic myosin heavy chain of rat skeletal muscle. On solid phase radioimmunoassay, 2B6 shows specificity to myosin isozymes known to contain the embryonic myosin heavy chain and on immunoblots of denatured contractile proteins and on competitive radioimmunoassay, it reacts only with the myosin heavy chain of embryonic myosin and not with the myosin heavy chain of neonatal or adult fast and slow myosin isozymes or with other contractile or noncontractile proteins. This specificity is maintained with cat, dog, guinea pig, and human myosins, but not with chicken myosins. 2B6 was used to define which isozymes in the developing animal contained the embryonic myosin heavy chain and to characterize the changes in embryonic myosin heavy chain in fast versus slow muscles during development. Finally, 2B6 was used to demonstrate that thyroid hormone hastens the disappearance of embryonic myosin heavy chain during development, while hypothyroidism retards its decrease. This confirmed our previous conclusion that thyroid hormones orchestrate changes in isozymes during development. PMID:6384219

  1. Expression, Splicing, and Evolution of the Myosin Gene Family in Plants1[W][OA

    PubMed Central

    Peremyslov, Valera V.; Mockler, Todd C.; Filichkin, Sergei A.; Fox, Samuel E.; Jaiswal, Pankaj; Makarova, Kira S.; Koonin, Eugene V.; Dolja, Valerian V.

    2011-01-01

    Plants possess two myosin classes, VIII and XI. The myosins XI are implicated in organelle transport, filamentous actin organization, and cell and plant growth. Due to the large size of myosin gene families, knowledge of these molecular motors remains patchy. Using deep transcriptome sequencing and bioinformatics, we systematically investigated myosin genes in two model plants, Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon). We improved myosin gene models and found that myosin genes undergo alternative splicing. We experimentally validated the gene models for Arabidopsis myosin XI-K, which plays the principal role in cell interior dynamics, as well as for its Brachypodium ortholog. We showed that the Arabidopsis gene dubbed HDK (for headless derivative of myosin XI-K), which emerged through a partial duplication of the XI-K gene, is developmentally regulated. A gene with similar architecture was also found in Brachypodium. Our analyses revealed two predominant patterns of myosin gene expression, namely pollen/stamen-specific and ubiquitous expression throughout the plant. We also found that several myosins XI can be rhythmically expressed. Phylogenetic reconstructions indicate that the last common ancestor of the angiosperms possessed two myosins VIII and five myosins XI, many of which underwent additional lineage-specific duplications. PMID:21233331

  2. Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules.

    PubMed

    Biemesderfer, Daniel; Mentone, Sue Ann; Mooseker, Mark; Hasson, Tama

    2002-05-01

    Myosin VI is a reverse-direction molecular motor implicated in membrane transport events. Because myosin VI is most highly expressed in the kidney, we investigated its renal localization by using high-resolution immunocytochemical and biochemical methods. Indirect immunofluorescence microscopy revealed myosin VI at the base of the brush border in proximal tubule cells. Horseradish peroxidase uptake studies, which labeled endosomes, and double staining for clathrin adapter protein-2 showed that myosin VI was closely associated with the intermicrovillar (IMV) coated-pit region of the brush border. Localization of myosin VI to the IMV region was confirmed at the electron microscopic level by colloidal gold labeling of ultrathin cryosections. In addition, antigen retrieval demonstrated a small but significant pool of myosin VI on the microvilli. To confirm the association of myosin VI with the IMV compartment, these membranes were separated from other membrane compartments by using 15-25% OptiPrep density gradients. Immunoblotting of the gradient fractions confirmed that myosin VI was enriched with markers for the IMV microdomain of the brush border, suggesting that myosin VI associates with proteins in this compartment. Finally, we examined the expression of myosin VI during nephron development. We found myosin VI present in a diffuse cytoplasmic pattern at stage II (S-shaped body phase) and that it was only redistributed fully to the brush border in the stage IV nephron. These studies support a model for myosin VI function in the endocytic process of the proximal tubule. PMID:11934687

  3. Chicken myosin IB mRNA is highly expressed in lymphoid tissues.

    PubMed Central

    Edgar, A J; Knight, A E; Bennett, J P

    1996-01-01

    Little is known about the functions of members of the myosin I family in vertebrates. Chicken myosin IB is a member of the amoeba-type subclass of myosin I molecules and tissue localisation studies may provide possible clues to the functions of these myosin I molecules. The expression of the mRNA of this unconventional myosin IB was analysed by in situ hybridization and compared with that of the well characterised brush border myosin I on frozen sections of tissues from the adult domestic chicken. High levels of myosin IB mRNA were found in the intestine and spleen, but were not found in other tissues examined such as brain, heart, lung, liver and kidney. In the intestine, myosin IB mRNA was much more abundant in the lamina propria than in the enterocytes, whereas brush border myosin I mRNA was restricted to the enterocytes. In the spleen, myosin IB mRNA expression was abundant in regions of white pulp, namely germinal centres, periellipsoid lymphocyte sheaths and periarteriolar lymphocyte sheaths. Lymphocytes are the major cell type in both the lamina propria and the white pulp of the spleen, which suggests that chicken myosin IB is highly expressed in lymphocytes. Lymphocyte recirculation depends on their migration through the endothelial layer and it is possible that myosin IB may have a role to play in this type of cell motility. Images Fig. 1 Fig. 2 Fig. 3 PMID:8886967

  4. Coarse-Grained Simulation of Myosin-V Movement

    PubMed Central

    Katsimitsoulia, Zoe; Taylor, William R.

    2012-01-01

    We describe the development of a hierarchic modelling method applied to simulating the processive movement of the myosin-V molecular motor protein along an actin filament track. In the hierarchic model, three different levels of protein structure resolution are represented: secondary structure, domain, and protein, with the level of detail changing according to the degree of interaction among the molecules. The integrity of the system is maintained using a tree of spatially organised bounding volumes and distance constraints. Although applied to an actin-myosin system, the hierarchic framework is general enough so that it may easily be adapted to a number of other large biomolecular systems containing in the order of 100 proteins. We compared the simulation results with biophysical data, and despite the lack of atomic detail in our model, we find good agreement and can even suggest some refinements to the current model of myosin-V motion. PMID:22675402

  5. Preliminary research on myosin light chain kinase in rabbit liver

    PubMed Central

    Ren, Bin; Zhu, Hua-Qing; Luo, Zhao-Feng; Zhou, Qing; Wang, Yuan; Wang, Yu-Zhen

    2001-01-01

    AIM: To study preliminarily the properties of myosin light chain kinase (MLCK) in rabbit liver. METHODS: The expression of MLCK was detected by reverse transcription-polymerase chain reaction (RT-PCR); the MLCK was obtained from rabbit liver, and its activity was analyzed by ?-32 P incorporation technique to detect the phosphorylation of myosin light chain. RESULTS: MLCK was expressed in rabbit liver, and the activity of the enzyme was similar to rabbit smooth muscle MLCK, and calmodulin- dependent. When the concentration was 0.65 mg L, the activity was at the highest level. CONCLUSION: MLCK expressed in rabbit liver may catalyze the phosphorylation of myosin light chain, which may play important roles in the regulation of hepatic cell functions. PMID:11854919

  6. Reversible association of myosin with the platelet cytoskeleton

    NASA Astrophysics Data System (ADS)

    Nachmias, Vivianne T.; Kavaler, Joshua; Jacubowitz, Sam

    1985-01-01

    Platelets circulating in the human blood stream are smooth disk-shaped structures. The disks change within seconds of exposure to ADP or thrombin to irregular spheres bearing filopodia and pseudopodia. It is well-established that platelets also change shape (although more slowly) when chilled to 5C1-5 and revert to disks on rewarming1,3. This cold-induced shape change may be due to the depolymerization of the submembranous microtubule ring. However, we found that chilling in the presence of Taxol, which stabilizes the microtubules, still results in shape change. Chilled platelets show an increase in the amount of myosin in the Triton-X insoluble residue or `cytoskeleton'6-9 which is correlated in time both with phosphorylation of the myosin regulatory light chain and with the induced shape change. We suggest here that the slow cold-induced change from disks to spheres is due primarily to a gradual activation of myosin.

  7. Understanding myosin functions in plants: are we there yet?

    PubMed

    Madison, Stephanie L; Nebenfhr, Andreas

    2013-12-01

    Myosins are motor proteins that drive movements along actin filaments and have long been assumed to be responsible for cytoplasmic streaming in plant cells. This conjecture is now firmly established by genetic analysis in the reference species, Arabidopsis thaliana. This work and similar approaches in the moss, Physcomitrella patens, also established that myosin-driven movements are necessary for cell growth and polarity, organelle distribution and shape, and actin organization and dynamics. Identification of a mechanistic link between intracellular movements and cell expansion has proven more challenging, not the least because of the high level of apparent genetic redundancy among myosin family members. Recent progress in the creation of functional complementation constructs and identification of interaction partners promises a way out of this dilemma. PMID:24446546

  8. Leveraging the membrane-cytoskeleton interface with myosin-1

    PubMed Central

    McConnell, Russell E.; Tyska, Matthew J.

    2010-01-01

    Class 1 myosins are small motor proteins with the ability to simultaneously bind to actin filaments and cellular membranes. Given their ability to generate mechanical force, and their high prevalence in many cell types, these molecules are well positioned to carry out a number of important biological functions at the interface of membrane and the actin cytoskeleton. Indeed, recent studies implicate these motors in endocytosis, exocytosis, release of extracellular vesicles, and the regulation of tension between membrane and the cytoskeleton. Many class 1 myosins also exhibit a load-dependent mechano-chemical cycle that enables them to maintain tension for long periods of time without hydrolyzing ATP. These properties put myosins-1 in a unique position to regulate dynamic membrane-cytoskeleton interactions and respond to physical forces during these events. PMID:20471271

  9. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.

    PubMed

    Stransky, Laura A; Forgac, Michael

    2015-11-01

    The vacuolar H(+)-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  10. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases. PMID:25631710

  11. cAMP can raise or lower cardiac actomyosin ATPase activity depending on alpha-adrenergic activity.

    PubMed

    McClellan, G; Weisberg, A; Winegrad, S

    1994-08-01

    Adenosine 3',5'-cyclic monophosphate (cAMP) or beta-adrenergic stimulation has been shown to increase actomyosin adenosinetriphosphatase (ATPase) activity in cardiac muscle. Because the major catecholamine transmitters have both alpha- and beta-adrenergic activity, the possibility of a role for alpha-adrenergic stimulation in the regulation of ATPase activity has been investigated. Histochemical measurement of actomyosin ATPase activity in quickly frozen rat hearts has been used as the assay of enzymatic function of the contractile proteins. The dose-response curve of ATPase activity to cAMP shows an increase in ATPase activity at a threshold concentration of 0.01 microM, a peak effect at 0.5-1.0 microM, and a decline beyond 1.5 microM to a level below control at 10 microM cAMP. Kinetic studies varying ATP concentration from 0.5 to 10 mM indicated the existence of multiple forms of actomyosin ATPase activity in the absence of cAMP and only one form with a higher maximum velocity in the presence of 1 microM cAMP. Apparently cAMP raises the enzymatic activity of the individual actomyosin molecule rather than increasing the number of active molecules. The addition of an alpha-adrenergic blocker had no significant effect in the absence of added cAMP, but in the presence of the cyclic nucleotide, 1 microM prazosin always produced a negative effect on ATPase activity. Over the entire range of 0.01-10 microM, cAMP lowered ATPase activity when the alpha-adrenergic antagonist was present. The integrity of the cAMP regulatory system was sensitive to the tissue oxygen tension at the time the heart was quickly frozen. At certain oxygen tension, the stimulatory component of the cAMP regulation was observed without any inhibitory component, suggesting that there are two relatively independent parts of the regulatory mechanism, an inhibitory and a stimulatory. In the presence of gamma-labeled [32P]ATP, 32P was incorporated into several proteins, including the inhibitory subunit of troponin (TNI), C protein, and the regulatory light chain of myosin. cAMP (1 microM) caused an increase in 32P labeling of TNI and C protein. The addition of prazosin with cAMP caused a decrease in the overall level of phosphorylation with specific dephosphorylation of C protein and TNI, the former to a degree similar to the decrease in actomyosin ATPase activity, the latter to a greater degree. These results indicate that alpha-adrenergic activity modulates the balance between kinase and phosphatase activity in the presence of cAMP, probably by inhibiting phosphatase activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7915082

  12. Actin cores of hair-cell stereocilia support myosin motility.

    PubMed Central

    Shepherd, G M; Corey, D P; Block, S M

    1990-01-01

    The actin cores of hair-cell stereocilia were tested as a substrate for the movement of myosin-coated beads in an in vitro assay. Large numbers of stereocilia from bullfrog sacculi and semicircular canals were isolated by blotting onto coverglasses and were demembranated to expose the polar actin tracks of their cytoskeletal cores. Silica or polystyrene beads, coated with thick filaments of chicken skeletal muscle myosin, were added to this core preparation in the presence of ATP. Myosin-coated beads could reach some of the cores by diffusion alone, but the efficiency and precision of the assay were improved considerably by the use of "optical tweezers" (a gradient-force optical trap) to deposit the beads directly on the cores. Beads applied in this fashion bound and moved unidirectionally at 1-2 microns/s, escaping the retarding force of the trap. Actin filaments within the stereocilia are cross-linked by fimbrin, but this did not appear to interfere with the motility of myosin. Beads coated with optic-lobe kinesin were also tested for movement; these bound and moved unidirectionally at 0.1-0.2 microns/s when applied to microtubule-based kinociliary cores, but not when applied to actin-based stereociliary cores. Our results are consistent with, and lend support to, a model for hair cell adaptation in which a molecular motor such as myosin maintains tension on the mechanically gated transduction channels. Optical tweezers and video-enhanced differential interference contrast optics provide high efficiency and improved optical resolution for the in vitro analysis of myosin motility. Images PMID:2236074

  13. Computational Classification of P-Type ATPases.

    PubMed

    Sndergaard, Dan; Knudsen, Michael; Pedersen, Christian Nrgaard Storm

    2016-01-01

    Analysis of sequence data is inevitable in modern molecular biology, and important information about for example proteins can be inferred efficiently using computational methods. Here, we explain how to use the information in freely available databases together with computational methods for classification and motif detection to assess whether a protein sequence corresponds to a P-type ATPase (and if so, which subtype) or not. PMID:26695056

  14. Kinesin ATPase: Rate-limiting ADP release

    SciTech Connect

    Hackney, D.D.

    1988-09-01

    The ATPase rate of kinesin isolated from bovine brain by the method of S.A. Kuznetsov and V.I. Gelfand is stimulated 1000-fold by interaction with tubulin. The tubulin-stimulated reaction exhibits no extra incorporation of water-derived oxygens over a wide range of ATP and tubulin concentrations, indicating that P/sub i/ release is faster than the reversal of hydrolysis. ADP release, however, is slow for the basal reaction and its release is rate limiting as indicated by the very tight ADP binding (K/sub i/ < 5 nM), the retention of a stoichiometric level of bound ADP through ion-exchange chromatography and dialysis, and the reversible labeling of a bound ADP by (/sup 14/C)ATP at the steady-state ATPase rate as shown by centrifuge gel filtration and inaccessibility to pyruvate kinase. Tubulin accelerates the release of the bound ADP consistent with its activation of the net ATPase reaction. The detailed kinetics of ADP release in the presence of tubulin are biphasic indicating apparent heterogeneity with a fraction of the kinesin active sites being unaffected by tubulin.

  15. Maleimidobenzoyl-G-actin: Structural properties and interaction with skeletal myosin subfragment-1

    SciTech Connect

    Bettache, N.; Bertrand, R.; Kassab, R. )

    1990-09-25

    The authors have investigated various structural and interaction properties of maleimidobenzoyl-G-actin (MBS-actin), a new, internally cross-linked G-actin derivative that does not exhibit, at moderate protein concentration, the salt-and myosin subfragment 1 (S-1)--induced polymerizations of G-actin and reacts reversibly and covalently in solution with S-1 at or near the F-actin binding region of the heavy chain. The far-ultraviolet CD spectrum and {alpha}-helix content of the MBS-actin were identical with those displayed by native G-actin. {sup 45}Ca{sup 2+} measurements showed the same content of tightly bound Ca{sup 2+} in MBS-actin as in G-actin and the EDTA treatment of the modified protein promoted the same red shift of the intrinsic fluorescence spectrum as observed with native G-actin. Incubation of concentrated MBS-actin solutions with 100 mM KCl+5 mM MgCl{sub 2} led to the polymerization of the actin derivative when the critical monomer concentration reached 1.6mg/mL, at 25{degree}C, pH 8.0. The MBS-F-actin formed activated the Mg{sup 2+}-ATPase of S-1 to the same extent as native F-actin. The MBS-G-actin exhibited a DNase I inhibitor activity very close to that found with native G-actin and was to be at all affected by its specific covalent conjugation to S-1. This finding led them to isolate, for the first time, by gel filtration, a ternary complex comprising DNase I tightly bound to MBS-actin cross-linked to the S-1 heavy chain, demonstrating that S-1 and DNase I bind at distinct sites on G-actin. Collectively, the data illustrate further the nativeness of the MBS-G-actin and its potential use in solution studies of the actin-myosin head interactions.

  16. Glutamate transporter coupling to Na,K-ATPase.

    PubMed

    Rose, Erin M; Koo, Joseph C P; Antflick, Jordan E; Ahmed, Syed M; Angers, Stephane; Hampson, David R

    2009-06-24

    Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPase inhibitor ouabain on glutamate transporter activity, we postulated that glutamate transporters are directly coupled to Na,K-ATPase and that Na,K-ATPase is an essential modulator of glutamate uptake. Na,K-ATPase was purified from rat cerebellum by tandem anion exchange and ouabain affinity chromatography, and the cohort of associated proteins was characterized by mass spectrometry. The alpha1-alpha 3 subunits of Na,K-ATPase were detected, as were the glutamate transporters GLAST and GLT-1, demonstrating that glutamate transporters copurify with Na,K-ATPases. The link between glutamate transporters and Na,K-ATPase was further established by coimmunoprecipitation and colocalization. Analysis of the regulation of glutamate transporter and Na,K-ATPase activities was assessed using [(3)H]D-aspartate, [(3)H]L-glutamate, and rubidium-86 uptake into synaptosomes and cultured astrocytes. In synaptosomes, ouabain produced a dose-dependent inhibition of glutamate transporter and Na,K-ATPase activities, whereas in astrocytes, ouabain showed a bimodal effect whereby glutamate transporter activity was stimulated at 1 microm ouabain and inhibited at higher concentrations. The effects of protein kinase inhibitors on [(3)H]D-aspartate uptake indicated the selective involvement of Src kinases, which are probably a component of the Na,K-ATPase/glutamate transporter complex. These findings demonstrate that glutamate transporters and Na,K-ATPases are part of the same macromolecular complexes and operate as a functional unit to regulate glutamatergic neurotransmission. PMID:19553454

  17. Voltage Clamp Fluorometry of P-Type ATPases.

    PubMed

    Dempski, Robert E

    2016-01-01

    Voltage clamp fluorometry has become a powerful tool to compare partial reactions of P-type ATPases such as the Na(+),K(+)-ATPase and H(+),K(+)-ATPase with conformational dynamics of these ion pumps. Here, we describe the methodology to heterologously express membrane proteins in X. laevis oocytes and site-specifically label these proteins with one or more fluorophores. Fluorescence changes are measured simultaneously with current measurements under two-electrode voltage clamp conditions. PMID:26695040

  18. Four novel myosin heavy chain transcripts define a molecular basis for muscle fibre types in Rana pipiens

    PubMed Central

    Lutz, Gordon J; Cuizon, Denise B; Ryan, Allen F; Lieber, Richard L

    1998-01-01

    Differential expression of myosin heavy chain (MHC) isoforms dramatically affects mechanical and energetic properties of skeletal muscle fibre types. As many as five different fibre types, each with different mechanical properties, have been reported in frog hindlimb muscles. However, only two frog MHC isoforms have previously been detected by SDS-PAGE and only one adult hindlimb MHC isoform has been cloned. In the present study, four different fibre types (type 1, type 2, type 3 and tonic) were initially identified in adult Ranapipiens anterior tibialis muscle based on myosin ATPase histochemistry, size and location. Each fibre type exhibited unique reactivity to a panel of MHC monoclonal antibodies. Single fibre analysis using SDS-PAGE revealed that MHCs from immunohistochemically defined type 1, type 2 and type 3 fibres ran as three distinct isoform bands, while MHC of tonic fibres co-migrated with type 1 MHC. The combined data from immunohistochemistry and SDS-PAGE suggests that Rana fibre types are composed of four different MHCs. Four novel MHC cDNAs were cloned and expression of the corresponding transcripts was measured in single immuno-identified fibres using specific polymerase chain reaction (PCR) primer pairs. Each of the four transcripts was found to be primarily expressed in a different one of the four fibre types. Coexpression of MHC isoforms was observed only between types 1/2 and types 2/3 at both the protein and mRNA level. These data provide a molecular basis for differentiation between frog fibre types and permit future molecular studies of MHC structure/function and gene regulation in this classic physiological system. Comparison of sequence homology among amphibian, avian and mammalian MHC families supports the concept of independent evolution of fast MHC genes within vertebrate classes subsequent to the amphibian/avian/mammalian radiation. PMID:9518724

  19. Use of rigid bifunctional cross-linking agents as probes of the flexibility of the head region of myosin

    SciTech Connect

    Huston, E.E.

    1985-01-01

    Myosin subfragment-1 (SF/sub 1/) was treated with the bifunctional cross-linking reagent (/sup 14/C)-N-N'-p-phenylene dimaleimide (pPDM). In the presence of MgADP, both K/sup +/-EDTA- and Ca/sup 2/-ATPase activities were inactivated concurrent with the incorporation of 0.95 mole of (/sup 14/C)-pPDM per mole of SF/sub 1/. The modified enzyme was extensively trypsinized, and the major radiolabeled peptide isolated. NH/sub 2/-terminal analysis revealed the presence of two peptides; amino acid composition showed the peptides spanned the region containing the reactive cysteines, SH/sub 1/ and SH/sub 2/. Detection of the modified amino acid S-succinylcysteine showed that the two tryptic peptides were covalently attached by the cross-linker, which has a 12-13 A sulfur to sulfur span. SF/sub 1/ was oxidized with dithio-bis-(2-nitrobenzoic acid)(DTNB) in the presence of MgADP, a treatment known to promote formation of a single protein disulfide. After all other accessible thiols were blocked, the disulfide was reduced and the newly exposed thiol groups reacted with (/sup 14/C)-pPDM. Trypsinization and purification of the major radiolabeled peptide showed the presence of an SH/sub 1/ containing peptide cross-linked to an SH/sub 2/ containing peptide. The bifunctional reagent trans 4,4'-dimaleimidylstilbene-2,2'-disulfonate (DMSDS) becomes fluorescent upon formation of the thiol adduct. SH/sub 1/ and SH/sub 2/, separated by only nine amino acids in the sequence, can be cross-linked by rigid bifunctional agents at distances of 2 A, 12-13 A, and 18-19 A. This region of the myosin head is thus demonstrated to be extraordinarily flexible.

  20. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  1. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.

    PubMed

    Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

    2013-01-01

    The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme. PMID:22695678

  2. Expression of Na,K-ATPase and H,K-ATPase Isoforms with the Baculovirus Expression System.

    PubMed

    Koenderink, Jan B; Swarts, Herman G P

    2016-01-01

    P-type ATPases can be expressed in several cell systems. The baculovirus expressions system uses an insect virus to enter and express proteins in Sf9 insect cells. This expression system is a lytic system in which the cells will die a few days after viral infection. Subsequently, the expressed proteins can be isolated. Insect cells are a perfect system to study P-type ATPases as they have little or no endogenous Na,K-ATPase activity and other ATPase activities can be inhibited easily. Here we describe in detail the expression and isolation of Na,K-ATPase and H,K-ATPase isoforms with the baculovirus expression system. PMID:26695023

  3. Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus

    PubMed Central

    Amari, Khalid; Di Donato, Martin; Dolja, Valerian V.; Heinlein, Manfred

    2014-01-01

    Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection. PMID:25329993

  4. Model of Rho-Mediated Myosin Recruitment to the Cleavage Furrow during Cytokinesis

    NASA Astrophysics Data System (ADS)

    Veksler, Alexander; Vavylonis, Dimitrios

    2010-03-01

    The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During cytokinesis, the myosin attached to the cell's cortex progressively disassembles at the flanking regions and concentrates in the equator [1]. This recruitment depends on myosin motor activity and activation by Rho proteins. Central spindle and astral microtubules establish a spatial pattern of differential Rho activity [2]. We propose a reaction-diffusion model for the dynamics of myosin and Rho proteins during cytokinesis. In the model, the mitotic spindle activates Rho at the equator. Active Rho promotes, in a switch-like manner, myosin assembly into cortical minifilaments. Mechanical stress by cortical myosin causes disassembly of myosin minifilaments and deactivates Rho. Our results explain both the recruitment of myosin to the cleavage furrow and the observed damped myosin oscillations in the cell's flanking regions [1]. Spatial extent, period and decay rate of myosin oscillations are calculated. Various regimes of myosin recruitment are predicted. [1] Zhou & Wang, Mol. Biol. Cell 19:318 (2008) [2] Murthy & Wadsworth, J. Cell Sci. 121:2350 (2008)

  5. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors.

    PubMed

    Li, Yan-Ruide; Yang, Wan-Xi

    2016-01-15

    Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes. PMID:26478466

  6. Engineering myosins for long-range transport on actin filaments.

    PubMed

    Schindler, Tony D; Chen, Lu; Lebel, Paul; Nakamura, Muneaki; Bryant, Zev

    2014-01-01

    Cytoskeletal motors act as cargo transporters in cells and may be harnessed for directed transport applications in molecular detection and diagnostic devices. High processivity, the ability to take many steps along a track before dissociating, is often a desirable characteristic because it allows nanoscale motors to transport cargoes over distances on the scale of micrometres, in vivo and in vitro. Natural processive myosins are dimeric and use internal tension to coordinate the detachment cycles of the two heads. Here, we show that processivity can be enhanced in engineered myosins using two non-natural strategies designed to optimize the effectiveness of random, uncoordinated stepping: (1) the formation of three-headed and four-headed myosins and (2) the introduction of flexible elements between heads. We quantify improvements using systematic single-molecule characterization of a panel of engineered motors. To test the modularity of our approach, we design a controllably bidirectional myosin that is robustly processive in both forward and backward directions, and also produce the fastest processive cytoskeletal motor measured so far, reaching a speed of 10 µm s(-1). PMID:24240432

  7. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  8. Characterization of a Myosin VII MyTH/FERM domain

    PubMed Central

    Moen, Rebecca J.; Johnsrud, Daniel O.; Thomas, David D.; Titus, Margaret A.

    2011-01-01

    A group of closely related myosins are characterized by the presence of at least one MyTH/FERM (myosin talin homology 4; band 4.1, ezrin, radixin, moesin) domain in their C-terminal tails. This domain interacts with a variety of binding partners, and mutations in either the MyTH4 or FERM domains of myosin VII and XV result in deafness, highlighting the functional importance of each domain. The N-terminal MyTH/FERM region of Dictyostelium myosin VII (M7) has been isolated as a first step toward gaining insight into the function of this domain and its interaction with binding partners. The M7 MyTH4/FERM domain (MF1) binds to both actin and microtubules in vitro, with dissociation constants of 13.7 and 1.7 ?M, respectively. Gel filtration and UV spectroscopy reveal that MF1 exists as a monomer in solution and forms a well-folded, compact conformation with a high degree of secondary structure. These results indicate that MF1 forms an integrated structural domain that serves to couple actin filaments and microtubules in specific regions of the cytoskeleton. PMID:21875595

  9. Tensile Force Generation by Actin-Myosin Networks

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2006-03-01

    Tensile force generation by the actin-myosin system is a crucial factor in many cellular processes, including the function of the contractile ring in cytokinesis. Calculations of such tensile forces have often been based on specific one-dimensional models of the structure based on parallel overlapping filaments, sometimes in sarcomere-like structures. However, the detailed arrangement of the actin filaments is not known in general, and it is likely to be disordered. For this reason we have developed a general theory of force generation by myosin in actin networks, based on treating the myosin motors as external forces in a viscoelastic medium. The analysis is based on two ingredients: the strain field of a force dipole in a homogeneous medium, and a correction for the inhomogeneity of the actin network. We obtain a simple expression for the tensile stress induced by the myosin motors in terms of the density of motors and the average actin filament length. This formula is used to relate the force that can be generated by a contractile ring to the actin network structure.

  10. Molecular mechanism regulating myosin and cardiac functions by ELC.

    PubMed

    Lossie, Janine; Khncke, Clemens; Mahmoodzadeh, Shokoufeh; Steffen, Walter; Canepari, Monica; Maffei, Manuela; Taube, Martin; Larchevque, Oriane; Baumert, Philipp; Haase, Hannelore; Bottinelli, Roberto; Regitz-Zagrosek, Vera; Morano, Ingo

    2014-07-18

    The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. Therefore, we generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67 pN/nm and 2.3 ?m/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25 pN/nm and 1.7 ?m/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5 ?m/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0 mmHg) were significantly higher than hearts from TgM(E56G) (66.2 mmHg) or C57/BL6 (59.33.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1>hVLC-1(E56G)?mVLC-1. They also suggest a molecular pathomechanism of hypertrophic cardiomyopathy caused by hVLC-1 mutations. PMID:24911555

  11. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    SciTech Connect

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ approx. = 70,000 and approx. = 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-( UC)ethylmaleimide and 7-chloro-4-nitro( UC)benzo-2-oxa-1,3-diazole, labeled the M/sub r/ approx. = 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-( UC)dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ approx. = 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10V, 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ approx. = 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F0F1 ATPases.

  12. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity. PMID:25733667

  13. Earning stripes: myosin binding protein-C interactions with actin.

    PubMed

    van Dijk, Sabine J; Bezold, Kristina L; Harris, Samantha P

    2014-03-01

    Myosin binding protein-C (MyBP-C) was first discovered as an impurity during the purification of myosin from skeletal muscle. However, soon after its discovery, MyBP-C was also shown to bind actin. While the unique functional implications for a protein that could cross-link thick and thin filaments together were immediately recognized, most early research nonetheless focused on interactions of MyBP-C with the thick filament. This was in part because interactions of MyBP-C with the thick filament could adequately explain most (but not all) effects of MyBP-C on actomyosin interactions and in part because the specificity of actin binding was uncertain. However, numerous recent studies have now established that MyBP-C can indeed bind to actin through multiple binding sites, some of which are highly specific. Many of these interactions involve critical regulatory domains of MyBP-C that are also reported to interact with myosin. Here we review current evidence supporting MyBP-C interactions with actin and discuss these findings in terms of their ability to account for the functional effects of MyBP-C. We conclude that the influence of MyBP-C on muscle contraction can be explained equally well by interactions with actin as by interactions with myosin. However, because data showing that MyBP-C binds to either myosin or actin has come almost exclusively from in vitro biochemical studies, the challenge for future studies is to define which binding partner(s) MyBP-C interacts with in vivo. PMID:24442149

  14. Solution structure of myosin-ADP-MgFn ternary complex by fluorescent probes and small-angle synchrotron X-ray scattering.

    PubMed

    Maruta, S; Aihara, T; Uyehara, Y; Homma, K; Sugimoto, Y; Wakabayashi, K

    2000-10-01

    In the presence of excess amounts of fluorine, a physiological divalent cation, magnesium (Mg(2+)), forms a novel phosphate analogue, magnesium fluoride (MgFn). Park et al. [Biochim. Biophys. Acta 1430, 127-140 (1999)] previously demonstrated that MgADP. MgFn forms a complex with myosin subfragment-1 (S-1), and the S-1.ADP. MgFn ternary complex mimics a transient state in the activity cycle of ATPase. In the present study, localized conformations in the regions of highly reactive cysteine and lysine residues, Cys 707 (SH1), Cys 697 (SH2), and Lys 83 (RLR), which change their conformations markedly during ATP hydrolysis, were studied using fluorescent probes and chemical modification. The global shape of the complex was also studied using small angle X-ray solution scattering and compared it with other previously reported myosin.ADP. fluorometal ternary complexes. The results suggest that the overall conformation and localized functional regions of the complex are quite similar to those in the presence of ATP, indicating that the complex mimics the M(**).ADP.P(i) steady state. PMID:11011152

  15. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium.

    PubMed Central

    Lowes, B D; Minobe, W; Abraham, W T; Rizeq, M N; Bohlmeyer, T J; Quaife, R A; Roden, R L; Dutcher, D L; Robertson, A D; Voelkel, N F; Badesch, D B; Groves, B M; Gilbert, E M; Bristow, M R

    1997-01-01

    Using quantitative RT-PCR in RNA from right ventricular (RV) endomyocardial biopsies from intact nonfailing hearts, and subjects with moderate RV failure from primary pulmonary hypertension (PPH) or idiopathic dilated cardiomyopathy (IDC), we measured expression of genes involved in regulation of contractility or hypertrophy. Gene expression was also assessed in LV (left ventricular) and RV free wall and RV endomyocardium of hearts from end-stage IDC subjects undergoing heart transplantation or from nonfailing donors. In intact failing hearts, downregulation of beta1-receptor mRNA and protein, upregulation of atrial natriuretic peptide mRNA expression, and increased myocyte diameter indicated similar degrees of failure and hypertrophy in the IDC and PPH phenotypes. The only molecular phenotypic difference between PPH and IDC RVs was upregulation of beta2-receptor gene expression in PPH but not IDC. The major new findings were that (a) both nonfailing intact and explanted human ventricular myocardium expressed substantial amounts of alpha-myosin heavy chain mRNA (alpha-MHC, 23-34% of total), and (b) in heart failure alpha-MHC was downregulated (by 67-84%) and beta-MHC gene expression was upregulated. We conclude that at the mRNA level nonfailing human heart expresses substantial alpha-MHC. In myocardial failure this alteration in gene expression of MHC isoforms, if translated into protein expression, would decrease myosin ATPase enzyme velocity and slow speed of contraction. PMID:9410910

  16. Regulation and isoform function of the V-ATPases.

    PubMed

    Toei, Masashi; Saum, Regina; Forgac, Michael

    2010-06-15

    The vacuolar (H(+))-ATPases are ATP-dependent proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane of eukaryotic cells. Intracellular V-ATPases play an important role in normal physiological processes such as receptor-mediated endocytosis, intracellular membrane trafficking, pro-hormone processing, protein degradation, and the coupled uptake of small molecules, such as neurotransmitters. They also function in the entry of various pathogenic agents, including many envelope viruses, like influenza virus, and toxins, like anthrax toxin. Plasma membrane V-ATPases function in renal pH homeostasis, bone resorption and sperm maturation, and various disease processes, including renal tubular acidosis, osteopetrosis, and tumor metastasis. V-ATPases are composed of a peripheral V(1) domain containing eight different subunits that is responsible for ATP hydrolysis and an integral V(0) domain containing six different subunits that translocates protons. In mammalian cells, most of the V-ATPase subunits exist in multiple isoforms which are often expressed in a tissue specific manner. Isoforms of one of the V(0) subunits (subunit a) have been shown to possess information that targets the V-ATPase to distinct cellular destinations. Mutations in isoforms of subunit a lead to the human diseases osteopetrosis and renal tubular acidosis. A number of mechanisms are employed to regulate V-ATPase activity in vivo, including reversible dissociation of the V(1) and V(0) domains, control of the tightness of coupling of proton transport and ATP hydrolysis, and selective targeting of V-ATPases to distinct cellular membranes. Isoforms of subunit a are involved in regulation both via the control of coupling and via selective targeting. This review will begin with a brief introduction to the function, structure, and mechanism of the V-ATPases followed by a discussion of the role of V-ATPase subunit isoforms and the mechanisms involved in regulation of V-ATPase activity. PMID:20450191

  17. Eukaryotic V-ATPase: novel structural findings and functional insights.

    PubMed

    Marshansky, Vladimir; Rubinstein, John L; Grüber, Gerhard

    2014-06-01

    The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed. PMID:24508215

  18. cGMP-dependent protein kinase Iβ regulates breast cancer cell migration and invasion via interaction with the actin/myosin-associated protein caldesmon

    PubMed Central

    Schwappacher, Raphaela; Rangaswami, Hema; Su-Yuo, Jacqueline; Hassad, Aaron; Spitler, Ryan; Casteel, Darren E.

    2013-01-01

    Summary The two isoforms of type I cGMP-dependent protein kinase (PKGIα and PKGIβ) differ in their first ∼100 amino acids, giving each isoform unique dimerization and autoinhibitory domains. The dimerization domains form coiled-coil structures and serve as platforms for isoform-specific protein–protein interactions. Using the PKGIβ dimerization domain as an affinity probe in a proteomic screen, we identified the actin/myosin-associated protein caldesmon (CaD) as a PKGIβ-specific binding protein. PKGIβ phosphorylated human CaD on serine 12 in vitro and in intact cells. Phosphorylation on serine 12 or mutation of serine 12 to glutamic acid (S12E) reduced the interaction between CaD and myosin IIA. Because CaD inhibits myosin ATPase activity and regulates cell motility, we examined the effects of PKGIβ and CaD on cell migration and invasion. Inhibition of the NO/cGMP/PKG pathway reduced migration and invasion of human breast cancer cells, whereas PKG activation enhanced their motility and invasion. siRNA-mediated knockdown of endogenous CaD had pro-migratory and pro-invasive effects in human breast cancer cells. Reconstituting cells with wild-type CaD slowed migration and invasion; however, CaD containing a phospho-mimetic S12E mutation failed to reverse the pro-migratory and pro-invasive activity of CaD depletion. Our data suggest that PKGIβ enhances breast cancer cell motility and invasive capacity, at least in part, by phosphorylating CaD. These findings identify a pro-migratory and pro-invasive function for PKGIβ in human breast cancer cells, suggesting that PKGIβ is a potential target for breast cancer treatment. PMID:23418348

  19. Torsins: not your typical AAA+ ATPases.

    PubMed

    Rose, April E; Brown, Rebecca S H; Schlieker, Christian

    2015-01-01

    Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options. PMID:26592310

  20. The mechanism of rotating proton pumping ATPases.

    PubMed

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Nakamoto, Robert K; Futai, Masamitsu

    2010-08-01

    Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation. PMID:20170625

  1. Intersubunit rotation in active F-ATPase

    NASA Astrophysics Data System (ADS)

    Sabbert, D.; Engelbrecht, S.; Junge, W.

    1996-06-01

    THE enzyme ATP synthase, or F-ATPase, is present in the membranes of bacteria, chloroplasts and mitochondria. Its structure is bipartite, with a proton-conducting, integral membrane portion, F0, and a peripheral portion, F1. Solubilized F1 is composed of five different subunits, (??)3???, and is active as an ATPase1,2. The function of F-ATPase is to couple proton translocation through F0 with ATP synthesis in F1 (ref. 3). Several lines of evidence support the spontaneous formation of ATP on F1 (refs 4,5) and its endergonic release6 at cooperative and rotating (or at least alternating) sites7. The release of ATP at the expense of protonmotive force might involve mechanical energy transduction from F0 into F1 by rotation of the smaller subunits (mainly ?) within (??)3, the catalytic hexagon of F1 as suggested by electron microscopy8, by X-ray crystal structure analysis9 and by the use of cleavable crosslinkers10. Here we record an intersubunit rotation in real time in the functional enzyme by applying polarized absorption relaxation after photobleaching to immobilized F1 with eosin-labelled ?. We observe the rotation of ? relative to immobilized (??)3 in a timespan of 100 ms, compatible with the rate of ATP hydrolysis by immobilized F1. Its angular range, which is of at least 200 degrees, favours a triple-site mechanism of catalysis7,11, with ? acting as a crankshaft in (??)3. The rotation of ? is blocked when ATP is substituted with its non-hydrolysable analogue AMP-PNP.

  2. Stiffness of ? subunit of F(1)-ATPase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2010-11-01

    F(1)-ATPase is a molecular motor in which the ? subunit rotates inside the ?(3)?(3) ring upon adenosine triphosphate (ATP) hydrolysis. Recent works on single-molecule manipulation of F(1)-ATPase have shown that kinetic parameters such as the on-rate of ATP and the off-rate of adenosine diphosphate (ADP) strongly depend on the rotary angle of the ? subunit (Hirono-Hara et al. 2005; Iko et al. 2009). These findings provide important insight into how individual reaction steps release energy to power F(1) and also have implications regarding ATP synthesis and how reaction steps are reversed upon reverse rotation. An important issue regarding the angular dependence of kinetic parameters is that the angular position of a magnetic bead rotation probe could be larger than the actual position of the ? subunit due to the torsional elasticity of the system. In the present study, we assessed the stiffness of two different portions of F(1) from thermophilic Bacillus PS3: the internal part of the ? subunit embedded in the ?(3)?(3) ring, and the complex of the external part of the ? subunit and the ?(3)?(3) ring (and streptavidin and magnetic bead), by comparing rotational fluctuations before and after crosslinkage between the rotor and stator. The torsional stiffnesses of the internal and remaining parts were determined to be around 223 and 73 pNnm/radian, respectively. Based on these values, it was estimated that the actual angular position of the internal part of the ? subunit is one-fourth of the magnetic bead position upon stalling using an external magnetic field. The estimated elasticity also partially explains the accommodation of the intrinsic step size mismatch between F(o) and F(1)-ATPase. PMID:20549499

  3. Structural aspects of proton-pumping ATPases.

    PubMed

    Walker, J E; Fearnley, I M; Lutter, R; Todd, R J; Runswick, M J

    1990-01-30

    ATP synthase is found in bacteria, chloroplasts and mitochondria. The simplest known example of such an enzyme is that in the eubacterium Escherichia coli; it is a membrane-bound assembly of eight different polypeptides assembled with a stoichiometry of alpha 3 beta 3 gamma 1 delta 1 epsilon 1 a1b2c10-12. The first five of these constitute a globular structure, F1-ATPase, which is bound to an intrinsic membrane domain, F0, an assembly of the three remaining subunits. ATP synthases driven by photosynthesis are slightly more complex. In chloroplasts, and probably in photosynthetic bacteria, they have nine subunits, all homologues of the components of the E. coli enzyme; the additional subunit is a duplicated and diverged relation of subunit b. The mammalian mitochondrial enzyme is more complex. It contains 14 different polypeptides, of which 13 have been characterized. Two membrane components, a (or ATPase-6) and A6L, are encoded in the mitochondrial genome in overlapping genes and the remaining subunits are nuclear gene products that are translated on cytoplasmic ribosomes and then imported into the organelle. The sequence of the proteins of ATP-synthase have provided information about amino acids that are important for its function. For example, amino acids contributing to nucleotide binding sites have been identified. Also, they provide the basis of models of secondary structure of membrane components that constitute the transmembrane proton channel. An understanding of the coupling of the transmembrane potential gradient for protons, delta mu H+, to ATP synthesis will probably require the determination of the structure of the entire membrane bound complex. Crystals have been obtained of the globular domain, F1-ATPase. They diffract to a resolution of 3-4 A and data collection is in progress. As a preliminary step towards crystallization of the entire complex, we have purified it from bovine mitochondria and reconstituted it into phospholipid vesicles. PMID:1970643

  4. The 7-stranded structure of relaxed scallop muscle myosin filaments: support for a common head configuration in myosin-regulated muscles.

    PubMed

    Al-Khayat, Hind A; Morris, Edward P; Squire, John M

    2009-05-01

    Isolated relaxed myosin filaments from the myosin-regulated scallop striated adductor muscle have been reconstructed using electron microscopy and single particle analysis of negatively stained filaments. Three-dimensional reconstruction using 7-fold rotational symmetry but without imposed helical symmetry confirmed that the myosin head array is a 7-stranded, right-handed long-pitch 24/1 helix (or left-handed short-pitch 10/1 helix) with the whole structure having an axial repeat of 1440A. Reconstruction using the full helical symmetry revealed details of the myosin head density distribution within the head crowns in the relaxed scallop myosin filament. The resulting density distribution can best be explained by an arrangement in which the two heads from the same myosin molecule interact together within each crown in a compact parallel fashion along the filament axis. The configuration is consistent with the published configuration of the two heads within vertebrate smooth muscle myosin molecules observed in two-dimensional crystals of smooth muscle myosin and in the structure of tarantula myosin filaments. All these three muscle types are myosin-regulated, providing further support for a general motif of intramolecular interacting-heads structure in the relaxed state of myosin-regulated muscles as was proposed earlier by Woodhead et al. [Woodhead, J.L., Zhao, F.-Q., Craig, R., Egelman, E.H., Alamo, L., Padron, R.. 2005. Atomic model of a myosin filament in the relaxed state. Nature 436, 1195-1199]. However, the orientation of the Wendt structure is different from that found by Woodhead in that the outer head projects outwards and the inner head lies closer to the filament backbone, as in earlier work done on the insect flight muscle myosin filaments [AL-Khayat, H.A., Hudson, L., Reedy, M.K., Irving, T.C., Squire, J.M., 2003. Myosin head configuration in relaxed insect flight muscle: X-ray modelled resting crossbridges in a pre-powerstroke state are poised for actin binding. Biophys. J. 85, 1063-1079]. Possible species specific details that may differ between the scallop and the tarantula myosin filaments are also discussed. PMID:19248832

  5. Function, structure and regulation of the vacuolar (H+)-ATPases

    PubMed Central

    Jefferies, Kevin C.; Cipriano, Daniel J.; Forgac, Michael

    2008-01-01

    The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V1) responsible for hydrolysis of ATP and an integral domain (V0) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V1 and V0 domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer. PMID:18406336

  6. Purification and Properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  7. Actin Structure-Dependent Stepping of Myosin 5a and 10 during Processive Movement

    PubMed Central

    Gunther, Laura K.; Sellers, James R.; Sakamoto, Takeshi

    2013-01-01

    How myosin 10, an unconventional myosin, walks processively along actin is still controversial. Here, we used single molecule fluorescence techniques, TIRF and FIONA, to study the motility and the stepping mechanism of dimerized myosin 10 heavy-meromyosin-like fragment on both single actin filaments and two-dimensional F-actin rafts cross-linked by fascin or ?-actinin. As a control, we also tracked and analyzed the stepping behavior of the well characterized processive motor myosin 5a. We have shown that myosin 10 moves processively along both single actin filaments and F-actin rafts with a step size of 31 nm. Moreover, myosin 10 moves more processively on fascin-F-actin rafts than on ?-actinin-F-actin rafts, whereas myosin 5a shows no such selectivity. Finally, on fascin-F-actin rafts, myosin 10 has more frequent side steps to adjacent actin filaments than myosin 5a in the F-actin rafts. Together, these results reveal further single molecule features of myosin 10 on various actin structures, which may help to understand its cellular functions. PMID:24069366

  8. Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos

    PubMed Central

    Royou, Anne; Sullivan, William; Karess, Roger

    2002-01-01

    The nuclei of early syncytial Drosophila embryos migrate dramatically toward the poles. The cellular mechanisms driving this process, called axial expansion, are unclear, but myosin II activity is required. By following regulatory myosin light chain (RLC)green fluorescent protein dynamics in living embryos, we observed cycles of myosin recruitment to the cortex synchronized with mitotic cycles. Cortical myosin is first seen in a patch at the anterocentral part of the embryo at cycle 4. With each succeeding cycle, the patch expands poleward, dispersing at the beginning of each mitosis and reassembling at the end of telophase. Each cycle of actin and myosin recruitment is accompanied by a cortical contraction. The cortical myosin cycle does not require microtubules but correlates inversely with Cdc2/cyclinB (mitosis-promoting factor) activity. A mutant RLC lacking inhibitory phosphorylation sites was fully functional with no effect on the cortical myosin cycle, indicating that Cdc2 must be modulating myosin activity by some other mechanism. An inhibitor of Rho kinase blocks the cortical myosin recruitment cycles and provokes a concomitant failure of axial expansion. These studies suggest a model in which cycles of myosin-mediated contraction and relaxation, tightly linked to Cdc2 and Rho kinase activity, are directly responsible for the axial expansion of the syncytial nuclei. PMID:12105185

  9. Three-dimensional structure of the human myosin thick filament: clinical implications

    PubMed Central

    AL-Khayat, Hind A.

    2013-01-01

    High resolution information about the three-dimensional (3D) structure of myosin filaments has always been hard to obtain. Solving the 3D structure of myosin filaments is very important because mutations in human cardiac muscle myosin and its associated proteins (e.g. titin and myosin binding protein C) are known to be associated with a number of familial human cardiomyopathies (e.g. hypertrophic cardiomyopathy and dilated cardiomyopathy). In order to understand how normal heart muscle works and how it fails, as well as the effects of the known mutations on muscle contractility, it is essential to properly understand myosin filament 3D structure and properties in both healthy and diseased hearts. The aim of this review is firstly to provide a general overview of the 3D structure of myosin thick filaments, as studied so far in both vertebrates and invertebrate striated muscles. Knowledge of this 3D structure is the starting point from which myosin filaments isolated from human cardiomyopathic samples, with known mutations in either myosin or its associated proteins (titin or C-protein), can be studied in detail. This should, in turn, enable us to relate the structure of myosin thick filament to its function and to understanding the disease process. A long term objective of this research would be to assist the design of possible therapeutic solutions to genetic myosin-related human cardiomyopathies. PMID:24689030

  10. Quantitative determination of type I myosin heavy chain in bovine muscle with anti myosin monoclonal antibodies.

    PubMed

    Picard, B; Leger, J; Robelin, J

    1994-01-01

    Bovine type I muscle fibers were characterized by enzyme-linked immunosorbent assay (ELISA) with a monoclonal antibody specific for slow myosin heavy chains (MHC 1). Two bovine muscles, the Masseter and Cutaneus trunci, were analyzed by different complementary techniques: electrophoresis, immunoblotting and immunohistiology. The results showed that the two muscles have extreme characteristics. The Masseter contains only slow MHC and the Cutaneus trunci is composed solely of rapid MHC (MHC 2a and 2b). A standard for this ELISA was obtained by mixing the two muscles and was used as a reference in the determination of the percentage of MHC 1 in a given muscle. In this study, the Longissimus thoracis of 27 Charolais cattle were examined. The different conditions under which assays were carried out were described and the accuracy of the measurement was calculated. In view of the results, ELISA was chosen for the analysis of muscle fiber types in large numbers of animal specimens. This technique could be used in several research projects to study the muscle characteristics that determine beef quality. PMID:22061628

  11. Purification and properties of an ATPase from Sulfolobus solfataricus

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    The paper reports properties of a sulfite-activated ATPase from Sulfolobus solfataricus, purified using ammonium sulfate precipitation, column chromatography on UltraGel and Sepharose 6B, and SDS-PAGE. The 92-fold purified enzyme had a relative molecular mass of 370,000. It could be dissociated into three subunits with respective molecular masses of 63,000, 48,000, and 24,000. The ATPase activity was found to be inhibitable by nitrate, N-ethylmaleimide (which bound predominantly to the largest subunit), and 4-chloro 7-nitrobenzofurazan, but not by azide, quercetin, or vanadate. While the ATPase from S. solfataricus shared a number of properties with the S. acidocaldarius ATPase, there were also significant differences suggesting the existence of several types of archaeal ATPases.

  12. Calcium and ATPase activity during hepatic intoxication with thioacetamide.

    PubMed

    Anghileri, L J; Crone-Escanye, M C; Martin, J A; Robert, J

    1986-05-01

    The effects of acute thioacetamide (TAA) intoxication on the calcium, magnesium, sodium and potassium content of liver and on its ATPase activities were studied in rats. Samples of liver were analyzed by atomic absorption spectrometry for their cationic content 6, 24 and 48 h after administration of TAA through a stomach tube. After sonification other samples were assayed for (Na+ + K+)-dependent, (Ca2+ + Mg2+)- and Ca2+-dependent ATPases. No apparent correlation has been found between the increased hepatic calcium after TAA treatment and the variations of ATPase activity. Both calcium movement and ATPase activity appear sex-determined. These results bring support to the hypothesis that an interaction between TAA or its metabolites with the cell membrane provokes an increased influx of extracellular calcium. The relationship between this calcium increase and the changes in ATPase activity with the events triggering the neoplastic transformation is discussed. PMID:3015808

  13. P4 ATPases: Flippases in Health and Disease

    PubMed Central

    van der Mark, Vincent A.; Oude Elferink, Ronald P.J.; Paulusma, Coen C.

    2013-01-01

    P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role. PMID:23579954

  14. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    PubMed Central

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  15. Nonmuscle myosin IIA (myosin heavy polypeptide 9): a novel class of signal transducer mediating the activation of G alpha h/phospholipase C-delta 1 pathway.

    PubMed

    Lin, Yuan-Feng; Yeh, Tien-Shun; Chen, Sung-Fang; Tsai, Yu-Hui; Chou, Chih-Ming; Yang, Yi-Yuan; Huang, Haw-Ming

    2010-03-01

    The dimeric Gh protein is comprised of alpha (tissue transglutaminase) and beta (Calreticulin) subunits and known to be associated with FSH-, oxytocin-, or epinephrine-receptors/functions in their respective target cells. After establishing the FSH-induced activation of G alpha h/phospholipase C (PLC)-delta 1 pathway in rat Sertoli cells (SCs), we have attempted to identify a possible G alpha h-coupled novel FSH receptor (FSH-R). Remarkably, a protein with approximately 240-kDa molecular mass was coimmunoprecipitated with G alpha h in the fractionated membrane proteins of rat SCs. The protein was identified as myosin heavy polypeptide 9 (MyH9) by mass spectrometric analysis and immunoblotting. In addition, immunoprecipitation analysis reveals that MyH9 is constitutively associated with classical Gs-coupled FSH-R and inactive GDP-bound G alpha h at resting state of rat SCs, but did not interact with FSH directly as judged by Far-Western analysis. Upon the stimulation of higher levels of extracellular FSH (>1000 IU/liter), classical FSH-R induces the phosphorylation of MyH9, the dissociation of active GTP-bound G alpha h from FSH-R:MyH9 complexes, and the elicitation of G alpha h/PLC-delta 1 pathway-dependent Ca(2+)-influx in rat SCs. Furthermore, the specific inhibition of MyH9 ATPase activity with Blebbistatin dose-dependently suppressed FSH-induced G alpha h/PLC-delta 1 signaling and Ca(2+)-influx, but not intracellular cAMP accumulation in rat SCs, implying that MyH9 mediates FSH-induced activation of G alpha h/PLC-delta 1/IP(3)/Ca(2+)-influx pathway in rat SCs. This is the first to demonstrate that the filament protein MyH9 constitutively forms a ternary complex with FSH-R and inactive GDP-bound G alpha h. At higher FSH levels, this ternary complex executes an alternative signaling of classical Gs-coupled FSH-R through activating a Gs/cAMP-independent, G alpha h/PLC-delta 1 pathway in rat SCs. PMID:20068007

  16. The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells.

    PubMed

    Derycke, Lara; Stove, Christophe; Vercoutter-Edouart, Anne-Sophie; De Wever, Olivier; Doll, Laurent; Colpaert, Nathalie; Depypere, Herman; Michalski, Jean-Claude; Bracke, Marc

    2011-01-01

    Human MCF-7/6 breast cancer cells differ from their MCF-7/AZ counterparts by their invasiveness in a number of assays in vitro, such as invasion of MCF-7 spheroids into embryonic chick heart fragments or type I collagen gels. Comparative proteomic analysis of these two variants revealed an identical pattern, except for a 230 kDa protein present in the invasive MCF-7/6 variant, but hardly detectable in the non-invasive MCF-7/AZ one. This protein appeared to be the non-muscle myosin IIA heavy chain (NMIIA), also coined MYH9. Experimental inhibition of NMIIA by reducing either its expression (via stable shRNA transduction) or its function (via the specific ATPase inhibitor blebbistatin) underpinned the decisive role of NMIIA in MCF-7 cell invasion. Inhibition of NMIIA indeed blocked the invasion of MCF-7/6 cells in three-dimensional invasion substrata such as embryonic chick heart fragments and type I collagen gels. Invasiveness of MCF-7/6 cells has been related to poor formation and compaction of aggregates, due to a functionally defective E-cadherin/catenin complex. Both genetic and pharmacological inhibition of NMIIA stimulated MCF-7/6 cell aggregation. Together, these data indicate that NMIIA is a decisive protein for MCF-7 cells to invade, indicating that this molecule is a candidate for targeted anti-invasive treatment. PMID:22161839

  17. a Rod Probe Reveals Gait of Myosin V

    NASA Astrophysics Data System (ADS)

    Shiroguchi, Katsuyuki

    2008-04-01

    Myosin V is a linear molecular motor that moves cargos along actin filaments in a cell. It has two `feet' (conventionally called `heads' or `motor domains'), each attached to a long and relatively stiff `leg' (traditionally called `neck' or `lever arm'), and walks by alternately swinging forward its feet, apparently similar to a human. I describe the mechanisms of how the trailing foot, once lifted, accesses the next forward landing site on actin, which have been revealed by directly observing the leg motion of a walking myosin V through a micrometer-sized biological rod attached to its leg. Next, I discuss our previously proposed mechanism for the lifted foot attaching to the next forward binding site. Finally, I comment on the usefulness of a rod probe as an experimental tool.

  18. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A.

    PubMed

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P

    2015-09-25

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min(-1), respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2'/3'-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μM, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg(2+) ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3-6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  19. Non-muscle myosins in tumor progression, cancer cell invasion and metastasis

    PubMed Central

    Ouderkirk, J. L.; Krendel, M.

    2014-01-01

    The actin cytoskeleton, which regulates cell polarity, adhesion, and migration, can influence cancer progression, including initial acquisition of malignant properties by normal cells, invasion of adjacent tissues, and metastasis to distant sites. Actin-dependent molecular motors, myosins, play key roles in regulating tumor progression and metastasis. In this review, we examine how non-muscle myosins regulate neoplastic transformation and cancer cell migration and invasion. Members of the myosin superfamily can act as either enhancers or suppressors of tumor progression. This review summarizes the current state of knowledge on how mutations or epigenetic changes in myosin genes and changes in myosin expression may affect tumor progression and patient outcomes and discusses the proposed mechanisms linking myosin inactivation or upregulation to malignant phenotype, cancer cell migration, and metastasis. PMID:25087729

  20. Stepwise Sliding of Single Actin and Myosin Filaments

    PubMed Central

    Liu, Xiumei; Pollack, Gerald H.

    2004-01-01

    Dynamics of sliding were explored in isolated actin and myosin filaments. Sliding occurs in steps. The steps are integer multiples of 2.7 nm, which is equal to the monomeric repeat along the actin filament. When filaments were forced to slide in the reverse direction, the size paradigm was the same. This size paradigm is parallel to that seen in the kinesin-microtubule system, where step size is an integer multiple of the tubulin repeat along the microtubule. PMID:14695277

  1. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    SciTech Connect

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K.

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  2. Evolution and Classification of Myosins, a Paneukaryotic Whole-Genome Approach

    PubMed Central

    Sebé-Pedrós, Arnau; Grau-Bové, Xavier; Richards, Thomas A.; Ruiz-Trillo, Iñaki

    2014-01-01

    Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family. PMID:24443438

  3. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  4. Actin-myosin viscoelastic flow in the keratocyte lamellipod.

    PubMed

    Rubinstein, Boris; Fournier, Maxime F; Jacobson, Ken; Verkhovsky, Alexander B; Mogilner, Alex

    2009-10-01

    The lamellipod, the locomotory region of migratory cells, is shaped by the balance of protrusion and contraction. The latter is the result of myosin-generated centripetal flow of the viscoelastic actin network. Recently, quantitative flow data was obtained, yet there is no detailed theory explaining the flow in a realistic geometry. We introduce models of viscoelastic actin mechanics and myosin transport and solve the model equations numerically for the flat, fan-shaped lamellipodial domain of keratocytes. The solutions demonstrate that in the rapidly crawling cell, myosin concentrates at the rear boundary and pulls the actin network inward, so the centripetal actin flow is very slow at the front, and faster at the rear and at the sides. The computed flow and respective traction forces compare well with the experimental data. We also calculate the graded protrusion at the cell boundary necessary to maintain the cell shape and make a number of other testable predictions. We discuss model implications for the cell shape, speed, and bi-stability. PMID:19804715

  5. On allosteric modulation of P-type Cu(+)-ATPases.

    PubMed

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette E; Meloni, Gabriele; Gourdon, Pontus; Nissen, Poul

    2013-07-10

    P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass-specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu(+)-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca(2+)-ATPase (of subclass PIIA). Cu(+) ions in the cell are delivered by soluble chaperones to Cu(+)-ATPases, which expose a putative "docking platform" at the intracellular interface. Cu(+)-ATPases also contain heavy-metal binding domains providing a basis for allosteric control of pump activity. Database analysis of Cu(+) ligating residues questions a two-site model of intramembranous Cu(+) binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably different properties. PMID:23500486

  6. Identification of Hydroxyxanthones as Na/K-ATPase Ligands

    PubMed Central

    Zhang, Zhongbing; Li, Zhichuan; Tian, Jiang; Jiang, Wei; Wang, Yin; Zhang, Xiaojin; Li, Zhuorong; You, Qidong; Shapiro, Joseph I.; Si, Shuyi

    2010-01-01

    We have screened a chemical library and identified several novel structures of Na/K-ATPase inhibitors. One group of these inhibitors belongs to polyphenolic xanthone derivatives. Functional characterization reveals the following properties of this group of inhibitors. First, like ouabain, they are potent inhibitors of the purified Na/K-ATPase. Second, their effects on the Na/K-ATPase depend on the number and position of phenolic groups. Methylation of these phenolic groups reduces the inhibitory effect. Third, further characterization of the most potent xanthone derivative, MB7 (3,4,5,6-tetrahydroxyxanthone), reveals that it does not change either Na+ or ATP affinity of the enzyme. Finally, unlike that of ouabain, the inhibitory effect of MB7 on Na/K-ATPase is not antagonized by K+. Moreover, MB7 does not activate the receptor Na/K-ATPase/Src complex and fails to stimulate protein kinase cascades in cultured cells. Thus, we have identified a group of novel Na/K-ATPase ligands that can inhibit the pumping function without stimulating the signaling function of Na/K-ATPase. PMID:20335388

  7. Colorimetric Assays of Na,K-ATPase.

    PubMed

    Sweadner, Kathleen J

    2016-01-01

    The Na,K-ATPase is a plasma membrane enzyme that catalyzes active ion transport by the hydrolysis of ATP. Its activity in vivo is determined by many factors, particularly the concentration of intracellular sodium ions. It is the target of the cardiac glycoside class of drugs and of endogenous regulators. Its assay is often an endpoint in the investigation of physiological processes, and it is a promising drug target. As described in this unit, its enzymatic activity can be determined in extracts from tissues by test tube assay using a spectrophotometer or (32)P-ATP. The protocols in this chapter measure inorganic phosphate as the end product of hydrolysis of ATP. PMID:26695025

  8. Specific Evolution of F1-Like ATPases in Mycoplasmas

    PubMed Central

    Dautant, Alain; Bouyssou, Guillaume; Labroussaa, Fabien; Sköllermo, Anna; Persson, Anja; Blanchard, Alain; Sirand-Pugnet, Pascal

    2012-01-01

    F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells. PMID:22685606

  9. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    PubMed Central

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.

    2016-01-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice1. Together, these actin–myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin–myosin interactions are coordinated in an ensemble remains poorly understood2. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes. PMID:26149240

  10. Structural and molecular conformation of myosin in intact muscle fibers by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.

    2009-02-01

    Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 ?m and 4.0 ?m. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.

  11. Myosin VI mediates the movement of NHE3 down the microvillus in intestinal epithelial cells

    PubMed Central

    Chen, Tiane; Hubbard, Ann; Murtazina, Rakhilya; Price, Jennifer; Yang, Jianbo; Cha, Boyoung; Sarker, Rafiquel; Donowitz, Mark

    2014-01-01

    ABSTRACT The intestinal brush border Na+/H+ exchanger NHE3 is tightly regulated through changes in its endocytosis and exocytosis. Myosin VI, a minus-end-directed actin motor, has been implicated in endocytosis at the inter-microvillar cleft and during vesicle remodeling in the terminal web. Here, we asked whether myosin VI also regulates NHE3 movement down the microvillus. The basal NHE3 activity and its surface amount, determined by fluorometry of the ratiometric pH indicator BCECF and biotinylation assays, respectively, were increased in myosin-VI-knockdown (KD) Caco-2/Bbe cells. Carbachol (CCH) and forskolin (FSK) stimulated NHE3 endocytosis in control but not in myosin VI KD cells. Importantly, immunoelectron microscopy results showed that NHE3 was preferentially localized in the basal half of control microvilli but in the distal half in myosin VI KD cells. Treatment with dynasore duplicated some aspects of myosin VI KD: it increased basal surface NHE3 activity and prevented FSK-induced NHE3 endocytosis. However, NHE3 had an intermediate distribution along the microvillus (between that in myosin VI KD and untreated cells) in dynasore-treated cells. We conclude that myosin VI is required for basal and stimulated endocytosis of NHE3 in intestinal cells, and suggest that myosin VI also moves NHE3 down the microvillus. PMID:24928903

  12. Molecular genetics of myosin motors in Arabidopsis. Progress report, [July 1, 1992--February 28, 1994

    SciTech Connect

    Not Available

    1994-06-01

    We have evidence for at least nine myosin-like genes in Arbidopsis, six of which have been cloned by a PCR-based method from genomic DNA, two have been isolated by genomic DNA cloning, and four have been identified by cDNA cloning. Most of our attention has been focused on the four myosin genes for which we have cDNA clones, and these cDNAs have now been sequenced to completion. Each of these myosins is similar in overall structure, with each containing the characteristic myosin head (motor) domain, which possesses ATP- and actin-binding motifs, a series of IQ repeats, which may be involved in calmodulin binding, a domain with a high probability of forming an alpha-helical coiled-coil secondary structure, which may allow the polypeptides to form dimers, and a variable tail domain, which may serve to define the specific cellular component that each myosin interacts with. One of these myosin genes, called MYA1, displays structural similarity to class of myosins that includes the yeast MYO2, mouse Dilute, and chicken p190 proteins, and this group of myosins is thought to play a role in intracellular trafficking of organelles. Because MYA1 is similar to this interesting class of myosins, we have chosen to conduct detailed studies of MYA1.

  13. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    NASA Astrophysics Data System (ADS)

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.; Sivaramakrishnan, S.

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes.

  14. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  15. The Functions of Myosin II and Myosin V Homologs in Tip Growth and Septation in Aspergillus nidulans

    PubMed Central

    Taheri-Talesh, Naimeh; Xiong, Yi; Oakley, Berl R.

    2012-01-01

    Because of the industrial and medical importance of members of the fungal genus Aspergillus, there is considerable interest in the functions of cytoskeletal components in growth and secretion in these organisms. We have analyzed the genome of Aspergillus nidulans and found that there are two previously unstudied myosin genes, a myosin II homolog, myoB (product?=?MyoB) and a myosin V homolog, myoE (product?=?MyoE). Deletions of either cause significant growth defects. MyoB localizes in strings that coalesce into contractile rings at forming septa. It is critical for septation and normal deposition of chitin but not for hyphal extension. MyoE localizes to the Spitzenkrper and to moving puncta in the cytoplasm. Time-lapse imaging of SynA, a v-SNARE, reveals that in myoE deletion strains vesicles no longer localize to the Spitzenkrper. Tip morphology is slightly abnormal and branching occurs more frequently than in controls. Tip extension is slower than in controls, but because hyphal diameter is greater, growth (increase in volume/time) is only slightly reduced. Concentration of vesicles into the Spitzenkrper before incorporation into the plasma membrane is, thus, not required for hyphal growth but facilitates faster tip extension and a more normal hyphal shape. PMID:22359575

  16. C-peptide, Na+,K(+)-ATPase, and diabetes.

    PubMed

    Vague, P; Coste, T C; Jannot, M F; Raccah, D; Tsimaratos, M

    2004-01-01

    Na+,K(+)-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K(+)-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K(+)-ATPase activity was strongly related to blood C-peptide levels in non-insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene. A polymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K(+)-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K(+)-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K(+)-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K(+)-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K(+)-ATPase activity. This impairment in Na+,K(+)-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetes-induced decrease in Na+,K(+)-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K(+)-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K(+)-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K(+)-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications. PMID:15198370

  17. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

    PubMed

    Zhou, Aimin; Bu, Yuanyuan; Takano, Tetsuo; Zhang, Xinxin; Liu, Shenkui

    2016-01-01

    In plant cells, the vacuolar-type H(+) -ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking. PMID:25917395

  18. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy

    PubMed Central

    Hayek, Summer R.; Lee, Samuel A.; Parra, Karlett J.

    2014-01-01

    Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens. PMID:24478704

  19. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  20. In vitro and in vivo single myosin step-sizes in striated muscle.

    PubMed

    Burghardt, Thomas P; Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin

    2015-12-01

    Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a "second characterization" is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover "bottom-up" and "top-down" assaying of myosin characteristics. PMID:26728749

  1. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age

    PubMed Central

    Souza, C.C.R.; Dombroski, T.C.D.; Machado, H.R.; Oliveira, R.S.; Rocha, L.B.; Rodrigues, A.R.A.; Neder, L.; Chimelli, L.; Corra, V.M.A.; Larson, R.E.; Martins, A.R.

    2013-01-01

    Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL). In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence. PMID:23558932

  2. Direct Measurements of Local Coupling between Myosin Molecules Are Consistent with a Model of Muscle Activation

    PubMed Central

    Walcott, Sam; Kad, Neil M.

    2015-01-01

    Muscle contracts due to ATP-dependent interactions of myosin motors with thin filaments composed of the proteins actin, troponin, and tropomyosin. Contraction is initiated when calcium binds to troponin, which changes conformation and displaces tropomyosin, a filamentous protein that wraps around the actin filament, thereby exposing myosin binding sites on actin. Myosin motors interact with each other indirectly via tropomyosin, since myosin binding to actin locally displaces tropomyosin and thereby facilitates binding of nearby myosin. Defining and modeling this local coupling between myosin motors is an open problem in muscle modeling and, more broadly, a requirement to understanding the connection between muscle contraction at the molecular and macro scale. It is challenging to directly observe this coupling, and such measurements have only recently been made. Analysis of these data suggests that two myosin heads are required to activate the thin filament. This result contrasts with a theoretical model, which reproduces several indirect measurements of coupling between myosin, that assumes a single myosin head can activate the thin filament. To understand this apparent discrepancy, we incorporated the model into stochastic simulations of the experiments, which generated simulated data that were then analyzed identically to the experimental measurements. By varying a single parameter, good agreement between simulation and experiment was established. The conclusion that two myosin molecules are required to activate the thin filament arises from an assumption, made during data analysis, that the intensity of the fluorescent tags attached to myosin varies depending on experimental condition. We provide an alternative explanation that reconciles theory and experiment without assuming that the intensity of the fluorescent tags varies. PMID:26536123

  3. Regulation of Torsin ATPases by LAP1 and LULL1.

    PubMed

    Zhao, Chenguang; Brown, Rebecca S H; Chase, Anna R; Eisele, Markus R; Schlieker, Christian

    2013-04-23

    TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and LULL1, type II transmembrane proteins residing in the nuclear envelope and endoplasmic reticulum. This interaction requires TorsinA to be in the ATP-bound state, and can be attributed to the luminal domains of LAP1 and LULL1. This ATPase activator function controls the activities of other members of the Torsin family in distinct fashion, leading to an acceleration of the hydrolysis step by up to two orders of magnitude. The dystonia-causing mutant of TorsinA is defective in this activation mechanism, suggesting a loss-of-function mechanism for this congenital disorder. PMID:23569223

  4. Multiple functions of Na,K-ATPase in epithelial cells.

    PubMed

    Rajasekaran, Sigrid A; Barwe, Sonali P; Rajasekaran, Ayyappan K

    2005-09-01

    The Na,K-adenosine triphosphatase (ATPase), or sodium pump, has been well studied for its role in the regulation of ion homeostasis in mammalian cells. Recent studies suggest that Na,K-ATPase might have multiple functions such as a role in the regulation of tight junction structure and function, induction of polarity, regulation of actin dynamics, control of cell movement, and cell signaling. These functions appear to be modulated by Na,K-ATPase enzyme activity as well as protein-protein interactions of the alpha and beta subunits. In this review we attempt to differentiate functions associated with enzyme activity and subunit interactions. In addition, the consequence of impaired Na,K-ATPase function or reduced subunit expression levels in kidney diseases such as cancer, tubulointerstitial fibrosis, and ischemic nephropathy are discussed. PMID:16139688

  5. Cohesin Releases DNA through Asymmetric ATPase-Driven Ring Opening.

    PubMed

    Elbatsh, Ahmed M O; Haarhuis, Judith H I; Petela, Naomi; Chapard, Christophe; Fish, Alexander; Celie, Patrick H; Stadnik, Magda; Ristic, Dejan; Wyman, Claire; Medema, Ren H; Nasmyth, Kim; Rowland, Benjamin D

    2016-02-18

    Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites. PMID:26895426

  6. Cohesin Releases DNA through Asymmetric ATPase-Driven Ring Opening

    PubMed Central

    Elbatsh, Ahmed M.O.; Haarhuis, Judith H.I.; Petela, Naomi; Chapard, Christophe; Fish, Alexander; Celie, Patrick H.; Stadnik, Magda; Ristic, Dejan; Wyman, Claire; Medema, René H.; Nasmyth, Kim; Rowland, Benjamin D.

    2016-01-01

    Summary Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin’s Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin’s highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin’s two ATPase sites. PMID:26895426

  7. Neutral Phospholipids Stimulate Na,K-ATPase Activity

    PubMed Central

    Haviv, Haim; Habeck, Michael; Kanai, Ryuta; Toyoshima, Chikashi; Karlish, Steven J. D.

    2013-01-01

    Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8–10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1β1 or α1β1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p < 0.0001). Analysis of α1β1FXYD1 complexes prepared with native or synthetic phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8–10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid. PMID:23430748

  8. Biochemical characterization of P-type copper ATPases

    PubMed Central

    Inesi, Giuseppe; Pilankatta, Rajendra; Tadini-Buoninsegni, Francesco

    2014-01-01

    Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper. PMID:25242165

  9. Evidence for functional differences between two flagellar dynein ATPases.

    PubMed

    Penningroth, S M; Peterson, D D

    1986-01-01

    Energy coupling in flagellar motility was investigated using demembranated, reactivated sea urchin spermatozoa (Arbacia punctulata). The ATP-dependence of ATPase activity was investigated for ATP concentrations ranging from 4 microM to 600 microM ATP. Using Eadie-Scatchard plot analysis, we identified two axonemal dynein ATPase activities. Their apparent Michaelis constants were calculated to be equal to 4 microM and 161 microM ATP, and they were referred to, respectively, as the high-affinity dynein ATPase (HADA) and the low-affinity dynein ATPase (LADA). Investigation of movement-coupled ATPase activity (difference between the ATPase activities of reactivated and broken, immotile spermatozoa) indicated that HADA and LADA were both 65% movement-coupled. The apparent Michaelis constants of movement-coupled HADA and LADA, 12 microM and 271 microM ATP, respectively, were two- to four-fold greater than the apparent Michaelis constants of movement-uncoupled HADA and LADA. The apparent Michaelis constants for force generation and beat frequency of reactivated spermatozoa were determined to be 24 microM and 290 microM ATP, respectively. These results raise the possibility that flagellar force generation is controlled primarily by movement-coupled HADA, and that flagellar beat frequency is controlled primarily by movement-coupled LADA. Thus, mechanochemical activity in flagellar motility may be divided between two enzymatically and functionally distinct classes of flagellar dyneins. PMID:2948677

  10. Genetic analysis demonstrates a direct link between rho signaling and nonmuscle myosin function during Drosophila morphogenesis.

    PubMed Central

    Halsell, S R; Chu, B I; Kiehart, D P

    2000-01-01

    A dynamic actomyosin cytoskeleton drives many morphogenetic events. Conventional nonmuscle myosin-II (myosin) is a key chemomechanical motor that drives contraction of the actin cytoskeleton. We have explored the regulation of myosin activity by performing genetic screens to identify gene products that collaborate with myosin during Drosophila morphogenesis. Specifically, we screened for second-site noncomplementors of a mutation in the zipper gene that encodes the nonmuscle myosin-II heavy chain. We determined that a single missense mutation in the zipper(Ebr) allele gives rise to its sensitivity to second-site noncomplementation. We then identify the Rho signal transduction pathway as necessary for proper myosin function. First we show that a lethal P-element insertion interacts genetically with zipper. Subsequently we show that this second-site noncomplementing mutation disrupts the RhoGEF2 locus. Next, we show that two EMS-induced mutations, previously shown to interact genetically with zipper(Ebr), disrupt the RhoA locus. Further, we have identified their molecular lesions and determined that disruption of the carboxyl-terminal CaaX box gives rise to their mutant phenotype. Finally, we show that RhoA mutations themselves can be utilized in genetic screens. Biochemical and cell culture analyses suggest that Rho signal transduction regulates the activity of myosin. Our studies provide direct genetic proof of the biological relevance of regulation of myosin by Rho signal transduction in an intact metazoan. PMID:10880486

  11. Diffuse X-ray scatter from myosin heads in oriented synthetic filaments.

    PubMed Central

    Poulsen, F R; Lowy, J; Cooke, P H; Bartels, E M; Elliott, G F; Hughes, R A

    1987-01-01

    X-ray results are presented concerning the structural state of myosin heads of synthetic filaments in threads. These were made from purified rabbit skeletal muscle myosin and studied by x-ray diffraction and electron microscopy by Cooke et al. (Cooke, P. H., E. M. Bartels, G. F. Elliott, and R. A. Hughes, 1987, Biophys. J., 51:947-957). X-ray patterns show a meridional peak at a spacing of 14.4 nm. We concentrate here on the only other feature of the axial pattern: this is a central region of diffuse scatter, which we find to be similar to that obtained from myosin heads in solution (Mendelson, R. A., K. M. Kretzschmar, 1980, Biochemistry, 19:4103-4108). This means that the myosin heads have very large random displacements in all directions from their average positions, and that they are practically randomly oriented. The myosin heads do not contribute to the 14.4-nm peak, which must come entirely from the backbone. Comparison with x-ray data from the unstriated Taenia coli muscle of the guinea pig indicates that in this muscle at least 75% of the diffuse scatter comes from disordered myosin heads. The results confirm that the diffuse scatter in x-ray patterns from specimens that contain myosin filaments can yield information about the structural behavior of the myosin heads. Images FIGURE 1 PMID:3607214

  12. Participation of Myosin Va and Pka Type I in the Regeneration of Neuromuscular Junctions

    PubMed Central

    Rder, Ira Verena; Strack, Siegfried; Reischl, Markus; Dahley, Oliver; Khan, Muzamil Majid; Kassel, Olivier; Zaccolo, Manuela; Rudolf, Rdiger

    2012-01-01

    Background The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. Methodology/Principal Findings To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. Conclusions/Significance Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle. PMID:22815846

  13. My oh my(osin): Insights into how auditory hair cells count, measure, and shape.

    PubMed

    Pollock, Lana M; Chou, Shih-Wei; McDermott, Brian M

    2016-01-18

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle's morphology and hearing. PMID:26754648

  14. Protein Phosphatase 1 ? Paralogs Encode the Zebrafish Myosin Phosphatase Catalytic Subunit

    PubMed Central

    Jayashankar, Vaishali; Nguyen, Michael J.; Carr, Brandon W.; Zheng, Dale C.; Rosales, Joseph B.; Rosales, Joshua B.; Weiser, Douglas C.

    2013-01-01

    Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1?, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1?, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required. PMID:24040418

  15. Role of Myosin Va in the Plasticity of the Vertebrate Neuromuscular Junction In Vivo

    PubMed Central

    Rder, Ira Verena; Petersen, Yvonne; Choi, Kyeong Rok; Witzemann, Veit; Hammer, John A.; Rudolf, Rdiger

    2008-01-01

    Background Myosin Va is a motor protein involved in vesicular transport and its absence leads to movement disorders in humans (Griscelli and Elejalde syndromes) and rodents (e.g. dilute lethal phenotype in mice). We examined the role of myosin Va in the postsynaptic plasticity of the vertebrate neuromuscular junction (NMJ). Methodology/Principal Findings Dilute lethal mice showed a good correlation between the propensity for seizures, and fragmentation and size reduction of NMJs. In an aneural C2C12 myoblast cell culture, expression of a dominant-negative fragment of myosin Va led to the accumulation of punctate structures containing the NMJ marker protein, rapsyn-GFP, in perinuclear clusters. In mouse hindlimb muscle, endogenous myosin Va co-precipitated with surface-exposed or internalised acetylcholine receptors and was markedly enriched in close proximity to the NMJ upon immunofluorescence. In vivo microscopy of exogenous full length myosin Va as well as a cargo-binding fragment of myosin Va showed localisation to the NMJ in wildtype mouse muscles. Furthermore, local interference with myosin Va function in live wildtype mouse muscles led to fragmentation and size reduction of NMJs, exclusion of rapsyn-GFP from NMJs, reduced persistence of acetylcholine receptors in NMJs and an increased amount of punctate structures bearing internalised NMJ proteins. Conclusions/Significance In summary, our data show a crucial role of myosin Va for the plasticity of live vertebrate neuromuscular junctions and suggest its involvement in the recycling of internalised acetylcholine receptors back to the postsynaptic membrane. PMID:19057648

  16. Modular activation of Rho1 by GPCR signalling imparts polarized myosin II activation during morphogenesis.

    PubMed

    Kerridge, Stephen; Munjal, Akankshi; Philippe, Jean-Marc; Jha, Ankita; de Las Bayonas, Alain Garcia; Saurin, Andrew J; Lecuit, Thomas

    2016-03-01

    Polarized cell shape changes during tissue morphogenesis arise by controlling the subcellular distribution of myosin II. For instance, during Drosophila melanogaster gastrulation, apical constriction and cell intercalation are mediated by medial-apical myosin II pulses that power deformations, and polarized accumulation of myosin II that stabilizes these deformations. It remains unclear how tissue-specific factors control different patterns of myosin II activation and the ratchet-like myosin II dynamics. Here we report the function of a common pathway comprising the heterotrimeric G proteins Gα12/13, Gβ13F and Gγ1 in activating and polarizing myosin II during Drosophila gastrulation. Gα12/13 and the Gβ13F/γ1 complex constitute distinct signalling modules, which regulate myosin II dynamics medial-apically and/or junctionally in a tissue-dependent manner. We identify a ubiquitously expressed GPCR called Smog required for cell intercalation and apical constriction. Smog functions with other GPCRs to quantitatively control G proteins, resulting in stepwise activation of myosin II and irreversible cell shape changes. We propose that GPCR and G proteins constitute a general pathway for controlling actomyosin contractility in epithelia and that the activity of this pathway is polarized by tissue-specific regulators. PMID:26780298

  17. Myosin VIII regulates protonemal patterning and developmental timing in the moss Physcomitrella patens.

    PubMed

    Wu, Shu-Zon; Ritchie, Julie A; Pan, Ai-Hong; Quatrano, Ralph S; Bezanilla, Magdalena

    2011-09-01

    Plants have two classes of myosins. While recent work has focused on class XI myosins showing that myosin XI is responsible for organelle motility and cytoplasmic streaming, much less is known about the role of myosin VIII in plant growth and development. We have used a combination of RNAi and insertional knockouts to probe myosin VIII function in the moss Physcomitrella patens. We isolated ?myo8ABCDE plants demonstrating that myosin VIII is not required for plant viability. However, myosin VIII mutants are smaller than wild-type plants in part due to a defect in cell size. Additionally, ?myo8ABCDE plants produce more side branches and form gametophores much earlier than wild-type plants. In the absence of nutrient media, ?myo8ABCDE plants exhibit significant protonemal patterning defects, including highly curved protonemal filaments, morphologically defective side branches, as well as an increase in the number of branches. Exogenous auxin partially rescues protonemal defects in ?myo8ABCDE plants grown in the absence of nutrients. This result, together with defects in protonemal branching, smaller caulonemal cells, and accelerated development in the ?myo8ABCDE plants, suggests that myosin VIII is involved in hormone homeostasis in P. patens. PMID:21873296

  18. High-resolution helix orientation in actin-bound myosin determined with a bifunctional spin label

    PubMed Central

    Binder, Benjamin P.; Cornea, Sinziana; Thompson, Andrew R.; Moen, Rebecca J.; Thomas, David D.

    2015-01-01

    Using electron paramagnetic resonance (EPR) of a bifunctional spin label (BSL) bound stereospecifically to Dictyostelium myosin II, we determined with high resolution the orientation of individual structural elements in the catalytic domain while myosin is in complex with actin. BSL was attached to a pair of engineered cysteine side chains four residues apart on known ?-helical segments, within a construct of the myosin catalytic domain that lacks other reactive cysteines. EPR spectra of BSL-myosin bound to actin in oriented muscle fibers showed sharp three-line spectra, indicating a well-defined orientation relative to the actin filament axis. Spectral analysis indicated that orientation of the spin label can be determined within <2.1 accuracy, and comparison with existing structural data in the absence of nucleotide indicates that helix orientation can also be determined with <4.2 accuracy. We used this approach to examine the crucial ADP release step in myosins catalytic cycle and detected reversible rotations of two helices in actin-bound myosin in response to ADP binding and dissociation. One of these rotations has not been observed in myosin-only crystal structures. PMID:26056276

  19. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human ?-cardiac myosin.

    PubMed

    Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M

    2016-01-01

    Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human ?-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human ?-cardiac myosin. We are using a recombinantly expressed human ?-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles. PMID:26792326

  20. Unconventional myosin ID is expressed in myelinating oligodendrocytes.

    PubMed

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide

    2014-10-01

    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin. PMID:24903835

  1. Motor-Driven Dynamics in Actin-Myosin Networks

    NASA Astrophysics Data System (ADS)

    Le Goff, Loc; Amblard, Franois; Furst, Eric M.

    2002-01-01

    The effect of myosin motor protein activity on the filamentous actin (F-actin) rheological response is studied using diffusing wave spectroscopy. Under conditions of saturating motor activity, we find an enhancement of longitudinal filament fluctuations corresponding to a scaling of the viscoelastic shear modulus Gd(?)~?7/8. As the adenosine tri-phosphate reservoir sustaining motor activity is depleted, we find an abrupt transient to a passive, ``rigor state'' and a return to dissipation dominated by transverse filament modes. Single-filament measurements of the apparent persistence length support the notion that motor activity leads to an increase in the effective temperature for tangential motion.

  2. Chromosomal distribution of genes coding for fast twitch skeletal muscle myosin light chains.

    PubMed

    Czosnek, H; Barker, P E; Ruddle, F H; Robert, B

    1985-11-01

    The mouse fast twitch skeletal muscle myosin light chains are encoded by a multigene family which comprises the gene coding for the myosin light chain 2 (Myl2f), and the gene coding for both myosin light chains 1 and 3 (Myl1f/Myl3f). In addition, a Myl1f/Myl3f-related pseudogene is present in the domestic mouse Mus musculus. The members of this gene family were assigned to chromosomes by molecular hybridization, using DNA extracted from a panel of cloned mouse-Chinese hamster somatic hybrid cells and specific DNA probes. The genes coding for the light chains of the myosin molecule are dispersed on several chromosomes, while genes coding for the heavy chain of myosin are located on a single, different chromosome. PMID:3865381

  3. Conformation of the myosin motor during force generation in skeletal muscle.

    PubMed

    Irving, M; Piazzesi, G; Lucii, L; Sun, Y B; Harford, J J; Dobbie, I M; Ferenczi, M A; Reconditi, M; Lombardi, V

    2000-06-01

    Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide. PMID:10881196

  4. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells.

    PubMed Central

    Bowman, E J; Siebers, A; Altendorf, K

    1988-01-01

    Various membrane ATPases have been tested for their sensitivity to bafilomycin A1, a macrolide antibiotic. F1F0 ATPases from bacteria and mitochondria are not affected by this antibiotic. In contrast, E1E2 ATPases--e.g., the K+-dependent (Kdp) ATPase from Escherichia coli, the Na+,K+-ATPase from ox brain, and the Ca2+-ATPase from sarcoplasmic reticulum--are moderately sensitive to this inhibitor. Finally, membrane ATPases from Neurospora vacuoles, chromaffin granules, and plant vacuoles are extremely sensitive. From this we conclude that bafilomycin A1 is a valuable tool for distinguishing among the three different types of ATPases and represents the first relatively specific potent inhibitor of vacuolar ATPases. PMID:2973058

  5. Evolutionary appearance of the plasma membrane H (+) -ATPase containing a penultimate threonine in the bryophyte.

    PubMed

    Okumura, Masaki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

    2012-08-01

    The plasma membrane H (+) -ATPase provides the driving force for solute transport via an electrochemical gradient of H (+) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H (+) -ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H (+) -ATPase (pT H (+) -ATPase) and non-pT H (+) -ATPase as in the green algae, and that pT H (+) -ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H (+) -ATPase genes, designated PpHA (Physcomitrella patens H (+) -ATPase). Six isoforms are the pT H (+) -ATPase; a remaining isoform is non-pT H (+) -ATPase. An apparent 95-kD protein was recognized by anti-H (+) -ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H (+) -ATPase. Furthermore, we could not detect the pT H (+) -ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H (+) -ATPase most likely appeared for the first time in bryophyte. PMID:22836495

  6. Life without double-headed non-muscle myosin II motor proteins

    PubMed Central

    Betapudi, Venkaiah

    2014-01-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053

  7. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    SciTech Connect

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera; Hofmann, Wilma A.

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ? Two NoLS have been identified in the myosin IC isoform B sequence. ? Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ? First mechanistic explanation of functional differences between the isoforms.

  8. Life without double-headed non-muscle myosin II motor proteins

    NASA Astrophysics Data System (ADS)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  9. A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity

    PubMed Central

    Heaslip, Aoife T.; Leung, Jacqueline M.; Carey, Kimberly L.; Catti, Federica; Warshaw, David M.; Westwood, Nicholas J.; Ballif, Bryan A.; Ward, Gary E.

    2010-01-01

    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains. PMID:20084115

  10. Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha.

    PubMed

    Okumura, Masaki; Inoue, Shin-ichiro; Takahashi, Koji; Ishizaki, Kimitsune; Kohchi, Takayuki; Kinoshita, Toshinori

    2012-06-01

    The plasma membrane H(+)-ATPase generates an electrochemical gradient of H(+) across the plasma membrane that provides the driving force for solute transport and regulates pH homeostasis and membrane potential in plant cells. Recent studies have demonstrated that phosphorylation of the penultimate threonine in H(+)-ATPase and subsequent binding of a 14-3-3 protein is the major common activation mechanism for H(+)-ATPase in vascular plants. However, there is very little information on the plasma membrane H(+)-ATPase in nonvascular plant bryophytes. Here, we show that the liverwort Marchantia polymorpha, which is the most basal lineage of extant land plants, expresses both the penultimate threonine-containing H(+)-ATPase (pT H(+)-ATPase) and non-penultimate threonine-containing H(+)-ATPase (non-pT H(+)-ATPase) as in the green algae and that pT H(+)-ATPase is regulated by phosphorylation of its penultimate threonine. A search in the expressed sequence tag database of M. polymorpha revealed eight H(+)-ATPase genes, designated MpHA (for M. polymorpha H(+)-ATPase). Four isoforms are the pT H(+)-ATPase; the remaining isoforms are non-pT H(+)-ATPase. An apparent 95-kD protein was recognized by anti-H(+)-ATPase antibodies against an Arabidopsis (Arabidopsis thaliana) isoform and was phosphorylated on the penultimate threonine in response to the fungal toxin fusicoccin in thalli, indicating that the 95-kD protein contains pT H(+)-ATPase. Furthermore, we found that the pT H(+)-ATPase in thalli is phosphorylated in response to light, sucrose, and osmotic shock and that light-induced phosphorylation depends on photosynthesis. Our results define physiological signals for the regulation of pT H(+)-ATPase in the liverwort M. polymorpha, which is one of the earliest plants to acquire pT H(+)-ATPase. PMID:22496511

  11. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length

    PubMed Central

    Suggs, Jennifer A.; Cammarato, Anthony; Kronert, William A.; Nikkhoy, Massoud; Dambacher, Corey M.; Megighian, Aram; Bernstein, Sanford I.

    2007-01-01

    Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin hinge region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial melting of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was ~5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed. PMID:17316684

  12. Mouse Nuclear Myosin I Knock-Out Shows Interchangeability and Redundancy of Myosin Isoforms in the Cell Nucleus

    PubMed Central

    Venit, Tom; Dzijak, Rastislav; Kalendov, Alb?ta; Kahle, Michal; Rohokov, Jana; Schmidt, Volker; Rlicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali nder; Gailus-Durner, Valrie; Fuchs, Helmut; de Angelis, Martin Hrab?; Hozk, Pavel

    2013-01-01

    Background Nuclear myosin I (NM1) is a nuclear isoform of the well-known cytoplasmic Myosin 1c protein (Myo1c). Located on the 11th chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. Methodology/Principal Findings In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. Conclusion/Significance We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes. PMID:23593477

  13. A simplified model for V-ATPase H+ extrusion.

    PubMed

    Luo, Chuan; Clark, John W; Heming, Thomas A; Bidani, Akhil

    2004-12-01

    An analytical model of V-type H+-translocating ATPase (V-ATPase) was developed based on an approximation to the mechanochemical model of Grabe et al. (Biophys. J., pp. 2798-2813, vol. 78, 2000). Grabe's work utilizes structural information and physiological assumptions to construct a detailed mechanochemical model of the V-ATPase. Due to the complexity of their model, it does not give a readily usable mathematical expression for the V-ATPase current. Based on their analysis of the structure of the proton pump, we develop a two-compartment model of the V-ATPase, which contains a membrane "half-channel" for proton translocation separated by a hydrophilic strip and a hydrophobic wall from the cytoplasm. Using the Langevin equation to describe proton transport across the membrane, we simplify the model based on their assumptions on the molecular structure of the pump and arrive at a general form of solution to the proton pump flux driven by ATP hydrolysis based on assumptions on the physiological properties of the strip and the wall, as well as the two fluid compartments. In this process of simplification, we explicitly relate V-ATPase structure, stoichiometry, pump efficiency, and ATP hydrolysis energy to the active pump current. The simplified model is used to provide model-generated approximations to measured data from a variety of laboratories. In addition, it provides a very compact characterization of V-ATPase, which can be used as a proton extruder in a variety of different cell membranes, as well as in the membranes of intracellular organelles. Index Terms-Electrophysiology, mechanochemstry, molecular motors, proton extrusion PMID:15631137

  14. Adaptations in myosin heavy chain profile in chronically unloaded muscles

    NASA Technical Reports Server (NTRS)

    Talmadge, R. J.; Roy, R. R.; Bodine-Fowler, S. C.; Pierotti, D. J.; Edgerton, V. R.

    1995-01-01

    In this review, myosin heavy chain (MHC) adaptations in response to several models of decreased neuromuscular activity (i.e. electrical activation and loading of a muscle) are evaluated. In each of these "reduced-activity" models it is important to: a) quantify the changes in electrical activation of the muscle as a result of the intervention; b) quantify the forces generated by the muscle; and c) determine whether the neuromuscular junction remains normal. Most of the models, including spaceflight, hindlimb suspension, spinal cord isolation, spinal cord transection, denervation, and limb immobilization in a shortened position, result in increases in the percentage of fast MHCs (or fast MHC mRNA) in normally slow rat muscles. It also can be inferred from histochemical data that increases in fast MHCs occur with TTX application and bed rest. The only "reduced-activity" model to consistently increase slow muscle myosin mRNA, and slow fibers is limb immobilization in a stretched position; however, this model results in at least a temporary increase in tension. It appears that the most common feature of these models that might induce MHC adaptations is the modification in loading rather than a change in the neuromuscular activity.

  15. Calcium can mobilize and activate myosin-VI

    PubMed Central

    Batters, Christopher; Brack, Dario; Ellrich, Heike; Averbeck, Beate; Veigel, Claudia

    2016-01-01

    The ability to coordinate the timing of motor protein activation lies at the center of a wide range of cellular motile processes including endocytosis, cell division, and cancer cell migration. We show that calcium dramatically alters the conformation and activity of the myosin-VI motor implicated in pivotal steps of these processes. We resolved the change in motor conformation and in structural flexibility using single particle analysis of electron microscopic data and identified interacting domains using fluorescence spectroscopy. We discovered that calcium binding to calmodulin increases the binding affinity by a factor of 2,500 for a bipartite binding site on myosin-VI. The ability of calcium-calmodulin to seek out and bridge between binding site components directs a major rearrangement of the motor from a compact dormant state into a cargo binding primed state that is nonmotile. The lack of motility at high calcium is due to calmodulin switching to a higher affinity binding site, which leaves the original IQ-motif exposed, thereby destabilizing the lever arm. The return to low calcium can either restabilize the lever arm, required for translocating the cargo-bound motors toward the center of the cell, or refold the cargo-free motors into an inactive state ready for the next cellular calcium flux. PMID:26811464

  16. Effects of myosin heavy chain manipulation in experimental heart failure

    PubMed Central

    James, Jeanne; Hor, Kan; Moga, Michael-Alice; Martin, Lisa Ann; Robbins, Jeffrey

    2009-01-01

    The myosin heavy chain (MHC) isoforms, ?- and ?-MHC, are expressed in developmental- and chamber-specific patterns. Healthy human ventricle contains ?2-10% ?-MHC and these levels are reduced even further in the failing ventricle. While down-regulation of ?-MHC in failing myocardium is considered compensatory, we previously demonstrated that persistent transgenic (TG) ?-MHC expression in the cardiomyocytes is cardioprotective in rabbits with tachycardia-induced cardiomyopathy (TIC). We sought to determine if this benefit extends to other types of experimental heart failure and focused on two models relevant to human heart failure: myocardial infarction (MI) and left ventricular pressure overload. TG and nontransgenic rabbits underwent either coronary artery ligation at 8 months or aortic banding at 10 days of age. The effects of ?-MHC expression were assessed at molecular, histological and organ levels. In the MI experiments, we unexpectedly found modest functional advantages to ?-MHC expression. In contrast, despite subtle benefits in TG rabbits subjected to aortic banding, cardiac function was minimally affected. We conclude that the benefits of persistent ?-MHC expression depend upon the mechanism of heart failure. Importantly, in none of the scenarios studied did we find any detrimental effects associated with persistent ?-MHC expression. Thus manipulation of MHC composition may be beneficial in certain types of heart failure and does not appear to compromise heart function in others. Future considerations of myosin isoform manipulation as a therapeutic strategy should consider the underlying etiology of cardiac dysfunction. PMID:19854200

  17. Chaperones of F[subscript 1]-ATPase

    SciTech Connect

    Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas; Xu, Xingjue; Gatti, Domenico L.; Ackerman, Sharon H.

    2009-09-25

    Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11p for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.

  18. Direct localization of monoclonal antibody-binding sites on Acanthamoeba myosin-II and inhibition of filament formation by antibodies that bind to specific sites on the myosin-II tail

    PubMed Central

    1984-01-01

    Electron microscopy of myosin-II molecules and filaments reacted with monoclonal antibodies demonstrates directly where the antibodies bind and shows that certain antibodies can inhibit the polymerization of myosin-II into filaments. The binding sites of seven of 23 different monoclonal antibodies were localized by platinum shadowing of myosin monomer-antibody complexes. The antibodies bind to a variety of sites on the myosin-II molecule, including the heads, the proximal end of the tail near the junction of the heads and tail, and the tip of the tail. The binding sites of eight of the 23 antibodies were also localized on myosin filaments by negative staining. Antibodies that bind to either the myosin heads or to the proximal end of the tail decorate the ends of the bipolar filaments. Some of the antibodies that bind to the tip of the myosin-II tail decorate the bare zone of the myosin-II thin filament with 14-nm periodicity. By combining the data from these electron microscope studies and the peptide mapping and competitive binding studies we have established the binding sites of 16 of 23 monoclonal antibodies. Two of the 23 antibodies block the formation of myosin-II filaments and given sufficient time, disassemble preformed myosin-II filaments. Both antibodies bind near one another at the tip of the myosin-II tail and are those that decorate the bare zone of preformed bipolar filaments with 14-nm periodicity. None of the other antibodies affect myosin filament formation, including one that binds to another site near the tip of the myosin-II tail. This demonstrates that antibodies can inhibit polymerization of myosin-II, but only when they bind to key sites on the tail of the molecule. PMID:6206074

  19. Myofibrillar ATPase activity in rat heart after chronic propranolol administration.

    PubMed

    Dowell, R T

    1979-11-01

    A previous study has shown that chronic chemical sympathectomy brought about by 6-hydroxydopamine injections results in a dpression in myocardial contractile function which is accompanied by reduced myofibrillar ATPase activity. To determine whether chronic beta-adrenergic receptor blockade elicits similar alterations in cardiac contractile-protein ATPase activity, adult rats were given twice-daily injections of propranolol 7 days/wk for 2 wk. Effective beta-adrenergic receptor blockade was verified by the lack of hemodynamic responsiveness to isoproterenol infusion. Myofibrils were prepared from left ventricular tissue and analyzed for ATPase activity. Myofibrillar ATPase activity was 295 +/- 8 nmol Pi.mg-1.min-1 in controls. Enzyme activity was not significantly different in propranolol-injected rats. The results demonstrate that chronic propranolol administration does not alter the ATPase activity of cardiac myofibrils. Therefore, it seems likely that the altered contractile-protein enzymatic properties resulting from chronic chemical sympathectomy do not occur as the result of a reducted level of cardiac beta-adrenergic receptor stimulation. PMID:158983

  20. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  1. A Method to Measure Hydrolytic Activity of Adenosinetriphosphatases (ATPases)

    PubMed Central

    Bartolommei, Gianluca; Moncelli, Maria Rosa; Tadini-Buoninsegni, Francesco

    2013-01-01

    The detection of small amounts (nanomoles) of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases (ATPases), that produce inorganic phosphate by cleavage of the ?-phosphate of ATP. These membrane transporters have many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III) oxide tartrate (originally employed for phosphate detection in environmental analysis) to allow its use with phosphatase enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high throughput drug screening. PMID:23472215

  2. P-Glycoprotein-ATPase Modulation: The Molecular Mechanisms

    PubMed Central

    Li-Blatter, Xiaochun; Beck, Andreas; Seelig, Anna

    2012-01-01

    P-glycoprotein-ATPase is an efflux transporter of broad specificity that counteracts passive allocrit influx. Understanding the rate of allocrit transport therefore matters. Generally, the rates of allocrit transport and ATP hydrolysis decrease exponentially with increasing allocrit affinity to the transporter. Here we report unexpectedly strong down-modulation of the P-glycoprotein-ATPase by certain detergents. To elucidate the underlying mechanism, we chose 34 electrically neutral and cationic detergents with different hydrophobic and hydrophilic characteristics. Measurement of the P-glycoprotein-ATPase activity as a function of concentration showed that seven detergents activated the ATPase as expected, whereas 27 closely related detergents reduced it significantly. Assessment of the free energy of detergent partitioning into the lipid membrane and the free energy of detergent binding from the membrane to the transporter revealed that the ratio, q, of the two free energies of binding determined the rate of ATP hydrolysis. Neutral (cationic) detergents with a ratio of q= 2.7 0.2 (q > 3) followed the aforementioned exponential dependence. Small deviations from the optimal ratio strongly reduced the rates of ATP hydrolysis and flopping, respectively, whereas larger deviations led to an absence of interaction with the transporter. P-glycoprotein-ATPase inhibition due to membrane disordering by detergents could be fully excluded using 2H-NMR-spectroscopy. Similar principles apply to modulating drugs. PMID:22455921

  3. Thermodynamic efficiency and mechanochemical coupling of F1-ATPase

    PubMed Central

    Toyabe, Shoichi; Watanabe-Nakayama, Takahiro; Okamoto, Tetsuaki; Kudo, Seishi; Muneyuki, Eiro

    2011-01-01

    F1-ATPase is a nanosized biological energy transducer working as part of FoF1-ATP synthase. Its rotary machinery transduces energy between chemical free energy and mechanical work and plays a central role in the cellular energy transduction by synthesizing most ATP in virtually all organisms. However, information about its energetics is limited compared to that of the reaction scheme. Actually, fundamental questions such as how efficiently F1-ATPase transduces free energy remain unanswered. Here, we demonstrated reversible rotations of isolated F1-ATPase in discrete 120 steps by precisely controlling both the external torque and the chemical potential of ATP hydrolysis as a model system of FoF1-ATP synthase. We found that the maximum work performed by F1-ATPase per 120 step is nearly equal to the thermodynamical maximum work that can be extracted from a single ATP hydrolysis under a broad range of conditions. Our results suggested a 100% free-energy transduction efficiency and a tight mechanochemical coupling of F1-ATPase. PMID:21997211

  4. Nanometric features of myosin filaments extracted from a single muscle fiber to uncover the mechanisms underlying organized motility.

    PubMed

    Li, Meishan; Deguchi, Takahiro; Näreoja, Tuomas; Jena, Bhanu P; Hänninen, Pekka; Larsson, Lars

    2015-10-01

    The single muscle fiber in vitro motility assay (SF-IVMA) is characterized by organized linear motility of actin filaments, i.e., actin filaments motility showing a parallel or anti-parallel direction with similar speed independent of direction in the central part of the flow-cell where density of myosin is high. In contrast, the low myosin density region in the flow-cell exhibits random filament movements, but the mechanisms underlying the organized motility remain unknown. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) imaging techniques have been combined to investigate the morphological features of myosin extracted from single muscle fiber segments in the flow cell. Nanometric scale imaging of myosin filaments in the SF-IVMA showed intact spatial distances between myosin heads being essential for myosin filament function. However, angular spectrum analyses of myosin filaments in the high myosin density region showed organized myosin filament orientation only in small areas, while unorganized filament orientation were dominantly presented when larger areas were analyzed. Thus, parallel myosin filament organization is a less likely mechanism underlying the organized motility of actin filaments and the high myosin density per se is therefore forwarded as the primary "driver" that promotes organized linear motility. PMID:26116379

  5. Myosin Vc Interacts with Rab32 and Rab38 Proteins and Works in the Biogenesis and Secretion of Melanosomes*

    PubMed Central

    Bultema, Jarred J.; Boyle, Judith A.; Malenke, Parker B.; Martin, Faye E.; Dell'Angelica, Esteban C.; Cheney, Richard E.; Di Pietro, Santiago M.

    2014-01-01

    Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. PMID:25324551

  6. Genetic characterization of the Drosophila jaguar322 mutant reveals that complete myosin VI loss of function is not lethal.

    PubMed

    Morrison, Julie K; Miller, Kathryn G

    2008-05-01

    Myosin VI is an actin-based motor that has been implicated in many cellular processes. Studies in vertebrates have demonstrated that animals lacking this ubiquitously expressed myosin are viable. However in Drosophila, myosin VI loss of function has been thought to be lethal. We show here that complete loss of myosin VI is not lethal in flies and that the previously reported lethality of the null mutation (jar322) is most likely due to deletion of a neighboring gene. Maternally provided myosin VI does not account for the survival of myosin VI null animals. Mutant animals are recovered at a lower than expected Mendelian frequency, suggesting that myosin VI participates in processes which contribute to normal development, but its participation is not essential. PMID:18493084

  7. Myosin isoforms in red and white muscles of some marine teleost fishes.

    PubMed

    Martinez, I; Ofstad, R; Olsen, R L

    1990-12-01

    The myosin content from red and white muscles of three marine fish species, saithe (Pollachius virens. L.), haddock (Melanogrammus aeglefinus, L.), both members of the family Gadidae, and capeline (Mallotus villosus, M.) of the family Osmeridae, was analyzed electrophoretically. Analysis of the native myosin by electrophoresis under non-dissociating conditions revealed two isoforms in red muscles, and three or four in white muscles. The white muscles of the two closely related species had a similar pattern of isoforms. Myosin from the slow red muscles had two types of light chain, LC1S and LC2S, and myosin from the fast white muscles three, LC1F, LC2F, and LC3F. The pattern of light chains in both types of muscles was species-dependent. All the light chains from fish myosins were more acidic than those of the rat diaphragm used as standard. One main type of heavy chain was detected in each kind of muscle. In white muscles of saithe there was an extra band, present in minor amounts. The heavy chains from white muscle myosin had lower electrophoretic mobilities than those from red muscle, and the mobilities of all of them were intermediate between those of the heavy chains type IIa and I of rat diaphragm myosin. In our opinion, there are probably more isomyosins in fish muscles than those detected in the present work and their presence is obscured by comigration with the main types. PMID:2150675

  8. Approaches to myosin modelling in a two-phase flow model for cell motility

    NASA Astrophysics Data System (ADS)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  9. Overexpression of myosin IB in living Entamoeba histolytica enhances cytoplasm viscosity and reduces phagocytosis.

    PubMed

    Marion, Sabrina; Wilhelm, Claire; Voigt, Heike; Bacri, Jean-Claude; Guillén, Nancy

    2004-07-01

    The human parasite Entamoeba histolytica is an ancient protozoan that expresses only one unconventional myosin, which has homology with myosin IB from other amoebae. Myosin IB is involved in phagocytosis of human cells by E. histolytica. In this work, we developed a microrheological technique, analysing magnetic phagosomes, which allowed us to probe the density of the F-actin network in living cells. Using this technique, we showed that overexpression of myosin IB led to an increase in cytoplasm viscosity, which correlated with a delay in initiating human cell phagocytosis. To investigate which myosin IB domains sustain cell viscosity changes, we overexpressed truncated forms of the protein. Our results demonstrate that both actin-binding sites that are present in the heavy chain but not the SH3 domain are required to modulate the density of the actin network. These data suggested that, as well as the motor activity, myosin IB in E. histolytica plays a structural role on the actin network owing to its ability to cross-link filaments. The gelation state of cell cytoplasm and the dynamics of cortical F-actin during phagocytosis seem to be modulated by the myosin IB structuring cytoskeleton activity. PMID:15226399

  10. Pharmacological activation of myosin II paralogs to correct cell mechanics defects

    PubMed Central

    Surcel, Alexandra; Ng, Win Pin; West-Foyle, Hoku; Zhu, Qingfeng; Ren, Yixin; Avery, Lindsay B.; Krenc, Agata K.; Meyers, David J.; Rock, Ronald S.; Anders, Robert A.; Freel Meyers, Caren L.; Robinson, Douglas N.

    2015-01-01

    Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior. PMID:25605895

  11. PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division.

    PubMed

    Pacquelet, Anne; Uhart, Perrine; Tassan, Jean-Pierre; Michaux, Grgoire

    2015-09-28

    During asymmetric cell division, the mitotic spindle and polarized myosin can both determine the position of the cytokinetic furrow. However, how cells coordinate signals from the spindle and myosin to ensure that cleavage occurs through the spindle midzone is unknown. Here, we identify a novel pathway that is essential to inhibit myosin and coordinate furrow and spindle positions during asymmetric division. In Caenorhabditis elegans one-cell embryos, myosin localizes at the anterior cortex whereas the mitotic spindle localizes toward the posterior. We find that PAR-4/LKB1 impinges on myosin via two pathways, an anillin-dependent pathway that also responds to the cullin CUL-5 and an anillin-independent pathway involving the kinase PIG-1/MELK. In the absence of both PIG-1/MELK and the anillin ANI-1, myosin accumulates at the anterior cortex and induces a strong displacement of the furrow toward the anterior, which can lead to DNA segregation defects. Regulation of asymmetrically localized myosin is thus critical to ensure that furrow and spindle midzone positions coincide throughout cytokinesis. PMID:26416962

  12. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    NASA Astrophysics Data System (ADS)

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  13. Dynamics of myosin II organization into cortical contractile networks and fibers

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  14. Involvement of myosin light-chain kinase in endothelial cell retraction

    SciTech Connect

    Wysolmerski, R.B.; Lagunoff, D. )

    1990-01-01

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylation of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.

  15. The Role of Structural Dynamics of Actin in Class-Specific Myosin Motility

    PubMed Central

    Noguchi, Taro Q. P.; Morimatsu, Masatoshi; Iwane, Atsuko H.; Yanagida, Toshio; Uyeda, Taro Q. P.

    2015-01-01

    The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin. PMID:25945499

  16. Thermodynamic evidence of non-muscle myosin II-lipid-membrane interaction

    SciTech Connect

    Schewkunow, Vitali; Sharma, Karan P.; Diez, Gerold; Klemm, Anna H.; Sharma, Pal C.; Goldmann, Wolfgang H.

    2008-02-08

    A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles made of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 deg. C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement.

  17. Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport

    PubMed Central

    Evans, Richard D.; Robinson, Christopher; Briggs, Deborah A.; Tooth, David J.; Ramalho, Jose S.; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V.; Hume, Alistair N.

    2014-01-01

    Summary In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11]. PMID:25065759

  18. The role of structural dynamics of actin in class-specific myosin motility.

    PubMed

    Noguchi, Taro Q P; Morimatsu, Masatoshi; Iwane, Atsuko H; Yanagida, Toshio; Uyeda, Taro Q P

    2015-01-01

    The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin. PMID:25945499

  19. Microsecond rotational dynamics of spin-labeled myosin regulatory light chain induced by relaxation and contraction of scallop muscle.

    PubMed

    Roopnarine, O; Szent-Gyrgyi, A G; Thomas, D D

    1998-10-13

    We have used saturation transfer electron paramagnetic resonance (ST-EPR) to study the rotational dynamics of spin-labeled regulatory light chain (RLC) in scallop (Placopecten magellanicus) muscle fibers. The single cysteine (Cys 51) in isolated clam (Mercenaria) RLC was labeled with an indanedione spin label (InVSL). RLC was completely and specifically extracted from scallop striated muscle fibers, eliminating the Ca sensitivity of ATPase activity and isometric force, which were both completely restored by stoichiometric incorporation of labeled RLC. The EPR spectrum of the isolated RLC revealed nanosecond rotational motions within the RLC, which were completely eliminated when the labeled RLC was bound to myosin heads in myofibrils or fibers in rigor. This is the most strongly immobilized RLC-bound probe reported to date and thus offers the most reliable detection of the overall rotational motion of the LC domain. Conventional EPR spectra of oriented fibers indicated essentially complete probe disorder, independent of ATP and Ca, eliminating orientational dependence and thus making this probe ideal for unambiguous measurement of microsecond rotational motions of the LC domain by ST-EPR. ST-EPR spectra of fibers in rigor indicated an effective rotational correlation time (taureff) of 140 +/- 5 microseconds, similar to that observed for the same spin label bound to the catalytic domain. Relaxation by ATP induced microsecond rotational motion (taureff = 70 +/- 4 microseconds), and this motion was slightly slower upon Ca activation of isometric contraction (taureff = 100 +/- 5 microseconds). These motions in relaxation and contraction are similar to, but slower than, the motions previously reported for the same spin label bound to the catalytic domain. These results support a model for force generation involving rotational motion of the LC domain relative to the catalytic domain and dynamic disorder-to-order transitions in both domains. PMID:9772169

  20. Copper transporting P-type ATPases and human disease.

    PubMed

    Cox, Diane W; Moore, Steven D P

    2002-10-01

    Copper transporting P-type ATPases, designated ATP7A and ATP7B, play an essential role in mammalian copper balance. Impaired intestinal transport of copper, resulting from mutations in the ATP7A gene, lead to Menkes disease in humans. Defects in a similar gene, the copper transporting ATPase ATP7B, result in Wilson disease. This ATP7B transporter has two functions: transport of copper into the plasma protein ceruloplasmin, and elimination of copper through the bile. Variants of ATP7B can be functionally assayed to identify defects in each of these functions. Tissue expression studies of the copper ATPases and their copper chaperone ATOX1 indicate that there is not complete overlap in expression. Other chaperones may be important for the transport of copper into ATP7A and ATP7B. PMID:12539960

  1. Rotary ATPases: A New Twist to an Ancient Machine.

    PubMed

    Khlbrandt, Werner; Davies, Karen M

    2016-01-01

    Rotary ATPases are energy-converting nanomachines found in the membranes of all living organisms. The mechanism by which proton translocation through the membrane drives ATP synthesis, or how ATP hydrolysis generates a transmembrane proton gradient, has been unresolved for decades because the structure of a critical subunit in the membrane was unknown. Electron cryomicroscopy (cryoEM) studies of two rotary ATPases have now revealed a hairpin of long, horizontal, membrane-intrinsic ?-helices in the a-subunit next to the c-ring rotor. The horizontal helices create a pair of aqueous half-channels in the membrane that provide access to the proton-binding sites in the rotor ring. These recent findings help to explain the highly conserved mechanism of ion translocation by rotary ATPases. PMID:26671611

  2. Arresting a Torsin ATPase Reshapes the Endoplasmic Reticulum*

    PubMed Central

    Rose, April E.; Zhao, Chenguang; Turner, Elizabeth M.; Steyer, Anna M.; Schlieker, Christian

    2014-01-01

    Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures. PMID:24275647

  3. Assaying P-Type ATPases Reconstituted in Liposomes.

    PubMed

    Apell, Hans-Jürgen; Damnjanovic, Bojana

    2016-01-01

    Reconstitution of P-type ATPases in unilamellar liposomes is a useful technique to study functional properties of these active ion transporters. Experiments with such liposomes provide an easy access to substrate-binding affinities of the ion pumps as well as to the lipid and temperature dependence of the pump current. Here, we describe two reconstitution methods by dialysis and the use of potential-sensitive fluorescence dyes to study transport properties of two P-type ATPases, the Na,K-ATPase from rabbit kidney and the K(+)-transporting KdpFABC complex from E. coli. Several techniques are introduced how the measured fluorescence signals may be analyzed to gain information on properties of the ion pumps. PMID:26695029

  4. Molecular Modulation of Actomyosin Function by Cardiac Myosin-Binding Protein C

    PubMed Central

    Previs, Michael J.; Michalek, Arthur J.; Warshaw, David M.

    2014-01-01

    Cardiac myosin-binding protein C is a key regulator of cardiac contractility and is capable of both activating the thin filament to initiate actomyosin motion generation and governing maximal sliding velocities. While MyBP-Cs C-terminus localizes the molecule within the sarcomere the N-terminus appears to confer regulatory function by binding to the myosin motor domain and/or actin. Literature pertaining to how MyBP-C binding to the myosin motor domain and or actin leads to MyBP-Cs dual modulatory roles that can impact actomyosin interactions are discussed. PMID:24407948

  5. Mode of Myosin Transportation in Living Cells Studied by Single Particle Tracking

    NASA Astrophysics Data System (ADS)

    Liang, Zhang-yi; Xu, Ning; Guan, Ying-hua; Zhang, You-yi; Zhao, Xin-sheng

    2007-08-01

    The transport of internalized α1A-adrenergic receptor (α1A-AR) by myosin protein in live cells was studied. The technique of single particle tracking by fluorescence imaging with high temporal and spatial resolution was used. The endosomes of α1A-AR were transported along actin filaments in a step-by-step mode. The average step-size in different time resolutions is consistent with the step-size of myosin assay in vitro. With the simulation of the stepwise traces in different time resolutions, we found that the kinetic process of each step is in coherence with the single myosin assay in vitro.

  6. Binding of sesquiterpene lactone inhibitors to the Ca(2+)-ATPase.

    PubMed

    Wictome, M; Khan, Y M; East, J M; Lee, A G

    1995-09-15

    The mechanism of inhibition of the Ca(2+)-ATPase from sarcoplasmic reticulum by the sesquiterpene lactones thapsigargin, trilobolide and thapsivillosin A (TvA) has been determined. A decrease in the affinity of the ATPase for Ca2+ is observed in the presence of the inhibitors (I), consistent with a shift in the E1/E2 equilibrium for the ATPase towards E2 forms. Amounts of inhibitor beyond a 1:1 molar ratio with ATPase produce no further decrease in affinity for Ca2+, inconsistent with the formation of a dead-end complex. Measurements of the rate of quenching of the tryptophan fluorescence of the ATPase by TvA are consistent with an association step to give E2I followed by an isomerization to a modified state E2AI. The kinetics of the reversal of the effects of TvA by Ca2+ at sub-stoichiometric amounts of TvA are bi-exponential, with a fast component whose rate is independent of TvA concentration and equal to the rate observed in the absence of TvA, and a slow component whose rate decreases with increasing TvA concentration. These observations are also consistent with the formation of a modified state E2AI following the initial binding of I to E2. The equilibrium constant E2AI/E2I increases in the order TvA < trilobolide < thapsigargin. The results suggest that the effects of the inhibitors on the overall ratio of E2 to E1 forms of the ATPase follow largely from the formation of E2AI from E2I, and that binding constants are very similar for E1Ca2, E1 and E2. PMID:7575419

  7. Binding of sesquiterpene lactone inhibitors to the Ca(2+)-ATPase.

    PubMed Central

    Wictome, M; Khan, Y M; East, J M; Lee, A G

    1995-01-01

    The mechanism of inhibition of the Ca(2+)-ATPase from sarcoplasmic reticulum by the sesquiterpene lactones thapsigargin, trilobolide and thapsivillosin A (TvA) has been determined. A decrease in the affinity of the ATPase for Ca2+ is observed in the presence of the inhibitors (I), consistent with a shift in the E1/E2 equilibrium for the ATPase towards E2 forms. Amounts of inhibitor beyond a 1:1 molar ratio with ATPase produce no further decrease in affinity for Ca2+, inconsistent with the formation of a dead-end complex. Measurements of the rate of quenching of the tryptophan fluorescence of the ATPase by TvA are consistent with an association step to give E2I followed by an isomerization to a modified state E2AI. The kinetics of the reversal of the effects of TvA by Ca2+ at sub-stoichiometric amounts of TvA are bi-exponential, with a fast component whose rate is independent of TvA concentration and equal to the rate observed in the absence of TvA, and a slow component whose rate decreases with increasing TvA concentration. These observations are also consistent with the formation of a modified state E2AI following the initial binding of I to E2. The equilibrium constant E2AI/E2I increases in the order TvA < trilobolide < thapsigargin. The results suggest that the effects of the inhibitors on the overall ratio of E2 to E1 forms of the ATPase follow largely from the formation of E2AI from E2I, and that binding constants are very similar for E1Ca2, E1 and E2. PMID:7575419

  8. Evolution of expression of cardiac phenotypes over a 4-year period in the ?-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy

    PubMed Central

    Nagueh, Sherif F.; Chen, Suetnee; Patel, Rajnikant; Tsybouleva, Natalia; Lutucuta, Silvia; Kopelen, Helen A.; Zoghbi, William A.; Quiones, Miguel A.; Roberts, Robert; Marian, A.J.

    2009-01-01

    Hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young, is characterized by a diverse array of cardiac phenotypes evolving over several decades. We have developed transgenic rabbits that fully recapitulate the phenotype of human HCM and provide for the opportunity to delineate the sequence of evolution of cardiac phenotypes, and thus, the pathogenesis of HCM. We determined evolution of biochemical, molecular, histological, structural and functional phenotypes at 4 age-periods in 47 ?-myosin heavy chain-glutamine (MyHC-Q)-403 transgenic rabbits. Ca+2 sensitivity of myofibrillar ATPase activity was reduced very early and in the absence of other discernible phenotypes. Myocyte disarray also occurred early, prior to, and independent of hypertrophy and fibrosis. The latter phenotypes evolved predominantly during puberty in conjunction with activation of stress-related signaling kinases. Myocardial contraction and relaxation velocities were decreased early despite normal global cardiac function and in the absence of histological phenotype. Global cardiac function declined with aging, while left atrial size was increased along with Doppler indices of left ventricular filling pressure. Thus, Ca+2 sensitivity of myofibrillar ATPase activity is a primary phenotype expressed early and independent of the ensuing phenotypes. Pathogenesis of myocyte disarray, which exhibits age-independent penetrance, differs from those of hypertrophy and fibrosis, which show age-dependent expression. Myocardial dysfunction is an early marker that predicts subsequent development of hypertrophy. These findings in an animal model that recapitulates the phenotype of human HCM, implicate involvement of multiple independent mechanisms in the pathogenesis of cardiac phenotypes in HCM. PMID:15135661

  9. Na,K-ATPase and epithelial tight junctions.

    PubMed

    Rajasekaran, Sigrid A; Rajasekaran, Ayyappan K

    2009-01-01

    Tight junctions are unique organelles in polarized epithelial and endothelial cells that regulate the flow of solutes and ions across the epithelial barrier. The structure and functions of tight junctions are regulated by a wide variety of signaling and molecular mechanisms. Several recent studies in mammals, drosophila, and zebrafish reported a new role for Na,K-ATPase, a well-studied ion transporter, in the modulation of tight junction development, permeability, and polarity. In this review, we have attempted to compile these new reports and suggest a model for a conserved role of Na,K-ATPase in the regulation of tight junction structure and functions. PMID:19273189

  10. Linking Ras to myosin function: RasGEF Q, a Dictyostelium exchange factor for RasB, affects myosin II functions

    PubMed Central

    Mondal, Subhanjan; Bakthavatsalam, Deenadayalan; Steimle, Paul; Gassen, Berthold; Rivero, Francisco; Noegel, Angelika A.

    2008-01-01

    Ras guanine nucleotide exchange factor (GEF) Q, a nucleotide exchange factor from Dictyostelium discoideum, is a 143-kD protein containing RasGEF domains and a DEP domain. We show that RasGEF Q can bind to F-actin, has the potential to form complexes with myosin heavy chain kinase (MHCK) A that contain active RasB, and is the predominant exchange factor for RasB. Overexpression of the RasGEF Q GEF domain activates RasB, causes enhanced recruitment of MHCK A to the cortex, and leads to cytokinesis defects in suspension, phenocopying cells expressing constitutively active RasB, and myosin-null mutants. RasGEF Q? mutants have defects in cell sorting and slug migration during later stages of development, in addition to cell polarity defects. Furthermore, RasGEF Q? mutants have increased levels of unphosphorylated myosin II, resulting in myosin II overassembly. Collectively, our results suggest that starvation signals through RasGEF Q to activate RasB, which then regulates processes requiring myosin II. PMID:18504297

  11. Motor-driven dynamics in actin-myosin networks.

    PubMed

    Le Goff, Loc; Amblard, Franois; Furst, Eric M

    2002-01-01

    The effect of myosin motor protein activity on the filamentous actin (F-actin) rheological response is studied using diffusing wave spectroscopy. Under conditions of saturating motor activity, we find an enhancement of longitudinal filament fluctuations corresponding to a scaling of the viscoelastic shear modulus G(d)(omega) approximately omega(7/8). As the adenosine tri-phosphate reservoir sustaining motor activity is depleted, we find an abrupt transient to a passive, "rigor state" and a return to dissipation dominated by transverse filament modes. Single-filament measurements of the apparent persistence length support the notion that motor activity leads to an increase in the effective temperature for tangential motion. PMID:11800991

  12. Allosteric Transitions in Myosin V: Structural Basis for the Dynamics

    NASA Astrophysics Data System (ADS)

    Tehver, Riina; Thirumalai, D.

    2010-03-01

    The key to understanding the operation of molecular motors lies in deciphering the details of their mechano-chemical coupling, i.e. how nucleotide binding, hydrolysis and release translate into coordinated conformational changes and the resulting mechanical work. We use myosin V to study the details of this coupling. Applying the Structural Perturbation Method (SPM) in conjunction with normal model analysis helps us predict the key structural elements in the transitions. Brownian dynamics simulations, using a coarse-grained Self-Organized Polymer (SOP) model, reveal a hierarchy of local structural changes that occur in the structural elements during the transitions. The combination of methods used here should be of general applicability to describe the fundamental steps in the reaction cycle of other molecular motors.

  13. Evolution of myosin filament arrangements in vertebrate skeletal muscle.

    PubMed

    Luther, P K; Squire, J M; Forey, P L

    1996-09-01

    A survey of skeletal muscles throughout craniates shows basic kinds of myosin filament arrangement, simple-lattice and superlattice, within the A-band of each sarcomere. Distribution of simple- and superlattice arrangements across a phylogeny of craniates suggests that the superlattice arrangement is primitive and that Amia and teleosts are derived in showing simple-lattice arrangements. Two taxa examined (Scyliorhinus and Acipenser) show both lattice types within the same organism implying that there is not a simple evolutionary transformation of one to the other fiber arrangement. We discuss the possible functional significance of the different lattice types. We believe that the crossbridges may have greater competition for actin binding sites in simple-lattice muscles compared to the superlattice types. PMID:8765810

  14. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    NASA Astrophysics Data System (ADS)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-03-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase ?1, ATPase B2, and ATPase B3 is highly correlated (P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  15. ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS

    EPA Science Inventory

    The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

  16. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    NASA Astrophysics Data System (ADS)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated ( P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  17. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls.

    PubMed

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T V; Alyethodi, Rafeeque R; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P?ATPase ?1, ATPase B2, and ATPase B3 is highly correlated (P?ATPase beta family genes for cellular thermotolerance in cattle. PMID:25875448

  18. Nonmuscle myosin II isoforms coassemble in living cells.

    PubMed

    Beach, Jordan R; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A

    2014-05-19

    Nonmuscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB, and IIC), each of which possesses distinct biophysical properties and supports unique as well as redundant cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear whether NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments or whether filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently tagged versions of NM IIA, IIB, and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms coassemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly spread cells, arguing for the existence of a sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while coassembled with other NM II isoforms. PMID:24814144

  19. Cation stoichiometry and cation pathway in the Na,K-ATPase and nongastric H,K-ATPase.

    PubMed

    Horisberger, Jean-Daniel; Guennoun, Saida; Burnay, Muriel; Geering, Kathi

    2003-04-01

    The mechanism of cation translocation by the Na,K-ATPase was investigated by cysteine scanning mutagenesis and measurements of accessibility through exposure to cysteine reagents. In the native protein, accessible residues were found only at the most extracellular residues of the 5th and 6th transmembrane segments (TMS) and the short loop between them. However, after modification by palytoxin a number of residues became accessible along the whole length of the 5th TMS and in the outer half of the 6th TMS, showing the contribution of each of these segments to the "channel" formed by the palytoxin-transformed Na,K-pump. Assuming that this structure is similar in the native and the palytoxin-transformed pump, our data allow us to determine the residues lining the cation pathway from the extracellular solution to their binding sites. A critical position in the 5th TMS contains a lysine conserved in all known nonelectrogenic H,K-ATPases, and a serine in all known electrogenic Na,K-ATPase sequences. Wild-type or mutant Na,K-or H,K-ATPase a subunits were coinjected with the Bufo beta2 subunit in Xenopus oocytes and Rb(86) uptake and electrophysiological measurements were performed. An electrogenic activity was recorded for the H,K-ATPase mutants in which the positively charged lysine had been replaced by neutral or negatively charged residues, while nonelectrogenic transport was observed with the S(782)R mutant of the Na,K-ATPase. The presence or the absence of a positively charged residue at the S(782) position appears to be critical for the stoichiometry of cation exchange. PMID:12763785

  20. A force-dependent state controls the coordination of processive myosin V

    PubMed Central

    Purcell, Thomas J.; Sweeney, H. Lee; Spudich, James A.

    2005-01-01

    Myosin V is an efficient processive molecular motor. Recent experiments have shown how the structure and kinetics of myosin V are specialized to produce a highly processive motor capable of taking multiple 36-nm steps on an actin filament track. Here, we examine how two identical heads coordinate their activity to produce efficient hand-over-hand stepping. We have used a modified laser-trap microscope to apply a ?2-pN forward or backward force on a single-headed myosin V molecule, hypothesized to simulate forces experienced by the rear or lead head, respectively. We found that pulling forward produces only a small change in the kinetics, whereas pulling backward induces a large reduction in the cycling of the head. These results support a model in which the coordination of myosin V stepping is mediated by strain-generated inhibition of the lead head. PMID:16150709

  1. Involvement of myosin VI immunoanalog in pinocytosis and phagocytosis in Amoeba proteus.

    PubMed

    Sobczak, Magdalena; Wasik, Anna; Kłopocka, Wanda; Redowicz, Maria Jolanta

    2008-12-01

    Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.). PMID:19088799

  2. Characterization and localization of dynein and myosins V and VI in the ovaries of queen bees.

    PubMed

    Patricio, Karina; Calbria, Luciana Karen; Peixoto, Pablo Marco; Espindola, Foued Salmen; Da Cruz-Landim, Carminda

    2010-10-01

    The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved. PMID:20486900

  3. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    PubMed Central

    Chabaud, Mlanie; Heuz, Mlina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Mal; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bnichou, Olivier; Voituriez, Raphal; Piel, Matthieu; Lennon-Dumnil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  4. Lamellipodial actin mechanically links myosin activity with adhesion-site formation.

    PubMed

    Giannone, Grgory; Dubin-Thaler, Benjamin J; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Dbereiner, Hans-Gnther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P

    2007-02-01

    Cell motility proceeds by cycles of edge protrusion, adhesion, and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction, and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  5. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    SciTech Connect

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M. )

    1990-10-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation.

  6. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction

    PubMed Central

    Lee, Eunhee; Stafford, III, Walter F.

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 9911030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 9981000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction. PMID:26445108

  7. Lycopene protects against atrazine-induced hepatic ionic homeostasis disturbance by modulating ion-transporting ATPases.

    PubMed

    Lin, Jia; Zhao, Hua-Shan; Xiang, Li-Run; Xia, Jun; Wang, Li-Li; Li, Xue-Nan; Li, Jin-Long; Zhang, Ying

    2016-01-01

    The aim of this study was to evaluate the possible chemoprotective role of lycopene (LYC) against atrazine (ATR)-induced ionic disorder and hepatotoxicity in mice. Male kunming mice were treated with LYC (5mg/kg) and/or ATR (50mg/kg or 200mg/kg) by lavage administration for 21days. Ionic disorder was assessed by determining the Na(+), K(+) and Ca(2+) content and the alteration in ATP enzymes (ATPases) including Na(+)-K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase and the mRNA levels of ATPase's subunits in liver. ATR caused the increases of alanine aminotransferase and aspartate aminotransferase activities and histological changes. LYC pretreatment significantly protected liver against ATR-caused alternation. The significant effect of ATR and LYC on the K(+) and Mg(2+) content in liver was not observed, but ATR increased hepatic Na(+)-K(+)-ATPase activity and decreased Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase activity. The mRNA expressions of Na(+)-K(+)-ATPase subunits were regulated significantly by ATR. A significant increase of Ca(2+) content and seven down-regulated mRNA expressions of Ca(2+)-ATPase subunits and a decrease of Ca(2+)-ATPase activity were observed in the ATR-treated mice. Notably, LYC modulated these ATR-induced alterations of ATPase activity and mRNA expression of their subunits. These results suggest that ATR presents hepatotoxicity via regulating hepatic ATPase's activities and their subunit transcriptions and inducing ionic disorder. LYC protects liver against ATR-induced hepatotoxicity, significantly. LYC modulated hepatic ionic homeostasis disturbance via regulation of ATPase activities and their subunits' (1a1, 1b3, 1b4 and 2b4) transcriptions. In summary, these effects play a critical role of LYC-mediated chemoprevention against ATR-induced hepatotoxicity. PMID:26476475

  8. Electrophysiological characterization of ATPases in native synaptic vesicles and synaptic plasma membranes.

    PubMed

    Obrdlik, Petr; Diekert, Kerstin; Watzke, Natalie; Keipert, Christine; Pehl, Ulrich; Brosch, Catrin; Boehm, Nicole; Bick, Inga; Ruitenberg, Maarten; Volknandt, Walter; Kelety, Bela

    2010-04-01

    Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions. For the SSM-based electrical measurements, the ATPases were activated by ATP concentration jumps. In vesicles, ATP-induced currents were inhibited by the V-ATPase-specific inhibitor BafA1 (bafilomycin A1) and by DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate). In plasma membranes, the currents were inhibited by the Na+/K+-ATPase inhibitor digitoxigenin. The distribution of the V-ATPase- and Na+/K+-ATPase-specific currents correlated with the distribution of vesicles and plasma membranes in the sucrose gradient. V-ATPase-specific currents depended on ATP with a K0.5 of 51+/-7 microM and were inhibited by ADP in a negatively co-operative manner with an IC50 of 1.2+/-0.6 microM. Activation of V-ATPase had stimulating effects on the chloride conductance in the vesicles. Low micromolar concentrations of DIDS fully inhibited the V-ATPase activity, whereas the chloride conductance was only partially affected. In contrast, NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] inhibited the chloride conductance but not the V-ATPase. The results presented describe electrical characteristics of synaptic V-ATPase and Na+/K+-ATPase in their native surroundings, and demonstrate the feasibility of the method for electrophysiological studies of transport proteins in native intracellular compartments and plasma membranes. PMID:20100168

  9. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins

    PubMed Central

    2013-01-01

    Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

  10. Mechanics of myosin function in white muscle fibres of the dogfish, Scyliorhinus canicula.

    PubMed

    Park-Holohan, S; Linari, M; Reconditi, M; Fusi, L; Brunello, E; Irving, M; Dolfi, M; Lombardi, V; West, T G; Curtin, N A; Woledge, R C; Piazzesi, G

    2012-04-15

    The contractile properties of muscle fibres have been extensively investigated by fast perturbation in sarcomere length to define the mechanical characteristics of myofilaments and myosin heads that underpin refined models of the acto-myosin cycle. Comparison of published data from intact fast-twitch fibres of frog muscle and demembranated fibres from fast muscle of rabbit shows that stiffness of the rabbit myosin head is only ?62% of that in frog. To clarify if and how much the mechanical characteristics of the filaments and myosin heads vary in muscles of different animals we apply the same high resolution mechanical methods, in combination with X-ray diffraction, to fast-twitch fibres from the dogfish (Scyliorhinus canicula). The values of equivalent filament compliance (C(f)) measured by X-ray diffraction and in mechanical experiments are not significantly different; the best estimate from combining these values is 17.1 1.0 nm MPa(?1). This value is larger than Cf in frog, 13.0 0.4 nm MPa(?1). The longer thin filaments in dogfish account for only part of this difference. The average isometric force exerted by each attached myosin head at 5C, 4.5 pN, and the maximum sliding distance accounted for by the myosin working stroke, 11 nm, are similar to those in frog, while the average myosin head stiffness of dogfish (1.98 0.31 pN nm(?1)) is smaller than that of frog (2.78 0.30 pN nm(?1)). Taken together these results indicate that the working stroke responsible for the generation of isometric force is a larger fraction of the total myosin head working stroke in the dogfish than in the frog. PMID:22310308

  11. Effects of Myosin “Essential” Light Chain A1 on the Aggregation Properties of the Myosin Head

    PubMed Central

    Markov, D.I.; Nikolaeva, O.P.

    2010-01-01

    We compared the thermal aggregation properties of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. Temperature dependencies for the aggregation of these two S1 isoforms, as measured by the increase in turbidity, were compared with the temperature dependencies of their thermal denaturation obtained from differential scanning calorimetry (DSC) experiments. At relatively high ionic strength (in the presence of 100 mM KCl) close to its physiological values in muscle fibers, we have found no appreciable difference between the two S1 isoforms in their thermally induced aggregation. Under these conditions, the aggregation of both S1 isoforms was independent of the protein concentration and resulted from their irreversible denaturation, which led to the cohesion of denatured S1 molecules. In contrast, a significant difference between these S1 isoforms was revealed in their aggregation measured at low ionic strength. Under these conditions, the aggregation of S1 containing a light chain A1 (but not A2) was strongly dependent on protein concentration, the increase of which (from 0.125 to 2.0 mg/ml) shifted the aggregation curve by ~10 degrees towards the lower temperatures. It has been concluded that the aggregation properties of this S1 isoform at low ionic strength is basically determined by intermolecular interactions of the N–terminal extension of the A1 light chain (which is absent in the A2 light chain) with other S1 molecules. These interactions seem to be independent of the S1 thermal denaturation, and they may take place even at low temperature. PMID:22649644

  12. How do volatile anesthetics inhibit Ca(2+)-ATPases?

    PubMed

    Lopez, M M; Kosk-Kosicka, D

    1995-11-24

    Volatile anesthetics at concentrations that are used in clinical practice to induce anesthesia selectively inhibit activity of the plasma membrane Ca(2+)-transport ATPase (Kosk-Kosicka, D., and Roszczynska, G. (1993) Anesthesiology 79, 774-780). We have investigated the mechanism of the inhibitory action of several anesthetics on the purified erythrocyte Ca(2+)-ATPase by employing fluorescence spectroscopy measurements that report changes in the environment of intrinsic tryptophans and of an extrinsic probe attached in the active site of the enzyme. We have shown that the observed inhibition of the Ca(2+)-dependent activation of the enzyme correlates well with the elimination of the Ca(2+)-induced conformation change that is important for the proper function of the enzyme. Analysis of the anesthetics effects on the total tryptophan fluorescence indicates a significant effect on enzyme conformation. Similar changes have been observed in the sarcoplasmic reticulum Ca(2+)-ATPase. We propose that volatile anesthetics inhibit Ca(2+)-ATPase by interacting with nonpolar sites in protein interior, in analogy to the binding demonstrated for myoglobin, hemoglobin, and adenylate kinase (Schoenborn, B. P., and Featherstone, R. M. (1967) Adv. Pharmacol. 5, 1-17; Tilton, R. F., Kuntz, I. D., and Petsko, G. A. (1984) Biochemistry 23, 2849-2857). Such binding is expected to modify conformational substate(s) of the enzyme and perturb its function. We view this process as an example of a general phenomena of interaction of small molecules with internal sites in proteins. PMID:7499320

  13. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  14. A sulfur-based transport pathway in Cu+-ATPases.

    PubMed

    Mattle, Daniel; Zhang, Limei; Sitsel, Oleg; Pedersen, Lotte Thue; Moncelli, Maria Rosa; Tadini-Buoninsegni, Francesco; Gourdon, Pontus; Rees, Douglas C; Nissen, Poul; Meloni, Gabriele

    2015-06-01

    Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB -type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu(+)-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu(+) is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway. PMID:25956886

  15. Fluoride inhibition of proton-translocating ATPases of oral bacteria.

    PubMed Central

    Sutton, S V; Bender, G R; Marquis, R E

    1987-01-01

    The ATPases of isolated membranes of lactic acid bacteria were found to be inhibited by fluoride in a complex manner. Among the enzymes tested, that of Streptococcus mutans GS-5 was the most sensitive to fluoride, and the initial rate of hydrolysis of ATP was reduced 50% by approximately 3 mM fluoride. The enzyme of Lactobacillus casei ATCC 4646 was the most resistant, and about 25 mM fluoride was required for 50% inhibition. The response to fluoride appeared to involve reversible, noncompetitive inhibition during short exposure to low levels of fluoride and nonreversible inhibition at higher fluoride levels. In addition, kinetic studies of the effects of fluoride on the enzymes of membranes of S. mutans and L. casei indicated that reversible inhibition was at least partly overcome at high levels of either ATP or Mg. The effects of pH on fluoride inhibition of ATPases were markedly different from the effects of pH on inhibition of acid/base regulation of intact cells by fluoride. It appeared that formation of HF was not required for inhibition of the ATPases. F1 ATPases isolated from the membranes by washing with buffers of low ionic strength proved to be less sensitive to fluoride than the membrane-associated F1F0 holoenzymes, and it was concluded that the F0 or membrane sector of the holoenzyme is involved in fluoride inhibition. PMID:2889674

  16. Ion permeation through the Na+,K+-ATPase.

    PubMed

    Reyes, Nicols; Gadsby, David C

    2006-09-28

    P-type ATPase pumps generate concentration gradients of cations across membranes in nearly all cells. They provide a polar transmembrane pathway, to which access is strictly controlled by coupled gates that are constrained to open alternately, thereby enabling thermodynamically uphill ion transport (for example, see ref. 1). Here we examine the ion pathway through the Na+,K+-ATPase, a representative P-type pump, after uncoupling its extra- and intracellular gates with the marine toxin palytoxin. We use small hydrophilic thiol-specific reagents as extracellular probes and we monitor their reactions, and the consequences, with cysteine residues introduced along the anticipated cation pathway through the pump. The distinct effects of differently charged reagents indicate that a wide outer vestibule penetrates deep into the Na+,K+-ATPase, where the pathway narrows and leads to a charge-selectivity filter. Acidic residues in this region, which are conserved to coordinate pumped ions, allow the approach of cations but exclude anions. Reversing the charge at just one of those positions converts the pathway from cation selective to anion selective. Close structural homology among the catalytic subunits of Ca2+-, Na+,K+- and H+,K+-ATPases argues that their extracytosolic cation exchange pathways all share these physical characteristics. PMID:17006516

  17. Role of the vacuolar-ATPase in Sindbis virus infection.

    PubMed

    Hunt, Sabrina R; Hernandez, Raquel; Brown, Dennis T

    2011-02-01

    Bafilomycin A(1) is a specific inhibitor of the vacuolar-ATPase (V-ATPase), which is responsible for pH homeostasis of the cell and for the acidification of endosomes. Bafilomycin A(1) has been commonly used as a method of inhibition of infection by viruses known or suspected to follow the path of receptor-mediated endocytosis and low-pH-mediated membrane fusion. The exact method of entry for Sindbis virus, the prototype alphavirus, remains undetermined. To further investigate the role of the V-ATPase in Sindbis virus infection, the effects of bafilomycin A(1) on the infection of BHK and insect cells by Sindbis virus were studied. Bafilomycin A(1) was found to block the expression of a virus-encoded reporter gene in both infection and transfection of BHK cells. The inhibitory effects of bafilomycin A(1) were found to be reversible. The results suggest that in BHK cells in the presence of bafilomycin A(1), virus RNA enters the cell and is translated, but replication and proper folding of the product proteins requires the function of the V-ATPase. Bafilomycin A(1) had no significant effect on the outcome of infection in insect cells. PMID:21084471

  18. Molecular Cloning of Tomato Plasma Membrane H+-ATPase 1

    PubMed Central

    Ewing, Nicholas N.; Wimmers, Larry E.; Meyer, David J.; Chetelat, Roger T.; Bennett, Alan B.

    1990-01-01

    Two cDNA clones (LHA1 and LHA2) from tomato (Lycopersicon esculentum) which likely encode isoforms of the plasma membrane H+-ATPase were isolated. The longest cDNA (3229 base pairs), LHA1, comprises an open reading frame that encodes a 956 amino acid, 105 kilodalton polypeptide with several potential transmembrane domains. In vitro transcription and translation of LHA1 yields a major translation product of approximately 100 kilodaltons that is immunoprecipitable with antiserum to the corn root plasma membrane H+-ATPase. LHA2 encodes a portion of a coding sequence that is 96% identical to LHA1, suggesting that LHA2 encodes an isoform of the H+-ATPase. Genomic DNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to a common set of six to eight restriction fragments at moderate stringency and to single distinct fragments at high stringency. LHA1 and LHA2 map to distinct sites on chromosomes three and six, respectively. RNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to 3.4 kilobase pair transcripts present in both leaves and roots, although the LHA2 transcript is relatively more abundant in leaves than in roots. These results indicate that in tomato as many as six to eight genes may encode the plasma membrane H+-ATPase, two of which are expressed at the level of mRNA in both roots and leaves. Images Figure 3 Figure 4 Figure 5 Figure 7 PMID:16667929

  19. Double-stranded RNA-dependent ATPase DRH-3

    PubMed Central

    Matranga, Christian; Pyle, Anna Marie

    2010-01-01

    RNA helicases are proteins essential to almost every facet of RNA metabolism, including the gene-silencing pathways that employ small RNAs. A phylogenetically related group of helicases is required for the RNA-silencing mechanism in Caenorhabditis elegans. Dicer-related helicase 3 (DRH-3) is a Dicer-RIG-I family protein that is essential for RNA silencing and germline development in nematodes. Here we performed a biochemical characterization of the ligand binding and catalytic activities of DRH-3 in vitro. We identify signature motifs specific to this family of RNA helicases. We find that DRH-3 binds both single-stranded and double-stranded RNAs with high affinity. However, the ATPase activity of DRH-3 is stimulated only by double-stranded RNA. DRH-3 is a robust RNA-stimulated ATPase with a kcat value of 500/min when stimulated with short RNA duplexes. The DRH-3 ATPase may have allosteric regulation in cis that is controlled by the stoichiometry of double-stranded RNA to enzyme. We observe that the DRH-3 ATPase is stimulated only by duplexes containing RNA, suggesting a role for DRH-3 during or after transcription. Our findings provide clues to the role of DRH-3 during the RNA interference response in vivo. PMID:20529861

  20. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes.

    PubMed

    Šubrtová, Karolína; Panicucci, Brian; Zíková, Alena

    2015-02-01

    In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells. PMID:25714685

  1. ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes

    PubMed Central

    Šubrtová, Karolína; Panicucci, Brian; Zíková, Alena

    2015-01-01

    In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells. PMID:25714685

  2. Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals

    PubMed Central

    Ji, Lina; Chauhan, Abha; Brown, W. Ted; Chauhan, Ved

    2009-01-01

    Aims Na+/K+-ATPase and Ca2+/Mg2+-ATPase are enzymes known to maintain intracellular gradients of ions that are essential for signal transduction. The aim of this study was to compare the activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in post-mortem brain samples from the cerebellum and frontal, temporal, parietal, and occipital cortices from autistic and age-matched control subjects. Main methods The frozen postmortem tissues from different brain regions of autistic and control subjects were homogenized. The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase were assessed in the brain homogenates by measuring inorganic phosphorus released by the action of Na+/K+- and Ca2+/Mg2+- dependent hydrolysis of ATP. Key findings In the cerebellum, the activities of both Na+/K+-ATPase and Ca2+/Mg2+-ATPase were significantly increased in the autistic samples compared with their age-matched controls. The activity of Na+/K+-ATPase but not Ca2+/Mg2+-ATPase was also significantly increased in the frontal cortex of the autistic samples as compared to the age-matched controls. In contrast, in other regions, i.e., the temporal, parietal and occipital cortices, the activities of these enzymes were similar in autism and control groups. Significance The results of this study suggest brain-region specific increases in the activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in autism. Increased activity of these enzymes in the frontal cortex and cerebellum may be due to compensatory responses to increased intracellular calcium concentration in autism. We suggest that altered activities of these enzymes may contribute to abnormal neuronal circuit functioning in autism. PMID:19863947

  3. P-cadherin counteracts myosin II-B function: implications in melanoma progression

    PubMed Central

    2010-01-01

    Background Malignant transformation of melanocytes is frequently attended by a switch in cadherin expression profile as shown for E- and N-cadherin. For P-cadherin, downregulation in metastasizing melanoma has been demonstrated, and over-expression of P-cadherin in melanoma cell lines has been shown to inhibit invasion. The strong invasive and metastatic nature of cutaneous melanoma implies a deregulated interplay between intercellular adhesion and migration-related molecules Results In this study we performed a microarray analysis to compare the mRNA expression profile of an invasive BLM melanoma cell line (BLM LIE) and the non-invasive P-cadherin over-expression variant (BLM P-cad). Results indicate that nonmuscle myosin II-B is downregulated in BLM P-cad. Moreover, myosin II-B plays a major role in melanoma migration and invasiveness by retracting the tail during the migratory cycle, as shown by the localization of myosin II-B stress fibers relative to Golgi and the higher levels of phosphorylated myosin light chain. Analysis of P-cadherin and myosin II-B in nodular melanoma sections and in a panel of melanoma cell lines further confirmed that there is an inverse relationship between both molecules. Conclusions Therefore, we conclude that P-cadherin counteracts the expression and function of myosin II-B, resulting in the suppression of the invasive and migratory behaviour of BLM melanoma cells PMID:20860798

  4. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  5. Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI.

    PubMed

    Tominaga, Motoki; Kojima, Hiroaki; Yokota, Etsuo; Nakamori, Rinna; Anson, Michael; Shimmen, Teruo; Oiwa, Kazuhiro

    2012-08-31

    Plant myosin XI functions as a motor that generates cytoplasmic streaming in plant cells. Although cytoplasmic streaming is known to be regulated by intracellular Ca(2+) concentration, the molecular mechanism underlying this control is not fully understood. Here, we investigated the mechanism of regulation of myosin XI by Ca(2+) at the molecular level. Actin filaments were easily detached from myosin XI in an in vitro motility assay at high Ca(2+) concentration (pCa 4) concomitant with the detachment of calmodulin light chains from the neck domains. Electron microscopic observations showed that myosin XI at pCa 4 shortened the neck domain by 30%. Single-molecule analysis revealed that the step size of myosin XI at pCa 4 was shortened to 27 nm under low load and to 22 nm under high load compared with 35 nm independent of the load for intact myosin XI. These results indicate that modulation of the mechanical properties of the neck domain is a key factor for achieving the Ca(2+)-induced regulation of cytoplasmic streaming. PMID:22740687

  6. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum.

    PubMed

    Taniguchi, Yukinori; Khatri, Bhavin S; Brockwell, David J; Paci, Emanuele; Kawakami, Masaru

    2010-07-01

    The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal. PMID:20655854

  7. Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting.

    PubMed

    Jia, Dan; You, Juan; Hu, Yang; Liu, Ru; Xiong, Shanbai

    2015-10-15

    The effect of CaCl2 on denaturation and aggregation of silver carp myosin incubated at 40 C was investigated by circular dichroism spectroscopy, surface hydrophobicity (S0-ANS), total sulfhydryl (SH) group content, zeta potential, turbidity, z-average diameter (dz), and dynamic rheological analysis. During setting at 40 C, both CaCl2 and heating induced conformational changes of the fish myosin, and exposure of more hydrophobic amino acid residues and free SH groups, followed by myosin aggregation via hydrophobic interactions and disulfide bonds. Additionally, turbidity and dz of myosin increased significantly with increasing CaCl2 concentration, and the added CaCl2 further increased the extent and rate of aggregation of myosin by promoting the formation of Ca bridges. Myosin with 60 mM CaCl2 showed the maximal G' value and the highest rate of G' development. However, the G' value would decrease with an excessive amount of CaCl2 (100 mM). PMID:25952860

  8. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  9. Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity

    PubMed Central

    Sen, Arnab; Nagy-Zsvér-Vadas, Zsanett

    2012-01-01

    The assembly and consolidation of the adherens junctions (AJs) are key events in the establishment of an intact epithelium. However, AJs are further modified to obtain flexibility for cell migration and morphogenetic movements. Intact AJs in turn are a prerequisite for the establishment and maintenance of apical–basal polarity in epithelial cells. In this study, we report that the conserved PDZ (PSD95, Discs large, ZO-1) domain–containing protein PATJ (Pals1-associated tight junction protein) was not per se crucial for the maintenance of apical–basal polarity in Drosophila melanogaster epithelial cells but rather regulated Myosin localization and phosphorylation. PATJ directly bound to the Myosin-binding subunit of Myosin phosphatase and decreased Myosin dephosphorylation, resulting in activated Myosin. Thereby, PATJ supports the stability of the Zonula Adherens. Notably, weakening of AJ in a PATJ mutant epithelium led first to a loss of Myosin from the AJ, subsequently to a disassembly of the AJ, and finally, to a loss of apical–basal polarity and disruption of the tissue. PMID:23128243

  10. Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1986-01-01

    Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.

  11. Complex cooperativity of ATP hydrolysis in the F(1)-ATPase molecular motor.

    PubMed

    Liu, Ming S; Todd, B D; Sadus, Richard J

    2004-05-01

    F(1)-ATPase catalyses ATP hydrolysis and converts the cellular chemical energy into mechanical rotation. The hydrolysis reaction in F(1)-ATPase does not follow the widely believed Michaelis-Menten mechanism. Instead, the hydrolysis mechanism behaves in an ATP-dependent manner. We develop a model for enzyme kinetics and hydrolysis cooperativity of F(1)-ATPase which involves the binding-state changes to the coupling catalytic reactions. The quantitative analysis and modeling suggest the existence of complex cooperative hydrolysis between three different catalysis sites of F(1)-ATPase. This complexity may be taken into account to resolve the arguments on the binding change mechanism in F(1)-ATPase. PMID:15134652

  12. Subcellular distribution of calponin and caldesmon in rat hippocampus.

    PubMed

    Agassandian, C; Plantier, M; Fattoum, A; Represa, A; der Terrossian, E

    2000-12-29

    Caldesmon and calponin are two actin- and calmodulin-binding proteins involved in the 'actin-linked' regulation of smooth muscle and non-muscle Mg(2+)-actin-activated myosin II ATPase activity. In the present report we show that caldesmon and calponin are present in the post-synaptic side of symmetric synapses and accumulate in the post-synaptic densities of asymmetric synapses. Caldesmon- and calponin-immunoreactivities are also observed at the plasma membrane of the hippocampal neurones. Finally, while caldesmon seems strictly distributed to neurones, acidic calponin is present in both neurones and astrocytes. PMID:11134639

  13. Myosin light chain kinase from vascular smooth muscle inhibits the ATP-dependent interaction between actin and myosin by binding to actin.

    PubMed

    Sato, M; Ye, L H; Kohama, K

    1995-07-01

    Myosin light chain kinase (MLCK) was prepared from smooth muscle of bovine aorta. MLCK inhibited the ATP-dependent movement of actin filaments on a glass surface coated with smooth muscle myosin that had been phosphorylated. The inhibitory effect was abolished by calmodulin in the presence of Ca2+ (Ca-CaM). The abolition was also observed when the concentration of actin filaments was increased. The inhibitory effect and its abolition were related to the actin-binding activity of MLCK, that is antagonized by Ca-CaM. PMID:8537296

  14. The genes coding for the muscle contractile proteins, myosin heavy chain, myosin light chain 2, and skeletal muscle actin are located on three different mouse chromosomes.

    PubMed

    Czosnek, H; Nudel, U; Shani, M; Barker, P E; Pravtcheva, D D; Ruddle, F H; Yaffe, D

    1982-01-01

    The chromosomal distribution of murine genes expressed during differentiation of skeletal muscle cells was determined by Southern blot analysis of DNA from mouse-Chinese hamster hybrid cell lines containing incomplete subsets of mouse chromosomes. All detectable myosin heavy chain genes are located on chromosome 11. The gene for the myosin light chain 2 is located on chromosome 7. The skeletal muscle alpha-actin gene and several other actin genes, or pseudogenes, are located on chromosome 3. Additional actin DNA sequences are distributed on other mouse chromosomes. PMID:6897916

  15. HCO3(-)-ATPase and Ca2+ dependent ATPase activities in the gills of the rainbow trout after the transfer to brackishwater and seawater.

    PubMed

    Fuentes, J; Soengas, J L; Rebolledo, E

    1995-06-01

    The effect of seawater and brackishwater exposure on gill HCO3(-)-ATPase and Ca2+ dependent ATPase activity in rainbow trout (Oncorhynchus mykiss) was investigated at different periods of time. HCO3(-)-ATPase activity decreased after the transfer to either brackishwater or seawater. Ca2+ dependent ATPase activity decreased during the initial period (1 to 4 days) in both salinities and recovered freshwater values from the 7th day onwards. No effect from fish size was detected in both parameters after saltwater transfer. The results are discussed in terms of salinity and long-term saltwater adaptation. PMID:8532956

  16. Vacuolar ATPases, like F sup 1 ,F sup 0 -ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme

    SciTech Connect

    Kasho, V.N.; Boyer, P.D. )

    1989-11-01

    Recent studies with vacuolar ATPases have shown that multiple copies catalytic subunits are present and that these have definite sequence homology with catalytic subunits of the F{sub 1}, F{sub 0}-ATPases. Experiments are reported that assess whether the vacuolar ATPases may have the unusual catalytic cooperativity with sequential catalytic site participation as in the binding change mechanism for the F{sub 1},F{sub 0}-ATPases. The extent of reversal of bound ATP hydrolysis to bound ADP and P{sub i} as medium ATP concentration was lowered was determined by {sup 18}O-exchange measurements for yeast and neurospora vacuolar ATPases. The results show a pronounced increase in the extent of water oxygen incorporation into the P{sub i} formed as ATP concentration is decreased to the micromolar range. The F{sub 1},F{sub 0}-ATPase from neurospora mitochondria showed an event more pronounced modulation, similar to that of other F{sub 1}-type ATPases. The vacuolar ATPases thus appear to have a catalytic mechanism quite analogous to that of the F{sub 1},F{sub 0}-ATPases.

  17. Decreased ATPase activity in adriamycin nephrosis is independent of proteinuria

    SciTech Connect

    Bakker, W.W.; Kalicharan, D.; Donga, J.; Hulstaert, C.E.; Hardonk, M.J.

    1987-03-01

    In previous studies from this laboratory it has been shown that ATP-ase activity in situ in the glomerular basement membrane (GBM) is clearly reduced in rats rendered nephrotic after treatment with adriamycin (ADR). The question was raised whether this reduction of ATP-ase activity in the GBM is due to toxic activity of ADR or rather a result of the nephrotic condition per se. Therefore, we studied ATP-ase activity using the cerium-based method in kidneys from ADR-treated rats without proteinuria (48 hr after ADR injection), or with proteinuria (approximately 150 mg/24 hr) several weeks after ADR injection. Also kidneys from rats rendered nephrotic by surgical ablation and from non-nephrotic rats treated with local X-irradiation (2000 rads) as well as from normal control rats were studied. The results show that in the GBM of ADR-treated or irradiated rats, clear reduction of ATP-ase activity is observed irrespective of their proteinuria, whereas in the GBM of rats rendered nephrotic by renal ablation (approximately 156 mg/24 hr mean protein excretion) no reduction of enzyme activity is found. It is concluded that decreased ATP-ase activity of the glomerular filtration barrier in ADR-treated rats is due to an early toxic activity of this drug and not a result of the nephrotic state per se. In view of the identical results in X-irradiated rats, it is likely that ADR may act through production of toxic radicals leading to damage of this membrane-associated enzyme system.

  18. Tributyltin sensitivity of vacuolar-type Na(+)-transporting ATPase from Enterococcus hirae.

    PubMed

    Chardwiriyapreecha, Soracom; Inoue, Tomohiro; Sugimoto, Naoko; Sekito, Takayuki; Yamato, Ichiro; Murata, Takeshi; Homma, Michio; Kakinuma, Yoshimi

    2009-10-01

    Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Some members of F-ATP synthase (F-ATPase)/vacuolar type ATPase (V-ATPase) superfamily have been identified as the molecular target of this compound. TBT inhibited the activities of H(+)-transporting or Na(+)-transporting F-ATPase as well as H(+)-transporting V-ATPase originated from various organisms. However, the sensitivity to TBT of Na(+)-transporting V-ATPase has not been investigated. We examined the effect of TBT on Na(+)-transporting V-ATPase from an eubacterium Enterococus hirae. The ATP hydrolytic activity of E. hirae V-ATPase in purified form as well as in membrane-bound form was little inhibited by less than 10 microM TBT; IC50 for TBT inhibition of purified enzyme was estimated to be about 35 microM. Active sodium transport by E. hirae cells, indicating the in vivo activity of this V-ATPase, was not inhibited by 20 microM TBT. By contrast, IC50 of H(+)-transporting V-ATPase of the vacuolar membrane vesicles from Saccharomyces cerevisiae was about 0.2 microM. E. hirae V-ATPase is thus extremely less sensitive to TBT. PMID:19797867

  19. The myosin step size: measurement of the unit displacement per ATP hydrolyzed in an in vitro assay.

    PubMed Central

    Toyoshima, Y Y; Kron, S J; Spudich, J A

    1990-01-01

    Chemomechanical coupling in muscle contraction may be due to "swinging crossbridges," such that a change in the angle at which the myosin head binds to the actin filament is tightly coupled to release of products of ATP hydrolysis. This model would limit the step size, the unit displacement of actin produced by a single ATP hydrolysis, to less than twice the chord length of the myosin head. Recent measurements have found the step size to be significantly larger than this geometric limit, bringing into question any direct correspondence between the crossbridge and ATP-hydrolysis cycles. We have measured the rate of ATP hydrolysis due to actin sliding movement in an in vitro motility assay consisting of purified actin and purified myosin. We have calculated an apparent myosin step size well within the geometric limit set by the size of the myosin head. These data are consistent with tight coupling between myosin crossbridge movement and ATP hydrolysis. PMID:2144900

  20. Inhibition by Cellular Vacuolar ATPase Impairs Human Papillomavirus Uncoating and Infection

    PubMed Central

    Mller, Konstantin H.; Spoden, Gilles A.; Scheffer, Konstanze D.; Brunnhfer, Regina; De Brabander, Jef K.; Maier, Martin E.; Muller, Claude P.

    2014-01-01

    Several viruses, including human papillomaviruses, depend on endosomal acidification for successful infection. Hence, the multisubunit enzyme vacuolar ATPase (V-ATPase), which is mainly responsible for endosome acidification in the cell, represents an attractive target for antiviral strategies. In the present study, we show that V-ATPase is required for human papillomavirus (HPV) infection and that uncoating/disassembly but not endocytosis is affected by V-ATPase inhibition. The infection inhibitory potencies of saliphenylhalamide, a proven V-ATPase inhibitor, and its derivatives, as well as those of other V-ATPase inhibitors, were analyzed on different HPV types in relevant cell lines. Variation in the selectivity indices among V-ATPase inhibitors was high, while variation for the same inhibitor against different HPV subtypes was low, indicating that broad-spectrum anti-HPV activity can be provided. PMID:24614368

  1. The gamma subunit of Na+, K+-ATPase: role on ATPase activity and regulatory phosphorylation by PKA.

    PubMed

    Cortes, Vanessa Faria; Veiga-Lopes, Fabio Eduardo; Barrabin, Hector; Alves-Ferreira, Marcelo; Fontes, Carlos Frederico Leite

    2006-01-01

    In kidney, Na+, K+-ATPase is an oligomer (alphabeta gamma) with equimolar amounts of essential alpha and beta subunits and one small hydrophobic FXYD protein (gamma subunit). This report describes gamma subunit as an activator of pig kidney outer medulla Na+, K+-ATPase in aqueous medium. The effects of gamma subunit on Na+, K+-ATPase were dose-dependent and preincubation-dependent. Changes in alphabeta/gamma stoichiometry did not alter Km1 for ATP, and slightly increased Km2, but Vmax was increased at both catalytic and regulatory sites. Hydroxylamine treatment of enzyme phosphorylated by ATP (E-P), in the presence of additional gamma subunit, revealed that 52% of the E-P accumulation was not via acyl-phosphate formation. The gamma subunit was phosphorylated by endogenous kinases and by commercial catalytic subunit of protein kinase A (PKA). Additionally, we demonstrated that PKA phosphorylation of gamma subunit increased its capacity to stimulate ATP hydrolysis. These results suggest that gamma subunit can act as an intrinsic Na+, K+-ATPase regulator in kidney. PMID:16815075

  2. Myosin VA Movements in Normal and Dilute-Lethal Axons Provide Support for a Dual Filament Motor Complex

    PubMed Central

    Bridgman, P.C.

    1999-01-01

    To investigate the role that myosin Va plays in axonal transport of organelles, myosin Va–associated organelle movements were monitored in living neurons using microinjected fluorescently labeled antibodies to myosin Va or expression of a green fluorescent protein–myosin Va tail construct. Myosin Va–associated organelles made rapid bi-directional movements in both normal and dilute-lethal (myosin Va null) neurites. In normal neurons, depolymerization of microtubules by nocodazole slowed, but did not stop movement. In contrast, depolymerization of microtubules in dilute-lethal neurons stopped movement. Myosin Va or synaptic vesicle protein 2 (SV2), which partially colocalizes with myosin Va on organelles, did not accumulate in dilute-lethal neuronal cell bodies because of an anterograde bias associated with organelle transport. However, SV2 showed peripheral accumulations in axon regions of dilute-lethal neurons rich in tyrosinated tubulin. This suggests that myosin Va–associated organelles become stranded in regions rich in dynamic microtubule endings. Consistent with these observations, presynaptic terminals of cerebellar granule cells in dilute-lethal mice showed increased cross-sectional area, and had greater numbers of both synaptic and larger SV2 positive vesicles. Together, these results indicate that myosin Va binds to organelles that are transported in axons along microtubules. This is consistent with both actin- and microtubule-based motors being present on these organelles. Although myosin V activity is not necessary for long-range transport in axons, myosin Va activity is necessary for local movement or processing of organelles in regions, such as presynaptic terminals that lack microtubules. PMID:10477758

  3. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays)

    PubMed Central

    Wang, Guifeng; Zhong, Mingyu; Wang, Gang; Song, Rentao

    2014-01-01

    The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses. PMID:24363426

  4. Regulation of proximal tubule vacuolar H+-ATPase by PKA and AMP-activated protein kinase

    PubMed Central

    Al-bataineh, Mohammad M.; Gong, Fan; Marciszyn, Allison L.; Myerburg, Michael M.

    2014-01-01

    The vacuolar H+-ATPase (V-ATPase) mediates ATP-driven H+ transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress. PMID:24553431

  5. Identification, modeling, and characterization studies of Tetrahymena thermophila myosin FERM domains suggests a conserved core fold but functional differences.

    PubMed

    Martin, Che L; Singh, Shaneen M

    2015-11-01

    Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins. © 2015 Wiley Periodicals, Inc. PMID:26492945

  6. MyosinVIIa Interacts with Twinfilin-2 at the Tips of Mechanosensory Stereocilia in the Inner Ear

    PubMed Central

    Rzadzinska, Agnieszka K.; Nevalainen, Elisa M.; Prosser, Haydn M.; Lappalainen, Pekka; Steel, Karen P.

    2009-01-01

    In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase. PMID:19774077

  7. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.

  8. Arabidopsis Myosin XI: A Motor Rules the Tracks1[C][W][OPEN

    PubMed Central

    Cai, Chao; Henty-Ridilla, Jessica L.; Szymanski, Daniel B.; Staiger, Christopher J.

    2014-01-01

    Plant cell expansion relies on intracellular trafficking of vesicles and macromolecules, which requires myosin motors and a dynamic actin network. Arabidopsis (Arabidopsis thaliana) myosin XI powers the motility of diverse cellular organelles, including endoplasmic reticulum, Golgi, endomembrane vesicles, peroxisomes, and mitochondria. Several recent studies show that there are changes in actin organization and dynamics in myosin xi mutants, indicating that motors influence the molecular tracks they use for transport. However, the mechanism by which actin organization and dynamics are regulated by myosin XI awaits further detailed investigation. Here, using high spatiotemporal imaging of living cells, we quantitatively assessed the architecture and dynamic behavior of cortical actin arrays in a mutant with three Myosin XI (XI-1, XI-2, and XI-K) genes knocked out (xi3KO). In addition to apparent reduction of organ and cell size, the mutant showed less dense and more bundled actin filament arrays in epidermal cells. Furthermore, the overall actin dynamicity was significantly inhibited in the xi3KO mutant. Because cytoskeletal remodeling is contributed mainly by filament assembly/disassembly and translocation/buckling, we also examined the dynamic behavior of individual actin filaments. We found that the xi3KO mutant had significantly decreased actin turnover, with a 2-fold reduction in filament severing frequency. Moreover, quantitative analysis of filament shape change over time revealed that myosin XI generates the force for buckling and straightening of both single actin filaments and actin bundles. Thus, our data provide genetic evidence that three Arabidopsis class XI myosins contribute to actin remodeling by stimulating turnover and generating the force for filament shape change. PMID:25237128

  9. Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring.

    PubMed

    Laplante, Caroline; Berro, Julien; Karatekin, Erdem; Hernandez-Leyva, Ariel; Lee, Rachel; Pollard, Thomas D

    2015-08-01

    Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10min before spindle pole body separation (cell-cycle time, -10min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time+20min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy-chain gene (myo2-E1) and deletion mutations of the other myosin heavy-chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% that of normal in cells relying on Myp2 alone and 25% that of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in ?myp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis, with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction. PMID:26144970

  10. Qdot Labeled Actin Super Resolution Motility Assay Measures Low Duty Cycle Muscle Myosin Step-Size

    PubMed Central

    Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.

    2013-01-01

    Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were fluorescence labeled with a streptavidin conjugate quantum dot (Qdot) binding biotin-phalloidin on actin. Single Qdots were imaged in time with total internal reflection fluorescence microscopy then spatially localized to 1-3 nanometers using a super-resolution algorithm as they translated with actin over a surface coated with skeletal heavy meromyosin (sHMM) or full length ?-cardiac myosin (MYH7). Average Qdot-actin velocity matches measurements with rhodamine-phalloidin labeled actin. The sHMM Qdot-actin velocity histogram contains low velocity events corresponding to actin translation in quantized steps of ~5 nm. The MYH7 velocity histogram has quantized steps at 3 and 8 nm in addition to 5 nm, and, larger compliance than sHMM depending on MYH7 surface concentration. Low duty cycle skeletal and cardiac myosin present challenges for a single molecule assay because actomyosin dissociates quickly and the freely moving element diffuses away. The in vitro motility assay has modestly more actomyosin interactions and methylcellulose inhibited diffusion to sustain the complex while preserving a subset of encounters that do not overlap in time on a single actin filament. A single myosin step is isolated in time and space then characterized using super-resolution. The approach provides quick, quantitative, and inexpensive step-size measurement for low duty cycle muscle myosin. PMID:23383646

  11. Myosin-II-mediated directional migration of Dictyostelium cells in response to cyclic stretching of substratum.

    PubMed

    Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki

    2013-02-19

    Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953

  12. A composite approach towards a complete model of the myosin rod.

    PubMed

    Korkmaz, E Nihal; Taylor, Keenan C; Andreas, Michael P; Ajay, Guatam; Heinze, Nathan T; Cui, Qiang; Rayment, Ivan

    2016-01-01

    Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over 50?years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled-coil that constitutes the myosin rod. The ability to self-assemble resides in the C-terminal section of myosin known as light meromyosin (LMM) which exhibits strong salt-dependent aggregation that has inhibited structural studies. Here we evaluate the feasibility of generating a complete model for the myosin rod by combining overlapping structures of five sections of coiled-coil covering 164 amino acid residues which constitute 20% of LMM. Each section contains ?7-9 heptads of myosin. The problem of aggregation was overcome by incorporating the globular folding domains, Gp7 and Xrcc4 which enhance crystallization. The effect of these domains on the stability and conformation of the myosin rod was examined through biophysical studies and overlapping structures. In addition, a computational approach was developed to combine the sections into a contiguous model. The structures were aligned, trimmed to form a contiguous model, and simulated for >700 ns to remove the discontinuities and achieve an equilibrated conformation that represents the native state. This experimental and computational strategy lays the foundation for building a model for the entire myosin rod. Proteins 2016; 84:172-189. 2015 Wiley Periodicals, Inc. PMID:26573747

  13. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.

    PubMed

    Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella

    2014-03-01

    X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6-3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments. PMID:24344169

  14. Slow myosin ATP turnover in the super-relaxed state in tarantula muscle.

    PubMed

    Naber, Nariman; Cooke, Roger; Pate, Edward

    2011-09-01

    We measured the nucleotide turnover rate of myosin in tarantula leg muscle fibers by observing single turnovers of the fluorescent nucleotide analog 2'-/3'-O-(N'-methylanthraniloyl)adenosine-5'-O-triphosphate, as monitored by the decrease in fluorescence when 2'-/3'-O-(N'-methylanthraniloyl)adenosine-5'-O-triphosphate (mantATP) is replaced by ATP in a chase experiment. We find a multiexponential process with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant (?30 min). This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in 2'-/3'-O-(N'-methylanthraniloyl)adenosine-5'-O-diphosphate and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with a very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the "interacting-heads motif," observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations. PMID:21763701

  15. Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va

    PubMed Central

    Nelson, Shane R.; Trybus, Kathleen M.; Warshaw, David M.

    2014-01-01

    Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systemsthe fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32125 motors per ?m2), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (?450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track. PMID:25201964

  16. Transgene integration into the human AAVS1 locus enhances myosin II-dependent contractile force by reducing expression of myosin binding subunit 85.

    PubMed

    Mizutani, Takeomi; Li, Rui; Haga, Hisashi; Kawabata, Kazushige

    2015-09-18

    The adeno-associated virus site 1 (AAVS1) locus in the human genome is a strong candidate for gene therapy by insertion of an exogenous gene into the locus. The AAVS1 locus includes the coding region for myosin binding subunit 85 (MBS85). Although the function of MBS85 is not well understood, myosin II-dependent contractile force may be affected by altered expression of MBS85. The effect of altered expression of MBS85 on cellular contractile force should be examined prior to the application of gene therapy. In this study, we show that transgene integration into AAVS1 and consequent reduction of MBS85 expression changes myosin II-dependent cellular contractile force. We established a human fibroblast cell line with exogenous DNA knocked-in to AAVS1 (KI cells) using the CRISPR/Cas9 genome editing system. Western blotting analysis showed that KI cells had significantly reduced MBS85 expression. KI cells also showed greater cellular contractile force than control cells. The increased contractile force was associated with phosphorylation of the myosin II regulatory light chain (MRLC). Transfection of KI cells with an MBS85 expression plasmid restored cellular contractile force and phosphorylation of MRLC to the levels in control cells. These data suggest that transgene integration into the human AAVS1 locus induces an increase in cellular contractile force and thus should be considered as a gene therapy to effect changes in cellular contractile force. PMID:26260320

  17. Cloning of the genes encoding two murine and human cochlear unconventional type I myosins

    SciTech Connect

    Crozet, F.; El Amraoui, Z.; Blanchard, S.

    1997-03-01

    Several lines of evidence indicate a crucial role for unconventional myosins in the function of the sensory hair cells of the inner ear. We report here the characterization of the cDNAs encoding two unconventional type I myosins from a mouse cochlear cDNA library. The first cDNA encodes a putative protein named Myo1c, which is likely to be the murine orthologue of the bullfrog myosin I{beta} and which may be involved in the gating of the mechanotransduction channel of the sensory hair cells. This myosin belongs to the group of short-tailed myosins I, with its tail ending shortly after a polybasic, TH-1-like domain. The second cDNA encodes a novel type I myosin Myo1f which displays three regions: a head domain with the conserved ATP- and actin-binding sites, a neck domain with a single IQ motif, and a tail domain with the tripartite structure initially described in protozoan myosins I. The tail of Myo1f includes (1) a TH-1 region rich in basic residues, which may interact with anionic membrane phospholipids; (2) a TH-2 proline-rich region, expected to contain an ATP-insensitive actin-binding site; and (3) an SH-3 domain found in a variety of cytoskeletal and signaling proteins. Northern blot analysis indicated that the genes encoding Myo1c and Myo1f display a widespread tissue expression in the adult mouse. Myo1c and Myo1f were mapped by in situ hybridization to the chromosomal regions 11D-11E and 17B-17C, respectively. The human orthologuous genes MYO1C and MYO1F were also characterized, and mapped to the human chromosomal regions 17p13 and 19p13.2- 19p1.3.3, respectively. 45 refs., 5 figs., 2 tabs.

  18. Congenital heart disease linked to maternal autoimmunity against cardiac myosin.

    PubMed

    Cole, Charles R; Yutzey, Katherine E; Brar, Anoop K; Goessling, Lisa S; Van Vickle-Chavez, Sarah J; Cunningham, Madeleine W; Eghtesady, Pirooz

    2014-05-01

    Structural congenital heart disease (CHD) has not previously been linked to autoimmunity. In our study, we developed an autoimmune model of structural CHD that resembles hypoplastic left heart syndrome (HLHS), a life-threatening CHD primarily affecting the left ventricle. Because cardiac myosin (CM) is a dominant autoantigen in autoimmune heart disease, we hypothesized that immunization with CM might lead to transplacental passage of maternal autoantibodies and a prenatal HLHS phenotype in exposed fetuses. Elevated anti-CM autoantibodies in maternal and fetal sera, as well as IgG reactivity in fetal myocardium, were correlated with structural CHD that included diminished left ventricular cavity dimensions in the affected progeny. Further, fetuses that developed a marked HLHS phenotype had elevated serum titers of anti-?-adrenergic receptor Abs, as well as increased protein kinase A activity, suggesting a potential mechanism for the observed pathological changes. Our maternal-fetal model presents a new concept linking autoimmunity against CM and cardiomyocyte proliferation with cardinal features of HLHS. To our knowledge, this report shows the first evidence in support of a novel immune-mediated mechanism for pathogenesis of structural CHD that may have implications in its future diagnosis and treatment. PMID:24670798

  19. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; OMeara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/? individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3?/? mice is primarily myocyte hyperplasia. PMID:26153423

  20. Modelling the effect of myosin X motors on filopodia growth

    NASA Astrophysics Data System (ADS)

    Wolff, K.; Barrett-Freeman, C.; Evans, M. R.; Goryachev, A. B.; Marenduzzo, D.

    2014-02-01

    We present a numerical simulation study of the dynamics of filopodial growth in the presence of active transport by myosin X motors. We employ both a microscopic agent-based model, which captures the stochasticity of the growth process, and a continuum mean-field theory which neglects fluctuations. We show that in the absence of motors, filopodia growth is overestimated by the continuum mean-field theory. Thus fluctuations slow down the growth, especially when the protrusions are driven by a small number (10 or less) of F-actin fibres, and when the force opposing growth (coming from membrane elasticity) is large enough. We also show that, with typical parameter values for eukaryotic cells, motors are unlikely to provide an actin transport mechanism which enhances filopodial size significantly, unless the G-actin concentration within the filopodium greatly exceeds that of the cytosol bulk. We explain these observations in terms of order-of-magnitude estimates of diffusion-induced and advection-induced growth of a bundle of Brownian ratchets.

  1. Mechanics of the power stroke in myosin II

    NASA Astrophysics Data System (ADS)

    Marcucci, L.; Truskinovsky, L.

    2010-05-01

    Power stroke in skeletal muscles is a result of a conformational change in the globular portion of the molecular motor myosin II. In this paper we show that the fast tension recovery data reflecting the inner working of the power stroke mechanism can be quantitatively reproduced by a Langevin dynamics of a simple mechanical system with only two structural states. The proposed model is a generalization of the two state model of Huxley and Simmons. The main idea is to replace the rigid bistable device of Huxley and Simmons with an elastic bistable snap spring. In this setting the attached configuration of a cross bridge is represented not only by the discrete energy minima but also by a continuum of intermediate states where the fluctuation induced dynamics of the system takes place. We show that such soft-spin approach explains the load dependence of the power stroke amplitude and removes the well-known contradiction inside the conventional two state model regarding the time scale of the power stroke.

  2. Identification of Inhibitors of V-ATPase Pumps in Yeast by HTS Flow Cytometry

    PubMed Central

    Johnson, Rebecca M.; Allen, Chris; Melman, Sandra D.; Waller, Anna; Young, Susan M.; Sklar, Larry A.; Parra, Karlett J.

    2010-01-01

    Fluorescence intensity of the pH-sensitive carboxyfluorescein derivative BCECF was monitored by high throughput flow cytometry in living yeast cells. We measured fluorescence intensity of BCECF trapped in yeast vacuoles, acidic compartments equivalent to lysosomes where V-ATPases are abundant. Because V-ATPases maintain a low pH in the vacuolar lumen, V-ATPase inhibition by concanamycin A alkalinized the vacuole and increased BCECF fluorescence. Likewise, V-ATPase deficient mutant cells had greater fluorescence intensity than wild-type cells. Thus, we detected an increase of fluorescence intensity after short-term and long-term inhibition of V-ATPase function. We used yeast cells loaded with BCECF to screen a small chemical library of structurally diverse compounds in order to identify V-ATPase inhibitors. One compound, disulfiram, enhanced BCECF fluorescence intensity (although to a degree beyond anticipated for pH changes alone in the mutant cells). Once confirmed by dose response assays (EC50=26 ?M), we verified V-ATPase inhibition by disulfiram in secondary assays which measured ATP hydrolysis in vacuolar membranes. The inhibitory action of disulfiram against V-ATPase pumps revealed a novel effect previously unknown for this compound. Because V-ATPases are highly conserved, new inhibitors identified could be used as research and therapeutic tools in cancer, viral infections, and other diseases where V-ATPases are involved. PMID:20018164

  3. A novel multigene cloning method for the production of a motile ATPase.

    PubMed

    Jang, Min Su; Song, Woo Chul; Shin, Seung Won; Park, Kyung Soo; Kim, Jinseok; Kim, Dong-Ik; Kim, Byung Woo; Um, Soong Ho

    2015-08-10

    With the advent of nanotechnology, new functional modules (e.g., nanomotors, nanoprobes) have become essential in several medical fields. Generally, mechanical modulators systems are the principal components of most cutting-edge technologies in modern biomedical applications. However, the in vivo use of motile probes has raised many concerns due to their low sensitivity and non-biocompatibility. As an alternative, biological enzymatic engines have received increased attention. In particular, ATPases, which belong to a class of motile enzymes that catalyze chemical metabolic reactions, have emerged as a promising motor due to their improved biocompatibility and performance. However, ATPases usually suffer from lower functional activity and are difficult to express recombinantly in bacteria relative to their conventional and synthetic competitors. Here, we report a novel functional modified ATPase with both a simple purification protocol and enhanced motile activity. For this mutant ATPase, a new bacterial subcloning method was established. The ATPase-encoding sequence was redesigned so that the mutant ATPase could be easily produced in an Escherichia coli system. The modified thermophilic F1-ATPase (mTF1-ATPase) demonstrated 17.8unit/mg ATPase activity. We propose that derivatives of our ATPase may enable the development of novel in vitro and in vivo synthetic medical diagnostics, as well as therapeutics. PMID:25956244

  4. Ubiquitination Participates in the Lysosomal Degradation of Na,K-ATPase in Steady-State Conditions

    PubMed Central

    Lecuona, Emilia; Sun, Haiying; Vohwinkel, Christine; Ciechanover, Aaron; Sznajder, Jacob I.

    2009-01-01

    The alveolar epithelial cell (AEC) Na,K-ATPase contributes to vectorial Na+ transport and plays an important role in keeping the lungs free of edema. We determined, by cell surface labeling with biotin and immunofluorescence, that approximately 30% of total Na,K-ATPase is at the plasma membrane of AEC in steady-state conditions. The half-life of the plasma membrane Na,K-ATPase was about 4 hours, and the incorporation of new Na,K-ATPase to the plasma membrane was Brefeldin A sensitive. Both protein kinase C (PKC) inhibition with bisindolylmaleimide (10 ?M) and infection with an adenovirus expressing dominant-negative PKC? prevented Na,K-ATPase degradation. In cells expressing the Na,K-ATPase ?1-subunit lacking the PKC phosphorylation sites, the plasma membrane Na,K-ATPase had a moderate increase in half-life. We also found that the Na,K-ATPase was ubiquitinated in steady-state conditions and that proteasomal inhibitors prevented its degradation. Interestingly, mutation of the four lysines described to be necessary for ubiquitination and endocytosis of the Na,K-ATPase in injurious conditions did not have an effect on its half-life in steady-state conditions. Lysosomal inhibitors prevented Na,K-ATPase degradation, and co-localization of Na,K-ATPase and lysosomes was found after labeling and chasing the plasma membrane Na,K-ATPase for 4 hours. Accordingly, we provide evidence suggesting that phosphorylation and ubiquitination are necessary for the steady-state degradation of the plasma membrane Na,K-ATPase in the lysosomes in alveolar epithelial cells. PMID:19286978

  5. Actomyosin content of Physarum plasmodia and detection of immunological cross-reactions with myosins from related species.

    PubMed

    Kessler, D; Nachmias, V T; Loewy, A G

    1976-05-01

    The content of myosin in plasmodia of the myxomycete Physarum polycephalum was measured by an immunological technique, quantitative microcomplement (C') fixation. Migrating plasmodia (starved after growth on rolled oats) contained 0.60 +/- 0.08 (SD) mg myosin per g fresh plasmodia. Myosin comprised 0.77% +/- 0.05 (SD) of the total plasmodial protein. When total plasmodial proteins were separated by electrophoresis on SDS-polyacrylamide gels, a large amount of protein appeared in a band comigrating with muscle actin. Densitometry performed after Coomassie blue staining indicated that as much as 15-25% of the total protein in the plasmodium could be actin. This gives an actin/myosin ratio by weight in the myxomycete plasmodium as high as 19-33, a very "actin-rich" actomyosin compared with rabbit skeletal muscle actomyosin with an actin/myosin ratio of 0.6. Starvation stimulates rapid migration and is correlated with a higher percent of both myosin and actin in the total protein of the plasmodium compared with normally growing cultures. Immunological cross-reaction of myosins from a variety of species was measured by C' fixation using an antiserum produced against purified native myosin from P. polycephalum. Although myxomycete and vertebrate striated muscle myosins have very similar morphological and biochemical properties, and apparently possess similar binding properties to F-actin, only myosins from myxomycetes in the order Physarales, rather closely related to P. polycephalum, gave detectable cross-reactions. This finding suggests that many amino acid sequences in myosin have been variable during evolution. PMID:944188

  6. Identification of Myosin XI Receptors in Arabidopsis Defines a Distinct Class of Transport Vesicles[W][OPEN

    PubMed Central

    Peremyslov, Valera V.; Morgun, Eva A.; Kurth, Elizabeth G.; Makarova, Kira S.; Koonin, Eugene V.; Dolja, Valerian V.

    2013-01-01

    To characterize the mechanism through which myosin XI-K attaches to its principal endomembrane cargo, a yeast two-hybrid library of Arabidopsis thaliana cDNAs was screened using the myosin cargo binding domain as bait. This screen identified two previously uncharacterized transmembrane proteins (hereinafter myosin binding proteins or MyoB1/2) that share a myosin binding, conserved domain of unknown function 593 (DUF593). Additional screens revealed that MyoB1/2 also bind myosin XI-1, whereas myosin XI-I interacts with the distantly related MyoB7. The in vivo interactions of MyoB1/2 with myosin XI-K were confirmed by immunoprecipitation and colocalization analyses. In epidermal cells, the yellow fluorescent proteintagged MyoB1/2 localize to vesicles that traffic in a myosin XIdependent manner. Similar to myosin XI-K, MyoB1/2 accumulate in the tip-growing domain of elongating root hairs. Gene knockout analysis demonstrated that functional cooperation between myosin XI-K and MyoB proteins is required for proper plant development. Unexpectedly, the MyoB1-containing vesicles did not correspond to brefeldin Asensitive Golgi and post-Golgi or prevacuolar compartments and did not colocalize with known exocytic or endosomal compartments. Phylogenomic analysis suggests that DUF593 emerged in primitive land plants and founded a multigene family that is conserved in all flowering plants. Collectively, these findings indicate that MyoB are membrane-anchored myosin receptors that define a distinct, plant-specific transport vesicle compartment. PMID:23995081

  7. An Introduction to P-type ATPase Research.

    PubMed

    Nissen, Poul

    2016-01-01

    P-type ATPases account for a major proportion of energy consumption in the cell by maintaining electrochemical gradients for key cations and heavy metals as well as asymmetric distributions of lipids in bilayer membranes. They represent a long history of biochemical and biophysical research, but the field is also embracing novel approaches to expand our knowledge of their mechanism of action and of the integration of their function into advanced networks that define molecular physiology, behavior and disease. PMID:26695016

  8. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  9. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy.

    PubMed

    Tang, Hong-Wen; Wang, Yu-Bao; Wang, Shiu-Lan; Wu, Mei-Hsuan; Lin, Shu-Yu; Chen, Guang-Chao

    2011-02-16

    Autophagy is a membrane-mediated degradation process of macromolecule recycling. Although the formation of double-membrane degradation vesicles (autophagosomes) is known to have a central role in autophagy, the mechanism underlying this process remains elusive. The serine/threonine kinase Atg1 has a key role in the induction of autophagy. In this study, we show that overexpression of Drosophila Atg1 promotes the phosphorylation-dependent activation of the actin-associated motor protein myosin II. A novel myosin light chain kinase (MLCK)-like protein, Spaghetti-squash activator (Sqa), was identified as a link between Atg1 and actomyosin activation. Sqa interacts with Atg1 through its kinase domain and is a substrate of Atg1. Significantly, myosin II inhibition or depletion of Sqa compromised the formation of autophagosomes under starvation conditions. In mammalian cells, we found that the Sqa mammalian homologue zipper-interacting protein kinase (ZIPK) and myosin II had a critical role in the regulation of starvation-induced autophagy and mammalian Atg9 (mAtg9) trafficking when cells were deprived of nutrients. Our findings provide evidence of a link between Atg1 and the control of Atg9-mediated autophagosome formation through the myosin II motor protein. PMID:21169990

  10. Influence of salt and pyrophosphate on bovine fast and slow myosin S1 dissociation from actin

    PubMed Central

    Shen, Qingwu W.; Swartz, Darl R.

    2009-01-01

    The kinetics of myosin dissociation from actin was investigated and also the impact of salt, MgPPi, and myosin heavy chain isoform on myosin subfragment 1 (S1) dissociation from actin using purified proteins and fluorescence spectroscopy. Both NaCl and MgPPi increased myosin S1 dissociation rate. When salt concentrations increased from 0.1 to 1.0 M, the dissociation rate of S1 from bovine masseter (slow) and cutaneous trunci (fast) muscle increased 38 and 78 fold, respectively. MgPPi had an even greater effect on S1 dissociation from actin. With the addition of MgPPi to the mixture of pyrene actin and S1, the fluorescence increased about 85% within the dead time of themixing approach.. Unlike salt, MgPPi had no apparent difference in its ability to dissociate slow or fast S1 isoforms from actin. The results reveal that salt and MgPPi increase myosin extraction and functionality in meat by weakening the actomyosin interaction and that some of the difference in the functionality of red and white muscle may be related to actomyosin dissociation. PMID:20161643

  11. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight.

    PubMed

    Wang, Qian; Newhard, Christopher S; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M

    2014-01-15

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance. PMID:24115062

  12. The role of dietary protein intake and resistance training on Myosin heavy chain expression.

    PubMed

    Wilborn, Colin D; Willoughby, Darryn S

    2004-01-01

    During resistance training the muscle undergoes many changes. Possibly the most profound and significant changes are those that occur in the muscles contractile proteins. Increases in these contractile proteins are one of the primary factors contributing to myofibrillar hypertrophy. The most abundant muscle protein is myosin, which comprises 25% of the total muscle protein. Due to the large amount of skeletal muscle that is composed of myosin, changes in this fiber may have profound effects on skeletal muscle size and strength. The myosin molecule is made up of 6 subunits, 2 very large heavy chains, and 4 smaller light chains. The myosin heavy chain (MHC) accounts for 25-30% of all muscle proteins making its size an important factor in skeletal muscle growth. In conjunction with resistance training, dietary protein intake must be adequate to illicit positive adaptations. Although many studies have evaluated the role of dietary protein intake on skeletal muscle changes, few have evaluated the MHC specifically. Research has clearly defined the need for dietary protein and resistance training to facilitate positive changes in skeletal muscle. The purpose of this review was to evaluate the current literature on the effects of dietary protein and resistance training on the expression of the myosin heavy chain. PMID:18500947

  13. A Unique Role for Nonmuscle Myosin Heavy Chain IIA in Regulation of Epithelial Apical Junctions

    PubMed Central

    Ivanov, Andrei I.; Bachar, Moshe; Babbin, Brian A.; Adelstein, Robert S.; Nusrat, Asma; Parkos, Charles A.

    2007-01-01

    The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis. PMID:17668046

  14. Myosin 1 controls membrane shape by coupling F-Actin to membrane.

    PubMed

    Coudrier, Evelyne; Almeida, Claudia G

    2011-09-01

    Cellular functions are intimately associated with rapid changes in membrane shape. Different mechanisms interfering with the lipid bilayer, such as the insertion of proteins with amphipatic helices or the association of a protein scaffold, trigger membrane bending. By exerting force on membranes, molecular motors can also contribute to membrane remodeling. Previous studies have shown that actin and myosin 1 participate in the invagination of the plasma membrane during endocytosis while kinesins and dynein with microtubules provide the force to elongate membrane buds at recycling endosomes and at the trans-Golgi network (TGN). Using live cell imaging we have recently shown that a myosin 1 (myosin 1b) regulates the actin dependent post-Golgi traffic of cargo and generates force that controls the assembly of F-actin foci and promotes with the actin cytoskeleton the formation of tubules at the TGN. Our data provide evidence that actin and myosin 1 can regulate membrane remodeling of organelles as well as having an unexpected role in the spatial organization of the actin cytoskeleton. Here, we discuss our results together with the role of actin and other myosins that have been implicated in the traffic of cargo. PMID:22754614

  15. Neural crest specification by inhibition of the ROCK/Myosin II pathway

    PubMed Central

    Kim, Kyeongmi; Ossipova, Olga; Sokol, Sergei Y.

    2015-01-01

    Neural crest is a population of multipotent progenitor cells that form at the border of neural and non-neural ectoderm in vertebrate embryos, and undergo epithelialmesenchymal transition and migration. According to the traditional view, the neural crest is specified in early embryos by signaling molecules including BMP, FGF and Wnt proteins. Here we identify a novel signaling pathway leading to neural crest specification, which involves Rho-associated kinase (ROCK) and its downstream target non-muscle Myosin II. We show that ROCK inhibitors promote differentiation of human embryonic stem cells into neural crest-like progenitors (NCPs) that are characterized by specific molecular markers and ability to differentiate into multiple cell types, including neurons, chondrocytes, osteocytes and smooth muscle cells. Moreover, inhibition of Myosin II was sufficient for generating NCPs at high efficiency. Whereas Myosin II has been previously implicated in the self-renewal and survival of human pluripotent ES cells, we demonstrate its role in neural crest development during ES cell differentiation. Inhibition of this pathway in Xenopus embryos expanded neural crest in vivo, further indicating that neural crest specification is controlled by ROCK-dependent Myosin II activity. We propose that changes in cell morphology in response to ROCK and Myosin II inhibition initiate mechanical signaling leading to neural crest fates. PMID:25346532

  16. Single-molecule measurement of the stiffness of the rigor myosin head.

    PubMed

    Lewalle, Alexandre; Steffen, Walter; Stevenson, Olivia; Ouyang, Zhenqian; Sleep, John

    2008-03-15

    The force-extension curve of single myosin subfragment-1 molecules, interacting in the rigor state with an actin filament, has been investigated at low [ATP] by applying a slow triangle-wave movement to the optical traps holding a bead-actin-bead dumbbell. In combination with a measurement of the overall stiffness of the dumbbell, this allowed characterization of the three extensible elements, the actin-bead links and the myosin. Simultaneously, another method, based on an analysis of bead position covariance, gave satisfactory agreement. The mean covariance-based estimate for the myosin stiffness was 1.79 pN/nm (SD = 0.7 pN/nm; SE = 0.06 pN/nm (n = 166 myosin molecules)), consistent with a recent report (1.7 pN/nm) from rabbit muscle fibers. In the triangle-wave protocol, the motion of the trapped beads during interactions was linear within experimental error over the physiological range of force applied to myosin (+/-10 pN), consistent with a Hookean model; any nonlinear terms could not be characterized. Bound states subjected to forces that resisted the working stroke (i.e., positive forces) detached at a significantly lower force than when subjected to negative forces, which is indicative of a strain-dependent dissociation rate. PMID:18065470

  17. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Forkey, Joseph N.; Quinlan, Margot E.; Alexander Shaw, M.; Corrie, John E. T.; Goldman, Yale E.

    2003-03-01

    The structural change that generates force and motion in actomyosin motility has been proposed to be tilting of the myosin light chain domain, which serves as a lever arm. Several experimental approaches have provided support for the lever arm hypothesis; however, the extent and timing of tilting motions are not well defined in the motor protein complex of functioning actomyosin. Here we report three-dimensional measurements of the structural dynamics of the light chain domain of brain myosin V using a single-molecule fluorescence polarization technique that determines the orientation of individual protein domains with 20-40-ms time resolution. Single fluorescent calmodulin light chains tilted back and forth between two well-defined angles as the myosin molecule processively translocated along actin. The results provide evidence for lever arm rotation of the calmodulin-binding domain in myosin V, and support a `hand-over-hand' mechanism for the translocation of double-headed myosin V molecules along actin filaments. The technique is applicable to the study of real-time structural changes in other biological systems.

  18. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5.

    PubMed Central

    Nagy, Nikolett T.; Sakamoto, Takeshi; Takcs, Balzs; Gyimesi, Mt; Hazai, Eszter; Bikdi, Zsolt; Sellers, James R.; Kovcs, Mihly

    2010-01-01

    Active site loops that are conserved across superfamilies of myosins, kinesins, and G proteins play key roles in allosteric coupling of NTP hydrolysis to interaction with track filaments or effector proteins. In this study, we investigated how the class-specific natural variation in the switch-2 active site loop contributes to the motor function of the intracellular transporter myosin-5. We used single-molecule, rapid kinetic and spectroscopic experiments and semiempirical quantum chemical simulations to show that the class-specific switch-2 structure including a tyrosine (Y439) in myosin-5 enables rapid processive translocation along actin filaments by facilitating Mg2+-dependent ADP release. Using wild-type control and Y439 point mutant myosin-5 proteins, we demonstrate that the translocation speed precisely correlates with the kinetics of nucleotide exchange. Switch-2 variants can thus be used to fine-tune translocation speed while maintaining high processivity. The class-specific variation of switch-2 in various NTPase superfamilies indicates its general role in the kinetic tuning of Mg2+-dependent nucleotide exchange.Nagy, N.T., Sakamoto, T., Takcs, B., Gyimesi, M., Hazai, E., Bikdi, Z., Sellers, J.R., Kovcs, M. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5. PMID:20631329

  19. Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains.

    PubMed

    He, Fahu; Wollscheid, Hans-Peter; Nowicka, Urszula; Biancospino, Matteo; Valentini, Eleonora; Ehlinger, Aaron; Acconcia, Filippo; Magistrati, Elisa; Polo, Simona; Walters, Kylie J

    2016-03-22

    Myosin VI is critical for cargo trafficking and sorting during early endocytosis and autophagosome maturation, and abnormalities in these processes are linked to cancers, neurodegeneration, deafness, and hypertropic cardiomyopathy. We identify a structured domain in myosin VI, myosin VI ubiquitin-binding domain (MyUb), that binds to ubiquitin chains, especially those linked via K63, K11, and K29. Herein, we solve the solution structure of MyUb and MyUb:K63-linked diubiquitin. MyUb folds as a compact helix-turn-helix-like motif and nestles between the ubiquitins of K63-linked diubiquitin, interacting with distinct surfaces of each. A nine-amino-acid extension at the C-terminal helix (Helix2) of MyUb is required for myosin VI interaction with endocytic and autophagic adaptors. Structure-guided mutations revealed that a functional MyUb is necessary for optineurin interaction. In addition, we found that an isoform-specific helix restricts MyUb binding to ubiquitin chains. This work provides fundamental insights into myosin VI interaction with ubiquitinated cargo and functional adaptors. PMID:26971995

  20. Cloning and molecular characterization of a myosin light chain gene from Puccinia striiformis f. sp. tritici.

    PubMed

    Liu, Jie; Han, Li-Na; Zhang, Qiong; Wang, Qiu-Ling; Chang, Qing; Zhuang, Hua; Liu, Jia; Li, Man; Yu, Dan; Kang, Zhen-Sheng

    2014-02-01

    The fungus Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, is an obligate biotrophic basidiomycete. Many studies have found that myosins play important roles during fungal growth and propagation. However, there are few reports on the myosins of Pst. In this study, we cloned and obtained the myosin light chain gene PsMLC1 from Pst and characterized its expression. Furthermore, the function of PsMLC1 was identified by mutant complementation. As a result, we found that expression of PsMLC1 in Schizosaccharomyces pombe mostly complemented the defects of the cdc4 mutant, indicating that PsMLC1 belongs to the myosin light chain family member. Expression studies showed that the transcript levels of PsMLC1 little changed before 24 h post inoculation then was suddenly down-regulated during Pst infection of wheat. By using ML-7, we observed that inactivity of PsMLC1 greatly reduced the germination rate of urediniospores. These results suggest that PsMLC1 is essential for the early stages of Pst infection of wheat but unnecessary for the later stages of infection. This work elucidates the function of the myosins in Pst and may provide some theoretical basis for controlling strip rust. PMID:24046204

  1. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  2. The role of myosin-II in force generation of DRG filopodia and lamellipodia.

    PubMed

    Sayyad, Wasim A; Amin, Ladan; Fabris, Paolo; Ercolini, Erika; Torre, Vincent

    2015-01-01

    Differentiating neurons process the mechanical stimulus by exerting the protrusive forces through lamellipodia and filopodia. We used optical tweezers, video imaging and immunocytochemistry to analyze the role of non-muscle myosin-II on the protrusive force exerted by lamellipodia and filopodia from developing growth cones (GCs) of isolated Dorsal Root Ganglia (DRG) neurons. When the activity of myosin-II was inhibited by 30 ?M Blebbistatin protrusion/retraction cycles of lamellipodia slowed down and during retraction lamellipodia could not lift up axially as in control condition. Inhibition of actin polymerization with 25 nM Cytochalasin-D and of microtubule polymerization with 500 nM Nocodazole slowed down the protrusion/retraction cycles, but only Cytochalasin-D decreased lamellipodia axial motion. The force exerted by lamellipodia treated with Blebbistatin decreased by 50%, but, surprisingly, the force exerted by filopodia increased by 20-50%. The concomitant disruption of microtubules caused by Nocodazole abolished the increase of the force exerted by filopodia treated with Blebbistatin. These results suggest that; i- Myosin-II controls the force exerted by lamellipodia and filopodia; ii- contractions of the actomyosin complex formed by filaments of actin and myosin have an active role in ruffle formation; iii- myosin-II is an essential component of the structural stability of GCs architecture. PMID:25598228

  3. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly

    PubMed Central

    Taylor, Keenan C.; Buvoli, Massimo; Korkmaz, Elif Nihal; Buvoli, Ada; Zheng, Yuqing; Heinze, Nathan T.; Cui, Qiang; Leinwand, Leslie A.; Rayment, Ivan

    2015-01-01

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report here that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility. Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. In addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies. PMID:26150528

  4. Actin dynamics is essential for myosin-based transport of membrane organelles

    PubMed Central

    Semenova, Irina; Burakov, Anton; Berardone, Neda; Zaliapin, Ilya; Slepchenko, Boris; Svitkina, Tatyana; Kashina, Anna; Rodionov, Vladimir

    2008-01-01

    Actin filaments