These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Toward understanding actin activation of myosin ATPase: the role of myosin surface loops.  

PubMed

To understand the complicated interplay when a traveling myosin head reaches interaction distance with two actins in a filament we looked to three myosin loops that early on exert their influences from the "outside" of the myosin. On these we conduct, functionally test, and interpret strategically chosen mutations at sites thought from crystallography to be a patch for binding the "first" of the two actins. One loop bears a hydrophobic triplet of residues, one is the so-called "loop 2," and the third is the "cardiomyopathy" loop. So far as we know, the myosin sites that first respond are the two lysine-rich loops that produce an ionic strength-dependent weak-binding complex with actin. Subsequently, the three loops of interest bind the first actin simultaneously, and all three assist in closing the cleft in the 50-kDa domain of the myosin, a closure that results in transition from weak to strong binding and precedes rapid Pi release and motility. Mutational analysis shows that each such loop contact is distinctive in the route by which it communicates with its specific target elsewhere in myosin. The strongest contact with actin, for example, is that of the triplet-bearing loop. On the other hand, that of loop 2 (dependent on drawing close two myosin lysines and two actin aspartates) is probably responsible for opening switch I and uncovering the gamma-phosphate moiety of bound ATP. Taking into account these findings, we begin to arrange in order many molecular events in muscle function. PMID:16603626

Onishi, Hirofumi; Mikhailenko, Sergey V; Morales, Manuel F

2006-04-18

2

Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2  

PubMed Central

It had been proposed previously that only filamentous forms of Acanthamoeba myosin II have actin-activated MgATPase activity and that this activity is inhibited by phosphorylation of up to four serine residues in a repeating sequence in the C-terminal nonhelical tailpiece of the two heavy chains. We have reinvestigated these issues using recombinant WT and mutant myosins. Contrary to the earlier proposal, we show that two nonfilamentous forms of Acanthamoeba myosin II, heavy meromyosin and myosin subfragment 1, have actin-activated MgATPase that is down-regulated by phosphorylation. By mass spectroscopy, we identified five serines in the heavy chains that can be phosphorylated by a partially purified kinase preparation in vitro and also are phosphorylated in endogenous myosin isolated from the amoebae: four serines in the nonhelical tailpiece and Ser639 in loop 2 of the motor domain. S639A mutants of both subfragment 1 and full-length myosin had actin-activated MgATPase that was not inhibited by phosphorylation of the serines in the nonhelical tailpiece or their mutation to glutamic acid or aspartic acid. Conversely, S639D mutants of both subfragment 1 and full-length myosin were inactive, irrespective of the phosphorylation state of the serines in the nonhelical tailpiece. To our knowledge, this is the first example of regulation of the actin-activated MgATPase activity of any myosin by modification of surface loop 2. PMID:23248278

Liu, Xiong; Lee, Duck-Yeon; Cai, Shutao; Yu, Shuhua; Shu, Shi; Levine, Rodney L.; Korn, Edward D.

2013-01-01

3

Substitution Mutations in the Myosin Essential Light Chain Lead to Reduced Actin-activated ATPase Activity Despite Stoichiometric  

E-print Network

are postulated to provide rigidity to the neck which is hypothesized to function as a "lever arm" for generating an effective power stroke (7). This lever arm concept is supported by the fact that weakening of the lever arm the lever arm 50% by deleting the RLC binding site produces myosin that moves actin at one-half the wild

Chisholm, Rex L.

4

Why choose myofibrils to study muscle myosin ATPase?  

Microsoft Academic Search

Our objective is to propose an overview of the usefulness of skeletal myofibril as an experimental system for studying mechanochemical\\u000a coupling of skeletal muscles and myosin ATPase activity. The myofibril is a true functional mini-muscle that is able to contract\\u000a in the presence of ATP. It also contains the machinery necessary for the calcium sensitivity of the contraction. In the

Corinne Lionne; Bogdan Iorga; Robin Candau; Franck Travers

2003-01-01

5

Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats  

PubMed Central

We tested the hypothesis that Ca2+-activated myosin ATPase activity is lower in muscles of aged rats relative to muscles of young rats, independent of changes in myosin isoform expression. Myofibrils were prepared from permeabilized fibers of soleus, plantaris, and semimembranosus muscles of young (8–12 months) and aged (32–38 months) F344 × BN rats and assayed for resting myosin ATPase, Ca2+-activated myosin ATPase, and myosin heavy chain (MHC) and myosin light chain (MLC) isoform compositions. Resting myosin ATPases were not affected by age in any muscle (P ? 0.42). Ca2+-activated myosin ATPases of soleus and plantaris myofibrils were not affected by age (P ? 0.31) but were 16% lower in semimembranosus myofibrils from aged rats (0.448 ± 0.019 ?mol Pi/min/mg) compared to young rats (0.533 ± 0.031 ?mol Pi/min/mg; P = 0.03). Correspondingly, maximal unloaded shortening velocity of single semimembranosus fibers from aged rats was slow (4.6 ± 0.2 fiber lengths/s) compared with fibers from young rats (5.8 ± 0.3 fiber lengths/s; P < 0.01). No age-related changes in MHC or regulatory MLC isoforms were detected in any muscle (P ? 0.08) but changes in the essential MLC occurred in plantaris and semimembranosus muscles. The data indicate that Ca2+-activated myosin ATPase activity is reduced with age in semimembranosus muscle, independent of age-related changes in MHC isoform expression, and is one mechanism contributing to age-related slowing of contraction in that muscle. PMID:15491680

Lowe, Dawn A.; Husom, Aimee D.; Ferrington, Deborah A.; Thompson, LaDora V.

2015-01-01

6

Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry  

PubMed Central

We examined the Ca(2+)-dependent regulation of brush border (BB) myosin- I by probing the possible roles of the calmodulin (CM) light chains. BB myosin-I MgATPase activity, sensitivity to chymotryptic digestion, and mechanochemical properties were assessed using 1-10 microM Ca2+ and in the presence of exogenously added CM since it has been proposed that this myosin is regulated by calcium-induced CM dissociation from the 119-kD heavy chain. Each of these BB myosin-I properties were dramatically altered by the same threshold of 2-3 microM Ca2+. Enzymatically active NH2-terminal proteolytic fragments of BB myosin-I which lack the CM binding domains (the 78-kD peptide) differ from CM- containing peptides in that the former is completely insensitive to Ca2+. Furthermore, the 78-kD peptide exhibits high levels of MgATPase activity which are comparable to that observed for BB myosin-I in the presence of Ca2+. This suggests that Ca2+ regulates BB myosin-I MgATPase by binding directly to the CM light chains, and that CM acts to repress endogenous MgATPase activity. Ca(2+)-induced CM dissociation from BB myosin-I can be prevented by the addition of exogenous CM. Under these conditions Ca2+ causes a reversible slowing of motility. In contrast, in the absence of exogenous CM, motility is stopped by Ca2+. We demonstrate this reversible slowing is not due to the presence of inactive BB myosin-I molecules exerting a "braking" effect on motile filaments. However, we did observe Ca(2+)-independent slowing of motility by acidic phospholipids, suggesting that factors other than Ca2+ and CM content can affect the mechanochemical properties of BB myosin-I. PMID:8335688

1993-01-01

7

Myosin  

PubMed Central

There is fairly general agreement that myosin isolated from rabbit skeletal muscle has a molecular weight of about 500,000. The higher values that have been reported apparently reflect protein aggregation related to the method of preparation. On the basis of present evidence, the myosin molecule has an elongate helical core of two f subunits (average weight about 215,000) that extend into a globular head region containing three g subunits (average weight about 20,000). Myosin may be dissociated into subunits by a number of methods. In 5 M guanidine, the myosin molecule is dissociated into f and g subunits, while at pH above 10, the g subunits are dissociated from the intact fibrous core of myosin. The dissociation of g subunits at pH 10 is accompanied by the loss of both ATPase activity and actin-binding capacity; however, the exact biological significance of the g subunits is presently uncertain. In preliminary studies, the f subunits appear to contain the sulfhydryl residues currently implicated in myosin ATPase, and there is some indication of allosteric regulation of enzymic activity. PMID:4227926

Dreizen, Paul; Gershman, Lewis C.; Trotta, Paul P.; Stracher, Alfred

1967-01-01

8

Inhibition of Actomyosin ATPase Activity by Troponin-Tropomyosin without Blocking the Binding of Myosin to Actin*  

PubMed Central

Relaxation of vertebrate skeletal muscle is thought to occur in the absence of Ca2+ as a result of tropomyosin physically blocking the binding of myosin to actin. This steric blocking model of muscle relaxation predicts that myosin subfragment 1 (S-1) will not bind to actin under conditions where the acto-S-1 ATPase rate is inhibited. Using stopped flow absorbance as a measure of binding, we have previously shown that when the rate of ATP hydrolysis is only 4% of the rate in the presence of Ca2+, S-1·ATP and S-1·ADP·Pi bind to actin-troponin-tropomyosin (regulated actin) with almost the same affinity as in the presence of Ca2+. This result has now been confirmed using sedimentation in an air-driven ultracentrifuge to directly measure the binding at pH 7.0, 25 °C, and ? = 18 mm. In the presence of Ca2+, the rate of ATP hydrolysis is more than 20 times greater than in the absence of Ca2+. In contrast, the association constant of S-1·ATP and S-1·ADP·Pi with regulated actin is virtually the same in the absence of Ca2+ (1.4 × 104 m?1) as in the presence of Ca2+ (1.5 × 104 m?1). Similarly, at 50 mm ionic strength, the ATPase rate is inhibited about 98% in the absence of Ca2+ although the association constant is not significantly changed compared to that in the presence of Ca2+. Finally, it has been shown that, at 18 mm ionic strength, the inhibition of the actin-activated ATPase rate in the absence of Ca2+ is due to a large decrease in the maximum ATPase rate (to 4% of the Ca2+ value) with only a small change in the apparent binding constant of S-1 to actin. These data do not support a simple steric blocking model of muscle relaxation. Rather they suggest that, in the absence of Ca2+, troponin-tropomyosin inhibits a kinetic step, perhaps Pi release, in the cycle of ATP hydrolysis. PMID:6460759

Chalovich, Joseph M.; Eisenberg, Evan

2005-01-01

9

Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells.  

PubMed

Stimulation of Na(+)/K(+)-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na(+)/K(+)-ATPase recruitment to the plasma membrane by increasing the average speed of Na(+)/K(+)-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na(+)/K(+)-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na(+)/K(+)-ATPase-containing vesicles, as well as the Na(+)/K(+)-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na(+)/K(+)-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na(+)/K(+)-ATPase to the plasma membrane and thus increased activity. PMID:19808891

Lecuona, Emilia; Minin, Alexander; Trejo, Humberto E; Chen, Jiwang; Comellas, Alejandro P; Sun, Haiying; Grillo, Doris; Nekrasova, Oxana E; Welch, Lynn C; Szleifer, Igal; Gelfand, Vladimir I; Sznajder, Jacob I

2009-11-01

10

Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells  

PubMed Central

Summary Stimulation of Na+/K+-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na+/K+-ATPase recruitment to the plasma membrane by increasing the average speed of Na+/K+-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na+/K+-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na+/K+-ATPase-containing vesicles, as well as the Na+/K+-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na+/K+-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na+/K+-ATPase to the plasma membrane and thus increased activity. PMID:19808891

Lecuona, Emilia; Minin, Alexander; Trejo, Humberto E.; Chen, Jiwang; Comellas, Alejandro P.; Sun, Haiying; Grillo, Doris; Nekrasova, Oxana E.; Welch, Lynn C.; Szleifer, Igal; Gelfand, Vladimir I.; Sznajder, Jacob I.

2009-01-01

11

Tail chimeras of Dictyostelium myosin II support cytokinesis and other myosin II activities but not full development.  

PubMed

Dictyostelium lacking myosin II cannot grow in suspension culture, develop beyond the mound stage or cap concanavalin A receptors and chemotaxis is impaired. Recently, we showed that the actin-activated MgATPase activity of myosin chimeras in which the tail domain of Dictyostelium myosin II heavy chain is replaced by the tail domain of either Acanthamoeba or chicken smooth muscle myosin II is unregulated and about 20 times higher than wild-type myosin. The Acanthamoeba chimera forms short bipolar filaments similar to, but shorter than, filaments of Dictyostelium myosin and the smooth muscle chimera forms much larger side-polar filaments. We now find that the Acanthamoeba chimera expressed in myosin null cells localizes to the periphery of vegetative amoeba similarly to wild-type myosin but the smooth muscle chimera is heavily concentrated in a single cortical patch. Despite their different tail sequences and filament structures and different localization of the smooth muscle chimera in interphase cells, both chimeras support growth in suspension culture and concanavalin A capping and colocalize with the ConA cap but the Acanthamoeba chimera subsequently disperses more slowly than wild-type myosin and the smooth muscle chimera apparently not at all. Both chimeras also partially rescue chemotaxis. However, neither supports full development. Thus, neither regulation of myosin activity, nor regulation of myosin polymerization nor bipolar filaments is required for many functions of Dictyostelium myosin II and there may be no specific sequence required for localization of myosin to the cleavage furrow. PMID:12376556

Shu, Shi; Liu, Xiong; Parent, Carole A; Uyeda, Taro Q P; Korn, Edward D

2002-11-15

12

Reduced cardiac myofibrillar Mg-ATPase activity without changes in myosin isozymes in patients with end-stage heart failure  

Microsoft Academic Search

In this study we tested the hypothesis that reduced myofibrillar ATPase activities in end-stage heart failure are associated with a redistribution of myosin isozymes. Cardiac myofibrils were isolated from left ventricular free wall from normal human hearts and hearts at end-stage heart failure caused by coronary artery diseases, cardiomyopathy or immunological rejection. The hearts had been excised in preparation for

Adawia A. Alousi; Alison M. Grant; John R. Etzler; Barry R. Cofer; Joanna Van der Bel-Kahn; David Melvin

1990-01-01

13

Simultaneous Observation of Individual ATPase and Mechanical Events by a Single Myosin Molecule during Interaction with Actin  

Microsoft Academic Search

We have developed a technique that allows mechanical and ligand-binding events in a single myosin molecule to be monitored simultaneously. We describe how steps in the ATPase reaction are temporally related to mechanical events at the single molecule level. The results show that the force generation does not always coincide with the release of bound nucleotide, presumably ADP. Instead the

Akihiko Ishijima; Hiroaki Kojima; Takashi Funatsu; Makio Tokunaga; Hideo Higuchi; Hiroto Tanaka; Toshio Yanagida

1998-01-01

14

Mg-ATPase and CA 2+ activated myosin ATPase activity in ventricular myofibrils from non-failing and diseased human hearts – effects of calcium sensitizing agents MCI154, DPI 201–106, and caffeine  

Microsoft Academic Search

We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils.

Chukwuka Okafor; Ronglih Liao; Cynthia Perreault-Micale; Xiaoping Li; Toshiro Ito; Anna Stepanek; Angelia Doye; Pieter de Trombe; Judith K. Gwathmey

2003-01-01

15

Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle.  

PubMed

The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyruvate kinase reaction alone or together with the amount of creatine formed, when myofibrillar bound creatine kinase was activated with phosphocreatine. The steady-state concentration of ADP in the solution was varied through the activity of pyruvate kinase added to the solution. For rainbow trout myofibrils at a high pyruvate kinase activity, creatine kinase competed for ADP but did not influence the total ATPase activity. When the ADP concentration was elevated within the physiological range by lowering the pyruvate kinase activity, creatine kinase competed efficiently and increased the ATPase activity twice or more for both trout and turtle. As examined for trout myofibrils, the ATPase activity was reduced about four times by inhibiting the activity of myofibril-bound creatine kinase with iodoacetamide and this reduction was only partially counteracted, when the creatine kinase activity was restored by adding creatine kinase to the solution. Hence, the results suggest that myofibril-bound creatine kinase is needed to fully activate the myosin-ATPase activity in hearts from ectothermic vertebrates despite their low energy turn-over relative to endothermic species. PMID:18515165

Haagensen, L; Jensen, D H; Gesser, H

2008-08-01

16

The structural coupling between ATPase activation and recovery stroke in the myosin II motor  

SciTech Connect

Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.

Koppole, Sampath [University of Heidelberg; Smith, Jeremy C [ORNL; Fischer, S. [University of Heidelberg

2007-07-01

17

Characteristics of light chains of Chara myosin revealed by immunological investigation.  

PubMed

Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca??-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively. PMID:22687741

Kakei, Toshihito; Sumiyoshi, Hiroki; Higashi-Fujime, Sugie

2012-01-01

18

Movement of scallop myosin on Nitella actin filaments: regulation by calcium.  

PubMed Central

In order to determine if Ca2+ regulates scallop myosin movement on actin, we have measured motility of scallop myosin along actin filaments using a direct visual assay. This procedure consists of covalently linking myosin to 1-micron beads and pipetting them onto a parallel array of actin filaments located on the cytoplasmic face of a Nitella internodal cell. In the absence of Ca2+, scallop myosin-coated beads exhibit no directed motion; however, in the presence of pCa2+ of greater than 5.84, these beads undergo linear translocations with average velocities of 2.0 micron/s. This Ca2+ -sensitive motility requires the presence of regulatory light chains on the scallop myosin. Removal of regulatory light chains with 10 mM EDTA produces a "desensitized" myosin, no longer sensitive to Ca2+, which moves at rates of 0.09-0.3 micron in the presence or absence of Ca2+. Readdition of regulatory light chains to preparations of desensitized myosin once again confers Ca2+-sensitive motility. The Ca2+ dependence of scallop-myosin motility shows a sharp transition, consistent with the Ca2+ activation sensitivity of the actin-activated ATPase. Furthermore, relative rates of movement of calcium-regulated myosins from various molluscan species are consistent with their respective rates of ATP hydrolysis. Thus, myosin motility along actin filaments provides a sensitive and direct assay of myosin activity and is suitable for studying myosin regulation. PMID:6238334

Vale, R D; Szent-Gyorgyi, A G; Sheetz, M P

1984-01-01

19

Calcium and cargoes as regulators of myosin 5a activity  

SciTech Connect

Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins.

Sellers, James R. [Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762 (United States)], E-mail: sellersj@nhlbi.nih.gov; Thirumurugan, Kavitha [Institute of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Sakamoto, Takeshi [Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762 (United States); Hammer, John A. [Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD 20892-1762 (United States); Knight, Peter J. [Institute of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

2008-04-25

20

MgADP-induced changes in the structure of myosin S1 near the ATPase-related thiol SH1 probed by cross-linking  

Microsoft Academic Search

The structural consequence of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca{sup 2+}-ATPase activity as a function of reaction time,

K. N. Rajasekharan; M. Mayadevi; R. Agarwal; M. Burke

1990-01-01

21

Heavy meromyosin and subfragment-1 from squid mantle myosin, and Ca-sensitivity of their Mg-ATPases.  

PubMed

Heavy meromyosin (HMM) and subfragment-1 (S1) were obtained from squid mantle myosin by tryptic digestion and chymotryptic digestion, respectively. Squid HMM(T) and S1(CT) preparations contained stoichiometric amounts of the two types of light chain subunit; regulatory light chain, LC-2, and essential light chain, LC-1. No difference was detected in the chymotryptic digestibilities of squid mantle myosin in Ca-medium and in EDTA-medium. This is in contrast to the digestibility of scallop adductor myosin. The Mg-ATPase activity of HMM(T) alone and that of acto-HMM(T) were both sensitive to calcium ions. In contrast, the activity of S1(CT) alone and that of acto-S1(CT) were both insensitive to calcium ions. The affinity of HMM(T) for actin was not affected by calcium ions, but the amount of HMM(T) bound to actin was increased by calcium ions from 20% to 60% of the total amount of HMM(T). On the other hand, the actin affinity of S1(CT) and the amount of S1(CT) bound to actin were both unaffected by calcium ions. The role of calcium ions in the regulation of contraction in molluscan muscles is discussed. PMID:2931425

Kamiya, S; Yoshitomi, B; Konno, K; Watanabe, S

1985-07-01

22

Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1.  

PubMed

Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg(2+)-ATPase activity (Vmax = 4 s(-1)), although their affinities for actin were high (Kactin = 4 ?M). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 ?m/s, respectively, from which the value for full-length ATM1 is calculated to be ?0.2 ?m/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was ?90%. ADP dissociation from the actin·ATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s(-1), respectively). Physiological concentrations of free Mg(2+) modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis. PMID:24637024

Haraguchi, Takeshi; Tominaga, Motoki; Matsumoto, Rie; Sato, Kei; Nakano, Akihiko; Yamamoto, Keiichi; Ito, Kohji

2014-05-01

23

Phosphorylation of lymphocyte myosin catalyzed in vitro and in intact cells  

PubMed Central

Myosin has been isolated from guinea pig B-lymphocytic leukemia cells (L2C). The myosin has been enzymatically phosphorylated and dephosphorylated in vitro using both heterologous and lymphocyte- derived enzymes. Both the heavy chain and 20,000-dalton light chain of lymphocyte myosin are phosphorylated in vitro. Phosphorylation of myosin enhances actin-activated ATPase activity. Phosphorylation of myosin in murine lymphocytes was analyzed by use of a novel technique for rapid immunoprecipitation of myosin from cell extracts. Both the heavy chain and 20,000-dalton light chain of myosin are phosphorylated in intact cells. Addition of antibody reactive with cell-surface immunoglobulin to lymphocyte populations enriched for B cells stimulates locomotion of these cells and also increases the quantity of 32P isolated in association with the 20,000-dalton light chain of lymphocyte myosin, when 32Pi was present in the medium. In addition, an unidentified, phosphorylated polypeptides with a molecular mass of 22,000 daltons is co-isolated with myosin from cells by rapid immunoprecipitation. These results are consistent with the hypothesis that phosphorylation of myosin may contribute to regulation of movements performed by lymphocytes which are related to their participation in immunologic reactions. PMID:6212588

1982-01-01

24

Definite Differences between In Vitro Actin-Myosin Sliding and Muscle Contraction as Revealed Using Antibodies to Myosin Head  

PubMed Central

Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures. PMID:24918754

Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo

2014-01-01

25

Definite differences between in vitro actin-myosin sliding and muscle contraction as revealed using antibodies to myosin head.  

PubMed

Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures. PMID:24918754

Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo

2014-01-01

26

Myosin light chain kinase and myosin light chain phosphatase from Dictyostelium: effects of reversible phosphorylation on myosin structure and function  

PubMed Central

We have partially purified myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) from Dictyostelium discoideum. MLCK was purified 4,700-fold with a yield of approximately 1 mg from 350 g of cells. The enzyme is very acidic as suggested by its tight binding to DEAE. Dictyostelium MLCK has an apparent native molecular mass on HPLC G3000SW of approximately 30,000 D. Mg2+ is required for enzyme activity. Ca2+ inhibits activity and this inhibition is not relieved by calmodulin. cAMP or cGMP have no effect on enzyme activity. Dictyostelium MLCK is very specific for the 18,000-D light chain of Dictyostelium myosin and does not phosphorylate the light chain of several other myosins tested. Myosin purified from log-phase amebas of Dictyostelium has approximately 0.3 mol Pi/mol 18,000-D light chain as assayed by glycerol-urea gel electrophoresis. Dictyostelium MLCK can phosphorylate this myosin to a stoichiometry approaching 1 mol Pi/mol 18,000-D light chain. MLCP, which was partially purified, selectively removes phosphate from the 18,000-D light chain but not from the heavy chain of Dictyostelium myosin. Phosphatase-treated Dictyostelium myosin has less than or equal to 0.01 mol Pi/mol 18,000-D light chain. Phosphatase-treated myosin could be rephosphorylated to greater than or equal to 0.96 mol Pi/mol 18,000-D light chain by incubation with MLCK and ATP. We found myosin thick filament assembly to be independent of the extent of 18,000-D light-chain phosphorylation when measured as a function of ionic strength. However, actin-activated Mg2+-ATPase activity of Dictyostelium myosin was found to be directly related to the extent of phosphorylation of the 18,000-D light chain. MLCK-treated myosin moved in an in vitro motility assay (Sheetz, M. P., and J. A. Spudich, 1983, Nature (Lond.), 305:31-35) at approximately 1.4 micron/s whereas phosphatase-treated myosin moved only slowly or not at all. The effects of phosphatase treatment on the movement were fully reversed by subsequent treatment with MLCK. PMID:3032987

1987-01-01

27

Analytical comparison of natural and pharmaceutical ventricular myosin activators.  

PubMed

Ventricular myosin (?Mys) is the motor protein in cardiac muscle generating force using ATP hydrolysis free energy to translate actin. In the cardiac muscle sarcomere, myosin and actin filaments interact cyclically and undergo rapid relative translation facilitated by the low duty cycle motor. It contrasts with high duty cycle processive myosins for which persistent actin association is the priority. The only pharmaceutical ?Mys activator, omecamtive mecarbil (OM), upregulates cardiac contractility in vivo and is undergoing testing for heart failure therapy. In vitro ?Mys step-size, motility velocity, and actin-activated myosin ATPase were measured to determine duty cycle in the absence and presence of OM. A new parameter, the relative step-frequency, was introduced and measured to characterize ?Mys motility due to the involvement of its three unitary step-sizes. Step-size and relative step-frequency were measured using the Qdot assay. OM decreases motility velocity 10-fold without affecting step-size, indicating a large increase in duty cycle converting ?Mys to a near processive myosin. The OM conversion dramatically increases force and modestly increases power over the native ?Mys. Contrasting motility modification due to OM with that from the natural myosin activator, specific ?Mys phosphorylation, provides insight into their respective activation mechanisms and indicates the boilerplate screening characteristics desired for pharmaceutical ?Mys activators. New analytics introduced here for the fast and efficient Qdot motility assay create a promising method for high-throughput screening of motor proteins and their modulators. PMID:25068717

Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P

2014-08-19

28

Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.  

PubMed

The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement. PMID:24465547

Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

2014-01-01

29

Different subcellular localizations and functions of Arabidopsis myosin VIII  

PubMed Central

Background Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB. Results In transgenic plants expressing GFP fusions with ATM1 (IQ-tail truncation, lacking the head domain), fluorescence was differentially distributed: while in epidermis cells at the root cap GFP-ATM1 equally distributed all over the cell, in epidermal cells right above this region it accumulated in dots. Further up, in cells of the elongation zone, GFP-ATM1 was preferentially positioned at the sides of transversal cell walls. Interestingly, the punctate pattern was insensitive to brefeldin A (BFA) while in some cells closer to the root cap, ATM1 was found in BFA bodies. With the use of different markers and transient expression in Nicotiana benthamiana leaves, it was found that myosin VIII co-localized to the plasmodesmata and ER, colocalized with internalized FM4-64, and partially overlapped with the endosomal markers ARA6, and rarely with ARA7 and FYVE. Motility of ARA6 labeled organelles was inhibited whenever associated with truncated ATM1 but motility of FYVE labeled organelles was inhibited only when associated with large excess of ATM1. Furthermore, GFP-ATM1 and RFP-ATM2 (IQ-tail domain) co-localized to the same spots on the plasma membrane, indicating a specific composition at these sites for myosin binding. Conclusion Taken together, our data suggest that myosin VIII functions differently in different root cells and can be involved in different steps of endocytosis, BFA-sensitive and insensitive pathways, ER tethering and plasmodesmatal activity. PMID:18179725

Golomb, Lior; Abu-Abied, Mohamad; Belausov, Eduard; Sadot, Einat

2008-01-01

30

Purification and characterization of squid brain myosin.  

PubMed

Myosin was extracted from frozen squid brain and purified by a modification of the procedure of Pollard et al. (Pollard, T.D., Thomas, S.M., and Niederman, R. (1974) Anal. Biochem. 60, 258-266). Myosin was eluted from Bio-Gel A-15m column as a single peak of (K+-EDTA)-activated ATPase ((K+-EDTA)-ATPase) activity with an average partition coefficient (Kav) of 0.22. In sodium dodecyl sulfate-acrylamide gel electrophoresis, the purified myosin showed a predominant band with similar electrophoretic mobility as the heavy chain of rabbit skeletal muscle myosin, and two less intense bands near the bottom of the gel. No actin band was seen. The properties of the (K+-EDTA)-ATPase activity were: (a) the time course of the reaction was biphasic at 25 degrees but linear at 32 degrees; (b) the optimum rate of reaction was obtained between 0.3 and 0.8 M KCl; (c) the pH optimum was between 8.0 and 9.0; (d) the reaction was specific for ATP with an apparent Km of 0.19 mM. ATPase activity in 0.06 M KCl and 5 mM MgCl2 was increased about 1.5 times by a 10-fold excess of rabbit skeletal muscle F-actin and about 5 times by a 40-fold excess. The actin activation was inhibited slightly by the addition of 0.2 mM CaCl2 and completely by the addition of 10 mM CaCl2. Myosin formed arrowhead patterns with rabbit skeletal muscle F-actin as observed by electron microscopy of negatively stained samples. It also aggregated in bipolar filaments which attached to decorated actin filaments at different angles, as well as formed cross-connections and ladder-like patterns between actin filaments. These two forms of interactions between myosin and actin were abolished by treatment with MgATP. PMID:137240

See, Y P; Metuzals, J

1976-12-10

31

Myosin 18A Coassembles with Nonmuscle Myosin 2 to Form Mixed Bipolar Filaments.  

PubMed

Class-18 myosins are most closely related to conventional class-2 nonmuscle myosins (NM2). Surprisingly, the purified head domains of Drosophila, mouse, and human myosin 18A (M18A) lack actin-activated ATPase activity and the ability to translocate actin filaments, suggesting that the functions of M18A in vivo do not depend on intrinsic motor activity. M18A has the longest coiled coil of any myosin outside of the class-2 myosins, suggesting that it might form bipolar filaments similar to conventional myosins. To address this possibility, we expressed and purified full-length mouse M18A using the baculovirus/Sf9 system. M18A did not form large bipolar filaments under any of the conditions tested. Instead, M18A formed an ?65-nm-long bipolar structure with two heads at each end. Importantly, when NM2 was polymerized in the presence of M18A, the two myosins formed mixed bipolar filaments, as evidenced by cosedimentation, electron microscopy, and single-molecule imaging. Moreover, super-resolution imaging of NM2 and M18A using fluorescently tagged proteins and immunostaining of endogenous proteins showed that NM2 and M18A are present together within individual filaments inside living cells. Together, our in vitro and live-cell imaging data argue strongly that M18A coassembles with NM2 into mixed bipolar filaments. M18A could regulate the biophysical properties of these filaments and, by virtue of its extra N- and C-terminal domains, determine the localization and/or molecular interactions of the filaments. Given the numerous, fundamental cellular and developmental roles attributed to NM2, our results have far-reaching biological implications. PMID:25754640

Billington, Neil; Beach, Jordan R; Heissler, Sarah M; Remmert, Kirsten; Guzik-Lendrum, Stephanie; Nagy, Attila; Takagi, Yasuharu; Shao, Lin; Li, Dong; Yang, Yi; Zhang, Yingfan; Barzik, Melanie; Betzig, Eric; Hammer, John A; Sellers, James R

2015-03-30

32

Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dictyostelium discoideum.  

PubMed Central

Soluble myosin heavy chain kinases (MHC kinases) were partially purified from growth phase and aggregation-competent cells of Dictyostelium discoideum. In the aggregation-competent cells, two MHC kinases were distinguishable. One of these enzymes, called MHC kinase II, was inactivated by Ca2+ and calmodulin in a highly temperature-dependent reaction. A MHC kinase found in growth phase cells did not have these regulatory properties. Substrate specificities were analysed for MHC kinase II and for the MHC kinase from growth phase cells. Both enzymes phosphorylated threonine residues of the myosin heavy chains of D. discoideum and Physarum polycephalum. Phosphopeptide mapping of D. discoideum myosin and determination of the stoichiometry of its phosphorylation suggested the presence of two phosphorylation sites per heavy chain. Both sites were contained within a 38-kd chymotryptic fragment. The inactivation of MHC kinase II by Ca2+ plus calmodulin suggests this enzyme has a role in the regulation of myosin functions during the chemotactic response of a cell. The phosphorylated myosin had about one third the actin-activated Mg2+-ATPase activity of the non-phosphorylated myosin. Previous findings indicated that stimulation of D. discoideum cells with the chemo-attractant cAMP increases the cytoplasmic Ca2+ concentration. Under these conditions MHC kinase II might be inhibited and the dephosphorylated, more active form of myosin would accumulate. Images Fig. 2. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:6313344

Maruta, H; Baltes, W; Dieter, P; Marmé, D; Gerisch, G

1983-01-01

33

UCS protein Rng3p activates actin filament gliding by fission yeast myosin-II  

PubMed Central

We purified native Myo2p/Cdc4p/Rlc1p (Myo2), the myosin-II motor required for cytokinesis by Schizosaccharomyces pombe. The Myo2p heavy chain associates with two light chains, Cdc4p and Rlc1p. Although crude Myo2 supported gliding motility of actin filaments in vitro, purified Myo2 lacked this activity in spite of retaining full Ca-ATPase activity and partial actin-activated Mg-ATPase activity. Unc45-/Cro1p-/She4p-related (UCS) protein Rng3p restored the full motility and actin-activated Mg-ATPase activity of purified Myo2. The COOH-terminal UCS domain of Rng3p alone restored motility to pure Myo2. Thus, Rng3p contributes directly to the motility activity of native Myo2. Consistent with a role in Myo2 activation, Rng3p colocalizes with Myo2p in the cytokinetic contractile ring. The absence of Rlc1p or mutations in the Myo2p head or Rng3p compromise the in vitro motility of Myo2 and explain the defects in cytokinesis associated with some of these mutations. In contrast, Myo2 with certain temperature-sensitive forms of Cdc4p has normal motility, so these mutations compromise other functions of Cdc4p required for cytokinesis. PMID:15504913

Lord, Matthew; Pollard, Thomas D.

2004-01-01

34

Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.  

PubMed

The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ? 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1c? (K D ? 540 nM) and also to PP1c? (K D ? 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins. PMID:25775934

Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erd?di, Ferenc; Nyitrai, Miklós

2015-05-01

35

Identification and Functional Study of a New Missense Mutation in the Motor Head Domain of Myosin VIIA in a Family with Autosomal Dominant Hearing Impairment (DFNA11)  

PubMed Central

The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G?A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed. PMID:23383098

Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei

2013-01-01

36

The stroke size of myosins: a reevaluation  

Microsoft Academic Search

In this article results are reviewed from different experimental approaches to determine the size of the power stroke generated by myosin molecules during their ATPase cycle. While data from fiber studies and protein crystallography predict a stroke size of about 10 nm for skeletal muscle myosins, single molecule studies imply a stroke size for these myosins of only about 5 nm. Single

Bernhard Brenner

2006-01-01

37

Myosin light chain genes in the turkey (Meleagris gallopavo)  

Microsoft Academic Search

Myosin light chains associate with the motor protein myosin and are believed to play a role in the regulation of its actin-based ATPase activity. Myosin light chain cDNA clones from the turkey (Meleagris gallopavo) were isolated and sequenced. One sequence corresponded to an alternative transcript, the skeletal muscle essential light chain (MYL1 isoform 1) and a second to the smooth

L. D. Chaves; B. J. Ostroski; K. M. Reed

2003-01-01

38

Ventricular myosin modifies in vitro step-size when phosphorylated.  

PubMed

Cardiac and skeletal muscle myosins have the central role in contraction transducing ATP free energy into the mechanical work of moving actin. Myosin has a motor domain containing ATP and actin binding sites and a lever-arm that undergoes rotation impelling bound actin. The lever-arm converts torque generated in the motor into the linear displacement known as step-size. The myosin lever-arm is stabilized by bound essential and regulatory light chains (ELC and RLC). RLC phosphorylation at S15 is linked to modified lever-arm mechanical characteristics contributing to myosin filament based contraction regulation and to the response of the muscle to disease. Myosin step-size was measured using a novel quantum dot (Qdot) assay that previously confirmed a 5nm step-size for fast skeletal myosin and multiple unitary steps, most frequently 5 and 8nm, and a rare 3nm displacement for ? cardiac myosin (?Mys). S15 phosphorylation in ?Mys is now shown to change step-size distribution by advancing the 8nm step frequency. After phosphorylation, the 8nm step is the dominant myosin step-size resulting in significant gain in the average step-size. An increase in myosin step-size will increase the amount of work produced per ATPase cycle. The results indicate that RLC phosphorylation modulates work production per ATPase cycle suggesting the mechanism for contraction regulation by the myosin filament. PMID:24726887

Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P

2014-07-01

39

Myosin isoenzyme redistribution in chronic heart overload  

Microsoft Academic Search

Since the first observation by Spann et al.1, it has become clear that in cardiac hypertrophy induced by a mechanical overloading, the velocity of shortening of the cardiac muscle (Vmax) is reduced (see ref. 2 for review). Most authors agree that this mechanical alteration is accompanied by a decrease in the Ca2+-dependent ATPase activity of myosin (see ref. 3 for

Anne-Marie Lompre; Ketty Schwartz; Anne D'Albis; Gabrielle Lacombe; Nguyen van Thiem; Bernard Swynghedauw

1979-01-01

40

Preparation and Characterization of Myosin Proteins.  

ERIC Educational Resources Information Center

Students complete five experimental projects at the end of a senior-level biochemistry course which involves the isolation and characterization of myosin and its water-soluble subfragments. Procedures used and results obtained are provided for such projects as viscosity and ATPase measurements and gel electrophoresis experiments. (JN)

Caldwell, Elizabeth; Eftink, Maurice R.

1985-01-01

41

Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin.  

PubMed

We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin. PMID:22648562

Zhang, Ying; Kawamichi, Hozumi; Tanaka, Hideyuki; Yoshiyama, Shinji; Kohama, Kazuhiro; Nakamura, Akio

2012-08-01

42

Force-generating domain of myosin motor.  

PubMed

To understand the underlying mechanism of force generation by myosin motor, it is crucial to know which part of the molecule is essential for the process. Recent structure determination of myosin motor domain at atomic resolution has revealed that the domain comprises two smaller domains, the "ATPase domain" consisting of only an N-terminal segment of the heavy chain and the "neck domain" consisting of a long alpha-helix of the heavy chain and two light chains. This atomic structure begs the question of whether both domains are required for force generation. To answer it, we genetically truncated the head to generate a recombinant fragment composed of the "ATPase domain" alone. The truncated head drove sliding movement of actin filaments and generated force in a novel in vitro assay system, which allows us to hold a specific site of the head on a glass surface. These results indicate that the compact ATPase domain functions as a force-generating machinery of the myosin motor. PMID:8250907

Itakura, S; Yamakawa, H; Toyoshima, Y Y; Ishijima, A; Kojima, T; Harada, Y; Yanagida, T; Wakabayashi, T; Sutoh, K

1993-11-15

43

Alternative relay and converter domains tune native muscle myosin isoform function in Drosophila  

PubMed Central

Myosin isoforms help define muscle-specific contractile and structural properties. Alternative splicing of myosin heavy chain gene transcripts in Drosophila melanogaster yields muscle-specific isoforms and highlights alternative domains that fine tune myosin function. To gain insight into how native myosin is tuned, we expressed three embryonic myosin isoforms in indirect flight muscles lacking endogenous myosin. These isoforms differ in their relay and/or converter domains. We analyzed isoform-specific ATPase activities, in vitro actin motility and myofibril structure/stability. We find that dorsal acute body wall muscle myosin (EMB-9c11d) shows a significant increase in MgATPase Vmax and actin sliding velocity, as well as abnormal myofibril assembly compared to cardioblast myosin (EMB-11d). These properties differ as a result of alternative exon-9 encoded relay domains that are hypothesized to communicate signals among the ATP binding pocket, actin-biding site and the converter domain. Further, EMB-11d shows significantly reduced levels of basal Ca- and MgATPase as well as MgATPase Vmax compared to EMB (expressed in a multitude of body wall muscles). EMB-11d also induces increased actin sliding velocity and stabilizes myofibril structure compared to EMB. These differences arise from exon 11-encoded alternative converter domains that are proposed to reposition the lever arm during the power and recovery strokes. We conclude that relay and converter domains of native myosin isoforms fine-tune ATPase activity, actin motility and muscle ultrastructure. This verifies and extends previous studies with chimeric molecules and indicates that interactions of the relay and converter during the contractile cycle are key to myosin isoform-specific kinetic and mechanical functions. PMID:22226837

Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.

2012-01-01

44

Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster.  

PubMed

Nonmuscle myosin-2 is the primary enzyme complex powering contractility of the F-actin cytoskeleton in the model organism Drosophila. Despite myosin's essential function in fly development and homeostasis, its kinetic features remain elusive. The purpose of this in vitro study is a detailed steady-state and presteady-state kinetic characterization of the Drosophila nonmuscle myosin-2 motor domain. Kinetic features are a slow steady-state ATPase activity, high affinities for F-actin and ADP, and a low duty ratio. Comparative analysis of the overall enzymatic signatures across the nonmuscle myosin-2 complement from model organisms indicates that the Drosophila protein resembles nonmuscle myosin-2s from metazoa rather than protozoa, though modulatory aspects of myosin motor function are distinct. Drosophila nonmuscle myosin-2 is uniquely insensitive toward blebbistatin, a commonly used myosin-2 inhibitor. An in silico modeling approach together with kinetic studies indicate that the nonconsensus amino acid Met466 in the Drosophila nonmuscle myosin-2 active-site loop switch-2 acts as blebbistatin desensitizer. Introduction of the M466I mutation sensitized the protein for blebbistatin, resulting in a half-maximal inhibitory concentration of 36.3 ± 4.1 µM. Together, these data show that Drosophila nonmuscle myosin-2 is a bona fide molecular motor and establish an important link between switch-2 and blebbistatin sensitivity.-Heissler, S. M., Chinthalapudi, K., Sellers, J. R. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster. PMID:25636739

Heissler, Sarah M; Chinthalapudi, Krishna; Sellers, James R

2015-04-01

45

Temperature-dependent change in rate-limiting step of the magnesium-stimulated ITPase of myosin.  

PubMed

The effects of temperature on Mg-ITPase activity of heavy meromyosin and myosin subfragment 1 were measured in 0.1 M KC1. The initial burst of Pi liberation was one mol per mol of heavy meromyosin or two mol of myosin subfragment 1, i.e. one mol per two mol of myosin active sites, at 20 degrees C. However, it was almost zero mol below 8degrees C. Effects of KC1 concentration and pH on ITPase activity of heavy meromyosin at 20 degrees C were different from those below 8 degrees C, suggesting that the rate-limiting step in the Mg-ITP hydrolysis of myosin depends on temperature. The effect of temperature on the actin activation of heavy meromyosin Mg-ITPase was analyzed by measuring the temperature dependence of double-reciprocal plots of ITPase activity against actin concentration. The extent of actin activation was larger at low temperture. The results presented in this paper might be explained by assuming the existence of two kinds of active sites on a myosin molecule. PMID:4315

Hozumi, T

1976-03-16

46

Two ATPases  

PubMed Central

In this article, I reflect on research on two ATPases. The first is F1F0-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization. PMID:22822068

Senior, Alan E.

2012-01-01

47

Impact of actin glutathionylation on the actomyosin-S1 ATPase.  

PubMed

Glutathionylation of intracellular proteins is an established physiological regulator of protein function. In multiple models, including ischemia-reperfusion of the heart, increased oxidative stress results in the glutathionylation of sarcomeric actin. We hypothesized that actin glutathionylation may play a role in the multifactorial change in cardiac muscle contractility observed during this pathophysiological state. Therefore, the functional impact of glutathionylated actin on the interaction with myosin-S1 was examined. Substituting glutathionylated F-actin for unmodified F-actin reduced the maximum actomyosin-S1 ATPase, and this was accompanied by an increase in the activation energy of the steady state ATPase. Measurement of steady state binding did not suggest a large impact of actin glutathionylation on the binding to myosin-S1. However, transient binding and dissociation kinetics determined by stopped-flow methods demonstrated that although actin glutathionylation did not significantly alter the rate constant of myosin-S1 binding, there was a significant decrease in the rate of ATP-induced myosin-S1 detachment in the presence of ADP. These results suggest that actin glutathionylation may play a limited but defined role in the alteration of contractility following oxidative stress to the myocardium, particularly through a decrease in the actomyosin ATPase activity. PMID:19580330

Pizarro, Gresin O; Ogut, Ozgur

2009-08-11

48

Impact of Actin Glutathionylation on the Actomyosin-S1 ATPase†  

PubMed Central

Glutathionylation of intracellular proteins is an established physiological regulator of protein function. In multiple models including ischemia-reperfusion of the heart, increased oxidative stress results in the glutathionylation of sarcomeric actin. We hypothesized that actin glutathionylation may play a role in the multi-factorial change in cardiac muscle contractility observed during this pathophysiological state. Therefore, the functional impact of glutathionylated actin on the interaction with myosin-S1 was examined. Substituting glutathionylated F-actin for unmodified F-actin reduced the maximum actomyosin-S1 ATPase, and this was accompanied by an increase in the activation energy of the steady state ATPase. Measurement of steady state binding did not suggest a large impact of actin glutathionylation on the binding to myosin-S1. However, transient binding and dissociation kinetics determined by stopped-flow methods demonstrated that although actin glutathionylation did not significantly alter the rate constant of myosin-S1 binding, there was a significant decrease in the rate of ATP-induced myosin-S1 detachment in the presence of ADP. These results suggest that actin glutathionylation may play a limited but defined role in the alteration of contractility following oxidative stress to the myocardium, particularly through a decrease in the actomyosin ATPase activity. PMID:19580330

Pizarro, Gresin O.; Ogut, Ozgur

2009-01-01

49

Rotary ATPases  

PubMed Central

Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

2013-01-01

50

Myosins in cell junctions  

PubMed Central

The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions. PMID:22954512

Liu, Katy C.; Cheney, Richard E.

2012-01-01

51

Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking  

PubMed Central

Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (?430 nm·s?1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ?6 s?1) was similar to the actin-detachment rate (kdet = 6.2 s?1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells. PMID:25114250

Bird, Jonathan E.; Takagi, Yasuharu; Billington, Neil; Strub, Marie-Paule; Sellers, James R.; Friedman, Thomas B.

2014-01-01

52

Ventricular myosin of the shrew Crocidura russula, correlation with contractile properties.  

PubMed

The present study demonstrates that in the shrew ventricular muscle the speed of tension development and relaxation, as well as twitch duration, are much shorter than in the guinea-pig. It also shows that ventricular myosin of the shrew has a high Ca2+-activated ATPase activity and that it is composed of alpha-type heavy chains. Namely, the native molecule is a V1 variety of myosin. These findings advance our knowledge on an as yet uncharacterized mammalian heart and further demonstrate the correlation between mechanical properties and myosin type in heart muscle. PMID:2976845

Kessler-Icekson, G; Schlesinger, H; Leger, J J; Leger, J; Braverman, Y; Binah, O

1988-11-01

53

Myosin VI deafness mutation prevents the initiation of processive runs on actin.  

PubMed

Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations. PMID:25751888

Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

2015-03-17

54

Myosin VI deafness mutation prevents the initiation of processive runs on actin  

PubMed Central

Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations. PMID:25751888

Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M.; Sweeney, H. Lee

2015-01-01

55

Regulation of Molluscan Actomyosin ATPase Activity*  

PubMed Central

The interaction of myosin and actin in many invertebrate muscles is mediated by the direct binding of Ca2+ to myosin, in contrast to modes of regulation in vertebrate skeletal and smooth muscles. Earlier work showed that the binding of skeletal muscle myosin subfragment 1 to the actin-troponin-tropomyosin complex in the presence of ATP is weakened by less than a factor of 2 by removal of Ca2+ although the maximum rate of ATP hydrolysis decreases by 96%. We have now studied the invertebrate type of regulation using heavy meromyosin (HMM) prepared from both the scallop Aequipecten irradians and the squid Loligo pealii. Binding of these HMMs to rabbit skeletal actin was determined by measuring the ATPase activity present in the supernatant after sedimenting actoHMM in an ultracentrifuge. The HMM of both species bound to actin in the presence of ATP, even in the absence of Ca2+, although the binding constant in the absence of Ca2+ (4.3 × 103 m?1) was about 20% of that in the presence of Ca2+ (2.2 × 104 m?1). Studies of the steady state ATPase activity of these HMMs as a function of actin concentration revealed that the major effect of removing Ca2+ was to decrease the maximum velocity, extrapolated to infinite actin concentration, by 80–85%. Furthermore, at high actin concentrations where most of the HMM was bound to actin, the rate of ATP hydrolysis remained inhibited in the absence of Ca2+. Therefore, inhibition of the ATPase rate in the absence of Ca2+ cannot be due simply to an inhibition of the binding of HMM to actin; rather, Ca2+ must also directly alter the kinetics of ATP hydrolysis. PMID:6230349

Chalovich, Joseph M.; Chantler, Peter D.; Szent-Gyorgyi, Andrew G.; Eisenbergt, Evan

2005-01-01

56

Regulation of molluscan actomyosin ATPase activity.  

PubMed

The interaction of myosin and actin in many invertebrate muscles is mediated by the direct binding of Ca2+ to myosin, in contrast to modes of regulation in vertebrate skeletal and smooth muscles. Earlier work showed that the binding of skeletal muscle myosin subfragment 1 to the actin-troponin-tropomyosin complex in the presence of ATP is weakened by less than a factor of 2 by removal of Ca2+ although the maximum rate of ATP hydrolysis decreases by 96%. We have now studied the invertebrate type of regulation using heavy meromyosin (HMM) prepared from both the scallop Aequipecten irradians and the squid Loligo pealii. Binding of these HMMs to rabbit skeletal actin was determined by measuring the ATPase activity present in the supernatant after sedimenting acto-HMM in an ultracentrifuge. The HMM of both species bound to actin in the presence of ATP, even in the absence of Ca2+, although the binding constant in the absence of Ca2+ (4.3 X 10(3) M-1) was about 20% of that in the presence of Ca+ (2.2 X 10(4) M-1). Studies of the steady state ATPase activity of these HMMs as a function of actin concentration revealed that the major effect of removing Ca2+ was to decrease the maximum velocity, extrapolated to infinite actin concentration, by 80-85%. Furthermore, at high actin concentrations where most of the HMM was bound to actin, the rate of ATP hydrolysis remained inhibited in the absence of Ca+. Therefore, inhibition of the ATPase rate in the absence of Ca2+ cannot be due simply to an inhibition of the binding of HMM to actin; rather, Ca2+ must also directly alter the kinetics of ATP hydrolysis. PMID:6230349

Chalovich, J M; Chantler, P D; Szent-Gyorgyi, A G; Eisenberg, E

1984-02-25

57

Ultraslow Myosin Molecular Motors of Placental Contractile Stem Villi in Humans  

PubMed Central

Human placental stem villi (PSV) present contractile properties. In vitro mechanics were investigated in 40 human PSV. Contraction of PSV was induced by both KCl exposure (n?=?20) and electrical tetanic stimulation (n?=?20). Isotonic contractions were registered at several load levels ranging from zero-load up to isometric load. The tension-velocity relationship was found to be hyperbolic. This made it possible to apply the A. Huxley formalism for determining the rate constants for myosin cross-bridge (CB) attachment and detachment, CB single force, catalytic constant, myosin content, and maximum myosin ATPase activity. These molecular characteristics of myosin CBs did not differ under either KCl exposure or tetanus. A comparative approach was established from studies previously published in the literature and driven by mean of a similar method. As compared to that described in mammalian striated muscles, we showed that in human PSV, myosin CB rate constants for attachment and detachment were about 103 times lower whereas myosin ATPase activity was 105 times lower. Up to now, CB kinetics of contractile cells arranged along the long axis of the placental sheath appeared to be the slowest ever observed in any mammalian contractile tissue. PMID:25268142

Lecarpentier, Yves; Claes, Victor; Lecarpentier, Edouard; Guerin, Catherine; Hébert, Jean-Louis; Arsalane, Abdelilah; Moumen, Abdelouahab; Krokidis, Xénophon; Michel, Francine; Timbely, Oumar

2014-01-01

58

Myosin Light-Chain Domain Rotates upon Muscle Activation but Not ATP Ingrid Brust-Mascher, Leslie E. W. LaConte, Josh E. Baker, and David D. Thomas*  

E-print Network

biochemistry, and muscle force. Two distinct orientations of the myosin light-chain domain were previously in scallop muscle fibers. In the present study, we measured isometric force during EPR spectral acquisition, in order to define how these two light-chain domain orientations are coupled to force and the myosin ATPase

Thomas, David D.

59

Force, Sarcomere Shortening Velocity and Atp-Ase Activity  

Microsoft Academic Search

\\u000a We have tested the hypothesis that the transition rate (G) of the cardiac XB from the strong force generating state to the weak state is a linear function V of the sarcomere (VSL); furthermore, we tested whether the ATPase rate of the two isoforms of myosin can be held responsible for the difference\\u000a between Vo of rat cardiac trabeculae containing

Henk E. D. J. Keurs; Nathan Deis; Amir Landesberg; Leonid Livshitz; Bruno Stuyvers; Mei Luo Zhang

60

Local heat activation of single myosins based on optical trapping of gold nanoparticles.  

PubMed

Myosin is a mechano-enzyme that hydrolyzes ATP in order to move unidirectionally along actin filaments. Here we show by single molecule imaging that myosin V motion can be activated by local heat. We constructed a dark-field microscopy that included optical tweezers to monitor 80 nm gold nanoparticles (GNP) bound to single myosin V molecules with nanometer and submillisecond accuracy. We observed 34 nm processive steps along actin filaments like those seen when using 200 nm polystyrene beads (PB) but dwell times (ATPase activity) that were 4.5 times faster. Further, by using DNA nanotechnology (DNA origami) and myosin V as a nanometric thermometer, the temperature gradient surrounding optically trapped GNP could be estimated with nanometer accuracy. We propose our single molecule measurement system should advance quantitative analysis of the thermal control of biological and artificial systems like nanoscale thermal ratchet motors. PMID:25736894

Iwaki, Mitsuhiro; Iwane, Atsuko H; Ikezaki, Keigo; Yanagida, Toshio

2015-04-01

61

Thyroidal status and myosin isoenzymic pattern in the skeletal dorsal muscle of urodelan amphibians--the perennibranchiate Proteus anguinus.  

PubMed

In the perennibranchiate Proteus anguinus, larval myosin isoforms were shown to coexist for life with the adult isomyosins that appeared at the end of the larval stage. Analysis of the myofibrillar ATPase profile also revealed that a high percentage of immature fibers persisted in adults. A long-term treatment with large amounts of T3 had no effect on juvenile individuals. Applied to subadult animals it promoted a regression of larval myosin isoforms and a reduction in the percentage of immature fiber types. The regulative effect of T3 in the myosin isoenzymic transition may be delayed and depends on metabolic conditions, which suggests it is indirect. PMID:2532948

Chanoine, C; Guyot-Lenfant, M; d'Albis, A; Durand, J P; Perasso, F; Salles-Mourlan, A M; Janmot, C; Gallien, C L

1989-11-01

62

Catalytic strategy used by the myosin motor to hydrolyze ATP  

PubMed Central

Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum–classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose ?-phosphate is not in the previously reported HP?O42? state, but in the H2P?O4? state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the ?-phosphate of ATP in a dissociated metaphosphate (P?O3?) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes. PMID:25006262

Kiani, Farooq Ahmad; Fischer, Stefan

2014-01-01

63

Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom  

PubMed Central

The control systems regulating muscle contraction in approximately 100 organisms have been categorized. Both myosin control and actin control operate simultaneously in the majority of invertebrates tested. These include insects, chelicerates, most crustaceans, annelids, priapulids, nematodes, and some sipunculids. Single myosin control is present in the muscles of molluscs, brachiopods, echinoderms, echiuroids, and nemertine worms. Single actin control was found in the fast muscles of decapods, in mysidacea, in a single sipunculid species, and in vertebrate striated muscles. Classification is based on functional tests that include measurements of the calcium dependence of the actomyosin ATPase activity in the presence and the absence of purified rabbit actin and myosin. In addition, isolated thin filaments and myosins were also analyzed. Molluscs lack actin control since troponin is not present in sufficient quantities. Even though the functional tests indicate the complete lack of myosin control in vertebrate striated muscle, it is difficult to exclude unambiguously the in vivo existence of this regulation. Both control systems have been found in animals from phyla which evolved early. We cannot ascribe any simple correlation between ATPase activity, muscle structure, and regulatory mechanisms. PMID:125778

1975-01-01

64

Release of myosin II from the membrane-cytoskeleton of Dictyostelium discoideum mediated by heavy-chain phosphorylation at the foci within the cortical actin network  

PubMed Central

Membrane-cytoskeletons were prepared from Dictyostelium amebas, and networks of actin and myosin II filaments were visualized on the exposed cytoplasmic surfaces of the cell membranes by fluorescence staining (Yumura, S., and T. Kitanishi-Yumura. 1990. Cell Struct. Funct. 15:355-364). Addition of ATP caused contraction of the cytoskeleton with aggregation of part of actin into several foci within the network, but most of myosin II was released via the foci. However, in the presence of 10 mM MgCl2, which stabilized myosin II filaments, myosin II remained at the foci. Ultrastructural examination revealed that, after contraction, only traces of monomeric myosin II remained at the foci. By contrast, myosin II filaments remained in the foci in the presence of 10 mM MgCl2. These observations suggest that myosin II was released not in a filamentous form but in a monomeric form. Using [gamma 32P]ATP, we found that the heavy chains of myosin II released from membrane-cytoskeletons were phosphorylated, and this phosphorylation resulted in disassembly of myosin filaments. Using ITP (a substrate for myosin II ATPase) and/or ATP gamma S (a substrate for myosin II heavy-chain kinase [MHCK]), we demonstrated that phosphorylation of myosin heavy chains occurred at the foci within the actin network, a result that suggests that MHCK was localized at the foci. These results together indicate that, during contraction, the heavy chains of myosin II that have moved toward the foci within the actin network are phosphorylated by a specific MHCK, with the resultant disassembly of filaments which are finally released from membrane- cytoskeletons. This series of reactions could represent the mechanism for the relocation of myosin II from the cortical region to the endoplasm. PMID:1607385

1992-01-01

65

Molecular engineering of myosin.  

PubMed Central

Protein engineering and design provide excellent tools to investigate the principles by which particular structural features relate to the mechanisms that underlie the biological function of a protein. In addition to studies aimed at dissecting the communication pathways within enzymes, recent advances in protein engineering approaches make it possible to generate enzymes with increased catalytic efficiency and specifically altered or newly introduced functions. Here, two approaches using state-of-the-art protein design and engineering are described in detail to demonstrate how key features of the myosin motor can be changed in a specific and predictable manner. First, it is shown how replacement of an actin-binding surface loop with synthetic sequences, whose flexibility and charge density is varied, can be employed to manipulate the actin affinity, the catalytic activity and the efficiency of coupling between actin- and nucleotide-binding sites of myosin motor constructs. Then the use of pre-existing molecular building blocks, which are derived from unrelated proteins, is described for manipulating the velocity and even the direction of movement of recombinant myosins. PMID:15647166

Manstein, Dietmar J

2004-01-01

66

Two calcium regulation systems in squid (Ommastrephes sloani pacificus) muscle. Preparation of calcium-sensitive myosin and troponin-tropomyosin.  

PubMed

The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B. PMID:153902

Konno, K

1978-12-01

67

A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a.  

PubMed

The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands. PMID:23650521

Nagy, Nikolett T; Chakraborty, Saikat; Harami, Gábor M; Sellers, James R; Sakamoto, Takeshi; Kovács, Mihály

2013-01-01

68

UCS Protein Rng3p Is Essential for Myosin-II Motor Activity during Cytokinesis in Fission Yeast  

PubMed Central

UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors. PMID:24244528

Stark, Benjamin C.; James, Michael L.; Pollard, Luther W.; Sirotkin, Vladimir; Lord, Matthew

2013-01-01

69

A Subdomain Interaction at the Base of the Lever Allosterically Tunes the Mechanochemical Mechanism of Myosin 5a  

PubMed Central

The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands. PMID:23650521

Nagy, Nikolett T.; Chakraborty, Saikat; Harami, Gábor M.; Sellers, James R.; Sakamoto, Takeshi; Kovács, Mihály

2013-01-01

70

Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering.  

PubMed

Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than for S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. PMID:25747714

Matsuo, Tatsuhito; Arata, Toshiaki; Oda, Toshiro; Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya; Fujiwara, Satoru

2015-04-10

71

Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration  

PubMed Central

Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization. PMID:15657395

Croft, Daniel R.; Coleman, Mathew L.; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L.; Olson, Michael F.

2005-01-01

72

[Study of cation binding to myosin subfragment I using the fluorescent probe Eu3+].  

PubMed

It was shown that binding of the cation Eu3+ to myosin subfragment I (SI) results in fluorescence with a maximum at 595 nm which is increased as EuCl3 concentration rises. The ATPase activity of SI is simultaneously enhanced. An addition of bivalent cations (Ca2+ and Mg2+) causes quenching of fluorescence of the bound Eu3+ by 8-12%, which corresponds to Eu3+-ATPase inhibition by Mg2+. At low (down to 0.1 mM) concentrations of Eu3+ no fluorescence quenching by Mg2+ or Ca2+ takes place; under these conditions Mg2+ activate ATPase of SI in the presence of Eu3+. Eu3+ activate SI ATPase in the presence of low (down to 0.1 mM) concentrations of Ca2+, but exerts an inhibition action at high concentrations of Ca2+. NaCl does not affect the fluorescence intensity of bound Eu3+ but considerably inhibits the ATPase activity of SI in the presence of EuCl3. An existence of a bivalent cation binding site in the vicinity if the SI active center is postulated. Eu3+ whose ionic radius is close to that of Ca2+ interacts with protein surface and occupies this site as well, thus determining the activation of SI ATPase and can be replaced from it by Ca2+ and Mg2+, but not by Na+. Hence bivalent and monovalent cations are bound at different sites. The data obtained provide another proof in favour of a hypothesis suggesting that the regulation of myosin ATPase activity by bivalent and monovalent cations can be mediated by binding of these cations to the protein. PMID:7138965

Levitski?, D I; Litvinov, I S; Poglazov, B F

1982-09-01

73

A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse  

NASA Technical Reports Server (NTRS)

Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.

Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.

1981-01-01

74

H+,K+-ATPase.  

PubMed

The H+,K+-ATPases comprise a group of integral membrane proteins that belong to the X+,K+-ATPase subfamily of P-type cation-transporting ATPases. Although these H+,K+-ATPase isoforms share approximately 60-70% amino acid identity, they exhibit discrete kinetic and pharmacological properties when expressed in heterologous systems. HK alpha2 has been categorized by its insensitivity to Sch-28080, an inhibitor of the gastric H+,K+-ATPase, and partial sensitivity to ouabain, an inhibitor of the Na+,K+-ATPase. This functional profile contrasts with the pharmacological sensitivities ascribed to HK alpha2 in transport studies in rat isolated medullary collecting ducts perfused in vitro and in mouse medullary collecting duct cell lines. HK alpha2 mRNA and protein abundance appears to be both tissue and site-specifically upregulated in response to chronic hypokalemia. This regulatory response has been localized to the outer and inner medulla. To reconcile these expressed sensitivities to those reported in vitro in isolated tubules and cells in culture, it would be necessary to invoke modification of the pharmacologic insensitivity of the colonic H+,K+-ATPase to Sch-28080. Although a 'unique' beta-subunit has been reported recently, this beta-subunit (beta(c)) is identical at the amino acid level to the recently cloned beta3-Na+,K+-ATPase. Moreover, while HK alpha2 can assemble indiscriminately with any X+,K+-ATPase beta-subunit, HK alpha2 has been reported to assemble stably with beta1-Na+,K+-ATPase in the renal medulla and in the distal colon. It remains conceivable that subunit assembly could be tissue specific and might respond to different physiological and pathophysiological stimuli. Furthermore, recent studies have suggested that the H+,K+-ATPase is both Na+-dependent and localized to the apical membrane in the distal colon. Therefore, future studies will need to resolve these discrepancies by determining if a unique, yet undiscovered H+,K+-ATPase isoform exists in kidney, or if post-translational modifications of the alpha- and/or beta-subunits could account for these functional diversities. PMID:10541223

DuBose, T D; Gitomer, J; Codina, J

1999-09-01

75

Effects of SH1 and SH2 modifications on myosin: similarities and differences.  

PubMed Central

The properties of myosin modified at the SH2 group (Cys-697) were studied and compared with the previously reported properties of myosin modified at the SH1 group (Cys-707). 4-[N-[(iodoacetoxy)ethyl]-N methylamino]-7-nitrobenz-2-oxa-1, 3-diazole (IANBD) was used for selective modification of the SH2 group on myosin. SH2-labeled heavy meromyosin (SH2-HMM), similar to SH1-labeled HMM (SH1-HMM), did not propel actin filaments in the in vitro motility assays. SH1- and SH2-HMM produced similar amounts of load in the mixtures with unmodified HMM; the sliding speed of actin filaments gradually decreased with an increase in the fraction of either one of the modified HMMs in the mixture. In analogy to SH1-labeled myosin subfragment 1 (SH1-S1), SH2-labeled S1 (SH2-S1) activated regulated actin in the in vitro motility assays. SH2 modification inhibited Mg-ATPase of S1 and its activation by actin. The weak binding of S1 to actin was unaffected whereas the strong binding was weakened by SH2 modification. Overall, our results demonstrate similar behavior of SH1- and SH2-modified myosin heads in the in vitro motility assays despite some differences in their enzymatic properties. The effects of these modifications are ascribed to the location of the SH1-SH2 helix relative to other functional centers of S1. PMID:9916031

Bobkova, E A; Bobkov, A A; Levitsky, D I; Reisler, E

1999-01-01

76

Histochemical and myosin composition of vampire bat (Desmodus rotundus) pectoralis muscle targets a unique locomotory niche.  

PubMed

The vampire bat pectoralis muscle contains at least four fiber types distributed in a nonhomogeneous pattern. One of these fiber types, here termed IIe, can be elucidated only by adenosine triphosphatase (ATPase) histochemistry combined with reactions against antifast and antislow myosin antibodies. The histochemical and immunohistochemical observations indicate a well-developed specialization of function within specific regions of the muscle. In parallel, analyses of native myosin isoforms and myosin heavy chain isoforms indicate two points. First, the histochemical "type IIe" fiber is predominant in cranial portions of the muscle, and myosin extracted from these regions exhibits a unique electrophoretic mobility not observed in the myosin isoforms of more traditional laboratory mammals. Second, the type I fibers are confined to the pectoralis abdominalis muscle and a small adjacent region of the caudal part of the pectoralis. This pattern of type I fiber distribution is considered a derived character state compared to muscle histochemical phenotype and isoform composition in the pectoralis muscles of other phyllostomids we have studied (Artibeus jamaicensis, Artibeus lituratus, Carollia perspicillata). We relate this to the unique locomotory needs of the common vampire bat, Desmodus rotundus. PMID:8230235

Hermanson, J W; Cobb, M A; Schutt, W A; Muradali, F; Ryan, J M

1993-09-01

77

A branched kinetic scheme describes the mechanochemical coupling of Myosin Va processivity in response to substrate.  

PubMed

Myosin Va is a double-headed cargo-carrying molecular motor that moves processively along cellular actin filaments. Long processive runs are achieved through mechanical coordination between the two heads of myosin Va, which keeps their ATPase cycles out of phase, preventing both heads detaching from actin simultaneously. The biochemical kinetics underlying processivity are still uncertain. Here we attempt to define the biochemical pathways populated by myosin Va by examining the velocity, processive run-length, and individual steps of a Qdot-labeled myosin Va in various substrate conditions (i.e., changes in ATP, ADP, and P(i)) under zero load in the single-molecule total internal reflection fluorescence microscopy assay. These data were used to globally constrain a branched kinetic scheme that was necessary to fit the dependences of velocity and run-length on substrate conditions. Based on this model, myosin Va can be biased along a given pathway by changes in substrate concentrations. This has uncovered states not normally sampled by the motor, and suggests that every transition involving substrate binding and release may be strain-dependent. PMID:22947934

Zhang, Chong; Ali, M Yusuf; Warshaw, David M; Kad, Neil M

2012-08-22

78

3ournalof Molecular and Cellular Cardiology ( 198 1) 13, 10 1 1-102 1 Changes in Rat Cardiac Myosin During Development  

E-print Network

and 20 000) with a molar ratio of 1: 1. In 21-day fetal myosin, three light chains were observed (Mol. wt: 25 500; 24 500; 20 000), with a molar ratio of 0.82: 0.15: 1.O. Analysis of ATPase activity activity occurred soon after birth and correlated with the disappear- ance of the third light chain (Mol

Terasaki, Mark

79

Myosinome: a database of myosins from select eukaryotic genomes to facilitate analysis of sequence-structure-function relationships.  

PubMed

Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms (Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome. PMID:23189029

Syamaladevi, Divya P; Sunitha, Margaret S; Kalaimathy, S; Reddy, Chandrashekar C; Iftekhar, Mohammed; Pasha, Shaik N; Sowdhamini, R

2012-01-01

80

Myosinome: A Database of Myosins from Select Eukaryotic Genomes to Facilitate Analysis of Sequence-Structure-Function Relationships  

PubMed Central

Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms (Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome. PMID:23189029

Syamaladevi, Divya P.; Sunitha, Margaret S; Kalaimathy, S.; Reddy, Chandrashekar C.; Iftekhar, Mohammed; Pasha, Shaik N.; Sowdhamini, R.

2012-01-01

81

Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load  

PubMed Central

Myosin-10 is an actin-based molecular motor that participates in essential intracellular processes such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance. To study this motor protein’s mechano-chemical properties, we used a recombinant, truncated form of myosin-10 consisting of the first 936 amino acids, followed by a GCN4 leucine zipper motif, to force dimerization. Negative-stain electron microscopy reveals that the majority of molecules are dimeric with a head-to-head contour distance of ?50 nm. In vitro motility assays show that myosin-10 moves actin filaments smoothly with a velocity of ?310 nm/s. Steady-state and transient kinetic analysis of the ATPase cycle shows that the ADP release rate (?13 s?1) is similar to the maximum ATPase activity (?12–14 s?1) and therefore contributes to rate limitation of the enzymatic cycle. Single molecule optical tweezers experiments show that under intermediate load (?0.5 pN), myosin-10 interacts intermittently with actin and produces a power stroke of ?17 nm, composed of an initial 15-nm and subsequent 2-nm movement. At low optical trap loads, we observed staircase-like processive movements of myosin-10 interacting with the actin filament, consisting of up to six ?35-nm steps per binding interaction. We discuss the implications of this load-dependent processivity of myosin-10 as a filopodial transport motor. PMID:24753602

Takagi, Yasuharu; Farrow, Rachel E.; Billington, Neil; Nagy, Attila; Batters, Christopher; Yang, Yi; Sellers, James R.; Molloy, Justin E.

2014-01-01

82

Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphorylation and actin assembly  

Microsoft Academic Search

Myosin II plays important roles in many contractile-like cell functions, including cell migration, adhesion, and retraction. Myosin II is activated by regulatory light chain (RLC) phosphorylation whereas RLC dephosphorylation by myosin light chain phosphatase containing a myosin phosphatase targeting subunit (MYPT1) leads to myosin inactivation. HeLa cells contain MYPT1 in addition to a newly identified human variant 2 containing an

Donglan Xia; James T. Stull; Kristine E. Kamm

2005-01-01

83

Role of the Essential Light Chain in the Activation of Smooth Muscle Myosin by Regulatory Light Chain Phosphorylation  

PubMed Central

The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head-head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head-head interactions by an unknown mechanism. Computational modeling suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin. PMID:24361582

Taylor, Kenneth A.; Feig, Michael; Brooks, Charles L.; Fagnant, Patricia M.; Lowey, Susan; Trybus, Kathleen M.

2014-01-01

84

Dynamics at Lys553 of the ActoMyosin Interface in the Weakly and Strongly Bound States  

Microsoft Academic Search

Lys-553 of skeletal muscle myosin subfragment 1 (S1) was specifically labeled with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) and fluorescence quenching experiments were carried out to determine the accessibility of this probe at Lys-553 in both the strongly and weakly actin-bound states of the MgATPase cycle. Solvent quenchers of varying charge [nitromethane, (2,2,6,6-tetramethyl-1-piperinyloxy) (TEMPO), iodide (I?), and

Jeffrey J. MacLean; Lynn R. Chrin; Christopher L. Berger

2000-01-01

85

Evidence for expression of IIb myosin heavy chain isoform in some skeletal muscles of Blonde d’Aquitaine bulls  

Microsoft Academic Search

In cattle, expression of the IIb myosin heavy chain (MyHC) isoform has been demonstrated only in extraocular muscles. In this study, we demonstrated for the first time its expression in the Semitendinosus and Longissimus thoracis muscles of a French beef breed, Blonde d’Aquitaine. Several techniques were used: RT-PCR, electrophoresis, western blotting, histochemistry with ATPase staining and immunohistochemistry using a combination

Brigitte Picard; Isabelle Cassar-Malek

2009-01-01

86

Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin  

PubMed Central

We have recently identified a novel 190-kD calmodulin-binding protein (p190) associated with the actin-based cytoskeleton from mammalian brain (Larson, R. E., D. E. Pitta, and J. A. Ferro. 1988. Braz. J. Med. Biol. Res. 21:213-217; Larson, R. E., F. S. Espindola, and E. M. Espreafico. 1990. J. Neurochem. 54:1288-1294). These studies indicated that p190 is a phosphoprotein substrate for calmodulin-dependent kinase II and has calcium- and calmodulin-stimulated MgATPase activity. We now have biochemical and immunological evidence that this protein is a novel calmodulin-binding myosin whose properties include (a) Ca2+ dependent action activation of its Mg-ATPase activity, which seems to be mediated by Ca2+ binding directly to calmodulin(s) associated with p190 (maximal activation by actin requires the presence of Ca2+ and is further augmented by addition of exogenous calmodulin); (b) ATP- sensitive cross-linking of skeletal muscle F-actin, as demonstrated by the low-speed actin sedimentation assay; and (c) cross-reactivity with mAbs specific for epitopes in the head of brush border myosin I. We also show that p190 has properties distinct from conventional brain myosin II and brush border myosin I, including (a) separation of p190 from brain myosin II by gel filtration on a Sephacryl S-500 column; (b) lack by p190 of K(+)-stimulated EDTA ATPase activity characteristic of most myosins; (c) lack of immunological cross-reactivity of polyclonal antibodies which recognize p190 and brain myosin II, respectively; (d) lack of immunological recognition of p190 by mAbs against an epitope in the tail region of brush border myosin I; and (e) distinctive proteolytic susceptibility to calpain. A survey of rat tissues by immunoblotting indicated that p190 is expressed predominantly in the adult forebrain and cerebellum, and could be detected in embryos 11 d post coitus. Immunocytochemical studies showed p190 to be present in the perikarya and dendritic extensions of Purkinje cells of the cerebellum. PMID:1378447

1992-01-01

87

A New Role for Myosin II in Vesicle Fission  

PubMed Central

An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ? 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis. PMID:24959909

Cabeza, Jose M.; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

2014-01-01

88

Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions  

SciTech Connect

Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.

Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A. (UPENN); (Duke); (MRCLMB); (FSU); (Jikei-Med)

2010-10-22

89

Filamin A-interacting protein (FILIP) is a region-specific modulator of myosin 2b and controls spine morphology and NMDA receptor accumulation  

PubMed Central

Learning and memory depend on morphological and functional changes to neural spines. Non-muscle myosin 2b regulates actin dynamics downstream of long-term potentiation induction. However, the mechanism by which myosin 2b is regulated in the spine has not been fully elucidated. Here, we show that filamin A-interacting protein (FILIP) is involved in the control of neural spine morphology and is limitedly expressed in the brain. FILIP bound near the ATPase domain of non-muscle myosin heavy chain IIb, an essential component of myosin 2b, and modified the function of myosin 2b by interfering with its actin-binding activity. In addition, FILIP altered the subcellular distribution of myosin 2b in spines. Moreover, subunits of the NMDA receptor were differently distributed in FILIP-expressing neurons, and excitation propagation was altered in FILIP-knockout mice. These results indicate that FILIP is a novel, region-specific modulator of myosin 2b. PMID:25220605

Yagi, Hideshi; Nagano, Takashi; Xie, Min-Jue; Ikeda, Hiroshi; Kuroda, Kazuki; Komada, Munekazu; Iguchi, Tokuichi; Tariqur, Rahman M.; Morikubo, Soichi; Noguchi, Koichi; Murase, Kazuyuki; Okabe, Masaru; Sato, Makoto

2014-01-01

90

Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils.  

PubMed

We studied the ATPase of shortening myofibrils at 4 degrees C by the rapid flow quench method. The progress curve has three phases: a P(i) burst, a fast linear phase kF of duration tB, and a deceleration to a slow kS. We propose that kF is the ATPase of myofibrils shortening under zero external load; at tB shortening and ATPase rates are reduced by passive resistance. The total ATP consumed during the rapid shortening is ATPc. Our purpose was to obtain information on the myofibrillar shortening velocity from their ATPase progress curves. We tested tB as an indicator of shortening velocity by determining the effects of different probes upon it and the other ATPase parameters. The dependence of tB upon the initial sarcomere length was linear, giving a shortening velocity close to that of muscle fibres (Vo). The Km of ATP was larger for tB than for kF, as found with fibers for Vo and their ATPase. ADP and 2,3-butanedione monoxime, but not P(i), inhibited tB to the same extent as Vo. The delta H for tB and Vo were similar. ATPc was independent of the sarcomere length, implying that the more the myofibrils shorten, the less ATP expended per myosin head per micron shortened. We propose that tB can be used as an indicator for myofibrillar shortening velocities. PMID:8789106

Lionne, C; Travers, F; Barman, T

1996-02-01

91

The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor  

SciTech Connect

Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by {approx}60 degrees. This recovery stroke is coupled to the activation of myosin's ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a see-saw motion of the relay helix, followed by a piston/seesaw motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery stroke by using Principal Component Analysis. This reveals that the only principal motions of these two helices that make a large amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions.

Mesentean, Sidonia [University of Heidelberg; Koppole, Sampath [University of Heidelberg; Smith, Jeremy C [ORNL; Fischer, S. [University of Heidelberg

2006-12-01

92

Myosin VI: cellular functions and motor properties.  

PubMed Central

Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed. PMID:15647169

Roberts, Rhys; Lister, Ida; Schmitz, Stephan; Walker, Matthew; Veigel, Claudia; Trinick, John; Buss, Folma; Kendrick-Jones, John

2004-01-01

93

Myosin lever arm directs collective motion on cellular actin network  

PubMed Central

The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions. PMID:24591646

Hariadi, Rizal F.; Cale, Mario; Sivaramakrishnan, Sivaraj

2014-01-01

94

Two Drosophila Myosin Transducer Mutants with Distinct Cardiomyopathies Have Divergent ADP and Actin Affinities*  

PubMed Central

Two Drosophila myosin II point mutations (D45 and Mhc5) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc5) could stabilize (D45) or destabilize (Mhc5) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1A261T and S1G200D) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1A261T is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin·S1), and reduced ATP-induced dissociation of actin·S1), whereas S1G200D shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin·S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1A261T (dilated) and S1G200D (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1A261T weakens the affinity of S1·ADP for actin, whereas S1G200D increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up2 mutation in Drosophila. PMID:21680742

Bloemink, Marieke J.; Melkani, Girish C.; Dambacher, Corey M.; Bernstein, Sanford I.; Geeves, Michael A.

2011-01-01

95

Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target  

PubMed Central

Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

2014-01-01

96

Structure of the Yeast Vacuolar ATPase*S?  

PubMed Central

The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 Å. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase. PMID:18955482

Zhang, Zhenyu; Zheng, Yesha; Mazon, Hortense; Milgrom, Elena; Kitagawa, Norton; Kish-Trier, Erik; Heck, Albert J. R.; Kane, Patricia M.; Wilkens, Stephan

2008-01-01

97

Proteomics Analysis of the Non-Muscle Myosin Heavy Chain IIa-Enriched Actin-Myosin Complex Reveals Multiple Functions within the Podocyte  

PubMed Central

MYH9 encodes non-muscle myosin heavy chain IIA (NMMHCIIA), the predominant force-generating ATPase in non-muscle cells. Several lines of evidence implicate a role for MYH9 in podocytopathies. However, NMMHCIIA‘s function in podocytes remains unknown. To better understand this function, we performed immuno-precipitation followed by mass-spectrometry proteomics to identify proteins interacting with the NMMHCIIA-enriched actin-myosin complexes. Computational analyses revealed that these proteins belong to functional networks including regulators of cytoskeletal organization, metabolism and networks regulated by the HIV-1 gene nef. We further characterized the subcellular localization of NMMHCIIA within podocytes in vivo, and found it to be present within the podocyte major foot processes. Finally, we tested the effect of loss of MYH9 expression in podocytes in vitro, and found that it was necessary for cytoskeletal organization. Our results provide the first survey of NMMHCIIA-enriched actin-myosin-interacting proteins within the podocyte, demonstrating the important role of NMMHCIIA in organizing the elaborate cytoskeleton structure of podocytes. Our characterization of NMMHCIIA’s functions goes beyond the podocyte, providing important insights into its general molecular role. PMID:24949636

Hays, Thomas; Ma’ayan, Avi; Clark, Neil R.; Tan, Christopher M.; Teixeira, Avelino; Teixeira, Angela; Choi, Jae W.; Burdis, Nora; Jung, Sung Yun; Bajaj, Amol O.; O’Malley, Bert W.; He, John C.; Hyink, Deborah P.; Klotman, Paul E.

2014-01-01

98

Myosin II Dynamics during Embryo Morphogenesis  

NASA Astrophysics Data System (ADS)

During embryonic morphogenesis, the myosin II motor protein generates forces that help to shape tissues, organs, and the overall body form. In one dramatic example in the Drosophila melanogaster embryo, the epithelial tissue that will give rise to the body of the adult animal elongates more than two-fold along the head-to-tail axis in less than an hour. This elongation is accomplished primarily through directional rearrangements of cells within the plane of the tissue. Just prior to elongation, polarized assemblies of myosin II accumulate perpendicular to the elongation axis. The contractile forces generated by myosin activity orient cell movements along a common axis, promoting local cell rearrangements that contribute to global tissue elongation. The molecular and mechanical mechanisms by which myosin drives this massive change in embryo shape are poorly understood. To investigate these mechanisms, we generated a collection of transgenic flies expressing variants of myosin II with altered motor function and regulation. We found that variants that are predicted to have increased myosin activity cause defects in tissue elongation. Using biophysical approaches, we found that these myosin variants also have decreased turnover dynamics within cells. To explore the mechanisms by which molecular-level myosin dynamics are translated into tissue-level elongation, we are using time-lapse confocal imaging to observe cell movements in embryos with altered myosin activity. We are utilizing computational approaches to quantify the dynamics and directionality of myosin localization and cell rearrangements. These studies will help elucidate how myosin-generated forces control cell movements within tissues. This work is in collaboration with J. Zallen at the Sloan-Kettering Institute.

Kasza, Karen

2013-03-01

99

Nonmuscle myosin, force maintenance, and the tonic contractile phenotype in smooth muscle.  

PubMed

Recent studies have demonstrated that nonmuscle (NM) myosin II forms filaments and can generate and maintain force in smooth muscle tissue [Lofgren et al. (2003) J Gen Physiol 121:301-310; Morano et al. (2000) Nat Cell Biol 2:371-375]. To further investigate the mechanical contribution of NM myosin to force maintenance during smooth muscle contraction, we utilized a selective inhibitor of the NM myosin ATPase, blebbistatin [Straight et al. (2003) Science 299:1743-1747]. Force and myosin light chain (MLC(20)) phosphorylation were measured during KCl stimulation of small strips of intact mouse bladder and aorta at 22 degrees C. The bladder strips contracted with a typical phasic force response, characterized by a large, rapid, transient increase in force followed by a decline to a lower, steady-state level. The addition of blebbistatin did not alter the peak force, but decreased force maintenance. KCl depolarization of aortic strips resulted in a tonic contraction; force increased to a sustained steady state. Similar to the bladder tissue, blebbistatin substantially decreased the steady-state force in the aorta. Blebbistatin did not influence the MLC(20) phosphorylation transient in either tissue type. Additionally, blebbistatin did not change the maximum shortening velocity (V (max)) during KCl depolarization of the aorta. Our results also suggest that NMIIA and NMIIB isoforms are differentially expressed. The expression of NMIIA is more prominent in the bladder, while NMIIB expression is predominant in the aorta. These results suggest that NM myosin contributes to the mechanism of force maintenance in smooth muscle, and could suggest that the expression of NMIIB is a factor for determining the tonic contractile phenotype. PMID:16685563

Rhee, Albert Y; Ogut, Ozgur; Brozovich, Frank V

2006-09-01

100

Myosin is involved in postmitotic cell spreading  

PubMed Central

We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading. Listeria motility is not affected by this drug. Electron microscopy studies show that some actin filaments in spreading edges are part of actin bundles that are also found in long, thin, structures that are connected to spreading edges and substrate (retraction fibers), and that 90% of this actin is oriented with barbed ends in the direction of spreading. The remaining actin in spreading edges has a more random orientation and spatial arrangement. Myosin II is associated with actin polymer in spreading cell edges, but not retraction fibers. Myosin II is excluded from lamellipodia that protrude from the cell edge at the end of spreading. We suggest that spreading involves myosin, possibly myosin II. PMID:7559774

1995-01-01

101

Published online 27 December 2004 Molecular engineering of myosin  

E-print Network

, `rowing' the actin fila- ment past the myosin. It is this part of the myosin molecule that corresponds and producers of a `power-stroke' (Reedy et al. 1965; Huxley 1969). Lymn & Taylor (1971) showed that myosin in the myosin motor domain. As biochemical and molecular genetic approaches have grown ever more powerful, new

Manstein, Dietmar J.

102

Cross-reactivity of termite myosin; a potential allergen  

Technology Transfer Automated Retrieval System (TEKTRAN)

Myosin and myosin isoforms are common food allergens in crustaceans; such as, shrimp, lobster, and crab. Allergy to Shellfish is a prevalent and potentially long lasting disorder that can severely affect health and quality of life. Myosin and myosin isoforms of dust mites and cockroaches are simil...

103

Smooth Muscle Myosin Light Chain Kinase Efficiently Phosphorylates Serine 15 of Cardiac Myosin Regulatory Light Chain  

PubMed Central

Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca2+ sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten Vmax and KM for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression. PMID:22120626

Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

2011-01-01

104

Coupling of Two Non-processive Myosin 5c Dimers Enables Processive Stepping along Actin Filaments  

PubMed Central

Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30–36?nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells. PMID:24809456

Gunther, Laura K.; Furuta, Ken'ya; Bao, Jianjun; Urbanowski, Monica K.; Kojima, Hiroaki; White, Howard D.; Sakamoto, Takeshi

2014-01-01

105

Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages  

SciTech Connect

Fast and slow muscles from the claws and abdomen of the American lobster Homarus americanus were examined for adenosine triphosphatase (ATPase) activity and for differences in myofibrillar proteins. Both myosin and actomyosin ATPase were correlated with fiber composition and contractile speed. Four distinct patterns of myofibrilla proteins observed in sodium dodecyl sulfate-polyacrylamide gels were distinguished by different assemblages of regulatory and contractile protein variants. A total of three species of troponin-T, five species of troponin-I, and three species of troponin-C were observed. Lobster myosins contained two groups of light chains (LC), termed alpha and beta. There were three ..cap alpha..-LC variants and two ..beta..-LC variants. There were no apparent differences in myosin heavy chain, actin, and tropomyosin. Only paramyosin showed a pattern completely consistent with muscle fiber type: slow fibers contained a species (105 kD) slightly smaller than the principle variant (110 kD) in fast fibers. It is proposed that the type of paramyosin present could provide a biochemical marker to identify the fiber composition of muscles that have not been fully characterized. The diversity of troponin and myosin LC variants suggests that subtle differences in physiological performance exist within the broader categories of fast- and slow-twitch muscles. 31 references, 6 figures, 2 tables.

Mykles, D.L.

1985-01-01

106

An integrated in vitro and in situ study of kinetics of myosin II from frog skeletal muscle  

PubMed Central

A new efficient protocol for extraction and conservation of myosin II from frog skeletal muscle made it possible to preserve the myosin functionality for a week and apply single molecule techniques to the molecular motor that has been best characterized for its mechanical, structural and energetic parameters in situ. With the in vitro motility assay, we estimated the sliding velocity of actin on frog myosin II (VF) and its modulation by pH, myosin density, temperature (range 4–30°C) and substrate concentration. VF was 8.88 ± 0.26 ?m s?1 at 30.6°C and decreased to 1.60 ± 0.09 ?m s?1 at 4.5°C. The in vitro mechanical and kinetic parameters were integrated with the in situ parameters of frog muscle myosin working in arrays in each half-sarcomere. By comparing VF with the shortening velocities determined in intact frog muscle fibres under different loads and their dependence on temperature, we found that VF is 40–50% less than the fibre unloaded shortening velocity (V0) at the same temperature and we determined the load that explains the reduced value of VF. With this integrated approach we could define fundamental kinetic steps of the acto-myosin ATPase cycle in situ and their relation with mechanical steps. In particular we found that at 5°C the rate of ADP release calculated using the step size estimated from in situ experiments accounts for the rate of detachment of motors during steady shortening under low loads. PMID:22199170

Elangovan, R; Capitanio, M; Melli, L; Pavone, F S; Lombardi, V; Piazzesi, G

2012-01-01

107

BIOPHYSICS: Myosin Motors Walk the Walk  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Myosin molecular motors move along actin filaments to drive, for example, muscle contraction or the intracellular trafficking of vesicles. However, it has not been clear whether myosin V moves along actin filaments in a hand-over-hand or inchworm fashion. In their Perspective, Molloy and Veigel explain new work (Yildiz et al.) that provides evidence in support of the hand-over-hand model for how myosin V walks along actin.

Justin E. Molloy (National Institute for Medical Research; Division of Physical Biochemistry)

2003-06-27

108

Myosin tails and single ?-helical domains.  

PubMed

The human genome contains 39 myosin genes, divided up into 12 different classes. The structure, cellular function and biochemical properties of many of these isoforms remain poorly characterized and there is still some controversy as to whether some myosin isoforms are monomers or dimers. Myosin isoforms 6 and 10 contain a stable single ?-helical (SAH) domain, situated just after the canonical lever. The SAH domain is stiff enough to be able to lengthen the lever allowing the myosin to take a larger step. In addition, atomic force microscopy and atomistic simulations show that SAH domains unfold at relatively low forces and have a high propensity to refold. These properties are likely to be important for protein function, enabling motors to carry cargo in dense actin networks, and other proteins to remain attached to binding partners in the crowded cell. PMID:25619246

Batchelor, Matthew; Wolny, Marcin; Dougan, Lorna; Paci, Emanuele; Knight, Peter J; Peckham, Michelle

2015-02-01

109

The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.  

SciTech Connect

Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60{sup o}. This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.

Mesentean, Sidonia [University of Heidelberg; Koppole, Sampath [University of Heidelberg; Smith, Jeremy C [ORNL; Fischer, S. [University of Heidelberg

2007-03-01

110

The 3-(bromoacetamido)-propylamine hydrochloride: A novel sulfhydryl reagent and its future potential in the configurational study of S1-myosin  

NASA Technical Reports Server (NTRS)

Configurational study of S1-Myosin is an important step towards understanding force generation in muscle contraction. Previously reported NMR studies were corroborated. A new compound was synthesized, 3-(Bromoacetamido)-propylamine hydrochloride. Its potential as a sulfhydryl reagent provides an indirect but elegant approach towards future structural elucidation of S1-Myosin. The preliminary investigation has shown that this compound, BAAP, reacted with S1 in the absence of MgADP. The modified enzyme had a 2-fold increase in CaATPase activity and no detectable K-EDTA ATPase activity. Reaction of BAAP with S1 in the presence of MgADP resulted in a modified enzyme which retained a Ca-ATPase activity that was about 60 percent of the unmodified S1 and had essentially zero K-EDTA ATPase activity. Sulfhydryl titration indicated that about 1.5 and 3.5 SH groups per S1 molecule were blocked by BAAP in the absence and presence of MgADP, respectively. When coupled to a carboxyl group of EDTA, the resulting reagent could become a useful SH reagent in which chelated paramagnetic or luminescent lanthanide ions can be exploited to probe S1 conformation.

Sharma, Prasanta; Cheung, Herbert C.

1989-01-01

111

The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes.  

PubMed Central

We propose a molecular mechanism of force generation in muscle, based primarily on site-specific spectroscopic probe studies of myosin heads in contracting muscle fibers and myofibrils. Electron paramagnetic resonance (EPR) and time-resolved phosphorescence anisotropy (TPA) of probes attached to SH1 (Cys 707, in the catalytic domain of the head) have consistently shown that most myosin heads in contracting muscle are dynamically disordered, undergoing large-amplitude rotations in the microsecond time range. Some of these disordered heads are bound to actin, especially in the early (weak-binding, preforce) phase of the ATPase cycle. The small ordered population (10-20%) is rigidly oriented precisely as in rigor, with no other distinct angle observed in contraction or in the presence of intermediate states trapped by nucleotide analogs. These results are not consistent with the classical model in which the entire head undergoes a 45 degree transition between two distinct orientations. Therefore, it has been proposed that the catalytic domain of the myosin head has only one stereospecific (rigor-like) actin-binding angle, and that the head's internal structure changes during force generation, causing the distal light-chain-binding domain to rotate. To test this model, we have performed EPR and TPA studies of probes attached to regulatory light chains (RLCs) in rabbit and scallop myofibrils and fibers. The RLC results confirm the predominance of dynamic (microsecond) rotational disorder in both relaxation and contraction, and show that the different mechanisms of calcium regulation in the two muscles produce different rotational dynamics. In rabbit myofibrils, RLC probes are more dynamically disordered than SH1 probes, especially in rigor and contraction,indicating that the light-chain-binding domain undergoes rotational motions relative to the catalytic domain when myosin heads interact with actin. An SH1-bound spin label, which is sensitive to myosin's internal dynamics, resolves three distinct conformations during contraction, and time-resolved EPR shows that these transitions are coupled to specific steps in the ATPase cycle. We propose that force is generated during contraction by a disorder-to-order transition, in which myosin heads first attach weakly to actin in a nonstereospecific mode characterized by large-scale dynamic disorder, then undergo at least two conformational transitions involving large-scale structural (rotational) changes within the head, culminating in a highly ordered strong-binding state that bears force. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 PMID:7787056

Thomas, D. D.; Ramachandran, S.; Roopnarine, O.; Hayden, D. W.; Ostap, E. M.

1995-01-01

112

The unique enzymatic and mechanistic properties of plant myosins.  

PubMed

Myosins are molecular motors that move along actin-filament tracks. Plants express two main classes of myosins, myosin VIII and myosin XI. Along with their relatively conserved sequence and functions, plant myosins have acquired some unique features. Myosin VIII has the enzymatic characteristics of a tension sensor and/or a tension generator, similar to functions found in other eukaryotes. Interestingly, class XI plant myosins have gained a novel function that consists of propelling the exceptionally rapid cytoplasmic streaming. This specific class includes the fastest known translocating molecular motors, which can reach an extremely high velocity of about 60?ms(-1). However, the enzymatic properties and mechanistic basis for these remarkable manifestations are not yet fully understood. Here we review recent progress in understanding the uniqueness of plant myosins, while emphasizing the unanswered questions. PMID:25435181

Henn, Arnon; Sadot, Einat

2014-12-01

113

Light-Triggered Myosin Activation for Probing Dynamic Cellular Processes  

E-print Network

Shining light on myosin: The incorporation of a caging group onto the essential phosphoserine residue of myosin by protein semisynthesis enables light-triggered activation of the protein (see picture). Caging eliminates ...

Goguen, Brenda N.

114

Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C  

PubMed Central

Our previous studies demonstrated a relation between glutathionylation of cardiac myosin binding protein C (cMyBP-C) and diastolic dysfunction in a hypertensive mouse model stressed by treatment with salt, deoxycorticosterone acetate, and unilateral nephrectomy. Although these results strongly indicated an important role for S-glutathionylation of myosin binding protein C as a modifier of myofilament function, indirect effects of other post-translational modifications may have occurred. Moreover, we did not determine the sites of thiol modification by glutathionylation. To address these issues, we developed an in vitro method to mimic the in situ S-glutathionylation of myofilament proteins and determined direct functional effects and sites of oxidative modification employing Western blotting and mass spectrometry. We induced glutathionylation in vitro by treatment of isolated myofibrils and detergent extracted fiber bundles (skinned fibers) with oxidized glutathione (GSSG). Immuno-blotting results revealed increased glutathionylation with GSSG treatment of a protein band around 140 kDa. Using tandem mass spectrometry, we identified the 140 kDa band as cMyBP-C and determined the sites of glutathionylation to be at cysteines 655, 479, and 627. Determination of the relation between Ca2+-activation of myofibrillar acto-myosin ATPase rate demonstrated an increased Ca2+-sensitivity induced by the S-glutathionylation. Force generating skinned fiber bundles also showed an increase in Ca-sensitivity when treated with oxidized glutathione, which was reversed with the reducing agent, dithiothreitol (DTT). Our data demonstrate that a specific and direct effect of S-glutathionylation of myosin binding protein C is a significant increase in myofilament Ca2+-sensitivity. Our data also provide new insights into the functional significance of oxidative modification of myosin binding protein C and the potential role of domains not previously considered to be functionally significant as controllers of myofilament Ca2+-responsiveness and dynamics. PMID:24312057

Patel, Bindiya G.; Wilder, Tanganyika; Solaro, R. John

2013-01-01

115

Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice.  

PubMed

We have examined, for the first time, the effects of the familial hypertrophic cardiomyopathy (HCM)-associated Lys104Glu mutation in the myosin regulatory light chain (RLC). Transgenic mice expressing the Lys104Glu substitution (Tg-MUT) were generated and the results were compared to Tg-WT (wild-type human ventricular RLC) mice. Echocardiography with pulse wave Doppler in 6month-old Tg-MUT showed early signs of diastolic disturbance with significantly reduced E/A transmitral velocities ratio. Invasive hemodynamics in 6month-old Tg-MUT mice also demonstrated a borderline significant prolonged isovolumic relaxation time (Tau) and a tendency for slower rate of pressure decline, suggesting alterations in diastolic function in Tg-MUT. Six month-old mutant animals had no LV hypertrophy; however, at >13months they displayed significant hypertrophy and fibrosis. In skinned papillary muscles from 5 to 6month-old mice a mutation induced reduction in maximal tension and slower muscle relaxation rates were observed. Mutated cross-bridges showed increased rates of binding to the thin filaments and a faster rate of the power stroke. In addition, ~2-fold lower level of RLC phosphorylation was observed in the mutant compared to Tg-WT. In line with the higher mitochondrial content seen in Tg-MUT hearts, the MUT-myosin ATPase activity was significantly higher than WT-myosin, indicating increased energy consumption. In the in vitro motility assay, MUT-myosin produced higher actin sliding velocity under zero load, but the velocity drastically decreased with applied load in the MUT vs. WT myosin. Our results suggest that diastolic disturbance (impaired muscle relaxation, lower E/A) and inefficiency of energy use (reduced contractile force and faster ATP consumption) may underlie the Lys104Glu-mediated HCM phenotype. PMID:24992035

Huang, Wenrui; Liang, Jingsheng; Kazmierczak, Katarzyna; Muthu, Priya; Duggal, Divya; Farman, Gerrie P; Sorensen, Lars; Pozios, Iraklis; Abraham, Theodore P; Moore, Jeffrey R; Borejdo, Julian; Szczesna-Cordary, Danuta

2014-09-01

116

Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics  

SciTech Connect

The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

2009-07-01

117

The effect of polyethylene glycol on the mechanics and ATPase activity of active muscle fibers.  

PubMed Central

We have used polyethylene glycol (PEG) to perturb the actomyosin interaction in active skinned muscle fibers. PEG is known to potentiate protein-protein interactions, including the binding of myosin to actin. The addition of 5% w/v PEG (MW 300 or 4000) to active fibers increased fiber tension and decreased shortening velocity and ATPase activity, all by 25-40%. Variation in [ADP] or [ATP] showed that the addition of PEG had little effect on the dissociation of the cross-bridge at the end of the power stroke. Myosin complexed with ADP and the phosphate analog V(i) or AlF(4) binds weakly to actin and is an analog of a pre-power-stroke state. PEG substantially enhances binding of these states both in active fibers and in solution. Titration of force with increasing [P(i)] showed that PEG increased the free energy available to drive the power stroke by about the same amount as it increased the free energy available from the formation of the actomyosin bond. Thus PEG potentiates the binding of myosin to actin in active fibers, and it provides a method for enhancing populations of some states for structural or mechanical studies, particularly those of the normally weakly bound transient states that precede the power stroke. PMID:10653805

Chinn, M K; Myburgh, K H; Pham, T; Franks-Skiba, K; Cooke, R

2000-01-01

118

Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments  

E-print Network

Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments Derek Ricketson derives from its assembly into bipolar filaments. The coiled-coil tail domain of the myosin II heavy chain and assembly domain in stabilizing myosin bipolar filaments. contraction cytokinesis macromolecular assembly

Prehoda, Ken

119

On archaebacterial ATPase from Halobacterium saccharovorum  

NASA Technical Reports Server (NTRS)

The energy transducing ATPase from Halobacterium saccharovorum was studied in order to define the origin of energy transducing systems. The ATPase required high salt concentration (4M NaCl) for activity; activity was rapidly lost when NaCl was below 1 Molar. At low salt concentration, the membrane bound ATPase activity could be stabilized in presence of spermine. However, following solubilization spermine was ineffective. Furthermore, F1 ATPase activity was stabilized by ammonium sulfate even when the NaCl concentration was less than 1 Molar. These studies suggest that stabilization by hydrophobic interactions preceded ionic ones in the evolution of the energy transducing ATPases.

Kristjansson, H.; Ponnamperuma, C.; Hochstein, L.; Altekar, W.

1984-01-01

120

Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)] [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States)] [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)] [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

2011-12-16

121

Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases  

NASA Technical Reports Server (NTRS)

Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-chloro-7-nitrobenzofurazan inhibited the halobacterial ATPase also in a nucleotide-protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggest that this halobacterial ATPase may have conserved structural features from both the vacuolar and the F-type ATPases.

Stan-Lotter, Helga; Hochstein, Lawrence I.; Bowman, Emma J.

1991-01-01

122

Alteration of Myosin Cross Bridges by Phosphorylation of Myosin-Binding Protein C in Cardiac Muscle  

Microsoft Academic Search

In addition to the contractile proteins actin and myosin, contractile filaments of striated muscle contain other proteins that are important for regulating the structure and the interaction of the two force-generating proteins. In the thin filaments, troponin and tropomyosin form a Ca-sensitive trigger that activates normal contraction when intracellular Ca is elevated. In the thick filament, there are several myosin-binding

Andrea Weisberg; Saul Winegrad

1996-01-01

123

Indirect myosin immunocytochemistry for the identification of fibre types in equine skeletal muscle  

NASA Technical Reports Server (NTRS)

The histochemical ATPase method for muscle fibre typing was first described by Brooke and Kaiser in 1970. However, problems have been found with the subdivision of type II fibres using this technique. To determine whether indirect myosin immunocytochemistry using anti-slow (5-4D), anti-fast (1A10) and anti-fast red (5-2B) monoclonal antibodies with cross reactivity for type I, II and IIa fibres, respectively, in a number of species, could identify three fibre types in equine skeletal muscle, data on fibre type composition and fibre size obtained using the two different techniques were compared. Results indicate that different myosin heavy chains can coexist in single equine muscle fibres. Type I and type II fibres were identified by immunocytochemistry, but subdivision of type II fibres was not possible. Although the percentage of type I and type II fibres was not significantly different for the two techniques, a few fibres reacted with both the 1A10 and 5-4D antibodies.

Sinha, A. K.; Rose, R. J.; Pozgaj, I.; Hoh, J. F.

1992-01-01

124

Phosphorylation of human skeletal muscle myosin  

SciTech Connect

Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

1986-03-01

125

Myoglobin levels and mATPase activity in pectoral muscles of spruce and ruffed grouse (Aves: Tetraoninae).  

PubMed

Myoglobin concentration and myosin ATPase activity were measured in the pectoral muscle of wild spruce grouse (Dendragapus canadensis) and ruffed grouse (Bonasa umbellus), together with the weight of the Mm. pectoralis, supracoracoideus and heart. mATPase activities were similar in both species, but spruce grouse contained 15 times more myoglobin in the pectoralis muscle and the heart was three times heavier than that of the ruffed grouse. The relative mass of the flight muscles and wing loading were similar between species. Characteristics of the pectoral muscle of both grouse species reflect adaptations to predation and advertising displays. The glycolytic nature of the ruffed grouse pectoral muscle and small heart size is an adaptation to a sedentary existence within a small home range. The more oxidative pectoral muscle of spruce grouse together with its larger heart are adaptations to seasonal dispersals requiring more sustained flight. PMID:2859952

Thomas, V G

1985-01-01

126

Inhibition of E. coli ATPase activity by a troponin component, TNI, and by mitochondrial ATPase inhibitor  

Microsoft Academic Search

Summary The enzymic activity of Mg2+-or Ca2+-stimulated ATPase fromEscherichia coli was inhibited by one of the troponin components, TN-I, and by mitochondrial ATPase inhibitor (F1-inhibitor). The inhibitory ability of component TN-I against Mg2+-stimulated ATPase activity was lost after digestion of component TN-I with trypsin. The Mg2+-stimulated ATPase activity inhibited by component TN-I was completely restored by the addition of another

H. Hagiwara; H. Hasebe; S. Yamazaki; Y. Tamaura; Y. Inada

1979-01-01

127

Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments.  

PubMed

G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region. PMID:23960071

Cochran, Jared C; Thompson, Morgan E; Kull, F Jon

2013-09-27

128

Stochastic dynamics and mechanosensitivity of myosin II minifilaments  

E-print Network

Tissue cells are in a state of permanent mechanical tension that is maintained mainly by myosin II minifilaments, which are bipolar assemblies of tens of myosin II molecular motors contracting actin networks and bundles. Here we introduce a stochastic dynamics model for myosin II minifilaments as two small myosin II motor ensembles engaging in a stochastic tug-of-war. Each of the two ensembles is described by the parallel cluster model that allows us to use exact stochastic simulations and at the same time to keep important molecular details of the myosin II crossbridge cycle. Our simulation and analytical results reveal a strong dependance of myosin II minifilament dynamics on environmental stiffness that is reminiscent of the cellular response to substrate stiffness. For small stiffness, minifilaments form transient crosslinks exerting short spikes of force with negligible mean. For large stiffness, minifilaments form near permanent crosslinks exerting a mean force which hardly depends on environmental elas...

Albert, Philipp J; Schwarz, Ulrich S

2014-01-01

129

Single-motor mechanics and models of the myosin motor.  

PubMed Central

Recent progress in single-molecule detection techniques is remarkable. These techniques have allowed the accurate determination of myosin-head-induced displacements and how mechanical cycles are coupled to ATP hydrolysis, by measuring individual mechanical events and chemical events of actomyosin directly at the single-molecule level. Here we review our recent work in which we have made detailed measurements of myosin step size and mechanochemical coupling, and propose a model of the myosin motor. PMID:10836497

Yanagida, T; Esaki, S; Iwane, A H; Inoue, Y; Ishijima, A; Kitamura, K; Tanaka, H; Tokunaga, M

2000-01-01

130

Denaturation and aggregation of myosin from two bovine muscle types.  

PubMed

The thermal behaviors of myosin from bovine vastus intermedius (VI, predominantly red muscle) and semimembranosus (SM, predominantly white muscle) at pH 6.05 (ultimate pH of VI muscle) and 5.50 (ultimate pH of SM muscle) were compared. Differential scanning microcalorimetry and turbidity measurements were used to monitor changes in myosin during heating from 25 to 80 degrees C at 1 degrees C/min. VI and SM myosin heavy chain isoforms were identified on gradient SDS-PAGE. Endotherms of VI myosin at pH 6.05 had three transition temperatures (T(m)) of 45, 53, and 57 degrees C, whereas at pH 5.50 two transitions were observed at 42 and 59 degrees C. SM myosin had two T(m) values of 46 and 58 degrees C at pH 6.05 and T(m) values of 43 and 62 degrees C at pH 5.5. SM myosin at its ultimate pH was less heat stable than VI myosin at its ultimate pH; however, when SM and VI myosin were compared at the same pH, VI myosin was less stable. PMID:11262048

Vega-Warner, V; Smith, D M

2001-02-01

131

Studies of the interaction between titin and myosin  

PubMed Central

The interaction of titin with myosin has been studied by binding assays and electron microscopy. Electron micrographs of the titin-myosin complex suggest a binding site near the tip of the tail of the myosin molecule. The distance from the myosin head-tail junction to titin indicates binding 20-30 nm from the myosin COOH terminus. Consistent with this, micrographs of titin-light meromyosin (LMM) show binding near the end of the LMM molecule. Plots of myosin- and LMM-attachment positions along the titin molecule show binding predominantly in the region located in the A band in situ, which is consistent with the proposal that titin regulates thick filament assembly. Estimates of the apparent dissociation constant of the titin-LMM complex were approximately 20 nM. Assays of LMM cyanogen bromide fragments also suggested a strong binding site near the COOH terminus. Proteolysis of a COOH-terminal 17.6-kD CNBr fragment isolated from whole myosin resulted in eight peptides of which only one, comprising 17 residues, bound strongly to titin. Two isoforms of this peptide were detected by protein sequencing. Similar binding data were obtained using synthetic versions of both isoforms. The peptide is located immediately COOH- terminal of the fourth "skip" residue in the myosin tail, which is consistent with the electron microscopy. Skip-4 may have a role in determining thick filament structure, by allowing abrupt bending of the myosin tail close to the titin-binding site. PMID:8522604

1995-01-01

132

Adenosine diphosphate and strain sensitivity in myosin motors.  

PubMed Central

The release of adenosine diphosphate (ADP) from the actomyosin cross-bridge plays an important role in the adenosine-triphosphate-driven cross-bridge cycle. In fast contracting muscle fibres, the rate at which ADP is released from the cross-bridge correlates with the maximum shortening velocity of the muscle fibre, and in some models the rate of ADP release defines the maximum shortening velocity. In addition, it has long been thought that the rate of ADP release could be sensitive to the load on the cross-bridge and thereby provide a molecular explanation of the Fenn effect. However, direct evidence of a strain-sensitive ADP-release mechanism has been hard to come by for fast muscle myosins. The recently published evidence for a strain-sensing mechanism involving ADP release for slower muscle myosins, and in particular non-muscle myosins, is more compelling and can provide the mechanism of processivity for motors such as myosin V. It is therefore timely to examine the evidence for this strain-sensing mechanism. The evidence presented here will argue that a strain-sensitive mechanism of ADP release is universal for all myosins but the basic mechanism has evolved in different ways for different types of myosin. Furthermore, this strain-sensing mechanism provides a way of coordinating the action of multiple myosin motor domains in a single myosin molecule, or in complex assemblies of myosins over long distances without invoking a classic direct allosteric or cooperative communication between motors. PMID:15647162

Nyitrai, Miklós; Geeves, Michael A

2004-01-01

133

Location of the head-tail junction of myosin  

PubMed Central

The tails of double-headed myosin molecules consist of an alpha- helical/coiled-coil structure composed of two identical polypeptides with a heptad repeat of hydrophobic amino acids that starts immediately after a conserved proline near position 847. Both muscle and nonmuscle myosins have this heptad repeat and it has been assumed that proline 847 is physically located at the head-tail junction. We present two lines of evidence that this assumption is incorrect. First, we localized the binding sites of several monoclonal antibodies on Acanthamoeba myosin-II both physically, by electron microscopy, and chemically, with a series of truncated myosin-II peptides produced in bacteria. These data indicate that the head-tail junction is located near residue 900. Second, we compared the lengths of two truncated recombinant myosin-II tails with native myosin-II. The distances from the NH2 termini to the tips of these short tails confirms the rise per residue (0.148 nm/residue) and establishes that the 86-nm tail of myosin-II must start near residue 900. We propose that the first 53 residues of heptad repeat of Acanthamoeba myosin-II and other myosins are located in the heads and the proteolytic separation of S-1 from rod occurs within the heads. PMID:2715178

1989-01-01

134

Evolution of Plant P-Type ATPases  

PubMed Central

Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na+ and H+ pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na+ pumps (P2C and P2D ATPases) as well as a primitive H+-ATPase. Both Na+ and H+ pumps also co-exist in the moss P. patens, which has a P2D Na+-ATPase. In contrast to the primitive H+-ATPases in chlorophytes and P. patens, the H+-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H+ pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps. PMID:22629273

Pedersen, Christian N. S.; Axelsen, Kristian B.; Harper, Jeffrey F.; Palmgren, Michael G.

2012-01-01

135

Cargo recognition and cargo-mediated regulation of unconventional myosins.  

PubMed

Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by cellular chemical fuels in the form of nucleotide triphosphate. Biological systems have designed a group of nanoscale engines, known as molecular motors, to convert cellular chemical fuels into mechanical energy. Molecular motors come in various forms including cytoskeleton motors (myosin, kinesin, and dynein), nucleic-acid-based motors, cellular membrane-based rotary motors, and so on. The main focus of this Account is one subfamily of actin filament-based motors called unconventional myosins (other than muscle myosin II, the remaining myosins are collectively referred to as unconventional myosins). In general, myosins can use ATP to fuel two types of mechanomotions: dynamic tethering actin filaments with various cellular compartments or structures and actin filament-based intracellular transport. In contrast to rich knowledge accumulated over many decades on ATP hydrolyzing motor heads and their interactions with actin filaments, how various myosins recognize their specific cargoes and whether and how cargoes can in return regulate functions of motors are less understood. Nonetheless, a series of biochemical and structural investigations in the past few years, including works from our own laboratory, begin to shed lights on these latter questions. Some myosins (e.g., myosin-VI) can function both as cellular transporters and as mechanical tethers. To function as a processive transporter, myosins need to form dimers or multimers. To be a mechanical tether, a monomeric myosin is sufficient. It has been shown for myosin-VI that its cellular cargo proteins can play critical roles in determining the motor properties. Dab2, an adaptor protein linking endocytic vesicles with actin-filament-bound myosin-VI, can induce the motor to form a transport competent dimer. Such a cargo-mediated dimerization mechanism has also been observed in other myosins including myosin-V and myosin-VIIa. The tail domains of myosins are very diverse both in their lengths and protein domain compositions and thus enable motors to engage a broad range of different cellular cargoes. Remarkably, the cargo binding tail of one myosin alone often can bind to multiple distinct target proteins. A series of atomic structures of myosin-V/cargo complexes solved recently reveals that the globular cargo binding tail of the motor contains a number of nonoverlapping target recognition sites for binding to its cargoes including melanophilin, vesicle adaptors RILPL2, and vesicle-bound GTPase Rab11. The structures of the MyTH4-FERM tandems from myosin-VIIa and myosin-X in complex with their respective targets reveal that MyTH4 and FERM domains extensively interact with each other forming structural and functional supramodules in both motors and demonstrate that the structurally similar MyTH4-FERM tandems of the two motors display totally different target binding modes. These structural studies have also shed light on why numerous mutations found in these myosins can cause devastating human diseases such as deafness and blindness, intellectual disabilities, immune disorders, and diabetes. PMID:25230296

Lu, Qing; Li, Jianchao; Zhang, Mingjie

2014-10-21

136

William M. Shih and James A. Spudich Actomyosin ATPase Cycle  

E-print Network

structures of the myosin motor domain in the presence of different nucleotides show the lever arm do- main) that this contact is critical for mechanically driving the angular change of the lever arm domain. However filaments. In the swinging lever arm model of actin-myosin motor action, myosin binds to the actin with its

Spudich, James A.

137

Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence  

NASA Technical Reports Server (NTRS)

BACKGROUND: Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS: Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS: Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.

Reddy, A. S.; Day, I. S.

2001-01-01

138

Role of Toxoplasma gondii Myosin A in Powering Parasite  

E-print Network

Role of Toxoplasma gondii Myosin A in Powering Parasite Gliding and Host Cell Invasion Markus Meissner,1 Dirk Schlu¨ter,2 Dominique Soldati1 * Obligate intracellular apicomplexan parasites rely of this myosin caused severe impairment in host cell invasion and parasite spreading in cultured cells

Arnold, Jonathan

139

MTABOLISME DE LA MYOSINE DANS TROIS MUSCLES STRIS  

E-print Network

environ. - Soleus, muscle squelettique rouge, en totalité. - Le muscle cardiaque entier. B. - PréparationMÉTABOLISME DE LA MYOSINE DANS TROIS MUSCLES STRIÉS DE TYPE DIFFÉRENT, CHEZ LE LAPIN A. SIGNORET P de ia myosine est étudié dans les muscles cardiaque, soléaire et long dorsal, chez le Lapin. TJne

Boyer, Edmond

140

Structural and Functional Insights on the Myosin Superfamily  

PubMed Central

The myosin superfamily is a versatile group of molecular motors involved in the transport of specific biomolecules, vesicles and organelles in eukaryotic cells. The processivity of myosins along an actin filament and transport of intracellular ‘cargo’ are achieved by generating physical force from chemical energy of ATP followed by appropriate conformational changes. The typical myosin has a head domain, which harbors an ATP binding site, an actin binding site, and a light-chain bound ‘lever arm’, followed often by a coiled coil domain and a cargo binding domain. Evolution of myosins started at the point of evolution of eukaryotes, S. cerevisiae being the simplest one known to contain these molecular motors. The coiled coil domain of the myosin classes II, V and VI in whole genomes of several model organisms display differences in the length and the strength of interactions at the coiled coil interface. Myosin II sequences have long-length coiled coil regions that are predicted to have a highly stable dimeric interface. These are interrupted, however, by regions that are predicted to be unstable, indicating possibilities of alternate conformations, associations to make thick filaments, and interactions with other molecules. Myosin V sequences retain intermittent regions of strong and weak interactions, whereas myosin VI sequences are relatively devoid of strong coiled coil motifs. Structural deviations at coiled coil regions could be important for carrying out normal biological function of these proteins. PMID:22399849

Syamaladevi, Divya P.; Spudich, James A.; Sowdhamini, R.

2012-01-01

141

Nonmuscle myosin is regulated during smooth muscle contraction.  

PubMed

The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca(2+)-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation. PMID:19429828

Yuen, Samantha L; Ogut, Ozgur; Brozovich, Frank V

2009-07-01

142

Nonmuscle myosin is regulated during smooth muscle contraction  

PubMed Central

The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca2+-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation. PMID:19429828

Yuen, Samantha L.; Ogut, Ozgur; Brozovich, Frank V.

2009-01-01

143

Sodium, potassium-atpases in algae and oomycetes.  

PubMed

We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells. PMID:16167182

Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

2005-08-01

144

Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts  

SciTech Connect

V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V{sub 1} domain responsible for ATP hydrolysis and integral V{sub 0} domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.

Yao, GuanFeng [Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041 (China); Feng, HaoTian [Department of Surgery, The University of Western Australia (Australia); Cai, YanLing [Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041 (China); Qi, WeiLi [Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041 (China); Kong, KangMei [Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041 (China)]. E-mail: kangmeikong@21cn.com

2007-06-15

145

Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases.  

PubMed

Polyclonal antiserum against subunit A (67 kDa) of the vacuolar ATPase from Neurospora crassa reacted with subunit I (87 kDa) from a membrane ATPase of the extremely halophilic archaebacterium Halobacterium saccharovorum. The halobacterial ATPase was inhibited by nitrate and N-ethylmaleimide; the extent of the latter inhibition was diminished in the presence of adenosine di- or triphosphates. 4-Chloro-7-nitrobenzofurazan inhibited the halobacterial ATPase also in a nucleotide-protectable manner; the bulk of inhibitor was associated with subunit II (60 kDa). The data suggested that this halobacterial ATPase may have conserved structural features from both the vacuolar and the F-type ATPases. PMID:1824911

Stan-Lotter, H; Bowman, E J; Hochstein, L I

1991-01-01

146

Tuning myosin-driven sorting on cellular actin networks.  

PubMed

Myosin V and VI are antagonistic motors that cohabit membrane vesicles in cells. A systematic study of their collective function, however, is lacking and forms the focus of this study. We functionally reconstitute a two-dimensional actin-myosin interface using myosin V and VI precisely patterned on DNA nanostructures, in combination with a model keratocyte actin meshwork. While scaffolds display solely unidirectional movement, their directional flux is modulated by both actin architecture and the structural properties of the myosin lever arm. This directional flux can be finely-tuned by the relative number of myosin V and VI motors on each scaffold. Pairing computation with experimental observations suggests that the ratio of motor stall forces is a key determinant of the observed competitive outcomes. Overall, our study demonstrates an elegant mechanism for sorting of membrane cargo using equally matched antagonistic motors, simply by modulating the relative number of engagement sites for each motor type. PMID:25738229

Hariadi, Rizal F; Sommese, Ruth F; Sivaramakrishnan, Sivaraj

2015-01-01

147

Myosin isoforms in female human detrusor.  

PubMed

The aim of this study was to document the relative proportions of two isoforms of myosin heavy chain in detrusor smooth muscle of women with detrusor overactivity and in asymptomatic controls. Women aged 35-65 with documented detrusor overactivity and without a history of neurologic disease, prior incontinence surgery, elevated post-void residual urine volume, or indwelling urinary catheter were eligible for the study. Full-thickness biopsies of extraperitoneal bladder dome were obtained at the time of laparotomy in six patients with documented detrusor overactivity and in a control group of eight continent patients. Biopsies were frozen in liquid nitrogen, crushed with a frozen mortar and pestle at -80 degrees C, and homogenized in buffer, and the extracts were electrophoresed on 6% polyacrylamide sodium dodecyl sulfate gels and stained with Coomassie blue. The gels were de-stained and then the protein bands were scanned with a densitometer. The mean patient age was 48 years (range, 36-59). Seven patients were Caucasian and seven patients were African American. Detrusor smooth muscle contains a mean of 34% (range, 27-43%) SM1 and 66% (range, 57-73%) SM2 isoforms. There was no difference in isoform composition when patients were compared according to urogynecologic diagnosis or according to race. In detrusor biopsies from women, approximately 34% of myosin is of the SM1 isoform and approximately 66% is of the SM2 isoform. This ratio is relatively constant in the two races studied and unchanged in women with detrusor overactivity. Animal models utilizing outlet obstruction of the bladder to provoke detrusor instability and detrusor hypertrophy are known to alter myosin isoform distribution and may not be appropriate models of detrusor instability in human females. PMID:11135379

FitzGerald, M P; Manaves, V; Martin, A F; Shott, S; Brubaker, L

2001-01-01

148

Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation  

PubMed Central

How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system. PMID:25318674

Ren, Yixin; West-Foyle, Hoku; Surcel, Alexandra; Miller, Christopher; Robinson, Douglas N.

2014-01-01

149

Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation.  

PubMed

How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system. PMID:25318674

Ren, Yixin; West-Foyle, Hoku; Surcel, Alexandra; Miller, Christopher; Robinson, Douglas N

2014-12-15

150

On the kinetics that moves Myosin V  

E-print Network

Molecular motor proteins such as Myosin V, Dynein or Kinesin are no ratchets, at least not with a flashing asymmetric potential; the crucial asymmetry is in the dynamical activity. We make that explicit in terms of a simple Markov model, emphasizing the kinetic (and non-thermodynamic) aspects of stochastic transport. The analysis shows the presence of a fluctuation symmetry in that part of the dynamical activity which is antisymmetric under reversal of trailing and leading head of the motor. The direction of the motor motion is determined by it.

Maes, Christian

2014-01-01

151

Enhancement of Force Generated by Individual Myosin Heads in Skinned Rabbit Psoas Muscle Fibers at Low Ionic Strength  

PubMed Central

Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength ? from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080

Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

2013-01-01

152

INTRODUCTION Myosin II is an actin-based motor, which is important for many  

E-print Network

INTRODUCTION Myosin II is an actin-based motor, which is important for many aspects of motility al., 1992). Myosin mutants are able to divide on a solid substrate through a process dubbed traction in these mutants result from mislocalization of myosin activity or from fundamental alterations in myosin motor

Chisholm, Rex L.

153

Structure of the AAA ATPase p97  

Microsoft Academic Search

p97, an abundant hexameric ATPase of the AAA family, is involved in homotypic membrane fusion. It is thought to disassemble SNARE complexes formed during the process of membrane fusion. Here, we report two structures: a crystal structure of the N-terminal and D1 ATPase domains of murine p97 at 2.9 Å resolution, and a cryoelectron microscopy structure of full-length rat p97

Xiaodong Zhang; Anthony Shaw; Paul A. Bates; Richard H. Newman; Brent Gowen; Elena Orlova; Michael A. Gorman; Hisao Kondo; Pawel Dokurno; John Lally; Gordon Leonard; Hemmo Meyer; Marin van Heel; Paul S. Freemont

2000-01-01

154

Accessibility of Myofilament Cysteines and Effects on ATPase Depend on the Activation State during Exposure to Oxidants  

PubMed Central

Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function in skeletal and cardiac muscle. Analyzing the cysteine content of the myofilament proteins in striated muscle, we found that cysteine residues are relatively rare, but are very similar between different muscle types and different vertebrate species. To refine this list of cysteines to those that may modulate function, we estimated the accessibility of oxidants to cysteine residues using protein crystal structures, and then sharpened these estimates using fluorescent labeling of cysteines in cardiac and skeletal myofibrils. We demonstrate that cysteine accessibility to oxidants and ATPase rates depend on the contractile state in which preparations are exposed. Oxidant exposure of skeletal and cardiac myofibrils in relaxing solution exposes myosin cysteines not accessible in rigor solution, and these modifications correspond to a decrease in maximum ATPase. Oxidant exposure under rigor conditions produces modifications that increase basal ATPase and calcium sensitivity in ventricular myofibrils, but these effects were muted in fast twitch muscle. These experiments reveal how structural and sequence variations can lead to divergent effects from oxidants in different muscle types. PMID:23894416

Gross, Sean M.; Lehman, Steven L.

2013-01-01

155

Signaling and Myosin-binding Protein C*  

PubMed Central

Myosin-binding protein C (MyBP-C) is a thick filament protein consisting of 1274 amino acid residues (149 kDa) that was identified by Starr and Offer over 30 years ago as a contaminant present in a preparation of purified myosin. Since then, numerous studies have defined the muscle-specific isoforms, the structure, and the importance of the proteins in normal striated muscle structure and function. Underlying the critical role the protein plays, it is now apparent that mutations in the cardiac isoform (cMyBP-C) are responsible for a substantial proportion (30–40%) of genotyped cases of familial hypertrophic cardiomyopathy. Although generally accepted that MyBP-C can interact with all three filament systems within the sarcomere (the thick, thin, and titin filaments), the exact nature of these interactions and the functional consequences of modified binding remain obscure. In addition to these structural considerations, cMyBP-C can serve as a point of convergence for signaling processes in the cardiomyocyte via post-translational modifications mediated by kinases that phosphorylate residues in the cardiac-specific isoform sequence. Thus, cMyBP-C is a critical nodal point that has both important structural and signaling roles and whose modifications are known to cause significant human cardiac disease. PMID:21257752

James, Jeanne; Robbins, Jeffrey

2011-01-01

156

Self-Organization of Myosin II in Reconstituted Actomyosin Bundles  

PubMed Central

Cells assemble a variety of bundled actomyosin structures in the cytoskeleton for activities such as cell-shape regulation, force production, and cytokinesis. Although these linear structures exhibit varied architecture, two common organizational themes are a punctate distribution of myosin II and distinct patterns of actin polarity. The mechanisms that cells use to assemble and maintain these organizational features are poorly understood. To study these, we reconstituted actomyosin bundles in vitro that contained only actin filaments and myosin II. Upon addition of ATP, the bundles contracted and the uniformly distributed myosin spontaneously reorganized into discrete clusters. We developed a mathematical model in which the motion of myosin II filaments is governed by the polarities of the actin filaments with which they interact. The model showed that the assembly of myosins into clusters is driven by their tendency to migrate to locations with zero net actin filament polarity. With no fitting parameters, the predicted distribution of myosin cluster separations was in close agreement with our experiments, including a ?3/2 power law decay for intermediate length scales. Thus, without an organizing template or accessory proteins, a minimal bundle of actin and myosin has the inherent capacity to self-organize into a heterogeneous banded structure. PMID:22995499

Stachowiak, Matthew R.; McCall, Patrick M.; Thoresen, Todd; Balcioglu, Hayri E.; Kasiewicz, Lisa; Gardel, Margaret L.; O'Shaughnessy, Ben

2012-01-01

157

Rho-kinase mediates diphosphorylation of myosin regulatory light chain in cultured uterine, but not vascular smooth muscle cells  

PubMed Central

Phosphorylation of myosin regulatory light chain (RLC) triggers contraction in smooth muscle myocytes. Dephosphorylation of phosphorylated RLC (pRLC) is mediated by myosin RLC phosphatase (MLCP), which is negatively regulated by rho-associated kinase (ROK). We have compared basal and stimulated concentrations of pRLC in myocytes from human coronary artery (hVM), which has a tonic contractile pattern to myocytes from human uterus (hUM), which has a phasic contractile pattern. Our studies reveal fundamental differences between hVM and hUM regarding the mechanisms regulating phosphorylation RLC. Whereas hVM responded to stimulation by phosphorylation of RLC at S19, hUM responded by forming diphosphorylated RLC (at T18 and S19; ppRLC), which, compared to pRLC, causes two to threefold greater activation of myosin ATPase that provides energy to power the contraction. Importantly, the conversion of pRLC to ppRLC is mediated by ROK. In hUM, MLCP has high activity for ppRLC and this is inhibited by ROK through phosphorylation of the substrate targeting subunit (MYPT1) at T853. Inhibitors of ROK significantly reduce contractility in both hVM and hUM. We demonstrated that inhibition of ppRLC in phasic myocytes (hUM) is 100-fold more sensitive to ROK inhibitors than is pRLC in tonic myocytes (hVM). We speculate that these differences in phosphorylation of RLC might reflect evolution of different contractile patterns to perform distinct physiological functions. Furthermore, our data suggest that low concentrations of ROK inhibitors might inhibit uterine contractions with minimal effects on vascular tone, thus posing a novel strategy for prevention or treatment of conditions such as preterm birth. PMID:22947248

Aguilar, Hector N; Tracey, Curtis N; Zielnik, Barbara; Mitchell, Bryan F

2012-01-01

158

Orientation of intermediate nucleotide states of indane dione spin-labeled myosin heads in muscle fibers.  

PubMed Central

We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain. Images Scheme 2 PMID:8744317

Roopnarine, O; Thomas, D D

1996-01-01

159

Is the Paracoccus halodenitrificans ATPase a chimeric enzyme?  

NASA Technical Reports Server (NTRS)

Membranes from Paracoccus halodenitrificans contain an ATPase that is most active in the absence of NaCl. The most unusual characteristic of the enzyme is its pattern of sensitivity to various inhibitors. Azide and rhodamine 6G, inhibitors of F1F0-ATPases, inhibit ATP hydrolysis as do bafilomycin A1, concanamycin A (folimycin), N-ethylmaleimide, and p-chloromercuriphenylsulfonate which are inhibitors of vacuolar ATPases. This indiscriminate sensitivity suggests that this ATPase may be a hybrid and that caution should be exercised when using inhibition as a diagnostic for distinguishing between F1F0-ATPases and vacuolar ATPases.

Hochstein, L. I.

1996-01-01

160

Cooperativity of myosin molecules through strain-dependent chemistry.  

PubMed Central

There is mounting evidence that the myosin head domain contains a lever arm which amplifies small structural changes that occur at the nucleotide-binding site. The mechanical work associated with movement of the lever affects the rates at which the products of ATP hydrolysis are released. During muscle contraction, this strain-dependent chemistry leads to cooperativity of the myosin molecules within a thick filament. Two aspects of cooperative action are discussed, in the context of a simple stochastic model. (i) A modest motion of the lever arm on ADP release can serve to regulate the fraction of myosin bound to the thin filament, in order to recruit more heads at higher loads. (ii) If the lever swings through a large angle when phosphate is released, the chemical cycles of the myosin molecules can be synchronized at high loads. This leads to stepwise sliding of the filaments and suggests that the isometric condition is not a steady state. PMID:10836506

Duke, T

2000-01-01

161

Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity  

PubMed Central

In complex systems with stochastic components, systems laws often emerge that describe higher level behavior regardless of lower level component configurations. In this paper, emergent laws for describing mechanochemical systems are investigated for processive myosin-actin motility systems. On the basis of prior experimental evidence that longer processive lifetimes are enabled by larger myosin ensembles, it is hypothesized that emergent scaling laws could coincide with myosin-actin contact probability or system energy consumption. Because processivity is difficult to predict analytically and measure experimentally, agent-based computational techniques are developed to simulate processive myosin ensembles and produce novel processive lifetime measurements. It is demonstrated that only systems energy relationships hold regardless of isoform configurations or ensemble size, and a unified expression for predicting processive lifetime is revealed. The finding of such laws provides insight for how patterns emerge in stochastic mechanochemical systems, while also informing understanding and engineering of complex biological systems. PMID:25885169

Egan, Paul; Moore, Jeffrey; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

2015-01-01

162

Synaptic plasticity in the MyosinVa mutant mouse  

E-print Network

The trafficking of essential proteins into spines is an important aspect of synaptic plasticity. MyosinVa, an actin-based motor protein, has been implicated in the synaptic delivery of AMPARs during LTP [1]. However an ...

Tunca, Cansu, 1977-

2009-01-01

163

Tryptophan photophysics in rabbit skeletal myosin rod.  

PubMed

The fibrous region of myosin (myosin rod) is an alpha-helical, two-stranded coiled-coil made up of identical hydrophobic d sites in the heptad repeat that forms the basis for hydrophobic dimerization. The fluorescence excitation and emission spectra of rod in high salt buffer (where the rod exists as a coiled-coil monomer) at 20 degrees C are red- and blue-shifted, respectively, from the comparable spectra of N-acetyl-tryptophanamide or L-tryptophan. These spectral shifts, as well as red-shifts in the emission spectra induced by excitation on the red edge of the absorption or by increases in temperature, indicate that (on average) the tryptophans are partially exposed to aqueous solvent yet in contact with the protein matrix. The tryptophan intensity decays show an unusual bimodal distribution; the major species has a discrete lifetime of about 5.2 ns while the minor species exhibits a complex decay with a broad (3.4 ns full width at half maximum) Gaussian distribution of lifetimes centered around 1.3 ns. The long lifetime species has a blue-shifted excitation and red-shifted emission characteristic of the indole chromophore in a polar (probably aqueous) environment while the short lifetime species has the spectral parameters characteristic of indole in a non-polar environment. Although assignment of these lifetime species to particular tryptophans in the rod is problematic, this study indicates that the coiled-coil interface presents a complex heterogeneous environment that may undergo rapid conformational mobility. PMID:8155813

Chang, Y C; Ludescher, R D

1994-03-01

164

Light Chains of Myosins from White, Red, and Cardiac Muscles  

Microsoft Academic Search

Purified preparations of rabbit skeletal white, red, and cardiac muscle myosin (WM, RM, and CM) were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Significant differences in both the molecular weights and number of light chains in these myosins were found. WM has three distinct light-chain components (LC1W, LC2W, LC3W) having molecular weights of 25,500, 17,400, and 15,000, respectively. No component

Satyapriya Sarkar; F. A. Sreter; J. Gergely

1971-01-01

165

Developmental regulation of myosin gene expression in mouse cardiac muscle  

Microsoft Academic Search

Expression of the two isoforms of cardiac myosin heavy chain (MHC), MHCot and MHC\\/3, in mammals is regulated postnatally by a variety of stim- uli, including serum hormone levels. Less is known about the factors that regulate myosin gene expression in rapidly growing cardiac muscle in embryos. Using isoform-specific 35S-labeled cRNA probes correspond- ing to the two MHC genes and

Gary E. Lyons; Stefano Schiaflino; David Sassoon; Paul Barton; Margaret Buckingham

1990-01-01

166

Identification of myosin heavy chain isoforms in skeletal muscle of four Southern African wild ruminants.  

PubMed

The aim was to separate and characterize the myosin heavy chain (MHC) isoforms of four southern African wild ruminants, namely Blesbuck (Damaliscus dorcas phillipsi), Kudu (Tragelaphus strepsiceros), Black Wildebeest (Connochaetes gnou) and Blue Wildebeest (Connochaetes taurinus). Longissimus dorsi muscle samples were subjected to SDS-PAGE and Western blot analyses using antibodies raised against MHC isoforms. The specificity of these antibodies was assessed using immunohistochemistry combined with ATPase histochemistry, Three MHC isoforms were separated and the bands were identified from fastest to slowest migrating as MHC I, MHC IIx and MHC IIa. The mobility of the MHC isoforms was similar for all four species, including that of bovine, but differed from human muscle. Kudu muscle exhibited the lowest proportion of MHC I and the highest proportion of MHC IIx, whereas Blesbuck muscle had the least MHC IIx. The two Wildebeest species were intermediate in isoform content. In conclusion, when new species are studied, existing electrophoretic protocols may need to be modified to achieve quantifiable separation and isoform migration pattern must be verified in order to reach correct interpretations. Furthermore, antibody specificity may differ between techniques as well as species and needs confirmation. PMID:17631404

Kohn, Tertius A; Hoffman, Louw C; Myburgh, Kathryn H

2007-10-01

167

Myosin and actin expression and oxidation in aging muscle  

PubMed Central

While the age-related loss in muscle mass partially explains the decline in strength, other yet undefined mechanisms contribute. This study investigates whether changes in myosin-actin stoichiometry and oxidative modification could help explain the decrement in muscle strength with aging. Protein expression and oxidation were evaluated in myosin and actin isolated from the soleus and semimembranosus muscles from young adult, old, and very old Fischer 344 rats. In the soleus muscle, actin and myosin content did not change with aging. In the semimembranosus, actin content was stable, but myosin exhibited decreased content in muscles from very old rats, resulting in a decrease in the myosin-to-actin ratio. 3-Nitrotyrosine and 4-hydroxy-2-nonenal were used as markers of protein oxidative damage. Although myosin and actin are modified with 3-nitrotyrosine and 4-hydroxy-2-nonenal, the extent of chemical modification does not increase with age. The results suggest that the decline in force production with age is not due to the accumulation of these two specific markers of protein oxidation on the myofibrillar proteins. Additionally, age-dependent changes in myofibrillar stoichiometry do not contribute to the decline in force production in the soleus, but may play a role in the semimembranosus with advanced age. PMID:16840579

Thompson, LaDora V.; Durand, David; Fugere, Nicole A.; Ferrington, Deborah A.

2015-01-01

168

Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle  

NASA Astrophysics Data System (ADS)

The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

Bandman, Everett

1985-02-01

169

ATPases, ion exchangers and human sperm motility.  

PubMed

Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9×10(-9) and 9.8×10(-5)?M), which is consistent with the presence of two isoforms of ? subunit of the NKA in the sperm plasma membranes (?1 and ?4), being ?4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

2015-05-01

170

Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum  

NASA Technical Reports Server (NTRS)

Membranes from Halobacterium saccharovorum contained a cryptic ATPase which required Mg(2+) or Mn(2+) and was activated by Triton X-100. The optimal pH for ATP hydrolysis was 9-10. ATP or GTP were hydrolyzed at the same rate while ITP, CTP, and UTP were hydrolyzed at about half that rate. The products of ATP hydrolysis were ADP and phosphate. The ATPase required high concentrations (3.5 M) of NaCl for maximum activity. ADP was a competitive inhibitor of the activity, with an apparent Ki of 50 micro-M. Dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis. The inhibition was marginal at the optimum pH of the enzyme. When the ATPase was preincubated with DCCD at varying pH values, but assayed at the optimal pH for activity, DCCD inhibition was observed to increase with increasing acidity of the preincubation medium. DCCD inhibition was also dependent on time of preincubation, and protein and DCCD concentrations. When preincubated at pH 6.0 for 4 h at a protein:DCCD ratio of 40 (w/w), ATPase activity was inhibited 90 percent.

Kristjansson, H.; Hochstein, L. I.

1985-01-01

171

The mechanism of Torsin ATPase activation  

PubMed Central

Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsin–activator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism. PMID:25352667

Brown, Rebecca S. H.; Zhao, Chenguang; Chase, Anna R.; Wang, Jimin; Schlieker, Christian

2014-01-01

172

Elastic lever arm model for myosin V  

E-print Network

We present a mechanochemical model for myosin V, a two-headed processive motor protein. We derive the properties of a dimer from those of an individual head, which we model both with a 4-state cycle (detached, attached with ADP.Pi, attached with ADP and attached without nucleotide) and alternatively with a 5-state cycle (where the power stroke is not tightly coupled to the phosphate release). In each state the lever arm leaves the head at a different, but fixed, angle. The lever arm itself is described as an elastic rod. The chemical cycles of both heads are coordinated exclusively by the mechanical connection between the two lever arms. The model explains head coordination by showing that the lead head only binds to actin after the power stroke in the trail head and that it only undergoes its power stroke after the trail head unbinds from actin. Both models (4- and 5-state) reproduce the observed hand-over-hand motion and fit the measured force-velocity relations. The main difference between the two models concerns the load dependence of the run length, which is much weaker in the 5-state model. We show how systematic processivity measurement under varying conditions could be used to distinguish between both models and to determine the kinetic parameters.

Andrej Vilfan

2005-03-14

173

Chimeric domain analysis of the compatibility between H(+), K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits for the functional expression of gastric H(+),K(+)-ATPase.  

PubMed

Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase. PMID:10428793

Asano, S; Kimura, T; Ueno, S; Kawamura, M; Takeguchi, N

1999-08-01

174

Chaperone-mediated reversible inhibition of the sarcomeric myosin power stroke.  

PubMed

Molecular chaperones are required for successful folding and assembly of sarcomeric myosin in skeletal and cardiac muscle. Here, we show that the chaperone UNC-45B inhibits the actin translocation function of myosin. Further, we show that Hsp90, another chaperone involved in sarcomere development, allows the myosin to resume actin translocation. These previously unknown activities may play a key role in sarcomere development, preventing untimely myosin powerstrokes from disrupting the precise alignment of the sarcomere until it has formed completely. PMID:25240199

Nicholls, Paul; Bujalowski, Paul J; Epstein, Henry F; Boehning, Darren F; Barral, José M; Oberhauser, Andres F

2014-11-01

175

Structural basis for myosin V discrimination between distinct cargoes  

PubMed Central

Myosin V molecular motors move cargoes on actin filaments. A myosin V may move multiple cargoes to distinct places at different times. The cargoes attach to the globular tail of myosin V via cargo-specific receptors. Here we report the crystal structure at 2.2 Å of the myosin V globular tail. The overall tertiary structure has not been previously observed. There are several patches of highly conserved regions distributed on the surface of the tail. These are candidate attachment sites for cargo-specific receptors. Indeed, we identified a region of five conserved surface residues that are solely required for vacuole inheritance. Likewise, we identified a region of five conserved surface residues that are required for secretory vesicle movement, but not vacuole movement. These two regions are at opposite ends of the oblong-shaped cargo-binding domain, and moreover are offset by 180°. The fact that the cargo-binding areas are distant from each other and simultaneously exposed on the surface of the globular tail suggests that major targets for the regulation of cargo attachment are organelle-specific myosin V receptors. PMID:16437158

Pashkova, Natasha; Jin, Yui; Ramaswamy, S; Weisman, Lois S

2006-01-01

176

Collective dynamics of elastically coupled myosin V motors.  

PubMed

Characterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin. As in studies of multiple kinesins, the run lengths produced by two myosins are only slightly larger than those of single motor molecules. This suggests that internal strain within the complexes, due to asynchronous motor stepping and the resultant stretching of motor linkages, yields net negative cooperative behaviors. In contrast to multiple kinesins, multiple myosin complexes move with appreciably lower velocities than a single-myosin molecule. Although similar trends are predicted by a discrete state stochastic model of collective motor dynamics, these analyses also suggest that multiple myosin velocities and run lengths depend on both the compliance and the effective size of their cargo. Moreover, it is proposed that this unique collective behavior occurs because the large step size and relatively small stalling force of myoVa leads to a high sensitivity of motor stepping rates to strain. PMID:22718762

Lu, Hailong; Efremov, Artem K; Bookwalter, Carol S; Krementsova, Elena B; Driver, Jonathan W; Trybus, Kathleen M; Diehl, Michael R

2012-08-10

177

Tuning myosin-driven sorting on cellular actin networks  

PubMed Central

Myosin V and VI are antagonistic motors that cohabit membrane vesicles in cells. A systematic study of their collective function, however, is lacking and forms the focus of this study. We functionally reconstitute a two-dimensional actin-myosin interface using myosin V and VI precisely patterned on DNA nanostructures, in combination with a model keratocyte actin meshwork. While scaffolds display solely unidirectional movement, their directional flux is modulated by both actin architecture and the structural properties of the myosin lever arm. This directional flux can be finely-tuned by the relative number of myosin V and VI motors on each scaffold. Pairing computation with experimental observations suggests that the ratio of motor stall forces is a key determinant of the observed competitive outcomes. Overall, our study demonstrates an elegant mechanism for sorting of membrane cargo using equally matched antagonistic motors, simply by modulating the relative number of engagement sites for each motor type. DOI: http://dx.doi.org/10.7554/eLife.05472.001 PMID:25738229

Hariadi, Rizal F; Sommese, Ruth F; Sivaramakrishnan, Sivaraj

2015-01-01

178

Collective Dynamics of Elastically Coupled Myosin V Motors*  

PubMed Central

Characterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin. As in studies of multiple kinesins, the run lengths produced by two myosins are only slightly larger than those of single motor molecules. This suggests that internal strain within the complexes, due to asynchronous motor stepping and the resultant stretching of motor linkages, yields net negative cooperative behaviors. In contrast to multiple kinesins, multiple myosin complexes move with appreciably lower velocities than a single-myosin molecule. Although similar trends are predicted by a discrete state stochastic model of collective motor dynamics, these analyses also suggest that multiple myosin velocities and run lengths depend on both the compliance and the effective size of their cargo. Moreover, it is proposed that this unique collective behavior occurs because the large step size and relatively small stalling force of myoVa leads to a high sensitivity of motor stepping rates to strain. PMID:22718762

Lu, Hailong; Efremov, Artem K.; Bookwalter, Carol S.; Krementsova, Elena B.; Driver, Jonathan W.; Trybus, Kathleen M.; Diehl, Michael R.

2012-01-01

179

Comprehensive physical mechanism of two-headed biomotor myosin V  

NASA Astrophysics Data System (ADS)

Two-headed biomotor myosin V autonomously coordinates its two identical heads in fuel consumption and mechanical stepping, so that the dimerized motor as a whole gains the capability of processive, unidirectional movement along cytoskeletal filament. How the dimer-level functions like sustained direction rectification and autonomous coordination emerge out of physical principles poses an outstanding question pertinent to motor protein biology as well as the nascent field of bioinspired nanomotors. Here the comprehensive physical mechanism for myosin V motor is identified by a dimer-level free-energy analysis that is methodologically calibrated against experimental data. A hallmark of the identified mechanism is a mechanically mediated symmetry breaking that occurs at the dimer level and prevails against ubiquitous thermal fluctuations. Another character is the onset of substantial free-energy gaps between major dimer-track binding configurations. The symmetry breaking is the basis for myosin V's directional rectification, and the energy gaps facilitate autonomous head-head coordination. The mechanism explains the experimental finding that myosin V makes ATP-independent consecutive steps under high opposing loads but not under pushing loads. Interestingly, myosin V and another major biomotor kinesin 1 are found to share essentially the same core mechanism but for distinctly different working regimes.

Xu, Yuzhi; Wang, Zhisong

2009-12-01

180

Myosin II-Mediated Focal Adhesion Maturation Is Tension Insensitive  

PubMed Central

Myosin II motors drive changes in focal adhesion morphology and composition in a “maturation process” that is crucial for regulating adhesion dynamics and signaling guiding cell adhesion, migration and fate. The underlying mechanisms of maturation, however, have been obscured by the intermingled effects of myosin II on lamellar actin architecture, dynamics and force transmission. Here, we show that focal adhesion growth rate stays constant even when cellular tension is reduced by 75%. Focal adhesion growth halts only when myosin stresses are sufficiently low to impair actin retrograde flow. Focal adhesion lifetime is reduced at low levels of cellular tension, but adhesion stability can be rescued at low levels of force by over-expression of ?-actinin or constitutively active Dia1. Our work identifies a minimal myosin activity threshold that is necessary to drive lamellar actin retrograde flow is sufficient to permit focal adhesion elongation. Above this nominal threshold, myosin-mediated actin organization and dynamics regulate focal adhesion growth and stability in a force-insensitive fashion. PMID:23923013

Stricker, Jonathan; Beckham, Yvonne; Davidson, Michael W.; Gardel, Margaret L.

2013-01-01

181

Dissecting the N-terminal myosin binding site of human cardiac myosin-binding protein C. Structure and myosin binding of domain C2.  

PubMed

Myosin-binding protein C (MyBP-C) binds to myosin with two binding sites, one close to the N terminus and the other at the C terminus. Here we present the solution structure of one part of the N-terminal binding site, the third immunoglobulin domain of the cardiac isoform of human MyBP-C (cC2) together with a model of its interaction with myosin. Domain cC2 has the beta-sandwich structure expected from a member of the immunoglobulin fold. The C-terminal part of the structure of cC2 is very closely related to telokin, the myosin binding fragment of myosin light chain kinase. Domain cC2 also contains two cysteines on neighboring strands F and G, which would be able to form a disulfide bridge in a similar position as in telokin. Using NMR spectroscopy and isothermal titration calorimetry we demonstrate that cC2 alone binds to a fragment of myosin, S2Delta, with low affinity (kD = 1.1 mM) but exhibits a highly specific binding site. This consists of the C-terminal surface of the C'CFGA' beta-sheet, which includes Glu(301), a residue mutated to Gln in the disease familial hypertrophic cardiomyopathy. The binding site on S2 was identified by a combination of NMR binding experiments of cC2 with S2Delta containing the cardiomyopathy-linked mutation R870H and molecular modeling. This mutation lowers the binding affinity and changes the arrangement of side chains at the interface. Our model of the cC2-S2Delta complex gives a first glimpse of details of the MyBP-C-myosin interaction. Using this model we suggest that most key interactions are between polar amino acids, explaining why the mutations E301Q in cC2 and R870H in S2Delta could be involved in cardiomyopathy. We expect that this model will stimulate future research to further refine the details of this interaction and their importance for cardiomyopathy. PMID:17192269

Ababou, Abdessamad; Gautel, Mathias; Pfuhl, Mark

2007-03-23

182

Muscle activity and aging affect myosin structural distribution and force generation in rat fibers  

E-print Network

Muscle activity and aging affect myosin structural distribution and force generation in rat fibers. Snow, LaDora V. Thompson, and David D. Thomas. Muscle activity and aging affect myosin structural muscle activity could reverse myosin structural alterations that occur in aged rat muscle and whether

Thomas, David D.

183

The case for a common ancestor: kinesin and myosin motor proteins and G proteins  

E-print Network

The case for a common ancestor: kinesin and myosin motor proteins and G proteins F. JON KULL1 , 2 surprising structural and functional similarities between the motor domains of kinesin and myosin. Common and myosin, and possibly G proteins, are probably directly related via divergent evolution from a common core

Vale, Ronald D.

184

Rigor to Post-Rigor Transition in Myosin V: Link between the Dynamics and the  

E-print Network

into large scale conformational changes and mechanical work. Myosin family belongs to a class of molecular motors in which the chemical energy is efficiently converted to mechanical work. All known myosins, which domain, which is linked to a long lever arm, thus allowing for small changes in the myosin structure

Thirumalai, Devarajan

185

Dynamics of Myosin-V Processivity Ganhui Lan* and Sean X. Sun*y  

E-print Network

, the hydrolysis mechanism and move- ment of the lever-arm for the ordinary myosin-II (Howard, 2001) is applicableDynamics of Myosin-V Processivity Ganhui Lan* and Sean X. Sun*y *Department of Mechanical that myosin-V walks in a stepwise fashion with occasional backward steps. By combining the mechanical

Sun, Sean

186

Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains  

PubMed Central

Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid sequence identity with a 723-aa protein from mouse brain reported to be a glutamic acid decarboxylase. The neck region of chicken myosin-V, which contains the IQ-motifs, was demonstrated to contain the binding sites for CM by analyzing CM binding to bacterially expressed fusion proteins containing the head, neck, and tail domains. Immunolocalization of myosin-V in brain and in cultured cells revealed an unusual distribution for this myosin in both neurons and nonneuronal cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1469047

1992-01-01

187

Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism.  

PubMed

Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration. PMID:25122766

Chen, Chen; Tao, Tao; Wen, Cheng; He, Wei-Qi; Qiao, Yan-Ning; Gao, Yun-Qian; Chen, Xin; Wang, Pei; Chen, Cai-Ping; Zhao, Wei; Chen, Hua-Qun; Ye, An-Pei; Peng, Ya-Jing; Zhu, Min-Sheng

2014-10-10

188

Myosin domain evolution and the primary divergence of eukaryotes.  

PubMed

Eukaryotic cells have two contrasting cytoskeletal and ciliary organizations. The simplest involves a single cilium-bearing centriole, nucleating a cone of individual microtubules (probably ancestral for unikonts: animals, fungi, Choanozoa and Amoebozoa). In contrast, bikonts (plants, chromists and all other protozoa) were ancestrally biciliate with a younger anterior cilium, converted every cell cycle into a dissimilar posterior cilium and multiple ciliary roots of microtubule bands. Here we show by comparative genomic analysis that this fundamental cellular dichotomy also involves different myosin molecular motors. We found 37 different protein domain combinations, often lineage-specific, and many previously unidentified. The sequence phylogeny and taxonomic distribution of myosin domain combinations identified five innovations that strongly support unikont monophyly and the primary bikont/unikont bifurcation. We conclude that the eukaryotic cenancestor (last common ancestor) had a cilium, mitochondria, pseudopodia, and myosins with three contrasting domain combinations and putative functions. PMID:16121172

Richards, Thomas A; Cavalier-Smith, Thomas

2005-08-25

189

Electrostatic origin of the unidirectionality of walking myosin V motors.  

PubMed

Understanding the basis for the action of myosin motors and related molecular machines requires a quantitative energy-based description of the overall functional cycle. Previous theoretical attempts to do so have provided interesting insights on parts of the cycle but could not generate a structure-based free energy landscape for the complete cycle of myosin. In particular, a nonphenomenological structure/energy-based understanding of the unidirectional motion is still missing. Here we use a coarse-grained model of myosin V and generate a structure-based free energy surface of the largest conformational change, namely the transition from the post- to prepowerstroke movement. We also couple the observed energetics of ligand binding/hydrolysis and product release to that of the conformational surface and reproduce the energetics of the complete mechanochemical cycle. It is found that the release in electrostatic free energy upon changing the conformation of the lever arm and the convertor domain from its post- to prepowerstroke state provides the necessary energy to bias the system towards the unidirectional movement of myosin V on the actin filament. The free energy change of 11 kcal is also in the range of ?2-3 pN, which is consistent with the experimentally observed stalling force required to stop the motor completely on its track. The conformational-chemical coupling generating a successful powerstroke cycle is believed to be conserved among most members of the myosin family, thus highlighting the importance of the previously unknown role of electrostatics free energy in guiding the functional cycle in other actin-based myosin motors. PMID:24106304

Mukherjee, Shayantani; Warshel, Arieh

2013-10-22

190

Electrostatic origin of the unidirectionality of walking myosin V motors  

PubMed Central

Understanding the basis for the action of myosin motors and related molecular machines requires a quantitative energy-based description of the overall functional cycle. Previous theoretical attempts to do so have provided interesting insights on parts of the cycle but could not generate a structure-based free energy landscape for the complete cycle of myosin. In particular, a nonphenomenological structure/energy-based understanding of the unidirectional motion is still missing. Here we use a coarse-grained model of myosin V and generate a structure-based free energy surface of the largest conformational change, namely the transition from the post- to prepowerstroke movement. We also couple the observed energetics of ligand binding/hydrolysis and product release to that of the conformational surface and reproduce the energetics of the complete mechanochemical cycle. It is found that the release in electrostatic free energy upon changing the conformation of the lever arm and the convertor domain from its post- to prepowerstroke state provides the necessary energy to bias the system towards the unidirectional movement of myosin V on the actin filament. The free energy change of 11 kcal is also in the range of ?2–3 pN, which is consistent with the experimentally observed stalling force required to stop the motor completely on its track. The conformational-chemical coupling generating a successful powerstroke cycle is believed to be conserved among most members of the myosin family, thus highlighting the importance of the previously unknown role of electrostatics free energy in guiding the functional cycle in other actin-based myosin motors. PMID:24106304

Mukherjee, Shayantani; Warshel, Arieh

2013-01-01

191

Myosin Binding Protein C Positioned to Play a Key Role in Regulation of Muscle Contraction: Structure and Interactions of Domain C1  

PubMed Central

Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1–S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10–20 ?M) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1–S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1–C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation. PMID:18926831

Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Masurier, Clare Le; Gautel, Mathias; Pfuhl, Mark

2008-01-01

192

Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1.  

PubMed

Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1-S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (K(d) of approximately 10-20 microM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1-S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1-C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation. PMID:18926831

Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Le Masurier, Clare; Gautel, Mathias; Pfuhl, Mark

2008-12-19

193

The Smooth Muscle Myosin Seven Amino Acid Heavy Chain Insert's Kinetic Role in the Crossbridge Cycle for Mouse Bladder  

PubMed Central

The seven amino acid insert in the smooth muscle myosin heavy chain is thought to regulate the kinetics of contraction, contributing to the differences between fast and slow smooth muscle. The effects of this insert on force and stiffness were determined in bladder tissue of a transgenic mouse line expressing the insert SMB at one of three levels: an SMB wild type (+/+), an SMA homozygous type (?/?) and a heterozygous type (+/?). For skinned muscle, an increase in MgADP or inorganic phosphate (Pi) should shift the distribution of crossbridges in the actomyosin ATPase (AMATPase) to increase the relative population of the crossbridge state prior to ADP release and Pi release, respectively. Exogenous ADP increased force and stiffness in a manner consistent with increasing the Ca2+ concentration in both the +/+ and +/? mouse types. However, the ?/? type showed a significantly greater increase in force than in stiffness suggesting that immediately prior to ADP release, the AMATPase either has an additional force producing isomerization state or a slower ADP dissociation rate for the ?/? type compared to the +/+ or +/? types. Exogenous Pi led to a significantly greater decrease in stiffness than in force for all three mouse types suggesting that there is a force producing state prior to Pi release. In addition, the increase in Pi showed similar changes in the +/+ and ?/? types whereas in the +/? type the decreases in both force and stiffness were greater than the other two mouse types indicating that the insert can affect the cooperativity between myosin heads. In conclusion, the seven amino acid insert modulates the kinetics and/or states of the AMATPase, which could lead to differences in the kinetics of contraction between fast and slow smooth muscle. PMID:12562924

Karagiannis, Peter; Babu, Gopal J; Periasamy, Muthu; Brozovich, Frank V

2003-01-01

194

Four novel myosin heavy chain transcripts define a molecular basis for muscle fibre types in Rana pipiens  

PubMed Central

Differential expression of myosin heavy chain (MHC) isoforms dramatically affects mechanical and energetic properties of skeletal muscle fibre types. As many as five different fibre types, each with different mechanical properties, have been reported in frog hindlimb muscles. However, only two frog MHC isoforms have previously been detected by SDS-PAGE and only one adult hindlimb MHC isoform has been cloned. In the present study, four different fibre types (type 1, type 2, type 3 and tonic) were initially identified in adult Ranapipiens anterior tibialis muscle based on myosin ATPase histochemistry, size and location. Each fibre type exhibited unique reactivity to a panel of MHC monoclonal antibodies. Single fibre analysis using SDS-PAGE revealed that MHCs from immunohistochemically defined type 1, type 2 and type 3 fibres ran as three distinct isoform bands, while MHC of tonic fibres co-migrated with type 1 MHC. The combined data from immunohistochemistry and SDS-PAGE suggests that Rana fibre types are composed of four different MHCs. Four novel MHC cDNAs were cloned and expression of the corresponding transcripts was measured in single immuno-identified fibres using specific polymerase chain reaction (PCR) primer pairs. Each of the four transcripts was found to be primarily expressed in a different one of the four fibre types. Coexpression of MHC isoforms was observed only between types 1/2 and types 2/3 at both the protein and mRNA level. These data provide a molecular basis for differentiation between frog fibre types and permit future molecular studies of MHC structure/function and gene regulation in this classic physiological system. Comparison of sequence homology among amphibian, avian and mammalian MHC families supports the concept of independent evolution of fast MHC genes within vertebrate classes subsequent to the amphibian/avian/mammalian radiation. PMID:9518724

Lutz, Gordon J; Cuizon, Denise B; Ryan, Allen F; Lieber, Richard L

1998-01-01

195

Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus.  

PubMed

Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection. PMID:25329993

Amari, Khalid; Di Donato, Martin; Dolja, Valerian V; Heinlein, Manfred

2014-10-01

196

Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus  

PubMed Central

Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection. PMID:25329993

Amari, Khalid; Di Donato, Martin; Dolja, Valerian V.; Heinlein, Manfred

2014-01-01

197

The in vitro motility activity of ?-cardiac myosin depends on the nature of the ?-myosin heavy chain gene mutation in hypertrophic cardiomyopathy  

Microsoft Academic Search

Several mutations in the ?-myosin heavy chain gene cause hypertrophic cardiomyopathy. This study investigates (1) the in vitro\\u000a velocities of translocation of fluorescently-labelled actin by ?-myosin purified from soleus muscle of 30 hypertrophic cardiomyopathy\\u000a patients with seven distinct ?-myosin heavy chain gene mutations: Thr124Ile, Tyr162Cys, Gly256Glu, Arg403Gln, Val606Met, Arg870His,\\u000a and Leu908Val mutations; and (2) motility activity of ?-myosin purified from

GIOVANNI CUDA; LAMEH FANANAPAZIR; NEAL D. EPSTEIN; JAMES R. SELLERS

1997-01-01

198

Regulation of Luminal Acidification by the V-ATPase  

PubMed Central

Specialized cells in the body express high levels of V-ATPase in their plasma membrane and respond to hormonal and nonhormonal cues to regulate extracellular acidification. Mutations in or loss of some V-ATPase subunits cause several disorders, including renal distal tubular acidosis and male infertility. This review focuses on the regulation of V-ATPase-dependent luminal acidification in renal intercalated cells and epididymal clear cells, which are key players in these physiological processes. PMID:23997191

Brown, Dennis

2013-01-01

199

Evolution of proton pumping ATPases: Rooting the tree of life  

Microsoft Academic Search

Proton pumping ATPases are found in all groups of present day organisms. The F-ATPases of eubacteria, mitochondria and chloroplasts also function as ATP synthases, i.e., they catalyze the final step that transforms the energy available from reduction\\/oxidation reactions (e.g., in photosynthesis) into ATP, the usual energy currency of modern cells. The primary structure of these ATPases\\/ATP synthases was found to

Johann Peter Gogarten; Lincoln Taiz

1992-01-01

200

Evolution of structure and function of V-ATPases  

Microsoft Academic Search

Proton pumping ATPases\\/ATPsynthases are found in all groups of present-day organisms. The structure of V- and F-type ATPases\\/ATP synthases is very conserved throughout evolution. Sequence analysis shows that the V- and F-type ATPases evolved from the same enzyme already present in the last common ancestor of all known extant life forms. The catalytic and noncatalytic subunits found in the dissociable

Henrik Kibak; Lincoln Taiz; Thomas Starke; Paul Bernasconi; Johann Peter Gogarten

1992-01-01

201

cGMP-dependent protein kinase I? regulates breast cancer cell migration and invasion via interaction with the actin/myosin-associated protein caldesmon.  

PubMed

The two isoforms of type I cGMP-dependent protein kinase (PKGI? and PKGI?) differ in their first ?100 amino acids, giving each isoform unique dimerization and autoinhibitory domains. The dimerization domains form coiled-coil structures and serve as platforms for isoform-specific protein-protein interactions. Using the PKGI? dimerization domain as an affinity probe in a proteomic screen, we identified the actin/myosin-associated protein caldesmon (CaD) as a PKGI?-specific binding protein. PKGI? phosphorylated human CaD on serine 12 in vitro and in intact cells. Phosphorylation on serine 12 or mutation of serine 12 to glutamic acid (S12E) reduced the interaction between CaD and myosin IIA. Because CaD inhibits myosin ATPase activity and regulates cell motility, we examined the effects of PKGI? and CaD on cell migration and invasion. Inhibition of the NO/cGMP/PKG pathway reduced migration and invasion of human breast cancer cells, whereas PKG activation enhanced their motility and invasion. siRNA-mediated knockdown of endogenous CaD had pro-migratory and pro-invasive effects in human breast cancer cells. Reconstituting cells with wild-type CaD slowed migration and invasion; however, CaD containing a phospho-mimetic S12E mutation failed to reverse the pro-migratory and pro-invasive activity of CaD depletion. Our data suggest that PKGI? enhances breast cancer cell motility and invasive capacity, at least in part, by phosphorylating CaD. These findings identify a pro-migratory and pro-invasive function for PKGI? in human breast cancer cells, suggesting that PKGI? is a potential target for breast cancer treatment. PMID:23418348

Schwappacher, Raphaela; Rangaswami, Hema; Su-Yuo, Jacqueline; Hassad, Aaron; Spitler, Ryan; Casteel, Darren E

2013-04-01

202

cGMP-dependent protein kinase I? regulates breast cancer cell migration and invasion via interaction with the actin/myosin-associated protein caldesmon  

PubMed Central

Summary The two isoforms of type I cGMP-dependent protein kinase (PKGI? and PKGI?) differ in their first ?100 amino acids, giving each isoform unique dimerization and autoinhibitory domains. The dimerization domains form coiled-coil structures and serve as platforms for isoform-specific protein–protein interactions. Using the PKGI? dimerization domain as an affinity probe in a proteomic screen, we identified the actin/myosin-associated protein caldesmon (CaD) as a PKGI?-specific binding protein. PKGI? phosphorylated human CaD on serine 12 in vitro and in intact cells. Phosphorylation on serine 12 or mutation of serine 12 to glutamic acid (S12E) reduced the interaction between CaD and myosin IIA. Because CaD inhibits myosin ATPase activity and regulates cell motility, we examined the effects of PKGI? and CaD on cell migration and invasion. Inhibition of the NO/cGMP/PKG pathway reduced migration and invasion of human breast cancer cells, whereas PKG activation enhanced their motility and invasion. siRNA-mediated knockdown of endogenous CaD had pro-migratory and pro-invasive effects in human breast cancer cells. Reconstituting cells with wild-type CaD slowed migration and invasion; however, CaD containing a phospho-mimetic S12E mutation failed to reverse the pro-migratory and pro-invasive activity of CaD depletion. Our data suggest that PKGI? enhances breast cancer cell motility and invasive capacity, at least in part, by phosphorylating CaD. These findings identify a pro-migratory and pro-invasive function for PKGI? in human breast cancer cells, suggesting that PKGI? is a potential target for breast cancer treatment. PMID:23418348

Schwappacher, Raphaela; Rangaswami, Hema; Su-Yuo, Jacqueline; Hassad, Aaron; Spitler, Ryan; Casteel, Darren E.

2013-01-01

203

Engineering myosins for long-range transport on actin filaments  

NASA Astrophysics Data System (ADS)

Cytoskeletal motors act as cargo transporters in cells and may be harnessed for directed transport applications in molecular detection and diagnostic devices. High processivity, the ability to take many steps along a track before dissociating, is often a desirable characteristic because it allows nanoscale motors to transport cargoes over distances on the scale of micrometres, in vivo and in vitro. Natural processive myosins are dimeric and use internal tension to coordinate the detachment cycles of the two heads. Here, we show that processivity can be enhanced in engineered myosins using two non-natural strategies designed to optimize the effectiveness of random, uncoordinated stepping: (1) the formation of three-headed and four-headed myosins and (2) the introduction of flexible elements between heads. We quantify improvements using systematic single-molecule characterization of a panel of engineered motors. To test the modularity of our approach, we design a controllably bidirectional myosin that is robustly processive in both forward and backward directions, and also produce the fastest processive cytoskeletal motor measured so far, reaching a speed of 10 µm s-1.

Schindler, Tony D.; Chen, Lu; Lebel, Paul; Nakamura, Muneaki; Bryant, Zev

2014-01-01

204

Force generation by kinesin and myosin cytoskeletal motor proteins  

PubMed Central

Summary Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central ?-sheet – proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins – is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, explaining the essential role of switch I in hydrolysis. Comparison of the motor power strokes reveals that each stroke begins with the force-amplifying structure oriented opposite to the direction of rotation or swing. Motors undergo changes in their mechanochemical cycles in response to small-molecule inhibitors, several of which bind to kinesins by induced fit, trapping the motors in a state that resembles a force-producing conformation. An unusual motor activator specifically increases mechanical output by cardiac myosin, potentially providing valuable information about its mechanism of function. Further study is essential to understand motor mechanochemical coupling and energy transduction, and could lead to new therapies to treat human disease. PMID:23487037

Kull, F. Jon; Endow, Sharyn A.

2013-01-01

205

Force generation by kinesin and myosin cytoskeletal motor proteins.  

PubMed

Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central ?-sheet - proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins - is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, explaining the essential role of switch I in hydrolysis. Comparison of the motor power strokes reveals that each stroke begins with the force-amplifying structure oriented opposite to the direction of rotation or swing. Motors undergo changes in their mechanochemical cycles in response to small-molecule inhibitors, several of which bind to kinesins by induced fit, trapping the motors in a state that resembles a force-producing conformation. An unusual motor activator specifically increases mechanical output by cardiac myosin, potentially providing valuable information about its mechanism of function. Further study is essential to understand motor mechanochemical coupling and energy transduction, and could lead to new therapies to treat human disease. PMID:23487037

Kull, F Jon; Endow, Sharyn A

2013-01-01

206

Rotational model for actin filament alignment by myosin.  

PubMed

Dynamics of the actomyosin cytoskeleton regulate cellular processes such as secretion, cell division, cell motility, and shape change. Actomyosin dynamics are themselves regulated by proteins that control actin filament polymerization and depolymerization, and myosin motor contractility. Previous theoretical work has focused on translational movement of actin filaments but has not considered the role of filament rotation. Since filament rotational movements are likely sources of forces that direct cell shape change and movement we explicitly model the dynamics of actin filament rotation as myosin II motors traverse filament pairs, drawing them into alignment. Using Monte Carlo simulations we find an optimal motor velocity for alignment of actin filaments. In addition, when we introduce polymerization and depolymerization of actin filaments, we find that alignment is reduced and the filament arrays exist in a stable, asynchronous state. Further analysis with continuum models allows us to investigate factors contributing to the stability of filament arrays and their ability to generate force. Interestingly, we find that two different morphologies of F-actin arrays generate the same amount of force. We also identify a phase transition to alignment which occurs when either polymerization rates are reduced or motor velocities are optimized. We have extended our analysis to include a maximum allowed stretch of the myosin motors, and a non-uniform length for filaments leading to little change in the qualitative results. Through the integration of simulations and continuum analysis, we are able to approach the problem of understanding rotational alignment of actin filaments by myosin II motors. PMID:22326473

Miller, Callie J; Bard Ermentrout, G; Davidson, Lance A

2012-05-01

207

Engineering myosins for long-range transport on actin filaments.  

PubMed

Cytoskeletal motors act as cargo transporters in cells and may be harnessed for directed transport applications in molecular detection and diagnostic devices. High processivity, the ability to take many steps along a track before dissociating, is often a desirable characteristic because it allows nanoscale motors to transport cargoes over distances on the scale of micrometres, in vivo and in vitro. Natural processive myosins are dimeric and use internal tension to coordinate the detachment cycles of the two heads. Here, we show that processivity can be enhanced in engineered myosins using two non-natural strategies designed to optimize the effectiveness of random, uncoordinated stepping: (1) the formation of three-headed and four-headed myosins and (2) the introduction of flexible elements between heads. We quantify improvements using systematic single-molecule characterization of a panel of engineered motors. To test the modularity of our approach, we design a controllably bidirectional myosin that is robustly processive in both forward and backward directions, and also produce the fastest processive cytoskeletal motor measured so far, reaching a speed of 10 µm s(-1). PMID:24240432

Schindler, Tony D; Chen, Lu; Lebel, Paul; Nakamura, Muneaki; Bryant, Zev

2014-01-01

208

Developmental Cell a-Catenin and IQGAP Regulate Myosin  

E-print Network

Tube Morphogenesis in Dictyostelium Daniel J. Dickinson,1,6 Douglas N. Robinson,5 W. James Nelson,1 is required for proper morphogenesis. IQGAP1 and its binding partner cortexillin I function downstream of a of myosin II. Deletion of IQGAP1 or cortexillin compro- mises epithelial morphogenesis without affecting

Robinson, Douglas N.

209

Optical trapping studies of acto-myosin motor proteins  

NASA Astrophysics Data System (ADS)

Optical tweezers have been used extensively to measure the mechanical properties of individual biological molecules. Over the past 10-15 years optical trapping studies have revealed important information about the way in which motor proteins convert chemical energy to mechanical work. This paper focuses on studies of the acto-myosin motor system that is responsible for muscle contraction and a host of other cellular motilities. Myosin works by binding to filamentous actin, pulling and then releasing. Each cycle of interaction produces a few nanometres movement and a few piconewtons force. Individual interactions can be observed directly by holding an individual actin filament between two optically trapped microspheres and positioning it in the immediate vicinity of a single myosin motor. When the chemical fuel (adenosine triphosphate or ATP) is present the myosin undergoes repeated cycles of interaction with the actin filament producing square-wave like displacements and forces. Analysis of optical trapping data sets enables the size and timing of the molecular motions to be deduced.

Farrow, Rachel E.; Rosenthal, Peter B.; Mashanov, Gregory I.; Holder, Anthony A.; Molloy, Justin E.

2007-09-01

210

Cooperative folding of muscle myosins: I. Mechanical model.  

E-print Network

with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard and Simmons (HS) model of fast force recovery in skeletal muscles by assuming that each cross-bridge is a hardCooperative folding of muscle myosins: I. Mechanical model. M. Caruel,1 J.-M. Allain,2 and L

Paris-Sud XI, Université de

211

Dynamics of the unbound head during myosin V  

E-print Network

, a trait that likely facilitates travel through crowded actin meshworks. Myosin V (M5) functions as a dimer the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold release the actin filament and travel forward before rebinding. It is not known whether the temporarily

Spudich, James A.

212

Structural divergence between the two subgroups of P5 ATPases.  

PubMed

Evolution of P5 type ATPases marks the origin of eukaryotes but still they remain the least characterized pumps in the superfamily of P-type ATPases. Phylogenetic analysis of available sequences suggests that P5 ATPases should be divided into at least two subgroups, P5A and P5B. P5A ATPases have been identified in the endoplasmic reticulum and seem to have basic functions in protein maturation and secretion. P5B ATPases localize to vacuolar/lysosomal or apical membranes and in animals play a role in hereditary neuronal diseases. Here we have used a bioinformatical approach to identify differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially. Together these findings indicate that P5A and P5B ATPases are structurally and functionally different. PMID:20416272

Sørensen, Danny Mollerup; Buch-Pedersen, Morten J; Palmgren, Michael Gjedde

2010-01-01

213

Stabilization of the ADP/Metaphosphate Intermediate during ATP Hydrolysis in Pre-power Stroke Myosin  

PubMed Central

It has been proposed recently that ATP hydrolysis in ATPase enzymes proceeds via an initial intermediate in which the dissociated ?-phosphate of ATP is bound in the protein as a metaphosphate (P?O3?). A combined quantum/classical analysis of this dissociated nucleotide state inside myosin provides a quantitative understanding of how the enzyme stabilizes this unusual metaphosphate. Indeed, in vacuum, the energy of the ADP3?·P?O3?·Mg2+ complex is much higher than that of the undissociated ATP4?. The protein brings it to a surprisingly low value. Energy decomposition reveals how much each interaction in the protein stabilizes the metaphosphate state; backbone peptides of the P-loop contribute 50% of the stabilization energy, and the side chain of Lys-185+ contributes 25%. This can be explained by the fact that these groups make strong favorable interactions with the ?- and ?-phosphates, thus favoring the charge distribution of the metaphosphate state over that of the ATP state. Further stabilization (16%) is achieved by a hydrogen bond between the backbone C=O of Ser-237 (on loop Switch-1) and a water molecule perfectly positioned to attack the P?O3? in the subsequent hydrolysis step. The planar and singly negative P?O3? is a much better target for the subsequent nucleophilic attack by a negatively charged OH? than the tetrahedral and doubly negative P?O42? group of ATP. Therefore, we argue that the present mechanism of metaphosphate stabilization is common to the large family of nucleotide-hydrolyzing enzymes. Methodologically, this work presents a computational approach that allows us to obtain a truly quantitative conception of enzymatic strategy. PMID:24165121

Kiani, Farooq Ahmad; Fischer, Stefan

2013-01-01

214

Earning Stripes: Myosin Binding Protein-C Interactions with Actin  

PubMed Central

Myosin binding protein-C (MyBP-C) was first discovered as an impurity during the purification of myosin from skeletal muscle. However, soon after its discovery MyBP-C was also shown to bind actin. While the unique functional implications for a protein that could cross-link thick and thin filaments together were immediately recognized, most early research nonetheless focused on interactions of MyBP-C with the thick filament. This was in part because interactions of MyBP-C with the thick filament could adequately explain most (but not all) effects of MyBP-C on actomyosin interactions and in part because the specificity of actin binding was uncertain. However, numerous recent studies have now established that MyBP-C can indeed bind to actin through multiple binding sites, some of which are highly specific. Many of these interactions involve critical regulatory domains of MyBP-C that are also reported to interact with myosin. Here we review current evidence supporting MyBP-C interactions with actin and discuss these findings in terms of their ability to account for the functional effects of MyBP-C. We conclude that the influence of MyBP-C on muscle contraction can be explained equally well by interactions with actin as by interactions with myosin. However, because data showing that MyBP-C binds to either myosin or actin has come almost exclusively from in vitro biochemical studies, the challenge for future studies is to define which binding partner(s) MyBP-C interacts with in vivo. PMID:24442149

van Dijk, Sabine J.; Bezold, Kristina L.; Harris, Samantha P.

2015-01-01

215

Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays  

SciTech Connect

The H translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ approx. = 70,000 and approx. = 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-( UC)ethylmaleimide and 7-chloro-4-nitro( UC)benzo-2-oxa-1,3-diazole, labeled the M/sub r/ approx. = 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-( UC)dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ approx. = 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10V, 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ approx. = 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F0F1 ATPases.

Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

1986-01-01

216

The different roles of myosin IIA and myosin IIB in contraction of 3D collagen matrices by human fibroblasts.  

PubMed

Contraction of 3D collagen matrices by fibroblasts frequently is used as an in vitro model of wound closure. Different iterations of the model - all conventionally referred to as "contraction" - involve different morphological patterns. During floating matrix contraction, cells initially are round without stress fibers and subsequently undergo spreading. During stressed matrix contraction, cells initially are spread with stress fibers and subsequently undergo shortening. In the current studies, we used siRNA silencing of myosin IIA (MyoIIA) and myosin IIB (MyoIIB) to test the roles of myosin II isoforms in fibroblast interactions with 3D collagen matrices and collagen matrix contraction. We found that MyoIIA but not MyoIIB was required for cellular global inward contractile force, formation of actin stress fibers, and morphogenic cell clustering. Stressed matrix contraction required MyoIIA but not MyoIIB. Either MyoIIA or MyoIIB was sufficient for floating matrix contraction (FMC) stimulated by platelet-derived growth factor. Neither MyoIIA or MyoIIB was necessary for FMC stimulated by serum. Our findings suggest that myosin II-dependent motor mechanisms for collagen translocation during extracellular matrix remodeling differ depending on cell tension and growth factor stimulation. PMID:24768700

Liu, Zhenan; Ho, Chin-Han; Grinnell, Frederick

2014-08-15

217

Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains  

Microsoft Academic Search

Abstract. Recent biochemical studies of p190, a cal- modulin,(CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of prop- erties with myosins (Espindola, E S., E. M. Esprea- rico, M. V. Coelho, A. R. Martins, E R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J.

Enilza M. Espreafico; Richard E. Cheney; Michela Matteoli; Alexandra A. C. Nascimento; Pietro V. De Camilli; Roy E. Larson; Mark S. Mooseker

1992-01-01

218

Ecto-ATPase activity of vertebrate blood cells.  

PubMed

Ecto-ATPase activity was measured for red blood cells, white blood cells, and whole blood from a variety of vertebrates. A large range of red blood cell ecto-ATPase activity was observed; for example, at 10 degrees C, red blood cells from a catastomid fish (Catostomus macrocheilus) and a newt (Taricha rivularis) had activities of 56 +/- 9 and 25,000,000 +/- 14,000,000 pmol ATP per 10(6) red blood cells per hour, respectively (mean +/- SD). Several control experiments verified that the measured ATPase activity was not the result of intracellular ATPases released due to cell damage or lysis nor due to the release of intracellular nucleoside triphosphate or uptake of extracellular ATP. Red blood cell ecto-ATPase activity was relatively low within the teleosts, was high within the reptiles, and had the greatest range and single highest value within the amphibians. Within the endotherms, avian red blood cell ecto-ATPase activities were greater than mammalian red blood cell ecto-ATPase activities, which were the lowest for all vertebrates examined. The lowest ecto-ATPase activities measured were for human and skunk red blood cells, which had activities of 13 +/- 1 and 11 +/- 2 pmol ATP per 10(6) red blood cells per hour, respectively, at 35 degrees C. Ecto-ATPase activity was measured in white blood cells of several vertebrate species and appeared generally high and less variable than red blood cell ecto-ATPase activity. Measured whole blood ecto-ATPase activity showed a range of three orders of magnitude and correlated positively with red blood cell ecto-ATPase activities. Ecto-ATPase activity was also determined for red blood cells from fetal, 1-3 d old neonatal, and pregnant garter snakes (Thamnophis elegans); these activities were not significantly different from the activity of red blood cells from nonpregnant adult females. Overall, the data from the present study demonstrate a wide range of red blood cell and whole blood ecto-ATPase activities among vertebrates and include some of the highest ecto-ATPase activities reported to date. PMID:9361136

Bencic, D C; Yates, T J; Ingermann, R L

1997-01-01

219

Evolution and isoforms of V-ATPase subunits.  

PubMed

The structure of V- and F-ATPases/ATP synthases is remarkably conserved throughout evolution. Sequence analyses show that the V- and F-ATPases evolved from the same enzyme that was already present in the last common ancestor of all known extant life forms. The catalytic and non-catalytic subunits found in the dissociable head groups of both V-ATPases and F-ATPases are paralogous subunits, i.e. these two types of subunits evolved from a common ancestral gene. The gene duplication giving rise to these two genes (i.e. those encoding the catalytic and non-catalytic subunits) pre-dates the time of the last common ancestor. Similarities between the V- and F-ATPase subunits and an ATPase-like protein that is implicated in flagellar assembly are evaluated with regard to the early evolution of ATPases. Mapping of gene duplication events that occurred in the evolution of the proteolipid, the non-catalytic and the catalytic subunits onto the tree of life leads to a prediction of the likely quaternary structure of the encoded ATPases. The phylogenetic implications of V-ATPases found in eubacteria are discussed. Different V-ATPase isoforms have been detected in some higher eukaryotes, whereas others were shown to have only a single gene encoding the catalytic V-ATPase subunit. These data are analyzed with respect to the possible function of the different isoforms (tissue-specific, organelle-specific). The point in evolution at which the different isoforms arose is mapped by phylogenetic analysis. PMID:1491221

Gogarten, J P; Starke, T; Kibak, H; Fishman, J; Taiz, L

1992-11-01

220

Asymmetric Myosin Binding to the Thin Filament as Revealed by a Fluorescent Nanocircuit  

PubMed Central

The interplay between myosin, actin, and striated muscle regulatory proteins involves complex cooperative interactions that propagate along the thin filament. A repeating unit of the tropomyosin dimer, troponin heterotrimer, and the actin protofilament heptamer is sometimes assumed to be able to bind myosin at any of its seven actins when activated even though the regulatory proteins are asymmetrically positioned along this repeating unit. Analysis of the impact of this asymmetry on actin and myosin interactions by sensitized emission luminescence resonance energy transfer spectroscopy and a unique fluorescent nanocircuit design reveals that the troponin affects the structure and function of myosin heads bound nearby in a different manner than myosin heads bound further away from the troponin. To test this hypothesis, a fluorescent nanocircuit reported the position of the myosin lever arm only when the myosin was bound adjacent to the troponin, or in controls, only when the myosin was bound distant from the troponin. Confirming the hypothesis, the myosin lever arm is predominantly in the prepowerstroke orientation when bound near troponin, but is predominantly in the postpowerstroke orientation when bound distant from troponin. These data are consistent with the hypothesis that troponin is responsible for the formation of myosin binding target zones along the thin filament. PMID:23274408

Coffee Castro-Zena, Pilar G.; Root, Douglas D.

2013-01-01

221

Asymmetric myosin binding to the thin filament as revealed by a fluorescent nanocircuit.  

PubMed

The interplay between myosin, actin, and striated muscle regulatory proteins involves complex cooperative interactions that propagate along the thin filament. A repeating unit of the tropomyosin dimer, troponin heterotrimer, and the actin protofilament heptamer is sometimes assumed to be able to bind myosin at any of its seven actins when activated even though the regulatory proteins are asymmetrically positioned along this repeating unit. Analysis of the impact of this asymmetry on actin and myosin interactions by sensitized emission luminescence resonance energy transfer spectroscopy and a unique fluorescent nanocircuit design reveals that the troponin affects the structure and function of myosin heads bound nearby in a different manner than myosin heads bound further away from the troponin. To test this hypothesis, a fluorescent nanocircuit reported the position of the myosin lever arm only when the myosin was bound adjacent to the troponin, or in controls, only when the myosin was bound distant from the troponin. Confirming the hypothesis, the myosin lever arm is predominantly in the pre powerstroke orientation when bound near troponin, but is predominantly in the post powerstroke orientation when bound distant from troponin. These data are consistent with the hypothesis that troponin is responsible for the formation of myosin binding target zones along the thin filament. PMID:23274408

Coffee Castro-Zena, Pilar G; Root, Douglas D

2013-07-01

222

Gelsolin and non-muscle myosin IIA interact to mediate calcium-regulated collagen phagocytosis.  

PubMed

The formation of adhesion complexes is the rate-limiting step for collagen phagocytosis by fibroblasts, but the role of Ca(2+) and the potential interactions of actin-binding proteins in regulating collagen phagocytosis are not well defined. We found that the binding of collagen beads to fibroblasts was temporally and spatially associated with actin assembly at nascent phagosomes, which was absent in gelsolin null cells. Analysis of tryptic digests isolated from gelsolin immunoprecipitates indicated that non-muscle (NM) myosin IIA may bind to gelsolin. Immunostaining and immunoprecipitation showed that gelsolin and NM myosin IIA associated at collagen adhesion sites. Gelsolin and NM myosin IIA were both required for collagen binding and internalization. Collagen binding to cells initiated a prolonged increase of [Ca(2+)](i), which was absent in cells null for gelsolin or NM myosin IIA. Collagen bead-induced increases of [Ca(2+)](i) were associated with phosphorylation of the myosin light chain, which was dependent on gelsolin. NM myosin IIA filament assembly, which was dependent on myosin light chain phosphorylation and increased [Ca(2+)](i), also required gelsolin. Ionomycin-induced increases of [Ca(2+)](i) overcame the block of myosin filament assembly in gelsolin null cells. We conclude that gelsolin and NM myosin IIA interact at collagen adhesion sites to enable NM myosin IIA filament assembly and localized, Ca(2+)-dependent remodeling of actin at the nascent phagosome and that these steps are required for collagen phagocytosis. PMID:21828045

Arora, Pamma D; Wang, Yongqiang; Janmey, Paul A; Bresnick, Anne; Yin, Helen L; McCulloch, Christopher A

2011-09-30

223

Three-dimensional structure of the human myosin thick filament: clinical implications  

PubMed Central

High resolution information about the three-dimensional (3D) structure of myosin filaments has always been hard to obtain. Solving the 3D structure of myosin filaments is very important because mutations in human cardiac muscle myosin and its associated proteins (e.g. titin and myosin binding protein C) are known to be associated with a number of familial human cardiomyopathies (e.g. hypertrophic cardiomyopathy and dilated cardiomyopathy). In order to understand how normal heart muscle works and how it fails, as well as the effects of the known mutations on muscle contractility, it is essential to properly understand myosin filament 3D structure and properties in both healthy and diseased hearts. The aim of this review is firstly to provide a general overview of the 3D structure of myosin thick filaments, as studied so far in both vertebrates and invertebrate striated muscles. Knowledge of this 3D structure is the starting point from which myosin filaments isolated from human cardiomyopathic samples, with known mutations in either myosin or its associated proteins (titin or C-protein), can be studied in detail. This should, in turn, enable us to relate the structure of myosin thick filament to its function and to understanding the disease process. A long term objective of this research would be to assist the design of possible therapeutic solutions to genetic myosin-related human cardiomyopathies. PMID:24689030

AL-Khayat, Hind A.

2013-01-01

224

Actin Structure-Dependent Stepping of Myosin 5a and 10 during Processive Movement  

PubMed Central

How myosin 10, an unconventional myosin, walks processively along actin is still controversial. Here, we used single molecule fluorescence techniques, TIRF and FIONA, to study the motility and the stepping mechanism of dimerized myosin 10 heavy-meromyosin-like fragment on both single actin filaments and two-dimensional F-actin rafts cross-linked by fascin or ?-actinin. As a control, we also tracked and analyzed the stepping behavior of the well characterized processive motor myosin 5a. We have shown that myosin 10 moves processively along both single actin filaments and F-actin rafts with a step size of 31 nm. Moreover, myosin 10 moves more processively on fascin-F-actin rafts than on ?-actinin-F-actin rafts, whereas myosin 5a shows no such selectivity. Finally, on fascin-F-actin rafts, myosin 10 has more frequent side steps to adjacent actin filaments than myosin 5a in the F-actin rafts. Together, these results reveal further single molecule features of myosin 10 on various actin structures, which may help to understand its cellular functions. PMID:24069366

Gunther, Laura K.; Sellers, James R.; Sakamoto, Takeshi

2013-01-01

225

Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II  

PubMed Central

Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A). It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK) and myosin light chain kinase (MLCK), which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation. PMID:20569485

2010-01-01

226

Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium.  

PubMed

Cardiac troponin I (cTnI) is a phosphoprotein subunit of the troponin-tropomyosin complex that is thought to inhibit cardiac muscle contraction during diastole. To investigate the contributions of cTnI phosphorylation to cardiac regulation, transgenic mice were created with the phosphorylation sites of cTnI mutated to alanine. Activation of protein kinase C (PKC) by perfusion of hearts with phorbol-12-myristate-13-acetate (PMA) or endothelin-1 (ET-1) inhibited the maximum ATPase rate by up to 25 % and increased the Ca2+ sensitivity of ATPase activity and of isometric tension by up to 0.15 pCa units. PKC activation no longer altered cTnI phosphorylation, depressed ATPase rates or enhanced myofilament Ca2+ sensitivity in transgenic mice expressing cTnI that could not be phosphorylated on serines43/45 and threonine144 (PKC sites). Modest changes in myosin regulatory light chain phosphorylation occurred in all mouse lines, but increases in myofilament Ca2+ sensitivity required the presence of phosphorylatable cTnI. For comparison, the beta-adrenergic agonist isoproterenol caused a 38 % increase in maximum ATPase rate and a 0.12 pCa unit decrease in myofilament Ca2+ sensitivity. These beta-adrenergic effects were absent in transgenic mice expressing cTnI that could not be phosphorylated on serines23/24 (protein kinase A, PKA, sites). Overall, the results indicate that PKC and PKA exert opposing effects on actomyosin function by phosphorylating cTnI on distinct sites. A primary role of PKC phosphorylation of cTnI may be to reduce the requirements of the contractile apparatus for both Ca2+ and ATP, thereby promoting efficient ATP utilisation during contraction. PMID:12923217

Pi, YeQing; Zhang, Dahua; Kemnitz, Kara R; Wang, Hao; Walker, Jeffery W

2003-11-01

227

The mechanism of rotating proton pumping ATPases.  

PubMed

Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation. PMID:20170625

Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Nakamoto, Robert K; Futai, Masamitsu

2010-08-01

228

Regulation of Intracellular Cholesterol Distribution by Na/K-ATPase*  

E-print Network

Regulation of Intracellular Cholesterol Distribution by Na/K-ATPase* Received for publication/K-ATPase 1 subunit produces a parallel decrease in both caveolin-1 and cholesterol in light fractions of LLC redistribution of cholesterol from the plasma membrane to intracellular compartments in the knockdown cells

Brand, Paul H.

229

Purification and Properties of an ATPase from Sulfolobus solfataricus  

NASA Technical Reports Server (NTRS)

A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

Hochstein, Lawrence I.; Stan-Lotter, Helga

1992-01-01

230

A physiological basis for variation in the contractile properties of isolated rat heart.  

PubMed Central

1. The maximum Ca(2+)-activated force, maximum velocity of unloaded shortening and both Ca(2+)- and actin-activated ATPase activities of myosin have been measured in detergent-skinned preparations of isolated bundles of rat right ventricle after exposure of the intact tissue to different conditions of superfusion, mechanical activity and temperature. 2. Maximum Ca(2+)-activated force per unit cross-sectional area decreases with increasing cross-sectional area, and, in the absence of electrical stimulation, with the duration of superfusion. Maximum velocity of unloaded shortening is not influenced by these differences. 3. Actin-activated ATPase activity of myosin decreases as cross-sectional area increases and duration of superfusion increases, but the extent of the decrease in enzymatic activity is less than that of developed force. Ca(2+)-activated ATPase activity is independent of these differences. 4. Actin-activated ATPase activity in cryostatic sections of quickly frozen tissue is not uniform across the transverse section. In thin bundles, it is highest in the centre and lowest at the edge of the section, which correspond, respectively, to the centre and the surface of the tissue bundle. Exposure of the tissue section to 1 microM-cyclic AMP increases the actin-activated ATPase activity of myosin with the largest increase in activity occurring at or near the surface of the bundle. 5. Ca(2+)-activated ATPase activity of myosin is uniform across the transverse section and is not changed by cyclic AMP. 6. Electrical stimulation, elevated Ca2+ concentration in the superfusion medium, or isoprenaline partially or completely reverse the decline in maximum Ca(2+)-activated force produced by prolonged superfusion of the bundle before its skinning. 7. These observations are similar in many ways to those made on frog skeletal muscles by Elzinga, Howarth, Rull, Wilson & Woledge (1989a). An explanation based on the existence of a physiological mechanism for regulating the properties of force generators is proposed. Regulation of the attachment of the cross-bridge to an actin filament may be the basis for the regulatory mechanism. Images Fig. 4 Fig. 7 PMID:1667804

Lin, L E; McClellan, G; Weisberg, A; Winegrad, S

1991-01-01

231

Rac1 Regulates Myosin II Phosphorylation Through Regulation of Myosin Light Chain Phosphatase.  

PubMed

Phosphorylation of regulatory light chain (MLC) activates myosin II, which enables it to promote contractile and motile activities of cells. We report here a novel signaling mechanism that activates MLC phosphorylation and smooth muscle contraction. Contractile agonists activated Rac1, and Rac1 inhibition diminished agonist-induced MLC phosphorylation, thus inhibiting smooth muscle contraction. Rac1 inhibits the activity of MLC phosphatase (MLCP) but not that of MLC kinase, through a phosphatase that targets MYPT1 (a regulatory subunit of MLCP) and CPI-17 (a MLCP specific inhibitor) rather than through the RhoA-Rho dependent kinase (ROCK) pathway. Rac1 inhibition decreased the activity of protein kinase C (PKC), which also contributes to the change in CPI-17 phosphorylation. We propose that activation of Rac1 increases the activity of PKC, which increases the phosphorylation of CPI-17 and MYPT1 by inhibiting the phosphatase that targets these proteins, thereby decreasing the activity of MLCP and increasing phosphorylation of MLC. Our results suggest that Rac1 coordinates with RhoA to increase MLC phosphorylation by inactivation of CPI-17/MYPT1 phosphatase, which decreases MLCP activity thus promoting MLC phosphorylation and cell contraction. J. Cell. Physiol. 230: 1352-1364, 2015. © 2014 Wiley Periodicals, Inc., A Wiley Company. PMID:25502873

Shibata, Keita; Sakai, Hiroyasu; Huang, Qian; Kamata, Hirotoshi; Chiba, Yoshihiko; Misawa, Miwa; Ikebe, Reiko; Ikebe, Mitsuo

2015-06-01

232

Purification and properties of an ATPase from Sulfolobus solfataricus  

NASA Technical Reports Server (NTRS)

The paper reports properties of a sulfite-activated ATPase from Sulfolobus solfataricus, purified using ammonium sulfate precipitation, column chromatography on UltraGel and Sepharose 6B, and SDS-PAGE. The 92-fold purified enzyme had a relative molecular mass of 370,000. It could be dissociated into three subunits with respective molecular masses of 63,000, 48,000, and 24,000. The ATPase activity was found to be inhibitable by nitrate, N-ethylmaleimide (which bound predominantly to the largest subunit), and 4-chloro 7-nitrobenzofurazan, but not by azide, quercetin, or vanadate. While the ATPase from S. solfataricus shared a number of properties with the S. acidocaldarius ATPase, there were also significant differences suggesting the existence of several types of archaeal ATPases.

Hochstein, Lawrence I.; Stan-Lotter, Helga

1992-01-01

233

P4 ATPases: Flippases in Health and Disease  

PubMed Central

P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role. PMID:23579954

van der Mark, Vincent A.; Oude Elferink, Ronald P.J.; Paulusma, Coen C.

2013-01-01

234

Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs.  

PubMed

Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states. PMID:23787996

Wickman, G R; Julian, L; Mardilovich, K; Schumacher, S; Munro, J; Rath, N; Zander, S Al; Mleczak, A; Sumpton, D; Morrice, N; Bienvenut, W V; Olson, M F

2013-10-01

235

Complex formation between regulatory and essential light chain on squid mantle myosin subfragment-1 revealed by thermal denaturation method.  

PubMed

Thermal treatment of squid myosin subfragment-1 (S-1) in the presence of EDTA results in a rapid inactivation of ATPase, a marked turbidity increase, and a dissociation of light chains. These effects were suppressed by addition of calcium ion. Different light chain binding in EDTA-medium from that in Ca-medium was demonstrated by the tryptic digestion of native squid S-1; the two types of light chain are both resistant to trypsinolysis in Ca-medium, whereas they are readily degraded in EDTA-medium. S-1 heavy chain was converted into three fragments with sizes of 27, 47, and 22 kDa in both media. However, trypsinolysis of S-1 inactivated in Ca-medium generated no such heavy chain fragments that survived, while the two types of light chain survived. These light chains were isolated as a complex lacking any heavy chain fragments, and the complex formation was Ca-sensitive. It is concluded that regulatory and essential light chains are present on S-1 as a complex whose formation is mediated by calcium ion, and this binding might alter the S-1 conformation so as to confer resistance to thermal treatment. PMID:1834637

Konno, K

1991-06-01

236

Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation.  

PubMed

Primitive streak formation in the chick embryo involves large-scale highly coordinated flows of more than 100,000 cells in the epiblast. These large-scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combination of light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression, and asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localization and direction of which correlate strongly with the appearance of active myosin II cables in aligned apical junctions in neighbouring cells. Use of class specific myosin inhibitors and gene-specific knockdown shows that apical contraction and intercalation are myosin II dependent and also reveal critical roles for myosin I and myosin V family members in the assembly of junctional myosin II cables. PMID:25812521

Rozbicki, Emil; Chuai, Manli; Karjalainen, Antti I; Song, Feifei; Sang, Helen M; Martin, René; Knölker, Hans-Joachim; MacDonald, Michael P; Weijer, Cornelis J

2015-03-27

237

Myosin 1E interacts with synaptojanin-1 and dynamin via its SH3 domain  

PubMed Central

Myosin 1E is one of two “long-tailed” human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E colocalizes with clathrin- and dynamin-containing puncta at the plasma membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor-mediated endocytosis. PMID:17257598

Krendel, Mira; Osterweil, Emily K.; Mooseker, Mark S.

2007-01-01

238

Role of plant myosins in motile organelles: is a direct interaction required?  

PubMed

Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate. PMID:25196231

Buchnik, Limor; Abu-Abied, Mohamad; Sadot, Einat

2015-01-01

239

Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum.  

PubMed Central

The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca(2+)-ATPase) has recently been determined at 2.6 A (note 1 A = 0.1 nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647-655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca(2+)-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca(2+)-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions. PMID:11389677

Sweadner, K J; Donnet, C

2001-01-01

240

Evolution and Classification of Myosins, a Paneukaryotic Whole-Genome Approach  

PubMed Central

Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family. PMID:24443438

Sebé-Pedrós, Arnau; Grau-Bové, Xavier; Richards, Thomas A.; Ruiz-Trillo, Iñaki

2014-01-01

241

Activation of myosin phosphatase targeting subunit by mitosis-specific phosphorylation.  

PubMed

It has been demonstrated previously that during mitosis the sites of myosin phosphorylation are switched between the inhibitory sites, Ser 1/2, and the activation sites, Ser 19/Thr 18 (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129- 137; Satterwhite, L.L., M.J. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), suggesting a regulatory role of myosin phosphorylation in cell division. To explore the function of myosin phosphatase in cell division, the possibility that myosin phosphatase activity may be altered during cell division was examined. We have found that the myosin phosphatase targeting subunit (MYPT) undergoes mitosis-specific phosphorylation and that the phosphorylation is reversed during cytokinesis. MYPT phosphorylated either in vivo or in vitro in the mitosis-specific way showed higher binding to myosin II (two- to threefold) compared to MYPT from cells in interphase. Furthermore, the activity of myosin phosphatase was increased more than twice and it is suggested this reflected the increased affinity of myosin binding. These results indicate the presence of a unique positive regulatory mechanism for myosin phosphatase in cell division. The activation of myosin phosphatase during mitosis would enhance dephosphorylation of the myosin regulatory light chain, thereby leading to the disassembly of stress fibers during prophase. The mitosis-specific effect of phosphorylation is lost on exit from mitosis, and the resultant increase in myosin phosphorylation may act as a signal to activate cytokinesis. PMID:10037794

Totsukawa, G; Yamakita, Y; Yamashiro, S; Hosoya, H; Hartshorne, D J; Matsumura, F

1999-02-22

242

Stochastic force generation by small ensembles of myosin II motors  

E-print Network

Forces in the actin cytoskeleton are generated by small groups of non-processive myosin II motors for which stochastic effects are highly relevant. Using a crossbridge model with the assumptions of fast powerstroke kinetics and equal load sharing between equivalent states, we derive a one-step master equation for the activity of a finite-sized ensemble of mechanically coupled myosin II motors. For constant external load, this approach yields analytical results for duty ratio and force-velocity relation as a function of ensemble size. We find that stochastic effects cannot be neglected for ensemble sizes below 15. The one-step master equation can be used also for efficient computer simulations with linear elastic external load and reveals the sequence of build-up of force and ensemble rupture that is characteristic for reconstituted actomyosin contractility.

Thorsten Erdmann; Ulrich S. Schwarz

2012-02-14

243

Non-Muscle Myosin II Regulation of Lung Epithelial Morphology  

PubMed Central

Background The regulation of epithelial cell shape and orientation during lung branching morphogenesis is not clearly understood. Non-muscle myosins regulate cell size, morphology, and planar cell polarity. Here we test the hypothesis that non-muscle myosin II (NM II) regulates lung epithelial morphology in a spatially restricted manner. Results Epithelial cell orientation at airway tips in fetal mouse lungs underwent a significant transformation at E17. Treatment of E15 lung explants with the NM II inhibitor blebbistatin increased airway branching, epithelial cell size, and the degree of anisotropy in epithelial cells lining the airway stalks. In cultured MLE-12 lung epithelial cells, blebbistatin increased cell velocity, but left the migratory response to FGF-10 unchanged. Conclusions In the developing lung, NM II acts to constrain cell morphology and orientation, but may be suppressed at sites of branching and cell migration. The regulation of epithelial orientation may therefore undergo dynamic variations from E15 to E17. PMID:22972683

Plosa, Erin J.; Gooding, Kimberly A.; Zent, Roy; Prince, Lawrence S.

2012-01-01

244

A myosin inhibitor impairs auxin-induced cell division  

Microsoft Academic Search

Summary. The role of myosins for auxin-induced cell division was probed using the inhibitor 2,3-butanedione monoxime in the tobacco cell line VBI-0, where cell elongation and division are axially aligned under the control of auxin. A morphometric analysis revealed that cell division is blocked in a dose-dependent manner, whereas cell expansion continued. In addition, the polarity of terminal cells was

Carola Holweg; Anne Honsel; Peter Nick

2003-01-01

245

Reverse actin sliding triggers strong myosin binding that moves tropomyosin  

SciTech Connect

Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

2008-09-03

246

Rotational Model for Actin Filament Alignment by Myosin  

PubMed Central

Dynamics of the actomyosin cytoskeleton regulate cellular processes such as secretion, cell division, cell motility, and shape change. Actomyosin dynamics are themselves regulated by proteins that control actin filament polymerization and depolymerization, and myosin motor contractility. Previous theoretical work has focused on translational movement of actin filaments but has not considered the role of filament rotation. Since filament rotational movements are likely sources of forces that direct cell shape change and movement we explicitly model the dynamics of actin filament rotation as myosin II motors traverse filament pairs, drawing them into alignment. Using Monte Carlo simulations we find an optimal motor velocity for alignment of actin filaments. In addition, when we introduce polymerization and depolymerization of actin filaments, we find that alignment is reduced and the filament arrays exist in a stable, asynchronous state. Further analysis with continuum models allow us to investigate factors contributing to the stability of filament arrays and their ability to generate force. Interestingly, we find that two different morphologies of F-actin arrays generate the same amount of force. We also identify a phase transition to alignment occurs when either polymerization rates are reduced or motor velocities are optimized. We have extended our analysis to include a maximum allowed stretch of the myosin motors, and a non-uniform length for filaments leading to little change in the qualitative results. Through the integration of simulations and continuum analysis, we are able to approach the problem of understanding rotational alignment of actin filaments by myosin II motors in a truly unique way. PMID:22326473

Miller, Callie J; Ermentrout, G Bard; Davidson, Lance A

2012-01-01

247

Orientation dependence of displacements by a single one-headed myosin relative to the actin filament.  

PubMed Central

Displacements of single one-headed myosin molecules in a sparse myosin-rod cofilament were measured from bead displacements at various angles relative to an actin filament by dual optical trapping nanometry. The sparse myosin-rod cofilaments, 5-8 micron long, were synthesized by slowly mixing one-headed myosin prepared by papain digestion with myosin rods at molar ratios of 1:400 to 1:1500, so that one to four one-headed myosin molecules were on average scattered along the cofilament. The bead displacement was approximately 10 nm at low loads ( approximately 0.5 pN) and at angles of 5-10 degrees between the actin and myosin filaments (near physiologically correct orientation). The bead displacement decreased with an increase in the angle. The bead displacement at nearly 90 degrees was approximately 0 nm. When the angle was increased to approximately 150 degrees-170 degrees, the bead displacements increased to 5 nm. A native two-headed myosin showed similar size and orientation dependence of bead displacements as a one-headed myosin. PMID:9746529

Tanaka, H; Ishijima, A; Honda, M; Saito, K; Yanagida, T

1998-01-01

248

Evolutionary traces decode molecular mechanism behind fast pace of myosin XI  

PubMed Central

Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI. PMID:21942950

2011-01-01

249

Myosin IIA is essential for Shigella flexneri cell-to-cell spread.  

PubMed

A key feature of Shigella pathogenesis is the ability to spread from cell-to-cell post-invasion. This is dependent on the bacteria's ability to initiate de novo F-actin tail polymerisation, followed by protrusion formation, uptake of bacteria-containing protrusion and finally, lysis of the double membrane vacuole in the adjacent cell. In epithelial cells, cytoskeletal tension is maintained by the actin-myosin II networks. In this study, the role of myosin II and its specific kinase, myosin light chain kinase (MLCK), during Shigella intercellular spreading was investigated in HeLa cells. Inhibition of MLCK and myosin II, as well as myosin IIA knockdown, significantly reduced Shigella plaque and infectious focus formation. Protrusion formation and intracellular bacterial growth was not affected. Low levels of myosin II were localised to the Shigella F-actin tail. HeLa cells were also infected with Shigella strains defective in cell-to-cell spreading. Unexpectedly loss of myosin IIA labelling was observed in HeLa cells infected with these mutant strains. This phenomenon was not observed with WT Shigella or with the less abundant myosin IIB isoform, suggesting a critical role for myosin IIA. PMID:24989342

Lum, Mabel; Morona, Renato

2014-12-01

250

Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod  

PubMed Central

Abstract The lamellipod, the locomotory region of migratory cells, is shaped by the balance of protrusion and contraction. The latter is the result of myosin-generated centripetal flow of the viscoelastic actin network. Recently, quantitative flow data was obtained, yet there is no detailed theory explaining the flow in a realistic geometry. We introduce models of viscoelastic actin mechanics and myosin transport and solve the model equations numerically for the flat, fan-shaped lamellipodial domain of keratocytes. The solutions demonstrate that in the rapidly crawling cell, myosin concentrates at the rear boundary and pulls the actin network inward, so the centripetal actin flow is very slow at the front, and faster at the rear and at the sides. The computed flow and respective traction forces compare well with the experimental data. We also calculate the graded protrusion at the cell boundary necessary to maintain the cell shape and make a number of other testable predictions. We discuss model implications for the cell shape, speed, and bi-stability. PMID:19804715

Rubinstein, Boris; Fournier, Maxime F.; Jacobson, Ken; Verkhovsky, Alexander B.; Mogilner, Alex

2009-01-01

251

Specific Evolution of F1-Like ATPases in Mycoplasmas  

PubMed Central

F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the ?, ?, ? and ? subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells. PMID:22685606

Dautant, Alain; Bouyssou, Guillaume; Labroussaa, Fabien; Sköllermo, Anna; Persson, Anja; Blanchard, Alain; Sirand-Pugnet, Pascal

2012-01-01

252

Evolution of structure and function of V-ATPases.  

PubMed

Proton pumping ATPases/ATPsynthases are found in all groups of present-day organisms. The structure of V- and F-type ATPases/ATP synthases is very conserved throughout evolution. Sequence analysis shows that the V- and F-type ATPases evolved from the same enzyme already present in the last common ancestor of all known extant life forms. The catalytic and noncatalytic subunits found in the dissociable head groups of the V/F-type ATPases are paralogous subunits, i.e., these two types of subunits evolved from a common ancestral gene. The gene duplication giving rise to these two genes (i.e., encoding the catalytic and noncatalytic subunits) predates the time of the last common ancestor. Mapping of gene duplication events that occurred in the evolution of the proteolipid, the noncatalytic and the catalytic subunits, onto the tree of life leads to a prediction for the likely subunit structure of the encoded ATPases. A correlation between structure and function of V/F-ATPases has been established for present-day organisms. Implications resulting from this correlation for the bioenergetics operative in proto-eukaryotes and in the last common ancestor are presented. The similarities of the V/F-ATPase subunits to an ATPase-like protein that was implicated to play a role in flagellar assembly are evaluated. Different V-ATPase isoforms have been detected in some higher eukaryotes. These data are analyzed with respect to the possible function of the different isoforms (tissue specific, organelle specific) and with respect to the point in their evolution when these gene duplications giving rise to the isoforms had occurred, i.e., how far these isoforms are distributed. PMID:1400286

Kibak, H; Taiz, L; Starke, T; Bernasconi, P; Gogarten, J P

1992-08-01

253

Myosin individualized: single nucleotide polymorphisms in energy transduction  

PubMed Central

Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC). Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs) affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these domains are engineered by evolution to be too-robust to be disturbed by otherwise intrusive sequence changes. Two functional sub-domains are SNP-free or relatively SNP-deficient but contain many disease implicated mutants. These sub-domains are apparently highly sensitive to any missense substitution suggesting they have failed to evolve a robust sequence paradigm for performing their function. PMID:20226094

2010-01-01

254

Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits  

PubMed Central

Construction of the bacterial flagellum in the cell exterior proceeds at its distal end by highly ordered self-assembly of many different component proteins, which are selectively exported through the central channel of the growing flagellum by the flagellar type III export apparatus. FliI is the ATPase of the export apparatus that drives the export process. Here we report the 2.4 ? resolution crystal structure of FliI in the ADP-bound form. FliI consists of three domains, and the whole structure shows extensive similarities to the ? and ? subunits of F0F1-ATPsynthase, a rotary motor that drives the chemical reaction of ATP synthesis. A hexamer model of FliI has been constructed based on the F1-ATPase structure composed of the ?3?3? subunits. Although the regions that differ in conformation between FliI and the F1-?/? subunits are all located on the outer surface of the hexamer ring, the main chain structures at the subunit interface and those surrounding the central channel of the ring are well conserved. These results imply an evolutionary relation between the flagellum and F0F1-ATPsynthase and a similarity in the mechanism between FliI and F1-ATPase despite the apparently different functions of these proteins. PMID:17202259

Imada, Katsumi; Minamino, Tohru; Tahara, Aiko; Namba, Keiichi

2007-01-01

255

Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities  

NASA Technical Reports Server (NTRS)

The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

Caldwell, C.

1983-01-01

256

Glycine 699 is pivotal for the motor activity of skeletal muscle myosin  

PubMed Central

Myosin couples ATP hydrolysis to the translocation of actin filaments to power many forms of cellular motility. A striking feature of the structure of the muscle myosin head domain is a 9-nm long "lever arm" that has been postulated to produce a 5-10-nm power stroke. This motion must be coupled to conformational changes around the actin and nucleotide binding sites. The linkage of these sites to the lever arm has been analyzed by site-directed mutagenesis of a conserved glycine residue (G699) found in a bend joining two helices containing the highly reactive and mobile cysteine residues, SH1 and SH2. Alanine mutagenesis of this glycine (G699A) dramatically alters the motor activity of skeletal muscle myosin, inhibiting the velocity of actin filament movement by > 100-fold. Analysis of the defect in the G699A mutant myosin is consistent with a marked slowing of the transition within the motor domain from a strong binding to a weak binding interaction with actin. This result is interpreted in terms of the role of this residue (G699) as a pivot point for motion of the lever arm. The recombinant myosin used in these experiments has been produced in a unique expression system. A shuttle vector containing a regulated muscle-specific promoter has been developed for the stable expression of recombinant myosin in C2C12 cells. The vector uses the promoter/enhancer region, the first two and the last five exons of an embryonic rat myosin gene, to regulate the expression of an embryonic chicken muscle myosin cDNA. Stable cell lines transfected with this vector express the unique genetically engineered myosin after differentiation into myotubes. The myosin assembles into myofibrils, copurifies with the endogenous myosin, and contains a complement of muscle-specific myosin light chains. The functional activity of the recombinant myosin is readily analyzed with an in vitro motility assay using a species-specific anti-S2 mAb to selectively assay the recombinant protein. This expression system has facilitated manipulation and analysis of the skeletal muscle myosin motor domain and is also amenable to a wide range of structure-function experiments addressing questions unique to the muscle-specific cytoarchitecture and myosin isoforms. PMID:8769415

1996-01-01

257

Use of Fluorescent Techniques to Study the In Vitro Movement of Myosins  

PubMed Central

Myosins are a large superfamily of actin-dependent molecule motors that carry out many functions in cells. Some myosins are cargo carriers that move processively along actin which means that a single molecule of myosin can take many ATP-dependent steps on actin per initial encounter. Other myosins are designed to work in large ensembles such as myosin thick filaments. In vitro motility assays are a powerful method for studying the function of myosins. These assays in general use small amounts of protein, are simple to implement, and can be done on microscopes commonly found in many laboratories. There are two basic versions of the assay which involve different geometries. In the sliding actin in vitro motility assay, myosin molecules are bound to a coverslip surface in a simply constructed microscopic flow chamber. Fluorescently labeled actin filaments are added to the flow chamber in the presence of ATP, and the movement of these actin filaments powered by the surface-bound myosins is observed. This assay has been used widely for a variety of myosins including both processive and nonprocessive ones. From this assay, one can easily measure the rate at which myosin is translocating actin. The single-molecule motility assay uses an inverted geometry compared to the sliding actin in vitro motility assay. It is most useful for processive myosins. Here, actin filaments are affixed to the coverslip surface. Fluorescently labeled single molecules of myosins (usually ones with processive kinetics) are introduced, and the movement of single molecules along the actin filaments is observed. This assay typically uses total internal reflection fluorescent (TIRF) microscopy to reduce the background signal arising from myosins in solution. From this assay, one can measure the velocity of movement, the frequency of movement, and the run length. If sufficient photons can be collected, one can use Gaussian fitting of the point spread function to determine the position of the labeled myosin to within a few nanometers which allows for measurement of the step size and the stepping kinetics. Together, these two assays are powerful tools to elucidate myosin function. PMID:25095996

Toepfer, Christopher

2014-01-01

258

Nucleotide Activation of the Ca-ATPase*  

PubMed Central

We have used fluorescence spectroscopy, molecular modeling, and limited proteolysis to examine structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA). The Ca-ATPase in sarcoplasmic reticulum vesicles from fast twitch muscle (SERCA1a isoform) was selectively labeled with fluorescein isothiocyanate (FITC), a probe that specifically reacts with Lys-515 in the nucleotide-binding site. Conformation-specific proteolysis demonstrated that FITC labeling does not induce closure of the cytoplasmic headpiece, thereby assigning FITC-SERCA as a nucleotide-free enzyme. We used enzyme reverse mode to synthesize FITC monophosphate (FMP) on SERCA, producing a phosphorylated pseudosubstrate tethered to the nucleotide-binding site of a Ca2+-free enzyme (E2 state to prevent FMP hydrolysis). Conformation-specific proteolysis demonstrated that FMP formation induces SERCA headpiece closure similar to ATP binding, presumably due to the high energy phosphoryl group on the fluorescent probe (ATP·E2 analog). Subnanosecond-resolved detection of fluorescence lifetime, anisotropy, and quenching was used to characterize FMP-SERCA (ATP·E2 state) versus FITC-SERCA in Ca2+-free, Ca2+-bound, and actively cycling phosphoenzyme states (E2, E1, and EP). Time-resolved spectroscopy revealed that FMP-SERCA exhibits increased probe dynamics but decreased probe accessibility compared with FITC-SERCA, indicating that ATP exhibits enhanced dynamics within a closed cytoplasmic headpiece. Molecular modeling was used to calculate the solvent-accessible surface area of FITC and FMP bound to SERCA crystal structures, revealing a positive correlation of solvent-accessible surface area with quenching but not anisotropy. Thus, headpiece closure is coupled to substrate binding but not active site dynamics. We propose that dynamics in the nucleotide-binding site of SERCA is important for Ca2+ binding (distal allostery) and phosphoenzyme formation (direct activation). PMID:22977248

Autry, Joseph M.; Rubin, John E.; Svensson, Bengt; Li, Ji; Thomas, David D.

2012-01-01

259

Effects of ambient ion concentrations on gill ATPases in fresh water eel, Anguilla anguilla  

Microsoft Academic Search

Branchial activities of Na+,K+-ATPase (ouabain sensitive), Mg2+ ATPase (ouabain insensitive) and kinetic analysis of high and low affinity Ca2+ ATPase were measured inAnguilla anguilla that had been acclimated to demineralized water (DW, Ca +,K+-ATPase activity decreased while ouabain insensitive activity increased when ambient Ca2+ decreased. Two kinetic forms of Ca2+ ATPase could be resolved in each environmental condition. The stimulation

N. Mayer-Gostan; R. Naon

1992-01-01

260

Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle  

Microsoft Academic Search

FORCE generation and relative sliding between the myosin and actin filaments in muscle are thought to be caused by tilting of the head region of the myosin crossbridges between the filaments1-3. Structural and spectroscopic experiments have demonstrated segmental flexibility of myosin in muscle4-6, but have not shown a direct linkage between tilting of the myosin heads and either force generation

Malcolm Irving; Taylor St Claire Alien; Cibele Sabido-David; James S. Craik; Birgit Brandmeier; John Kendrick-Jones; John E. T. Corrie; David R. Trentham; Yale E. Goldman

1995-01-01

261

Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase  

Microsoft Academic Search

Myosin light chain kinases (MLCK) phosphorylate the regulatory light chain of myosin II in thick filaments and bind to F-actin-containing thin filaments with high affinity. The ability of short myosin light chain kinase (S-MLCK) to bind F-actin is structurally attributed to the DFRXXL regions in its N-terminus. The long myosin light chain kinase (L-MLCK) has two additional DFRXXL motifs and

Chun Xiang Yang; Hua Qun Chen; Chen Chen; Wei Ping Yu; Wen Cheng Zhang; Ya Jin Peng; Wei Qi He; Dong Mei Wei; Xiang Gao; Min Sheng Zhu

2006-01-01

262

Purification and reconstitution of the vacuolar H+-ATPases from lemon fruits and epicotyls.  

PubMed

The vacuolar H+-ATPases (V-ATPases) of lemon fruits and epicotyls were detergent-solubilized, purified by column chromatography, and reconstituted into artificial proteoliposomes. During purification, a vanadate- and nitrate-sensitive ATPase activity, consisting of partially disassembled V-ATPase complexes, was resolved from the V-ATPase peak. ATPase and H+-transport activities of the purified, reconstituted V-ATPases of both fruit and epicotyl exhibited similar inhibitor profiles, except that the fruit V-ATPase retained partial vanadate sensitivity. Since the V-ATPase activity of native fruit tonoplast vesicles is insensitive to inhibitors (Müller, M. L., Irkens-Kiesecker, U., Rubinstein, B., and Taiz, L. (1996) J. Biol. Chem. 271, 1916-1924), membrane lipids or other factors may protect the fruit V-ATPase from inactivation in vivo. A kinetic analysis of H+-pumping and H+-leakage indicated that the reconstituted epicotyl V-ATPase exhibited twice as much intrinsic uncoupling or slip as the reconstituted fruit V-ATPase. Comparison of their subunit compositions by SDS-polyacrylamide gel electrophoresis indicated that the reconstituted fruit V-ATPase is enriched in two polypeptides of 33/34 and 16 kDa. Moreover, the stalks of negatively stained juice sac V-ATPases appeared thicker than those of epicotyl V-ATPases in electron micrographs. PMID:9139735

Müller, M L; Irkens-Kiesecker, U; Kramer, D; Taiz, L

1997-05-01

263

Primary structure of the Neurospora plasma membrane H+-ATPase deduced from the gene sequence. Homology to Na+/K+-, Ca2+-, and K+-ATPase.  

PubMed

The gene for the Neurospora crassa plasma membrane H+-ATPase has been cloned and sequenced. The gene encodes for a protein of 920 amino acids with a molecular weight of 100,002. The coding region is interrupted by four introns: three near the amino terminus and one near the carboxyl terminus. The deduced amino acid sequence of the N. crassa plasma membrane H+-ATPase exhibits 75% homology to the amino acid sequence of the Saccharomyces cerevisiae plasma membrane H+-ATPase. Also, an amino acid comparison with the Na+/K+-ATPase from sheep kidney, Ca2+-ATPase from rabbit muscle, and K+-ATPase from Escherichia coli reveals that certain regions are highly conserved and suggest that these regions may serve essential functions which are common to the various cation-motive ATPases. This observation suggests that the phosphorylatable, cation-motive ATPases may function via a similar energy transduction mechanism. PMID:2876992

Addison, R

1986-11-15

264

Expression in Cochlea and Retina of Myosin VIIa, the Gene Product Defective in Usher Syndrome Type 1B  

Microsoft Academic Search

Myosin VIIa is a newly identified member of the myosin superfamily of actin-based motors. Recently, the myosin VIIa gene was identified as the gene defective in shaker-1, a recessive deafness in mice [Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K. A., Antonio, M., Beisel, K. W., Steel, K. P. & Brown, S. D. M. (1995) Nature (London) 374,

Tama Hasson; Matthew B. Heintzelman; Joseph Santos-Sacchi; David P. Corey; Mark S. Mooseker

1995-01-01

265

Microsecond rotational motions of eosin-labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence*1  

Microsoft Academic Search

a specific site on the myosin head. These results, reporting anisotropy data up to 50 microseconds after excitation. extend by two orders of magnitude the time range of data on time-resolved site-specific probe motion in myosin. Optical and enzymatic analyses of the labeled myosin and its chymotryptic digests show that more than 95% of the probe is specifically attached to

T EADS; DAVID D. THOMAS; ROBERT H. AUSTIN

1984-01-01

266

Temporal changes in intestinal Na+ -ATPase activity and in vitro  

E-print Network

(Oncorhynchus tshawytscha) maintained in fresh water over 18 months. In tissues from these same fish+ ; K+ -ATPase; Oncorhynchus tshawytscha; Parr­smolt transformation; Pyloric ceca; Tissue culture 1

Young, Graham

267

The Na-K-ATPase and Calcium-Signaling Microdomains  

NSDL National Science Digital Library

The Na-K-ATPase is an energy-transducing ion pump that converts the free energy of ATP into transmembrane ion gradients. It also serves as a functional receptor for cardiotonic steroids such as ouabain and digoxin. Binding of ouabain to the Na-K-ATPase can activate calcium signaling in a cell-specific manner. The exquisite calcium modulation via the Na-K-ATPase is achieved by the ability of the pump to integrate signals from numerous protein and non-protein molecules, including ion transporters, channels, protein kinases/phosphatases, as well as cellular Na+. This review focuses on the unique properties of the Na-K-ATPase and its role in the formation of different calcium-signaling microdomains.

Jiang Tian (University of Toledo Health Science Campus Physiology and Pharmacology)

2008-08-01

268

Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase.  

PubMed

The Escherichia coli strain DK8, a deletion mutant lacking the complete unc operon, was transformed with a plasmid containing the genes encoding the a, b, c, delta and part of the alpha subunit of the Na(+)-dependent ATPase of Propionigenium modestum and the genes encoding the alpha, gamma, beta and epsilon subunits of the H(+)-dependent E. coli ATPase. The transformants showed Na(+)-dependent growth on succinate as non-fermentable carbon source. The functionally expressed hybrid ATPase was activated 13-fold at pH 7.5 by the addition of Na+ and inhibited by 1,3-dicyclohexylcarbodiimide, azide and tributyltin chloride. At pH 7.5 and pH 9.0, the hybrid enzyme was protected from inhibition by 1,3-dicyclohexylcarbodiimide in the presence of 50 mM NaCl and 5 mM NaCl, respectively. The hybrid ATPase was reconstituted into proteoliposomes and catalyzed the transport of Na+ upon ATP addition. ATP-dependent fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine proved that the ATPase hybrid was able to pump protons in the absence of Na+. Furthermore, ATP synthesis could be measured under conditions where a valinomycin-mediated K+ diffusion potential (delta psi) and a Na+ concentration gradient (delta p Na+) were imposed. PMID:8020498

Kaim, G; Dimroth, P

1994-06-01

269

Structure of the Actin-Myosin Complex and Its Implications for Muscle Contraction  

Microsoft Academic Search

Muscle contraction consists of a cyclical interaction between myosin and actin driven by the concomitant hydrolysis of adenosine triphosphate (ATP). A model for the rigor complex of F actin and the myosin head was obtained by combining the molecular structures of the individual proteins with the low-resolution electron density maps of the complex derived by cryo-electron microscopy and image analysis.

Ivan Rayment; Hazel M. Holden; Michael Whittaker; Christopher B. Yohn; Michael Lorenz; Kenneth C. Holmes; Ronald A. Milligan

1993-01-01

270

Nonmuscle myosin II is responsible for maintaining endothelial cell basal tone and stress fiber integrity  

PubMed Central

Cultured confluent endothelial cells exhibit stable basal isometric tone associated with constitutive myosin II regulatory light chain (RLC) phosphorylation. Thrombin treatment causes a rapid increase in isometric tension concomitant with myosin II RLC phosphorylation, actin polymerization, and stress fiber reorganization while inhibitors of myosin light chain kinase (MLCK) and Rho-kinase prevent these responses. These findings suggest a central role for myosin II in the regulation of endothelial cell tension. The present studies examine the effects of blebbistatin, a specific inhibitor of myosin II activity, on basal tone and thrombin-induced tension development. Although blebbistatin treatment abolished basal tension, this was accompanied by an increase in myosin II RLC phosphorylation. The increase in RLC phosphorylation was Ca2+ dependent and mediated by MLCK. Similarly, blebbistatin inhibited thrombin-induced tension without interfering with the increase in RLC phosphorylation or in F-actin polymerization. Blebbistatin did prevent myosin II filament incorporation and association with polymerizing or reorganized actin filaments leading to the disappearance of stress fibers. Thus the inhibitory effects of blebbistatin on basal tone and induced tension are consistent with a requirement for myosin II activity to maintain stress fiber integrity. PMID:18701651

Goeckeler, Zoe M.; Bridgman, Paul C.; Wysolmerski, Robert B.

2008-01-01

271

Electron paramagnetic resonance reveals age-related myosin structural changes in rat skeletal muscle fibers  

E-print Network

assays showed that myosin molecules extracted from soleus muscle fibers of aged rats have a decreased muscle fibers DAWN A. LOWE,1,3 JACK T. SUREK,1 DAVID D. THOMAS,1,3 AND LADORA V. THOMPSON2,3 1 Department. Electron paramagnetic resonance reveals age-related myosin structural changes in rat skeletal muscle fibers

Thomas, David D.

272

A R T I C L E Unconventional Myosins and the Genetics of  

E-print Network

) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birthA R T I C L E Unconventional Myosins and the Genetics of Hearing Loss THOMAS B. FRIEDMAN,* JAMES R VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions

Avraham, Karen

273

Identification and analysis of the myosin superfamily in Drosophila: a database approach  

Microsoft Academic Search

The recent sequencing of the genome of Drosophila melanogaster has provided a valuable resource for mining the database for genes of interest. We took advantage of this opportunity in an attempt to identify novel myosins in Drosophila and confirm the presence of the previously identified myosins from classes I, II, III, V, VI, and VII. The Drosophila database annotators predicted

R. A. Yamashita; J. R. Sellers; J. B. Anderson

2000-01-01

274

Role of Myosin Va in the Plasticity of the Vertebrate Neuromuscular Junction In Vivo  

Microsoft Academic Search

Background: Myosin Va is a motor protein involved in vesicular transport and its absence leads to movement disorders in humans (Griscelli and Elejalde syndromes) and rodents (e.g. dilute lethal phenotype in mice). We examined the role of myosin Va in the postsynaptic plasticity of the vertebrate neuromuscular junction (NMJ). Methodology\\/Principal Findings: Dilute lethal mice showed a good correlation between the

Ira Verena Röder; Yvonne Petersen; Kyeong Rok Choi; Veit Witzemann; John A. Hammer; Rüdiger Rudolf

2008-01-01

275

Protein Phosphatase 1 ? Paralogs Encode the Zebrafish Myosin Phosphatase Catalytic Subunit  

PubMed Central

Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1?, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1?, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required. PMID:24040418

Jayashankar, Vaishali; Nguyen, Michael J.; Carr, Brandon W.; Zheng, Dale C.; Rosales, Joseph B.; Rosales, Joshua B.; Weiser, Douglas C.

2013-01-01

276

Using Fluorescent Myosin to Directly Visualize Cooperative Activation of Thin Filaments*?  

PubMed Central

Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin filaments. Using this approach, the cooperative binding of myosin along thin filaments has been quantified. We have found that two myosin heads are required to laterally activate a regulatory unit of thin filament. The regulatory unit is found to be capable of accommodating 11 additional myosins. Three thin filament activation states possessing differential myosin binding capacities are also visible. To describe this system, we have formulated a simple chemical kinetic model of cooperative activation that holds across a wide range of solution conditions. The stochastic nature of activation is strongly highlighted by data obtained in sub-optimal activation conditions where the generation of activation waves and their catastrophic collapse can be observed. This suggests that the thin filament has the potential to be turned fully on or off in a binary fashion. PMID:25429108

Desai, Rama; Geeves, Michael A.; Kad, Neil M.

2015-01-01

277

Second-site noncomplementation identifies genomic regions required for Drosophila nonmuscle myosin function during morphogenesis.  

PubMed Central

Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramolecular structures into which myosin incorporates have not been systematically characterized. The genetic screens described here identify genomic regions that uncover loci that facilitate myosin function. The nonmuscle myosin heavy chain is encoded by a single locus, zipper. Contiguous chromosomal deficiencies that represent approximately 70% of the euchromatic genome were screened for genetic interactions with two recessive lethal alleles of zipper in a second-site noncomplementation assay for the malformed phenotype. Malformation in the adult leg reflects aberrations in cell shape changes driven by myosin-based contraction during leg morphogenesis. Of the 158 deficiencies tested, 47 behaved as second-site noncomplementors of zipper. Two of the deficiencies are strong interactors, 17 are intermediate and 28 are weak. Finer genetic mapping reveals that mutations in cytoplasmic tropomyosin and viking (collagen IV) behave as second-site noncomplementors of zipper during leg morphogenesis and that zipper function requires a previously uncharacterized locus, E3.10/J3.8, for leg morphogenesis and viability. PMID:9560399

Halsell, S R; Kiehart, D P

1998-01-01

278

Fluorescence Polarization Transients from Rhodamine Isomers on the Myosin Regulatory Light Chain in Skeletal Muscle Fibers  

E-print Network

Fluorescence Polarization Transients from Rhodamine Isomers on the Myosin Regulatory Light Chain 19104-6083, USA; # Randall Institute, King's College London, London WC2B 5RL, England; and § National to examine orientation changes of two rhodamine probes bound to myosin heads in skeletal muscle fibers

Croquette, Vincent

279

Localization of myosin and actin in the pelage and whisker hair follicles of rat.  

PubMed

The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells. PMID:17327898

Morioka, Kiyokazu; Matsuzaki, Toshiyuki; Takata, Kuniaki

2006-08-30

280

Role of the lever arm in the processive stepping of myosin V  

E-print Network

Role of the lever arm in the processive stepping of myosin V Thomas J. Purcell*, Carl Morris motor that binds six light chains per heavy chain, which creates unusually long lever arms. This motor-headed myosin V tightly binds to actin and swings its long lever arm through a large angle, providing a stroke

Spudich, James A.

281

Myosin VI Steps via a Hand-over-Hand Mechanism with Its Lever  

E-print Network

Myosin VI Steps via a Hand-over- Hand Mechanism with Its Lever Arm Undergoing Fluctuations when or on the distal of two calmodulins (CaMs) located on its putative lever arm. Using a tech- nique called FIONA,whereas the motor domain probe did not. This supports a model of myosin VI motility in which the lever arm is either

Yildiz, Ahmet

282

Differential localization in cells of myosin II heavy chain kinases during cytokinesis and polarized migration  

Microsoft Academic Search

BACKGROUND: Cortical myosin-II filaments in Dictyostelium discoideum display enrichment in the posterior of the cell during cell migration and in the cleavage furrow during cytokinesis. Filament assembly in turn is regulated by phosphorylation in the tail region of the myosin heavy chain (MHC). Early studies have revealed one enzyme, MHCK-A, which participates in filament assembly control, and two other structurally

Wenchuan Liang; Lucila S Licate; Hans M Warrick; James A Spudich; Thomas T Egelhoff

2002-01-01

283

Ouabain binding sites and (Na/sup +/,K/sup +/)-ATPase activity in rat cardiac hypertrophy: expression of the neonatal forms  

SciTech Connect

The adaptation of the myocardium to mechanical overload which results in cardiac hypertrophy involved several membrane functions. The digitalis receptor in sarcolemma vesicles from hypertrophied rat hearts is characterized by binding of (/sup 3/H)ouabain and ouabain-induced inhibition of (Na/sup +/,K/sup +/)-ATPase. The results show the existence of two families of ouabain binding sites with apparent dissociation constants (K/sub d/) of 1.8-3.2 x 10/sup -8/ M and 1-8 x 10/sup -6/ M, respectively, which are similar to those found in normal hearts. The presence of the high affinity receptor in hypertrophied rat heart is correlated to a detectable inhibition of the (Na/sup +/,K/sup +/)-ATPase (IC/sub 50/ = 1-3 x 10/sup -8/ M). However, the high and low affinity sites in hypertrophied hearts bind and release ouabain at 4-5-fold slower rates than the corresponding sites in normal hearts. These properties are similar to that observed in newborn rat cardiac preparations. Taken together with the expression of myosin isoforms, the data show that the physiological adaptation of the heart also involves the resurgence of the neonatal forms of the digitalis receptor.

Not Available

1986-01-05

284

Evolution of proton pumping ATPases: Rooting the tree of life.  

PubMed

Proton pumping ATPases are found in all groups of present day organisms. The F-ATPases of eubacteria, mitochondria and chloroplasts also function as ATP synthases, i.e., they catalyze the final step that transforms the energy available from reduction/oxidation reactions (e.g., in photosynthesis) into ATP, the usual energy currency of modern cells. The primary structure of these ATPases/ATP synthases was found to be much more conserved between different groups of bacteria than other parts of the photosynthetic machinery, e.g., reaction center proteins and redox carrier complexes.These F-ATPases and the vacuolar type ATPase, which is found on many of the endomembranes of eukaryotic cells, were shown to be homologous to each other; i.e., these two groups of ATPases evolved from the same enzyme present in the common ancestor. (The term eubacteria is used here to denote the phylogenetic group containing all bacteria except the archaebacteria.) Sequences obtained for the plasmamembrane ATPase of various archaebacteria revealed that this ATPase is much more similar to the eukaryotic than to the eubacterial counterpart. The eukaryotic cell of higher organisms evolved from a symbiosis between eubacteria (that evolved into mitochondria and chloroplasts) and a host organism. Using the vacuolar type ATPase as a molecular marker for the cytoplasmic component of the eukaryotic cell reveals that this host organism was a close relative of the archaebacteria.A unique feature of the evolution of the ATPases is the presence of a non-catalytic subunit that is paralogous to the catalytic subunit, i.e., the two types of subunits evolved from a common ancestral gene. Since the gene duplication that gave rise to these two types of subunits had already occurred in the last common ancestor of all living organisms, this non-catalytic subunit can be used to root the tree of life by means of an outgroup; that is, the location of the last common ancestor of the major domains of living organisms (archaebacteria, eubacteria and eukaryotes) can be located in the tree of life without assuming constant or equal rates of change in the different branches.A correlation between structure and function of ATPases has been established for present day organisms. Implications resulting from this correlation for biochemical pathways, especially photosynthesis, that were operative in the last common ancestor and preceding life forms are discussed. PMID:24408574

Gogarten, J P; Taiz, L

1992-08-01

285

Substructure of membrane-bound Na + ?K + ATPase protein  

Microsoft Academic Search

Purified membrane-bound Na+-K+-ATPase from rat kidney outer medulla was studied by freeze-fracturing, by freeze-etching and by negative staining. Freeze-fracturing of purified Na+-K+-ATPase membranes shows intramembraneous particles with a diameter of about 100 Å. The frequency of these intramembraneous particles — as estimated from the particle densities on the two fracture faces — lies between 4700 and 5600 particles per µm2.

W. Haase; H. Koepsell

1979-01-01

286

The vacuolar (H+)-ATPases — nature's most versatile proton pumps  

Microsoft Academic Search

The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding

Tsuyoshi Nishi; Michael Forgac

2002-01-01

287

Sodium, Potassium-ATPases in Algae and Oomycetes  

Microsoft Academic Search

We have investigated the presence of K+-transporting ATPases that belong to the phylogenetic group of animal Na+,K+-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could

Javier Barrero-Gil; Blanca Garciadeblás; Begoña Benito

2005-01-01

288

The gastric HK-ATPase: structure, function, and inhibition  

Microsoft Academic Search

The gastric H,K-ATPase, a member of the P2-type ATPase family, is the integral membrane protein responsible for gastric acid secretion. It is an ?,?-heterodimeric enzyme\\u000a that exchanges cytoplasmic hydronium with extracellular potassium. The catalytic ? subunit has ten transmembrane segments\\u000a with a cluster of intramembranal carboxylic amino acids located in the middle of the transmembrane segments TM4, TM5,TM6,\\u000a and TM8.

Jai Moo Shin; Keith Munson; Olga Vagin; George Sachs

2009-01-01

289

Involvement of vacuolar proton ATPase in Junin virus multiplication  

Microsoft Academic Search

Summary.  ?The role of vacuolar-proton ATPase (V-H+ATPAse) on Junin virus (JV) replication was evaluated by analyzing the effect of specific inhibitors of the enzyme activity\\u000a on different steps of virus multiplication cycle. The presence of the macrolide antibiotics bafilomycin A1 and concanamycin A during the first two hours of infection caused a significant reduction of extracellular infectious virus\\u000a production and viral

V. Castilla; L. M. Palermo; C. E. Coto

2001-01-01

290

Structure of the S100A4/myosin-IIA complex  

PubMed Central

Background S100A4, a member of the S100 family of Ca2+-binding proteins, modulates the motility of both non-transformed and cancer cells by regulating the localization and stability of cellular protrusions. Biochemical studies have demonstrated that S100A4 binds to the C-terminal end of the myosin-IIA heavy chain coiled-coil and disassembles myosin-IIA filaments; however, the mechanism by which S100A4 mediates myosin-IIA depolymerization is not well understood. Results We determined the X-ray crystal structure of the S100A4?8C/MIIA1908-1923 peptide complex, which showed an asymmetric binding mode for the myosin-IIA peptide across the S100A4 dimer interface. This asymmetric binding mode was confirmed in NMR studies using a spin-labeled myosin-IIA peptide. In addition, our NMR data indicate that S100A4?8C binds the MIIA1908-1923 peptide in an orientation very similar to that observed for wild-type S100A4. Studies of complex formation using a longer, dimeric myosin-IIA construct demonstrated that S100A4 binding dissociates the two myosin-IIA polypeptide chains to form a complex composed of one S100A4 dimer and a single myosin-IIA polypeptide chain. This interaction is mediated, in part, by the instability of the region of the myosin-IIA coiled-coil encompassing the S100A4 binding site. Conclusion The structure of the S100A4/MIIA1908-1923 peptide complex has revealed the overall architecture of this assembly and the detailed atomic interactions that mediate S100A4 binding to the myosin-IIA heavy chain. These structural studies support the idea that residues 1908–1923 of the myosin-IIA heavy chain represent a core sequence for the S100A4/myosin-IIA complex. In addition, biophysical studies suggest that structural fluctuations within the myosin-IIA coiled-coil may facilitate S100A4 docking onto a single myosin-IIA polypeptide chain. PMID:24252706

2013-01-01

291

Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.  

PubMed

Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. PMID:25445683

Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

2015-02-01

292

Conformation of the myosin motor during force generation in skeletal muscle.  

PubMed

Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide. PMID:10881196

Irving, M; Piazzesi, G; Lucii, L; Sun, Y B; Harford, J J; Dobbie, I M; Ferenczi, M A; Reconditi, M; Lombardi, V

2000-06-01

293

Infrared spectroscopic studies on the V-ATPase.  

PubMed

V-ATPase is an ATP-driven rotary motor that vectorially transports ions. Together with F-ATPase, a homologous protein, several models on the ion transport have been proposed, but their molecular mechanisms are yet unknown. V-ATPase from Enterococcus hirae forms a large supramolecular protein complex (total molecular weight: ~700,000) and physiologically transports Na? and Li? across a hydrophobic lipid bilayer. Stabilization of these cations in the binding site has been discussed on the basis of X-ray crystal structures of a membrane-embedded domain, the K-ring (Na? and Li? bound forms). Sodium or lithium ion binding-induced difference FTIR spectra of the intact E. hirae V-ATPase have been measured in aqueous solution at physiological temperature. The results suggest that sodium or lithium ion binding induces the deprotonation of Glu139, a hydrogen-bonding change in the tyrosine residue and rigid ?-helical structures. Identical difference FTIR spectra between the entire V-ATPase complex and K-ring strongly suggest that protein interaction with the I subunit does not cause large structural changes in the K-ring. This result supports the previously proposed Na? transport mechanism by V-ATPase stating that a flip-flop movement of a carboxylate group of Glu139 without large conformational changes in the K-ring accelerates the replacement of a Na? ion in the binding site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25111748

Kandori, Hideki; Furutani, Yuji; Murata, Takeshi

2015-01-01

294

Structural basis for the interaction of the myosin light chain Mlc1p with the myosin V Myo2p IQ motifs.  

PubMed

Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis. PMID:17074768

Pennestri, Matteo; Melino, Sonia; Contessa, Gian Marco; Casavola, Elena Caroli; Paci, Maurizio; Ragnini-Wilson, Antonella; Cicero, Daniel O

2007-01-01

295

Flexibility within the Heads of Muscle Myosin-2 Molecules?  

PubMed Central

We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction. PMID:24333017

Billington, Neil; Revill, Derek J.; Burgess, Stan A.; Chantler, Peter D.; Knight, Peter J.

2014-01-01

296

Life without double-headed non-muscle myosin II motor proteins.  

PubMed

Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053

Betapudi, Venkaiah

2014-01-01

297

Life without double-headed non-muscle myosin II motor proteins  

NASA Astrophysics Data System (ADS)

Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

Betapudi, Venkaiah

2014-07-01

298

Identification of signals that facilitate isoform specific nucleolar localization of myosin IC  

SciTech Connect

Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ? Two NoLS have been identified in the myosin IC isoform B sequence. ? Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ? First mechanistic explanation of functional differences between the isoforms.

Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

2013-05-01

299

Life without double-headed non-muscle myosin II motor proteins  

PubMed Central

Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053

Betapudi, Venkaiah

2014-01-01

300

Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex.  

PubMed

Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1?, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells. PMID:23918382

Le, Kang; Li, Chun-Chun; Ye, Guan; Moss, Joel; Vaughan, Martha

2013-08-20

301

Heavy chain myosin 9-related disease (MYH9 -RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder.  

PubMed

MYH9-related disease ( MYH9-RD) is an autosomal dominant thrombocytopenia with giant platelets variably associated with young-adult onset of progressive sensorineural hearing loss, presenile cataract, and renal damage. MYH9-RD is caused by mutations of MYH9 , the gene encoding for non-muscle heavy-chain myosin-9. Wild-type and mutant myosin-9 aggregate as cytoplasmic inclusions in patients' leukocytes, the identification of which by immunofluorescence has been proposed as a suitable tool for the diagnosis of MYH9-RD. Since the predictive value of this assay, in terms of sensitivity and specificity, is unknown, we investigated 118 consecutive unrelated patients with a clinical presentation strongly consistent with MYH9-RD. All patients prospectively underwent both the immunofluorescence assay for myosin-9 aggregate detection and molecular genetic analysis of the MYH9 gene. Myosin-9 aggregates were identified in 82 patients, 80 of which (98%) had also a MYH9 mutation. In the remaining 36 patients neither myosin-9 aggregates nor MYH9 mutations were found. Sensitivity and specificity of the immunofluorescence assay was evaluated to be 100% and 95%, respectively. Except for the presence of aggregates, we did not find any other significant difference between patients with or without aggregates, demonstrating that the myosin-9 inclusions in neutrophils are a pathognomonic sign of the disease. However, the identification of the specific MYH9 mutation is still of importance for prognostic aspects of MYH9-RD. PMID:20174760

Savoia, Anna; De Rocco, Daniela; Panza, Emanuele; Bozzi, Valeria; Scandellari, Raffaella; Loffredo, Giuseppe; Mumford, Andrew; Heller, Paula G; Noris, Patrizia; De Groot, Marco R; Giani, Marisa; Freddi, Paolo; Scognamiglio, Francesca; Riondino, Silvia; Pujol-Moix, Núria; Fabris, Fabrizio; Seri, Marco; Balduini, Carlo L; Pecci, Alessandro

2010-04-01

302

Effect of pH on the rate of myosin head detachment in molluscan catch muscle: are myosin heads involved in the catch state?  

PubMed

Moderate alkalisation is known to terminate the catch state of bivalve mollusc smooth muscles such as the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. In the present study, we investigated the effect of moderate alkalisation (pH 7.2-7.7 vs control pH 6.7) on the myosin head detachment rate in saponin-skinned fibre bundles of ABRM in order to investigate the possible role of myosin heads in the force maintenance during catch. The detachment rate of myosin heads was deduced from two types of experiments. (1) In stretch experiments on maximally Ca2+-activated fibre bundles (pCa 4.5), the rate of force decay after stepwise stretch was assessed. (2) In ATP step experiments, the rate of force decay from high force rigor (pCa>8) was evaluated. The ATP step was induced by photolysis of caged ATP. We found that moderate alkalisation induces relaxation of skinned fibres in catch, thereby reducing both force and stiffness, whereas it does not accelerate the rate of myosin head detachment. This acceleration, however, would be expected if catch would be simply due to myosin heads remaining sustainably attached to actin filaments. Thus, the myosin heads may be less involved in catch than generally assumed. Catch may possibly depend on a different kind of myofilament interconnections, which are abolished by moderate alkalisation. PMID:16449561

Höpflinger, Marion Christine; Andruchova, Olena; Andruchov, Oleg; Grassberger, Herbert; Galler, Stefan

2006-02-01

303

An autoinhibitory peptide from the erythrocyte Ca-ATPase aggregates and inhibits both muscle Ca-ATPase isoforms.  

PubMed Central

We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences. PMID:10354431

Reddy, L G; Shi, Y; Kutchai, H; Filoteo, A G; Penniston, J T; Thomas, D D

1999-01-01

304

Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays  

Microsoft Academic Search

The H translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M\\/sub r\\/ approx. = 70,000 and approx. = 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase

E. J. Bowman; S. Mandala; L. Taiz; B. J. Bowman

1986-01-01

305

Evolutionary appearance of the plasma membrane H (+) -ATPase containing a penultimate threonine in the bryophyte.  

PubMed

The plasma membrane H (+) -ATPase provides the driving force for solute transport via an electrochemical gradient of H (+) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H (+) -ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H (+) -ATPase (pT H (+) -ATPase) and non-pT H (+) -ATPase as in the green algae, and that pT H (+) -ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H (+) -ATPase genes, designated PpHA (Physcomitrella patens H (+) -ATPase). Six isoforms are the pT H (+) -ATPase; a remaining isoform is non-pT H (+) -ATPase. An apparent 95-kD protein was recognized by anti-H (+) -ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H (+) -ATPase. Furthermore, we could not detect the pT H (+) -ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H (+) -ATPase most likely appeared for the first time in bryophyte. PMID:22836495

Okumura, Masaki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

2012-08-01

306

Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha.  

PubMed

The plasma membrane H(+)-ATPase generates an electrochemical gradient of H(+) across the plasma membrane that provides the driving force for solute transport and regulates pH homeostasis and membrane potential in plant cells. Recent studies have demonstrated that phosphorylation of the penultimate threonine in H(+)-ATPase and subsequent binding of a 14-3-3 protein is the major common activation mechanism for H(+)-ATPase in vascular plants. However, there is very little information on the plasma membrane H(+)-ATPase in nonvascular plant bryophytes. Here, we show that the liverwort Marchantia polymorpha, which is the most basal lineage of extant land plants, expresses both the penultimate threonine-containing H(+)-ATPase (pT H(+)-ATPase) and non-penultimate threonine-containing H(+)-ATPase (non-pT H(+)-ATPase) as in the green algae and that pT H(+)-ATPase is regulated by phosphorylation of its penultimate threonine. A search in the expressed sequence tag database of M. polymorpha revealed eight H(+)-ATPase genes, designated MpHA (for M. polymorpha H(+)-ATPase). Four isoforms are the pT H(+)-ATPase; the remaining isoforms are non-pT H(+)-ATPase. An apparent 95-kD protein was recognized by anti-H(+)-ATPase antibodies against an Arabidopsis (Arabidopsis thaliana) isoform and was phosphorylated on the penultimate threonine in response to the fungal toxin fusicoccin in thalli, indicating that the 95-kD protein contains pT H(+)-ATPase. Furthermore, we found that the pT H(+)-ATPase in thalli is phosphorylated in response to light, sucrose, and osmotic shock and that light-induced phosphorylation depends on photosynthesis. Our results define physiological signals for the regulation of pT H(+)-ATPase in the liverwort M. polymorpha, which is one of the earliest plants to acquire pT H(+)-ATPase. PMID:22496511

Okumura, Masaki; Inoue, Shin-ichiro; Takahashi, Koji; Ishizaki, Kimitsune; Kohchi, Takayuki; Kinoshita, Toshinori

2012-06-01

307

Mouse Nuclear Myosin I Knock-Out Shows Interchangeability and Redundancy of Myosin Isoforms in the Cell Nucleus  

PubMed Central

Background Nuclear myosin I (NM1) is a nuclear isoform of the well-known “cytoplasmic” Myosin 1c protein (Myo1c). Located on the 11th chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. Methodology/Principal Findings In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. Conclusion/Significance We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes. PMID:23593477

Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžb?ta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrab?; Hozák, Pavel

2013-01-01

308

Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and secretion of melanosomes.  

PubMed

Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. PMID:25324551

Bultema, Jarred J; Boyle, Judith A; Malenke, Parker B; Martin, Faye E; Dell'Angelica, Esteban C; Cheney, Richard E; Di Pietro, Santiago M

2014-11-28

309

Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles  

PubMed Central

Maximum shortening velocity (V0) was determined in single fibres dissected from hind limb skeletal muscles of rabbit and mouse and classified according to their myosin heavy chain (MHC) isoform composition. The values for rabbit and mouse V0 were compared with the values previously obtained in man and rat under identical experimental conditions. Significant differences in V0 were found between fibres containing corresponding myosin isoforms in different species: as a general rule for each isoform V0 decreased with body mass. Myosin isoform distributions of soleus and tibialis anterior were analysed in mouse, rat, rabbit and man: the proportion of slow myosin generally increased with increasing body size. The diversity between V0 of corresponding myosin isoforms and the different myosin isoform composition of corresponding muscles determine the scaling of shortening velocity of whole muscles with body size, which is essential for optimisation of locomotion. The speed of actin translocation (Vf) in in vitro motility assay was determined with myosins extracted from single muscle fibres of all four species: significant differences were found between myosin isoforms in each species and between corresponding myosin isoforms in different species. The values of V0 and Vf determined for each myosin isoform were significantly correlated, strongly supporting the view that the myosin isoform expressed is the major determinant of maximum shortening velocity in muscle fibres. PMID:12562996

Pellegrino, M A; Canepari, M; Rossi, R; D'Antona, G; Reggiani, C; Bottinelli, R

2003-01-01

310

Effects of ATP and Actin-Filament Binding on the Dynamics of the Myosin II S1 Domain  

PubMed Central

Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament. PMID:24094403

Baker, Joseph L.; Voth, Gregory A.

2013-01-01

311

Myosin-X functions in polarized epithelial cells  

PubMed Central

Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis. PMID:22419816

Liu, Katy C.; Jacobs, Damon T.; Dunn, Brian D.; Fanning, Alan S.; Cheney, Richard E.

2012-01-01

312

Myosin Light Chain Kinase Signaling in Endothelial Barrier Dysfunction  

PubMed Central

Microvascular barrier dysfunction is a serious problem that occurs in many inflammatory conditions, including sepsis, trauma, ischemia–reperfusion injury, cardiovascular disease, and diabetes. Barrier dysfunction permits extravasation of serum components into the surrounding tissue, leading to edema formation and organ failure. The basis for microvascular barrier dysfunction is hyperpermeability at endothelial cell–cell junctions. Endothelial hyperpermeability is increased by actomyosin contractile activity in response to phosphorylation of myosin light chain by myosin light chain kinase (MLCK). MLCK-dependent endothelial hyperpermeability occurs in response to inflammatory mediators (e.g., activated neutrophils, thrombin, histamine, tumor necrosis factor alpha, etc.), through multiple cell signaling pathways and signaling molecules (e.g., Ca++, protein kinase C, Src kinase, nitric oxide synthase, etc.). Other signaling molecules protect against MLCK-dependent hyperpermeability (e.g., sphingosine-1-phosphate or cAMP). In addition, individual MLCK isoforms play specific roles in endothelial barrier dysfunction, suggesting that isoform-specific inhibitors could be useful for treating inflammatory disorders and preventing multiple organ failure. Because endothelial barrier dysfunction depends upon signaling through MLCK in many instances, MLCK-dependent signaling comprises multiple potential therapeutic targets for preventing edema formation and multiple organ failure. The following review is a discussion of MLCK-dependent mechanisms and cell signaling events that mediate endothelial hyperpermeability. PMID:22886693

Rigor, Robert R.; Shen, Qiang; Pivetti, Christopher D.; Wu, Mack H.; Yuan, Sarah Y.

2013-01-01

313

Regulation of the smooth muscle contractile phenotype by nonmuscle myosin.  

PubMed

The contractile phenotype of a smooth muscle can broadly be classified as phasic or tonic. Following activation, phasic smooth muscle exhibits an initial period of rapid force activation, following which force falls to a lower steady state level. In contrast, force generated by tonic smooth muscle rises slowly to a sustained steady state. The differences in contractile patterns cannot be explained by the time course of either the Ca(2+) transient or phosphorylation of the 20-kDa regulatory myosin light chain (MLC(20)). Therefore, a molecular marker that defines tonic and phasic smooth muscle contractile properties remains elusive. Further, smooth muscle can maintain force at low levels of MLC(20) phosphorylation; often referred to as the latch state. The mechanism for the latch state is unknown and has been hypothesized to be due to a number of mechanisms including the formation of slowly cycling dephosphorylated or latch cross-bridges (Hai and Murphy, Am J Physiol 253:H1365-H1371, 1988). This review will focus evidence suggesting that nonmuscle myosin IIB (NMIIB) are the latch cross-bridges in smooth muscle and NMIIB content could define the tonic contractile phenotype. PMID:18347921

Ogut, Ozgur; Yuen, Samantha L; Brozovich, Frank V

2007-01-01

314

Adaptations in myosin heavy chain profile in chronically unloaded muscles  

NASA Technical Reports Server (NTRS)

In this review, myosin heavy chain (MHC) adaptations in response to several models of decreased neuromuscular activity (i.e. electrical activation and loading of a muscle) are evaluated. In each of these "reduced-activity" models it is important to: a) quantify the changes in electrical activation of the muscle as a result of the intervention; b) quantify the forces generated by the muscle; and c) determine whether the neuromuscular junction remains normal. Most of the models, including spaceflight, hindlimb suspension, spinal cord isolation, spinal cord transection, denervation, and limb immobilization in a shortened position, result in increases in the percentage of fast MHCs (or fast MHC mRNA) in normally slow rat muscles. It also can be inferred from histochemical data that increases in fast MHCs occur with TTX application and bed rest. The only "reduced-activity" model to consistently increase slow muscle myosin mRNA, and slow fibers is limb immobilization in a stretched position; however, this model results in at least a temporary increase in tension. It appears that the most common feature of these models that might induce MHC adaptations is the modification in loading rather than a change in the neuromuscular activity.

Talmadge, R. J.; Roy, R. R.; Bodine-Fowler, S. C.; Pierotti, D. J.; Edgerton, V. R.

1995-01-01

315

Par-4: A New Activator of Myosin Phosphatase  

PubMed Central

Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex. PMID:20130087

Vetterkind, Susanne; Lee, Eunhee; Sundberg, Eric; Poythress, Ransom H.; Tao, Terence C.; Preuss, Ute

2010-01-01

316

Par-4: a new activator of myosin phosphatase.  

PubMed

Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a "padlock" model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires "unlocking" of Par-4 by phosphorylation and displacement of Par-4 from the MP complex. PMID:20130087

Vetterkind, Susanne; Lee, Eunhee; Sundberg, Eric; Poythress, Ransom H; Tao, Terence C; Preuss, Ute; Morgan, Kathleen G

2010-04-01

317

The mechanism of regulatory light chain dissociation from scallop myosin.  

PubMed

The dissociation of the regulatory light chains from scallop myosin subfragments, on addition of EDTA, was investigated by using the fluorophore 8-anilinonaphthalene-1-sulphonate as a probe. The rate of this process (0.014 s-1) was partially limited by the rate of Mg2+ dissociation (0.058 s-1) from the non-specific high-affinity site. The dissociation of the regulatory light chain subfragment 1 was less extensive than from heavy meromyosin. Reassociation of the scallop regulatory light chain was induced on addition of Mg2+, but it appeared to be limited by a first-order step. The nature of this step was revealed by the kinetics of Mercenaria regulatory light chain association. Scallop heavy meromyosin, denuded of its regulatory light chains, exists in a refractory state, whose reversal to the nascent state limits the rate of light chain association (0.006 s-1). The formation of the refractory state is the driving force for the net dissociation of regulatory light chains from scallop heavy meromyosin. This mechanism is discussed with reference to existing structural information on light-chain-denuded myosin. PMID:3513756

Bennett, A J; Bagshaw, C R

1986-01-01

318

An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters.  

PubMed Central

A transcription factor required for synthesis of accurately initiated run-off transcripts by RNA polymerase II has been purified and shown to have an associated DNA-dependent ATPase (dATPase) activity that is strongly stimulated by the TATA region of promoters. This transcription factor, designated delta, was purified more than 3000-fold from extracts of crude rat liver nuclei and has a native molecular mass of approximately 230 kDa. DNA-dependent ATPase (dATPase) and transcription activities copurify when delta is analyzed by hydrophobic interaction and ion-exchange HPLC, arguing that transcription factor delta possesses an ATPase (dATPase) activity. ATPase (dATPase) is specific for adenine nucleotides; ATP and dATP, but not CTP, UTP, or GTP, are hydrolyzed. ATPase (dATPase) is stimulated by both double-stranded and single-stranded DNAs, including pUC18, ssM13, and poly(dT); however, DNA fragments containing the TATA region of either the adenovirus 2 major late or mouse interleukin 3 promoters stimulate ATPase as much as 10-fold more effectively than DNA fragments containing nonpromoter sequences. These data suggest the intriguing possibility that delta plays a critical role in the ATP (dATP)-dependent activation of run-off transcription through a direct interaction with the TATA region of promoters. Images PMID:2552440

Conaway, R C; Conaway, J W

1989-01-01

319

The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase.  

PubMed

Based on studies with chimeras between (non-)gastric H,K-ATPase and Na,K-ATPase, a model for the ouabain binding site has recently been presented (Qiu et al. J.Biol.Chem. 280 (2005) 32349). In this model, hydrogen bonds between specific amino acid residues of Na,K-ATPase and hydroxyl groups of ouabain play a crucial role. In the present study, a series of ouabain analogues were tested on baculovirus-expressed Na,K-ATPase and an ouabain-sensitive mutant of non-gastric H,K-ATPase (D312E/ S319G/ A778P/ I795L/ F802C). For each analogue, the results obtained by measuring ATPase inhibition and [(3)H]ouabain replacement agreed rather well. In Na,K-ATPase, strophanthidin had a 7-10 times higher and digoxin a 4-12 times lower affinity than ouabain. The results of the non-gastric H,K-ATPase mutant were rather similar to that of Na,K-ATPase with exception of dihydro-ouabain that showed a much lower affinity with the non-gastric H,K-ATPase mutant. Docking studies showed that all analogues bind to the same pocket in Na,K-ATPase. However, the amino acids to which hydrogen bonds were formed differed and depended on the availability of hydroxyl or keto groups in the ouabain analogues. PMID:18324411

De Pont, Jan Joep H H M; Swarts, Herman G P; Karawajczyk, Anna; Schaftenaar, Gijs; Willems, Peter H G M; Koenderink, Jan B

2009-01-01

320

Pharmacological activation of myosin II paralogs to correct cell mechanics defects.  

PubMed

Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior. PMID:25605895

Surcel, Alexandra; Ng, Win Pin; West-Foyle, Hoku; Zhu, Qingfeng; Ren, Yixin; Avery, Lindsay B; Krenc, Agata K; Meyers, David J; Rock, Ronald S; Anders, Robert A; Freel Meyers, Caren L; Robinson, Douglas N

2015-02-01

321

Myosins Are Differentially Expressed under Oxidative Stress in Chronic Streptozotocin-Induced Diabetic Rat Brains  

PubMed Central

Diabetes mellitus is a disease characterized by persistent hyperglycemia, which may lead to brain tissue damage due to oxidative stress and also contributes to neuronal death and changes in synaptic transmission. This study evaluated the effect of oxidative stress and the use of antioxidants supplementation on myosins expression levels in the brains of chronic diabetic rats induced by streptozotocin. Lipid peroxidation, antioxidant enzymes activities, and myosins-IIB and -Va expressions at transcriptional and translational levels were examined after 90 days induction. The chronic effect of the diabetes led to the upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, and the downregulation of glutathione peroxidase (GPx), but there was no statistically significant increase in the malondialdehyde (MDA) levels. These alterations were accompanied by high myosin-IIB and low myosin-Va expressions. Although the antioxidant supplementation did not interfere on MDA levels, the oxidative stress caused by chronic hyperglycemia was reduced by increasing SOD and restoring CAT and GPx activities. Interestingly, after supplementation, diabetic rats recovered only myosin-Va protein levels, without interfering on myosins mRNA levels expressed in diabetic rat brains. Our results suggest that antioxidant supplementation reduces oxidative stress and also regulates the myosins protein expression, which should be beneficial to individuals with diabetes/chronic hyperglycemia. PMID:24982856

Calábria, Luciana Karen; Vieira da Costa, Alice; da Silva Oliveira, Renato José; Ramos Deconte, Simone; de Carvalho, Washington João; de Oliveira, Vanessa Neves; Rezende Alves de Oliveira, Luciana; Goulart, Luiz Ricardo; Espindola, Foued Salmen

2013-01-01

322

Involvement of myosin light-chain kinase in endothelial cell retraction  

SciTech Connect

Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylation of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.

Wysolmerski, R.B.; Lagunoff, D. (Saint Louis Univ. School of Medicine, MO (USA))

1990-01-01

323

A novel type of myosin implicated in signalling by rho family GTPases.  

PubMed Central

A novel widely expressed type of myosin (fifth unconventional myosin from rat: myr 5) from rat tissues, defining a ninth class of myosins, was identified. The predicted amino acid sequence of myr 5 exhibits several features not found previously in myosins. The myosin head domain contains a unique N-terminal extension and an insertion of 120 amino acids at a postulated myosin-actin contact site. Nevertheless, myr 5 is able to bind actin filaments in an ATP-regulated manner. The head domain is followed by four putative light chain binding sites. The tail domain of myr 5 contains a region which coordinates two atoms of zinc followed by a region that stimulates GTP hydrolysis of members of the ras-related rho subfamily of small G-proteins. Myr 5 therefore provides the first direct link between rho GTPases which have been implicated in the regulation of actin organization and the actin cytoskeleton. It is also the first unconventional myosin for which a tail binding partner(s), namely members of the rho family, has been identified. Images PMID:7882973

Reinhard, J; Scheel, A A; Diekmann, D; Hall, A; Ruppert, C; Bähler, M

1995-01-01

324

Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity.  

PubMed Central

In an actomyosin fraction isolated from human platelets, phosphorylation of the 20,000-dalton light chain of myosin is stimulated by calcium and the calcium-binding protein calmodulin. The enzyme catalyzing this phosphorylation has been isolated by using calmodulin-affinity chromatography. Platelet myosin light chain kinase activity was monitored throughout the isolation procedures by using the 20,000-dalton smooth muscle myosin light chain purified from turkey gizzards as substrate. The partially purified myosin kinase requires both calcium and calmodulin for activity and has a specific activity of 3.1 mumol of phosphate transferred to the 20,000-dalton light chain per mg of kinase per min under optimal assay conditions. Km values determined for ATP and myosin light chains are 121 microM and 18 microM, respectively. Of several substrates surveyed as phosphate acceptors (alpha-casein, histone II-A, phosphorylase b, protamine, histone V-S, and phosvitin), only the 20,000-dalton myosin light chain is phosphorylated at a significant rate. These results suggest that platelet myosin light chain kinase is a calcium-dependent enzyme and that the requirement for calcium is mediated by the calcium-binding protein calmodulin. Images PMID:156362

Hathaway, D R; Adelstein, R S

1979-01-01

325

Identification and characterization of multiple novel Rab–myosin Va interactions  

PubMed Central

Myosin Va is a widely expressed actin-based motor protein that binds members of the Rab GTPase family (3A, 8A, 10, 11A, 27A) and is implicated in many intracellular trafficking processes. To our knowledge, myosin Va has not been tested in a systematic screen for interactions with the entire Rab GTPase family. To that end, we report a yeast two-hybrid screen of all human Rabs for myosin Va-binding ability and reveal 10 novel interactions (3B, 3C, 3D, 6A, 6A?, 6B, 11B, 14, 25, 39B), which include interactions with three new Rab subfamilies (Rab6, Rab14, Rab39B). Of interest, myosin Va interacts with only a subset of the Rabs associated with the endocytic recycling and post-Golgi secretory systems. We demonstrate that myosin Va has three distinct Rab-binding domains on disparate regions of the motor (central stalk, an alternatively spliced exon, and the globular tail). Although the total pool of myosin Va is shared by several Rabs, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes. We also present evidence that myosin Va is necessary for maintaining a peripheral distribution of Rab11- and Rab14-positive endosomes. PMID:24006491

Lindsay, Andrew J.; Jollivet, Florence; Horgan, Conor P.; Khan, Amir R.; Raposo, Graça; McCaffrey, Mary W.; Goud, Bruno

2013-01-01

326

Rap1 Activation in Collagen Phagocytosis Is Dependent on Nonmuscle Myosin II-A  

PubMed Central

Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or ?1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis. PMID:18799623

Arora, Pamela D.; Conti, Mary Anne; Ravid, Shoshana; Sacks, David B.; Kapus, Andras; Adelstein, Robert S.; Bresnick, Anne R.

2008-01-01

327

Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex  

NASA Astrophysics Data System (ADS)

The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

Nie, Wei

328

Thermodynamic evidence of non-muscle myosin II-lipid-membrane interaction  

SciTech Connect

A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles made of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 deg. C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement.

Schewkunow, Vitali [Friedrich-Alexander-University of Erlangen-Nuremberg, Center for Medical Physics and Technology, Biophysics Group, Henkestrasse 91, Erlangen 91052 (Germany); Sharma, Karan P. [Boston BioProducts Inc., Worcester, MA 01604 (United States); Diez, Gerold; Klemm, Anna H. [Friedrich-Alexander-University of Erlangen-Nuremberg, Center for Medical Physics and Technology, Biophysics Group, Henkestrasse 91, Erlangen 91052 (Germany); Sharma, Pal C. [Boston BioProducts Inc., Worcester, MA 01604 (United States); Goldmann, Wolfgang H. [Friedrich-Alexander-University of Erlangen-Nuremberg, Center for Medical Physics and Technology, Biophysics Group, Henkestrasse 91, Erlangen 91052 (Germany)], E-mail: wgoldmann@biomed.uni-erlangen.de

2008-02-08

329

Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers  

PubMed Central

To understand the molecular mechanism of oxidation-induced inhibition of muscle contractility, we have studied the effects of hydrogen peroxide on permeabilized rabbit psoas muscle fibers, focusing on changes in myosin purified from these fibers. Oxidation by 5 mM peroxide decreased fiber contractility (isometric force and shortening velocity) without significant changes in the enzymatic activity of myofibrils and isolated myosin. The inhibitory effects were reversed by treating fibers with dithiothreitol. Oxidation by 50 mM peroxide had a more pronounced and irreversible inhibitory effect on fiber contractility and also affected enzymatic activity of myofibrils, myosin, and actomyosin. Peroxide treatment also affected regulation of contractility, resulting in fiber activation in the absence of calcium. Electron paramagnetic resonance of spinlabeled myosin in muscle fibers showed that oxidation increased the fraction of myosin heads in the strong-binding structural state under relaxing conditions (low calcium) but had no effect under activating conditions (high calcium). This change in the distribution of structural states of myosin provides a plausible explanation for the observed changes in both contractile and regulatory functions. Mass spectroscopy analysis showed that 50 mM but not 5 mM peroxide induced oxidative modifications in both isoforms of the essential light chains and in the heavy chain of myosin subfragment 1 by targeting multiple methionine residues. We conclude that 1) inhibition of muscle fiber contractility via oxidation of myosin occurs at high but not low concentrations of peroxide and 2) the inhibitory effects of oxidation suggest a critical and previously unknown role of methionines in myosin function. PMID:18003749

Prochniewicz, Ewa; Lowe, Dawn A.; Spakowicz, Daniel J.; Higgins, LeeAnn; O'Conor, Kate; Thompson, LaDora V.; Ferrington, Deborah A.; Thomas, David D.

2015-01-01

330

Myosin VI has a one track mind versus myosin Va when moving on actin bundles or at an intersection.  

PubMed

Myosin VI (myoVI) and myosin Va (myoVa) serve roles both as intracellular cargo transporters and tethers/anchors. In both capacities, these motors bind to and processively travel along the actin cytoskeleton, a network of intersecting actin filaments and bundles that present directional challenges to these motors. Are myoVI and myoVa inherently different in their abilities to interact and maneuver through the complexities of the actin cytoskeleton? Thus, we created an in vitro model system of intersecting actin filaments and individual unipolar (fascin-actin) or mixed polarity (?-actinin-actin) bundles. The stepping dynamics of individual Qdot-labeled myoVI and myoVa motors were determined on these actin tracks. Interestingly, myoVI prefers to stay on the actin filament it is traveling on, while myoVa switches filaments with higher probability at an intersection or between filaments in a bundle. The structural basis for this maneuverability difference was assessed by expressing a myoVI chimera in which the single myoVI IQ was replaced with the longer, six IQ myoVa lever. The mutant behaved more like myoVI at actin intersections and on bundles, suggesting that a structural element other than the lever arm dictates myoVI's preference to stay on track, which may be critical to its role as an intracellular anchor. PMID:23046080

Ali, M Yusuf; Previs, Samantha B; Trybus, Kathleen M; Sweeney, H Lee; Warshaw, David M

2013-01-01

331

Regulation of Na,K-ATPase during acute lung injury.  

PubMed

A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na(+) channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation-Ubiquitination-Recognition-Endocytosis-Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKC zeta which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the alpha1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the alpha1-subunit recognition by the mu2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism. PMID:17972021

Lecuona, Emilia; Trejo, Humberto E; Sznajder, Jacob I

2007-12-01

332

Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain.  

PubMed

The regulatory light chain (RLC) of striated and cardiac muscle myosin plays a complex role in muscle function and regulation. Together with the essential light chain it provides stability to the lever arm, which is essential for force generation. Furthermore, phosphorylation and interaction with myosin binding protein C (MyBP-C) suggest an additional role in the regulation of muscle contraction. The former is of particular importance in the heart, where RLC phosphorylation appears to be correlated to the wringing motion of heart contraction. To address these questions and because of a lack of mammalian RLC structures, we initiated an NMR study of the human cardiac regulatory myosin light chain. PMID:24414277

Rostkova, Elena; Gautel, Mathias; Pfuhl, Mark

2015-04-01

333

Chaperones of F[subscript 1]-ATPase  

SciTech Connect

Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11p for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.

Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas; Xu, Xingjue; Gatti, Domenico L.; Ackerman, Sharon H.; (WSU-MED); (NWU)

2009-09-25

334

The Arabidopsis Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction with the  

E-print Network

The Arabidopsis Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H+-ATPase activity by physically

Deng, Xing-Wang

335

Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism  

PubMed Central

Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase homogeneity and aid the studies of genetic susceptibility to malocclusions. We provide evidence that MYO1H may contribute to mandibular prognathism. PMID:22196185

Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

2013-01-01

336

Rotary catalysis of the stator ring of F(1)-ATPase.  

PubMed

F(1)-ATPase is a rotary motor protein in which 3 catalytic ?-subunits in a stator ?(3)?(3) ring undergo unidirectional and cooperative conformational changes to rotate the rotor ?-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the ?-subunit as a "dictator" completely controlling the chemical and conformational states of the 3 catalytic ?-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 ?-subunits undergo cyclic conformational changes even in the absence of the rotor ?-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F(1)-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22465022

Iino, Ryota; Noji, Hiroyuki

2012-10-01

337

No effect of twitchin phosphorylation on the rate of myosin head detachment in molluscan catch muscle: are myosin heads involved in the catch state?  

PubMed

Phosphorylation of twitchin is known to abolish the catch state of anterior byssus retractor muscle (ABRM) of the bivalve mollusc Mytilus edulis. To investigate the role of myosin head involvement in force maintenance during catch, the effect of twitchin phosphorylation on myosin head detachment was studied in saponin-skinned fibre bundles of ABRM. The detachment rate of myosin heads was deduced from two types of experiments: (1) force decay after stepwise stretch of maximally Ca2+-activated fibre bundles (pCa 4.5) and (2) force decay from high-force rigor, the former induced by a stepwise increase in ATP concentration elicited by photolysis of caged ATP (pCa<8). The rate of detachment was not affected by thiophosphorylation or phosphorylation of twitchin by 0.12 mM cAMP in the presence of the phosphatase inhibitor cyclosporine A (1 microM). Conversely, measurements of the rate of stretch-induced delayed force increase (stretch activation) and of the force increase following an ATP step in low-force rigor (pCa 4.5) suggest that the rate of myosin head attachment decreases after twitchin phosphorylation. We conclude that catch is not due to myosin heads remaining attached to actin filaments, but depends on myofilament interconnections that break down when twitchin is phosphorylated. PMID:15952034

Andruchova, Olena; Höpflinger, Marion Christine; Andruchov, Oleg; Galler, Stefan

2005-08-01

338

Vacuolar-type H+-ATPase-mediated proton transport in the rat parietal cell.  

PubMed

The vacuolar-type H-ATPase (V-ATPase) plays an important role in the active acidification of intracellular organelles. In certain specialized cells, such as the renal intercalated cell, apical V-ATPase can also function as a proton secretion pathway. In the parietal cells of the stomach, it has been thought that acid secretion is controlled solely via the H,K-ATPase. However, recent observations suggest that functional V-ATPase is necessary for acid secretion to take place. This study aimed to investigate and characterize the role of V-ATPase in parietal cell proton transport. Individual rat gastric glands were incubated with the pH-sensitive dye (BCECF) to monitor changes in intracellular pH in real time. Parietal cell V-ATPase activity was measured by quantifying the rate of intracellular alkalinization (?pH/minute) following an acid load, while excluding the contribution of non-V-ATPase proton transport mechanisms through pharmacological inhibition or ion substitution. Expression of V-ATPase was confirmed by immunohistochemistry. We observed concanamycin A-sensitive V-ATPase activity in rat parietal cells following intracellular acidification and H,K-ATPase inhibition. Furthermore, V-ATPase-mediated proton transport could be abolished by inhibiting trafficking mechanisms with paclitaxel and by stimulating H,K-ATPase with acid secretagogues. Our results propose that parietal cells contain a functional V-ATPase that can be mobilized using a microtubule network. V-ATPase may function as an auxiliary acid secretion or proton-buffering pathway in parietal cells, which is inactive during H,K-ATPase activity. Our findings may have important implications for patients experiencing acid breakthrough under proton pump inhibitor therapy. PMID:22146938

Kopic, Sascha; Wagner, Maximilian E H; Griessenauer, Christoph; Socrates, Thenral; Ritter, Markus; Geibel, John P

2012-03-01

339

Seasonality of ATPase activities in crucian carp (Carassius carassius L.) heart  

Microsoft Academic Search

The effects of seasonal acclimatization, thermal acclimation and anoxic exposure on total cation-activated ATPase and sarcolemmal\\u000a Na-K-ATPase activities of crucian carp heart were measured. The total cation-activated ATPase showed a positive correlation\\u000a with environmental temperature: activity was highest in mid summer and lower in early spring and late autumn. The decline\\u000a of total ATPase activity during cold seasons suggests that

E. Aho; M. Vornamen

1997-01-01

340

Protection by lazaroids of the erythrocyte (Ca 2+, Mg 2+)ATPase against iron-induced inhibition  

Microsoft Academic Search

The calmodulin-stimulated (Ca2+, Mg2+)-ATPase (calmodulin-ATPase) of the erythrocyte membrane is susceptible to oxidative stress induced by heme and non-heme iron. There is a time-and concentration-dependent inhibition of the calmodulin-ATPase activity when the erythrocyte membranes are treated with either iron or hemin. In the present study, the calmodulin-ATPase has been used as a model system to evaluate the protective effects of

Asma Zaidi; Michael C. Marden; Claude Poyart; Liliane Leclerc

1995-01-01

341

Evolution of the vacuolar H sup + ATPase: Implications for the origin of eukaryotes  

Microsoft Academic Search

Active transport across the vaculoar components of the eukaryotic endomembrane system is energized by a specific vacuolar H{sup +}-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H{sup +}-ATPase are â25% identical to the β and α subunits, respectively, of the eubacterial-type FâFâ-ATPases. The authors now report that the same vacuolar H{sup +}-ATPase subunits are

J. P. Gogarten; H. Kibak; P. Dittrich; L. Taiz; E. J. Bowman; B. J. Bowman; M. F. Manolson; R. J. Poole; Takayasu Date; Tairo Oshima; Jin Konishi; Kimitoshi Denda; Masasuke Yoshida

1989-01-01

342

Evolution of the Vacuolar H+ATPase: Implications for the Origin of Eukaryotes  

Microsoft Academic Search

Active transport across the vacuolar components of the eukaryotic endomembrane system is energized by a specific vacuolar H+-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H+-ATPase are ≈ 25% identical to the beta and alpha subunits, respectively, of the eubacterial-type F0F1-ATPases. We now report that the same vacuolar H+-ATPase subunits are ≈ 50% identical

Johann Peter Gogarten; Henrik Kibak; Peter Dittrich; Lincoln Taiz; Emma Jean Bowman; Barry J. Bowman; Morris F. Manolson; Ronald J. Poole; Takayasu Date; Tairo Oshima; Jin Konishi; Kimitoshi Denda; Masasuke Yoshida

1989-01-01

343

Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride  

E-print Network

Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride Zulfiqar activity of Escherichia coli ATP synthase by magnesium fluoride (MgFx) was studied. Wild-type F1-ATPase synthesis mechanism; Magnesium fluoride; ATPase inhibition; Transition state analog 1. Introduction ATP

Zulfiqar Ahmad

344

SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity  

E-print Network

SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ that the SWI2/SNF2 chromatin-remodeling ATPases SPLAYED (SYD) and BRAHMA (BRM) are redundantly required for flower patterning and for the activation of AP3 and AG. The SWI2/SNF2 ATPases are recruited

Plotkin, Joshua B.

345

ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS  

EPA Science Inventory

The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

346

Nongastric H-K-ATPase in rodent prostate: lobe-specific expression and apical localization  

E-print Network

Nongastric H-K-ATPase in rodent prostate: lobe-specific expression and apical localization NIKOLAY. Modyanov. Nongastric H-K-ATPase in rodent prostate: lobe-specific expression and apical localiza- tion. Am is not well characterized. Rat nongastric H-K-ATPase is expressed at high levels in distal colon surface cell

Brand, Paul H.

347

Independent Evolution of Heavy Metal-Associated Domains in Copper Chaperones and Copper-Transporting ATPases  

E-print Network

Independent Evolution of Heavy Metal-Associated Domains in Copper Chaperones and Copper and structure to the Cu- binding heavy metal-associated (HMA) domains of Cu- transporting ATPases (Cu to the Cu-binding heavy metal-associated (HMA) domains of Cu-transporting ATPases (Cu- ATPases) whose genes

Jordan, King

348

Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical  

E-print Network

on soft matrices. Paradoxically, myosin mutations lead to defects in MKs and plate- lets. Here, reversible generate more platelets in vitro and also in vivo from the marrows of xenografted mice, while agonist

Discher, Dennis

349

Differential regulation of myosin heavy chains defines new muscle domains in zebrafish  

PubMed Central

Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle–specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo. The expression of tail-specific myosin heavy chain (fmyhc2.1) requires wnt signaling and is essential for fast muscle organization within the tail. Retinoic acid treatment results in reduced wnt signaling, which leads to loss of the fmyhc2.1 domain. Retinoic acid treatment also results in a shift of muscle identity within two trunk domains defined by expression of fmyhc1.2 and fmyhc1.3 in favor of the anteriormost myosin isoform, fmyhc1.2. In summary, we identify new muscle domains along the anteroposterior axis in the zebrafish that are defined by individual nonoverlapping, differentially regulated expression of myosin heavy chain isoforms. PMID:24523292

Nord, Hanna; Burguiere, Anne-Cecile; Muck, Joscha; Nord, Christoffer; Ahlgren, Ulf; von Hofsten, Jonas

2014-01-01

350

Differential regulation of myosin heavy chains defines new muscle domains in zebrafish.  

PubMed

Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle-specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo. The expression of tail-specific myosin heavy chain (fmyhc2.1) requires wnt signaling and is essential for fast muscle organization within the tail. Retinoic acid treatment results in reduced wnt signaling, which leads to loss of the fmyhc2.1 domain. Retinoic acid treatment also results in a shift of muscle identity within two trunk domains defined by expression of fmyhc1.2 and fmyhc1.3 in favor of the anteriormost myosin isoform, fmyhc1.2. In summary, we identify new muscle domains along the anteroposterior axis in the zebrafish that are defined by individual nonoverlapping, differentially regulated expression of myosin heavy chain isoforms. PMID:24523292

Nord, Hanna; Burguiere, Anne-Cecile; Muck, Joscha; Nord, Christoffer; Ahlgren, Ulf; von Hofsten, Jonas

2014-04-01

351

The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy  

PubMed Central

No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C. PMID:25619247

Spudich, James A.

2015-01-01

352

Involvement of myosin VI immunoanalog in pinocytosis and phagocytosis in Amoeba proteus.  

PubMed

Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.). PMID:19088799

Sobczak, Magdalena; Wasik, Anna; K?opocka, Wanda; Redowicz, Maria Jolanta

2008-12-01

353

The expression of myosin genes in developing skeletal muscle in the mouse embryo  

SciTech Connect

Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation.

Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M. (Pasteur Institute, Paris (France))

1990-10-01

354

CONFORMATIONAL CHANGES AT THE NUCLEOTIDE SITE IN THE PRESENCE OF BOUND ADP DO NOT SET THE VELOCITY OF FAST DROSOPHILA MYOSINS  

PubMed Central

The conformational changes in myosin associated with ADP release and their influence on actin sliding velocity are not understood. Following actin binding, the myosin active site is in equilibrium between a closed and open ADP bound state, with the open state previously thought to favor ADP release and thus expected to be favored in faster myosins. However, our recent work with a variety of myosins suggests the opposite, that the open conformation is dominant in slower myosins, which have higher ADP affinities. To test if this correlation holds for fast myosin isoforms, we determined the relationships between conformational pocket dynamics, ADP affinity and velocity of four Drosophila myosins: indirect flight muscle (IFM) myosin (IFI), embryonic muscle myosin (EMB) and two IFI/EMB chimeras. Electron paramagnetic resonance (EPR) spectra of nucleotide-analog spin probes (SLADP) bound to IFI subfragment-1 (IFIS-1) in the absence of actin showed a high degree of immobilization, indicating a predominately closed nucleotide pocket. The A•M•SLADP spectra of all four myosins in fibers (actin bound) also indicated an equilibrium favoring the closed conformation with the closed state closing even further. However, the energetics of pocket closure did not correlate with Drosophila myosin actin velocity suggesting our previous model relating pocket dynamics to velocity does not hold for fast myosin isoforms. We conclude that for these fast myosins, and possibly other fast myosins, velocity is controlled by factors other than the ratio of open to closed nucleotide pocket conformation. PMID:23203294

Eldred, Catherine C.; Naber, Nariman; Pate, Edward; Cooke, Roger; Swank, Douglas M.

2012-01-01

355

Atomic Structure of Scallop Myosin Subfragment S1 Complexed with MgADP  

Microsoft Academic Search

The crystal structure of a proteolytic subfragment from scallop striated muscle myosin, complexed with MgADP, has been solved at 2.5 Å resolution and reveals an unusual conformation of the myosin head. The converter and the lever arm are in very different positions from those in either the pre–power stroke or near-rigor state structures; moreover, in contrast to these structures, the

Anne Houdusse; Vassilios N. Kalabokis; Daniel Himmel; Andrew G. Szent-Györgyi; Carolyn Cohen

1999-01-01

356

Ipsi- and contralateral changes in rabbit soleus myosins by cross-reinnervation  

Microsoft Academic Search

Cross-reinnervation of soleus muscle in the adult rabbit induces changes in myosin light chain and isomyosin patterns. The transformation of the light chain pattern consists of a decrease in LC1's and LC2s and an induction of the three fast type myosin light chains. The transition in the isomyosin pattern consists of a decrease of the slow type isomyosin SM and

Thota Srihari; Udo Seedorf; Dirk Pette

1981-01-01

357

Drosophila crinkled, Mutations of Which Disrupt Morphogenesis and Cause Lethality, Encodes Fly Myosin VIIA  

PubMed Central

Myosin VIIs provide motor function for a wide range of eukaryotic processes. We demonstrate that mutations in crinkled (ck) disrupt the Drosophila myosin VIIA heavy chain. The ck/myoVIIA protein is present at a low level throughout fly development and at the same level in heads, thoraxes, and abdomens. Severe ck alleles, likely to be molecular nulls, die as embryos or larvae, but all allelic combinations tested thus far yield a small fraction of adult “escapers” that are weak and infertile. Scanning electron microscopy shows that escapers have defects in bristles and hairs, indicating that this motor protein plays a role in the structure of the actin cytoskeleton. We generate a homology model for the structure of the ck/myosin VIIA head that indicates myosin VIIAs, like myosin IIs, have a spectrin-like, SH3 subdomain fronting their N terminus. In addition, we establish that the two myosin VIIA FERM repeats share high sequence similarity with only the first two subdomains of the three-lobed structure that is typical of canonical FERM domains. Nevertheless, the ?100 and ?75 amino acids that follow the first two lobes of the first and second FERM domains are highly conserved among myosin VIIs, suggesting that they compose a conserved myosin tail homology 7 (MyTH7) domain that may be an integral part of the FERM domain or may function independently of it. Together, our data suggest a key role for ck/myoVIIA in the formation of cellular projections and other actin-based functions required for viability. PMID:15579689

Kiehart, Daniel P.; Franke, Josef D.; Chee, Mark K.; Montague, R. A.; Chen, Tung-ling; Roote, John; Ashburner, Michael

2004-01-01

358

Flexibility of myosin attachment to surfaces influences F-actin motion.  

PubMed Central

We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement. Images FIGURE 1 FIGURE 4 FIGURE 8 PMID:7544167

Winkelmann, D A; Bourdieu, L; Ott, A; Kinose, F; Libchaber, A

1995-01-01

359

Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins  

PubMed Central

Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

2013-01-01

360

Nonmuscle myosin, force maintenance, and the tonic contractile phenotype in smooth muscle  

Microsoft Academic Search

Recent studies have demonstrated that nonmuscle (NM) myosin II forms filaments and can generate and maintain force in smooth muscle tissue [Lofgren et al. (2003) J Gen Physiol 121:301–310; Morano et al. (2000) Nat Cell Biol 2:371–375]. To further investigate the mechanical contribution of NM myosin to force maintenance during smooth muscle contraction, we utilized a selective inhibitor of the

Albert Y. Rhee; Ozgur Ogut; Frank V. Brozovich

2006-01-01

361

Mechanics of myosin function in white muscle fibres of the dogfish, Scyliorhinus canicula  

PubMed Central

The contractile properties of muscle fibres have been extensively investigated by fast perturbation in sarcomere length to define the mechanical characteristics of myofilaments and myosin heads that underpin refined models of the acto-myosin cycle. Comparison of published data from intact fast-twitch fibres of frog muscle and demembranated fibres from fast muscle of rabbit shows that stiffness of the rabbit myosin head is only ?62% of that in frog. To clarify if and how much the mechanical characteristics of the filaments and myosin heads vary in muscles of different animals we apply the same high resolution mechanical methods, in combination with X-ray diffraction, to fast-twitch fibres from the dogfish (Scyliorhinus canicula). The values of equivalent filament compliance (Cf) measured by X-ray diffraction and in mechanical experiments are not significantly different; the best estimate from combining these values is 17.1 ± 1.0 nm MPa?1. This value is larger than Cf in frog, 13.0 ± 0.4 nm MPa?1. The longer thin filaments in dogfish account for only part of this difference. The average isometric force exerted by each attached myosin head at 5°C, 4.5 pN, and the maximum sliding distance accounted for by the myosin working stroke, 11 nm, are similar to those in frog, while the average myosin head stiffness of dogfish (1.98 ± 0.31 pN nm?1) is smaller than that of frog (2.78 ± 0.30 pN nm?1). Taken together these results indicate that the working stroke responsible for the generation of isometric force is a larger fraction of the total myosin head working stroke in the dogfish than in the frog. PMID:22310308

Park-Holohan, S; Linari, M; Reconditi, M; Fusi, L; Brunello, E; Irving, M; Dolfi, M; Lombardi, V; West, T G; Curtin, N A; Woledge, R C; Piazzesi, G

2012-01-01

362

Genetic control of autoimmune myocarditis mediated by myosin-specific antibodies  

Microsoft Academic Search

Autoimmune disease involves both the development of autoreactivity and the expression of organ damage, and susceptibility\\u000a is genetically complex. We recently reported that in autoimmune myocarditis susceptibility to antibody-mediated cardiac injury\\u000a is strain specific. DBA\\/2 mice develop myocarditis following administration of myosin-specific antibody, while BALB\\/c mice\\u000a do not. This susceptibility appears to be controlled by expression of myosin in the

Anita P. Kuan; Winston Chamberlain; Susan Malkiel; Hsiao D. Lieu; Stephen M. Factor; Betty Diamond; Brian L. Kotzin

1999-01-01

363

Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens.  

PubMed

The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity. PMID:25201952

Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V; Dolja, Valerian V; Wei, Yangdou

2014-09-23

364

Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing.  

PubMed

Hereditary hearing loss is genetically heterogeneous, with a large number of genes and mutations contributing to this sensory, often monogenic, disease. This number, as well as large size, precludes comprehensive genetic diagnosis of all known deafness genes. A combination of targeted genomic capture and massively parallel sequencing (MPS), also referred to as next-generation sequencing, was applied to determine the deafness-causing genes in hearing-impaired individuals from Israeli Jewish and Palestinian Arab families. Among the mutations detected, we identified nine novel mutations in the genes encoding myosin VI, myosin VIIA and myosin XVA, doubling the number of myosin mutations in the Middle East. Myosin VI mutations were identified in this population for the first time. Modeling of the mutations provided predicted mechanisms for the damage they inflict in the molecular motors, leading to impaired function and thus deafness. The myosin mutations span all regions of these molecular motors, leading to a wide range of hearing phenotypes, reinforcing the key role of this family of proteins in auditory function. This study demonstrates that multiple mutations responsible for hearing loss can be identified in a relatively straightforward manner by targeted-gene MPS technology and concludes that this is the optimal genetic diagnostic approach for identification of mutations responsible for hearing loss. PMID:24105371

Brownstein, Zippora; Abu-Rayyan, Amal; Karfunkel-Doron, Daphne; Sirigu, Serena; Davidov, Bella; Shohat, Mordechai; Frydman, Moshe; Houdusse, Anne; Kanaan, Moien; Avraham, Karen B

2014-06-01

365

Calcium-dependent phosphorylation alters class XIVa myosin function in the protozoan parasite Toxoplasma gondii  

PubMed Central

Class XIVa myosins comprise a unique group of myosin motor proteins found in apicomplexan parasites, including those that cause malaria and toxoplasmosis. The founding member of the class XIVa family, Toxoplasma gondii myosin A (TgMyoA), is a monomeric unconventional myosin that functions at the parasite periphery to control gliding motility, host cell invasion, and host cell egress. How the motor activity of TgMyoA is regulated during these critical steps in the parasite's lytic cycle is unknown. We show here that a small-molecule enhancer of T. gondii motility and invasion (compound 130038) causes an increase in parasite intracellular calcium levels, leading to a calcium-dependent increase in TgMyoA phosphorylation. Mutation of the major sites of phosphorylation altered parasite motile behavior upon compound 130038 treatment, and parasites expressing a nonphosphorylatable mutant myosin egressed from host cells more slowly in response to treatment with calcium ionophore. These data demonstrate that TgMyoA undergoes calcium-dependent phosphorylation, which modulates myosin-driven processes in this important human pathogen. PMID:24989796

Tang, Qing; Andenmatten, Nicole; Hortua Triana, Miryam A.; Deng, Bin; Meissner, Markus; Moreno, Silvia N. J.; Ballif, Bryan A.; Ward, Gary E.

2014-01-01

366

New insight into role of myosin motors for activation of RNA polymerases.  

PubMed

In the eukaryotic cell nucleus, actin and myosin are emerging as essential regulators of nuclear function. At gene level, they regulate chromatin and modulate RNA polymerase transcription, and at the RNA level, they are involved in the metabolism of ribonucleoprotein complexes. Furthermore, actin and myosin are involved in maintaining the structure of cell nucleus by mediating chromatin movement and by interacting with components of the nuclear lamina. This plethora of functions is now supported by evidence that nuclear actin polymerizes just like the cytoplasmic actin fraction. Based on these considerations, we now hypothesize that the nuclear myosin forms function as actin-based motors. In this chapter, our goal is to start from the knowledge acquired in the cytoplasmic field to explore how nuclear myosin functions in gene transcription. One of the pressing issues discussed here is whether nuclear myosin produces local tension or functions as transporters. Based on two current models reported in the literature, we discuss the topology of the actin-based nuclear myosin 1 motor and how it is believed to facilitate propulsion of the RNA polymerase machinery while maintaining chromatin that is compatible with transcription. These mechanisms will be placed in the context of cell cycle progression. PMID:24952918

Sarshad, Aishe A; Percipalle, Piergiorgio

2014-01-01

367

Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI  

PubMed Central

Myosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor’s oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments. In the absence of calmodulin, nonmotile dimers that cross-linked actin filaments were formed. Unexpectedly, structural analysis revealed that the dimerization domains include the calmodulin-binding neck region, essential for the generation of force and movement in myosins. Furthermore, monomeric myosin XXI bound to mixed liposomes, whereas the dimers did not. Lipid-binding sections overlapped with the dimerization domains, but also included a phox-homology domain in the converter region. We propose a mechanism of myosin regulation where dimerization, motility, and lipid binding are regulated by calmodulin. Although myosin-XXI dimers might act as nonmotile actin cross-linkers, the calmodulin-binding monomers might transport lipid cargo in the parasite. PMID:24379364

Batters, Christopher; Ellrich, Heike; Helbig, Constanze; Woodall, Katy Anna; Hundschell, Christian; Brack, Dario; Veigel, Claudia

2014-01-01

368

In Vivo Observations of Myosin II Dynamics Support a Role in Rear RetractionV?  

PubMed Central

To investigate myosin II function in cell movement within a cell mass, we imaged green fluorescent protein-myosin heavy chain (GFP-MHC) cells moving within the tight mound of Dictyostelium discoideum. In the posterior cortex of cells undergoing rotational motion around the center of the mound, GFP-MHC cyclically formed a “C,” which converted to a spot as the cell retracted its rear. Consistent with an important role for myosin in rotation, cells failed to rotate when they lacked the myosin II heavy chain (MHC?) or when they contained predominantly monomeric myosin II (3xAsp). In cells lacking the myosin II regulatory light chain (RLC?), rotation was impaired and eventually ceased. These rotational defects reflect a mechanical problem in the 3xAsp and RLC? cells, because these mutants exhibited proper rotational guidance cues. MHC? cells exhibited disorganized and erratic rotational guidance cues, suggesting a requirement for the MHC in organizing these signals. However, the MHC? cells also exhibited mechanical defects in rotation, because they still moved aberrantly when seeded into wild-type mounds with proper rotational guidance cues. The mechanical defects in rotation may be mediated by the C-to-spot, because RLC? cells exhibited a defective C-to-spot, including a slower C-to-spot transition, consistent with this mutant’s slower rotational velocity. PMID:10233146

Clow, Patricia A.; McNally, James G.

1999-01-01

369

Supervillin binding to myosin II and synergism with anillin are required for cytokinesis  

PubMed Central

Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II–binding proteins anillin and supervillin, act earlier. Anillin's role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831–1281, which bind central spindle proteins, and residues 1–170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis. PMID:24088567

Smith, Tara C.; Fridy, Peter C.; Li, Yinyin; Basil, Shruti; Arjun, Sneha; Friesen, Ryan M.; Leszyk, John; Chait, Brian T.; Rout, Michael P.; Luna, Elizabeth J.

2013-01-01

370

Supervillin couples myosin-dependent contractility to podosomes and enables their turnover  

PubMed Central

Podosomes are actin-rich adhesion and invasion structures. Especially in macrophages, podosomes exist in two subpopulations, large precursors at the cell periphery and smaller podosomes (successors) in the cell interior. To date, the mechanisms that differentially regulate these subpopulations are largely unknown. Here, we show that the membrane-associated protein supervillin localizes preferentially to successor podosomes and becomes enriched at precursors immediately before their dissolution. Consistently, podosome numbers are inversely correlated with supervillin protein levels. Using deletion constructs, we find that the myosin II regulatory N-terminus of supervillin [SV(1–174)] is crucial for these effects. Phosphorylated myosin light chain (pMLC) localizes at supervillin-positive podosomes, and time-lapse analyses show that enrichment of GFP–supervillin at podosomes coincides with their coupling to contractile myosin-IIA-positive cables. We also show that supervillin binds only to activated myosin IIA, and a dysregulated N-terminal construct [SV(1–830)] enhances pMLC levels at podosomes. Thus, preferential recruitment of supervillin to podosome subpopulations might both require and induce actomyosin contractility. Using siRNA and pharmacological inhibition, we demonstrate that supervillin and myosin IIA cooperate to regulate podosome lifetime, podosomal matrix degradation and cell polarization. In sum, we show here that podosome subpopulations differ in their molecular composition and identify supervillin, in cooperation with myosin IIA, as a crucial factor in the regulation of podosome turnover and function. PMID:22344260

Bhuwania, Ridhirama; Cornfine, Susanne; Fang, Zhiyou; Krüger, Marcus; Luna, Elizabeth J.; Linder, Stefan

2012-01-01

371

Structural Studies of the Vacuolar Membrane ATPase from Neurospora crassa and Comparison with the Tonoplast Membrane ATPase from Zea mays  

Microsoft Academic Search

The H+-translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of Mr≈ 70,000 and ≈ 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-[14C]ethylmaleimide and 7-chloro-4-nitro[14C]benzo-2-oxa-1,3-diazole, labeled

Emma Jean Bowman; Suzanne Mandala; Lincoln Taiz; Barry J. Bowman

1986-01-01

372

Pharmacological profiles of the murine gastric and colonic H,K-ATPases  

PubMed Central

Background The H,K-ATPase, consisting of ? and ? subunits, belongs to the P-type ATPase family. There are two isoforms of the ? subunit, HK?1 and HK?2 encoded by different genes. The ouabain-resistant gastric HK?1-H,K-ATPase is Sch28080-sensitive. However, the colonic HK?2-H,K-ATPase from different species shows poor primary structure conservation of the HK?2 subunit between species and diverse pharmacological sensitivity to ouabain and Sch28080. This study sought to determine the contribution of each gene to functional activity and its pharmacological profile using mouse models with targeted disruption of HK?1, HK?2, or HK? genes. Methods Membrane vesicles from gastric mucosa and distal colon in wild type (WT), HK?1, HK?2 or HK? knockout (KO) mice were extracted. K-ATPase activity and pharmacological profiles were examined. Results The colonic H,K-ATPase demonstrated slightly greater affinity for K+ than the gastric H,K-ATPase. This K-ATPase activity was not detected in the colon of HK?2 KO, but was observed in HK? KO with properties indistinguishable from WT. Neither ouabain nor Sch28080 had a significant effect on the WT colonic K-ATPase activity, but orthovanadate abolished this activity. Amiloride and its analogues benzamil and 5-N-ethyl-N-isopropylamiloride inhibited K-ATPase activity of HK?1-containing H,K-ATPase; the dose dependence of inhibition was similar for all three inhibitors. In contrast, the colonic HK?2-H,K-ATPase was not inhibited by these compounds. Conclusions These data demonstrated that the mouse colonic H,K-ATPase exhibits a ouabain- and Sch28080-insensitive, orthovanadate-sensitive K-ATPase activity. Interestingly, pharmacological studies suggested that the mouse gastric H,K-ATPase is sensitive to amiloride. PMID:20594946

Shao, Jiahong; Gumz, Michelle L.; Cain, Brian D.; Xia, Shen-Ling; Shull, Gary E.; van Driel, Ian R.; Wingo, Charles S.

2010-01-01

373

F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding  

PubMed Central

The identification of host factors involved in virus replication is important to understand virus life cycles better. Accordingly, we sought host factors that interact with the influenza viral nonstructural protein 2 by using coimmunoprecipitation followed by mass spectrometry. Among proteins associating with nonstructural protein 2, we focused on the ? subunit of the F1Fo-ATPase, which received a high probability score in our mass spectrometry analysis. The siRNA-mediated down-regulation of the ? subunit of the F1Fo-ATPase reduced influenza virion formation and virus growth in cell culture. We further found that efficient influenza virion formation requires the ATPase activity of F1Fo-ATPase and that plasma membrane-associated, but not mitochondrial, F1Fo-ATPase is important for influenza virion formation and budding. Hence, our data identify plasma membrane-associated F1Fo-ATPase as a critical host factor for efficient influenza virus replication. PMID:22393008

Gorai, Takeo; Goto, Hideo; Noda, Takeshi; Watanabe, Tokiko; Kozuka-Hata, Hiroko; Oyama, Masaaki; Takano, Ryo; Neumann, Gabriele; Watanabe, Shinji; Kawaoka, Yoshihiro

2012-01-01

374

A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes  

SciTech Connect

Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis.

Steimle, Paul A. [Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Kent Fulcher, F. [Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Patel, Yashomati M. [Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States)]. E-mail: ympatel@uncg.edu

2005-06-17

375

DE-Cadherin regulates unconventional Myosin ID and Myosin IC in Drosophila left-right asymmetry establishment.  

PubMed

In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with ?-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by ?-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with ?-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates. PMID:22491943

Petzoldt, Astrid G; Coutelis, Jean-Baptiste; Géminard, Charles; Spéder, Pauline; Suzanne, Magali; Cerezo, Delphine; Noselli, Stéphane

2012-05-01

376

ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes  

PubMed Central

In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (??m) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the ??m that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the ??m by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the ??m of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells. PMID:25714685

Šubrtová, Karolína; Panicucci, Brian; Zíková, Alena

2015-01-01

377

ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes.  

PubMed

In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (??m) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the ??m that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the ??m by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the ??m of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells. PMID:25714685

Šubrtová, Karolína; Panicucci, Brian; Zíková, Alena

2015-02-01

378

Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles  

NASA Technical Reports Server (NTRS)

Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.

Kristjansson, H.; Hochstein, L. I.

1986-01-01

379

Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa  

SciTech Connect

Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

2009-01-01

380

Elucidation of the Na+, K+-ATPase digitalis binding site.  

PubMed

Despite controversy over their use and the potential for toxic side effects, cardiac glycosides have remained an important clinical component for the treatment for congestive heart failure (CHF) and supraventricular arrhythmias since the effects of Digitalis purpurea were first described in 1785. While there is a wealth of information available with regard to the effects of these drugs on their pharmacological receptor, the Na(+), K(+)-ATPase, the exact molecular mechanism of digitalis binding and inhibition of the enzyme has remained elusive. In particular, the absence of structural knowledge about Na(+), K(+)-ATPase has thwarted the development of improved therapeutic agents with larger therapeutic indices via rational drug design approaches. Here, we propose a binding mode for digoxin and several analogues to the Na(+), K(+)-ATPase. A 3D-structural model of the extracellular loop regions of the catalytic alpha1-subunit of the digitalis-sensitive sheep Na(+), K(+)-ATPase was constructed from the crystal structure of an E(1)Ca(2+) conformation of the SERCA1a and a consensus orientation for digitalis binding was inferred from the in silico docking of a series of steroid-based cardiotonic compounds. Analyses of species-specific enzyme affinities for ouabain were also used to validate the model and, for the first time, propose a detailed model of the digitalis binding site. PMID:15886034

Keenan, Susan M; DeLisle, Robert K; Welsh, William J; Paula, Stefan; Ball, William J

2005-06-01

381

Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells  

Microsoft Academic Search

Usher syndrome is the most common form of combined deafness and blindness. The gene that is defective in Usher syndrome 1B (USH1B) encodes for an unconventional myosin, myosin VIIa. To understand the cellular function of myosin VIIa and why defects in it lead to USH1B, it is essential to determine the precise cellular and subcellular localization of the protein. We

Xinran Liu; Gordon Vansant; Igor P. Udovichenko; Uwe Wolfrum; David S. Williams

1997-01-01

382

Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays).  

PubMed

The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses. PMID:24363426

Wang, Guifeng; Zhong, Mingyu; Wang, Jiajia; Zhang, Jushan; Tang, Yuanping; Wang, Gang; Song, Rentao

2014-03-01

383

Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays)  

PubMed Central

The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses. PMID:24363426

Wang, Guifeng; Zhong, Mingyu; Wang, Gang; Song, Rentao

2014-01-01

384

Nanometer Localization of Single Green Fluorescent Proteins: Evidence that Myosin V Walks Hand-Over-Hand via Telemark Configuration  

Microsoft Academic Search

Myosin V is a homodimeric motor protein involved in trafficking of vesicles in the cell. It walks bipedally along actin filaments, moving cargo ?37nm per step. We have measured the step size of individual myosin heads by fusing an enhanced green fluorescent protein (eGFP) to the N-terminus of one head of the myosin dimer and following the motion with nanometer

Gregory E. Snyder; Takeshi Sakamoto; John A. Hammer III; James R. Sellers; Paul R. Selvin

2004-01-01

385

Selective delipidation of the plasma membrane by surfactants: Enrichment of sterols and activation of ATPase  

SciTech Connect

The influence of plasma membrane lipid components on the activity of the H{sup +}-ATPase has been studied by determining the effect of surfactants on membrane lipids and ATPase activity of oat (Avena sativa L.) root plasma membrane vesicles purified by a two-phase partitioning procedure. Triton X-100, at 25 to 1 (weight/weight) Triton to plasma membrane protein, an amount that causes maximal activation of the ATPase in the ATPase assay, extracted 59% of the membrane protein but did not solubilize the bulk of the ATPase. The Triton-insoluble proteins had associated with them, on a micromole per milligram protein basis, only 14% as much phospholipid, but 38% of the glycolipids and sterols, as compared with the native membranes. The Triton insoluble ATPase could still be activated by Triton X-100. When solubilized by lysolecithin, there were still sterols associated with the ATPase fraction. Free sterols were found associated with the ATPase in the same relative proportions, whether treated with surfactants or not. We suggest that surfactants activate the ATPase by altering the hydrophobic environment around the enzyme. We propose that sterols, through their interaction with the ATPase, may be essential for ATPase activity.

Sandstrom, R.P.; Cleland, R. (Portland State Univ., OR (USA) Univ. of Washington, Seattle (USA))

1989-08-01

386

Structure of the Vacuolar H(+)-ATPase Rotary Motor Reveals New Mechanistic Insights.  

PubMed

Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ?1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. PMID:25661654

Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

2015-03-01

387

Structure of the Vacuolar H+-ATPase Rotary Motor Reveals New Mechanistic Insights  

PubMed Central

Summary Vacuolar H+-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ?1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. PMID:25661654

Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A.; Muench, Stephen P.

2015-01-01

388

Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes  

SciTech Connect

Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.

Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty [Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402 (United States); Patel, Yashomati M. [Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402 (United States)], E-mail: ympatel@uncg.edu

2008-10-15

389

MyosinVIIa Interacts with Twinfilin-2 at the Tips of Mechanosensory Stereocilia in the Inner Ear  

PubMed Central

In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase. PMID:19774077

Rzadzinska, Agnieszka K.; Nevalainen, Elisa M.; Prosser, Haydn M.; Lappalainen, Pekka; Steel, Karen P.<