Science.gov

Sample records for actinide burner core

  1. Cross sections for actinide burner reactors

    SciTech Connect

    Difilippo, F.C.

    1991-01-01

    Recent studies have shown the feasibility of burning higher actinides (i.e., transuranium (TRU) elements excluding plutonium) in ad hoc designed reactors (Actinide Burner Reactors: ABR) which, because of their hard neutron spectra, enhance the fission of TRU. The transmutation of long-lived radionuclides into stable or short-lived isotopes reduces considerably the burden of handling high-level waste from either LWR or Fast Breeder Reactors (FBR) fuels. Because of the large concentrations of higher actinides in these novel reactor designs the Doppler effect due to TRU materials is the most important temperature coefficient from the point of view of reactor safety. Here we report calculations of energy group-averaged capture and fission cross sections as function of temperature and dilution for higher actinides in the resolved and unresolved resonance regions. The calculations were done with the codes SAMMY in the resolved region and URR in the unresolved regions and compared with an independent calculation. 4 refs., 2 figs., 2 tabs.

  2. Fusion-Fission Burner for Transuranic Actinides

    NASA Astrophysics Data System (ADS)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  3. Dynamics of Critical Dedicated Cores for Minor Actinide Transmutation

    SciTech Connect

    Massara, S.; Tommasi, J.; Vanier, M.; Koeberl, O.

    2005-02-15

    Fast spectrum minor actinide (MA) burner designs, with high minor actinide loads and consumptions, have been assessed. As reactivity and kinetic coefficients are poor in such cores (low delayed neutron fraction and Doppler feedback, high coolant void coefficient), special attention has been paid to their dynamic behavior during transient conditions. A dynamics code, MAT4 DYN, has been expressly developed to study loss-of-flow, reactivity insertion, and loss-of-coolant accidents. It takes into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium).Three nitride-fuel configurations are analyzed according to their coolant: sodium and lead (both with pin fuel) and helium (with particle fuel). Dynamics calculations show that if the fuel nature is appropriately chosen, with sufficient margins during transients, then this can counterbalance the poor reactivity coefficients for liquid-metal-cooled cores, thus proving the interest of this kind of concept. On the other hand, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient in a hard spectrum, this effect being amplified by the very low thermal inertia of the fuel particles. Hence, concepts other than a particle-bed fuel should be investigated for a helium-cooled fast-spectrum MA burner.

  4. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  5. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  6. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  7. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  8. Core design studies for advanced burner test reactor.

    SciTech Connect

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  9. Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2007-02-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps.

  10. Core design studies for a 1000 MW{sub th} advanced burner reactor.

    SciTech Connect

    Kim, T. K.; Yang, W. S.; Grandy, C.; Hill, R.; Nuclear Engineering Division

    2009-04-01

    This paper describes the core design and performance characteristics of 1000 MW{sub th} Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of {approx}0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with low and high TRU conversion ratios were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from {approx}0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties.

  11. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    SciTech Connect

    Cao, Y.; Gohar, Y.

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  12. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  13. Regenerative burner

    SciTech Connect

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  14. High-burnup core design using minor actinide-containing metal fuel

    SciTech Connect

    Ohta, Hirokazu; Ogata, Takanari; Obara, T.

    2013-07-01

    A neutronic design study of metal fuel fast reactor (FR) cores is conducted on the basis of an innovative fuel design concept to achieve an extremely high burnup and realize an efficient fuel cycle system. Since it is expected that the burnup reactivity swing will become extremely large in an unprecedented high burnup core, minor actinides (MAs) from light water reactors (LWRs) are added to fresh fuel to improve the core internal conversion. Core neutronic analysis revealed that high burnups of about 200 MWd/kg for a small-scale core and about 300 MWd/kg for a large-scale core can be attained while suppressing the burnup reactivity swing to almost the same level as that of conventional cores with normal burnup. An actinide burnup analysis has shown that the MA consumption ratio is improved to about 60% and that the accumulated MAs originating from LWRs can be efficiently consumed by the high-burnup metal fuel FR. (authors)

  15. Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions

    SciTech Connect

    Froud, D.; O`Doherty, T.; Syred, N.

    1995-02-01

    The flow patterns produced in and past the exhaust of a 100-KW swirl burner have been investigated experimentally under piloted premixed combustion conditions. The well-known three-dimensional time-dependent instability called the precessing vortex core (PVC) dominates the flow and mixing patterns. The PVC and its associated cycle time were used to trigger a three-component laser anemometry system. Successive cycles were overlaid and phase averaged to give a three-dimensional picture of the rotating flow fields. Measurements were obtained over successive slices of the flow, extending to X/De = 2.5 past the burner exit. A description of the flow was thus obtained in terms of phase averaged tangential, axial and radial velocities in tangential/radial and axial/radial planes. The results confirm previous reported work on the same burner operated isothermally and show that the center of the vortex flow is displaced from the central axis of the burner, creating the PVC phenomena as the center of the vortex precesses around the central axis of symmetry. As a consequence of this displacement the reverse flow zone (RFZ) is also displaced, while also partially lagging behind the PVC by up to 180{degree}. The RFZ acts as a feedback mechanism for the PVC phenomena. As a consequence of the displaced vortex center, flow between the PVC center and the wall is squeezed. Thus, due to angular momentum flux consideration, it produces a considerable increase in tangential velocity and gives the characteristic PVC signal. The displaced RFZ is both rotating through a region of forward flow while also being of an intermittent nature, giving rise to the excellent flame stabilization and mixing characteristics of these types of burners. Similar results were obtained for isothermal and premixed combustion conditions providing the flame was stabilized close to the burner exit nozzle.

  16. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  17. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  18. Physics studies of higher actinide consumption in an LMR

    SciTech Connect

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  19. High Momentum Transfer Shallow Core-to-valence Spectroscopy in the Actinides

    NASA Astrophysics Data System (ADS)

    Gupta, Subhra Sen; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Sawatzky, G. A.

    2010-03-01

    We calculate the dynamic structure factor S(q,φ) within a renormalized atomic multiplet approach, to describe the 5d->5f non-resonant inelastic x-ray scattering (NIXS) in actinide compounds ThO2 (5f^0) and UO2 (5f^2). For small q, the spectra select the dipole-allowed transitions which are degenerate with continuum states, hindering their use in ground electronic structure determination. However dipole-forbidden multiplets reached with large q are strongly bound to the core-hole, enabling the use of a renormalized atom approach to extract the ground state electronic structure. This crossover from unbound to bound states, reachable by low-q and high-q experiments respectively, is a result of the large multiplet spread of the 5d^95f^N+1 multiplets exceeding the attractive core-hole potential. We discuss the details of the calculations and emphasize the importance of high-q experiments in studies of the ground state electronic structure of actinides.

  20. On the use of moderating material to enhance the feedback coefficients in SFR cores with high minor actinide content

    SciTech Connect

    Merk, B.; Weiss, F. P.

    2012-07-01

    The use of fine distributed moderating material to enhance the feedback effects and to reduce the sodium void effecting sodium cooled fast reactor cores is described. The influence of the moderating material on the neutron spectrum, the power distribution, and the burnup distribution is shown. The consequences of the use of fine distributed moderating material into fuel assemblies with fuel configurations foreseen for minor actinide transmutation is analyzed and the transmutation efficiency is compared. The degradation of the feedback effects due to the insertion of minor actinides and the compensation by the use of moderating materials is discussed. (authors)

  1. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Novitrian, Waris, Abdul; Ismail, Suzuki, Mitsutoshi; Saito, Masaki

    2014-09-01

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by convertion rasio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loding scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

  2. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    SciTech Connect

    Permana, Sidik; Novitrian,; Waris, Abdul; Ismail; Suzuki, Mitsutoshi; Saito, Masaki

    2014-09-30

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

  3. Regenerative burner

    SciTech Connect

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  4. Ceramic burner

    SciTech Connect

    Laux, W.; Hebel, R.; Artelt, P.; Esfeld, G.; Jacob, A.

    1981-03-31

    Improvements in the mixing body and supporting structure of a molded-ceramic-brick burner enable the burner to withstand the vibrations induced during its operation. Designed for the combustion chambers of air heaters, the burner has a mixing body composed of layers of shaped ceramic bricks that interlock and are held together vertically by a ceramic holding bar. The mixing body is shaped like a mushroom - the upper layers have a larger radius than the lower ones.

  5. Development and analysis of a compact low-conversion ratio fast burner reactor.

    SciTech Connect

    Smith, M. A.; Hill, R. N.; Nuclear Engineering Division

    2006-05-12

    This report explores design options for compact fast burner reactors that can achieve low conversion ratios. Operational characteristics and whole-core reactivity coefficients are generated and contrasted with low conversion ratio designs of previous studies. A compact core point design is then selected and detailed reactivity coefficients are displayed and discussed. The effectiveness of fast spectrum systems for actinide transmutation has been well documented. The key advantage of the fast spectrum resides in the severely reduced capture/fission ratios. this inhibits the production of the higher actinides that dominate the long-term radiotoxicity of nuclear waste. In conventional fast burner studies, the transmutation rate was limited by constraints placed on the fuel composition. In an earlier phase of this study the entire range of fuel compositions (including non-uranium fuel) was explored to assess the performance and safety limits of fast burner reactor systems. In this report, similar fuel compositions are utilized for application in compact configurations to achieve conversion ratios below 0.5.

  6. Core-hole effect on XANES and electronic structure of minor actinide dioxides with fluorite structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Chikashi; Nishi, Tsuyoshi; Nakada, Masami; Akabori, Mitsuo; Hirata, Masaru; Kaji, Yoshiyuki

    2012-02-01

    The authors investigated theoretically core-hole effects on X-ray absorption near-edge structures (XANES) of Np and Am LIII in neptunium dioxide (NpO2) and americium dioxide (AmO2) with CaF2-type crystal lattices using the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The peak creation mechanism of XANES was shown by examining the electronic structures of these oxides, which indicated that core-hole screening was more marked for AmO2 than for NpO2 because of the difference in the charge transfer between these oxides. Furthermore, the results of charge density analysis suggested that the white line was assigned to the quasi-bound state composed of the localized Np d or Am d components and O components, and that the tail structure was created as a result of delocalized standing waves between the Np or Am atoms.

  7. A Heterogeneous Sodium Fast Reactor Designed to Transmute Minor Actinide Actinide Waste Isotopes into Plutonium Fuel

    SciTech Connect

    Samuel E. Bays

    2011-02-01

    An axial heterogeneous sodium fast reactor design is developed for converting minor actinide waste isotopes into plutonium fuel. The reactor design incorporates zirconium hydride moderating rods in an axial blanket above the active core. The blanket design traps the active core’s axial leakage for the purpose of transmuting Am-241 into Pu-238. This Pu-238 is then co-recycled with the spent driver fuel to make new driver fuel. Because Pu-238 is significantly more fissile than Am-241 in a fast neutron spectrum, the fissile worth of the initial minor actinide material is upgraded by its preconditioning via transmutation in the axial targets. Because, the Am-241 neutron capture worth is significantly stronger in a moderated epithermal spectrum than the fast spectrum, the axial targets serve as a neutron trap which recovers the axial leakage lost by the active core. The sodium fast reactor proposed by this work is designed as an overall transuranic burner. Therefore, a low transuranic conversion ratio is achieved by a degree of core flattening which increases axial leakage. Unlike a traditional “pancake” design, neutron leakage is recovered by the axial target/blanket system. This heterogeneous core design is constrained to have sodium void and Doppler reactivity worth similar to that of an equivalent homogeneous design. Because minor actinides are irradiated only once in the axial target region; elemental partitioning is not required. This fact enables the use of metal targets with electrochemical reprocessing. Therefore, the irradiation environment of both drivers and targets was constrained to ensure applicability of the established experience database for metal alloy sodium fast reactor fuels.

  8. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  9. Rotary Burner Demonstration

    SciTech Connect

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  10. Measurement and prediction of interactions between burners in multi-low NOx burner systems

    SciTech Connect

    Tarr, S.J.; Allen, J.W.

    1998-07-01

    Measurements using Laser Doppler Anemometry (LDA) have been carried out on the isothermal flow from multiple small-scale burners enclosed in a furnace-type geometry. These have been used to validate Computational Fluid Dynamics (CFD) models using the commercial unstructured CFD code FLUENT/UNS version 4.1. The flows from arrays of two, four and six co- and counter-rotating burners have been measured at various burner pitches. Measurements show that the isothermal flows impinge on one another and interact significantly when the burner pitch is reduced to 1.3 burner exit diameters, although interactions between flows do not significantly affect the main central core flow. Predictions indicate that the burner jet entrainment is significantly affected by interactions, and the entrainment rate if dependent on the number of burners and whether a co- or counter-rotating swirl arrangement is adopted. Both two and four counter-rotating flows entrain greater amounts of surrounding air than a single burner flow, with the greatest entrainment found with two counter-rotating flows.

  11. Burner safety system

    SciTech Connect

    Simpson, K.N.

    1986-09-23

    In combination with a fuel burner, this patent describes a pilot light burner disposed adjacent the fuel burner for lighting the fuel burner, and a solenoid-operated valve controlling the supply of fuel to the fuel burner, a thermocouple operable when heated to produce a thermoelectric current placed to be heated by the heat of the pilot light burner, an electromagnetic coil connected across the thermocouple energized by the thermoelectric current of the thermocouple, a reed switch unit including an envelope and switch contacts within the envelope actuated by the application of a magnetic flux thereto, the reed switch being mounted adjacent and in the magnetic field of the coil with energizing of the coil, a magnet, a mounting for the magnet wherein such is spaced from the reed switch unit, and circuit means connected to the reed switch unit and actuated by the unit to control actuation of the solenoid of the solenoid-operated valve.

  12. Infrared radiant burner

    SciTech Connect

    Vigneau, D.L.

    1984-03-06

    An infrared radiant burner uses a porous, fibrous refractory board matrix supported by two pairs of frame members, forming a gas-air mixture chamber between a flat sheet, the frame supports, and the matrix. The hollow frame members receive a noncombustible gas that is directed out through a narrow path along the sides of the matrix. The burner's air knife construction grips the matrix edge so as to prevent gas leakage while delivering air through the air knives around the burner periphery.

  13. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (Inventor)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  14. Actinides-1981

    SciTech Connect

    Not Available

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  15. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  16. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  17. Combustor burner vanelets

    DOEpatents

    Lacy, Benjamin; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Zuo, Baifang

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  18. LOW NOX BURNER DEVELOPMENT

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  19. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  20. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  1. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.

    PubMed

    Perkins, W G; Lucero, D A

    2001-02-01

    one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the 241Pu was dispersed with a very high apparent retardation value. The 241Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported. PMID:11288568

  2. Interpretation of Actinide-Distribution Data Obtained from Non-Destructive and Destructive Post-Test Analyses of an Intact-Core Column of Culebra Dolomite

    SciTech Connect

    LUCERO, DANIEL A; PERKINS, W GEORGE

    1999-08-26

    after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the {sup 241}Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the {sup 241}Pu was dispersed with a very high apparent retardation value. The {sup 241}Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.

  3. Analysis of actinides in an ombrotrophic peat core - evidence of post-depositional migration of fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R.

    2013-04-01

    Plutonium (239Pu, 240Pu, 241Pu, 242Pu) and uranium (236U, 238U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry. The 240Pu/239Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average 240Pu/239Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding 241Pu/239Pu (0.0012 ±0.0005) and 242Pu/239Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile. The maximum of global fallout derived 236U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236U bomb peak can be successfully used as an independent chronological marker complementing the 210Pb dating of peat cores. The profiles of the global fallout derived 236U and 239Pu are compared with those of 137Cs and 241Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241Am in peat layers preceding the era of atmospheric nuclear tests is observed.

  4. Ultralean low swirl burner

    DOEpatents

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  5. Ultralean low swirl burner

    DOEpatents

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  6. Burner swirls NO{sub x} away

    SciTech Connect

    Zink, J.C.

    1997-11-01

    Cleaner boilers that will help reduce acid rain, photochemical smog and tropospheric ozone are now coming on-line, partly as a result of a new burner design for power-generation boilers based on MIT research and now commercialized under exclusive license to ABB C-E Services Inc. The rapidly stratified flame core (RSFC) burner achieved very large nitrogen oxide reductions of up to 90% with natural gas as fuel, and 70 to 80% when burning pulverized coal and heavy fuel oil, respectively. The RSFC design provides a fuel-rich (oxygen deficient), high-temperature environment early in the flame to allow the chemical conversion of the NO{sub x} precursors to harmless molecular nitrogen. A subsequent lower-temperature, fuel-lean environment, in which the remainder of the air is mixed with the remaining fuel, then ensures complete combustion. Another integral feature of the RSFC burner register is its uniquely shaped refractory throat quarl. The throat collimates the airflow as opposed to the divergent airflow from a traditional burner (bell mouth) nozzle shape. The cylindrical shape tends to enforce stratification.

  7. Burners and stingers.

    PubMed

    Feinberg, J H

    2000-11-01

    The burner or stinger syndrome is one of the most common injuries in football and most likely represents an upper cervical root injury. Other sports reported include wrestling, hockey, basketball, boxing, and weight lifting. The athlete experiences radiating pain, numbness, or tingling down one upper limb, usually lasting less than 1 minute. Recurrences are common and can lead to permanent neurologic deficits. Burners are usually diagnosed and treated based on physical examination findings, but radiographs, MR imaging, and electrodiagnostic testing may help localize the precise level of injury, identify other associated pathology, and quantify neurologic injury. Management should include education on proper tackling techniques, restoration of neck motion, functional strengthening, and carefully fitted orthosis. PMID:11092018

  8. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  9. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    SciTech Connect

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-08-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ``engineered safety features,`` which, along with the use of high temperature capable materials further enhance its safety characteristics.

  10. Identifying Dark Matter Burners in the Galactic Center

    SciTech Connect

    Moskalenko, Igor V.; Wai, Lawrence L.

    2007-04-16

    If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense ''spike'' of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. ''WIMP burners'', in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark matter spike density profiles, degenerate core masses, and distances from the SMBH. Here we compare our results with the observed stars closest to the Galactic center and find that they could be consistent with WIMP burners in the form of degenerate cores with envelopes. We also cross-check the WIMP burner hypothesis with the EGRET observed flux of gamma-rays from the Galactic center, which imposes a constraint on the dark matter spike density profile and annihilation cross-section. We find that the EGRET data is consistent with the WIMP burner hypothesis. New high precision measurements by GLAST will confirm or set stringent limits on a dark matter spike at the Galactic center, which will in turn support or set stringent limits on the existence of WIMP burners at the Galactic center.

  11. Oil burner nozzle

    DOEpatents

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  12. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  13. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  14. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1991-04-05

    This invention is comprised of a process of converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  15. High capacity oil burner

    SciTech Connect

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  16. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  17. Actinide sulfite tetrahydrate and actinide oxysulfite tetrahydrate

    SciTech Connect

    Baugh, D.; Watt, G.

    1980-07-08

    A compound is prepared that comprises an actinide sulfite tetrahydrate selected from the group consisting of uranium (IV) sulfite tetrahydrate and plutonium (IV) sulfite tetrahydrate. A compound is also prepared that comprises an actinide oxysulfite tetrahydrate selected from the group consisting of uranium (IV) oxysulfite tetrahydrate and plutonium (IV) oxysulfite tetrahydrate

  18. Low NO sub x regenerative burner

    SciTech Connect

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  19. Radiant energy burner

    SciTech Connect

    Granberg, D.N.

    1986-07-08

    In a radiant energy burner, a combustion element is described comprising a porous metal support having an inner surface and an outer surface, a woven fabric disposed on the outer surface of the support and composed of substantially continuous ceramic fibers, connecting means for securing end portions of the fabric to the support, the connecting means being metal and being enclosed in a ring-like sleeve of woven ceramic fiber. The central portion of the fabric is free of attachment to the support, supply means including a blower to supply a gaseous fuel through the support and the fabric, and fuel igniting means disposed adjacent to the outer surface of the fabric to ignite the fuel.

  20. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  1. Actinide-ion sensor

    DOEpatents

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  2. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  3. Minor Actinides Recycling in PWRs

    SciTech Connect

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-07-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  4. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  5. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  6. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.47 Burners. (a) If a burner is used to provide the... fuel pressure is 40 to 60 percent of the range between the maximum fuel pressure referenced...

  7. Research in actinide chemistry

    SciTech Connect

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  8. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Burners. 31.47 Section 31.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.47 Burners. (a) If a burner is used to provide the lifting means, the system must be designed...

  9. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Burners. 31.47 Section 31.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.47 Burners. (a) If a burner is used to provide the lifting means, the system must be designed...

  10. Actinide recovery process

    DOEpatents

    Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  11. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  12. Uniform-burning matrix burner

    DOEpatents

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  13. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  14. THEORY FOR THE XPS OF ACTINIDES

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.

    2013-08-01

    Two aspects of the electronic structure of actinide oxides that significantly affect the XPS spectra are described; these aspects are also important for the materials properties of the oxides. The two aspects considered are: (1) The spin-orbit coupling of the open 5f shell electrons in actinide cations and how this coupling affects the electronic structure. And, (2) the covalent character of the metal oxygen interaction in actinide compounds. Because of this covalent character, there are strong departures from the nominal oxidation states that are significantly larger in core-hole states than in the ground state. The consequences for the XPS of this covalent character are examined. A proper understanding of the way in which they influence the XPS makes it possible to use the XPS to correctly characterize the electronic structure of the oxides.

  15. Minor Actinide Transmutation Physics for Low Conversion Ratio Sodium Fast Reactors

    SciTech Connect

    Mehdi Asgari; Samuel E. Bays; Benoit Forget; Rodolfo Ferrer

    2007-09-01

    The effects of varying the reprocessing strategy used in the closed cycle of a Sodium Fast Reactor (SNF) prototype are presented in this paper. The isotopic vector from the aqueous separation of transuranic (TRU) elements in Light Water Reactor (LWR) spent nuclear fuel (SNF) is assumed to also vary according to the reprocessing strategy of the closed fuel cycle. The decay heat, gamma energy, and neutron emission of the fuel discharge at equilibrium are found to vary depending on the separation strategy. The SFR core used in this study corresponds to a burner configuration with a conversion ratio of ~0.5 based on the Super-PRISM design. The reprocessing strategies stemming from the choice of either metal or oxide fuel for the SFR are found to have a large impact on the equilibrium discharge decay heat, gamma energy, and neutron emission. Specifically, metal fuel SFR with pyroprocessing of the discharge produces the largest amount of TRU consumption (166 kg per Effective Full Power Year or EFPY), but also the highest decay heat, gamma energy, and neutron emission. On the other hand, an oxide fuel SFR with PUREX reprocessing minimizes the decay heat and related parameters of interest to a minimum, even when compared to thermal Mixed Oxide (MOX) or Inert Matrix Fuel (IMF) on a per mass basis. On an assembly basis, however, the metal SFR discharge has a lower decay heat than an equivalent oxide SFR assembly for similar minor actinide consumptions (~160 kg/EFPY.) Another disadvantage in the oxide PUREX reprocessing scenario is that there is no consumption of americium and curium, since PUREX reprocessing separates these minor actinides (MA) and requires them to be disposed of externally.

  16. Research in actinide chemistry

    SciTech Connect

    Not Available

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  17. Thermochemistry of the actinides

    SciTech Connect

    Kleinschmidt, P.D.

    1993-10-01

    The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

  18. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  19. Actinide recovery process

    DOEpatents

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  20. Wood fuel in suspension burners

    SciTech Connect

    Wolle, P.C.

    1982-01-01

    Experience and criteria for solid fuel suspension burning is presented based on more than ten years of actual experience with commercially installed projects. Fuel types discussed range from dried wood with less than 15% moisture content, wet basis, to exotic biomass material such as brewed tea leaves and processed coffee grounds. Single burner inputs range from 1,465 kW (5,000 Mbh) to 13,771 kW (47,000 Mbh) as well as multiple burner applications with support burning using fuel oil and/or natural gas. General requirements for self-sustaining combustion will be reviewed as applied to suspension solid fuel burning, together with results of what can happen if these requirements are not met. Solid fuel preparation, sizing, transport, storage, and metering control is essential for proper feed. Combustion chamber volume, combustion air requirements, excess air, and products of combustion are reviewed, together with induced draft fan sizing. (Refs. 7).

  1. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.; Burger, J.; Hunger, P. M.; Wegst, U. G. K.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary

  2. Fiber burner development for gas-fired hydronic heating

    SciTech Connect

    Tidball, R.K.; Kennedy, J.M.

    1986-01-01

    Alzetta Corporation, under the sponsorship of the Gas Research Institute (GRI), has recently developed a radiant burner for a new high efficiency residential hydronic heater. The burner chosen for development was the porous radiant ceramic fiber burner. This paper discusses the burner requirements which were satisfied by the burner and describes the development process. Burner development challenges and solutions are analyzed and results of life testing are presented.

  3. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  4. Porous radiant burners having increased radiant output

    SciTech Connect

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  5. Computational fluid dynamics in oil burner design

    SciTech Connect

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  6. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  7. Numerical simulation of a porous honeycomb burner

    SciTech Connect

    Hackert, C.L.; Elizey, J.L.; Ezekoye, O.A.

    1997-07-01

    A two-dimensional simulation of a honeycomb burner using single step global chemistry is used to investigate the importance of thermal properties and boundary conditions to inert porous burners. Comparisons to available experimental results are made where possible, and a parametric study of the effects of burner properties on the flame is performed. The burner solid emissivity is found to be relatively unimportant to the achievable burning rate and radiant output fraction, so long as it is above a certain minimum value (about 0.3). In contrast, increases in solid conductivity always lead to marked increases in burning rate. The flame is shown to exhibit significant curvature on both a pore scale and burner scale.

  8. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the

  9. Burner retrofits reduce brewery emissions

    SciTech Connect

    Not Available

    1993-04-01

    In 1988, the South Coast Air Quality Management District in California (SCAQMD) tightened its grip on industrial emissions of nitrogen oxides (NOx). The new statute, Rule 1146, mandates a 75% reduction in NOx emissions over a five-year period ending this July. Anheuser-Busch Inc.'s second-largest brewery in Van Nuys fell under the new law's jurisdiction. Under the new law, the maximum allowable NOx emission must be reduced from 120 to 30 ppm for the two largest boilers. There were two alternatives: either prevent its formation inside the boiler, or remove it from the off-gases via selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR). Prevention was chosen, because the NOx-removal technologies are unproven in the US on natural-gas-fired boilers. In addition, it was not known whether SCR or SNCR could respond to the wide swings in boiler demand. At any given time, loads between 30 and 100% of capacity would be required from the boilers. The brewery retrofitted the 125,000-lb/h boilers with Variflame burners, based upon an earlier retrofit at Anheuser-Busch's Merrimack, N.H., brewery. The paper describes this burner and its performance.

  10. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  11. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    SciTech Connect

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  12. Research in actinide chemistry

    SciTech Connect

    Not Available

    1989-01-01

    Research continued to be focused broadly on the chemistry of the actinide cations in solution. While the direct concern is the actinide elements, their radioactivity limits the techniques which can be applied to their study. A major area of interest continues to be the thermodynamics of interaction of the f-elements with a broad spectrum of inorganic and organic ligands. Solvent extraction (for tracer levels), potentiometric and calorimetric titration and absorption spectrometry have been used to obtain stability constants and the associated enthalpy and entropy changes for complexation. A number of studies were performed to provide a better data base and a better understanding of the more significant species determining the behavior of actinides in natural waters (e.g., hydrolysis and silicate interaction). A second major area has been kinetics. NpO{sub 2}{sup 2+} reduction by hydroxy and carboxylic acids was studied to obtain an understanding of how such functional groups in humic substances may influence actinyl redox. The kinetics of dissociation of UO{sub 2}{sup 2+} and Ln{sup 3+} (La{sup 3+} = lanthanide element cations) from synthetic polyelectrolytes and humics provided significantly increased understanding of actinide complexation by these macromolecules. A third area of activity used laser induced fluorescence to study the hydration state of Eu(III) in a number of systems. Finally, several other studies, not in these major areas, were conducted. These included investigation of NpO{sub 2}{sup +} cation-cation complexes, the extraction of Am(III) by MX (M = Li, Na, NH{sub 4}{sup +}, K{sup +}; X = ClO{sub 4}{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, BrO{sub 3}{sup {minus}}) over a concentration range from 0.01 M to saturated and the thermodynamics of synergistic extraction of actinides by crown ethers and {beta}-diketonates. 23 refs., 1 fig.

  13. Burners

    MedlinePlus

    ... among people who play contact sports such as football and wrestling. Symptoms How do I know if ... each stretch for 20 seconds. If you play football, wear extra neck protection. Questions to Ask Your ...

  14. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  15. Power burner for compact furnace

    SciTech Connect

    Dilmore, J.A.

    1980-09-23

    A compact gas power burner is provided which includes a cylindrical mixing tube into which combustion air is discharged tangentially from a centrifugal blower located adjacent the closed end of the mixing tube, and gaseous fuel is admitted into the discharge airstream of the blower upstream from the admission location of the airstream into the mixing tube so that the swirling component of the air in the mixing tube during its passage to the open end of the tube will promote the mixing of the air and gaseous fuel, the mixing tube being provided with a honeycomb ceramic disc at its end to which it is attached to a cylindrical heat exchanger, and ignition means and flame sensors are provided on the downstream side of the ceramic disc.

  16. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  17. Device for Detecting Actinides, Method for Detecting Actinides

    SciTech Connect

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  18. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  19. Reverberatory screen for a radiant burner

    SciTech Connect

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  20. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  1. Reverberatory screen for a radiant burner

    SciTech Connect

    Gray, P.E.

    1999-11-23

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  2. How ''flat'' is the rich premixed flame produced by your McKenna burner?

    SciTech Connect

    Migliorini, F.; De Iuliis, S.; Cignoli, F.; Zizak, G.

    2008-05-15

    McKenna burners are widely used in the combustion community for producing ''flat'' premixed flames. These flames are considered as standards for the development and calibration of optical techniques. Rich premixed flames produced by McKenna burners are frequently investigated in order to understand soot formation processes both by optical and by sampling techniques. Measurements are normally performed along the axis of the flames, with a uniform distribution of temperature and species concentration assumed in the radial direction. In this work it is shown that the soot radial profiles of rich premixed ethylene-air flames produced by a McKenna burner with a stainless steel porous plug may be far from being ''flat.'' Soot is mainly distributed in an annular region and nonsoot fluorescing species are present in the core of the flames. This surprising result was verified under several working conditions. Furthermore, flames cannot be considered axial-symmetric but present a skewed soot distribution. Another McKenna burner with a bronze porous disk was used to produce flames of the same equivalence ratio and flows. These flames show a completely different soot radial profile, closer to the claimed flat distribution. These results cast doubts about the conclusions drawn in several studies on soot formation performed with a stainless steel McKenna burner. (author)

  3. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  4. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  5. Application of RBC burners in 220 t/h boilers in Xinhua Power Plant

    SciTech Connect

    Li Zhengqi; Sun Shaozeng; Sun Rui; Chen Lizhe; Wang Zhijin; Wu Shaohua; Qin Yukun

    1997-12-31

    The Radial Bias Combustion (RBC) pulverized coal burner was developed to simultaneously solve five problems, i.e. combustion efficiency, flame stability, slagging, high temperature corrosion of furnace wall tube metal and NOx emission, that existed in firing low grade Chinese coal. It was developed for wall fired systems. A RBC burner is usually facilitated in the following way: A fuel enricher of high enriching ratio is installed in the fuel transport channel which separates radially the fuel air stream into two streams of proper fuel concentration. The fuel-rich stream injects through the fuel nozzles, forming a high temperature annular core just outside the recirculation zone in the center of the flame; the fuel-lean stream injects through the fuel lean nozzles outside fuel rich flame and blanketing high temperature flame core with an out layer of more oxidizing atmosphere. RBC burners have been applied to the retrofit of coal burners of No.1 and No.2 boilers in the Xinhua Power Plant. These boilers are high pressure ones of 220 t/h rated steam capacity which were retrofitted from oil fired boilers. Prior to the retrofit with RBC burners, flame stability was very poor. It needed auxiliary fuel oil to enhance its stability at 70--80% rated capacity. NOx emissions did not meet environmental regulations. Satisfactory results have been obtained after the retrofit. Flame stability has been improved a great deal. The minimum load without auxiliary fuel has reached 40%. Furthermore, RBC burners raised the combustion efficiency. Lastly, NOx emission have been abated and meet Chinese legislation.

  6. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  7. Accurate burner air flow measurement for low NO{sub x} burners

    SciTech Connect

    Earley, D.; Penterson, C.

    1998-07-01

    In 1990, Congress enacted an amendment to the Clean Air Act that required reductions in NO{sub x} emissions through the application of low NO{sub x} burner systems on fossil fueled utility steam generators. For most of the existing steam generator population, the original burning equipment incorporated highly turbulent burners that created significant in-furnace flame interaction. Thus, the measurement and control of air flow to the individual burners was much less critical than in recent years with low NO{sub x} combustion systems. With low NO{sub x} systems, the reduction of NO{sub x} emissions, as well as minimizing flyash unburned carbon levels, is very much dependent on the ability to control the relative ratios of air and fuel on a per-burner basis and their rate of mixing, particularly in the near burner zones. Air Monitor Corporation (AMC) and DB Riley, Inc. (DBR), and a large Midwestern electric utility have successfully developed and applied AMC's equipment to low NO{sub x} coal burners in order to enhance NO{sub x} control combustion systems. The results have improved burner optimization and provided real time continuous air flow balancing capability and the control of individual burner stoichiometries. To date, these enhancements have been applied to wall-fired low NO{sub x} systems for balancing individual burner air flows in a common windbox and to staged combustion systems. Most recently, calibration testing in a wind tunnel facility of AMC's individual burner air measurement (IBAM{trademark}) probes installed in DB Riley's low NO{sub x} CCV{reg{underscore}sign} burners has demonstrated the ability to produce reproducible and consistent air flow measurement accurate to within 5%. This paper will summarize this product development and quantify the benefits of its application to low NO{sub x} combustion systems.

  8. Burner modifications for cost effective NO{sub x} control

    SciTech Connect

    Melick, T.A.; Payne, R.; Kersch, J.

    1999-11-01

    Low NO{sub x} Burners achieve their NO{sub x} reduction principally by control of the rate of fuel/air mixing. Based on many years of low NO{sub x} burner development experience for wall fired applications, Energy and Environmental Research Corporation (EER) has found that low NO{sub x} fuel/air mixing conditions can be incorporated into conventional burners by modifying the burners as an alternative to complete burner replacement. The NO{sub x} control achieved with such Low NO{sub x} Burner Modifications is, in many cases, comparable to that of new burners but the cost to the utility is much lower. This paper presents an update on EER`s experience in applying Low NO{sub x} Burner Modifications to circular burners focusing on Delmarva Power and Light`s (Connectiv) Indian River Station.

  9. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  10. Burners and combustion apparatus for carbon nanomaterial production

    SciTech Connect

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  11. Environmental speciation of actinides.

    PubMed

    Maher, Kate; Bargar, John R; Brown, Gordon E

    2013-04-01

    Although minor in abundance in Earth's crust (U, 2-4 ppm; Th, 10-15 ppm) and in seawater (U, 0.003 ppm; Th, 0.0007 ppm), light actinides (Th, Pa, U, Np, Pu, Am, and Cm) are important environmental contaminants associated with anthropogenic activities such as the mining and milling of uranium ores, generation of nuclear energy, and storage of legacy waste resulting from the manufacturing and testing of nuclear weapons. In this review, we discuss the abundance, production, and environmental sources of naturally occurring and some man-made light actinides. As is the case with other environmental contaminants, the solubility, transport properties, bioavailability, and toxicity of actinides are dependent on their speciation (composition, oxidation state, molecular-level structure, and nature of the phase in which the contaminant element or molecule occurs). We review the aqueous speciation of U, Np, and Pu as a function of pH and Eh, their interaction with common inorganic and organic ligands in natural waters, and some of the common U-containing minerals. We also discuss the interaction of U, Np, Pu, and Am solution complexes with common Earth materials, including minerals, colloids, gels, natural organic matter (NOM), and microbial organisms, based on simplified model system studies. These surface interactions can inhibit (e.g., sorption to mineral surfaces, formation of insoluble biominerals) or enhance (e.g., colloid-facilitated transport) the dispersal of light actinides in the biosphere and in some cases (e.g., interaction with dissimilatory metal-reducing bacteria, NOM, or Mn- and Fe-containing minerals) can modify the oxidation states and, consequently, the behavior of redox-sensitive light actinides (U, Np, and Pu). Finally, we review the speciation of U and Pu, their chemical transformations, and cleanup histories at several U.S. Department of Energy field sites that have been used to mill U ores, produce fissile materials for reactors and weapons, and store

  12. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  13. Actinide management with commercial fast reactors

    NASA Astrophysics Data System (ADS)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  14. Actinide management with commercial fast reactors

    SciTech Connect

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  15. Radiant burner technology base B burner research and development. Final report, February 1986-January 1989. Appendix M. Arizona State University final report: Emission measurements of porous radiant burners

    SciTech Connect

    Not Available

    1989-03-01

    Radiant burners offer many advantages to industrial users and there are numerous applications that would benefit from the technology. Industrial operations, however, place severe restrictions on the use of radiant burners. These limits are related to high furnace temperatures, varied production schedules, and dirty work environments. The work has identified operational and materials limits of present day radiant burner technologies and has projected what their capabilities may be. The results of the report recommend techniques to improve the state-of-the-art in radiant burners and increasing the number of industrial applications for the gas-fired burner.

  16. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  17. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  18. Sealed, nozzle-mix burners for silica deposition

    DOEpatents

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  19. Radiant-burner technology base - burner research and development. Final report, February 1986-January 1989

    SciTech Connect

    Tidball, R.K.; Donaldson, R.J.; Gorrerba, J.A.

    1989-03-01

    The objective of the three-year project was to improve the technology of direct, gas-fired, surface-combustion radiant burners to promote their wider application in industrial process-heating applications. Four types of burners were considered, including Ceramic Fiber, Ported Ceramic Tile, Porous Ceramic Foam, and Sintered Metal Fiber constructions. For each of these, specific goals included increasing surface firing capacities, reducing materials degradation, and determining radiant output over the useful operating range of each burner. This was achieved by characterizing thermal and combustion performance and degradation mechanisms, and developing design materials, and fabrications improvements to achieve acceptable durability in industrial process heating environments. All literature collected during the project was compiled into a data base for access through GRI's Library Services DIALOG information service. The project had several significant results. First, a large body of applications data was generated which can be used to properly match advanced burners to specific industrial processes. A ceramic fiber burner formulation was developed that increases life in severe industrial environments by over a factor of two. The sintered metal fiber burner demonstrated even longer lifetime in these environments. Improvements were identified for porous ceramic foam burners.

  20. Dual fuel low NOx burner

    SciTech Connect

    Shyhching Yang; Bortz, S.J.

    1993-08-31

    A dual fuel burner is described comprising: a divergent quarl having an entrance, and exit downstream from said entrance, and a plurality of axially extending staging air ports equally spaced around said exit; a wind pipe coaxially connected to said entrance of said quarl; a swirl generator coaxially received in said wind pipe, said swirl generator having a plurality of vanes and a center hole; a gas gun including a tube and a gas nozzle, said tube having an upstream end and a downstream end and being coaxially positioned within said center hole of said swirl generator said gas nozzle being mounted to said downstream end of said tube and positioned in the vicinity of said entrance of said quarl, said gas nozzle having a plurality of passageways having center lines that diverge in the downstream direction and are inclined at an angle of about 15 to 40 degrees with respect to the centerline of said quarl; an oil gun including an oil tube, an oil nozzle, and a high pressure air tube, said oil gun tube having an upstream end and a downstream end, said oil gun tube being coaxially positioned within said gas gun tube, said oil nozzle being mounted to said downstream end of said oil gun tube and positioned in the vicinity of said entrance of said quarl, said oil nozzle including a plurality of passageways having center lines that diverge in the downstream direction and are inclined at an angle of about 15 to 40 degrees with respect to the centerline of said quarl; said high pressure tube provided within said oil gun tube, said high pressure tube being in fluid communication with said oil nozzle passageways.

  1. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  2. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  3. Visualisation of isothermal large coherent structures in a swirl burner

    SciTech Connect

    Valera-Medina, A.; Syred, N.; Griffiths, A.

    2009-09-15

    Lean premixed combustion using swirl flame stabilisation is widespread amongst gas turbine manufacturers. The use of swirl mixing and flame stabilisation is also prevalent in many other non-premixed systems. Problems that emerge include loss of stabilisation as a function of combustor geometry and thermo-acoustic instabilities. Coherent structures and their relationship with combustion processes have been a concern for decades due to their complex nature. This paper thus adopts an experimental approach to characterise large coherent structures in swirl burners under isothermal conditions so as to reveal the effects of swirl in a number of geometries and cold flow patterns that are relevant in combustion. Aided by techniques such as Hot Wire Anemometry, High Speed Photography and Particle Image Velocimetry, the recognition of several structures was achieved in a 100 kW swirl burner model. Several varied, interacting, structures developed in the field as a consequence of the configurations used. New structures never observed before were identified, the results not only showing the existence of very well defined large structures, but also their dependency on geometrical and flow parameters. The PVC is confirmed to be a semi-helical structure, contrary to previous simulations performed on the system. The appearance of secondary recirculation zones and suppression of the vortical core as a consequence of geometrical constrictions are presented as a mechanism of flow control. The asymmetry of the Central Recirculation Zone in cold flows is observed in all the experiments, with its elongation dependent on Re and swirl number used. (author)

  4. Stability of the porous plug burner flame

    SciTech Connect

    Buckmaster, J.

    1983-12-01

    The linear stability of a premixed flame attached to a porous plug burner, using activaton energy asymptotics, is examined. Limit function-expansions are not an appropriate mathematical framework for this problem, and are avoided. A dispersion relation is obtained which defines the stability boundaries in the wave-, Lewis-number plane, and the movement of these boundaries is followed as the mass flux is reduced below the adiabatic value and the flame moves towards the burner from infinity. Cellular instability is suppressed by the burner, but the pulsating instability usually associated with Lewis numbers greater than 1 is, at first, enhanced. For some parameter values the flame is never stable for all wavenumbers the Lewis number stability band that exists for the unbounded flame disappears. For sufficiently small values of the stand-off distance the pulsating instability is suppressed. 9 references.

  5. Improved radiant burner material. Final report

    SciTech Connect

    Milewski, J.V.; Shoultz, R.A.; Bourque, M.M.; Milewski, E.B.

    1998-01-01

    Under DOE/ERIP funds were made available to Superkinetic, Inc. for the development of an improved radiant burner material. Three single crystal ceramic fibers were produced and two fiber materials were made into felt for testing as radiant burner screens. The materials were alpha alumina and alpha silicon nitride. These fibers were bonded with a high temperature ceramic and made into a structurally sound trusswork like screen composed of million psi fiber members. These screens were about 5% solid for 95 porosity as needed to permit the flow of combustable natural gas and air mixture. Combustion test proved that they performed very satisfactory and better than the current state of art screen and showed no visable degrade after testing. It is recommended that more time and money be put into expanding this technology and test these new materials for their maximum temperature and durability for production applications that require better burner material.

  6. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  7. Low NO.sub.x burner system

    DOEpatents

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  8. Advances in actinide solid-state and coordination chemistry

    SciTech Connect

    Burns, Peter C; Ikeda, Y.; Czerwinski, K.

    2011-01-31

    Actinide solid-state and coordination chemistry has advanced through unexpected results that have further revealed the complex nature of the 5f elements. Nanoscale control of actinide materials is emerging, as shown by the creation of a considerable range of cluster and tubular topologies. Departures from established structural trends for actinyl ions are provided by cation-cation interactions in which an O atom of one actinyl ion is an equatorial ligand of a bipyramid of another actinyl ion. The solid-state structural complexity of actinide materials has been further demonstrated by open framework materials with interesting properties. The U(VI) tetraoxide core has been added to this cation's repertoire of coordination possibilities. The emergence of pentavalent uranium solid-state and coordination chemistry has resulted from the prudent selection of ligands. Finally, analogues of the uranyl ion have challenged our understanding of this normally unreactive functional group.

  9. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  10. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  11. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  12. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  13. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  14. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  15. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  16. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  17. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  18. 30 CFR 57.7803 - Lighting the burner.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  19. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner....

  20. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  1. Low emission characteristics of radiant burner

    SciTech Connect

    Bai, T.; Yeboah, Y.D.; Nie, J.X.; Wang, Z.; Shang, J.

    1998-12-31

    A commercial infrared burner is characterized in terms of its radiant efficiency and its emissions of CO, CO{sub 2}, O{sub 2}, unburned hydrocarbon, and NOx in the exhaust gases. It has been found that when methane is used as the fuel the burner reached its maximum radiation efficiency of 31.4% at the equivalence ratio {Phi} = 1. CO{sub 2} also reached its maximum value of 10.7% at {Phi} = 1. In the fuel-lean region, the concentrations of CO and unburned total hydrocarbon (UHC) were kept in a couple of hundred ppm ranges. In fuel-rich region, the CO and UHC concentrations quickly jumped to thousands of ppm or more as {Phi} increased. The NOx formation was strongly dependent on the equivalence ratio at which the burner was operated. The NOx reached its maximum of 8 ppm at {Phi} = 1, which was significantly lower than those from traditional gas burners. The NOx decreased significantly as the burner was operated at conditions away from stoichiometric. Tests were also conducted with fuel mixtures of methane and propane, which represented peak-saving gas in the industry. To simulate possible flash back, fuel mixture of methane and hydrogen was tested. Results from these tests provided insight into the effects of gas composition variations upon the IR burner performance characteristics. It has been found that the addition of propane in the fuel produced a higher combustion temperature and higher levels of NOx emission. It was also revealed by the test results that the addition of hydrogen to the methane fuel did not significantly affect the production of NOx, CO{sub 2} and CO.

  2. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  3. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    SciTech Connect

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited.

  4. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  5. Managing Inventories of Heavy Actinides

    SciTech Connect

    Wham, Robert M; Patton, Bradley D

    2011-01-01

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  6. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    SciTech Connect

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  7. Actinide Burning in CANDU Reactors

    SciTech Connect

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  8. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  9. Dual structure infrared surface combustion burner

    SciTech Connect

    Morris, J.R.; Burlingame, N.H.

    1989-12-26

    This patent describes an improvement in a surface combustion radiant heat burner comprising an inlet plenum for receiving fuel and oxidant gas mixtures from at least one supply inlet and a burner body secured in communication with the inlet plenum. The burner body having an inlet side facing the plenum and an outlet side defining a radiating surface. It comprises: the burner body comprising a first layer of porous ceramic material adjacent the inlet side and a second layer of porous ceramic material adjacent the outlet side defining the radiating surface, the first layer of porous ceramic material having a thickness of at least about 0.90:01 inch and a fine interconnected porous structure with a mean pore diameter ranging from 0.00004 inch to 0.10 inch, the second layer of porous ceramic material having a thickness of at least about 0.05 inch and a coarse interconnected porous structure with a mean diameter ranging from 0.05 to 0.40 inch, and at least the outer surfaces of the first porous layer and substantially all surfaces of the second porous layer being provided with a fully dense ceramic coating.

  10. Performance evaluation of porous radiant gas burners

    SciTech Connect

    Speyer, R.F.; Lin, Wen-Yi; Agarwal, G.

    1995-12-31

    A porous radiant burner testing facility was built, consisting of temperature and gas composition measurements as a function of position, as well as spectral and total radiosity measurements. Uncombusted hydrocarbons were detected within the flame support layer for only low flow rates (e.g 7.1 1/min for a reticulated ceramic flame support layer); only combustion products mixed with the atmosphere were detected at higher rates. Radiosity increased with increasing flow rate via increasing surface temperatures, while burner efficiencies decreased because of less effectual heat transfer of combustion product gases to solid surfaces. Stainless steel screen-based flame support layers demonstrated optimum performance as compared to ceramic and metal tube-based, and reticulated ceramic-based flame support layers. Increased turbulent flow and surface area for convective heat transfer between the base surface and the end of the flame support layer were factors attributed to improved burner radiosity and efficiency. The greybody temperatures and emittances of burners were determined using a simplex algorithm fit of spectral radiosity data to Planck`s equation. The significantly higher and more grey emittance (hence radiosity) of CoAl$-(2)$O$-(4)$-coated mullite flame support tubes, as compared to alumina tubes of identical geometry, was demonstrated using this method.

  11. Environmental research on actinide elements

    SciTech Connect

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  12. Market assessment for the fan atomized oil burner

    SciTech Connect

    Westphalen, D.

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  13. Fission-product data analysis from actinide samples exposed in the Dounreay Prototype Fast Reactor

    SciTech Connect

    Murphy, B.D.; Dickens, J.K.; Walker, R.L.; Newton, T.D.

    1994-12-31

    Since 1979 a cooperative agreement has been in effect between the United States and the United Kingdom to investigate the irradiation of various actinide species placed in the core of the Dounreay Prototype Fast Reactor (PFR). The irradiated species were isotopes of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium. A set of actinide samples (mg quantities) was exposed to about 490 effective full power days (EFPD) of reactor operations. The fission-product results are reported here. The actinide results will be report elsewhere.

  14. Actinides in the Source of Cosmic Rays and the Present Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Kratz, K. -L.

    2003-01-01

    The abundances of the actinide elements in the cosmic rays can provide critical constraints on the major sites of their acceleration. Using recent calculations of the r-process yields in core collapse supernovae, we have determined the actinide abundances averaged over various assumed time intervals for their supernova generation and their cosmic-ray acceleration. Using standard Galactic chemical evolution models, we have also determined the expected actinide abundances in the present interstellar medium. From these two components, we have calculated the U/Th and other actinide abundances expected in the supernova-active cores of superbubbles, as a function of their ages and mean metallicity resulting from dilution with interstellar cloud debris. Then, using observations of the fractions of Galactic supernovae that occur in superbubbles and in the rest of the interstellar medium, we calculate the expected actinide abundances in cosmic rays accelerated by Galactic supernovae. We find that the current measurements of actinide/Pt-group and preliminary estimates of the UPuCm/Th ratio in cosmic rays are all consistent with the expected values if superbubble cores have mean metallicities of around 3 times solar. Such metallicities are quite comparable to the superbubble core metallicities inferred from other cosmic-ray observations. Future, more precise measurements of these ratios with experiments such as ECCO are needed to provide a better measure of the mean source metallicity sampled by the local Galactic cosmic rays. Measurements of the cosmic- ray actinide abundances have been favorably compared with the protosolar ratio, inferred from present solar system abundances, to infer that the cosmic rays are accelerated from the general interstellar medium. We suggest, however, that such an inference is not valid because the expected actinide abundances in the present interstellar medium are very different from the protosolar values, which sampled the interstellar medium

  15. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  16. 33rd Actinide Separations Conference

    SciTech Connect

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  17. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  18. Diesel exhaust cleaner with burner vortex chamber

    SciTech Connect

    Riddel, J.W.

    1983-05-17

    A diesel engine exhaust cleaner and burner system includes at least one exhaust cleaner member with a filter positioned therein to effect removal of particulates from a stream of exhaust gas delivered thereto via an inlet manifold. A fuel burner supplied with fuel by a fuel nozzle is operatively associated with the inlet manifold to supply the necessary heat to effect incineration of particulates collected on the filter. A cyclone duct providing a vortex chamber therein is operatively positioned downstream of the fuel nozzle and is supplied with sufficient air so as to effect both the complete combustion of the fuel and the controlled incineration of the particulates by increasing the residence time of the fuel in the reaction region within the vortex chamber and also effecting a more uniform distribution of the heat of combustion across the inlet face of the filter for the uniform heating of the particulates thereon to their combustion temperature.

  19. Refinery burner simulation design architecture summary.

    SciTech Connect

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  20. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  1. New cubic structure compounds as actinide host phases

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.

    2010-03-01

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite

  2. Field testing the prototype BNL fan-atomized oil burner

    SciTech Connect

    McDonald, R.; Celebi, Y.

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  3. Analysis of a bilayered porous radiant burner

    SciTech Connect

    Kulkarni, M.R.; Peck, R.E.

    1996-08-23

    A theoretical study of the heating effectiveness of a composite porous radiant burner (PRB) is conducted. A one-dimensional laminar premixed flame model incorporating a radiatively participating inert porous medium consisting of two layers of different properties is used to describe the heat release/transfer processes. Combined conductive, convective, and radiative heat transfer is considered. The spherical harmonics method with the P-3 approximation is used to model the radiation part. A multistep reaction mechanism for premixed methane-air combustion is employed. A parametric study is carried out to determine the effect of the radiative properties of the two porous layers on burner performance. Calculations indicate that a significant improvement in the radiative output of a PRB can be attained by optimizing the burner properties upstream and downstream of the flame. Generally, the upstream layer should be of lower porosity, shorter length, and higher optical thickness than the downstream layer. Also, the upstream layer should be highly scattering, while the downstream layer should be nonscattering.

  4. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  5. Actinides and Life's Origins

    NASA Astrophysics Data System (ADS)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  6. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  7. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  8. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  9. Actinide cation-cation complexes

    SciTech Connect

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.

  10. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  11. Industrial burner modeling: Final report for the CIEE

    SciTech Connect

    Cloutman, L.D.

    1994-12-01

    The COYOTE computer program was used as basis for a comprehensive numerical model of industrial burners. This program is based on the full multicomponent Navier-Stokes equations and includes a subgrid-scale turbulence model. The model was used to simulate the flows in a laboratory-scale burner being studied experimentally at UC-Irvine. We summarize what has been learned in the last 3 years from simulations of this burner. This model provides detailed information about the flow field in the furnace, making it a useful tool for studying the physics of burners.

  12. A heated chamber burner for atomic absorption spectroscopy.

    PubMed

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  13. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  14. Dark Matter Burners: Preliminary Estimate

    SciTech Connect

    Moskalenko, Igor V.; Wai, L.; /SLAC

    2006-09-11

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole can capture a large number of weakly interacting massive particles (WIMPs) during its lifetime. WIMP annihilation energy release in low- to medium-mass stars is comparable with or even exceeds the luminosity of such stars due to thermonuclear burning. The excessive energy release in the stellar core may result in an evolution scenario different from what is expected for a regular star. The model thus predicts the existence of unusual stars within the central parsec of galactic nuclei. If found, such stars would provide evidence for the existence of particle dark matter. The excess luminosity of such stars attributed to WIMP ''burning'' can be used to infer the local WIMP matter density. A white dwarf with a highly eccentric orbit around the central black hole may exhibit variations in brightness correlated with the orbital phase. On the other hand, white dwarfs shown to lack such orbital brightness variations can be used to provide constraints on WIMP matter density, WIMP-nucleus scattering and pair annihilation cross sections.

  15. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  16. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  17. Residential oil burners with low input and two stages firing

    SciTech Connect

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  18. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  19. The role of a burner head choke in NOx reduction

    SciTech Connect

    Kamal, A.; Christenson, D.L.

    1997-07-01

    The emission of NOx and CO from flames of burners are a major nuisance for the boiler and burner industry. The current EPA legislation have restricted the emissions of NOx and CO from natural gas commercial burners to 30 ppm (25 ppm in Southern California) and 200 ppm, corrected to 3% O{sub 2}, respectively. The recent experiments performed at the authors` laboratory on low NOx gas burners in a 1 MW refractory steam generator have shown that significant improvement in NOx emissions, without increasing CO, is possible by mounting a converging cone (choke) on the head of a conventional gas burner. A burner mounted with a choke produces up to 405 less NOx than a burner without a choke. The oxides of nitrogen could be further reduced to meet the EPA requirements by using Steam Injection (SI) or external Flue Gas Recirculation(FGR). Due to the already low levels of NOx emission with a choked burner, very little amount of SI or FGR is needed. The flue gas composition at different excess air levels and varying equivalence ratios are plotted. The effect of NOx emission on the amount of FGR and SI is also shown.

  20. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  1. Low NOx gas burner apparatus and methods

    SciTech Connect

    Schwartz, R.E.; Napier, S.O.; Jones, A.P.

    1993-08-24

    An improved gas burner apparatus is described for discharging a mixture of fuel gas and air into a furnace space wherein said mixture is burned and flue gases having low NO[sub x] content are formed therefrom comprising: a housing having an open end attached to said furnace space; means for introducing a controlled flow rate of said air into said housing attached thereto; a refractory burner tile attached to the open end of said housing having a base portion, an opening formed in said base portion for allowing air to pass there through and having a wall portion surrounding said opening which extends into said furnace space, the exterior sides of said wall portion being slanted towards said opening and the interior sides thereof being spaced from the periphery of said opening whereby a ledge is provided within the interior of said wall portion; at least one passage formed in said burner tile for conducting primary fuel gas and flue gases from the exterior of said wall portion to the interior thereof; means for forming a fuel gas jet in said passage and drawing flue gases there through adapted to be connected to a source of fuel gas and positioned with respect to said passage whereby a mixture of primary fuel gas and flue gases from said furnace space is discharged from said passage to within the interior of said wall portion; and at least one nozzle adapted to be connected to a source of fuel gas positioned outside said wall portion of said burner tile adjacent the intersection of an exterior slanted side of said wall portion with the surface of said base portion for discharging secondary fuel gas adjacent said external slanted side of said wall portion whereby said secondary fuel gas mixes with flue gases and air in said furnace space. A method is also described for discharging a mixture of fuel gas and air into a furnace space wherein said mixture is burned and flue gases having low NO[sub x] content are formed therefrom.

  2. Advanced oil burner for residential heating -- development report

    SciTech Connect

    Butcher, T.A.

    1995-07-01

    The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

  3. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    EPA Science Inventory

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  4. "Computational Modeling of Actinide Complexes"

    SciTech Connect

    Balasubramanian, K

    2007-03-07

    We will present our recent studies on computational actinide chemistry of complexes which are not only interesting from the standpoint of actinide coordination chemistry but also of relevance to environmental management of high-level nuclear wastes. We will be discussing our recent collaborative efforts with Professor Heino Nitsche of LBNL whose research group has been actively carrying out experimental studies on these species. Computations of actinide complexes are also quintessential to our understanding of the complexes found in geochemical, biochemical environments and actinide chemistry relevant to advanced nuclear systems. In particular we have been studying uranyl, plutonyl, and Cm(III) complexes are in aqueous solution. These studies are made with a variety of relativistic methods such as coupled cluster methods, DFT, and complete active space multi-configuration self-consistent-field (CASSCF) followed by large-scale CI computations and relativistic CI (RCI) computations up to 60 million configurations. Our computational studies on actinide complexes were motivated by ongoing EXAFS studies of speciated complexes in geo and biochemical environments carried out by Prof Heino Nitsche's group at Berkeley, Dr. David Clark at Los Alamos and Dr. Gibson's work on small actinide molecules at ORNL. The hydrolysis reactions of urnayl, neputyl and plutonyl complexes have received considerable attention due to their geochemical and biochemical importance but the results of free energies in solution and the mechanism of deprotonation have been topic of considerable uncertainty. We have computed deprotonating and migration of one water molecule from the first solvation shell to the second shell in UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}, UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}NpO{sub 2}(H{sub 2}O){sub 6}{sup +}, and PuO{sub 2}(H{sub 2}O){sub 5}{sup 2+} complexes. Our computed Gibbs free energy(7.27 kcal/m) in solution for the first time agrees with the experiment (7.1 kcal

  5. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  6. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  7. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  8. Actinide Studies with Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Broussard, Leah

    2014-03-01

    Understanding the effects of sputtering due to nuclear fission is crucial to the nuclear industry and has wide-reaching applications, including nuclear energy, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. UCN are an ideal tool for finely controlling induced fission as a function of depth in an actinide sample. The mechanism for fission-induced surface damage is not well understood, especially regarding the effect of a surface oxide layer. We will discuss our experimental strategy for studies of UCN-induced fission and the ejected material, and present preliminary data from enriched and depleted uranium. We gratefully acknowledge the support of the G. T. Seaborg Institute for Transactinium Science and the U.S. Department of Energy through the LANL/LDRD Program for this work.

  9. Actinide Waste Forms and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  10. Actinide recovery techniques utilizing electromechanical processes

    SciTech Connect

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy.

  11. Novel complexing agents for the efficient separation of actinides and remediation of actinide-contaminated sites

    SciTech Connect

    Baisden, P.; Kadkhodayan, B.

    1996-03-15

    Research into the coordination chemistry of transactinide elements should provide us with new fundamental knowledge about structure, geometry, and stability of these metal complexes. Our approach involves the design, synthesis, and characterization of {open_quotes}expanded porphyrin{close_quotes} macrocyclic ligands which coordinate the actinide metal cations with high thermodynamic affinity and kinetic stability. We can use the knowledge from understanding the fundamental coordination chemistry of these elements as a stepping stone to heavy metal detoxification, radioactive waste cleanup, and possibly radioactive isotope separation. The critical components of this research endeavor, along with the viability of metal complex formation, will be correlated to ring size and core geometry of the ligand and, the atomic radius, oxidation state, coordination geometry and coordination number of the transactinium metal ion. These chelating agents may have certain applications to the solution of some radioactive waste problems if they can be attached to polymer supports and used to chemically separate the radioactive components in waste.

  12. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  13. Atmospheric low swirl burner flow characterization with stereo PIV

    NASA Astrophysics Data System (ADS)

    Legrand, Mathieu; Nogueira, José; Lecuona, Antonio; Nauri, Sara; Rodríguez, Pedro A.

    2010-05-01

    The lean premixed prevaporized (LPP) burner concept is now used in most of the new generation gas turbines to reduce flame temperature and pollutants by operating near the lean blow-off limit. The common strategy to assure stable combustion is to resort to swirl stabilized flames in the burner. Nevertheless, the vortex breakdown phenomenon in reactive swirling flows is a very complex 3D mechanism, and its dynamics are not yet completely understood. Among the available measurement techniques to analyze such flows, stereo PIV (S-PIV) is now a reliable tool to quantify the instantaneous three velocity components in a plane (2D-3C). It is used in this paper to explore the reactive flow of a small scale, open to atmosphere, LPP burner (50 kW). The burner is designed to produce two distinct topologies (1) that of a conventional high swirl burner and (2) that of a low swirl burner. In addition, the burner produces a lifted flame that allows a good optical access to the whole recirculation zone in both topologies. The flow is studied over a wide range of swirl and Reynolds numbers at different equivalence ratios. Flow statistics are presented for 1,000 S-PIV snapshots at each configuration. In both reactive and cold nonreactive flow, stability diagrams define the domains of the low and high swirl topologies. Due to the relatively simple conception of the physical burner, this information can be easily used for the validation of CFD computations of the burner flow global structure. Near field pressure measurements reveal the presence of peaks in the power spectra, which suggests the presence of periodical coherent features for almost all configurations. Algorithms have been developed to identify and track large periodic traveling coherent structures from the statistically independent S-PIV realizations. Flow temporal evolution is reconstructed with a POD-based method, providing an additional tool for the understanding of flow topologies and numerical codes validation.

  14. Intensification of heat transfer by changing the burner nozzle

    NASA Astrophysics Data System (ADS)

    DzurÅák, Róbert; Kizek, Ján; Jablonský, Gustáv

    2016-06-01

    Thermal aggregates are using burner which burns combustible mixture with an oxidizing agent, by adjustment of the burner nozzle we can achieve better conditions of combustion to intensify heat transfer at furnace space. The aim of the present paper was using a computer program Ansys Workbench to create a computer simulation which analyzes the impact of the nozzle on the shape of a flame thereby intensifies heat transfer in rotary drum furnaces and radiation heat transfer from the flue gas into the furnace space. Article contains analysis of the geometry of the burner for achieving temperature field in a rotary drum furnace using oxy-combustion and the practical results of computer simulations

  15. Chemical reduction of actinides probed by resonant inelastic X-ray scattering.

    PubMed

    Butorin, Sergei M; Shuh, David K; Kvashnina, Kristina O; Guo, Jinghua; Werme, Lars; Nordgren, Joseph

    2013-12-01

    The study addresses the possibilities of immobilizing the mobile species of actinides in the geosphere using metallic iron. Sorption on corroding iron is well-known, but there have been uncertainties with regard to the possibilities of reducing the actinyl species to sparingly soluble oxides and, thereby, permanently immobilizing them. Resonant inelastic X-ray scattering (RIXS) measurements at the actinide 5d edges on Fe foils exposed to uranium(VI) and neptunium(V) solutions in groundwater unambigiously indicate reduction of actinides to, respectively, uranium(IV) and neptunium(IV) on iron surfaces. The reduction manifests itself in an appearance of distinct specific signatures of uranium(IV) and neptunium(IV) in the RIXS profile of 5f-5f excitations. Such signatures and RIXS intensity/cross-section behavior with varying energy of incident photons can be reproduced by model atomic-multiplet calculations of the RIXS spectra. By normalizing the RIXS signal of corresponding 5f-5f excitations to core-to-core 6p-to-5d characteristic fluorescence transitions of actinides, their reduction rates on Fe samples with different exposure to actinide solutions can be estimated. Observed reduction implies similar processes in the nuclear waste canister thus suggesting reduced probability of nuclear waste release with ground waters from the canister. PMID:24187957

  16. Swedish-German actinide migration experiment at ASPO hard rock laboratory.

    PubMed

    Kienzler, B; Vejmelka, P; Römer, J; Fanghänel, E; Jansson, M; Eriksen, T E; Wikberg, P

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Aspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was < or = 40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed. PMID:12598106

  17. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. Idealized radiation efficiency model for a porous radiant burner

    SciTech Connect

    Fu, X.; Viskanta, R.; Gore, J.P.

    1999-07-01

    A simple, highly idealized radiation efficiency model has been developed for a porous radiant burner with or without a screen to assess the thermal performance of an ideal porous burner that yields the highest radiation efficiency and against which test results and/or more realistic model predictions could be benchmarked. The model is based on thermodynamics principles (first law of thermodynamics) with idealizations made for some of the physical processes. Empirical information, where necessary, is then used to close the model equations. The maximum radiation efficiency at a given firing rate is predicted. The effects of input parameters such as the firing rate, the equivalence ratio, and the effective emittance of the burner on the radiation efficiency of the porous radiant burner are reported.

  19. Full-Scale Demonstration Low-NOx Cell Burner retrofit

    SciTech Connect

    Not Available

    1991-05-24

    The overall objective of the Full-Scale Low-NOx Cell (LNC) Burner Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: at least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; and demonstrate that the LNC burner retrofits are the most cost-effective alternative to emerging, or commercially- available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  20. Microwave plasma burner and temperature measurements in its flames

    SciTech Connect

    Hong, Yong Cheol; Cho, Soon Cheon; Bang, Chan Uk; Shin, Dong Hun; Kim, Jong Hun; Uhm, Han Sup; Yi, Won Ju

    2006-05-15

    An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner is operated by injecting liquid hydrocarbon fuels into a microwave plasma torch in air discharge and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. While the temperature of the torch plasma flame was only 550 K at a measurement point, that of the plasma-burner flame with the addition of 0.025 lpm (liters per minute) kerosene and 20 lpm oxygen drastically increased to about 1850 K. A preliminary experiment was carried out, measuring the temperature profiles of flames along the radial and axial directions.

  1. 24. ELEVATION OF BOILER. EIGHT INSPECTION DOORS, THREE BURNERS, HEAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. ELEVATION OF BOILER. EIGHT INSPECTION DOORS, THREE BURNERS, HEAT SHIELD AT FLOOR, CENTER PRESSURE GAUGE - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  2. Low NO[sub x] gas burner apparatus and methods

    SciTech Connect

    Schwartz, R.E.; Napier, S.O.; Jones, A.P.

    1994-01-04

    Improved gas burner apparatus and methods of burning fuel gas-air mixtures are provided whereby flue gases having low NO[sub x] contents are formed. The burner apparatus includes a refractory burner tile having an air discharge opening therein and a wall surrounding the opening which extends into the furnace space and provides a mixing zone therein. At least one passage is formed in the burner tile which opens into the mixing zone and fuel gas is jetted through the passage whereby flue gases are drawn there through and a fuel gas-flue gases mixture is discharged into the mixing zone. The fuel gas-flue gases mixture is swirled in the mixing zone and mixes with air therein, and the resulting mixture is discharged and burned in a primary reaction zone in the furnace space. 11 figs.

  3. Development of a methane premixed catalytic burner for household applications

    SciTech Connect

    Cerri, I.; Saracco, G.; Geobaldo, F.; Specchia, V.

    2000-01-01

    A catalytic premixed burner prototype for domestic-boiler applications was developed on the basis of a perovskite-type catalyst (LaMnO{sub 3}) deposited over a FeCrAlloy fiber panel. An economic and simple catalyst-deposition route, based on in situ pyrolysis of suitable precursors, was conceived and optimized on purpose. Finally, a catalytic burner and a reference noncatalytic one were comparatively tested in a pilot plant (maximum power, 30 kW, corresponding to about 2,000 kW/m{sup 2}). The catalytic burner allowed a strong reduction of CO and unburned hydrocarbon (HC) emissions to very low and acceptable levels (down to 3--5 times lower than those of the noncatalytic burner) when operated below 800 kW/m{sup 2}. In these conditions, the NO{sub x} emissions remained quite acceptable and practically unaffected by the presence of the catalyst.

  4. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  5. Prompt fission neutron spectra of actinides

    DOE PAGESBeta

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  6. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  7. Space Experiment Concepts: Cup-Burner Flame Extinguishment

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki

    2004-01-01

    Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.

  8. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  9. Separation of actinides from lanthanides

    DOEpatents

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  10. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. PMID:25169914

  11. Actinide ion sensor for pyroprocess monitoring

    DOEpatents

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  12. Actinide co-conversion by internal gelation

    SciTech Connect

    Robisson, Anne-Charlotte; Dauby, Jacques; Dumont-Shintu, Corinne; Machon, Estelle; Grandjean, Stephane

    2007-07-01

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  13. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  14. Rapid actinide-separation methods

    SciTech Connect

    Maxwell, S.L. III

    1997-12-31

    New high-speed actinide-separation methods have been developed by the Savannah River Site Central Laboratory that can be applied to nuclear materials process samples, waste solutions and environmental samples. As part of a reengineering effort to improve efficiencies and reduce operating costs, solvent extraction methods (TTA, Hexone, TBP and TIOA) used for over thirty years in the SRS Central Laboratory were replaced with new rapid extraction column methods able to handle a variety of difficult sample matrices and actinide levels. Significant costs savings were realized and costly mixed-waste controls were avoided by using applied vacuum and 50-100 micron particle-size resins from Eichrom Industries. TEVA Resin{reg_sign}, UTEVA Resin{reg_sign}, and TRU Resin{reg_sign} columns are used with flow rates of approximately two to three milliliters per minute to minimize sample turnaround times. Single-column, dual-column and sequential-cartridge methods for plutonium, uranium, neptunium, americium and curium were developed that enable rapid, cost-effective separations prior to alpha-particle counting, thermal ionization and inductively coupled plasma mass spectrometry, and laser phosphorescence measurements.

  15. Chemical aspects of actinides in the geosphere: towards a rational nuclear materials management

    SciTech Connect

    Allen, P; Sylwester, E

    2001-02-09

    A complete understanding of actinide interactions in the geosphere is paramount for developing a rational Nuclear and Environmental Materials Management Policy. One of the key challenges towards understanding the fate and transport of actinides is determining their speciation (i.e., oxidation state and structure). Since an element's speciation directly dictates physical properties such as toxicity and solubility, this information is critical for evaluating and controlling the evolution of an actinide element through the environment. Specific areas within nuclear and environmental management programs where speciation is important are (1) waste processing and separations; (2) wasteform materials for long-term disposition; and (3) aqueous geochemistry. The goal of this project was to develop Actinide X-ray Absorption Spectroscopy ( U S ) as a core capability at LLNL and integrate it with existing facilities, providing a multi-technique approach to actinide speciation. XAS is an element-specific structural probe which determines the oxidation state and structure for most atoms. XAS can be more incisive than other spectroscopies because it originates from an atomic process and the information is always attainable, regardless of an element's speciation. Despite the utility, XAS is relatively complex due to the need for synchrotron radiation and significant expertise with data acquisition and analysis. The coupling of these technical hurdles with the safe handling of actinides at a general user synchrotron facility such as the Stanford Synchrotron Radiation Facility (SSRL) make such experiments even more difficult. As a result, XAS has been underutilized by programs that could benefit by its application. We achieved our project goals by implementing key state-of-the-art Actinide XAS instrumentation at SSRL (Ge detector and remote positioning equipment), and by determining the chemical speciation of actinides (Th, U, and Np) in aqueous solutions, wasteform cements, and

  16. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  17. Dual-water mixture fuel burner

    DOEpatents

    Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  18. Environmentally safe burner for offshore well testing operations

    SciTech Connect

    Young, T.M.

    1996-11-01

    One of the problems that occurs during offshore well testing has been the discharge of unburned hydrocarbon emissions into the air and sea that leave deposits of oily slicks or {open_quotes}sheen{close_quotes} on the water surface. This residue results from inefficient flaring operations and can have adverse effects on marine environment. This paper will discuss a new burner that has been developed to address the environmentally unfriendly fallout conditions that have occurred from crude oil disposal during traditional well testing operations. To support a broad range of applications, the design criteria for this burner included not only the capability to perform fallout free in the wide range of conditions expected during well testing but also to be simple to operate, have a compact lightweight design with a stable pilot and igniter system, provide clean startup, and require low oil pressure. Burner performance is significantly affected by fuel oil properties and its atomization characteristics. The paper will include an overview of these topics and their relationship to the combustion process, how these topics were addressed in the development of the design, and the testing that was performed by an independent Norwegian environmental testing company to verify the burner`s efficiency. The burner designed to these specifications includes an array of atomizers, uniquely placed to improve flame turbulence and air ingestion important to efficient combustion. Engineering tests performed with 18 degree API crude oil were fallout free and smokeless, and tests performed by the independent environmental testing company verified that the new burner design performed with 99.9 percent efficiency as a burning disposal system.

  19. Decontamination of matrices containing actinide oxides

    SciTech Connect

    Villarreal, Robert

    1997-12-01

    There is provided a method for removing actinides and actinide oxides, particularly fired actinides, from soil and other contaminated matrices, comprising: (a) contacting a contaminated material with a solution of at least one inhibited fluoride and an acid to form a mixture; (b) heating the mixture of contaminated material and solution to a temperature in the range from about 30 C to about 90 C while stirring; (c) separating the solution from any undissolved matrix material in the mixture; (d) washing the undissolved matrix material to remove any residual materials; and (e) drying and returning the treated matrix material to the environment.

  20. Experimental studies of actinides in molten salts

    SciTech Connect

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  1. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  2. PF-4 actinide disposition strategy

    SciTech Connect

    Margevicius, Robert W

    2010-05-28

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  3. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  4. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    SciTech Connect

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  5. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  6. Flame quality monitor system for fixed firing rate oil burners

    SciTech Connect

    Butcher, T.A.; Cerniglia, P.

    1990-10-23

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  7. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  8. Overview of actinide chemistry in the WIPP

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K; Reed, Donald T; Khaing, Hnin; Swanson, Juliet

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  9. Electronic structure and correlation effects in actinides

    SciTech Connect

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  10. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  11. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  12. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2015-01-09

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  13. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  14. Preparation of actinide targets by electrodeposition

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  15. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  16. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  17. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides. PMID:16604724

  18. Synergism of trivalent actinides and lanthanides

    SciTech Connect

    Mathur, J.N.

    1983-01-01

    The synergism of trivalent actinides and lanthanides has been reviewed critically. Different systems including ..beta..-di-ketones and several other chelating agents with various neutral donors have been discussed. The thermodynamic parameters, effect of diluents, auto-synergism and synergism with eutectic mixtures have been discussed in the case of trivalent actinides and lanthanides. Also the mechanism of synergism and the various possible uses of this phenomenon have been referred to with the possible data available. 160 references, 4 tables.

  19. Structural and magnetic characterization of actinide materials

    SciTech Connect

    Cort, B.; Allen, T.H.; Lawson, A.C.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors have successfully used neutron scattering techniques to investigate physicochemical properties of elements, compounds, and alloys of the light actinides. The focus of this work is to extend the fundamental research capability and to address questions of practical importance to stockpile integrity and long-term storage of nuclear material. Specific subject areas are developing neutron diffraction techniques for smaller actinide samples; modeling of inelastic scattering data for actinide metal hydrides; characterizing actinide oxide structures; and investigating aging effects in actinides. These studies utilize neutron scattering supported by equilibrium studies, kinetics, and x-ray diffraction. Major accomplishments include (1) development of encapsulation techniques for small actinide samples and neutron diffraction studies of AmD{sub 2.4} and PuO{sub 2.3}; (2) refinement of lattice dynamics model to elucidate hydrogen-hydrogen and hydrogen-metal interactions in rare-earth and actinide hydrides; (3) kinetic studies with PuO{sub 2} indicating that the recombination reaction is faster than radiolytic decomposition of adsorbed water but a chemical reaction produces H{sub 2}; (4) PVT studies of the reaction between PuO{sub 2} and water demonstrate that PuO{sub 2+x} and H{sub 2} form and that PuO{sub 2} is not the thermodynamically stable form of the oxide in air; and (5) model calculations of helium in growth in aged plutonium predicting bubble formation only at grain boundaries at room temperature. The work performed in this project has application to fundamental properties of actinides, aging, and long-term storage of plutonium.

  20. Study of oil combustion in the TGMP-314 boiler with hearth burners

    SciTech Connect

    Usman, Yu.M.; Shtal'man, S.G.; Enyakin, Yu.P.; Abryutin, A.A.; Levin, M.M.; Taran, O.E.; Chuprov, V.V.; Antonov, A.Yu.

    1983-01-01

    Studies of the TGMP-314 boiler with hearth configured burners included the gas mixture in the boiler, the degree of fuel combustion at various heights in the boiler, hydrogen sulfide content in the near-wall zones of the boiler, and temperature distribution fields. Experimental data showed that the hearth burners, in conjunction with steam-mechanical atomizing burners, operate with the least possible excess air over a wide range of load changes. The operation and performance of the hearth burners are discussed.

  1. SMALL OIL BURNER CONCEPTS BASED ON LOW PRESSURE AIR ATOMIZATION

    SciTech Connect

    BUTCHER,T.; CELEBI,Y.; WEI,G.; KAMATH,B.

    2000-03-16

    The development of several novel oil burner applications based on low pressure air atomization is described. The atomizer used is a prefilming, airblast nozzle of the type commonly used in gas turbine combustion. The air pressure used can be as low as 1,300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. The development of three specific applications is presented. The first two are domestic heating burners covering a capacity range 10 to 26 kW. The third application presented involves the use of this burner in an oil-fired thermophotovoltaic power generator system. Here the design firing rate is 2.9 kW and the system produces 500 watts of electric power.

  2. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  3. Materials evaluations with the pulsed black liquor burner test facility

    SciTech Connect

    Stein, A.

    1997-08-01

    A pulsed burner was designed to provide sufficient heat to convert a fluidized bed of black Kraft liquor into combustible gas which would be used to produce process steam. The pulsed burner design provides a significant increase in the heat transfer capability and consequently significantly increases the efficiency of the conversion process. High temperature corrosion tests were performed in a fluidized bed of black Kraft liquor using a pulsed burner process to determine the optimum materials for use in a commercial application. The materials tested included three different austenitic stainless steels, Type 446 martensitic stainless steel, a high temperature carbon steel, 153MA, and four nickel base alloys. All materials performed well with no corrosion attributed to the environment created by the decomposition of a black Kraft liquor. This behavior was contrary to what was expected due to the high concentration of H{sub 2}S present in the high temperature, 562 C, atmosphere.

  4. User guide to the Burner Engineering Research Laboratory

    SciTech Connect

    Fornaciari, N.; Schefer, R.; Paul, P.; Lubeck, C.; Sanford, R.; Claytor, L.

    1994-11-01

    The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

  5. Prospects for residential oil burners with reduced emissions

    SciTech Connect

    Butcher, T.A.; Krajewski, R.F.; Celebi, Y.; McDonald, R.J.; Batey, J.

    1992-04-01

    In considering the emissions characteristics of residential oil heating equipment it is important to consider the magnitude of these emissions relative to all other sources. Laboratory and field test data show that home oil burners produce very low levels of pollutants when compared to all other combustion sources in the US. Home oil burners are relatively clean burning and produce less air pollution than the average combustion source in the US. This is especially true for carbon monoxide, particulates, and hydrocarbons, which are a small fraction of the average emission of other combustion equipment. In this paper results are presented of emission tests done with a number of oil burners selected as being representative of modern equipment or representing a recent development trend or a novel approach. The primary purpose of this work was to provide a benchmark of what oil equipment can do today and what the effects of some of these alternative designs are on emissions.

  6. Rapid determination of actinides in seawater samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  7. Recent progress in actinide borate chemistry

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-01-01

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB₅O₆(OH)₆][BO(OH)₂]·2.5H₂O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO4- Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials.

  8. Recent progress in actinide borate chemistry.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  9. Rapid determination of actinides in seawater samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.

  10. EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a field evaluation of the Distributed Mixing Burner (DMB) on a 98 kg/hr (215,000 lb/hr) steaming capacity, four-burner, front-wall-fired boiler. Following DMB installation, the boiler was operated and tested with the new burners for 17 months. Under ro...

  11. Selective and enhanced radiation from porous matrix burners. Final report, October 1989-September 1992

    SciTech Connect

    Kendall, R.M.; Sullivan, J.D.

    1993-04-01

    The objective of the contract is to enhance the thermal performance of porous surface radiant burners through the use of improved ceramic materials. Previously identified rare earth oxides that exhibit selective radiant emissions in the near infrared will be incorporated into fiber matrix burners. High temperature, high emissivity fibers will also be identified and used to improve radiant burner performance.

  12. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  13. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME III. FIELD EVALUATION

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  14. EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a field evaluation of the Distributed Mixing Burner (DMB) on a 98 kg/hr (215,000 lb/hr) steaming capacity, four-burner, front-wall-fired boiler. Following DMB installation, the boiler was operated and tested with the new burners for 17 months. Under ro...

  15. EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS. VOLUME 3. GUIDELINE MANUAL

    EPA Science Inventory

    The report gives results of a field evaluation of the Distributed Mixing Burner (DMB) on a 98 kg/hr (215,000 lb/hr) steaming capacity, four-burner, front-wall-fired boiler. Following DMB installation, the boiler was operated and tested with the new burners for 17 months. Under ro...

  16. Development of an air-atomized oil burner

    SciTech Connect

    Butcher, T.A.; Celebi, Y.

    1996-06-01

    A new concept for the design of a residential oil burner is presented involving a low pressure, air atomizing nozzle. Advantages of this approach, relative to conventional, pressure atomized burners include: ability to operate at very low excess air levels without smoke, ability to operate at low (and possibly variable) rates, reduced boiler fouling, and low NO{sub x}. The nozzle used is a low pressure, airblast atomizer which can achieve fuel spray drop sizes similar to conventional nozzles and very good combustion performance with air pressure as low as 5 inches of water (1.24 kPa). A burner head has been developed for this nozzle and combustion test results are presented in a wide variety of equipment including cast iron and steel boilers, warm air furnaces, and water heaters over the firing rate range 0.25 gph to 1.0 gph (10 to 41 kW). Beyond the nozzle and combustion head the burner system must be developed and two approaches have been taken. The first involves a small, brushless DC motor/fan combination which uses high fan speed to achieve air pressures from 7 to 9 inches of water (1.74 to 2.24 kPa). Fuel is delivered to the atomizer at less than 1 psig (6.9 kPa) using a solenoid pump and flow metering orifice. At 0.35 gph (14 kW) the electric power draw of this burner is less than 100 watts. In a second configuration a conventional motor is used with a single stage fan which develops 5 to 6 inches of water pressure (1.24 to 1.50 kPa) at similar firing rates. This burner uses a conventional type fuel pump and metering orifice to deliver fuel. The fuel pump is driven by the fan motor, very much like a conventional burner. This second configuration is seen as more attractive to the heating industry and is now being commercialized. Field tests with this burner have been conducted at 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination.

  17. Regenerator flow distribution by means of a burner

    SciTech Connect

    Tsai, Y.W.

    1983-03-01

    In a regenerative furnace of the type used for melting glass, employment of a gas stream (preferably from a high-velocity burner) in the plenum of the regenerator controls the gas flow distribution within the regenerator. The employment of this auxiliary burner makes the heating of the packing more uniform, minimizes localized overheating of the packing, and improves regenerator efficiency. This flow control device can be added readily to an existing operating furnace with no disruption of operation and at relatively low cost.

  18. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  19. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    SciTech Connect

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver; J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  20. Dounreay PFR irradiation history for the joint US/UK actinide sample exposures

    SciTech Connect

    Raman, S.; Murphy, B.D.; Nestor, C.W. Jr.

    1995-07-01

    The operating history of the Dounreay Prototype Fast Reactor is presented to the extent that it is relevant to the irradiation of actinide specimens that were subsequently analyzed at Oak Ridge National Laboratory (ORNL). Three fuel pins with actinide samples were irradiated from July 1982 to July 1988 and returned to ORNL for analysis. They contained isotopes of elements from thorium to curium. The times when each of these fuel pins were in the reactor core are described as are the operating power levels and neutron spectra. The appendices give daily power levels of the reactor as well as six-group neutron energy spectra for various times and axial positions in the core.

  1. FIELD EVALUATION OF LOW-EMISSIONS COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME II. SECOND GENERATION LOW-NOX BOILERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  2. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  3. Experimental characterization of rotating flow field in a model vortex burner

    SciTech Connect

    Shtork, S.I.; Cala, C.E.; Fernandes, E.C.

    2007-07-15

    Acoustic techniques, high speed filming and LDA were employed to characterize swirling jet flow in a model vortex burner. The isothermal flow conditions studied correspond to Re = 16,000 and swirl number S = 1, resulting in onset of the swirling jet breakdown. The breakdown zone exhibited distinct flow unsteadiness in the form of a precessing vortex core (PVC). Phase-averaged analysis of the LDA data was used to reveal an ''instantaneous'' flow field spatial distribution and to determine the precessing vortex characteristics. These results were compared against the time mean data to reveal the PVC's footprint in the time-averaged flow structure. In particular, this approach was shown to provide access to the precessing structure parameters making use of conventional flow field diagnostics. (author)

  4. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  5. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Rule for woodwaste burners. 49.127... opacity limit is EPA Method 9. A complete description of this method is found in 40 CFR part 60, appendix... General Rules for Application to Indian Reservations in Epa Region 10 § 49.127 Rule for woodwaste...

  6. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  7. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  8. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  9. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  10. 40 CFR 266.102 - Permit standards for burners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces... furnaces that burn hazardous waste are subject to the following provisions of part 264 of this...

  11. How Efficient is a Laboratory Burner in Heating Water?

    ERIC Educational Resources Information Center

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  12. DEVELOPMENTS IN LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide--Ca(OH)2--supplied by Marblehead Lime Co. and of ca...

  13. 40 CFR 49.127 - Rule for woodwaste burners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... opacity limit is EPA Method 9. A complete description of this method is found in 40 CFR part 60, appendix... woodwaste burners within the Indian reservation to control emissions of particulate matter to the atmosphere and ground-level concentrations of particulate matter. (b) Who is affected by this section?...

  14. EVALUATION OF LOW EMISSION COAL BURNER TECHNOLOGY ON INDUSTRIAL BOILERS

    EPA Science Inventory

    The report summarizes the second year's effort under EPA Contract 68-02-3127. The objective of the program is to conduct field evaluations of the distributed mixing burner (DMB) on two industrial size boilers. The DMB concept provides for controlled mixing of coal with combustion...

  15. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    EPA Science Inventory

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  16. DEMONSTRATION BULLETIN: THE PYRETRON OXYGEN BURNER, AMERICAN COMBUSTION TECHNOLOGIES, INC.

    EPA Science Inventory

    The Pyretron is a burner which is designed to allow for the injection of oxygen into the combustion air stream for the purpose of increasing the efficiency of a hazardous waste incinerator. The SITE demonstration of the Pyretron took place at the U.S. EPA's Combustion Re...

  17. 6. View, flare and oxygen burner pad near southwest side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View, flare and oxygen burner pad near southwest side of Components Test Laboratory (T-27), looking northeast. Uphill and to the left of the flare is the Oxidizer Conditioning Structure (T-28D) and the Long-Term Oxidizer Silo (T-28B). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. A burner for plasma-coal starting of a boiler

    NASA Astrophysics Data System (ADS)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  19. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  20. NOx Emissions from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1996-01-01

    The present experimental study examines the performance of a novel fuel injector/burner configuration with respect to reduction in nitrogen oxide NOx emissions. The lobed injector/burner is a device in which very rapid initial mixing of reactants can occur through strong streamwise vorticity generation, producing high fluid mechanical strain rates which can delay ignition and thus prevent the formation of stoichiometric diffusion flames. Further downstream of the rapid mixing region. this flowfield produces a reduced effective strain rate, thus allowing ignition to occur in a premixed mode, where it is possible for combustion to take place under locally lean conditions. potentially reducing NOx emissions from the burner. The present experiments compare NO/NO2/NOx emissions from a lobed fuel injector configuration with emissions from a straight fuel injector to determine the net effect of streamwise vorticity generation. Preliminary results show that the lobed injector geometry can produce lean premixed flame structures. while for comparable flow conditions, a straight fuel injector geometry produces much longer. sooting diffusion flames or slightly rich pre-mixed flames. NO measurements show that emissions from a lobed fuel injector/burner can be made significantly lower than from a straight fuel injector under comparable flow conditions.

  1. Stability characteristics and flame structure of low swirl burner

    SciTech Connect

    Mansour, Mohy; Chen, Yung-Cheng

    2008-07-15

    Low swirl burner provides stable lifted flames for fundamental studies of flame structure and turbulence/chemistry interaction in well defined boundary conditions. In the present study the stability characteristics of the burner have been investigated with four tangential jets at the same stoichiometry as the main jet. Two different burner nozzles with 40 mm and 53.5 mm diameters have been used for the stability measurements. In addition, a combined two-dimensional Rayleigh/LIPF-OH technique has been applied for simultaneous measurements of temperature and OH-radical for reaction zone and flame front investigation. Three flames have been selected near extinction for detailed measurements. The data show that the relation between of the main jet velocity, U, and the velocity of the four tangential jets, u, is linear. For the present data set with the nozzles investigated the linear trend can lead to an almost constant ratio of UD/u as 5.08 mm with D as the nozzle diameter of the burner. The flame structure varies from corrugated to highly wrinkle according to the turbulence level. (author)

  2. Demonstration test of burner liner strain measuring system

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  3. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  4. TUCS/phosphate mineralization of actinides

    SciTech Connect

    Nash, K.L.

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  5. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  6. Nonaqueous method for dissolving lanthanide and actinide metals

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  7. On burner-stabilized cylindrical premixed flames in microgravity

    SciTech Connect

    Eng, J.A.; Law, C.K.; Zhu, D.L.

    1994-12-31

    The structure and response of the curved but unstretched cylindrically symmetric one-dimensional premixed flame generated by a cylindrical porous burner has been studied using (1) activation energy asymptotics with one-step reaction and constant properties, (2) numerical computation with detailed chemistry and transport, and (3) drop-tower microgravity experimentation. The study emphasizes the relative importance of heat loss (to the burner surface) vs flow divergence as the dominant mechanism for flame stabilization, the possibility of establishing a one-dimensional, adiabatic, unstretched, premixed flame in microgravity, the influence of curvature on the upstream and downstream burning rates of the flame, and the relation of these burning rates to those of the inherently nonadiabatic flat-burner flame as well as the freely propagating adiabatic planar flame. Results show that, with increasing flow discharge rate, the dominant flame stabilization mechanism changes from heat loss to flow divergence, hence demonstrating the feasibility of establishing a freely standing, adiabatic, one-dimensional, unstretched flame. It is further shown that, in this adiabatic, divergence-stabilized regime in which the burner discharge flux exceeds that of the adiabatic planar flame, the downstream burning flux is equal to the (constant) burning flux of the adiabatic planar flame while the upstream burning flux exceeds it, and the upstream burning velocity exhibits a maximum with increasing discharge rate. Based on the property of the downstream burning flux, it is also proposed that the laminar burning velocity of a combustible can be readily determined from the experimental values of the burner discharge rate and flame radius. Microgravity results on the flame radius compare favorably with the computed values, while the corresponding laminar burning velocity also agrees well with that obtained from independent numerical computation.

  8. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  9. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  10. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  11. Preparation of actinide-metal research materials

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Laboratory. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films. The actinide-metal processing capabilities of the IRML are continuing to be improved and applied to a wide variety of custom material preparations to meet the needs of the world-wide research community.

  12. The Actinide-Lanthanide Separation Process

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Carter, Jennifer C.; Niver, Cynthia M.; Smoot, Margaret R.

    2014-02-21

    The Actinide-Lanthanide SEParation (ALSEP) process is described. The process uses an extractant phase consisting of either N,N,N',N'-tetraoctyldiglycolamide (TODGA) or N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). The neutral TODGA or T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid media. Switching the aqueous phase chemistry to a citrate buffered diethylenetriaminepentaacetic acid (DTPA) solution at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus resulting in separation of these two groups of elements.

  13. VUV and soft x-ray spectroscopy of actinides

    SciTech Connect

    Olson, C. G.; Joyce, J. J.; Durakiewicz, T.; Guziewicz, E.

    2004-01-01

    Optical and photoelectron spectroscopies using VUV and Soft X-ray photons are powerful tools for studies of elemental and compound actinides. Large changes in the relative atomic cross sections of the 5f, 6d and sp electrons allow decomposition of the character of the valence bands using photoemission. Resonant enhancement of photoelectrons and Auger electrons at the 5d core threshold further aids the decomposition and gives a measure of elemental specificity. Angle-resolved photoemission can be used to map the momentum dependence of the electronic states. The large changes in relative cross section with photon energy yields further details when the mapping is done at equivalent points in multiple zones. Spectra for well understood rare earth materials will be presented to establish spectral characteristics for known atomic character initial states. These signatures will be applied to the case of USb to investigate f-d hybridization near the Fermi level.

  14. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  15. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  16. Complexation of Actinides in Solution: Thermodynamic Measurementsand Structural Characterization

    SciTech Connect

    Rao, L.

    2007-02-01

    This paper presents a brief introduction of the studies of actinide complexation in solution at Lawrence Berkeley National Laboratory. An integrated approach of thermodynamic measurements and structural characterization is taken to obtain fundamental understanding of actinide complexation in solution that is of importance in predicting the behavior of actinides in separation processes and environmental transport.

  17. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  18. Assessment of sensitivity of neutron-physical parameters of fast neutron reactor to purification of reprocessed fuel from minor actinides

    NASA Astrophysics Data System (ADS)

    Cherny, V. A.; Kochetkov, L. A.; Nevinitsa, A. I.

    2013-12-01

    The work is devoted to computational investigation of the dependence of basic physical parameters of fast neutron reactors on the degree of purification of plutonium from minor actinides obtained as a result of pyroelectrochemical reprocessing of spent nuclear fuel and used for manufacturing MOX fuel to be reloaded into the reactors mentioned. The investigations have shown that, in order to preserve such important parameters of a BN-800 type reactor as the criticality, the sodium void reactivity effect, the Doppler effect, and the efficiency of safety rods, it is possible to use the reprocessed fuel without separation of minor actinides for refueling (recharging) the core.

  19. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply. PMID:17735740

  20. Elevated concentrations of actinides in Mono Lake

    SciTech Connect

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  1. Strong correlations in actinide redox reactions

    NASA Astrophysics Data System (ADS)

    Horowitz, S. E.; Marston, J. B.

    2011-02-01

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  2. Stability of tetravalent actinides in perovskites

    SciTech Connect

    Williams, C.W.; Morss, L.R.; Choi, I.K.

    1983-01-01

    This paper reports the first determination of the enthalpy of formation of a complex actinide(IV) oxide: ..delta..H/sup 0//sub f/ (BaUO/sub 3/, s, 298 K) = -1690 +- 10 kJ mol/sup -1/. The preparation and properties of this and other actinide(IV) complex oxides are described and are compared with other perovskites BaMO/sub 3/. The relative stabilities of tetravalent and hexavalent uranium in various environments are compared in terms of the oxidation-reduction behavior of uranium in geological nuclear waste storage media; in perovskite, uranium(IV) is very unstable in comparison with uranium(VI).

  3. Systematization of actinides using cluster analysis

    SciTech Connect

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  4. Preparation of actinide-metal research

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Lab. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films.

  5. Spin-orbit coupling in actinide cations

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jørgen Aa.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  6. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: FINAL REPORT - FIELD EVALUATION OF COMMERCIAL PROTOTYPE BURNER

    EPA Science Inventory

    The report gives results of the final phase of a program to develop, demonstrate, and evaluate a low-NOx burner for crude-oil-fired steam generators used for thermally enhanced oil recovery (TEOR). The burner designed and demonstrated under this program was developed from design ...

  7. Photonuclear reactions of actinide and pre-actinide nuclei at intermediate energies

    SciTech Connect

    Mukhopadhyay, Tapan; Basu, D. N.

    2007-12-15

    Photonuclear reaction is described with an approach based on the quasideuteron nuclear photoabsorption model followed by the process of competition between light particle evaporation and fission for the excited nucleus. Thus fission process is considered as a decay mode. The evaporation-fission process of the compound nucleus is simulated in a Monte Carlo framework. Photofission reaction cross sections are analysed in a systematic manner in the energy range {approx}50-70 MeV for the actinides {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, and {sup 237}Np and the pre-actinide nuclei {sup 208}Pb and {sup 209}Bi. The study reproduces satisfactorily well the available experimental data of photofission cross sections at energies {approx}50-70 MeV and the increasing trend of nuclear fissility with the fissility parameter Z{sup 2}/A for the actinides and pre-actinides at intermediate energies ({approx}20-140 MeV)

  8. Trends in actinide processing at Hanford

    SciTech Connect

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn`t eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report.

  9. Optical properties of actinide and lanthanide ions

    SciTech Connect

    Hessler, J.P.; Carnall, W.T.

    1980-01-01

    This paper reviews some of the recent developments in this area of spectroscopy, emphasizing the optical properties of the tripositive lanthanide and actinide ions. In particular, the single ion properties of line positon, intensity, width, and fluorescence lifetime are discussed. 53 reference, 3 figures, 4 tables.

  10. Actinide valences in xenotime and monazite

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Zhang, Y.; McLeod, T.; Davis, J.

    2011-02-01

    Tetravalent U, Np and Pu can be substituted by ceramic methods into the rare earth site of xenotime and monazite in air atmospheres using Ca ions as charge compensators, while no evidence of penta- or hexavalent actinide ions was found. Some Pu 3+ and Np 3+ can be incorporated in xenotime samples fired in a reducing atmosphere.

  11. Rapid determination of actinides in asphalt samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  12. COMPLEXANTS FOR ACTINIDE ELEMENT COORDINATION AND IMMOBILIZATION

    EPA Science Inventory

    We propose that inorganic clusters known as polyoxoanions (POAs) can be exploited as complexants for actinide (An) ion coordination and immobilization. Our objective is to develop rugged, stoichiometrically well-defined POAs that act as molecular containers of An elements. Poly...

  13. Actinide measurements by AMS using fluoride matrices

    NASA Astrophysics Data System (ADS)

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  14. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  15. Rapid determination of actinides in asphalt samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  16. Environmental Impact of the Nuclear Fuel Cycle: Fate of Actinides

    SciTech Connect

    Ewing, Rodney C.; Runde, W.; Albrecht-Schmitt, Thomas E.

    2011-01-31

    The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.

  17. Numerical simulation of radiative heat loss in an experimental burner

    SciTech Connect

    Cloutman, L.D.; Brookshaw, L.

    1993-09-01

    We describe the numerical algorithm used in the COYOTE two-dimensional, transient, Eulerian hydrodynamics program to allow for radiative heat losses in simulations of reactive flows. The model is intended primarily for simulations of industrial burners, but it is not confined to that application. It assumes that the fluid is optically thin and that photons created by the fluid immediately escape to free space or to the surrounding walls, depending upon the application. The use of the model is illustrated by simulations of a laboratory-scale experimental burner. We find that the radiative heat losses reduce the local temperature of the combustion products by a modest amount, typically on the order of 50 K. However, they have a significant impact on NO{sub x} production.

  18. Composite propellant combustion modeling with a porous plate burner

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.; Strand, L. D.; Mcnamara, R. P.

    1976-01-01

    A burner is designed to model on a large scale (millimeters) the complex vapor phase processes that take place on awkwardly small scales (about a hundred microns) in the combustion of practical AP/ composite propellants at conventional pressures. Binder vapor evolution is modeled with gaseous fuel (ethane in the experiments reported) flow through a porous plate and oxidizer vapor with the flow of a gaseous oxidizer (air and enriched air in the experiments reported) through discrete holes in the porous plate. Measured flame standoff distance and surface temperature variations are consistent with theoretical predictions at atmospheric pressure. Data obtained at several atmospheres are discussed in the light of the current theories of propellant burning that place varying emphasis on the roles of chemical kinetics and fluid dynamic diffusion/mixing in the vapor phase of a burning composite propellant. The potential and proposed future applications of the burner are indicated.

  19. Pressurized cyclonic combustion method and burner for particulate solid fuels

    SciTech Connect

    Hoffert, F.D.; Milligan, J.D.; Morrison, J.A.

    1987-06-09

    This patent describes a method of operating a burner for burning particulate combustible fuel for producing a hot gas under pressure for operating a gas turbine, the burner comprising a housing having side wall means forming a cylindrical shape primary combustion chamber, a secondary chamber, and a choke opening of reduced size between the primary combustion chamber and the secondary chamber, the secondary chamber being in fluid communication with the primary combustion chamber through the choke opening, the end of the primary combustion chamber opposite the choke opening being closed by end wall means, the end of the secondary chamber opposite the choke opening having an outlet opening for the passage of hot gas for use of operating a gas turbine, a particulate fuel opening formed through the side wall means of the primary combustion chamber near the end wall means.

  20. Burner rig corrosion of SiC at 1000 C

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Stearns, C. A.; Smialek, J. L.

    1986-01-01

    Sintered alpha-SiC was examined in both oxidation and hot corrosion with a burner rig at 400 kPa (4 atm) and 1000 C with a flow velocity of 94 m/s. Oxidation tests for times to 46 h produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13.5 h. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting on the silicon carbide substrate and led to a 32 percent decrease in strength, compared to the as-received material. Parallel furnace tests of Na2SO4/air-induced attack yielded basically similar results, with slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig.

  1. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  2. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  3. Effect of cycled combustion ageing on a cordierite burner plate

    SciTech Connect

    Garcia, Eugenio

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  4. Downhole burner systems and methods for heating subsurface formations

    DOEpatents

    Farmayan, Walter Farman; Giles, Steven Paul; Brignac, Jr., Joseph Phillip; Munshi, Abdul Wahid; Abbasi, Faraz; Clomburg, Lloyd Anthony; Anderson, Karl Gregory; Tsai, Kuochen; Siddoway, Mark Alan

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  5. Basic research on radiant burners. Final report, February 1987-February 1992

    SciTech Connect

    Kendall, R.M.; DesJardin, S.T.; Sullivan, J.D.

    1992-04-01

    A computer model was modified and used to predict the operating characteristics of natural gas fired porous surface radiant burners. Performance parameters studied during this contract included radiant flux from the burner surface, burner surface temperature, NOx emissions, and flame attachment and flashback stability limits. Each year, computational work was performed to predict radiant burner performance. Concurrently, experimental work was performed to compare to these computational results. Validation of the code against experimental data allows the code to be used as a design tool in the further development of radiant burner combustion systems. Thermal performance, limits of stable operation, and NOx emissions have been correlated to experimental data in the report. In addition, catalytic radiant burners were fabricated and tested during the first and fourth years of the contract.

  6. Characterization of Noise and Instability in a Commercial Burner

    NASA Astrophysics Data System (ADS)

    Carpenter, Stewart; Agrawal, Ajay

    2013-11-01

    A range of combustion applications produce noise as a significant and undesirable output. Concurrently, efforts to reduce emissions through lean premixed combustion have shown this process to be prone to developing instabilities. In this study a commercial-style combustor was investigated to characterize combustion noise and instabilities. Knowledge in this area is intended for future research involving the application of porous inert media (PIM) in industrial burners. Porous media has been used to passively suppress both combustion noise and instabilities in a laboratory setting, but has yet to be implemented in a commercial burner. Combustion experiments were conducted in an industrial-scale lean premixed burner using natural gas while varying equivalence ratio and reactant flow rate. Acoustic data was acquired using a microphone probe placed in the plane of the combustor exit. Measurements were analyzed in the frequency spectrum to quantify noise spectra and detect the development of instabilities. Results have indicated the occurrence of strong combustion instability at certain conditions. Additionally, research has supported the general relationship of increased noise production with increasing equivalence ratio and heat release rate. Adverse effects of combustion instability were accompanied with flashback and downstream acoustic excitation. Funding for this research provided by NSF REU grant 1062611.

  7. A Superfluid Film Burner for the nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Maxwell, James; nEDM Collaboration

    2013-10-01

    A planned measurement of the neutron electric dipole moment (nEDM) to 10-28 e .cm using the Golub-Lamoreaux method presents complex cryogenic challenges. One such hurdle is the injection of 3He from a polarized atomic beam source into a liquid 4He bath while maintaining the temperature gradient from the cold bath to the warm beam source and minimizing the vapor above the bath. The feasible temperature range for the experiment falls around 400 mK and is constrained from below by the achievable magnetic field gradients, and above by the spin relaxation time of 3He and rate of ultracold neutron up-scattering. The superfluid behavior of 4He below 2.1 K means superfluid film will tend to climb, or ``creep,'' up the sides of the beam tube to reach the warmer space above, creating vapor, resulting in convection and scattering of incident 3He. To stop the superfluid film creep and contain the vapor, a ``film burner'' is under development by the nEDM collaboration. We will describe the effort toward developing a suitable film burner for nEDM, and show preliminary results of a prototype film burner in operation.

  8. The BNL fan-atomized burner system prototype

    SciTech Connect

    Butcher, T.A.; Celebi, Y.

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  9. Preliminary Tests of a Burner for Ram-Jet Applications

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.

    1947-01-01

    Preliminary tests have been made of a small burner to meet the requirements for application to supersonic ram jets. The principal requirements were taken as: (1) efficient combustion in a high-velocity air stream, (2) utilization for combustion of only a small fraction of the air passing through the unit, (3) low resistance to air flow, (4) simple construction, and (5) light weight. Tests of a small burner were carried to stream velocities of nearly 150 feet per second and fuel rates such that one-eighth to one-fourth of the total air was involved in combustion. Commercial propane was selected as the fuel since its low boiling point facilitated vaporization. Combustion which was 80 percent complete along with low aerodynamic losses was obtained by injecting the fuel evenly, prior to ignition, and allowing it to mix with the air without appreciably disturbing the stream. The pressure drop due to frictional losses around the burner and to the adjacent inside walls of the ram jet is small compared with the pressure drop due to combustion.

  10. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  11. Disposal of Liquid Combustible Wastes using Flameless Burners with Porous Carbon Matrix

    NASA Astrophysics Data System (ADS)

    Dolgov, Sergei; Savchenko, Evgenii; Khaustov, Sergei; Tabakaev, Roman; Zavorin, Alexander

    2016-02-01

    Two modifications of flameless burners with a carbon porous media in the combustion area were investigated. Kerosene TS-1 and mixtures of highly flammable liquids wastes (HIL) were used as fuel. Experimental data are presented in a graphical form as plot of the burner thermal capacity. Results show capacity for of the developed devices and prove the prospects of disposal of liquid combustible wastes using flameless burners with porous carbon matrix.

  12. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  13. Premixed burner studies of NO{sub x} formation and control

    SciTech Connect

    Casleton, K.H.; Straub, D.L.; Moran, C.; Stephens, J.W.

    1993-11-01

    One of the primary reasons for using this type of premixed, flat flame burner is that it is essentially one-dimensional (1-D), i.e., that important parameters such as temperature are nearly constant in regions near the central vertical axis of the burner for a fixed height above the burner surface. As a result of this 1-D nature, computer codes such as Sandia National Laboratory`s PREMIX can be used to model the important chemical interactions involved in the combustion processes. These predictions can be compared with experimental measurements to gain valuable insight into the formation of nitrogen oxides. The bulk of the burner experiments performed to date have been focussed primarily toward characterization of burner and the sample extraction and analysis system. All experiments thus far have been for methane/air flames at one atmosphere pressure. Figure 2 shows the burner centerline temperature profile for an equivalence ratio of {Phi} = 0.87. The sharp peak in temperature near 0.3 cm corresponds to the luminous zone of the flame. The high temperature in the luminous zone shows an abrupt decay with increasing height above the burner. The temperature gradient in the non-luminous post-flame zone is much smaller, approximately 2.5{degree}C decrease in temperature for each millimeter increase in height over the range of 1.3 to 4 cm above the burner. Radial temperature profiles have also been measured to assess the onedimensional nature of this burner.

  14. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  15. Sample preparation for actinide solid state research

    NASA Astrophysics Data System (ADS)

    Spirlet, J. C.

    1982-09-01

    The actinide elements (5f elements) and their compounds constitute a very interesting group for solid state research. The electronic properties of the 5f elements show intermediate behavior between the well-understood, completely localized 4f system (lanthanides) and the 3d system (transition elements). The possibility of understanding some unexplained properties of the 3d elements through a systematic investigation of the electronic structures of the actinides considerably increased interest in samples with well-defined composition and structure and with well-known purity. In some cases, single crystals of low defect densities and high purity levels are needed to allow sophisticated investigations of physical properties. Actinide compounds are easily obtained at a high purity level by direct synthesis from pure elements using noncontaminating techniques. Examples of these techniques are the reaction of the actinide metal powder with the vapor of an oxidant in a sealed quartz ampoule, leviation melting on a water-cooled pedestal or melting in a Huking crucible. Actinide metals are produced by metallothermic reduction of commercially available oxides or carbides or by the van Arkel purification process. The metals are refined to the desired purity level by evaporation in vacuum for the more volatile elements (Ac, Pu, Am, Cm, Bk) and by the van Arkel process for the metals with low vapor pressure. Single crystals of actinide compounds have been grown by chemical vapor transport methods (oxides, chalcogenides), high temperature solution growth techniques (oxides), and pulling from the melt by the Czochralski method (oxides, intermetallics). Thin solid films have been prepared by vacuum evaporation or by focused ion-beam sputtering. The materials are analyzed for trace-level impurity content by inductively-coupled plasma spectroscopy, by spark source mass spectroscopy and by secondary-ion mass spectroscopy. The chemical composition of the compounds is determined by

  16. Electrorecovery of actinides at room temperature

    SciTech Connect

    Stoll, Michael E; Oldham, Warren J; Costa, David A

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  17. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    SciTech Connect

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  18. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  19. Actinide phosphonate complexes in aqueous solutions

    SciTech Connect

    Nash, K.L.

    1993-10-01

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO{sub 3}H{sub 2}) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described.

  20. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  1. In vitro removal of actinide (IV) ions

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  2. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  3. Surrogate Reactions in the Actinide Region

    SciTech Connect

    Burke, J T; Bernstein, L A; Scielzo, N D; Bleuel, D L; Lesher, S R; Escher, J; Ahle, L; Dietrich, F S; Hoffman, R D; Norman, E B; Sheets, S A; Phair, L; Fallon, P; Clark, R M; Gibelin, J; Jewett, C; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Wiedeking, M; Lyles, B F; Beausang, C W; Allmond, J M; Ai, H; Cizewski, J A; Hatarik, R; O'Malley, P D; Swan, T

    2008-01-30

    Over the past three years we have studied various surrogate reactions (d,p), ({sup 3}He,t), ({alpha},{alpha}{prime}) on several uranium isotopes {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U. An overview of the STARS/LIBERACE surrogate research program as it pertains to the actinides is discussed. A summary of results to date will be presented along with a discussion of experimental difficulties encountered in surrogate experiments and future research directions.

  4. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  5. Actinide and lanthanide separation process (ALSEP)

    SciTech Connect

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  6. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    NASA Astrophysics Data System (ADS)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  7. Development of the Actinide-Lanthanide Separation (ALSEP) Process

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2014-09-30

    Separating the minor actinide elements (Am and Cm) from acidic high-level raffinates arising from the reprocessing of irradiated nuclear fuel is an important step in closing the nuclear fuel cycle. Most proposed approaches to this problem involve two solvent extraction steps: 1) co-extraction of the trivalent lanthanides and actinides, followed by 2) separation of the actinides from the lanthanides. The objective of our work is to develop a single solvent-extraction process for isolating the minor actinide elements. We report here a solvent containing N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) that can be used to separate the minor actinides in a single solvent-extraction process. T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid solution. Switching the aqueous phase chemistry to a citrate buffered solution of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus affecting separation of the actinides from the lanthanides. Separation factors between the lanthanides and actinides are approximately 20 in the pH range of 3 to 4, and the distribution ratios are not highly dependent on the pH in this system.

  8. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  9. Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses

    SciTech Connect

    B. Forget; M. Asgari; R. Ferrer; S. Bays

    2007-09-01

    Previous fast reactor transmutation studies generally disregarded higher mass minor actinides beyond Cm-246 due to various considerations including deficiencies in nuclear cross-section data. Although omission of these higher mass actinides does not significantly impact the neutronic calculations and fuel cycle performance parameters follow-on neutron dose calculations related to fuel recycling, transportation and handling are significantly impacted. This report shows that including the minor actinides in the equilibrium fast reactor calculations will increase the predicted neutron emission by about 30%. In addition a sensitivity study was initiated by comparing the impact of different cross-section evaluation file for representing these minor actinides.

  10. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  11. DISTRIBUTED MIXING BURNER (DMB) ENGINEERING DESIGN FOR APPLICATION TO INDUSTRIAL AND UTILITY BOILERS

    EPA Science Inventory

    The report summarizes the design of two prototype distributed mixing burners (DMBs) for application to industrial and utility boilers. The DMB is a low-NOx pulverized-coal-fired burner in which: (1) mixing of the coal with combustion air is controlled to minimize NOx emissions, a...

  12. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NO BURNER PERFORMANCE AND SULFUR CAPTURE

    EPA Science Inventory

    The report gives results of pilot-scale combustion tests of a Riley Stoker second-generation low-NOx burner combined with dry sorbent injection for SO2 control. The burner design is based on the distributed mixing concept. Combustion tests were conducted at 100 million Btu/hr in ...

  13. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  14. Residential oil burners with low input and two-stage firing

    SciTech Connect

    Butcher, T.A.; Leigh, R.; Krajewski, R.; Celebi, Y.; Fisher, L.; Kamath, B.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner. At low firing rates, pressure-atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low-pressure air-atomized burner has been developed that can operate at firing rates, as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low firing rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a sidewall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single-purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two-stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space-heating loads.

  15. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    SciTech Connect

    Schweizer, S.; Sullivan, J.

    1994-11-01

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  16. Stabilization Mechanisms and Burning Rates of Cylindrical Burner Flames

    NASA Technical Reports Server (NTRS)

    Eng, J. A.; Law, C. K.; Zhu, D. L.

    1994-01-01

    A study is conducted of the structure and response of curved (but unstretched), cylindrically-symmetric 1D premixed flames from a cylindrical porous burner. The study has employed (1) activation-energy asymptotics with one-step reaction constant and constant properties; (2) a numerical computation which encompassed detailed chemistry and transport behavior, and (3) drop-tower microgravity tests. Attention was given to the relative importance of heat loss vs. flow divergence as the dominant mechanism for flame stabilization; the results show that, with increasing flow discharge rate, the dominant flame stabilization mechanism changes from heat loss to flow divergence.

  17. NOx formation in combustion of gaseous fuel in ejection burner

    NASA Astrophysics Data System (ADS)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  18. Diesel engine dual path exhaust cleaner and burner system

    SciTech Connect

    Stark, T.L.

    1983-02-15

    A dual filter element exhaust cleaner and burner system for diesel engines provides for the trapping of particulates in the engine exhaust gases by their passage through filter elements, as selectively controlled by means of a four-way valve. Collected particulates in a non-active particulate filter element are incinerated by means of a heater, with this filter element, during incineration, being supplied with exhaust gases through a constant flow exhaust gas regulator whereby incineration of the particulates will occur at a controlled rate independent of engine speed.

  19. Development of mesoscale burner arrays for gas turbine reheat

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoup

    Mesoscale burner arrays allow combustion to be conducted in a distributed fashion at a millimeter (meso) scale. At this scale, diffusive processes are fast, but not yet dominant, such that numerous advantages over conventional gas turbine combustion can be achieved without giving up the possibility to use fluid inertia to advantage. Since the scale of the reaction zone follows from the scale at which the reactants are mixed, very compact flames result. This compact, distributed form of combustion can provide the opportunity of inter-turbine reheat as well as the potential for lean premixed or highly vitiated combustion to suppress NOx emissions. As a proof-of-concept, a 4x4 array with burner elements on 5-mm centers was fabricated in silicon nitride via assembly mold SDM. Each burner element was designed in a single monolithic unit with its own combination of reactant inlets, fuel plenum and injection nozzles, and swirler to induce flame stabilization. Results using methane, including pressure drop, flame stability, temperature distribution in the burnt gas, and NO emissions are reported for both fully premixed (mixing prior to injection) and nonpremixed (mixing in the array) configurations. These results demonstrate the degree to which premixed performance can be achieved with this design and pointed to ways in which the array design could be improved over this first-generation unit. Given what was learned from the 4x4 array, a next-generation 6x6 array was developed. Major design changes include addition of a bluff-body stabilizer to each burner element to improve stability and use of a multilayer architecture to enhance the degree of reactant mixing. Tests using methane in both operating conditions were performed for two stabilization configurations---with and without the bluff bodies. The results for nonpremixed operation show that nearly complete air/fuel mixing was achieved using the 6x6 design, leading to NO emission levels obtainable under fully premixed

  20. Laser speckle technique for burner liner strain measurements

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1982-01-01

    Thermal and mechanical strains were measured on samples of a common material used in jet engine burner liners, which were heated from room temperature to 870 C and cooled back to 220 C, in a laboratory furnance. The physical geometry of the sample surface was recorded at selected temperatures by a set of 12 single exposure speckle-grams. Sequential pairs of specklegrams were compared in a heterodyne interferometer which give high precision measurement of differential displacements. Good speckle correlation between the first and last specklegrams is noted which allows a check on accumulate errors.

  1. REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS

    SciTech Connect

    James Servaites; Serguei Zelepouga; David Rue

    2003-10-01

    This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and

  2. Safety aspects of Particle Bed Reactor plutonium burner system

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-08-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling.

  3. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  4. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered...

  5. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  6. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  7. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  8. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  9. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  10. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  11. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  12. Occurrence of benzo(a)pyrene in combustion effluents of kerosene and diesel burners

    SciTech Connect

    Gharaibeh, S.H.; Abuirjeie, M.A.; Hunaiti, A.A.

    1988-09-01

    Due to limited Jordanian resources, kerosene and diesel burners have been widely used for heating homes and water, warming bread, grilling meat and cooking food. Jordan annually imports and average of 204 tons of burners which corresponds to approximately 20,400 burners. Considerable amounts of combustion products are produced such as gases, aerosols and polycyclic aromatic hydrocarbons (PAH), especially benzo(a)pyrene (Bp), the well known carcinogen for man and animal. Since most Jordanians use burners more than five months a year, a considerable amount of combustion effluents accumulate indoors. Some of these materials can enter the human body via various routes, and are potential health hazards. Little information is available about the chemical nature and amount of the combustion effluents produced by these burners; therefore the present study was designed to screen for benzo(a)pyrene in the indoor-accumulated combustion effluent.

  13. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    NASA Technical Reports Server (NTRS)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  14. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  15. Operational characteristics of a parallel jet MILD combustion burner system

    SciTech Connect

    Szegoe, G.G.; Dally, B.B.; Nathan, G.J.

    2009-02-15

    This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO{sub x} emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria. (author)

  16. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    SciTech Connect

    Spelt, P.F.

    1992-01-01

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs.

  17. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    SciTech Connect

    Spelt, P.F.

    1992-08-01

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs.

  18. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    SciTech Connect

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-07-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit

  19. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  20. Detailed calculations of minor actinide transmutation in a fast reactor

    SciTech Connect

    Takeda, Toshikazu

    2015-12-31

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  1. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  2. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  3. Process for Making a Ceramic Composition for Immobilization of Actinides

    SciTech Connect

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Curtis, Paul G.; Hobson, Beverly F.; Farmer, Joseph; Herman, Connie Cicero; Herman, David Thomas

    1999-06-22

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  4. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  5. Detailed calculations of minor actinide transmutation in a fast reactor

    NASA Astrophysics Data System (ADS)

    Takeda, Toshikazu

    2015-12-01

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  6. Study of actinide chemistry in saturated potassium fluoride solution

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Thalmayer, C. E.

    1969-01-01

    Study concerning the chemistry of actinides in saturated KF solution included work with neptunium, uranium, and americium. Solubilities, absorption spectra, oxidation-reduction reactions, and solid compounds which can be produced in KF solution were examined. The information is used for preparation of various materials from salts of the actinides.

  7. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  8. Photofission of Actinides with Linearly Polarized Photons

    SciTech Connect

    Dale, D. S.; Cole, P. L.; Conn, A.; Forest, T. A.; Kosinov, O.; Setiniyaz, S.; Shapovlov, R.; Starovoitova, V.; Swanson, J.; Bodily, R.; Kelley, K.

    2010-08-04

    Idaho State University and the Idaho Accelerator Center are developing a polarized photon facility in the 10 MeV region using the off axis bremsstrahlung technique. Initial tests have been performed with the aim of using the high analyzing power of the photodisintegration of the deuteron to measure the beam polarization. A program is currently underway to measure the potential angular asymmetries of neutrons arising from the angular distribution of the fission fragments from photofission with linearly polarized photons. In this paper, we describe the Idaho State University Polarized Photon Facility, present results of commissioning runs, and describe potential application of polarized photofission in detecting actinides for homeland security and safeguards applications.

  9. Status of nuclear data for actinides

    SciTech Connect

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N.

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  10. {alpha} Decay of Deformed Actinide Nuclei

    SciTech Connect

    Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.

    1996-07-01

    {alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}

  11. Characterization of the coherent structures in swirling flames stabilized in a two-staged multi-injection burner: Influence of the staging factor

    NASA Astrophysics Data System (ADS)

    Providakis, Theodore; Zimmer, Laurent; Scouflaire, Philippe; Ducruix, Sébastien

    2013-01-01

    Staged multi-injection combustors seem good candidates to face flame stabilization problems (combustion instabilities, flashback, flame extinction), encountered in lean premixed prevaporized (LPP) burners. Staging procedures enable fuel distribution control while multipoint injection can lead to a fast and efficient mixing. In the present study, a laboratory-scale staged multipoint combustor is characterized using High Speed Particle Image Velocimetry and Planar Laser Induced Fluorescence measurements. It is shown that the fuel distribution strongly affects the flame stabilization processes, modifying the thermo-acoustic coupling. Furthermore, results reveal the presence of a precessing vortex core (PVC), that can lead to a better flame stabilization in particular cases.

  12. High-temperature burner-duct-recuperator (HTBDR) design modification study: Final report, September 1986-May 1987

    SciTech Connect

    Not Available

    1988-04-01

    This is a reproduction of a letter report for the design modifications study of a high-temperature burner-duct-recuperator (HTBDR) tested in the Cameron Iron Works, Houston, Texas. The prototype HTBDR was field tested at Cameron, but it was eventually shut down due to the failure of some structural components; not the ceramic heat exchanger tubes. No change was recommended to the original core of the system, i.e., the cruciform (internal fin) silicon carbide tubes. However, the air plenums were changed to a clam-shell configuration that provides higher-pressure sealed manifolds. The various seals between the refractory manifold sections, as well as between the tubes and tube sheets, consist of ceramic fiber sleeves and ropes. The HTBDR was developed by Garret AiResearch under funding from the US Department of Energy, Office of Industrial Programs under Cooperative Agreement No. FC07-81ID12170.

  13. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  14. Actinides and Rare Earths Topical Conference (Code AC)

    SciTech Connect

    Tobin, J G

    2009-11-24

    Actinide and the Rare Earth materials exhibit many unique and diverse physical, chemical and magnetic properties, in large part because of the complexity of their f electronic structure. This Topical Conference will focus upon the chemistry, physics and materials science in Lanthanide and Actinide materials, driven by 4f and 5f electronic structure. Particular emphasis will be placed upon 4f/5f magnetic structure, surface science and thin film properties. For the actinides, fundamental actinide science and its role in resolving technical challenges posed by actinide materials will be stressed. Both basic and applied experimental approaches, including synchrotron-radiation-based investigations, as well as theoretical modeling and computational simulations, are planned to be part of the Topical Conference. Of particular importance are the issues related to the potential renaissance in Nuclear Fuels, including synthesis, oxidation, corrosion, intermixing, stability in extreme environments, prediction of properties via benchmarked simulations, separation science, environmental impact and disposal of waste products.

  15. Research in actinide chemistry. Progress report, 1990--1993

    SciTech Connect

    Choppin, G.R.

    1993-04-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, PO{sub 4}{sup 3{minus}}, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements.

  16. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  17. Effect of rangetop burner design on NO sub 2 emissions. Final report, February 1986-March 1987

    SciTech Connect

    Reuther, J.J.

    1990-02-01

    The report details the methodology and results of a program at Battelle to evaluate the extent to which rangetop burner design and operation influence the emission of trace quantities of nitrogen dioxide (NO{sub 2}). A critical literature review revealed that conclusions drawn from previous research were ambiguous. New experiments here indicated that previous data were conflicting because the apparent amount of NO{sub 2} observed was not only burner design- and operation-specific, but also NO{sub 2}-measurement protocol- and source-specific. Moreover, previously used NO{sub 2} measurement protocols had not been standardized, and previously used NO{sub 2} sources, production rangetop appliances, were not appropriate as research tools. After developing and validating a standardized NO{sub 2} measurement protocol and an appropriate rangetop burner research tool (Uniburner), parametric experiments isolated the individual effects of various burner design and operating parameters. Low NO{sub 2} emissions are favored by the use of cast-iron rather than stamped-aluminum burner caps, lower port loadings at any firing rate, higher primary aeration, and lower peripheral secondary aeration. Thermophysical properties of burner caps (thermal conductivity and thermal mass) appear to control NO{sub 2} emissions more than any other single or combination of burner design or operating parameter(s).

  18. Pyromat CSB{trademark} low emissions burner for boilers, steam generators and process heaters

    SciTech Connect

    Duret, M.J.; Minden, A.C.

    1995-08-01

    Alzeta has developed a low NO{sub x} burner for boiler and process heater applications that achieves very low emissions without complicated emissions controls such as flue gas recirculation or staged fuel and air. The Pyromat CSB burner is a semi-radiant, premixed, natural gas fired burner which uses a patented technique to form radiant and blue-flame zones adjacent to each other on a cylindrical porous metal surface. This new technology offers surface heat release rates that are 10 times greater than traditional surface combusters. Because the flame shape is constant over the entire range of operation, and is sized and shaped to meet the specific requirements of the heater, there is no change for flame impingement or nonuniform heating. In one application, thermally enhanced oil recovery, the Pyromat CSB burner is firing on low-Btu gas containing H{sub 2}S drawn from oil wells. Low NO{sub x} FGR burners cannot serve this application because the combustion products corrode the ducting. In addition, premixed burners can operate on low-Btu gases without supplemental natural gases which saves operating expenses. In another application, process heating of fragile fluids, flame impingement can overheat the heat transfer liquid and cause premature tube failure. The Pyromat CSB burner has a constant flame shape over its entire turndown ratio so there is no chance for flame impingement.

  19. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W.; Rinker, Franklin G.

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  20. Simulation Modeling of an Enhanced Low-Emission Swirl-Cascade Burner

    SciTech Connect

    Ala Qubbaj

    2004-09-01

    ''Cascade-burners'' is a passive technique to control the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. Cascade-burners have shown advantages over other techniques; its reliability, flexibility, safety, and cost makes it more attractive and desirable. On the other hand, the application of ''Swirl-burners'' has shown superiority in producing a stable flame under a variety of operating conditions and fuel types. The basic idea is to impart swirl to the air or fuel stream, or both. This not only helps to stabilize the flame but also enhances mixing in the combustion zone. As a result, nonpremixed (diffusion) swirl burners have been increasingly used in industrial combustion systems such as gas turbines, boilers, and furnaces, due to their advantages of safety and stability. Despite the advantages of cascade and swirl burners, both are passive control techniques, which resulted in a moderate pollutant emissions reduction compared to SCR, SNCR and FGR (active) methods. The present investigation will study the prospects of combining both techniques in what to be named as ''an enhanced swirl-cascade burner''. Natural gas jet diffusion flames in baseline, cascade, swirl, and swirl-cascade burners were numerically modeled using CFDRC package. The thermal, composition, and flow (velocity) fields were simulated. The numerical results showed that swirl and cascade burners have a more efficient fuel/air mixing, a shorter flame, and a lower NOx emission levels, compared to the baseline case. The results also revealed that the optimal configurations of the cascaded and swirling flames have not produced an improved performance when combined together in a ''swirl-cascade burner''. The non-linearity and complexity of the system accounts for such a result, and therefore, all possible combinations, i.e. swirl numbers (SN) versus venturi diameter ratios (D/d), need to be considered.

  1. Dynamics of the flame flowfields in a low-swirl burner

    SciTech Connect

    Cheng, Robert; Johnson, Matthew R.; Cheng, Robert K.

    2003-07-01

    The concept of using low swirl to stabilize lean premixed turbulent flame was introduced in 1992. Since then, the low-swirl burner (LSB) has become a useful laboratory tool for the study of detailed flame structures as well as turbulent burning speeds. Its main attribute is that the flame is freely propagating and is locally normal to the turbulent approach flow (Figure 1). Therefore, the turbulent flame brush is not influence by physical boundaries. The capability of LSB to support very lean flames and very turbulent flames [1, 2] was further exploited in recent studies to test the validity of the flame regime concept. Using 2D imaging diagnostics (e.g. planar laser induced fluorescence, PLIF, and planar laser induced Rayleigh scattering) our analysis showed that the wrinkled flame regime to be valid at a turbulence intensity level much higher than previously thought [3-5]. This provided experimental verification of a new 'thin reaction zone' regime for the Kalovitz number range of 1 < Ka < 10 (Ka = (u{prime}/s{sub L}){sup 3/2} (l{sub x}/d{sub L}){sup 1/2}) proposed by Peters. Due to its freely propagating nature, modeling and simulations of LSB flames are non-trivial. The flame position cannot be specified a priori because it is coupled to the turbulent flowfield and the turbulent flame speed may be required as input. This has not been a significant issue when treating the LSB flame as a close approximation to a 1D premixed turbulent flame. However, to support the development of more robust 3D simulation methods, accurate information on the flowfield dynamics in particular those at the burner exit and the interactions between the core and swirl air flows becomes important. In the past, velocity measurements in LSB have concentrated on collecting information along the centerline. The objective of this investigation is to conduct a detailed study using particle image velocimetry (PIV) to provide the flowfield information that are more suited to support 3D

  2. Actinide Solubility and Speciation in the WIPP

    SciTech Connect

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  3. Actinide transmutation in a thermal reactor

    SciTech Connect

    Facchini, A.; Sanjust, V.

    1993-12-31

    The long term radiotoxicity of nuclear wastes may be substantially reduced by long irradiation in thermal reactors. Preliminary calculations showed that appreciable quantities of the minor actinides and long lived fission products may be recycled in a power PWR, and that, a few centuries after 20--30 years of irradiation, they reach radiotoxicity levels comparable to those of the uranium quantity required to make the corresponding fuel amount. The purpose of the present work is to investigate the conceptual possibility of reducing the level of the long term radiotoxicity, due to Minor Actinides and Long-Lived Fission Products (MA/LLFP) produced in UO{sub 2} fuel, by long irradiation of them in a power PWR. More precisely the authors pursued the objective of determining what fraction of the MA/LLFP mixture produced in a 1,000 MWe PWR during its whole life, may be burned in a similar power reactor. A waste burning efficiency has been considered satisfactory if the long term radiotoxicity of the MA/LLFP contained in a given quantity of spent fuel reaches, a few centuries after its irradiation, the level corresponding to that of the amount of natural uranium required to produce the same quantity of fresh fuel. This waiting time is in fact necessary in any case for cooling the other fission products to a sufficiently low radioactivity level and is a time span not unreasonable when considering man-made barriers against the radionuclide diffusion into the biosphere.

  4. Evaluation of actinide biosorption by microorganisms

    SciTech Connect

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  5. Selective and enhanced radiation from porous matrix burners. Annual report, October 1990-September 1991

    SciTech Connect

    Kendall, R.M.; Sullivan, J.D.

    1992-03-01

    Rare earth oxide materials previously identified to produce highly selective radiant emissions when used in ceramic mantles have been incorporated into large porous surface radiant burner structures. Results to date have been promising, as spectral selectivity has been demonstrated using ytterbia fibers cast over a porous matrix of more conventional ceramic fibers. Concept feasibility was demonstrated during the first year and improved durability is currently being investigated. High emissivity materials are being added to broad band radiant burners to increase radiant flux and improve thermal efficiency of radiant burners.

  6. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility

    SciTech Connect

    Thomas B. Kirchner

    2002-03-22

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  7. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms

  8. Enhancing BWR proliferation resistance fuel with minor actinides

    NASA Astrophysics Data System (ADS)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in

  9. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  10. Optimum compositions for thermal insulation of burners and regenerators

    SciTech Connect

    Zasypkin, V.I.; Popov, O.N.

    1988-07-01

    The thermal and mechanical properties of thermal insulation compositions applied by spraying were evaluated to determine the optimum composition for the parameters posed by the burners and regenerators of glass-melting furnaces. The effects of varying spray parameters on these properties were also assessed. Changes were made in the binder density while leaving the amount of filler unaltered. With an increase in binder density there was an increase in the apparent density of the insulation. Kaolin wool with an aluminoborophosphate concentrate binder was tested for thermal conductivity, apparent density, and bending, shear, and compression strength against asbestos with water glass as a binder. For walls of the regenerators and a single-layer heat insulation, insulation made from an asbestos-perlite mixture with water glass was recommended.

  11. Burner rig alkali salt corrosion of several high temperature alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  12. Stabilization of premixed flames on rotating Bunsen burners

    SciTech Connect

    Cha, J.M.; Sohrab, S.H.

    1996-09-01

    The effect of rotation on stabilization of methane-air premixed Bunsen flame sis experimentally investigated. Both the flame blowoff and flashback contours are determined in the fuel mole fraction versus Reynolds number plane (X{sub F}-Re) with the rotational Reynolds number Re{sub 4} as a parameter. It is found that rotation of the gas increases the flame stabilization area A{sub s} = A{sub B} {minus} A{sub F} defined as the difference between the flame blowoff A{sub B} and flashback A{sub F} areas in the (X{sub F}-Re) plane. The flame stabilization efficiency is defined as {eta}{sub s} = 1 {minus} A{sub F}/A{sub B} that approaches unity in either A{sub B} {yields} {infinity} or A{sub F} {yields} 0 limit. The experimental results suggest that rotation decreases the flame stabilization efficiency. However, rotation is found to substantially increase the flame stabilization coefficient defined as {beta}{sub s} = A{sub s}/A{sub st}, where A{sub st} is the stabilization area of the standard nonrotating burner. The parameters {eta}{sub s} and {beta}{sub s} may be useful in combustion technology for quantitative evaluation of the stabilization performance of different types of flame holders. In addition, the local hydrodynamics near the center of rotating Bunsen burner is simulated by investigating stabilization of planar laminar premixed flames on rotating porous disks with uniform surface velocity. Physical concepts concerning mechanisms of flame stabilization are discussed in terms of three important parameters namely the translational Reynolds number Re, the rotation Reynolds number Re{sub r}, and the fuel mole fraction X{sub F}. The results of the experimental findings are shown to be in accordance with prior theoretical investigation.

  13. Premixed burner experiments: Geometry, mixing, and flame structure issues

    SciTech Connect

    Gupta, A.K.; Lewis, M.J.; Gupta, M.

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  14. On the suitability of lanthanides as actinide analogs

    SciTech Connect

    Raymond, Kenneth; Szigethy, Geza

    2008-07-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  15. On the Suitability of Lanthanides as Actinide Analogs

    SciTech Connect

    Szigethy, Geza; Raymond, Kenneth N.

    2008-04-11

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.

  16. End point control of an actinide precipitation reactor

    SciTech Connect

    Muske, K.R.; Palmer, M.J.

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  17. Thin extractive membrane for monitoring actinides in aqueous streams.

    PubMed

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples. PMID:23747462

  18. Separation of actinides from spent nuclear fuel: A review.

    PubMed

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  19. Plutonium and ''minor'' actinides: safe sequestration [rapid communication

    NASA Astrophysics Data System (ADS)

    Ewing, Rodney C.

    2005-01-01

    The actinides exhibit a number of unique chemical and nuclear properties. Of particular interest are the man-made actinides (Np, Pu, Cm and Am) that are produced in significant enough quantities that they are a source of energy in fission reactions, a source of fissile material for nuclear weapons and of environmental concern because of their long half-lives and radiotoxicity. During the past 50 yr, over 1400 mT of Pu and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. There are two basic strategies for the disposition of these elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of isometric pyrochlore, A 2B 2O 7 (A=rare earths; B=Ti, Zr, Sn and Hf), for the immobilization of actinides, particularly plutonium. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B=Zr, Hf) are stable to very high doses of α-decay event damage. The radiation stability of these compositions is closely related to the structural distortions that occur for specific pyrochlore compositions and the electronic structure of the B-site cation. This understanding provides the basis for designing materials for the safe, long-term immobilization and sequestration of actinides.

  20. Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment

    NASA Astrophysics Data System (ADS)

    Basu, Basudhara; Bhattacharyya, D. P.; Biswas, S.; O'Sullivan, D.; Thompson, A.

    A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra heavy nuclei of charges of Z ranging from 72 to 96 compatible with the expected results from restricted energy loss calculations. The estimated actinide sub-actinide flux ratio has been found to be 0.0636±0.0248 which is comparable to the earlier observations by Fowler et al., Thompson et al. and O'Sullivan.

  1. 5f-electron localization in the actinide metals: thorides, actinides and the Mott transition

    NASA Astrophysics Data System (ADS)

    Lawson, A. C.

    2016-03-01

    For the light actinides Ac-Cm, the numbers of localized and itinerant 5f-electrons are determined by comparing various estimates of the f-electron counts. At least one itinerant f-electron is found for each element, Pa-Cm. These results resolve certain disagreements among electron counts determined by different methods and are consistent with the Mott transition model and with the picture of the 5f-electrons' dual nature.

  2. Separations and Actinide Science -- 2005 Roadmap

    SciTech Connect

    Not Available

    2005-09-01

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by

  3. Field test of a low NO{sub x} short flame duct burner

    SciTech Connect

    Bartz, D.F.

    1996-12-31

    With funding from the California Energy Commission and Southern California Gas Company, a new duct burner technology has undergone development and field testing that addresses two critical issues for cogeneration applications: limiting NO{sub x} emissions levels to less than 9 ppmv, corrected to 15% O{sub 2} and minimizing flame length. With commercialization of Dry Low NO{sub x} gas turbine combustors, regulatory pressures will focus on duct burners to maintain cogeneration plant emissions below 9 ppmv corrected to 15% CO{sub 2} without the use of costly selective catalytic reduction. Short burner flame length helps reduce plant footprint and ducting costs, and enables the design of compact segmented heat recovery steam generators. The new burner design utilizes a porous metal fiber material as the flame holder, and full premixing of the fuel gas and oxygen available in the gas turbine exhaust gas.

  4. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  5. Experiments on Stability of Bunsen-Burner Flames for Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1948-01-01

    The results of a study of the stability of propane-air flames on bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air-ratio range. (author)

  6. Experiments on stability of Bunsen-burner flames for turbulent flow

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1947-01-01

    The results of a study of the stability of propane-air flames on Bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air ratio range.

  7. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  8. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  9. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  10. Full scale demonstration of low-NO{sub x} cell burner retrofit. Public design report

    SciTech Connect

    Not Available

    1991-08-09

    The overall objective of the Full-Scale Demonstration of Low-NO{sub x} Cell Burner Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large based-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the retrofit of Low-NO{sub x} Cell Burners in boilers currently equipped with cell burners, is a cost-effective alternative to any other emerging, or commercially-available, NO{sub x} control technology.

  11. Full scale demonstration of low-NO sub x cell burner retrofit

    SciTech Connect

    Not Available

    1991-08-09

    The overall objective of the Full-Scale Demonstration of Low-NO{sub x} Cell Burner Retrofit project is to demonstrate the cost-effective reduction of NO{sub x} generated by a large based-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NO{sub x} reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) Acquire and evaluate emission and boiler performance data before and after the retrofit to determine NO{sub x} reduction and impact on overall boiler performance; (3) Demonstrate that the retrofit of Low-NO{sub x} Cell Burners in boilers currently equipped with cell burners, is a cost-effective alternative to any other emerging, or commercially-available, NO{sub x} control technology.

  12. Study of Decision Index for Ignition Timing of Slag Melting Burner

    NASA Astrophysics Data System (ADS)

    Murata, Hiroshi; Nakajima, Chikahito; Watanabe, Hiroaki

    In coal gasification plants, coal ash is discharged as molten slag. If the molten slag solidifies and is not discharged, an operator who monitors the plant throughout the day ignites a melting burner and removes the solidified slag. However, the use of this burner decreases the efficiency of the gasifier. Therefore, objective and appropriate automatic decision of ignition timing for the slag melting burner is necessary for economical operation, thereby reducing the operator's work load. In this report, we propose a decision index for ignition timing of the melting burner using monitoring videos. We have evaluated our method using 54 actual monitoring videos, and we have shown the applicability of automatically deciding the ignition timing.

  13. Initial experience in operation of furnace burners with adjustable flame parameters

    SciTech Connect

    Garzanov, A.L.; Dolmatov, V.L.; Saifullin, N.R.

    1995-07-01

    The designs of burners currently used in tube furnaces (CP, FGM, GMG, GIK, GNF, etc.) do not have any provision for adjusting the heat-transfer characteristics of the flame, since the gas and air feed systems in these burners do not allow any variation of the parameters of mixture formation, even though this process is critical in determining the length, shape, and luminosity of the flame and also the furnace operating conditions: efficiency, excess air coefficient, flue gas temperature at the bridgewall, and other indexes. In order to provide the controlling the heat-transfer characteristics of the flame, the Elektrogorsk Scientific-Research Center (ENITs), on the assignment of the Novo-Ufa Petroleum Refinery, developed a burner with diffusion regulation of the flame. The gas nozzle of the burner is made up of two coaxial gas chambers 1 and 2, with independent feed of gas from a common line through two supply lines.

  14. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-01-01

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  15. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    SciTech Connect

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  16. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    NASA Astrophysics Data System (ADS)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  17. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    An acoustic source/propagation model is used to interpret measured noise spectra from a long turbulent burner. The acoustic model is based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The model assumes that the measured noise spectra are due uniquely to the unsteady component of combustion heat release. The model was applied to a long cylindrical hydrogen burner operating over a range of power levels between 4.5 kW and 22.3 kW. Acoustic impedances at the inlet to the burner and at the exit of the tube downstream of the burner were measured and are used as boundary conditions for the model. These measured impedances are also presented.

  18. Advanced heat-pipe heat exchanger and microprocessor-based modulating burner controls development

    NASA Astrophysics Data System (ADS)

    Lowenstein, A.; Cohen, B.; Feldman, S.; Spatz, M.; Smith, E.

    1986-03-01

    The development of a novel condensing heat exchanger, a modulating gas burner, and a zone-controlled residential warm-air heating system is described. The condensing heat exchanger uses ten thermosyphons which are manifolded at both the condenser and evaporator ends to achieve a compact low-cost design. Initial tests have demonstrated a + 92 percent steady-state efficiency for a conventional clamshell furnace operating with the thermosyphon heat exchanger located outside the furnace cabinet. A 100,000 -Btu/hr modulating burner has also been developed. Comprehensive study of the burner's operating characteristics has produced guidelines for the design and application of the device. Finally, the modulating burner has been incorporated into a zone-controlled heating system. In parallel with the development of the preceding heating system components, the performance of thermosyphons over a wide range of operating conditions is being explored with the objective of improving design procedures for incorporating these devices into heat exchangers.

  19. EPA'S LIMB (ENVIRONMENTAL PROTECTION AGENCY'S LIMESTONE INJECTION MULTISTAGE BURNER) RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM

    EPA Science Inventory

    The paper describes and discusses key design features of the retrofit of EPA's Limestone Injection Multistage Burner (LIMB) system to an operating, wallfired utility boiler at Ohio Edison's Edgewater Station, based on the preliminary engineering design. It further describes resul...

  20. Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion

    SciTech Connect

    Jackson, Matt; Pantoya, Michelle L.; Gill, Walt

    2008-04-15

    This study details the characterization and implementation of a burner designed to simulate solid propellant fires. The burner was designed with the ability to introduce particles (particularly aluminum) into a gas flame. The aluminized flame conditions produced by this burner are characterized based on temperature and heat flux measurements. Using these results, flame conditions are quantified in comparison to other well-characterized reactions including hydrocarbon and propellant fires. The aluminized flame is also used to measure the burning rate of the particles. This work describes the application of this burner for re-creating small-scale propellant flame conditions and as a test platform for experiments that contribute to the development of a particle combustion model, particularly in propellant fires. (author)

  1. Substructure of the inner core of the Earth.

    PubMed Central

    Herndon, J M

    1996-01-01

    The rationale is disclosed for a substructure within the Earth's inner core, consisting of an actinide subcore at the center of the Earth, surrounded by a subshell composed of the products of nuclear fission and radioactive decay. Estimates are made as to possible densities, physical dimensions, and chemical compositions. The feasibility for self-sustaining nuclear fission within the subcore is demonstrated, and implications bearing on the structure and geodynamic activity of the inner core are discussed. PMID:11607625

  2. Chemistry of tetravalent actinide phosphates-Part I

    SciTech Connect

    Brandel, V. . E-mail: vbrandel@neuf.fr; Dacheux, N. . E-mail: dacheux@ipno.in2p3.fr

    2004-12-01

    The chemistry and crystal structure of phosphates of tetravalent cations, including that of actinides was reviewed several times up to 1985. Later, new compounds were synthesized and characterized. In more recent studies, it was found that some of previously reported phases, especially those of thorium, uranium and neptunium, were wrongly identified. In the light of these new facts an update review and classification of the tetravalent actinide phosphates is proposed in the two parts of this paper. Their crystal structure and some chemical properties are also compared to non-actinide cation phosphates.

  3. Engineering-Scale Distillation of Cadmium for Actinide Recovery

    SciTech Connect

    J.C. Price; D. Vaden; R.W. Benedict

    2007-10-01

    During the recovery of actinide products from spent nuclear fuel, cadmium is separated from the actinide products by a distillation process. Distillation occurs in an induction-heated furnace called a cathode processor capable of processing kilogram quantities of cadmium. Operating parameters have been established for sufficient recovery of the cadmium based on mass balance and product purity. A cadmium distillation rate similar to previous investigators has also been determined. The development of cadmium distillation for spent fuel treatment enhances the capabilities for actinide recovery processes.

  4. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  5. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  6. Numerical simulation of turbulent mixing and combustion near the inlet of a burner

    SciTech Connect

    Cloutman, L.D.

    1993-02-01

    The COYOTE computer program was used to simulate the flow field and turbulent mixing near the fuel and air inlets in a simplified burner that was proposed for experimental study at the Combustion Laboratory at the University of California at Irvine. Four cases are presented, with and without chemical reactions, with two different outflow boundary conditions, and with two different swirl numbers. These preliminary results demonstrate the ability of COYOTE to simulate burners, and they illustrate some limitations and requirements of such modeling.

  7. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... 46 Shipping 2 2014-10-01 2014-10-01 false Burner fuel-oil service systems. 56.50-65 Section 56.50... SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-65 Burner...

  8. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  9. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    SciTech Connect

    Samuel Bays; Pavel Medvedev; Michael Pope; Rodolfo Ferrer; Benoit Forget; Mehdi Asgari

    2009-04-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  10. Theoretical atomic volumes of the light actinides

    SciTech Connect

    Jones, M. D.; Boettger, J. C.; Albers, R. C.; Singh, D. J.

    2000-02-15

    The zero-pressure zero-temperature equilibrium volumes and bulk moduli are calculated for the light actinides Th through Pu using two independent all-electron, full-potential, electronic-structure methods: the full-potential linear augmented-plane-wave method and the linear combinations of Gaussian-type orbitals-fitting function method. The results produced by these two distinctly different electronic-structure techniques are in good agreement with each other, but differ significantly from previously published calculations using the full-potential linear muffin-tin-orbital (FP-LMTO) method. The theoretically calculated equilibrium volumes are in some cases nearly 10% larger than the previous FP-LMTO calculations, bringing them much closer to the experimentally observed volumes. We also discuss the anomalous upturn in equilibrium volume seen experimentally for {alpha}-Pu. (c) 2000 The American Physical Society.

  11. Aqueous processing of actinides at Savannah River

    SciTech Connect

    Gray, J.H.

    1990-01-01

    A number of changes affecting the DP-Complex are having an impact on operations at the Savannah River Site (SRS). In order for SRS to continue as a major contributor within the DP-Complex and remain in position to respond to requests based on new initiatives, programs aimed at redirecting the actinide processing activities have been started. One area undergoing process modifications is F-Canyon, where most of the plutonium feedstocks are processed. Programs already underway that are affecting the dissolution of plutonium materials in canyon dissolvers and the purification of aqueous streams in the second plutonium solvent extraction cycle are discussed. Issues influencing program direction involve environmental concerns, waste minimization, health protection, storage limitations, and material recycle. Each of these issues is discussed in relation to operations in F-Canyon and results based on initial development studies are presented.

  12. Complexation of actinides with derivatives of oxydiaceticacid

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2006-01-04

    Complexation of Np(V), U(VI) and Nd(III) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) was studied in comparison with the complexation with oxydiacetic acid (ODA). Stability constants and enthalpy of complexation were determined by potentiometry, spectrophotometry and calorimetry. Thermodynamic parameters, in conjunction with structural information of solid compounds, indicate that DMOGA and TMOGA form tridentate complexes with the ether-oxygen participating in bonding with actinide/lanthanide ions. The trends in the stability constants, enthalpy and entropy of complexation are discussed in terms of the difference in the hydration of the amide groups and carboxylate groups and the difference in the charge density of the metal ions.

  13. Electrochemical decontamination of actinide processing gloveboxes

    SciTech Connect

    Lugo, J.L.; Wedman, D.E.; Nelson, T.O.

    1997-12-31

    Electrochemical technology for the decontamination of metallic surfaces has been successfully demonstrated. Highly enriched uranium and stainless steel surfaces are readily decontaminated to Low Level Waste (LLW) criteria using this process. This process is similar to electropolishing and utilizes the anodic dissolution of the substrate material to generate a clean surface. The surface contaminants are thus removed and collected along with the stripped substrate material as a compact precipitate. This separation allows the electrolyte to be recycled indefinitely. Using an alkaline Sodium Sulfate electrolyte solution, we are able to decontaminate to low levels of alpha activity, gloveboxes previously used in Actinide processing. Surfaces with contamination levels > 1,000,000 cpm alpha activity have been decontaminated to levels as low as 7,000. The process is rapid with decontamination occurring at a rate of over 3 square cm/sec.

  14. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  15. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J.W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  16. Prediction of the Ignition Phases in Aeronautical and Laboratory Burners using Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Gicquel, L. Y. M.; Staffelbach, G.; Sanjose, M.; Boileau, M.

    2009-12-01

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many aeronautical gas turbine manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are two phenomena that are usually not studied. The present work presents on-going and past Large Eddy Simulations (LES) on this specific subject and as investigated at CERFACS (European Centre for Research and Advanced Training in Scientific Computation) located in Toulouse, France. Validation steps and potential difficulties are underlined to ensure reliability of LES for such problems. Preliminary LES results on simple burners are then presented, followed by simulations of a complete ignition sequence in an annular helicopter chamber. For all cases and when possible, two-phase or purely gaseous LES have been applied to the experimentally simplified or the full geometries. For the latter, massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform the computation. Results show that liquid fuel injection has a strong influence on the ignition times and the rate at which the flame progresses from burner to burner. The propagation speed characteristic of these phenomena is much higher than the turbulent flame speed. Based on an in-depth analysis of the computational data, the difference in speed is mainly identified as being due to thermal expansion and the flame speed is strongly modified by the main burner aerodynamics issued by the swirled injection.

  17. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    SciTech Connect

    Catapan, R.C.; Costa, M.; Oliveira, A.A.M.

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  18. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  19. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  20. Dynamic characterization of an industrial burner in working conditions by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Paone, Nicola; Revel, Gian M.

    1998-06-01

    The paper presents the application of a laser Doppler vibrometer in order to characterize the dynamic behavior of a burner during normal working conditions. The burner is a 1:4 scale model of a real CH4 industrial burner for gas turbines, with a 120 kW power. A first series of test has been performed in order to determine the resonance frequencies of burner components, in such a way as to correlate the results achieved in working conditions with the characteristics of the structure. In a second series of tests the burner has been tested in exercise, firstly with only a cold jet of air flowing from the nozzle, then in real working conditions. In each test both vibration and acoustic measurements have been performed, in order to find correlation between combustion noise and structural vibrations. The laser Doppler vibrometer has been chosen to carry out measurements on the burner because of its capability of 'remotely' and non-intrusively determine vibrations. In order to assess the accuracy of vibrometer measurements through the flame, a theoretical model previously developed by the authors has been employed, which describes the interactions between laser interferometer and refractive index variations induced by the flame, in such a way as to estimate interfering and modifying inputs of the measurements system.

  1. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  2. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    SciTech Connect

    Hofbauer, P.

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  3. Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel

    NASA Astrophysics Data System (ADS)

    Bays, Samuel Eugene

    2008-10-01

    In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this

  4. Reliable Electronic Structure Calculations for Heavy Element Chemistry: Molecules Containing Actinides, Lanthanides, and Transition Metals

    SciTech Connect

    Marino, Maria, M.; Ermler, Walter C

    2006-01-27

    It is now possible to calculate many properties including the energetics (total bond dissociation energies or heats of formation) of molecules containing light elements to high accuracy by using correlation-consistent basis sets, coupled cluster theory and including additive corrections for core-valence and relativistic effects and careful treatment of the zero point energy. We propose to develop software for ab initio electronic structure calculations based on molecular orbital theory and density functional theory with the proper treatment of relativistic effects to study complexes of heavy elements in order to assist in understanding and predicting the chemistry of the actinides, lanthanides, and heavy transition metals, molecules critical to DOE missions including environmental management. The proposed work will focus on the development of these electronic structure methods and their implementation in software on advanced massively parallel processor (MPP) computer architectures capable of multi-tens of teraflops to petaflops. The core of the software will be developed within the NWChem and Columbus software suites. We propose to make the software broadly available so that other scientists can use these tools to address the complex environmental problems facing the Department of Energy's nuclear production sites as well as other waste sites in the Nation. Our implementation of relativistic quantum chemical methods for massively parallel computers will enable us to simulate the behavior of heavy-element compounds at the same type of level currently available for light-element compounds. In addition, this work will enable us to provide better methods for benchmarks of the additive energetic schemes currently available for light atom compounds. The theoretical and computational methodology so developed will be an invaluable supplement to current, very expensive experimental studies of the actinides, lanthanides, and radioactive heavy transition metal elements

  5. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  6. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

  7. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  8. In-situ mineralization of actinides with phytic acid

    SciTech Connect

    Nash, K.L.; Jensen, M.P.; Morss, L.R.; Appelman, E.H.

    1997-12-31

    A new approach to the remediation of actinide contamination is described. A hydrolytically unstable organophosphorus compound, phytic acid, is introduced into the contaminated environment. In the short term (up to several hundred years), phytate acts as a cation exchanger to absorb mobile actinide ions from ground waters. Ultimately, phytate decomposes to release phosphate and promote the formation of insoluble phosphate mineral phases, considered an ideal medium to immobilize actinides, as it forms compounds with the lowest solubility of any candidate mineral species. This overview will discuss the rate of hydrolysis of phytic acid, the formation of lanthanide/actinide phosphate mineral forms, the cation exchange behavior of insoluble phytate, and results from laboratory demonstration of the application to soils from the Fernald site.

  9. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    SciTech Connect

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  10. Actinide targets for the synthesis of super-heavy elements

    DOE PAGESBeta

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  11. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  12. Burner survey for a high efficiency gas-fired heating unit. Final report November 1983-January 1984

    SciTech Connect

    Pam, R.L.; Kesselring, J.P.

    1984-01-31

    A survey was undertaken to evaluate the suitability of a variety of burner types for use in a new concept, high efficiency residential hydronic heating unit. Emphasis was placed on radiant systems that are currently commercially available. Nine different burner types were reviewed and evaluated against criteria established by the hydronic heating unit manufacturer. Results of the survey show that a porous fiber matrix burner can most easily be incorporated into the heating unit design and meet the operational criteria.

  13. Actinide Source Term Program, position paper. Revision 1

    SciTech Connect

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-11-15

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA {open_quotes}expert panel{close_quotes} model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the {open_quotes}inventory limits{close_quotes} model is the only existing defensible model for the actinide source term. The model effort in progress, {open_quotes}chemical modeling of mobile actinide concentrations{close_quotes}, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the {open_quotes}Inventory limits{close_quotes} model.

  14. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  15. Study of the effects of ambient conditions upon the performance of fam powered, infrared, natural gas burners

    SciTech Connect

    Bai, Tiejun

    1996-10-01

    The objective of this investigation is to characterize the operation of a fan powered infrared burner (PIR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. This project consists of both experimental research and numerical analysis. To conduct the experiments, an experimental setup has been developed and installed in the Combustion Laboratory at Clerk Atlanta University (CAU). This setup consists of a commercial deep fat fryer that has been modified to allow in-situ radiation measurements on the surface of the infrared burner via a view port installed on the side wall of the oil vat. Proper instrumentation including fuel/air flow rate measurement, exhaust gas emission measurement, and radiation measurement has been developed. The project is progressing well. The scheduled tasks for this period of time were conducted smoothly. Specifically: 1. Baseline experimental study at CAU has been completed. The data are now under detailed analysis and will be reported in next quarterly report. 2. Theoretical formulation and analysis of the PIR burner performance model are continuing. Preliminary results have been obtained.

  16. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  17. Emissions Measurements from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1998-01-01

    The present experimental study examines NO(x) and CO emissions associated with alternative fuel injector geometries. These injectors mix fuel and air to differing extents and thus create different local equivalence ratios upstream of flame ignition and stabilization. Two of the devices studied are lobed fuel injectors, in which mixing of reactants is associated with stream wise vorticity generation and straining of fuel-air interfaces, while the third is a non-lobed fuel injector which creates relatively little fuel-air mixing prior to ignition.Results show that one lobed injector geometry appears to produce locally lean premixed flame structures, resulting in low NO. emissions when compared with non-lobed injector emissions. The other lobed injector geometry appears to produce a local fuel-air mixture which is closer to stoichiometric conditions, with NO(x) emissions that are actually higher than for the non-lobed injector. For both lobed injector geometries examined here, CO emissions become high for over-all lean operating conditions, consistent with premixed combustion behavior. The present study demonstrates the importance of control of the local equivalence ratio in minimizing burner emissions.

  18. Development of a lean premixed burner for hydrogen utilization

    SciTech Connect

    Keller, J.O.

    1996-10-01

    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  19. Thermal barrier coatings: Burner rig hot corrosion test results

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Stecura, S.; Gedwill, M. A.; Zaplatynsky, I.; Levine, S. R.

    1978-01-01

    A Mach 0.3 burner rig test program was conducted to examine the sensitivity of thermal barrier coatings to Na and V contaminated combustion gases simulating potential utility gas turbine environments. Coating life of the standard ZrO2-12Y2O3/Ni-16.2Cr-5.6Al-0.6Y NASA thermal barrier coating system which was developed for aircraft gas turbines was significantly reduced in such environments. Two thermal barrier coating systems, Ca2SiO4/Ni-16.2Cr-5.6Al-0.6Y and ZrO2-8Y2O3/Ni-16.4Cr-5.1Al-0.15Y and a less insulative cermet coating system, 50 volume percent MgO-50 volume percent Ni-19.6Cr-17.1Al-0.97Y/Ni-16.2Cr-5.6Al-0.6Y, were identified as having much improved corrosion resistance compared to the standard coating.

  20. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  1. Ultra clean burner for an AMTEC system suitable for hybrid electric vehicles

    SciTech Connect

    Mital, R.; Sievers, R.K.; Hunt, T.K.

    1997-12-31

    High power Alkali Metal Thermal to Electric Converter (AMTEC) systems have the potential to make the hybrid electric vehicle (HEV) program a success by meeting the challenging standards put forth by the EPA for the automobile industry. The premise of the whole concept of using AMTEC cells, as discussed by Hunt et al. (1995), for power generation in HEV`s is based on the utilization of a high efficiency external combustion system. The key requirement being a burner which will produce extremely low quantities of carbon monoxide and oxides of nitrogen, emit minimal amounts of hydrocarbon, will have high radiative and convective efficiencies and at least a 4:1 turndown ratio. This work presents one such burner which has the potential to meet all of these demands and more. After investigation of a number of burners, including, metal fiber, ported metal, ceramic fiber and ported ceramic, it is believed that cellular ceramic burners will be the best candidates for integration with AMTEC cells for a high power system suitable for hybrid electric vehicles. A detailed study which includes the operating range, radiation efficiency, total heat transfer efficiency, spectral intensity, exit gas temperature and pollutant emission indices measurement has been carried out on circular and square shaped burners. Total heat transfer efficiencies as high as 65--70% have been measured using a water calorimeter. With efficient recuperation, a burner/recuperator efficiency of 80% at peak power and 90% at peak efficiency operating points are conceivable with this burner. Establishment of combustion within the porous matrix leads to low peak temperatures and hence lower NO{sub x}. The emission indices of CO and HC are also quite low. The stability range measurements show a 6:1 turndown ratio at an equivalence ratio of 0.9.

  2. Microbial transformations of actinides in the environment

    NASA Astrophysics Data System (ADS)

    Livens, F. R.; Al-Bokari, M.; Fomina, M.; Gadd, G. M.; Geissler, A.; Lloyd, J. R.; Renshaw, J. C.; Vaughan, D. J.

    2010-03-01

    The diversity of microorganisms is still far from understood, although many examples of the microbial biotransformation of stable, pollutant and radioactive elements, involving Bacteria, Archaea and Fungi, are known. In estuarine sediments from the Irish Sea basin, which have been labelled by low level effluent discharges, there is evidence of an annual cycle in Pu solubility, and microcosm experiments have demonstrated both shifts in the bacterial community and changes in Pu solubility as a result of changes in redox conditions. In the laboratory, redox transformation of both U and Pu by Geobacter sulfurreducens has been demonstrated and EXAFS spectroscopy has been used to understand the inability of G. sufurreducens to reduce Np(V). Fungi promote corrosion of metallic U alloy through production of a range of carboxylic acid metabolites, and are capable of translocating the dissolved U before precipitating it externally to the hyphae, as U(VI) phosphate phases. These examples illustrate the far-reaching but complex effects which microorganisms can have on actinide behaviour.

  3. Synthesis of crystalline ceramics for actinide immobilisation

    SciTech Connect

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-07-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  4. Actinides AMS at CIRCE in Caserta (Italy)

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; Gialanella, L.; Rogalla, D.; Petraglia, A.; Guan, Y.; De Cesare, N.; D'Onofrio, A.; Quinto, F.; Roca, V.; Sabbarese, C.; Terrasi, F.

    2010-04-01

    The operation of Nuclear Power Plants and atmospheric tests of nuclear weapons performed in the past, together with production, transport and reprocessing of nuclear fuel, lead to the release into the environment of a wide range of radioactive nuclides, such as uranium, plutonium, fission and activation products. These nuclides are present in the environment at ultra trace levels. Their detection requires sensitive techniques like AMS (Accelerator Mass Spectrometry). In order to perform isotopic ratio measurements of the longer-lived actinides, e.g., of 236U relative to the primary 238U and various Pu isotopes relative to 239Pu, an upgrade of the CIRCE accelerator (Center for Isotopic Research on Cultural and Environmental Heritage) in Caserta, Italy, is underway. In this paper we report on the results of simulations aiming to define the best ion optics and to understand the origin of possible measurement background. The design of a high resolution TOF- E (Time of Flight-Energy) detector system is described, which will be used to identify the rare isotopes among interfering background signals.

  5. Electrochemical decontamination system for actinide processing gloveboxes

    SciTech Connect

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  6. Correlation and relativistic effects in actinide ions

    SciTech Connect

    Safronova, U. I.; Safronova, M. S.

    2011-11-15

    Wavelengths, line strengths, and transition rates are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited 6s{sup 2}6p{sup 5}nl and 6s6p{sup 6}nl states and the ground 6s{sup 2}6p{sup 6} state in Ac{sup 3+}, Th{sup 4+}, and U{sup 6+} Rn-like ions. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in these hole-particle systems. The RMBPT method agrees with multiconfigurational Dirac-Fock (MCDF) calculations in lowest order, includes all second-order correlation corrections, and includes corrections from negative-energy states. The calculations start from a [Xe]4f{sup 14}5d{sup 10}6s{sup 2}6p{sup 6} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. Evaluated multipole matrix elements for transitions from excited states to the ground states are used to determine the line strengths, transition rates, and multipole polarizabilities. This work provides a number of yet unmeasured properties of these actinide ions for various applications and for benchmark tests of theory and experiment.

  7. Benchmark of Advanced Burner Test Reactor Model Using MCNPX 2.6.0 and ERANOS 2.1

    SciTech Connect

    Kenneth Allen; Travis Knight; Samuel Bays

    2011-08-01

    Significant research is currently being performed whereby fast reactor cores have been designed to burn transuranic materials reducing the volume and long-term radiotoxicity of spent nuclear fuel. These core and depletion models depend on various computer codes. This research used MCNPX 2.6.0 and ERANOS 2.1 to model a standard 250MWt Advanced Burner Test Reactor (ABTR) core. The intent was to benchmark criticality and burnup results from a stochastic Monte Carlo code and a deterministic depletion code using a standard ABTR model created by Argonne National Laboratory. Because each of these codes solve the transport and burnup problem differently, there is a need to benchmark the core models in order to verify results and identify root causes for significant differences in results between codes. Flux calculations in ERANOS were performed using diffusion theory, Legendre polynomial approximations (using the VARIANT module) and discrete ordinates methods. The k-effective for the higher-order transport models remained within 1000 pcm of the MCNPX model. The difference between the total heavy nuclide mass balance in ERANOS using the various flux calculations and the MCNPX depletion model was less than 0.4% out to a burnup of 1095 days (67.45 GWd/MTHM). For individual heavy nuclides, the depletion models closely matched (< 5.0 % difference) throughout the depletion for isotopes of Uranium, Neptunium and Plutonium and most of the higher transuranics. Notable exceptions were 242Am, 242Cm, 243Cm and 246Cm where differences ranged from 0.1 – 0.2% after 26 days and increased to 11 - 136% at 1095 days.

  8. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  9. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    PubMed

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology. PMID:20000525

  10. Monitoring near burner slag deposition with a hybrid neural network system

    NASA Astrophysics Data System (ADS)

    Tan, C. K.; Wilcox, S. J.; Ward, J.; Lewitt, M.

    2003-07-01

    This paper is concerned with the development of a system to detect and monitor slag growth in the near burner region in a pulverized-fuel (pf) fired combustion rig. These slag deposits are commonly known as 'eyebrows' and can markedly affect the stability of the burner. The study thus involved a series of experiments with two different coals over a range of burner conditions using a 150 kW pf burner fitted with simulated eyebrows. These simulated eyebrows consisted of annular refractory inserts mounted immediately in front of the original burner quarl. Data obtained by monitoring the infra-red radiation and sound emitted by the flame were processed to yield time and frequency-domain features, which were then used to train and test a hybrid neural network. This hybrid 'intelligent' system was based on self organizing map and radial-basis-function neural networks. This system was able to classify different sized eyebrows with a success rate of at least 99.5%. Consequently, it is possible not only to detect the presence of an eyebrow by monitoring the flame, but also the network can provide an estimate of the size of the deposit, over a reasonably large range of conditions.

  11. Impact of burner design features on sooting in residential oil fired systems

    SciTech Connect

    Butcher, T.; McNeill, F.; Celebi, Y.; Wegrzyn, J.

    1986-11-01

    This report describes the results of a study on soot production by residential oil burners with an emphasis on condensing system applications. The work has followed a related study at Brookhaven National Laboratory completed in June 1984. Work in the current project has been aimed at the effects of specific burner design features on soot. Soot production during burner startup and shutdown has been shown to be significant for heat exchanger fouling in some systems. A new method has been developed for measuring transient smoke involving a multipass light extinction technique. A general review of soot measurement techniques and the details of the system used in the experimental work are included. Specific burner design features evaluated include high static discharge pressure fans, high startup excess air, nozzle and fuel line heating, burner heat pressure drop, and fuel flow control. Both high pressure fans and high startup excess air were found to significantly improve startup behavior. This result is consistent with simple flow models in which a furnace or boiler system is related to a cavity resonator. Measurements showed that nozzle heating can significantly improve spray droplet size distribution. Tests in both condensing and non-condensing systems indicated that a commercial nozzle heater reduces smoke over the first two minutes of operation. The effect was most significant at low excess air.

  12. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  13. Simultaneous separation and detection of actinides in acidic solutions using an extractive scintillating resin.

    PubMed

    Roane, J E; DeVol, T A

    2002-11-01

    An extractive scintillating resin was evaluated for the simultaneous separation and detection of actinides in acidic solutions. The transuranic extractive scintillating (TRU-ES) resin is composed of an inert macroporous polystyrene core impregnated with organic fluors (diphenyloxazole and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene) and an extractant (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate). The TRU-ES resin was packed into FEP Teflon tubing to produce a flow cell (0.2-mL free column volume), which is placed into a scintillation detection system to obtain pulse height spectra and time series data during loading and elution of actinides onto/from the resin. The alpha-particle absolute detection efficiencies ranged from 77% to 96.5%, depending on the alpha energy and quench. In addition to the on-line analyses, off-line analyses of the effluent can be conducted using conventional detection methods. The TRU-ES resin was applied to the quantification of a mixed radionuclide solution and two actual waste samples. The on-line characterization of the mixed radionuclide solution was within 10% of the reported activities whereas the agreement with the waste samples was not as good due to sorption onto the sample container walls and the oxidation state of plutonium. Agreement between the on-line and off-line analyses was within 35% of one another for both waste samples. PMID:12433098

  14. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Bai, Tiejun; Yeboah, Y.D.; Sampath, R.

    1996-01-01

    Infrared burner is a surface combustor that elevates the temperature of the burner head to a radiant condition. Applications of radiant burners includes boilers, air heaters, deep fat fryers, process heaters, and immersion heaters. On reason for the present interest in this type of burner is its low NO{sub x} emissions, which is attributed to the fact that a large proportion of the combustion heat is given out as radiation from the burner surface, which results in relatively low gas temperature in the combustion zone compared to that of a conventional free-flame burner. As a consequence, such burners produce less NO{sub x}, mainly by the so-called prompt-NO mechanism. A porous radiant burner testing facility was built, consisting of spectral radiance as well as flue gas composition measurements. Measurement capabilities were tested using methane; results were consistent with literature.

  15. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Bai, T.

    1997-01-01

    This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

  16. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2008-07-01

    reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. We concluded that the concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy rennaissance.

  17. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  18. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  19. Rapid determination of alpha emitters using Actinide resin.

    PubMed

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

  20. Crystal growth methods dedicated to low solubility actinide oxalates

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-01

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am2(C2O4)3(H2O)3·xH2O, Th(C2O4)2·6H2O, M2+x[PuIV2-xPuIIIx(C2O4)5]·nH2O and M1-x[PuIII1-xPuIVx(C2O4)2·H2O]·nH2O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV-visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds.