Sample records for actinide burning experiment

  1. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  2. [Qualitative research on pain experiences of adult burn patients].

    PubMed

    Li, L; Pan, Q; Xu, L; Lin, R Q; Dai, J X; Chen, Z H

    2018-03-20

    Objective: To explore the pain experiences of adult burn patients so as to lay foundation for practical analgesic measures. Methods: Using phenomenological method in qualitative research, semi-structured interviews were conducted on 12 adult burn patients hospitalized in our burn units from May to November 2015, aiming at pain experiences from immediately after burns to 3 to 7 months after being discharged from hospital. Then the Colaizzi's analysis method was applied to analyze, induce, and refine themes of interview data. Results: After analysis, pain experiences of adult burn patients were generalized into 6 themes: deep pain experiences, heavy psychological burden, limited daily life, poor assessment and treatment of pain, different attributions of pain, and different ways of coping of pain. Conclusions: Burn pain brings harm to the patients' physiology, mentality, and daily life. Nevertheless, pain processing modes of medical staff and patients themselves are the key factors affecting patients' pain experiences. Therefore, according to the deficiency of current situation of pain management, the targeted analgesic intervention measures should be carried out from the perspectives of medical staff and patients.

  3. Adult survivors' lived experience of burns and post-burn health: A qualitative analysis.

    PubMed

    Abrams, Thereasa E; Ogletree, Roberta J; Ratnapradipa, Dhitinut; Neumeister, Michael W

    2016-02-01

    The individual implications of major burns are likely to affect the full spectrum of patients' physical, emotional, psychological, social, environmental, spiritual and vocational health. Yet, not all of the post-burn health implications are inevitably negative. Utilizing a qualitative approach, this heuristic phenomenological study explores the experiences and perceptions early (ages 18-35) and midlife (ages 36-64) adults providing insight for how participants perceived their burns in relationship to their post-burn health. Participants were interviewed using semi-structured interview questions framed around seven domains of health. Interview recordings were transcribed verbatim then coded line by line, identifying dominant categories related to health. Categories were analyzed identifying shared themes among the study sample. Participants were Caucasian, seven males and one female. Mean age at time of interviews was 54.38 and 42.38 at time of burns. Mean time since burns occurred was 9.38 years with a minimum of (20%) total body surface area (TBSA) burns. Qualitative content analysis rendered three emergent health-related categories and associated themes that represented shared meanings within the participant sample. The category of "Physical Health" reflected the theme physical limitations, pain and sensitivity to temperature. Within the category of "Intellectual Health" were themes of insight, goal setting and self-efficacy, optimism and humor and within "Emotional Health" were the themes empathy and gratitude. By exploring subjective experiences and perceptions of health shared through dialog with experienced burned persons, there are opportunities to develop a more complete picture of how holistic health may be affected by major burns that in turn could support future long-term rehabilitative trajectories of early and midlife adult burn patients. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  4. New Scientific Aspects of the "Burning Candle" Experiment

    ERIC Educational Resources Information Center

    Massalha, Taha

    2016-01-01

    The "burning candle" experiment is used in middle school education programs to prove that air contains a component that is essential to burning (i.e., oxygen). The accepted interpretation taught by teachers in middle school is this: when burning occurs, oxygen is used up, creating an underpressure that causes a rise in water level inside…

  5. MSFR TRU-burning potential and comparison with an SFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorina, C.; Cammi, A.; Franceschini, F.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed onlymore » of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)« less

  6. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  7. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  8. A Burning Plasma Experiment: the role of international collaboration

    NASA Astrophysics Data System (ADS)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  9. Actinide-ion sensor

    DOEpatents

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  10. A Summary of Actinide Enrichment Technologies and Capability Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Bradley D.; Robinson, Sharon M.

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. Themore » EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.« less

  11. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  12. Colloid-borne forms of tetravalent actinides: A brief review

    NASA Astrophysics Data System (ADS)

    Zänker, Harald; Hennig, Christoph

    2014-02-01

    Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.

  13. Fusion barrier characteristics of actinides

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  14. Cologne burn centre experience with assault burn injuries.

    PubMed

    Theodorou, P; Spanholtz, T A; Amini, P; Maurer, C A; Phan, T Q V; Perbix, W; Lefering, R; Spilker, G

    2009-12-01

    To evaluate demographic and socioeconomic factors associated with assault burn injuries. Assault by burning demonstrates a rare but severe public health issue and accounts for unique injury characteristics in the burn intensive care unit (BICU). We conducted a retrospective cohort study involving patients with thermal injuries admitted to the BICU of a university hospital. The patient cohort was divided into two groups (ABI group: patients with assault burns, n=41; population of all other burned patients admitted to the BICU, n=1202). Bivariate and multivariate analyses including demographic and socioeconomic data were used to identify factors associated with assault burns. Forty-one assault-related burn victims were identified in the study period. This represents 3.3% of all significant burns admitted. Comparing battery victims with the control population, assault patients were more likely to be young (mean age 36.2 years vs. 42.2 years) and immigrants (41.5% vs. 15.1%). Furthermore, marital status (65.9% vs. 40.8% singles), employment status (36.6% vs. 9.7% unemployed) and insurance status (41.5% vs. 12.3% social insurance) were significantly different in the bivariate analysis. Logistic regression evaluation identified three variables that were independently associated with assault burns: younger age (< or =25 years) (odds ratio, 2.54 [95% confidence interval, 1.29-5.02]; p=0.007), ethnic minority (odds ratio, 3.71 [95% confidence interval, 1.91-7.20]; p<0.001) and unemployment (odds ratio, 4.02 [95% confidence interval, 2.03-7.97]; p<0.001). The high incidence of youngsters, unemployment and the great proportion of immigrants in victims of assault might provide several opportunities for community-based psychosocial and occupational programs. A multidisciplinary approach targeting issues specific to the violent nature of the injury and the socioeconomic background of the victims may be of benefit to improve their perspectives for rehabilitation.

  15. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  16. Simulated Rainfall experiments on burned areas

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina

    2010-05-01

    Simulated Rainfall experiments were carried out in a Mediterranean area located in Italy, immediately after a forest fire occurrence, to evaluate the effects of forest fire on soil hydraulic properties, runoff and erosion. The selected study area was frequently affected by fire in the last years. Two adjacent 30 mq plots were set up with common physiographic features, and the same fire history, except for the last fire, which burned only one of them. Since both plots were previously subject to the passage of fire 6 years before the last one, one compares the hydrologic response and erosion of an area recently burned (B00) with that of an area burnt 6 years before (B06). Several rainfall simulations were carried out considering different pre-event soil moisture conditions where each rainfall simulation consisted of a single 60 minute application of rainfall with constant intensity of about 76 mm/h. The results show runoff ratio, evaluated for different pre-event soil moisture conditions, ranging from 0 to 2% for B06 plot, and from 21 to 41% for B00. Runoff ratio for the recently burned plot was 60 times higher than for the plot burned six years before, under wet conditions, and 20 times higher, under very wet conditions. A large increase in sediment production also was measured in B00 plot, as compared with that in B06 plot. Suspended sediment yield from B00 plot was more than two orders of magnitude higher than that from B06 plot in all the simulated events. The high runoff and soil losses measured immediately after burning indicate that effective post-fire rehabilitation programs must be carried out to reduce flood risk and soil erosion in recently burned areas. However, the results for the plot burned six year prior show that recovery of the hydrological properties of the soil occurs after the transient post fire modification.

  17. Actinide oxide photodiode and nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykora, Milan; Usov, Igor

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxidesmore » are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.« less

  18. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  19. Actinides-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  20. Pre-hospital burn mission as a unique experience: a qualitative study.

    PubMed

    Froutan, Razieh; Khankeh, Hamid Reza; Fallahi, Masoud; Ahmadi, Fazlollah; Norouzi, Kian

    2014-12-01

    A thorough understanding of experiences related to pre-hospital emergency care of burns is a prerequisite of skill promotion for medical personnel. The aim of the present study was to evaluate the experiences of pre-hospital emergency personnel during burn accidents. The present qualitative study was performed using a content analysis method. In total, 18 Iranian emergency care personnel participated in the study. A purposeful sampling method was applied until reaching data saturation. Data were collected using semi-structured interviews and field observations. Afterwards, the gathered data were analyzed through face content analysis. By analyzing 498 primary codes, four main categories; the nature of burn care, tension at the accident scene, gradual job 'burnout', and insufficient information, were extracted from the experiences of pre-hospital emergency personnel during burn care. These categories each included several sub-categories, which were classified according to their significant characteristics. This study showed that different factors affect the quality of pre-hospital clinical services for burns. Authorities and health system administrators should consider the physical and psychological health of their staff, and assign policies to improve the quality of pre-hospital medical care. According to the present results, it is recommended that the process of pre-hospital emergency care for burns be investigated further. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  2. A qualitative exploration of psychosocial specialists' experiences of providing support in UK burn care services.

    PubMed

    Guest, Ella; Griffiths, Catrin; Harcourt, Diana

    2018-01-01

    A burn can have a significant and long-lasting psychosocial impact on a patient and their family. The National Burn Care Standards (2013) recommend psychosocial support should be available in all UK burn services; however, little is known about how it is provided. The current study aimed to explore experiences of psychosocial specialists working in UK burn care, with a focus on the challenges they experience in their role. Semi-structured telephone interviews with eight psychosocial specialists (two psychotherapists and six clinical psychologists) who worked within UK burn care explored their experiences of providing support to patients and their families. Thematic analysis revealed two main themes: burn service-related experiences and challenges reflected health professionals having little time and resources to support all patients; reduced patient attendance due to them living large distances from service; psychosocial appointments being prioritised below wound-related treatments; and difficulties detecting patient needs with current outcome measures. Therapy-related experiences and challenges outlined the sociocultural and familial factors affecting engagement with support, difficulties treating patients with pre-existing mental health conditions within the burn service and individual differences in the stage at which patients are amenable to support. Findings provide an insight into the experiences of psychosocial specialists working in UK burn care and suggest a number of ways in which psychosocial provision in the NHS burn service could be developed.

  3. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  4. Photoacoustic signal measurement for burned skins in the spectral range of 500-650 nm: experiment with rat burn models

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Fujita, Masanori; Okada, Yoshiaki; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-06-01

    This paper reports the burn diagnosis that is based on the measurement of photoacoustic waves from skin, where the acoustic waves originate from the absorption of light by blood. For this purpose, a transducer composed of a ring-shaped piezoelectric film and a quartz fiber was made. An optical parametric oscillator (500 - 650 nm) was used as a light source and its output pulses were coupled to the quartz fiber. To investigate the optimum light wavelength, we conducted experiments using rat burn models. We demonstrated that the superficial dermal burn (SDB), deep dermal burn (DDB), deep burn (DB), and control (healthy skin) could be clearly differentiated based on the photoacoustic signals induced by the light of 532 - 580nm.

  5. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  6. Comparison of actinide production in traveling wave and pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactormore » cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)« less

  7. Arnica and stinging nettle for treating burns - a self-experiment.

    PubMed

    Huber, Roman; Bross, Felix; Schempp, Christoph; Gründemann, Carsten

    2011-10-01

    Combudoron, composed of extracts from arnica and stinging nettle, is used for the treatment of partial thickness burns and insect bites in Europe. Because clinical investigations are lacking we wanted to investigate its efficacy in partial thickness burns. Two individuals performed a self experiment: 4 experimental grade 2 burns (each 1 cm(2)) on the back were induced respectively with an erbium YAG-laser. Wounds were treated with Combudoron gel, Combudoron liquid, placebo gel or placebo liquid in each of the subjects in a standardized, single blind manner. Outcome parameters were the photo documented duration of wound healing and visual analogue scale (VAS) pain scores. All 8 experimental burns were similar from size and depth at baseline. Eschars of the verum-treated burns fell off earlier than the placebo-treated burns (verum liquid: after 14 and 19 days compared to 17 and 27 days with placebo liquid. Verum gel: after 16 and 22 days compared to 18 and 28 days with placebo gel). Eschars of the liquid treated burns fell off earlier than of the gel treated burns. Pain scores were not applicable because they were low and differences between the lesions could not be discriminated on the back. Combudoron seems to have positive effects on healing of grade 2 laser induced burns which deserve further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Nurses' perceptions and experiences regarding Morphine usage in burn pain management.

    PubMed

    Bayuo, J; Agbenorku, P

    2015-06-01

    Morphine, a classical example of opioid has been described as one of the analgesics of choice for burn pain management but there have been reports of under utilization of the medication and subsequent poor pain management. Nurses have a pivotal role in successful burn pain management and should therefore possess positive perception as well as strong knowledge base of pain care. In light of this realization, this study sought to investigate the perception and experiences of nurses working in the burns unit possess towards the medication. Purposive sampling approach was used to select twenty (20) nurses. Descriptive and themed content analysis approaches were used to analyze data. Mean years in general nursing practice and practice in the burns unit were obtained as 7.4 and 3.4 years respectively. Results indicate that nurses have a clear understanding of the intensity of burn pain but perception towards morphine was mixed and some respondents were unsure about some of the pertinent facts of morphine and thus, would prefer other medications such as paracetamol, diclofenac and pethidine. Addiction to the medication and morphine causing death were major themes identified. The resultant effect of these perception and experiences imply and confirm the under usage of morphine. It is therefore recommended that nurses within the burn unit be taken through training modules on the suitability of morphine in burn pain management. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  9. Modeling prescribed burning experiments and assessing the fire impacts on local to regional air quality

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.

    2016-12-01

    Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.

  10. Properties of pure single crystals of actinide compounds

    NASA Astrophysics Data System (ADS)

    Vogt, O.

    1989-07-01

    Actinide research started with substances of poor quality and a multitude of "unexplainable" results mostly found on powder samples of doubtful quality exerted some pressure on the crystal growers. As an example we may mention the measurements on UP. Type I antiferromagnetism was found below 123 K by neutron diffraction experiments on powdered samples. At 23 K another transition becomes apparent in susceptibility measurements. The change of the magnetic moments associated with this transition remained unexplained. It was only after the discovery of multi k structures in other actinide compounds that the need was seen to perform even inelastic neutron diffraction experiments on single crystals so that finally the true nature of the transition in UP could be revealed. NpAs is another illustrative example for the fact that sometimes it takes decades to get a clear understanding for things even so simple as macroscopic magnetic properties. The main reason for the need of single crystals is certainly the anisotropy of the magnetic moment encountered in all actinide compounds. Self-heating effects may prevent research on big crystals or might call for isotopic purity of certain samples.

  11. Experience of nursing staff facing the hospitalization of burned children.

    PubMed

    Inocencio Soares, Nataly Tsumura; Grubisich Mendes Tacla, Mauren Teresa

    2014-01-01

    To present the experiences of nursing staff working with hospitalized burned children. Qualitative study. Data were obtained from semi-structured interviews applied to 16 people of the nursing team (12 professional technicians and 4) working at a burn treatment center. For the analysis, the Method information Interpretation of the Senses was used. The theoretical basis used to support the discussion of the study was proposed by Geertz's interpretive anthropology. The narratives showed that the process of care to burned children is stressful for the participants because they are psychologically involved with the tragic story of a patient who suffered burns, and therefore with the clinical situation. This allows for the development of empathy. On the other hand there cultural involvement facing and accepting the consequences of what happened to the patient, due to the change of body image stigma that the child will suffer hamper the re-socialization of the child after discharge. The nursing team is affected in various ways during the care of hospitalized burned children. There is need for educational programs for their preparation in the care of these patients.

  12. Initial Neutron Burn Truncation Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Keck, R. L.; Kremens, R. L.; Kearney, K. J.; Verdon, C. P.; Zuegel, J. D.; Cable, M. D.; Ognibene, T. J.; Lerche, R. A.; Griffith, R. L.

    1997-11-01

    The recent deployment of the neutron temporal diagnostic (NTD) on OMEGA has enabled us to perform a series of experiments that will serve as a base line in understanding the effects of various levels of irradiation nonuniformities on neutron burn rates. These experiments were performed using doped and undoped plastic microballoons imploded with 30 kJ of 351-nm (UV) light. Precise control of laser focusing on OMEGA allowed for on-target laser perturbations to be varied from 0.1 to 1.0 μ*m rms. The targets were designed for moderate convergence ( ~*10) and spanned a range of growth factor from ~*50 to 500 ( ~*4 to 6 total e-foldings). Results will be presented depicting the experimental Y*ield O*ver C*lean (YOC) one-dimensionally predicted yield as a function of the calculated distortion fraction and an appraisal of the experimental fuel areal density. Both of these will be evaluated using information gained from the examination of the NTD neutron burn curves. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  13. Actinide migration in Johnston Atoll soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S. F.; Bates, J. K.; Buck, E. C.

    1997-02-01

    Characterization of the actinide content of a sample of contaminated coral soil from Johnston Atoll, the site of three non-nuclear destructs of nuclear warhead-carrying THOR missiles in 1962, revealed that >99% of the total actinide content is associated with discrete bomb fragments. After removal of these fragments, there was an inverse correlation between actinide content and soil particle size in particles from 43 to 0.4 {micro}m diameter. Detailed analyses of this remaining soil revealed no discrete actinide phase in these soil particles, despite measurable actinide content. Observations indicate that exposure to the environment has caused the conversion of relatively insolublemore » actinide oxides to the more soluble actinyl oxides and actinyl carbonate coordinated complexes. This process has led to dissolution of actinides from discrete particles and migration to the surrounding soil surfaces, resulting in a dispersion greater than would be expected by physical transport of discrete particles alone.« less

  14. Near-death experiences, posttraumatic growth, and life satisfaction among burn survivors.

    PubMed

    Royse, David; Badger, Karen

    2017-03-01

    Survivors of large burns may face positive and negative psychological after-effects from close-to-death injuries. This study is the first to examine their near-death experiences (NDEs) and posttraumatic growth (PTG) and life satisfaction afterwards. With an available sample of 92 burn survivors, half met the criteria for an NDE using an objective scale. Those who indicated religion was a source of strength and comfort had high scores on life satisfaction, PTG, and the NDE Scale. Individuals with larger burns reported greater PTG than those with smaller total body surface area burned (TBSA). There were no significant differences on life satisfaction, PTG, or NDEs when examined by gender or years since the burn injury. Elements of the NDE most frequently reported were: An altered sense of time, a sense of being out of the physical body, a feeling of peace, vivid sensations, and sense of being in an "other worldly" environment. Social workers and other health providers need to be comfortable helping burn survivors discuss any NDEs and process these through survivors' spirituality and religious belief systems as they recover.

  15. Actinide Waste Forms and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  16. Actinides in the Geosphere

    NASA Astrophysics Data System (ADS)

    Runde, Wolfgang; Neu, Mary P.

    Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy.

  17. Actinide recovery process

    DOEpatents

    Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  18. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    Treesearch

    Luxi Zhou; Kirk R. Baker; Sergey L. Napelenok; George Pouliot; Robert Elleman; Susan M. O' Neill; Shawn P. Urbanski; David C. Wong

    2018-01-01

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment...

  19. Our chemical burn experience: exposing the dangers of anhydrous ammonia.

    PubMed

    Wibbenmeyer, L A; Morgan, L J; Robinson, B K; Smith, S K; Lewis, R W; Kealey, G P

    1999-01-01

    Although chemical injuries account for only a small number of one burn unit's cases, the diversity, resulting complications, and sequelae of these burns pose special problems. We reviewed a 19-year period of the chemical burn experience of our burn unit. The population of patients with these types of burns consisted of young men (mean age: 29.8 years), the majority of whom were injured on the job. Unique to our series is the largest collection of injuries (30%) resulting from the common fertilizer anhydrous ammonia. Another population of concern, accounting for 14% of the injuries in our unit, is that of patients injured at home with routine household cleaners. Nearly one half of those patients injured at home incurred injuries that required grafting. The cornerstone of chemical burn prevention and treatment involves education regarding the caustic nature of chemicals, proper handling, adequate protection, and copious irrigation of the wound at the scene. From the analysis of our retrospective review, adequate education and treatment at the scene appear to be well implemented in the industrial and farming communities. The focus of our education efforts should be directed toward the public and emphasize the safe use of household chemicals. Finally our review illuminated the potential benefit of immediate excision and grafting for decreasing the length of stay, complications, and loss of productivity.

  20. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  1. Actinide recovery process

    DOEpatents

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  2. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  3. Management of acid burns: experience from Bangladesh.

    PubMed

    Das, Kishore Kumar; Olga, Loren; Peck, Michael; Morselli, Paolo G; Salek, A J M

    2015-05-01

    Acid burn injuries in Bangladesh primarily occur as a result of intentional attacks although there are incidences of accidental acid burns in industry, on the street, and at home. A total of 126 patients with acid burns, 95 from attacks and 31 from accidents, were studied from July 2004 to December 2012. A diagnosis of acid burn was made from history, physical examination and in some cases from chemical analysis of the patients' clothing. Alkali burns were excluded from the study. In the burn unit of Dhaka Medical College Hospital, we applied a slightly different protocol for management of acid burns, beginning with plain water irrigation of the wound, which effectively reduced burn depth and the requirement of surgical treatment. Application of hydrocolloid dressing for 48-72 h helped with the assessment of depth and the course of treatment. Early excision and grafting gives good results but resultant acid trickling creates a marble cake-like appearance of the wound separated by the vital skin. Excision with a scalpel and direct stitching of the wounds are often a good option. Observation of patients on follow-up revealed that wounds showed a tendency for hypertrophy. Application of pressure garments and other scar treatments were given in all cases unless the burn was highly superficial. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  4. Overview of the South American biomass burning analysis (SAMBBA) field experiment

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Johnson, B. T.; Haywood, J. M.; Freitas, S.; Longo, K.; Artaxo, P.; Coe, H.

    2013-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.

  5. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  6. Cost analysis of acute burn patients treated in a burn centre: the Gulhane experience

    PubMed Central

    Sahin, I.; Ozturk, S.; Alhan, D.; Açikel, C.; Isik, S.

    2011-01-01

    Summary Even if calculating the exact cost of burn treatment is a very hard task, the study of cost analysis provides financial perspective. We performed a cost analysis study in our burn centre to respond to questions about total patient treatment cost and the length of hospital stay. We reviewed all patients admitted to the Gulhane Military Medical Academy Burn Centre in Ankara, Turkey, between March 2005 and August 2008. Forty-three patients with major burns were identified on the basis of the study criteria. The data regarding total treatment cost and the length of hospital stay for each type of burn (flame, scald, electric) were collected at the end of the study. The average total body surface area burned was 36 ± 7%.. The average duration of hospital stay was 73 ± 33 days. Patients with electrical burns stayed longer in hospital than patients with other types of burn injuries. Each one per cent of burn corresponded to a mean hospital stay of two days. The overall mean total cost was $US 15,250. The mean total cost of electrical burns was the highest, with $US 22,501 ± 24,039. Even if the costs associated with burn injury are higher than some other well-known health-related problems, they have not been much studied. Reports have produced different results, but it should be kept in mind that although the results of cost analysis studies may vary they must be performed in all newly established burn centres in order to form a financial overview. PMID:21991233

  7. Overview of actinide chemistry in the WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as partmore » of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  8. Paediatric electrical burn injuries: experience from a tertiary care burns unit in North India

    PubMed Central

    Srivastava, S.; Patil, A.N.; Bedi, M.; Tawar, R.S.

    2017-01-01

    Summary Electrical burn injuries in the paediatric age group constitute a small proportion of all burn cases and cause significant morbidity and long-term psychosocial impact. The objective of this study was to evaluate various aspects of electrical burn injuries in the paediatric age group in our region. A retrospective review was done of all paediatric electrical burns admitted to a tertiary care burns unit over a period of 12 months (January 2016 to December 2016). There were 77 cases of electrical burns under the age of 16 years. High voltage burns predominated and older age groups were more frequently affected. Male:female ratio was 4.1:1. Amputations were required in 18 (23%), skin grafting in 52 (67%) and flap cover in 29 (37%) patients. There were unfavourable outcomes in 32% patients with a mortality rate of 7.8%. Significant association was found between unfavourable outcomes and high voltage burn injuries and length of hospital stay. The impact of electrical burn injuries is substantial and can be reduced by simple preventive measures such as educating parents, improving health infrastructure and adherence to safety regulations.

  9. Actinide ion sensor for pyroprocess monitoring

    DOEpatents

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  10. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  11. The experience of scar management for adults with burns: An interpretative phenomenological analysis.

    PubMed

    Martin, C; Bonas, S; Shepherd, L; Hedges, E

    2016-09-01

    Burns can have both physical and psychological effects on individuals. Pressure garments and silicone gels are used to improve the aesthetic appearance and functions of the skin, but these treatments have been associated with various physical, emotional, sexual and social difficulties. Interpretative phenomenological analysis (IPA) was used to explore participants' experiences of scar management. IPA examines individual experiences before comparing results across cases, and is suited to capture the different ways in which individuals experience a phenomena as well as cautiously looking at patterns across cases. Eight burn patients who had experienced scar management, including pressure garments, were interviewed. Two superordinate themes were identified: Assimilation of Pressure Garment Identity, and Psychosocial Functions of the Pressure Garments. The findings offered insight into the positive and negative experiences of scar management, describing the diverse personal and social functions of the pressure garments and how they became integrated into participants' identities. By understanding the individual nature of these experiences, healthcare professionals can enhance support around these issues and potentially aid adherence to treatment. Further research with different demographic groups as well as for other burn treatments would be useful to develop and contextualise these findings. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  12. Electronic Structure of Actinides under Pressure

    NASA Astrophysics Data System (ADS)

    Johansson, Borje

    2006-03-01

    The series of heavy radioactive elements known as the actinides all have similar elemental properties. However, when the volume per atom in the condensed phase is illustrated as a function of atomic number, perhaps the most dramatic anomaly in the periodic table becomes apparent. The atomic volume of americium is almost 50% larger than it is for the preceding element plutonium. For the element after americium, curium, the atomic volume is very close to that of americium. The same holds also for the next elements berkelium and californium. Accordingly from americium and onwards the actinides behave very similar to the corresponding rare-earth elements - a second lanthanide series of metallic elements can be identified. This view is strongly supported by the fact that all these elements adopt the dhcp structure, a structure typical for the lanthanides. The reason for this behavior is found in the behavior of the 5f electrons. For the earlier actinides, up to and including plutonium, the 5f electrons form metallic states and contribute most significantly to the bonding. In Np and Pu they even dominate the bonding, while all of a sudden they become localized in Am, very much like the 4f electrons in the lanthanide series, and contribute no longer to the cohesion. This withdrawal of 5f bonding gives rise to the large volume expansion between plutonium and americium. This difference between the light and heavy actinide suggests that it would be most worthwhile to strongly compress the transplutonium elements, thereby forcing the individual 5f electron wave functions into strong contact with each other (overlap). Recently high pressure experiments have been performed for americium and curium and dramatic crystal structure changes have been observed. These results and other high pressure data will be discussed in relation to the basic electronic structure of these elements.

  13. CE: Original Research: The Lived Experience of Social Media by Young Adult Burn Survivors.

    PubMed

    Giordano, Marie S

    2016-08-01

    : Young adult burn survivors who were burned before they reached young adulthood (before the age of 18) face particular challenges in meeting their needs for socialization. Social media are widely used by adolescents and young adults, and permit socialization without face-to-face communication. This qualitative, phenomenological study was conducted in order to explore and describe the lived experience of social media by young adult burn survivors. Five women and four men between the ages of 20 and 25 years were interviewed; before the age of 18 years, each had sustained burns over more than 25% of their total body surface area. Van Manen's phenomenological methodology provided the study framework. Five essential themes emerged: identity, connectivity, social support, making meaning, and privacy. The participants used social media as a way to express their identity while safeguarding their privacy, and as a way to make meaning out of their traumatic experiences. Connecting with others facilitated a flow of social support and information, which was motivating and encouraging. The findings indicate that the use of social media by young adult burn survivors may be warranted as a way to further their healing processes. The knowledge gained from this study may also be useful in facilitating the development of nursing interventions aimed at preparing young adult burn survivors for reentry into society.

  14. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  16. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  17. ABA Southern Region Burn disaster plan: the process of creating and experience with the ABA southern region burn disaster plan.

    PubMed

    Kearns, Randy D; Cairns, Bruce A; Hickerson, William L; Holmes, James H

    2014-01-01

    The Southern Region of the American Burn Association began to craft a regional plan to address a surge of burn-injured patients after a mass casualty event in 2004. Published in 2006, this plan has been tested through modeling, exercise, and actual events. This article focuses on the process of how the plan was created, how it was tested, and how it interfaces with other ongoing efforts on preparedness. One key to success regarding how people respond to a disaster can be traced to preexisting relationships and collaborations. These activities would include training or working together and building trust long before the crisis. Knowing who you can call and rely on when you need help, within the context of your plan, can be pivotal in successfully managing a disaster. This article describes how a coalition of burn center leaders came together. Their ongoing personal association has facilitated the development of planning activities and has kept the process dynamic. This article also includes several of the building blocks for developing a plan from creation to composition, implementation, and testing. The plan discussed here is an example of linking leadership, relationships, process, and documentation together. On the basis of these experiences, the authors believe these elements are present in other regions. The intent of this work is to share an experience and to offer it as a guide to aid others in their regional burn disaster planning efforts.

  18. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  19. Shall We Continue to Teach the Candle Burning Experiment at Lower Secondary Level?

    ERIC Educational Resources Information Center

    Dhindsa, Harkirat S.

    2005-01-01

    The candle burning experiment is usually conducted in lower secondary classes to prove the (about) 20% oxygen in air. The aim of this paper is to show that teachers misinterpret the results of the experiment to satisfy the objectives of teaching this experiment. However, when the results of this experiment are interpreted correctly, the objectives…

  20. On the Suitability of Lanthanides as Actinide Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szigethy, Geza; Raymond, Kenneth N.

    2008-04-11

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond groupmore » at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.« less

  1. On the suitability of lanthanides as actinide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Kenneth; Szigethy, Geza

    2008-07-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond groupmore » at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)« less

  2. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport.

    PubMed

    Zhou, Luxi; Baker, Kirk R; Napelenok, Sergey L; Pouliot, George; Elleman, Robert; O'Neill, Susan M; Urbanski, Shawn P; Wong, David C

    2018-06-15

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment in the Pacific Northwest focused on cropland residue burning was used to evaluate model performance in capturing surface and aloft impacts from the burning events. The Community Multiscale Air Quality (CMAQ) model was used to simulate multiple crop residue burns with 2 km grid spacing using field-specific information and also more general assumptions traditionally used to support National Emission Inventory based assessments. Field study specific information, which includes area burned, fuel consumption, and combustion completeness, resulted in increased biomass consumption by 123 tons (60% increase) on average compared to consumption estimated with default methods in the National Emission Inventory (NEI) process. Buoyancy heat flux, a key parameter for model predicted fire plume rise, estimated from fuel loading obtained from field measurements can be 30% to 200% more than when estimated using default field information. The increased buoyancy heat flux resulted in higher plume rise by 30% to 80%. This evaluation indicates that the regulatory air quality modeling system can replicate intensity and transport (horizontal and vertical) features for crop residue burning in this region when region-specific information is used to inform emissions and plume rise calculations. Further, previous vertical emissions allocation treatment of putting all cropland residue burning in the surface layer does not compare well with measured plume structure and these types of burns should be modeled more similarly to prescribed fires such that plume rise is based on an estimate of buoyancy. Copyright © 2018 Elsevier B

  3. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  4. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a

  5. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  6. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  7. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  8. Phase Behavior and Equations of State of the Actinide Oxides

    NASA Astrophysics Data System (ADS)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  9. ADS Model in the TIRELIRE-STRATEGIE Fuel Cycle Simulation Code Application to Minor Actinides Transmutation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzenne, Claude; Massara, Simone; Tetart, Philippe

    2006-07-01

    Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less

  10. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  11. Method for recovery of actinides from actinide-bearing scrap and waste nuclear material using O/sub 2/F/sub 2/

    DOEpatents

    Asprey, L.B.; Eller, P.G.

    1984-09-12

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof and from scrap materials containing the metal actinides using O/sub 2/F/sub 2/ to generate the hexafluorides of the actinides present therein. The fluorinating agent, O/sub 2/F/sub 2/, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not detroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  12. Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 Biomass Burning and Lightning Experiment B field campaign

    NASA Astrophysics Data System (ADS)

    Russell-Smith, Jeremy; Edwards, Andrew C.; Cook, Garry D.

    2003-02-01

    This paper estimates the two-daily extent of savanna burning and consumption of fine (grass and litter) fuels from an extensive 230,000 km2 region of northern Australia during August-September 1999 encompassing the Australian continental component of the Biomass Burning and Lightning Experiment B (BIBLE B) campaign [, 2002]. The extent of burning for the study region was derived from fire scar mapping of imagery from the advanced very high resolution radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA) satellite. The mapping was calibrated and verified with reference to one Landsat scene and associated aerial transect validation data. Fine fuel loads were estimated using published fuel accumulation relationships for major regional fuel types. It is estimated that more than 43,000 km2 was burnt during the 25 day study period, with about 19 Mt of fine (grass and litter) fuels. This paper examines assumptions and errors associated with these estimates. It is estimated from uncalibrated fire mapping derived from AVHRR imagery that 417,500 km2 of the northern Australian savanna was burnt in 1999, of which 136,405 km2, or 30%, occurred in the Northern Territory study region. Using generalized fuel accumulation equations, such biomass burning consumed an estimated 212.3 Mt of fine fuels, but no data are available for consumption of coarse fuels. This figure exceeds a recent estimate, based on fine fuels only, for the combined Australian savanna and temperate grassland biomass burning over the period 1990-1999 but is lower than past estimates derived from classification approaches. We conclude that (1) fire maps derived from coarse-resolution optical imagery can be applied relatively reliably to estimate the extent of savanna fires, generally with 70-80% confidence using the approach adopted here, over the major burning period in northern Australia and (2) substantial further field assessment and associated modeling of fuel accumulation

  13. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    NASA Technical Reports Server (NTRS)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; hide

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  14. Local Symmetry Effects in Actinide 4f X-ray Absorption in Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.

    2016-03-23

    A systematic X-ray absorption study at actinide N 6,7 (4f → 6d transitions) edges was performed for light-actinide oxides including data obtained for the first time for NpO 2, PuO 2, and UO 3. The measurements were supported by ab initio calculations based on local-density-approximation with added 5f-5f Coulomb interaction (LDA+U). Improved energy resolution compared to common experiments at actinide L 2,3 (2p → 6d transitions) edges allowed us to resolve the major structures of the unoccupied 6d density of states (DOS) and estimate the crystal-field splittings in the 6d shell directly from the spectra of light-actinide dioxides. The measurementsmore » demonstrated an enhanced sensitivity of the N 6,7 spectral shape to changes in the compound crystal structure. Finally, for nonstoichiometric NpO 2-x, the filling of the entire band gap with Np 6d states was observed thus supporting a phase coexistence of Np metal and stoichiometric NpO 2 which is in agreement with the tentative Np-O phase diagram.« less

  15. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  16. A 10-year experience with major burns from a non-burn intensive care unit.

    PubMed

    Ibarra Estrada, Miguel Ángel; Chávez Peña, Quetzalcóatl; García Guardado, Dante Ismael; López Pulgarín, José Arnulfo; Aguirre Avalos, Guadalupe; Corona Jiménez, Federico

    2014-09-01

    The aim of this study was to review clinical data and outcomes of patients with burns in a Mexican non-burn intensive care unit (ICU). We did a retrospective analysis of our single-centre database of burn patients admitted to the ICU in the Hospital Civil Fray Antonio Alcalde (University Hospital). The sample was divided for analysis into two groups according to the outcome 'death' or 'discharge' from ICU. Overall mortality was 58.2%, without a decreasing trend in mortality rates through the years. We identified the presence of third-degree burns (odds ratio (OR) 1.5, p=0.003), and >49% total burned surface area (TBSA; OR 3.3, p≤0.001) was associated with mortality. Mean age was higher in deceased patients (38.2 years vs. 31.3 years, p=0.003) as was the TBSA (62.8% vs. 36.4%, p≤0.001). At multivariate analysis, inhalation injury was not associated with increased mortality, but it was with more mechanical ventilation days. Early surgical debridement/cleansing was performed in most patients; however, the mean of the procedures was 1.7 per patient in both groups. We identified significant factors associated with mortality. These variables and prognosis from non-burn ICUs differ broadly compared with burn intensive care units (BICUs); thus, more structured, multidisciplinary and specialised treatment strategies are still needed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  17. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  18. Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides

    NASA Astrophysics Data System (ADS)

    Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.

    2018-07-01

    This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.

  19. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  20. Rapid determination of actinides in seawater samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were usedmore » to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  1. Prehospital treatment of burns: a qualitative study of experiences, perceptions and reactions of victims.

    PubMed

    Sadeghi Bazargani, H; Fouladi, N; Alimohammadi, H; Sadeghieh Ahari, S; Agamohammadi, M; Mohamadi, R

    2013-08-01

    The manner in which burns are initially managed, at an incident scene, can affect the extent and depth of burn wounds and their final prognosis. The aim of this study was to understand people's experiences, perceptions and reactions towards the initial management of burns and fire accidents in Ardabil Province, Iran. In a qualitative study, 48 burn victims accompanied by their caregivers were enrolled. Focus group discussion (FGD) was used to collect data. All the interviews were recorded, transcribed and analysed using content analysis method. Four categories of information were retrieved in this study, including fire control, scald and burn wound management, seeking medical consultation and severity indicators. Uncertainty regarding what to do when someone catches fire was an evident finding that was explored through the discussions. The results revealed that transferring the patient to the hospital most often takes place after initial treatments administered at home. People believed that cooling a burn wound for a time longer than a few seconds may harm the wound. A strong belief in the efficacy of traditional remedies was disclosed when the statements of participants revealed that traditional or home-made remedies were widely used either to control pain immediately after burn and later during the wound repair process to accelerate the repair or to control the infection and prevent oedema and scar. Among these remedies, pennyroyal and grated potatoes seemed to be the most popular ones. Pennyroyal was thought to prevent infection and potatoes were used to relieve pain. People doubted the capability of health-care workers who work in rural health houses. People considered electrical burns and burns on the chest to be the most severe types of burns. Inappropriate perceptions regarding initial management of burns existed among the participants that should be addressed in future quantitative research or through developing programmes on secondary prevention of burns

  2. Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors

    NASA Astrophysics Data System (ADS)

    Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.

    2000-07-01

    Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.

  3. Separation of actinides from lanthanides utilizing molten salt electrorefining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separationmore » ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.« less

  4. A review of campfire burns in children: The QLD experience.

    PubMed

    Okon, O; Zhu, L; Kimble, R M; Stockton, K A

    2018-03-27

    Campfire burns in children are a significant health issue. It is imperative that the extent of the problem is examined and strategies discussed to inform future prevention campaigns. A retrospective review of data from the Queensland Paediatric Burns Registry for all children presenting with campfire burns between January 2013 and December 2014 (inclusive). Information collected included patient demographics, detail regarding mechanism of injury, first aid, Total Body Surface Area (TBSA), burn depth, and treatment. Seventy-five children with campfire burns were seen in our paediatric burns centre during this 2-year period. The median age of patients was 3 years (range 10 days-14 years). The hands and feet were the areas most commonly affected. Eleven percent of patients suffered flame burns, whilst 89% suffered contact burns from the hot coals or ashes. Of the latter group, approximately half experienced burns from campfires that had been extinguished for at least one night. Thirteen percent of patients underwent split thickness skin grafting. The incidence of burns was increased during school holiday months. We have previously demonstrated the effectiveness of targeted campaigns in reducing the incidence of campfire burns. A significant portion of patients sustained burns from incorrectly extinguished campfires. These injuries are likely to be preventable with ongoing public awareness campaigns. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  5. Prompt fission neutron spectra of actinides

    DOE PAGES

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; ...

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  6. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less

  7. One pediatric burn unit's experience with sleepwear related injuries

    PubMed Central

    McLoughlin, E.; Clarke, N.; Stahl, K.; Crawford, J.

    1998-01-01

    Review of the records of 678 children with acute injuries referred during an eight year period to this burn unit indicated that flame burns from a single ignition source (50%) outranked scalds (27%) or house fires (12%) as causes of injury. There was no temporal trend in the rank pattern. The majority of these single-source flame injuries were severe and involved ignition of the child's clothing. From 1969 through 1973, sleepwear was the clothing involved in 32% of the instances. Since that time and coincident with promulgation of strict federal and state standards for flammability of children's night clothing, a dramatic decline in the number of children referred with injuries of this type has taken place. It is probable that the single factor most important to the decline, in our experience with these injuries, is lower fabric flammability but, because our data may not be representative, corroboration is needed before one can exclude factors such as altered garment design, fire safety related practices at home, or changing patterns of hospital referral. PMID:9887427

  8. Crystal growth methods dedicated to low solubility actinide oxalates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamain, C., E-mail: christelle.tamain@cea.fr; Arab-Chapelet, B.; Rivenet, M.

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first timemore » that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.« less

  9. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of thismore » research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.« less

  10. A ten-year experience with hemodialysis in burn patients at Los Angeles County + USC Medical Center.

    PubMed

    Soltani, Ali; Karsidag, Semra; Garner, Warren

    2009-01-01

    Acute renal failure (ARF) is a rare, but serious, complication after burn injury that is commonly thought to be fatal. Before the modern era, there were few survivors of burn injuries who required dialysis. We report our 10-year experience with ARF and dialysis at the Los Angeles County + USC burn unit. During the period of August 1994 to February 2004, 3356 patients were admitted. Furthermore, 1143 patients were admitted to the intensive care unit and 1125 had burns >10% TBSA. Thirty-three patients developed ARF necessitating dialysis, equaling 0.98% of all admitted patients, and 2.7% of patients with TBSA >10% burns, which is at the low end of published burn unit data. The average age of these patients requiring dialysis was 49 years, 91% were men, 24% were diabetic, and 39% were positive for substances of abuse at admission, and the average TBSA burned was 36%. This is compared with an average age of 31 years, 70% men, 7.3% diabetic, and 14.7% intoxicated in the general burned population at our burn unit. Furthermore, our overall mortality in the burn unit was 5% overall and 14% in patients with >10% TBSA burns during the study period. In patients requiring hemodialysis, the mortality rate was 69.7%. The average time to hemodialysis was 14 days in our series, and patients, on average, required 10.3 days of dialysis support. These mortality data are the lowest recorded for burned patients requiring dialysis and suggest that ARF is a survivable complication in some of these patients.

  11. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  12. Rapid determination of alpha emitters using Actinide resin.

    PubMed

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed.

  13. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  14. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  15. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    PubMed

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  16. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  17. Nonaqueous method for dissolving lanthanide and actinide metals

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  18. Physical and chemical characterization of actinides in soil from Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.F.; Bates, J.K.; Buck, E.C.

    1997-02-01

    Characterization of the actinide content of a sample of contaminated coral soil from Johnston Atoll, the site of three non-nuclear destructs of nuclear warhead-carrying THOR missiles in 1962, revealed that >99% of the total actinide content is associated with discrete bomb fragments. After removal of these fragments, there was an inverse correlation between actinide content and soil particle size in particles from 43 to 0.4 {mu}m diameter. Detailed analyses of this remaining soil revealed no discrete actinide phase in these soil particles, despite measurable actinide content. Observations indicate that exposure to the environment has caused the conversion of relatively insolublemore » actinide oxides to the more soluble actinyl oxides and actinyl carbonate coordinated complexes. This process has led to dissolution of actinides from discrete particles and migration to the surrounding soil surfaces, resulting in a dispersion greater than would be expected by physical transport of discrete particles alone. 26 refs., 4 figs., 1 tab.« less

  19. Impact of minor actinide recycling on sustainable fuel cycle options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled whilemore » in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help

  20. Phytosiderophore effects on subsurface actinide contaminants: potential for phytostabilization and phytoextraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, C. E.; Twary, S. N.; Deladurantaye, E.

    2003-01-01

    In recognition of the need for a safe, effective technology for long term Pu/Th/Actinide stabilization or removal from soils, we have begun an investigation of the potential for phytoremediation (phytostabilization and/or phytoextraction) of Pu and other actinide soil contaminants at DOE sites using phytosiderophore producing plants, and are investigating the contribution of phytosiderophores to actinide mobility in the subsurface environment. Phytoremediation and Phytostabilization have been proven to be a cost-effective, safe, efficient, and publicly acceptable technology for clean up and/or stabilization of contaminant metals . However, no phyto-based technologies have been developed for stabilization or removal of plutonium from soilsmore » and groundwater, and very few have been investigated for other actinides . Current metal-phytostabilization and phytoremediation techniques, predominately based around lead, nickel, and other soft-metal phytoextraction, will almost certainly be inadequate for plutonium due its distinct chemical properties . Phytosiderophore-based phytoremediation may provide technically and financially practical methods for remediation and long-term stewardship of soils that have low to moderate, near surface actinide contamination . We plan to demonstrate potential benefits of phytosiderophore-producing plants for long-term actinide contaminant stabilization by the plant's prevention of soil erosion and actinide migration through hydraulic control and/or through actinide removal through phytoextraction . We may also show possible harm caused by these plants through increased presence of actinide chelators that could increase actinide mobilization and migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or be used to develop plant-based soil stabilization/remediation technologies .« less

  1. Rapid determination of actinides in asphalt samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  2. Lanthanide/Actinide Opacities

    NASA Astrophysics Data System (ADS)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  3. The role of alternative therapy in the management of partial thickness burns of the face--experience with the use of moist exposed burn ointment (MEBO) compared with silver sulphadiazine.

    PubMed

    Ang, E S; Lee, S T; Gan, C S; See, P; Chan, Y H; Ng, L H; Machin, D

    2000-01-01

    Conventional management of partial thickness facial burn wounds includes the use of silver sulphadiazine dressings. Silver sulphadiazine forms an overlying slough that makes wound healing assessment difficult. Moist exposed burn ointment (MEBO) has been proposed as the ideal burn wound dressing both for burns of the face and other sites. Proponents of MEBO claim that it accelerates wound healing and results in scarless wound healing and at the same time reduce bacterial colonisation and the need for analgesics. We present here our experience with MEBO in the management of partial thickness burns of the face. One hundred and fifteen patients with partial thickness burns were randomly assigned to conventional treatment or MEBO. Out of this, 112 were analysed. Thirty-nine patients sustained facial burns; 17 received MEBO and 22 received silver sulphadiazine. Patients were followed up daily until the burn wounds were reduced by 75% of original body surface area (BSA). In patients with facial burns, MEBO was similar to silver sulphadiazine therapy with respect to rate of wound healing. Minimal slough was present over the wounds in MEBO-treated wounds resulting in clearer assessment of healing progression. Advantages of MEBO as compared to silver sulphadiazine in the management of partial thickness burns of the face include convenient change of dressing and easier assessment of healing progression. This suggests that MEBO is a useful alternative therapy for partial thickness burns of the face.

  4. Protactinium and the intersection of actinide and transition metal chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemicalmore » calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.« less

  5. New cubic structure compounds as actinide host phases

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.

    2010-03-01

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite

  6. Actinide bioimaging in tissues: Comparison of emulsion and solid track autoradiography techniques with the iQID camera

    PubMed Central

    Miller, Brian W.; Van der Meeren, Anne; Tazrart, Anissa; Angulo, Jaime F.; Griffiths, Nina M.

    2017-01-01

    This work presents a comparison of three autoradiography techniques for imaging biological samples contaminated with actinides: emulsion-based, plastic-based autoradiography and a quantitative digital technique, the iQID camera, based on the numerical analysis of light from a scintillator screen. In radiation toxicology it has been important to develop means of imaging actinide distribution in tissues as these radionuclides may be heterogeneously distributed within and between tissues after internal contamination. Actinide distribution determines which cells are exposed to alpha radiation and is thus potentially critical for assessing absorbed dose. The comparison was carried out by generating autoradiographs of the same biological samples contaminated with actinides with the three autoradiography techniques. These samples were cell preparations or tissue sections collected from animals contaminated with different physico-chemical forms of actinides. The autoradiograph characteristics and the performances of the techniques were evaluated and discussed mainly in terms of acquisition process, activity distribution patterns, spatial resolution and feasibility of activity quantification. The obtained autoradiographs presented similar actinide distribution at low magnification. Out of the three techniques, emulsion autoradiography is the only one to provide a highly-resolved image of the actinide distribution inherently superimposed on the biological sample. Emulsion autoradiography is hence best interpreted at higher magnifications. However, this technique is destructive for the biological sample. Both emulsion- and plastic-based autoradiography record alpha tracks and thus enabled the differentiation between ionized forms of actinides and oxide particles. This feature can help in the evaluation of decorporation therapy efficacy. The most recent technique, the iQID camera, presents several additional features: real-time imaging, separate imaging of alpha particles and

  7. The inter-rater reliability of estimating the size of burns from various burn area chart drawings.

    PubMed

    Wachtel, T L; Berry, C C; Wachtel, E E; Frank, H A

    2000-03-01

    The accuracy and variability of burn size calculations using four Lund and Browder charts currently in clinical use and two Rule of Nine's diagrams were evaluated. The study showed that variability in estimation increased with burn size initially, plateaued in large burns and then decreased slightly in extensive burns. The Rule of Nine's technique often overestimates the burn size and is more variable, but can be performed somewhat faster than the Lund and Browder method. More burn experience leads to less variability in burn area chart drawing estimates. Irregularly shaped burns and burns on the trunk and thighs had greater variability than less irregularly shaped burns or burns on more defined anatomical parts of the body.

  8. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  9. Laboratory actinide partitioning - Whitlockite/liquid and influence of actinide concentration levels

    NASA Technical Reports Server (NTRS)

    Benjamin, T. M.; Jones, J. H.; Heuser, W. R.; Burnett, D. S.

    1983-01-01

    The partition coefficients between synthetic whitlockite (beta Ca-phosphate) and coexisting silicate melts are determined for the actinide elements Th, U and Pu. Experiments were performed at 1 bar pressure and 1250 C at oxygen fugacities from 10 to the -8.5 to 10 to the -0.7 bars, and partitioning was determined from trace element radiography combined with conventional electron microprobe analysis. Results show Pu to be more readily incorporated into crystalline phases than U or Th under reducing conditions, which is attributed to the observation that Pu exists primarily in the trivalent state, while U and Th are tetravalent. Corrected partition coefficients for whitlockite of 3.6, less than or equal to 0.6, 1.2, 0.5 and less than or equal to 0.002 are estimated for Pu(+3), Pu(+4), Th(+4), U(+4) and U(+6), respectively. Experiments performed at trace levels and percent levels of UO2 indicate that Si is involved in U substitution in whitlockite, and show a reduced partition coefficient at higher concentrations of U that can be explained by effects on melt structure or the fraction of tetravalent U.

  10. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such

  11. [Burn-out, commitment, personality and experiences during work and training; survey among psychiatry residents].

    PubMed

    Krebs, R; Ewalds, A L; van der Heijden, P T; Penterman, E J M; Grootens, K P

    2017-01-01

    In the last few years international studies have reported on increase in burn-out and depressive symptoms among psychiatry residents. In the field of research, however, commitment and dedication are now being mentioned more frequently as positive factors that counterbalance burn-out. To find out how a group of Dutch psychiatry residents feel about their work, to discover their degree of burn-out and commitment and to clarify the various factors involved. 59 psychiatry residents from four teaching hospitals were asked to complete questionnaires concerning burn-out (U-BOS-C), commitment (UWES-15) and personality (BFI-NL). Respondents were also asked to describe how they felt about their experiences during their work and to give their views on the instruction and training they were receiving. In the U-BOS-C section only four trainees (almost 7%) met the criteria for burn-out. In the BFI-NL section the psychiatry residents obtained significantly lower scores on neuroticism and higher scores on empathy than did a comparable norm group of a similar age. The scores of the psychiatry residents indicated that the term 'being proud of your work' was significantly related to a feeling of commitment and particularly to all subscales that reflected commitment. In our study the percentage of psychiatry residents with burn-out is significantly lower than the percentage reported elsewhere in the literature. In fact, our results demonstrate that the psychiatry residents who were the subject of our study regarded themselves as being emotionally stable, friendly and committed to their work.

  12. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  13. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  14. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  15. Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Forget; M. Asgari; R. Ferrer

    2007-09-01

    Previous fast reactor transmutation studies generally disregarded higher mass minor actinides beyond Cm-246 due to various considerations including deficiencies in nuclear cross-section data. Although omission of these higher mass actinides does not significantly impact the neutronic calculations and fuel cycle performance parameters follow-on neutron dose calculations related to fuel recycling, transportation and handling are significantly impacted. This report shows that including the minor actinides in the equilibrium fast reactor calculations will increase the predicted neutron emission by about 30%. In addition a sensitivity study was initiated by comparing the impact of different cross-section evaluation file for representing these minor actinides.

  16. Experience and outcomes of micrografting for major paediatric burns.

    PubMed

    Rode, H; Martinez, R; Potgieter, D; Adams, S; Rogers, A D

    2017-08-01

    The deficit of donor sites in major burns over 50% of the total body surface area has necessitated the application of methods besides traditional meshed autografting to achieve definitive skin cover. The Meek micrografting technique was introduced at this hospital in 2011, especially in the absence of a reliable source of deceased donor allograft skin. The purpose of this study was to evaluate this strategy with reference to its technical execution, efficacy and indications in the context of major paediatric burn surgery. A cohort study was performed of all paediatric patients with major burn who underwent Meek micrografting at a dedicated paediatric burn centre in a developing country over a five year period. Demographics, details of their burns, operative management and clinical course and outcomes were collected from patient records and operative notes and analysed. Thirty-five patients were managed using the micrografting technique during the study period. The mean patient age was 4.1 years (range 3 months-11 years) and their mean total body surface area (TBSA) burn was 49.7% (range 15-86%). Eleven patients sustained inhalation injuries and five developed a re-feeding syndrome on account of delayed referral. The mean abbreviated burn severity index (ABSI) was 8.5 (range 2-13). The hospital length of stay in the 27 survivors was a mean of 75.5 days, equating to 1.4 days per percentage burn. Eight patients died during the course of treatment, with a mean TBSA burn of 67.75% (range 38-86%). Graft take one month after surgery was documented to be more than 90% in 24 patients, of whom 3 subsequently died. Eleven patients had less than 90% graft take at this time, of whom 5 died. There is a considerable 'learning curve' associated with this technique. In order to achieve success one must ensure a completely viable, non-infected bed, obtained by tangential or fascial excision, followed by allografting as temporary coverage and to 'test the wound bed' for definitive

  17. Actinide and lanthanide separation process (ALSEP)

    DOEpatents

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  18. Hydrothermal Synthesis and Crystal Structures of Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Runde, Wolfgang; Neu, Mary P.

    Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy. These stockpiles have been significantly reduced in the last decade.

  19. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (k eff) Predictions

    DOE PAGES

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (k eff) evaluations based on best-available data andmore » methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate k eff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the

  20. The Parkland Burn Center experience with 297 cases of child abuse from 1974 to 2010.

    PubMed

    Hodgman, Erica I; Pastorek, Rachel A; Saeman, Melody R; Cripps, Michael W; Bernstein, Ira H; Wolf, Steven E; Kowalske, Karen J; Arnoldo, Brett D; Phelan, Herb A

    2016-08-01

    Pediatric burns due to abuse are unfortunately relatively common, accounting for 5.8-8.8% of all cases of abuse annually. Our goal was to evaluate our 36-year experience in the evaluation and management of the victims of abuse in the North Texas area. A prospectively maintained database containing records on all admissions from 1974 through 2010 was queried for all patients aged less than 18 years. Patients admitted for management of a non-burn injury were excluded from the analysis. Of 5,553 pediatric burn admissions, 297 (5.3%) were due to abuse. Children with non-accidental injuries tended to be younger (2.1 vs. 5.0 years, p<0.0001) and male (66.0 vs. 56.5%, p=0.0008). Scald was the most common mechanism of injury overall (44.8%), and was also the predominant cause of inflicted burns (89.6 vs. 42.3%, p<0.0001). Multivariate logistic regression identified age, gender, presence of a scald, contact, or chemical burn, and injury to the hands, bilateral feet, buttocks, back, and perineum to be significant predictors of abuse. Victims of abuse were also found to have worse outcomes, including mortality (5.4 vs. 2.3%, p=0.0005). After adjusting for age, mechanism of injury, and burn size, abuse remained a significant predictor of mortality (OR 3.3, 95% CI 1.5-7.2) CONCLUSIONS: Clinicians should approach all burn injuries in young children with a high index of suspicion, but in particular those with scalds, or injuries to the buttocks, perineum, or bilateral feet should provoke suspicion. Burns due to abuse are associated with worse outcomes, including length of stay and mortality. Copyright © 2016. Published by Elsevier Ltd.

  1. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  2. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    PubMed

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.

  3. Crystal growth methods dedicated to low solubility actinide oxalates

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-01

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am2(C2O4)3(H2O)3·xH2O, Th(C2O4)2·6H2O, M2+x[PuIV2-xPuIIIx(C2O4)5]·nH2O and M1-x[PuIII1-xPuIVx(C2O4)2·H2O]·nH2O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV-visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds.

  4. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides

    PubMed Central

    Allred, Benjamin E.; Rupert, Peter B.; Gauny, Stacey S.; An, Dahlia D.; Ralston, Corie Y.; Sturzbecher-Hoehne, Manuel; Strong, Roland K.; Abergel, Rebecca J.

    2015-01-01

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications. PMID:26240330

  5. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  6. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture

  7. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    PubMed

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Systematization of actinides using cluster analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  9. Novel Separation of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariella, R

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physicalmore » and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.« less

  10. Impact of a Newly Implemented Burn Protocol on Surgically Managed Partial Thickness Burns at a Specialized Burns Center in Singapore.

    PubMed

    Tay, Khwee-Soon Vincent; Chong, Si-Jack; Tan, Bien-Keem

    2016-03-01

    This study evaluated the impact of a newly implemented protocol for superficial to mid-dermal partial thickness burns which involves early surgery and rapid coverage with biosynthetic dressing in a specialized national burns center in Singapore. Consecutive patients with 5% or greater total body surface area (TBSA) superficial to mid-dermal partial thickness burns injury admitted to the Burns Centre at the Singapore General Hospital between August and December 2014 for surgery within 48 hours of injury were prospectively recruited into the study to form the protocol group. Comparable historical cases from the year 2013 retrieved from the burns center audit database were used to form the historical control group. Demographics (age, sex), type and depth of burns, %TBSA burnt, number of operative sessions, and length of stay were recorded for each patient of both cohorts. Thirty-nine burns patients managed under the new protocol were compared with historical control (n = 39) comparable in age and extensiveness of burns. A significantly shorter length of stay (P < 0.05) per TBSA burns was observed in the new protocol group (0.74 day/%TBSA) versus historical control (1.55 day/%TBSA). Fewer operative sessions were needed under the new protocol for burns 10% or greater TBSA burns (P < 0.05). The authors report their promising experience with a newly implemented protocol for surgically managed burns patients which involves early surgery and appropriate use of biosynthetic dressing on superficial to mid-dermal partial thickness burns. Clinically, shorter lengths of stay, fewer operative sessions, and decreased need for skin grafting of burns patient were observed.

  11. Tweens feel the burn: "salt and ice challenge" burns.

    PubMed

    Roussel, Lauren O; Bell, Derek E

    2016-05-01

    To review our institution's experience with frostbite injury secondary to "salt and ice challenge" (SIC) participation. We conducted a retrospective analysis of intentional freezing burns from 2012 to 2014. Demographics, depth and location of burn, total body surface area of burn, treatment, time to wound healing, length of stay, complications, and motives behind participation were analyzed. Five patients were seen in the emergency department for intentional freezing burns that resulted from SIC (all females; mean age: 12.3 years; range age: 10.0-13.2 years). Mean total body surface area was 0.408%. Salt and ice was in contact with skin for >10 min for two patients, >20 min for two patients, and an unknown duration for one patient. Complications included pain and burn scar dyschromia. Four patients cited peer pressure and desire to replicate SIC as seen on the Internet as their motivation in attempting the challenge. SIC has become a popular, self-harming behavior among youths. Increased public education, and provider and parent awareness of SIC are essential to address this public health concern.

  12. Theory of Photoemission in Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, Axel

    2008-07-01

    A theory is presented which describes the photoemission spectra of actinide compounds starting from the atomic limit of isolated actinide ions. The multiplets of the ion are calculated and an additional term is introduced to describe the interaction with the sea of conduction electrons. This leads to complex mixed-valent ground states, which describes well the rich spectrum observed for PuSe. In particular, the three-peak feature, which is often seen in Pu and Pu compounds in the vicinity of the Fermi level originates from f{sup 6} {yields} f{sup 5} emission. The theory is further applied to PuSb, PuCoGa{sub 5} and Am.more » (author)« less

  13. Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P; Zavarin, M; Leif, R

    2007-12-17

    The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15more » to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.« less

  14. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now.more » The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)« less

  15. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  16. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Aaron T.; Nash, Kenneth L.

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  17. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE PAGES

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  18. Study on the leaching behavior of actinides from nuclear fuel debris

    NASA Astrophysics Data System (ADS)

    Kirishima, Akira; Hirano, Masahiko; Akiyama, Daisuke; Sasaki, Takayuki; Sato, Nobuaki

    2018-04-01

    For the prediction of the leaching behavior of actinides contained in the nuclear fuel debris generated by the Fukushima Daiichi nuclear power plant accident in Japan, simulated fuel debris consisting of a UO2-ZrO2 solid solution doped with 137Cs, 237Np, 236Pu, and 241Am tracers was synthesized and investigated. The synthesis of the debris was carried out by heat treatment at 1200 °C at different oxygen partial pressures, and the samples were subsequently used for leaching tests with Milli-Q water and seawater. The results of the leaching tests indicate that the leaching of actinides depends on the redox conditions under which the debris was generated; for example, debris generated under oxidative conditions releases more actinide nuclides to water than that generated under reductive conditions. Furthermore, we found that, as Zr(IV) increasingly substituted U(IV) in the fluorite crystal structure of the debris, the actinide leaching from the debris decreased. In addition, we found that seawater leached more actinides from the debris than pure water, which seems to be caused by the complexation of actinides by carbonate ions in seawater.

  19. Predictive Modeling in Actinide Chemistry and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  20. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  1. On-line Monitoring of Actinide Concentrations in Molten Salt Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Johnson; Mary Lou Dunzik-Gougar; Shelly X. Li

    2006-11-01

    Pyroprocessing, a treatment method for spent nuclear fuel (SNF), is currently being studied at the Idaho National Laboratory. The key operation of pyroprocessing which takes place in an electrorefiner is the electrochemical separation of actinides from other constituents in spent fuel. Efficient operation of the electrorefiner requires online monitoring of actinide concentrations in the molten salt electrolyte. Square-wave voltammetry (SWV) and normal pulse voltammetry (NPV) are being investigated to assess their applicability to the measurement of actinide concentrations in the electrorefiner.

  2. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume…

  3. Pocket formula for nuclear deformations of actinides

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-06-01

    We have formulated a pocket formula for quadrupole (β2), octupole (β3), hexadecapole (β4) and hexacontatetrapole (β6) deformation of the nuclear ground state of all isotopes of actinide nuclei (89 < Z < 103). This formula is first of its kind and produces a nuclear deformation of all isotopes actinide nuclei 89 < Z < 103 with simple inputs of Z and A. Hence, this formula is useful in the fields of nuclear physics to study the structure and interaction of nuclei.

  4. Sun tanning-related burns--a 3-year experience.

    PubMed

    Piccolo-Lobo, M S; Piccolo, N S; Piccolo-Daher, M T; Cardoso, V M

    1992-04-01

    A retrospective study has analyzed 562 sun-related burns out of 19,643 patients treated at our institution from 1 March 1988 to 28 February 1991. These patients were analysed according to sex, age, burn area, mode and length of treatment and outcome. Females, mainly adults, represented 60.8 per cent of all patients presenting burned due to sun bathing. There is a marked seasonal incidence, proportionally constant throughout these 3 years. The main causes of injury were sun only (36.7 per cent), sun plus fig leaf 'tea' tanning lotion (17.7 per cent) and lemon juice (17.7 per cent). Healing to normal skin appearance was achieved in 99.1 per cent, 0.7 per cent healed with scarring and one patient died due to massive sepsis. The effect of sunlight on skin and the process of 'sunburn' when using homemade plant-derived tanning lotions containing substances which can induce a photodermatitis reaction is also discussed.

  5. Droplet burning at zero G

    NASA Technical Reports Server (NTRS)

    Williams, F. A.

    1978-01-01

    Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.

  6. An insight into burns in a developing country: a Sri Lankan experience.

    PubMed

    Lau, Y S

    2006-10-01

    Burn injuries represent a diverse and varied challenge to medical and paramedical staff. The management of burns and their sequelae in a well-equipped, modern burns unit remains demanding despite advances in surgical techniques and development of tissue-engineered biomaterials; in a developing country, these difficulties are amplified many times. Sri Lanka has a high incidence of burn-related injuries annually due to a combination of adverse social, economic and cultural factors. The management of burn injuries remains a formidable public health problem. The epidemiology of burns, challenges faced in their management and effective strategies specific to Sri Lanka, such as the Safe Bottle Lamp campaign, are highlighted in this paper.

  7. [The post-burn process--a determinant in local surgical treatment of deep burns].

    PubMed

    Bäumer, F; Henrich, H A

    1988-12-01

    Afterburning has been studied in the animal experiment by use of intravital dye indicators and by measuring partial oxygen pressure. After third degree burn the oxygen conduction of the damaged skin increased. The afterburning was seen to be finished on the 5th day after the burn trauma. The histological changes in the depth of the afterburn area reaches to the subcutis. The extend of the afterburn area was not related to the applied temperature or the duration of the experimental burn injury.

  8. Management of facial burns with a collagen/glycosaminoglycan skin substitute-prospective experience with 12 consecutive patients with large, deep facial burns.

    PubMed

    Klein, Matthew B; Engrav, Loren H; Holmes, James H; Friedrich, Jeffrey B; Costa, Beth A; Honari, Shari; Gibran, Nicole S

    2005-05-01

    Management of deep facial burns remains one of the greatest challenges in burn care. We have developed a protocol over the past 20 years for management of facial burns that includes excision and coverage with thick autograft. However, the results were not perfect. Deformities of the eyelids, nose and mouth as well as the prominence of skin graft junctures demonstrated the need to explore novel approaches. Integra has been used with success in the management of burns of the trunk and extremities. The purpose of this study was to prospectively evaluate the aesthetic outcome of the use of Integra for deep facial burns. Twelve consecutive patients underwent excision of large, deep facial burns and placement of Integra. Integra provides excellent color and minimally visible skin graft junctures. The texture is good but not as supple as thick autograft. Integra is not well suited for use in the coverage of eyelid burns due to the need to wait 2 weeks for adequate vascularization. In summary, thick autograft remains the gold standard for deep facial burns. However, for patients with extensive burns and limited donor sites, Integra provides an acceptable alternative.

  9. One-group fission cross sections for plutonium and minor actinides inserted in calculated neutron spectra of fast reactor cooled with lead-208 or lead-bismuth eutectic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khorasanov, G. L.; Blokhin, A. I.

    The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as amore » result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)« less

  10. The lived experience of pediatric burn nurses following patient death.

    PubMed

    Kellogg, Marni B; Barker, Marianne; McCune, Nancy

    2014-01-01

    The purpose of this study is to describe the lived experience of pediatric burn unit nurses who have experienced the death of a patient. A qualitative phenomenological design was used for the interview and analysis. Methods were incorporated into the design to ensure reliability, consistency, and rigor. Using a semi-structured interview guide and phenomenological concepts, the investigators interviewed seven registered nurses who were employed in a pediatric burn unit. Data obtained were analyzed for common themes that emerged during examination of transcribed interviews. Four common themes of feelings were identified: 1) grief and sadness, 2) helplessness, 2) compartmentalization of feelings, and 4) lack of preparedness for dealing with situations involving the death of a pediatric patient. While nurses are emotionally supportive to patients and families, the emotional support available to nurses who are dealing with these situations is lacking. By developing individual coping strategies and seeking peer support, nurses attempt to deal with emotional situations faced in the workplace. Nurses, nurse educators, and administrators must understand the impact of nurses' grief following patient death. By understanding and validating their emotions, it is hoped that nurses will be supported in a way that will enhance a healthy professional environment and personal well-being.

  11. Fusarium spp infections in a pediatric burn unit: nine years of experience.

    PubMed

    Rosanova, María Teresa; Brizuela, Martín; Villasboas, Mabel; Guarracino, Fabian; Alvarez, Veronica; Santos, Patricia; Finquelievich, Jorge

    2016-01-01

    Fusarium spp are ubiquitous fungi recognized as opportunistic agents of human infections, and can produce severe infections in burn patients. The literature on Fusarium spp infections in pediatric burn patients is scarce. To describe the clinical and epidemiological features as well as outcome of Fusarium spp infections in pediatric burn patients. Retrospective, descriptive study of Fusarium spp infections in a specialized intensive care burn unit. In 15 patients Fusarium spp infections were diagnosed. Median age was 48 months. Direct fire injury was observed in ten patients. The median affected burn surface area was 45%. Twelve patients had a full thickness burn. Fourteen patients had a Garces Index ≥3. Fungal infection developed at a median of 11 days after burn injury. Fungi were isolated from burn wound in 14 patients and from the bone in one patient. Amphotericin B was the drug of choice for treatment followed by voriconazole. Median time of treatment completion was 23 days. One patient (7%) died of fungal infection-related causes. In our series Fusarium spp was an uncommon pathogen in severely burnt patients. The burn wound was the most common site of infection and mortality was low. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  12. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    NASA Astrophysics Data System (ADS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  13. Extra-large negative pressure wound therapy dressings for burns - Initial experience with technique, fluid management, and outcomes.

    PubMed

    Fischer, Sebastian; Wall, Jennifer; Pomahac, Bohdan; Riviello, Robert; Halvorson, Eric G

    2016-03-01

    The use of negative-pressure-wound-therapy (NPWT) is associated with improved outcomes in smaller burns. We report our experience using extra-large (XL) NPWT dressings to treat ≥15% total body surface area (TBSA) burned and describe our technique and early outcomes. We also provide NPWT exudate volume for predictive fluid resuscitation in these critically ill patients. We retrospectively reviewed patients treated with XL-NPWT from 2012 to 2014. Following excision/grafting, graft and donor sites were sealed with a layered NPWT dressing. We documented wound size, dressing size, NPWT outputs, graft take, wound infections, and length of stay (LOS). Mean NPWT exudate volume per %TBSA per day was calculated. Twelve burn patients (mean TBSA burned 30%, range 15-60%) were treated with XL-NPWT (dressing TBSA burned and skin graft donor sites range 17-44%). Average graft take was 97%. No wound infections occurred. Two patients had burns ≥50% TBSA and their LOS was reduced compared to ABA averages. XL-NPWT outputs peaked at day 1 after grafting followed by a steady decline until dressings were removed. Average XL-NPWT dressing output during the first 5 days was 101±66mL/%BSA covered per day. 2 patients developed acute kidney injury. The use of XL-NPWT to treat extensive burns is feasible with attention to application technique. NPWT dressings appear to improve graft take, and to decrease risk of infection, LOS, and pain and anxiety associated with wound care. Measured fluid losses can improve patient care in future applications of NPWT to large burn wounds. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. An optimization methodology for heterogeneous minor actinides transmutation

    NASA Astrophysics Data System (ADS)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  15. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2017-12-09

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  16. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Peterson, Dominic S; Montoya, Velma M

    2009-08-01

    Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.

  17. Development of Metallic Fuels for Actinide Transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Steven Lowe; Fielding, Randall Sidney; Benson, Michael Timothy

    between 10 and 60%. In general, the performance of all of these substantially disparate metallic fuel alloys has been observed to be excellent, and their irradiation behaviors are generally consistent with historic norms for metallic fuels without minor actinide additions and having lower Pu or Zr contents. Future work is being undertaken with a view toward increasing the burnup potential of metallic fuels even more. Design innovations under investigation include: 1) lowering the fuel smear density in order to accommodate more swelling, 2) annular fuel geometry to eliminate the need for a sodium bond, 3) minor alloy additions to stabilize lanthanide fission products inside the fuel and prevent their transport to the cladding where they can participate in fuel-cladding chemical interaction (FCCI), and 4) coatings/liners on the cladding inner surface to mitigate FCCI and enable higher temperature operation. This paper will present the current state of development of metallic fuels for actinide transmutation in the US. Highlights will include recent results from metallic fuel casting experiments, experiments to identify alloy additions to immobilize lanthanide fission products, and postirradiation examinations of annular metallic fuels at low burnup.« less

  18. Improving the accuracy of burn-surface estimation.

    PubMed

    Nichter, L S; Williams, J; Bryant, C A; Edlich, R F

    1985-09-01

    A user-friendly computer-assisted method of calculating total body surface area burned (TBSAB) has been developed. This method is more accurate, faster, and subject to less error than conventional methods. For comparison, the ability of 30 physicians to estimate TBSAB was tested. Parameters studied included the effect of prior burn care experience, the influence of burn size, the ability to accurately sketch the size of burns on standard burn charts, and the ability to estimate percent TBSAB from the sketches. Despite the ability for physicians of all levels of training to accurately sketch TBSAB, significant burn size over-estimation (p less than 0.01) and large interrater variability of potential consequence was noted. Direct benefits of a computerized system are many. These include the need for minimal user experience and the ability for wound-trend analysis, permanent record storage, calculation of fluid and caloric requirements, hemodynamic parameters, and the ability to compare meaningfully the different treatment protocols.

  19. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexion of Actinide Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murrray, George M.; Uy, O. Manuel

    The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions. Selectivity for a specific actinide ion is obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide ion. These cavity-containing polymers are produced by using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands are polymerized. The polymers provide useful sequestering agents for removing actinide ions from wastes and will formmore » the basis for a variety of analytical techniques for actinide determination.« less

  20. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  2. Seventeen-Coordinate Actinide Helium Complexes.

    PubMed

    Kaltsoyannis, Nikolas

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe 17 3+ , ThHe 17 4+ , and PaHe 17 4+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe n 3+ (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R 2 >0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preserving self-concept in the burn survivors: a qualitative study.

    PubMed

    Zamanzadeh, Vahid; Valizadeh, Llila; Lotfi, Mojgan; Salehi, Feridoon

    2015-01-01

    Burn injury is a devastating experience affecting all aspects of a person's essence, including his/her identity and perception. These patients require complex cognitive efforts to redefine their identity to deal with difficult condition after burn injury and preserve self-concept. The experience of life after burn injury is generally a solitary one, closely related to the patients' cultural and religious context. Therefore, this study was conducted aiming at investigating burn patients' experiences regarding how to preserve self-concept in life after burn injury in Iran. This qualitative study was carried out using qualitative content analysis and in-depth unstructured interviews with 17 surviving burn subjects. During the qualitative content analysis process, the concept of "locating" as the essence of the participants' experience was extracted as follows: (A) self-exploration (exploring the changes in one's life), (B) others' exploration (exploring the changes in the life of family members and the relationship between self and others), (C) position evaluation (self-position analysis), and (D) self-concept preservation. The present study has developed new understandings of mental experiences of burn patients' self-concept by describing the concept of "self-locating". It helps us in classifying and understanding the concepts described in comprehensive theories developed in this area. They do this by focusing on what burn patients experience for choosing self-preservation strategies and having a meaningful life. The finding can be used as a conceptual framework for palliative care program in Iran.

  4. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Venuti, Michael; Shi, Tan; Fellers, Deion; Morris, Christopher; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the energy of UCN, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, especially for samples with a surface oxide layer, this work has the potential to separate the various damage mechanisms proposed in previous works. During the irradiation with UCN, fission events are monitored by coincidence counting between prompt gamma rays using NaI detectors. Alpha spectroscopy of the ejected actinide material is performed in a custom-built ionization chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this presentation, we will discuss our experimental setup and present the preliminary results.

  5. Assessment of burn-specific health-related quality of life and patient scar status following burn.

    PubMed

    Oh, Hyunjin; Boo, Sunjoo

    2017-11-01

    This study assessed patient-perceived levels of scar assessment and burn-specific quality of life (QOL) in Korean burn patients admitted to burn care centers and identified differences in scar assessment and QOL based on various patient characteristics. A cross-sectional descriptive study using anonymous paper-based survey methods was conducted with 100 burn patients from three burn centers specializing in burn care in South Korea. Mean subject age was 44.5 years old, and 69% of the subjects were men. The overall mean QOL was 2.91 out of 5. QOL was lowest for the work subdomain (2.25±1.45) followed by the treatment regimen subdomain (2.32±1.16). The subjects' mean total scar assessment score was 35.51 out of 60, and subjects were most unsatisfied with scar color. Subjects with low income, flame-source burns, severe burns, visible scars, and scars on face or hand reported significantly lower QOL. Subjects with severe burn degree and burn range perceived their burn scar condition to be worse than that of others. The results show that burn subjects experience the most difficulties with their work and the treatment regimen. Subjects with severe burn and visible scarring have a reduced QOL and a poor scar status. Scar management intervention may improve QOL of burn patients especially those with severe burn and visible scars. Further studies are warranted to evaluate the relationship between scar assessment and QOL. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  6. Clinical and demographic features of burn injuries in karachi: a six-year experience at the burns centre, civil hospital, Karachi

    PubMed Central

    Ali, S.A.; Hamiz-ul-Fawwad, S.; Al-Ibran, E.; Ahmed, G.; Saleem, A.; Mustafa, D.; Hussain, M.

    2016-01-01

    Summary Burn injuries are a leading cause of morbidity and mortality, with 195,000 deaths annually. This study was conducted to identify the demographics of burn victims and the effect of different variables on the outcome of their injuries. 4016 patients admitted to the Burns Centre, Civil Hospital Karachi from January 2006 to December 2011 were retrospectively analyzed. Demographics, burn injury details and their outcome were recorded in a pre-designed questionnaire. Injuries were categorized as: fire, chemical, scald or electrical. To estimate total body surface area (TBSA) burned in adults, the rule of nines was used. For children and infants, the Lund-Browder chart was employed. SPSS v16.0 software was used for analysis. Frequencies and percentages of all variables, and the measure of central tendencies and dispersion for continuous variables were calculated. Cross tabs were used to assess mortality. Mean age was 28.13 years. More than half of the cases (n=2337, 58.2%) were aged between 16-30 years. Labourers, housewives and students were the most commonly affected groups. Burn injuries by flame/fire and electricity were most common. Most cases were accidental, followed by suicide attempts and homicides. Mean percentage of TBSA affected was 35.49%. Mean duration of hospital stay was 16.45 days. 50.6% of the expired cases were females. The mean age of expired patients was 30.07 while for patients who survived it was 27.01 years. The outcome of burn injuries is related to various demographic factors. Female gender, increasing age, burn injuries following suicide attempts and greater surface area involvement predict poor outcome. PMID:27857643

  7. Modeling of the jack rabbit series of experiments with a temperature based reactive burn model

    NASA Astrophysics Data System (ADS)

    Desbiens, Nicolas

    2017-01-01

    The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.

  8. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  9. Preserving Self-Concept in the Burn Survivors: A Qualitative Study

    PubMed Central

    Zamanzadeh, Vahid; Valizadeh, Llila; Lotfi, Mojgan; Salehi, Feridoon

    2015-01-01

    Background: Burn injury is a devastating experience affecting all aspects of a person's essence, including his/her identity and perception. These patients require complex cognitive efforts to redefine their identity to deal with difficult condition after burn injury and preserve self-concept. The experience of life after burn injury is generally a solitary one, closely related to the patients’ cultural and religious context. Therefore, this study was conducted aiming at investigating burn patients’ experiences regarding how to preserve self-concept in life after burn injury in Iran. Materials and Methods: This qualitative study was carried out using qualitative content analysis and in-depth unstructured interviews with 17 surviving burn subjects. Results: During the qualitative content analysis process, the concept of “locating” as the essence of the participants’ experience was extracted as follows: (A) self-exploration (exploring the changes in one's life), (B) others’ exploration (exploring the changes in the life of family members and the relationship between self and others), (C) position evaluation (self-position analysis), and (D) self-concept preservation. Conclusion: The present study has developed new understandings of mental experiences of burn patients’ self-concept by describing the concept of “self-locating”. It helps us in classifying and understanding the concepts described in comprehensive theories developed in this area. They do this by focusing on what burn patients experience for choosing self-preservation strategies and having a meaningful life. The finding can be used as a conceptual framework for palliative care program in Iran. PMID:26009672

  10. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  11. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  12. [Experimental determination of the time-dependent extent of after-burning with reference to possibilities of the plastic surgery reconstruction of 3d degree burns].

    PubMed

    Bäumer, F; Henrich, H A; Ussmüller, J

    1986-02-01

    The present experiments try to answer the question as to the time-dependent extent of the after-burning process after full-thickness burn (third degree). For an early plastic surgical treatment it was of interest to determine the most early time of escharotomy. The time-dependent spreading of the after-burning area reached its maximum five days after the burn injury. The after-burning area was marked by intravenous injections of Patentblau which caused distinct intravital colouring. Subsequently no further progress could be observed. In the present experiments we suggest this time as the earliest time for plastic covering in case it would be dependent upon the end of the after-burning process.

  13. Enzymatic debridement for the treatment of severely burned upper extremities - early single center experiences.

    PubMed

    Cordts, Tomke; Horter, Johannes; Vogelpohl, Julian; Kremer, Thomas; Kneser, Ulrich; Hernekamp, Jochen-Frederick

    2016-06-24

    Severe burns of hands and arms are complex and challenging injuries. The Standard of care (SOC) - necrosectomy with skin grafting - is often associated with poor functional or aesthetic outcome. Enzymatic debridement (ED) is considered one promising alternative but, until recently, results proved to be highly variable. Between 04/2014 and 04/2015, 16 patients with deep partial- to full-thickness burns of the upper extremities underwent enzymatic debridement (ED) in our Burn Center and were evaluated for extent of additional surgery, wound healing, pain management and functional parameters. Following ED, no further surgical intervention was required in 53.8 % of the study population. In patients who required surgical treatment, the the skin-grafted area could be reduced by 37.0 % when compared to initial assessment. Time from injury to ED was 24.4 h and patients were able to start physical therapy after 2.0 days but suffered from prolonged wound closure (28.0 days). Regionally administered anesthesia proved to be superior to pain medication alone as pain levels and consumed morphine-equivalent were lower. Post-demission follow-up showed good functional results and pain levels with low scores in two self-report questionnaires (DASH, PRWE-G) but 3 patients reported increased susceptibility to shear stress. Based on these early experiences, we developed a 3-step algorithm for consecutive patients allowing appropriate and individualized treatment selection. We see a potential benefit for ED in the treatment of severely burned hands and forearms but further investigations and proper prospective, randomized controlled trials are needed to statistically support any outlined assumptions.

  14. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Peter; Lenzen, Meehan

    "Energy Frontier Research Center Materials Science of Actinides" was submitted by the EFRC for Materials Science of Actinides (MSA) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Researchmore » Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  15. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  16. Disaster planning: the basics of creating a burn mass casualty disaster plan for a burn center.

    PubMed

    Kearns, Randy D; Conlon, Kathe M; Valenta, Andrea L; Lord, Graydon C; Cairns, Charles B; Holmes, James H; Johnson, Daryhl D; Matherly, Annette F; Sawyer, Dalton; Skarote, Mary Beth; Siler, Sean M; Helminiak, Radm Clare; Cairns, Bruce A

    2014-01-01

    In 2005, the American Burn Association published burn disaster guidelines. This work recognized that local and state assets are the most important resources in the initial 24- to 48-hour management of a burn disaster. Historical experiences suggest there is ample opportunity to improve local and state preparedness for a major burn disaster. This review will focus on the basics of developing a burn surge disaster plan for a mass casualty event. In the event of a disaster, burn centers must recognize their place in the context of local and state disaster plan activation. Planning for a burn center takes on three forms; institutional/intrafacility, interfacility/intrastate, and interstate/regional. Priorities for a burn disaster plan include: coordination, communication, triage, plan activation (trigger point), surge, and regional capacity. Capacity and capability of the plan should be modeled and exercised to determine limitations and identify breaking points. When there is more than one burn center in a given state or jurisdiction, close coordination and communication between the burn centers are essential for a successful response. Burn surge mass casualty planning at the facility and specialty planning levels, including a state burn surge disaster plan, must have interface points with governmental plans. Local, state, and federal governmental agencies have key roles and responsibilities in a burn mass casualty disaster. This work will include a framework and critical concepts any burn disaster planning effort should consider when developing future plans.

  17. Pentadecapeptide BPC 157 cream improves burn-wound healing and attenuates burn-gastric lesions in mice.

    PubMed

    Mikus, D; Sikiric, P; Seiwerth, S; Petricevic, A; Aralica, G; Druzijancic, N; Rucman, R; Petek, M; Pigac, B; Perovic, D; Kolombo, M; Kokic, N; Mikus, S; Duplancic, B; Fattorini, I; Turkovic, B; Rotkvic, I; Mise, S; Prkacin, I; Konjevoda, P; Stambuk, N; Anic, T

    2001-12-01

    The effects of the gastric pentadecapeptide BPC 157 were investigated when administered topically or systemically in burned mice. This agent is known to have a beneficial effect in a variety of models of gastrointestinal lesions, as well as on wound or fracture healing. Deep partial skin thickness burns (1.5x1.5 cm) covering 20% of total body area, were induced under anesthesia on the back of mice by controlled burning and gastric lesions were assessed 1, 2, 3, 7, 14 and 21 days following injury. The first application of BPC 157 was immediately following burning, and thereafter, once daily, until 24 h before sacrifice. In the initial experiments, exposure to direct flame for 5 s, the BPC 157 was applied at 10 microg or 10 ng/kg b.w. intraperitoneally (i.p.) by injection or alternatively, topically, at the burn, as a thin layer of cream (50 microg of BPC 157 dissolved in 2 ml of distilled water was mixed with 50 g of commercial neutral cream (also used as local vehicle-control)), while silver sulfadiazine 1% cream was a standard agent acting locally. Others received no local medication: they were treated i.p. by injection of distilled water (distilled water-control) or left without any medication (control). In subsequent experiments involving deeper burns (direct flame for 7 s), BPC 157 creams (50 microg, 5 microg, 500 ng, 50 ng or 5 ng of BPC 157 dissolved in 2 ml of distilled water was mixed with 50 g of commercial neutral cream), or vehicle as a thin layer of cream, were applied topically, at the burn. Compared with untreated controls, in both experiments, in the BPC 157 cream-treated mice all parameters of burn healing were improved throughout the experiment: less edema was observed and inflammatory cell numbers decreased. Less necrosis was seen with an increased number of capillaries along with an advanced formation of dermal reticulin and collagen fibers. An increased number of preserved follicles were observed. Two weeks after injury, BPC 157 cream

  18. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    DOE PAGES

    Mincher, Bruce J.; Wai, Chien M.; Fox, Robert V.; ...

    2015-10-28

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid–liquid solvent extraction solutions. As a result, examples of the application of this novel technology for actinide and lanthanide separations are presented.

  19. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  20. Civilian blast-related burn injuries

    PubMed Central

    Patel, J.N.; Tan, A.; Dziewulski, P.

    2016-01-01

    Summary There is limited English literature describing the experience of a civilian hospital managing blast-related burn injuries. As the largest regional burn unit, we reviewed our cases with the aim of identifying means to improve current management. A 6-year retrospective analysis of all patients coded as sustaining blast-related burns was conducted through the unit’s burns database. Medical case notes were reviewed for information on burn demographics, management and outcomes. 42 patients were identified. Male to female ratio was 37:5. Age range was 12-84 years, (mean=33 years). Total body surface area (%TBSA) burn ranged from 0.25% to 60%, (median=1%). The most common burn injury was flame (31/42, 73.8%). Gas explosions were the most common mechanism of injury (19 cases; 45.2%). 7/42 cases (16.7%) had full ATLS management pre-transfer to the burns unit. The Injury Severity Score (ISS) ranged from 0-43 (median=2). 17/42 (40.4%) patients required admission. 37/36 (88.1%) patients were managed conservatively of which 1 patient later required surgery due to deeper burns. 5/42 (11.9%) patients required surgical management at presentation and these were noted to be burns with >15% TBSA requiring resuscitation. One case required emergency escharotomies and finger amputations. All patients survived their burn injuries. Blast-related burn injuries are generally uncommon in the civilian setting. Following proper assessment, most of these cases can be deemed as minor injuries and managed conservatively. Improvement in burns management education and training at local emergency departments would provide efficient patient care and avoid unnecessary referrals to a burns unit. PMID:27857651

  1. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  2. [Comparison of occupational and home accidents as a cause of severe burns. The experience of a large burn center in an industrial city].

    PubMed

    Romano, C; Arturi, L; Rubino, G F; Magliacani, G

    1989-01-01

    Among acute "traumatisms", occupational and domestic accidents chiefly share burn. To compare these two causes of severe burns, we examined clinical records of patients hospitalized from January 1986 to February 1989 in the "Grand Burns Center" at the C.T.O. hospital in Turin. Data exclusively refer to patients over 12 years old. 61 out of 313 cases (19%) were due to occupational burns, 221 (71%) to domestic ones (left cases including burns occurred in different surroundings). Males predominance was very high (95%) in the occupational settings, lower though still relevant (60%) in the domestic ones. The topographic distribution of the burns did not show any relevant difference. Similarly, the two groups did not differ as the affected percent of the body surface area (BSA) is concerned: in both cases burns extended cases. Decreased patients were fairly more numerous among the domestic burns (33%) as compared to the occupational ones (18%). The overwhelming majority (90.5%) of domestic burns were caused by fire; such a predominance, though present, was lower (68.8%) among occupational accidents. More in detail, domestic burns were caused as follows: alcohol spraying to stir a fire (26%), gas burst (25%), flammable substances exposed to heat sources (18%), hot water or different liquid (8%), fall over heating devices (6%), fires from cigarettes in bed (5%), kitchen stoves (with or without clothing fire) (5%), brushwood burning (4%), other (3%). It is worth noting that in as many as 40% of the cases of domestic burns patients were affected by a pre-existing neuro-psychic disorder, namely: personality disorders (15%), psychiatric disorders (%), epilepsy (9%), mental debility (7%).

  3. X-ray GEM Detectors for Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.

    2009-11-01

    The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.

  4. Comparative Photoemission Study of Actinide (Am, Pu, Np and U) Metals, Nitrides, and Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gouder, Thomas; Seibert, Alice; Rebizant, Jean

    2007-07-01

    Core-level and valence-band spectra of Pu and the other early actinide compounds show remarkable systematics, which can be understood in the framework of final state screening. We compare the early actinide (U, Np, Pu and Am) metals, nitrides and hydrides and a few other specific compounds (PuSe, PuS, PuCx, PuSix) prepared as thin films by sputter deposition. In choosing these systems, we combine inherent 5f band narrowing, due to 5f orbital contraction throughout the actinide series, with variations of the chemical environment in the compounds. Goal of this work was to learn more on the electronic structure of the earlymore » actinide systems and to achieve the correct interpretation of their photoemission spectra. The highly correlated nature of the 5f states in systems, which are on the verge to localization, makes this a challenging task, because of the peculiar interplay between ground state DOS and final-state effects. Their influence can be estimated by doing systematic studies on systems with different (5f) bandwidths. We conclude on the basis of such systematic experiments that final-state effects due to strong e-e correlations in narrow 5f-band systems lead to multiplet like structures, analogous to those observed in the case of systems with localized electron states. Such observations in essentially band-like 5f-systems was first surprising, but the astonishing similarity of photoemission spectra of very different chemical systems (e.g. PuSe, Pu{sub 2}C{sub 3}..) points to a common origin, relating them to atomic features rather than material dependent density of states (DOS) features. (authors)« less

  5. A Screened Hybrid DFT Study of Actinide Oxides, Nitrides, and Carbides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiaodong; Martin, Richard L.; Scuseria, Gustavo E.

    2013-06-27

    A systematic study of the structural, electronic, and magnetic properties of actinide oxides, nitrides, and carbides (AnX1–2 with X = C, N, O) is performed using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional. Our computed results show that the screened hybrid HSE functional gives a good description of the electronic and structural properties of actinide dioxides (strongly correlated insulators) when compared with available experimental data. However, there are still some problems reproducing the electronic properties of actinide nitrides and carbides (strongly correlated metals). In addition, in order to compare with the results by HSE, the structures, electronic, and magnetic properties of thesemore » actinide compounds are also investigated in the PBE and PBE+U approximation. Interestingly, the density of states of UN obtained with PBE compares well with the experimental photoemission spectra, in contrast to the hybrid approximation. This is presumably related to the need of additional screening in the Hartree–Fock exchange term of the metallic phases.« less

  6. Burns teaching in UK medical schools: Is it enough?

    PubMed

    Zinchenko, Ruslan; Perry, Fiona M; Dheansa, Baljit S

    2016-02-01

    Burns are frequently seen and managed in non-specialist settings. The crowding of the UK medical undergraduate curriculum may have resulted in the reduction of teaching on burns. To determine the burns education experience and the level of competence among UK final year medical students in assessing and acutely managing patients with burns. An online questionnaire was circulated among UK final year medical students. There was a total of 348 respondents. The majority of the respondents (70%) have not received any specific teaching on how to manage patients with burns. Nearly two-thirds of the students (66%) have never seen a patient being managed for burns throughout their training. Over 90% of respondents stated that they would not feel confident in initially managing a burn in the emergency department. The majority of the respondents (57%) have not heard of the criteria for referring a burns patient for further specialist management. There was almost universal agreement about the importance of knowing how to manage a burn initially. There seems to be a lack of consistent undergraduate training in burns management and final year students lack the experience and knowledge to initially manage burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  7. Results from MARBLE DT Experiments on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Cooley, J. H.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2017-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first experiments using deuterated foam and tritium gas have been performed. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  8. Synthesis and characterisation of PuPO4 - a potential analytical standard for EPMA actinide quantification

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Popa, K.; Pöml, P.

    2018-01-01

    Transmutation nuclear fuels contain weight percentage quantities of actinide elements, including Pu, Am and Np. Because of the complex spectra presented by actinide elements using electron probe microanalysis (EPMA), it is necessary to have relatively pure actinide element standards to facilitate overlap correction and accurate quantitation. Synthesis of actinide oxide standards is complicated by their multiple oxidation states, which can result in inhomogeneous standards or standards that are not stable at atmospheric conditions. Synthesis of PuP4 results in a specimen that exhibits stable oxidation-reduction chemistry and is sufficiently homogenous to serve as an EPMA standard. This approach shows promise as a method for producing viable actinide standards for microanalysis.

  9. A retrospective review of burn dressings on a porcine burn model.

    PubMed

    Wang, Xue-Qing; Kravchuk, Olena; Kimble, Roy M

    2010-08-01

    This is a study to compare wound healing among three types of dressings on a porcine model with deep-dermal-partial-thickness burns. The burns in this study were from eight animal trials conducted in the past for other purposes and only burns with a uniform pale appearance that had served as controls in original experiments were selected. In total, there were 57 burns in 33 pigs, using one of following three dressings: Acticoat (Silver) (3 trials), Jelonet (Gauze) (3 trials), and Solosite Gel/Jelonet (Gel/Gauze) (2 trials). The wound healing assessments included wound re-epithelialisation during a 6-week period, clinical and histological scar assessments at week 6 after burn. Of all wound healing/scar assessments, only re-epithelialisation showed statistical difference between dressings. Earlier re-epithelialisation was observed in Gel/Gauze dressings compared to Silver and/or Gauze dressings. However, this study revealed huge variation in wound healing outcome between 3 trials within both Silver and/or Gauze dressings, supported by significant differences on re-epithelialisation, clinical and histological scar measurements. In addition, it was found that larger animals healed better than smaller ones, based on weights from 21 pigs. Of all dressings, Silver delivers the best protection for wound colonization/infection. Wound colonization/infection was found to confine wound healing and lead to thinner RND in scars. From this study, we cannot find enough evidence to suggest the beneficial effect of one dressing(s) over others on burn wound healing outcome on a porcine model with small deep-dermal-partial-thickness burns with a relative small sample size.

  10. Aging of Diesel and Wood Burning Emissions in Smogchamber Experiments

    NASA Astrophysics Data System (ADS)

    Prevot, Andre S. H.

    2010-05-01

    Photochemical aging experiments were performed for emissions of a diesel passenger car and logwood-burner at the smogchamber at the Paul Scherrer Institute in Switzerland. The measurements include black carbon measurements (with Aethalometer, Multi-Angle Absorption Photometer, Single Particle Soot Photometer (SP-2), and Photoacoustic Spectrometer), organic mass measurements with the Aerodyne high-resolution Aerosol mass spectrometer and off-line GC-MS measurements. Single particle composition was measured with the TSI-Aerosol time-of-flight mass spectrometer. The size distribution is characterized with a scanning mobility particle sizer, and the hygroscopicity with a hygroscopicity tandem differential mobility analyzer. The given overview of the results of experiments during the last 1.5 years will focus on the formation secondary organic aerosol and include the oxidation of primary organic aerosols and the change of optical and hygroscopic properties. A considerable variability of most results is found for different after treatment systems of diesel cars and for different burning conditions of the log-wood burner which will be discussed in detail.

  11. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been

  12. Advancing the scientific basis of trivalent actinide-lanthanide separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, K.L.

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in theirmore » bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)« less

  13. Method for the concentration and separation of actinides from biological and environmental samples

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1989-01-01

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting.

  14. Sibling experiences after a major childhood burn injury.

    PubMed

    Lehna, Carlee

    2010-01-01

    The purpose of this research project was to understand, primarily from the sibling perspective, the effect of a child's major burn injury on his or her sibling. A mixed method qualitative dominant design was implemented using the life story method for the qualitative portion. Additionally, the Sibling Relationship Questionnaire -Revised (SRQ-R) was used as a structured interview guide and for calculating scoring data to explore sibling relationship factors of warmth/closeness, rivalry, conflict, and relative status/power. Participants from 22 family cases (one or multiple family members) and 40 individuals were interviewed. To capture impact on the family over time, interviews began a minimum of two years post-burn. The central thematic pattern for the sibling relationship in families having a child with a major burn injury was that of normalization. Two components of normalization were described: areas of normalization and the process of adjustment. Areas of normalization were found in play and other activities, in school and work, and in family relations with siblings. The process of adjustment was varied and often gradual, involved school and work re-entry, and in some instances, seemed to change life perspective. Clinical implications in providing family-centered care can focus on promoting normalization by assessing and supporting siblings who may only be occasionally seen in the hospital or clinic.

  15. Animal models in burn research.

    PubMed

    Abdullahi, A; Amini-Nik, S; Jeschke, M G

    2014-09-01

    Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.

  16. Evaluation of long term health-related quality of life in extensive burns: a 12-year experience in a burn center.

    PubMed

    Xie, Bing; Xiao, Shi-chu; Zhu, Shi-hui; Xia, Zhao-fan

    2012-05-01

    We sought to evaluate the long term health-related quality of life (HRQOL) in patients survived severely extensive burn and identify their clinical predicting factors correlated with HRQOL. A cross-sectional study was conducted in 20 patients survived more than 2 years with extensive burn involving ≥70% total body surface area (TBSA) between 1997 and 2009 in a burn center in Shanghai. Short Form-36 Medical Outcomes Survey (SF-36), Brief Version of Burn Specific Health Scale (BSHS-B) and Michigan Hand Outcome Questionnaire (MHQ) were used for the present evaluation. SF-36 scores were compared with a healthy Chinese population, and linear correlation analysis was performed to screen the clinical relating factors predicting physical and mental component summary (PCS and MCS) scores from SF-36. HRQOL scores from SF-36 were significantly lower in the domains of physical functioning, role limitations due to physical problems, pain, social functioning and role limitations due to emotional problems compared with population norms. Multiple linear regression analysis demonstrated that only return to work (RTW) predicted improved PCS. While age at injury, facial burns, skin grafting and length of hospital stay were correlated with MCS. Work, body image and heat sensitivity obtained the lowest BSHS-B scores in all 9 domains. Improvements of HRQOL could still be seen in BSHS-B scores in domains of simple abilities, hand function, work and affect even after a quite long interval between burns and testing. Hand function of extensive burn patients obtained relatively poor MHQ scores, especially in those without RTW. Patients with extensive burns have a poorer quality of life compared with that of general population. Relatively poor physical and psychological problems still exist even after a long period. Meanwhile, a trend of gradual improvements was noted. This information will aid clinicians in decision-making of comprehensive systematic regimens for long term rehabilitation

  17. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in themore » Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)« less

  18. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    PubMed

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  19. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  20. Method for the concentration and separation of actinides from biological and environmental samples

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1989-05-30

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

  1. CHARACTERIZATION OF PARTICULATE MATTER EMISSION FROM OPEN BURNING OF RICE STRAW

    PubMed Central

    Oanh, Nguyen Thi Kim; Bich, Thuy Ly; Tipayarom, Danutawat; Manadhar, Bhai R.; Prapat, Pongkiatkul; Simpson, Christopher D.; Liu, L-J Sally

    2010-01-01

    Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003–2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EFs varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EFs were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20±8 g kg−1 RS) than hood spread burning (4.7±2.2 g kg−1 RS). The majority of PM emitted from the field burning was PM2.5 with EF of 5.1±0.7 g m−2 or 8.3±2.7 g kg−1 RS burned. The coarse PM fraction (PM10-2.5) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM10 (9.4±3.5 g kg−1 RS) was not significantly higher than PM2.5. PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM1.1. The most significant components in PM2.5 and PM10 include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration, an

  2. An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Levitskaia, Tatiana G.; Wilden, Andreas

    A system is being developed to separate trivalent actinides from lanthanide fission product elements that uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanide ions into an organic phase, while the actinide ions are held in the citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA). Earlier investigations of this system using a 2-cm centrifugal contactor revealed that the relatively slow extraction of Sm3+, Eu3+, and Gd3+ resulted in low separation factors from Am3+. In the work reported here, adjustments to the aqueous phase chemistry were made to improve the extraction rates. The results suggest that increasing the concentration ofmore » the citric acid buffer from 0.2 to 0.6 mol/L, and lowering the pH from 3.1 to 2.6, significantly improved lanthanide extraction rates resulting in an actinide/lanthanide separation system suitable for deployment in centrifugal contactors. Experiments performed to evaluate whether the lanthanide extraction rates can be improved by replacing aqueous HEDTA with nitrilotriacetic acid (NTA) exhibited promising results. However, NTA exhibited an unsatisfactorily high distribution value for Am3+ under the extraction conditions examined.« less

  3. Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and "minor" actinides

    NASA Astrophysics Data System (ADS)

    Ewing, Rodney C.; Weber, William J.; Lian, Jie

    2004-06-01

    During the past half-century, the nuclear fuel cycle has generated approximately 1400 metric tons of plutonium and substantial quantities of the "minor" actinides, such as Np, Am, and Cm. The successful disposition of these actinides has an important impact on the strategy for developing advanced nuclear fuel cycles, weapons proliferation, and the geologic disposal of high-level radioactive waste. During the last decade, there has been substantial interest in the use of the isometric pyrochlore structure-type, A2B2O7, for the immobilization of actinides. Most of the interest has focused on titanate-pyrochlore because of its chemical durability; however, these compositions experience a radiation-induced transition from the crystalline-to-aperiodic state due to radiation damage from the alpha-decay of actinides. Depending on the actinide concentration, the titanate pyrochlore will become amorphous in less than 1000 years of storage. Recently, systematic ion beam irradiations of a variety of pyrochlore compositions has revealed that many zirconate pyrochlores do not become amorphous, but remain crystalline as a defect fluorite structure-type due to disordering of the A- and B-site cations. The zirconate pyrochlores will remain crystalline even to very high doses, greater than 100 displacements per atom. Systematic experimental studies of actinide-doped and ion beam-irradiated pyrochlore, analyses of natural U- and Th-bearing pyrochlore, and simulations of the energetics of the disordering process now provide a rather detailed understanding of the structural and chemical controls on the response of pyrochlore to radiation. These results provide a solid basis for predicting the behavior and durability of pyrochlore used to immobilize plutonium.

  4. A lateral tarsorrhaphy with forehead hitch to pre-empt and treat burns ectropion with a contextual review of burns ectropion management.

    PubMed

    Lymperopoulos, Nikolaos S; Jordan, Daniel J; Jeevan, Ranjeet; Shokrollahi, Kayvan

    2016-01-01

    Facial burns around the eyes and eyelid ectropion can lead to corneal exposure, irritation, dryness, epiphora, infection or visual loss. We undertook a review of the published articles describing management of eyelid burns as well as methods to treat or prevent ectropion. We describe early experience of a surgical technique that we have found to mitigate ectropion in facial burns with peri-ocular involvement. Two illustrative cases with our surgical technique is described from our experience of three cases. We reviewed the literature using the PubMed and EMBASE databases using the search terms 'burn' and 'ectropion'. The literature review produced a total of 17 relevant papers. Treatment options for eyelid burns were varied and were invariably level 4 or 5 evidence. Various techniques were used to treat eyelid burns including the use of a full thickness skin graft with or without concurrent scar contracture release but also use of a local flap reconstruction with or without a tissue expander or release of the underlying muscle. Other techniques included canthoplasty, Z-plasty, forehead flaps, fat transfer, and tarsorrhaphy with full thickness skin grafting. In general, the focus of articles was therapeutic and reconstructive rather than pre-emptive/preventative management. We describe our early experience of a novel technique for temporary lateral tarsorrhaphy with forehead hitch which protexts the globe and counters the scar- and gravity-related ectropic effects on the lower eyelids. Facial burns pose a difficult problem to the burn surgeon, especially when the eyelids are affected, both directly or indirectly. The optimal surgical management of eyelid burns remains unclear and the literature base lies mainly in the domain of case series. We review the literature on this subject and tabulate our findings and also describe our contribution to this area with a method of lateral and lower lid elevator that we have found valuable.

  5. Burning Issue: Handling Household Burns

    MedlinePlus

    ... hot objects or liquid, fire, friction, the sun, electricity, or certain chemicals. Each year, about a half- ... infant or elderly. the burn was caused by electricity, which can lead to “invisible” burns. Links Burns ...

  6. Analysis methodology and development of a statistical tool for biodistribution data from internal contamination with actinides.

    PubMed

    Lamart, Stephanie; Griffiths, Nina M; Tchitchek, Nicolas; Angulo, Jaime F; Van der Meeren, Anne

    2017-03-01

    The aim of this work was to develop a computational tool that integrates several statistical analysis features for biodistribution data from internal contamination experiments. These data represent actinide levels in biological compartments as a function of time and are derived from activity measurements in tissues and excreta. These experiments aim at assessing the influence of different contamination conditions (e.g. intake route or radioelement) on the biological behavior of the contaminant. The ever increasing number of datasets and diversity of experimental conditions make the handling and analysis of biodistribution data difficult. This work sought to facilitate the statistical analysis of a large number of datasets and the comparison of results from diverse experimental conditions. Functional modules were developed using the open-source programming language R to facilitate specific operations: descriptive statistics, visual comparison, curve fitting, and implementation of biokinetic models. In addition, the structure of the datasets was harmonized using the same table format. Analysis outputs can be written in text files and updated data can be written in the consistent table format. Hence, a data repository is built progressively, which is essential for the optimal use of animal data. Graphical representations can be automatically generated and saved as image files. The resulting computational tool was applied using data derived from wound contamination experiments conducted under different conditions. In facilitating biodistribution data handling and statistical analyses, this computational tool ensures faster analyses and a better reproducibility compared with the use of multiple office software applications. Furthermore, re-analysis of archival data and comparison of data from different sources is made much easier. Hence this tool will help to understand better the influence of contamination characteristics on actinide biokinetics. Our approach can aid

  7. Deep sole burns in several participants in a traditional festival of the firewalking ceremony in Kee-lung, Taiwan--clinical experiences and prevention strategies.

    PubMed

    Chang, Shun-Cheng; Hsu, Chih-Kang; Tzeng, Yuan-Sheng; Teng, Shou-Cheng; Fu, Ju-Peng; Dai, Niann-Tzyy; Chen, Shyi-Gen; Chen, Tim-Mo; Feng, Chun-Che

    2012-11-01

    Firewalking is a common Taoist cleansing ceremony in Taiwan, but burns associated with the practice have rarely been reported. We analyzed the patients with plantar burns from one firewalking ceremony. In one firewalking ceremony, 12 Taoist disciples suffered from contact burns to the soles of their feet while walking over burning coals. Eight of them had at least second-degree burns over areas larger than 1% of their total body surface areas (TBSAs). The age, sex, medical history, date of injury, time taken to traverse the fire pit, depth and TBSA of the burns, treatment, length of stay, and outcome were recorded and analyzed. Deep, disseminated second- to third-degree burns were noted and healing took as long as three weeks in some patients. Because disseminated hypertrophic scars form after burns, the soles involved regain much of their tensile strength while walking. The patients experienced only a few difficulties in their daily lives three months after injury. From our experience treating patients with deep disseminated second- to third-degree plantar burns caused by firewalking, we conclude that they should be treated conservatively, with secondary healing rather than a skin graft. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  8. Magnetic susceptibilities of actinide 3d-metal intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, R.B.; d'Albuquerque e Castro, J.; Troper, A.

    1988-04-15

    We have numerically calculated the magnetic susceptibilities which appear in the Hartree--Fock instability criterion for actinide 3d transition-metal intermetallic compounds. This calculation is based on a previous tight-binding description of these actinide-based compounds (A. Troper and A. A. Gomes, Phys. Rev. B 34, 6487 (1986)). The parameters of the calculation, which starts from simple tight-binding d and f bands are (i) occupation numbers, (ii) ratio of d-f hybridization to d bandwidth, and (iii) electron-electron Coulomb-type interactions.

  9. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  10. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  11. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with backtrajectory calculation

    NASA Astrophysics Data System (ADS)

    Ladstaetter-Weissenmayer, A.; Meyer-Arnek, J.; Burrows, J. P.

    During the dry season, biomass burning is an important source of ozone precursors for the tropical troposphere, and ozone formation can occur in biomass burning plumes originating in Indonesia and northern Australia. Satellite based GOME (Global Ozone Measuring experiment) data are used to characterize the amount of tropospheric ozone production over this region during the El Niño event in September 1997 compared to a so called "normal" year 1998. Large scale biomass burning occurred over Kalimantan in 1997 caused by the absence of the northern monsoon rains, leading to significant increases in tropospheric ozone. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM). Backtrajectory calculations show that Indonesia is influenced every summer by the emissions of trace gases from biomass buring over northern Australia. But in 1997 over Indonesia an increasing of tropospheric ozone amounts can be observed caused by the fires over Indonesia itself as well as by northern Australia. The analysis of the measurements of BIBLE-A (Biomass Burning and Lightning Experiment) and using ATSR (Along the Track Scanning Radiometer) data show differences in the view to the intensity of fire counts and therefore in the amount of the emission of precursors of tropospheric ozone comparing September 1997 to September 1998.

  12. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  13. Application of Haddon's matrix in qualitative research methodology: an experience in burns epidemiology.

    PubMed

    Deljavan, Reza; Sadeghi-Bazargani, Homayoun; Fouladi, Nasrin; Arshi, Shahnam; Mohammadi, Reza

    2012-01-01

    Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon's matrix) through qualitative research methods to better understand people's perceptions about burn injuries. This study applied Haddon's matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon's matrix was used to develop an interview guide and also through the analysis phase. The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education), pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators). This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans. Haddon's matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon's matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries that may possibly be useful for prevention or future quantitative research.

  14. Burning Fuel Droplet

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (121KB JPEG, 654 x 977 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300169.html.

  15. Actinide targets for fundamental research in nuclear physics

    NASA Astrophysics Data System (ADS)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  16. Overview of a prescribed burning experiment within a boreal forest in Finland

    NASA Astrophysics Data System (ADS)

    Virkkula, A.; Levula, J.; Pohja, T.; Aalto, P. P.; Keronen, P.; Schobesberger, S.; Clements, C. B.; Pirjola, L.; Kieloaho, A.-J.; Kulmala, L.; Aaltonen, H.; Patokoski, J.; Pumpanen, J.; Rinne, J.; Ruuskanen, T.; Pihlatie, M.; Manninen, H. E.; Aaltonen, V.; Junninen, H.; Petäjä, T.; Backman, J.; Dal Maso, M.; Nieminen, T.; Olsson, T.; Grönholm, T.; Kerminen, V.-M.; Schultz, D. M.; Kukkonen, J.; Sofiev, M.; de Leeuw, G.; Bäck, J.; Hari, P.; Kulmala, M.

    2013-08-01

    A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha-1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000-3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s-1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1-2 × 106 cm-3 in the plume at a distance of 100-200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker) were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land) measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC flux was observed after the

  17. Outcomes After Cardiac Arrest in an Adult Burn Center

    DTIC Science & Technology

    2013-12-07

    defibrillation at our institution, either in the burn operating room (BOR) or burn intensive care unit (BICU). We included patients who experi- enced CA in...of this study design. In other studies, the time between CA and defibrillation and, in children, the time between burn and fluid resuscitation have

  18. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options, mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to researchmore » advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  19. [Hand burns in children and Aquacel(®) Burn gloves, an alternative to prolonged hospital stays].

    PubMed

    Ridel, P; Perrot, P; Truffandier, M V; Bellier-Waast, F; Duteille, F

    2015-04-01

    Occlusive dressings for second-degree hand burns in children must prevent infection and promote healing. For good management of analgesia, these treatments often require children to be hospitalized. Our goal was to find an alternative to conventional care protocol that would reduce the number of dressings and therefore the length of hospitalization. We report our experience with the use of Aquacel(®) Burn. Non-randomized monocentric prospective study was conducted from 2012 to 2014. The glove was used in the operating room within 72hours after the burn in children younger than 15 years old with isolated superficial to deep 2nd degree hand burns. Once the glove was perfectly stuck to the burn, the children could go back home. We saw them 10 to 12 days after the accident to be sure there was no indication of skin graft. Twenty gloves were used in 16 children aged from 16 months to 13 years. The average length of stay (ALOS) was five days to put the glove on and one day to remove it. Four hands were grafted. Once we get used to the product, Aquacel(®) Burn gloves have reduced the ALOS before skin graft in cases of isolated hand burns in children. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Epidemiology and outcome of burns at the Saud Al Babtain Burns, Plastic Surgery and Reconstructive Center, Kuwait: our experience over five years (from 2006 to 2010)

    PubMed Central

    Khashaba, H.A.; Al-Fadhli, A.N.; Al-Tarrah, K.S.; Wilson, Y.T.; Moiemen, N.

    2012-01-01

    Summary Aim To determine the epidemiology and clinical presentation, and any contributing factors responsible for burns and outcome of care in Kuwait over the 5-yr period January 2006 to December 2010. Patients and methods. The study reviewed 1702 burn patients admitted over the study period to the Saud Al Babtain Burns, Plastic and Reconstructive Surgery Center, Kuwait. Patient characteristics, including age, sex, type of burn, nationality, total body surface area (TBSA) burn, hospital stay in days, and mortality were recorded. Results. Seventy-one per cent of the 1702 burn patients admitted were males; 540 were children. The majority of patients (64%) had less than 15% TBSA burns and only 14% had more than 50% TBSA burns. Flame burns were the most common cause of burn injuries (60%), followed by scalds (29%). Scalds were most common in children. The mortality rate was 5.75%. Flame burn was the leading cause of mortality. Lethal dose 50 (% TBSA at which a certain group has a 50% chance of survival) for adults (16-40 yr) and for the elderly (>65 yr) was 76.5% and 41.8% TBSA respectively. Conclusion. Burn injury is an important public health concern and is associated with high morbidity and mortality. Flame and scald burns are commonly a result of domestic and occupational accidents and they are preventable. Effective initial resuscitation, infection control, and adequate surgical treatment improve outcomes. PMID:23766750

  1. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  2. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  3. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  4. Crystalline matrices for the immobilization of plutonium and actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressingmore » method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.« less

  5. Evaluation of infrastructure, equipment and training of 28 burn units/burn centers in Germany, Austria and Switzerland.

    PubMed

    Vogt, Peter M; Busche, Marc N

    2011-03-01

    experience and effective treatment of burn patients in German-speaking countries, we recommend an adoption of the ABA guidelines to those countries and societies that are in need of appropriate standards of burn care. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  6. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  7. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    EPA Science Inventory

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also ...

  8. Study on separation of minor actinides from HLLW with new extractant of TODGA-DHOA/Kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Guo-an; Zhu, Wen-bin; Li, Feng-feng

    2013-07-01

    The extraction behavior of U, Np, Pu, Am, rare earth elements and Sr from nitric acid solutions by TODGA/dodecan, DHOA/dodecane and TODGA-DHOA/dodecane were investigated, respectively. Based on experimental results, a separation process was proposed for minor actinide isolation from high level liquid waste (HLLW): the TODGA-DHOA/kerosene system. The multi-stage counter-current cascade experiments were carried out for the purpose by 0.1 mol/l TODGA-1.0 mol/l DHOA/kerosene with miniature mixer- settler contactor rigs (8 stages for extraction, 6 stages for scrubbing, 8 stages for first stripping, 8 stages for second stripping). The results show that the recovery efficiencies of the actinides and lanthanidesmore » are more than 99.9%, whereas less than 1% Sr was extracted by 0.1 mol/l TODGA - 1.0 mol/l DHOA/kerosene. The stripping efficiencies of U, Np and Pu are more than 95% in the first stripping step by 0.5 mol/l HNO{sub 3} + 0.5 mol/l AHA(aceto-hydroxamic acid), all of the remained actinides and lanthanides can be stripped by 0.01 mol/l HNO{sub 3} in the second stripping step. 99% Sr was extracted by 0.1 mol/l TODGA/kerosene, so Sr can be recovered efficiently directly from the raffinate by 0.1 mol/l TODGA/kerosene. (authors)« less

  9. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  10. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2018-01-16

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  11. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  12. New Fashioned Book Burning.

    ERIC Educational Resources Information Center

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  13. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGES

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  14. Analogue Study of Actinide Transport at Sites in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, A P; Simmons, A M; Halsey, W G

    2003-02-12

    The U. S. Department of Energy (DOE) and the Russian Academy of Sciences (RAS) are engaged in a three-year cooperative study to observe the behavior of actinides in the natural environment at selected disposal sites and/or contamination sites in Russia. The purpose is to develop experimental data and models for actinide speciation, mobilization and transport processes in support of geologic repository design, safety and performance analyses. Currently at the mid-point of the study, the accomplishments to date include: evaluation of existing data and data needs, site screening and selection, initial data acquisition, and development of preliminary conceptual models.

  15. Burns - resources

    MedlinePlus

    Resources - burns ... The following organizations are good resources for information on burns : Burns Recovered -- brsg.org Model Systems Knowledge Translation Center - Burn Model Systems -- www.msktc.org/burn http:// ...

  16. Development of ion beam sputtering techniques for actinide target preparation

    NASA Astrophysics Data System (ADS)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  17. Proposing "the burns suite" as a novel simulation tool for advancing the delivery of burns education.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2014-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience.

  18. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein),more » hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in

  19. Burns from illegal drug manufacture: case series and management.

    PubMed

    Porter, C J W; Armstrong, J R

    2004-01-01

    This case series presents our experience with burns sustained while manufacturing illegal drugs. All adult burn admissions in an 18-month period were retrospectively reviewed. All patients suspected of sustaining burns from illegal drug manufacture were contacted. Information regarding the burn mechanism was sought. Nine of the 64 adult burn admissions were caused by explosions during the manufacture of cannabis oil. Young males with hand and face burns were heavily represented. First-aid treatment was often ignored in favor of hiding incriminating evidence. Only two patients gave honest admission histories. Illegal drug manufacture is becoming more common as synthetic drugs become more consumer desirable. Burns sustained may be thermal and/or chemical. Dishonest patient histories negatively influence burn management. A high level of suspicion is required for diagnosing and treating burns from illegal drug manufacture. Public education is unlikely to be effective as the financial rewards outweigh the perceived risks.

  20. ORNL actinide materials and a new detection system for superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof P.; Roberto, James B.; Brewer, Nathan T.; Utyonkov, Vladimir K.

    2016-12-01

    The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL) are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS) with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK) are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.

  1. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a) Beginning...

  2. [Surgical treatment of burns : Special aspects of pediatric burns].

    PubMed

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  3. Burn Injury and Explosions: An Australian Perspective

    PubMed Central

    Greenwood, John E.

    2009-01-01

    Objectives: Increasingly (but not exclusively), terrorist activity and the use of explosive devices have enjoyed the focus of the global media. This paper aims to bring a range of issues to attention, to highlight how burn injuries are sustained in such incidents and why burn injuries (and thus burn disasters) are so complicated to manage. Materials and Methods: The author's experience with burn injury caused during explosions and his involvement in burn disaster situations has been summarized to form the basis of the article. This has been expanded upon with discussion points which provide a strategy for planning for such events and by a broad sample of the literature. Results: Several strategies are suggested to facilitate planning for burn disasters and to illustrate to those not directly involved why forward planning is pivotal to success when these incidents occur. Conclusions: Disasters generating large numbers of burn-injured are relatively frequent. Explosive devices are widespread in their use both in military and increasingly in civilian fields. Encompassing a large range of aetiologies, geographical sites, populations, and resources; burn disaster management is difficult and planning essential. PMID:19834533

  4. Recovery of actinides from actinide-aluminium alloys by chlorination: Part III - Chlorination with HCl(g)

    NASA Astrophysics Data System (ADS)

    Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas

    2018-01-01

    Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).

  5. Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie; Nash, Ken; Martin, Leigh

    In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste.more » As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO 3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the

  6. Method for fluorination of actinide fluorides and oxyfluorides thereof using O.sub.2 F.sub.2

    DOEpatents

    Eller, Phillip G.; Malm, John G.; Penneman, Robert A.

    1988-01-01

    Method for fluorination of actinides and fluorides and oxyfluorides thereof using O.sub.2 F.sub.2 which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O.sub.2 F.sub.2, has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  7. Method for fluorination of actinide fluorides and oxyfluorides thereof using O[sub 2]F[sub 2

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1988-11-08

    Method is described for fluorination of actinides and fluorides and oxyfluorides thereof using O[sub 2]F[sub 2] which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O[sub 2]F[sub 2], has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  8. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  9. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  10. Health-related quality of life in Swedish pediatric burn patients and associations with burn and family characteristics.

    PubMed

    Sveen, J; Sjöberg, F; Öster, C

    2014-08-01

    Although many children with burns recover well and have a satisfying quality of life after the burn, some children do not adjust as well. Health-related quality of life (HRQoL) focuses on the impact health status has on quality of life. The aim of this study was to assess HRQoL with the American Burn Association/Shriners Hospitals for Children Burn Outcomes Questionnaire (BOQ) in a nationwide Swedish sample of children with burns 0.3-9.0 years after injury. Participants were parents (n=109) of children aged up to 18 years at the time of investigation who were treated at the Linköping or Uppsala Burn Center between 2000 and 2008. The majority of children did not have limitations in physical function and they did not seem to experience much pain. However, there were indications of psychosocial problems. Parents of preschool children reported most problems with the children's behavior and family disruption, whereas parents of children aged 5-18 years reported most problems with appearance and emotional health. There were mainly burn-related variables associated with suboptimal HRQoL in children aged 5-18 years, while family-related variables did not contribute as much. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. A lateral tarsorrhaphy with forehead hitch to pre-empt and treat burns ectropion with a contextual review of burns ectropion management

    PubMed Central

    Lymperopoulos, Nikolaos S; Jordan, Daniel J; Jeevan, Ranjeet; Shokrollahi, Kayvan

    2016-01-01

    Introduction: Facial burns around the eyes and eyelid ectropion can lead to corneal exposure, irritation, dryness, epiphora, infection or visual loss. We undertook a review of the published articles describing management of eyelid burns as well as methods to treat or prevent ectropion. We describe early experience of a surgical technique that we have found to mitigate ectropion in facial burns with peri-ocular involvement. Materials and methods: Two illustrative cases with our surgical technique is described from our experience of three cases. We reviewed the literature using the PubMed and EMBASE databases using the search terms ‘burn’ and ‘ectropion’. Results: The literature review produced a total of 17 relevant papers. Treatment options for eyelid burns were varied and were invariably level 4 or 5 evidence. Various techniques were used to treat eyelid burns including the use of a full thickness skin graft with or without concurrent scar contracture release but also use of a local flap reconstruction with or without a tissue expander or release of the underlying muscle. Other techniques included canthoplasty, Z-plasty, forehead flaps, fat transfer, and tarsorrhaphy with full thickness skin grafting. In general, the focus of articles was therapeutic and reconstructive rather than pre-emptive/preventative management. Procedure: We describe our early experience of a novel technique for temporary lateral tarsorrhaphy with forehead hitch which protexts the globe and counters the scar- and gravity-related ectropic effects on the lower eyelids. Discussion: Facial burns pose a difficult problem to the burn surgeon, especially when the eyelids are affected, both directly or indirectly. The optimal surgical management of eyelid burns remains unclear and the literature base lies mainly in the domain of case series. We review the literature on this subject and tabulate our findings and also describe our contribution to this area with a method of lateral and lower

  12. Evaluation of actinide biosorption by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams maymore » preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.« less

  13. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses onmore » developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.« less

  14. Major burn injuries associated with Christmas celebrations: a 41-year experience from Switzerland

    PubMed Central

    Rohrer-Mirtschink, S.; Forster, N.; Giovanoli, P.; Guggenheim, M.

    2015-01-01

    Summary In Switzerland it is customary to light candles on Christmas trees and advent wreaths. This tradition leads to an increased risk of home fires. We reviewed the records of patients who sustained burn injuries from a lit Christmas tree or advent wreath during the Christmas holidays between January 1971 and January 2012. We treated 28 patients and observed 4 fatalities (mortality rate: 14%). 61% of the patients were male, 39% were female. The mean abbreviated burn severity index (ABSI) was 6.5 points in the group of the survivors and 10.8 points in the group of the non-survivors. The mean total body surface area burned (TBSA) for survivors was 18.9%, with 14.1% having full thickness burns; for the non-survivors the mean TBSA was 45.2%, with 38% having full thickness burns. The Mann-Whitney U-test showed a significant difference between the survivors and the fatalities concerning the mean total and full thickness burned body surface area (p value 0.009 and 0.012). More than sixty percent of the fires occurred in January and the most severe accidents were seen after January 4th. Despite Christmas decoration-associated fires being relatively uncommon, they tend to cause more serious injuries than regular household fires. We recommend that in countries where it is customary to set up flammable Christmas decorations, state-issued information pamphlets with instructions on fire safety conduct should be distributed. PMID:26668566

  15. Burns

    MedlinePlus

    ... doing so puts you in danger as well. Chemical and Electrical Burns For chemical and electrical burns, call 911 or your local ... the power source has been turned off. For chemical burns: Dry chemicals should be brushed off the ...

  16. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  17. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uraniummore » from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.« less

  18. Air Pollution Episodes Associated with Prescribed Burns

    NASA Astrophysics Data System (ADS)

    Hart, M.; Di Virgilio, G.; Jiang, N.

    2017-12-01

    Air pollution events associated with wildfires have been associated with extreme health impacts. Prescribed burns are an important tool to reduce the severity of wildfires. However, if undertaken during unfavourable meteorological conditions, they too have the capacity to trigger extreme air pollution events. The Australian state of New South Wales has increased the annual average area treated by prescribed burn activities by 45%, in order to limit wildfire activity. Prescribed burns need to be undertaken during meteorological conditions that allow the fuel load to burn, while still allowing the burn to remain under control. These conditions are similar to those that inhibit atmospheric dispersion, resulting in a fine balance between managing fire risk and managing ambient air pollution. During prescribed burns, the Sydney air shed can experience elevated particulate matter concentrations, especially fine particulates (PM2.5) that occasionally exceed national air quality standards. Using pollutant and meteorological data from sixteen monitoring stations in Sydney we used generalized additive model and CART analyses to profile the meteorological conditions influencing air quality during planned burns. The insights gained from this study will help improve prescribed burn scheduling in order to reduce the pollution risk to the community, while allowing fire agencies to conduct this important work.

  19. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Reservation, Oregon § 49.11021 Permits for general open burning, agricultural burning, and forestry and...

  20. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and...

  1. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and...

  2. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and...

  3. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and...

  4. Biomass burning a driver for global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source ofmore » atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.« less

  5. Direct seeding experiments on the 1951 Forks Burn.

    Treesearch

    Elmer W. Shaw

    1953-01-01

    Late in the summer of 1951 the Port Angeles and Western Railroad fire (commonly called the Forks fire) killed more than a half billion board feet of timber. An area approximately 20 miles long and 2-1/2 miles wide, covering 32,668 acres, was burned. It included fine virgin timber, thrifty plantations, ranch lands, reproduction areas, advanced young growth, logged-off...

  6. Complexation of lanthanides and actinides by acetohydroxamic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.

    2008-07-01

    Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) andmore » Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)« less

  7. Interactive effects of acupuncture on pain and distress in major burns: An experiment with rats.

    PubMed

    Abali, Ayse Ebru; Cabioglu, Tugrul; Ozdemir, Handan; Haberal, Mehmet

    2015-06-01

    This study sought to investigate the interactive effects of acupuncture on pain and distress and the local progress in the burn wound in an experimental major burn model. Forty-eight male Sprague-Dawley rats were divided into six groups: S group (sham/observation during 7 days after injury); SA group (sham/acupuncture/observation during 7 days after injury); B1 group (burns/observation during 1h after injury); BA1 group (burns/acupuncture/observation during 1 h after injury); B7 group (burns/observation during 7 days after injury); and BA7 group (burns/acupuncture/observation during 7 days after injury). Pain and distress scores were evaluated throughout the study. The amounts of neutrophils and mononuclear cells were evaluated semiquantitatively, and the number of microvessels was evaluated quantitatively. Our data indicated that the average pain score of BA7 group was significantly lower than the other study groups. Histopathologic investigations indicate that the amounts of neutrophil and mononuclear cell and numbers of microvessels in the unburned skin were higher in acupuncture-applied groups. The number of microvessels in burn wounds of BA7 group was significantly higher than that of the other groups. Our data suggest that acupuncture provides low pain and distress scores in experimental rat model, and it contributes to wound healing with an enhanced angiogenesis during the acute phase of burns. Future clinical and experimental studies should be conducted to discern the benefits from acupuncture in pain management of burn patients. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  8. Burning Heptane Droplets on STS-94

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 11, 1997. This round of experiments burned heptane droplets in 1/2 atmosphere pressure consisting of oxygen and helium. During this mission, scientists have seen for the first time droplets which stop burning due to heat loss by radiation. From these data, the investigators hope to understand the physical and chemical processes that take place in droplet combustion in different environments, including conditions under which the flames extinguish, the chemistry of the combustion reaction, and the production of pollutants such as nitrogen oxides and soot particles. The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station.(983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300172.html.

  9. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Miyakawa, Takuma; Inomata, Satoshi; Komazaki, Yuichi; Tanimoto, Hiroshi; Wang, Zhe; Uno, Itsushi; Wang, Zifa

    2017-11-01

    The emission characteristics of refractory black carbon (rBC) from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2) was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE), which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED) of 189 nm (ranging from 152 to 215 nm), assuming an rBC density of 1.8 g cm-3. rBC particles less than 80 nm in size (the lower detection limit of the SP2) accounted for ˜ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC / ΔCO (Δ indicates the difference between the observed and background values), displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m-3 ppbv-1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak) distribution showed that rBC-containing particles with rBC MED = 200 ± 10 nm displayed two peaks at Δt = 1.7 µs and Δt = 3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering-dominant combustion) to 0.86 (flaming-dominant combustion), implying the great importance of the

  10. LLNL SFA OBER SBR FY17 Program Management and Performance Report: Subsurface Biogeochemistry of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersting, Annie B.

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of anthropogenic plutonium (Pu) has accumulated worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al. 1999; Novikov et al. 2006; Santschi et al. 2002). Neptunium (Np) is less prevalent inmore » the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA) and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program.« less

  11. Wood crib fire free burning test in ISO room

    NASA Astrophysics Data System (ADS)

    Qiang, Xu; Griffin, Greg; Bradbury, Glenn; Dowling, Vince

    2006-04-01

    In the research of application potential of water mist fire suppression system for fire fighting in train luggage carriage, a series of experiments were conducted in ISO room on wood crib fire with and without water mist actuation. The results of free burn test without water mist suppression are used as reference in evaluating the efficiency of water mist suppression system. As part of the free burn test, several tests have been done under the hood of ISO room to calibrate the size of the crib fire and these tests can also be used in analyzing the wall effect in room fire hazard. In these free burning experiments, wood cribs of four sizes under the hood were tested. The temperature of crib fire, heat flux around the fire, gas concentration in hood of ISO room were measured in the experiments and two sets of thermal imaging system were used to get the temperature distribution and the typical shape of the free burning flames. From the experiments, the radiation intensity in specific positions around the fire, the effective heat of combustion, mass loss, oxygen consumption rate for different sizes of fire, typical structure of the flame and self extinguishment time was obtained for each crib size.

  12. [Major Burn Trauma Management and Nursing Care].

    PubMed

    Lo, Shu-Fen

    2015-08-01

    Major burn injury is one of the most serious and often life-threatening forms of trauma. Burn patients not only suffer from the physical, psychological, social and spiritual impacts of their injury but also experience considerable changes in health-related quality of life. This paper presents a review of the literature on the implications of previous research and clinical care guidelines related to major burn injuries in order to help clinical practice nurses use evidence-based care guidelines to respond to initial injury assessments, better manage the complex systemic response to these injuries, and provide specialist wound care, emotional support, and rehabilitation services.

  13. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    PubMed

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  14. Method for recovery of actinides from refractory oxides thereof using O.sub. F.sub.2

    DOEpatents

    Asprey, Larned B.; Eller, Phillip G.

    1988-01-01

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof using O.sub.2 F.sub.2 to generate the hexafluorides of the actinides present therein. The fluorinating agent, O.sub.2 F.sub.2, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  15. Extraction Selectivity of a Quaternary Alkylammonium Salt for Trivalent Actinides over Trivalent Lanthanides: Does Extractant Aggregation Play a Role?

    DOE PAGES

    Knight, Andrew W.; Chiarizia, Renato; Soderholm, L.

    2017-05-10

    In this paper, the extraction behavior of a quaternary alkylammonium salt extractant was investigated for its selectivity for trivalent actinides over trivalent lanthanides in nitrate and thiocyanate media. The selectivity was evaluated by solvent extraction experiments through radiochemical analysis of 241Am and 152/154Eu. Solvent extraction distribution and slope-analysis experiments were performed with americium(III) and europium(III) with respect to the ligand (nitrate and thiocyanate), extractant, and metal (europium only) concentrations. Further evaluation of the equilibrium expression that governs the extraction process indicated the appropriate use of the saturation method for estimation of the aggregation state of quaternary ammonium extractants in themore » organic phase. From the saturation method, we observed an average aggregation number of 5.4 ± 0.8 and 8.5 ± 0.9 monomers/aggregate for nitrate and thiocyanate, respectively. Through a side-by-side comparison of the nitrate and thiocyanate forms, we discuss the potential role of the aggregation in the increased selectivity for trivalent actinides over trivalent lanthanides in thiocyanate media.« less

  16. Extraction Selectivity of a Quaternary Alkylammonium Salt for Trivalent Actinides over Trivalent Lanthanides: Does Extractant Aggregation Play a Role?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Andrew W.; Chiarizia, Renato; Soderholm, L.

    In this paper, the extraction behavior of a quaternary alkylammonium salt extractant was investigated for its selectivity for trivalent actinides over trivalent lanthanides in nitrate and thiocyanate media. The selectivity was evaluated by solvent extraction experiments through radiochemical analysis of 241Am and 152/154Eu. Solvent extraction distribution and slope-analysis experiments were performed with americium(III) and europium(III) with respect to the ligand (nitrate and thiocyanate), extractant, and metal (europium only) concentrations. Further evaluation of the equilibrium expression that governs the extraction process indicated the appropriate use of the saturation method for estimation of the aggregation state of quaternary ammonium extractants in themore » organic phase. From the saturation method, we observed an average aggregation number of 5.4 ± 0.8 and 8.5 ± 0.9 monomers/aggregate for nitrate and thiocyanate, respectively. Through a side-by-side comparison of the nitrate and thiocyanate forms, we discuss the potential role of the aggregation in the increased selectivity for trivalent actinides over trivalent lanthanides in thiocyanate media.« less

  17. Work-related burns.

    PubMed

    Pruitt, Valerie M

    2006-01-01

    Work-related upper extremity burns often occur. The cause directs the course of action. Thermal burns should be assessed for system alterations, and depth of burn should be determined. Deep partial-thickness burns and more severe burns require a specialist evaluation. Chemical burns must be irrigated and the agent identified. Some chemical burns, such as those that involve phenols and metal fragments, require specific topical applications before water lavage. Hydrofluoric acid burns can cause life-threatening electrolyte abnormalities with a small, highly concentrated acid burn. The goal with any extremity burn is to provide the patient with a multidisciplinary team approach to achieve a functional, usable extremity.

  18. Cardowan coal mine explosion: experience of a mass burns incident.

    PubMed Central

    Allister, C; Hamilton, G M

    1983-01-01

    A coal mine explosion 1700 feet (516 m) underground and two miles (3.2 km) from the pit head resulted in 40 casualties. Two hours elapsed between the explosion and the arrival of patients at hospital. Six patients suffered mechanical injuries, only one of which was life threatening. Thirty six suffered burns; in 18 over 15% of the total body surface area was affected. Nineteen patients had a mild respiratory upset requiring oxygen treatment. The average length of inpatient stay in those admitted was 24 days. Early assessment and treatment in the accident and emergency department was relatively simple because of the large proportion of burn injuries. Lack of communication between site and hospital made administration of the disaster difficult. PMID:6409324

  19. Making meaning in a burn peer support group: qualitative analysis of attendee interviews.

    PubMed

    Davis, Trevor; Gorgens, Kim; Shriberg, Janet; Godleski, Matthew; Meyer, Laura

    2014-01-01

    There is a paucity of literature on the personal experiences of burn support group members, the members' perceived benefits of group participation, and the meaning the survivors make of the support they receive. In order to provide effective psychosocial rehabilitation services and to meet the needs of burn survivors, it is important to understand the influence a support group has on its members as well as the personal experiences of those individuals who attend these groups. The purpose of this study was to explore the experiences of burn survivors in a burn survivor support group. Six self-identified burn survivors were interviewed by using a guided in-depth interview technique to explore their experiences in the support group. Key informant interviews and group observations served to triangulate the findings from the individual interviews. The experiences of the group members coalesced around four main themes: acceptance of self, perspective change, value of community, and reciprocity. The findings demonstrated the overall perceived positive impact the support group had on psychosocial recovery. For these members, the group aided the process of adjustment through the encouragement of adaptive coping strategies and the facilitation of community and relationships. Their experiences mirrored much of the literature on psychological growth from adversity. Burn survivors reported unique opportunities that allowed them to integrate their injury into their identity within an encouraging and safe environment. Using these accounts, the authors generated clinical suggestions that may encourage similar growth in other support group settings.

  20. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    NASA Astrophysics Data System (ADS)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C &cong

  1. Novel burn device for rapid, reproducible burn wound generation.

    PubMed

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  2. Novel burn device for rapid, reproducible burn wound generation

    PubMed Central

    Kim, J.Y.; Dunham, D.M.; Supp, D.M.; Sen, C.K.; Powell, H.M.

    2016-01-01

    Introduction Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. Methods A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200 ± 5 °C) and pressed into the skin for 40 s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40 s at a constant pressure and at pressures of 1 or 3 lbs with a constant contact time of 40 s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). Results The custom burn device

  3. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less

  4. Surgical and psychiatric profile of patients who self-harm by burning in a regional burn unit over an 11-year period.

    PubMed

    Conlin, Samantha; Littlechild, Joseph; Aditya, Hosakere; Bahia, Hilal

    2016-02-01

    Patients admitted to hospital for deliberate self-harm by burning (DSHB) provide a challenge for medical, surgical and psychological management. We retrospectively reviewed all the patients admitted to a Scottish regional burn unit with DSHB over an 11-year period to assess demographics and outcome. Ward admission data were used to identify DSHB patients admitted to the South East Scotland regional burn unit in Livingston, UK between 2002 and 2012, as well as a control group of accidental burn patients. Data were extracted concerning burn injury, psychiatric history and inpatient management. A total of 53 DSHB patients with 58 attendances over the 11-year period were compared to 49 accidental burns patients. Compared to controls, DSHB patients were more likely to be unemployed, live alone and have a previous psychiatric diagnosis (p < 0.01). DSHB patients had more severe burns, a longer hospital stay and were more likely to undergo surgery (p < 0.01). DSHB patients with previous self-harm, suicide attempts and diagnoses of personality and eating disorder all had significantly less severe burns than DSHB patients without these risk factors (p < 0.05). In our experience, DSHB patients have more severe burn injuries and require longer, resource-intensive hospital stays. Burn units should have an appropriate specialist psychologist/psychiatrist who works within the Burn multi-disciplinary team to help manage this complex group of patients' healthcare needs and reduce their risk of further self-harm. © The Author(s) 2016.

  5. Ionic Interactions in Actinide Tetrahalides

    NASA Astrophysics Data System (ADS)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  6. Burns education for non-burn specialist clinicians in Western Australia.

    PubMed

    McWilliams, Tania; Hendricks, Joyce; Twigg, Di; Wood, Fiona

    2015-03-01

    Burn patients often receive their initial care by non-burn specialist clinicians, with increasingly collaborative burn models of care. The provision of relevant and accessible education for these clinicians is therefore vital for optimal patient care. A two phase design was used. A state-wide survey of multidisciplinary non-burn specialist clinicians throughout Western Australia identified learning needs related to paediatric burn care. A targeted education programme was developed and delivered live via videoconference. Pre-post-test analysis evaluated changes in knowledge as a result of attendance at each education session. Non-burn specialist clinicians identified numerous areas of burn care relevant to their practice. Statistically significant differences between perceived relevance of care and confidence in care provision were reported for aspects of acute burn care. Following attendance at the education sessions, statistically significant increases in knowledge were noted for most areas of acute burn care. Identification of learning needs facilitated the development of a targeted education programme for non-burn specialist clinicians. Increased non-burn specialist clinician knowledge following attendance at most education sessions supports the use of videoconferencing as an acceptable and effective method of delivering burns education in Western Australia. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Psychosocial functioning differences in pediatric burn survivors compared with healthy norms.

    PubMed

    Maskell, Jessica; Newcombe, Peter; Martin, Graham; Kimble, Roy

    2013-01-01

    Burn injury is one of the most traumatic injuries a child or adolescent can experience. When a burn injury occurs, the child can suffer pain, uncertainty, fear, and trauma from acute treatment to rehabilitation and reintegration. He or she can also experience long-term psychosocial and psychological difficulties. The objective of the study was to compare health-related quality of life (HRQoL), psychopathology, and self-concept of children who have suffered a burn injury with a matched sample of healthy controls. Sixty-six children and adolescents with a burn injury, who were aged between 8 to 17 years, and a caregiver were recruited from six burn centers in Australia and New Zealand. Participants completed the Paediatric Quality of Life Inventory, the Strengths and Difficulties Questionnaire, and the Piers-Harris Self-Concept Scale (P-H SCS). Scores were compared with published normative data. As scarring and appearance are a distinct issue, the Paediatric Quality of Life Inventory cancer module perceived physical appearance subscale was also included. Pediatric burn survivors and their caregivers reported significantly higher emotional and behavioral problems and lower HRQoL, but no significant differences in self-concept compared with healthy counterparts. Pediatric burn survivors also reported significantly poorer perceived physical appearance than the matched pediatric cancer sample. Burned children reported lowered quality of life, particularly related to scarring and appearance; however, they reported normative self-concept. This may be because of self-concept being a psychological trait, whereas HRQoL is influenced by societal norms and expectations. Psychosocial support is necessary to build positive coping strategies and manage the unpleasant social experiences that may reduce quality of life.

  8. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Tribes of the Umatilla Reservation, Oregon § 49.11021 Permits for general open burning, agricultural...

  9. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Tribes of the Umatilla Reservation, Oregon § 49.11021 Permits for general open burning, agricultural...

  10. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Tribes of the Umatilla Reservation, Oregon § 49.11021 Permits for general open burning, agricultural...

  11. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Permits for general open burning, agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Tribes of the Umatilla Reservation, Oregon § 49.11021 Permits for general open burning, agricultural...

  12. Enhancing the actinide sciences in Europe through hot laboratories networking and pooling: from ACTINET to TALISMAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, S.; Poinssot, C.

    2013-07-01

    Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks: (i) from 2004 to 2008, the ACTINET6 network of excellence (6. Framework Programme) gathered major laboratories involved in nuclear research and a wide range of academic research organisations and universities with the specific aims of funding and implementing joint research projects to be performed within the network of pooled facilities; (ii) from 2009 to 2013, the ACTINET-I3 integrated infrastructure initiative (I3) supports the cost of access of any academics in the pooled EU hot laboratories. In this continuation, TALISMAN (Trans-national Accessmore » to Large Infrastructures for a Safe Management of Actinides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting-edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities. ACTINET-I3 and TALISMAN attach a great importance and promote the Education and Training of the young generation of actinides scientists in the Trans-national access but also by organizing Schools (general Summer Schools or Theoretical User Lab Schools) or by granting students to attend International Conference on actinide sciences. (authors)« less

  13. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    NASA Astrophysics Data System (ADS)

    Vera, Francisco; Rivera, Rodrigo; Núñez, César

    2011-09-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume in this experiment is negligible; moreover, the explanation relating oxygen consumption in the air with its change in volume is known to be wrong. In this work we briefly review the history behind the candle experiment and its relationship with some typical erroneous explanations. One of the key factors behind Lavoisier's success was the use of experiments carefully designed to test different hypotheses. Following these steps, we performed several closed volume experiments where the candle wick was replaced by a capillary stainless steel cylinder supported and heated by a nichrome filament connected to an external power supply. Our recorded experiments are displayed as web pages, designed with the purpose that the reader can easily visualize and analyze modern versions of Lavoisier's experiments. These experiments clearly show an initial phase of complete combustion, followed by a phase of incomplete combustion with elemental carbon or soot rising to the top of the vessel, and a final phase where the hot artificial wick only evaporates a white steam of wax that cannot ignite because no oxygen is left in the closed atmosphere. After either a complete or incomplete combustion of the oxygen, our experiments show that the final gas volume is nearly equal to the initial air volume.

  14. Addendum to High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Tan, N

    2010-11-08

    As part of a small follow-on study, the burn rate of the ammonium perchlorate (AP) based material TAL-1503 was studied at a relatively mild pressure. The goal of this final experiment was to burn TAL-1503 at the lowest pressures possible using the LLNL High Pressure Strand Burner (LLNL-HPSB). The following is a description of the experiment and the results with a brief discussion of data and a comparison to the higher pressure data. This is not meant to be a stand-alone report and readers should refer to the main report for experimental details and discussion. High pressure deflagration rate measurementsmore » of a unique AP/HTPB based material (TAL-1503) were performed using the LLNL high pressure strand burner apparatus. The material burns in a well behaved, laminar fashion between 20 and 300 MPa with a burn law of B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} that was calculated based on the best data available from the experiments. In the pressure range of 2 and 10 MPa the material burned laminarly with a burn law of B = (2.0 {+-} 0.2) x P{sup (0.66{+-}0.05)}. In these results, B is the burn rate in mm/s and P is the pressure in units of MPa. Comparison of the TAL-1503 results with similar propellants that contain micrometer sized aluminum indicate that the burn rates are relatively unaffected by the aluminum. However, the pressure change is significantly larger when aluminum is present, most likely due to the high temperatures achieved from burning aluminum.« less

  15. Modeling Emissions and Vertical Plume Transport of Crop Residue Burning Experiments in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Pouliot, G.; Elleman, R. A.; ONeill, S. M.; Urbanski, S. P.; Wong, D. C.

    2017-12-01

    Crop residue burning has long been a common practice in agriculture with the smoke emissions from the burning linked to negative health impacts. A field study in eastern Washington and northern Idaho in August 2013 consisted of multiple burns of well characterized fuels with nearby surface and aerial measurements including trace species concentrations, plume rise height and boundary layer structure. The chemical transport model CMAQ (Community Multiscale Air Quality Model) was used to assess the fire emissions and subsequent vertical plume transport. The study first compared assumptions made by the 2014 National Emission Inventory approach for crop residue burning with the fuel and emissions information obtained from the field study and then investigated the sensitivity of modeled carbon monoxide (CO) and PM2.5 concentrations to these different emission estimates and plume rise treatment with CMAQ. The study suggests that improvements to the current parameterizations are needed in order for CMAQ to reliably reproduce smoke plumes from burning. In addition, there is enough variability in the smoke emissions, stemming from variable field-specific information such as field size, that attempts to model crop residue burning should use field-specific information whenever possible.

  16. Treatment of acute burn blisters in unscheduled care settings.

    PubMed

    Payne, Sarah; Cole, Elaine

    2012-09-01

    Many patients with minor burns present at emergency departments and urgent care centres, where their management is often undertaken by experienced nurses rather than experts in treating burns. This article describes a small study of the clinical decision making that underpins nurses' management of minor burns in these non-specialist settings. The results suggest that, due to a lack of relevant research, nurses base their decisions on previous experience or expert colleagues' opinions and advice rather than on the evidence.

  17. Burn care in Los Angeles, California: LAC+USC experience 1994-2004.

    PubMed

    Garner, Warren L; Reiss, Matthew

    2005-01-01

    The LAC+USC Burn Center has admitted 3118 patients for treatment in the last 10 years. A majority of patients were young adults (1868), with the second largest group being small children (543). The ethnicity of the patients reflects the diverse nature of the population of Los Angeles County. Forty-eight percent of injuries were less than 5% TBSA and approximately 2% were greater than 60% TBSA. Eighty-two percent were accidental injuries. Sixty percent of admitted patients underwent skin grafting. Mortality was negligible in the group with burns over less than 10% of their body and very high (15/19), 79% in the most severely burned group. Further, there was a high correlation between age and mortality. Complications during treatment included: deep venous thrombosis 1% per year; pulmonary emboli in 5 patients; endotracheal tube dislodgment early or self-extubation about 1 month (11.3 per year); 4.5 patients per year who developed acute renal failure; abdominal compartment syndrome developed in 4.7 patients each year; heterotopic ossification was seen in 4 patients (0.4%); 4 patients (0.4%) developed stage II-IV pressure sores; hypothermia was present in 0.8% of patients.

  18. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis

    PubMed Central

    Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P.

    2015-01-01

    Half of the heavy elements including all actinides are produced in r-process nucleosynthesis, whose sites and history remain a mystery. If continuously produced, the Interstellar Medium is expected to build-up a quasi-steady state of abundances of short-lived nuclides (with half-lives ≤100 My), including actinides produced in r-process nucleosynthesis. Their existence in today’s interstellar medium would serve as a radioactive clock and would establish that their production was recent. In particular 244Pu, a radioactive actinide nuclide (half-life=81 My), can place strong constraints on recent r-process frequency and production yield. Here we report the detection of live interstellar 244Pu, archived in Earth’s deep-sea floor during the last 25 My, at abundances lower than expected from continuous production in the Galaxy by about 2 orders of magnitude. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae. PMID:25601158

  19. Emergence of californium as the second transitional element in the actinide series

    PubMed Central

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; Green, Thomas D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; DePrince, A. Eugene; Polinski, Matthew J.; Van Cleve, Shelley M.; House, Jane H.; Kikugawa, Naoki; Gallagher, Andrew; Arico, Alexandra A.; Dixon, David A.; Albrecht-Schmitt, Thomas E.

    2015-01-01

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. The metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence. PMID:25880116

  20. Emergence of californium as the second transitional element in the actinide series

    DOE PAGES

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; ...

    2015-04-16

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, andmore » show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. As a result, the metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.« less

  1. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, N.F.; Williams, J.L.

    In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  2. Social challenges of visible scarring after severe burn: A qualitative analysis.

    PubMed

    Martin, Lisa; Byrnes, Michelle; McGarry, Sarah; Rea, Suzanne; Wood, Fiona

    2017-02-01

    Visible scarring after burn causes social challenges which impact on interpersonal connection. These have health impacts which may worsen outcomes for burn patients and reduce the potential for posttraumatic growth (PTG). The aim of the study was to investigate adult burn survivors' experiences of interpersonal relationships as potential barriers to posttraumatic recovery following hand or face burns. This qualitative study explored patient experiences of interpersonal situations. A purposive sample (n=16) who had visible burn scarring were interviewed more than two years after their burn. Emotional barriers included the fear of rejection, feelings of self-consciousness, embarrassment and humiliation. Situational barriers included inquisitive questions, comments and behaviours of others. Responses depended on the relationship with the person, how they were asked and the social situation. Active coping strategies included positive reframing, humour, changing the self, and pre-empting questions. Avoidant coping strategies included avoidance of eye contact, closed body language, hiding scars, and learning to shut down conversations. Emotional and situational barriers reduced social connection and avoidant coping strategies reduced the interaction of people with burns with others. Active coping strategies need to be taught to assist with social reintegration. This highlights the need for peer support, family support and education, and social skills training. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  3. [Lay emphasis on the treatment of massive burn casualties in conflagration].

    PubMed

    Tang, Hong-tai; Ma, Bing; Xia, Zhao-fan

    2012-06-01

    Burn surgery belongs to disaster medicine. Burn is a common trauma that occurs in social activities of human beings in all ages, either in the time of peace or war. During the development of human medicine in modern times, the summary of experience in treating massive burn casualties due to severe fire accidents has effectively promoted the renovation of treating technology and theory of burns and the development of burn surgery. The results of treatment of burn injury in casualties occurred in the fire of Cocoanut Grove night club in Boston in 1942, and the high-rise apartment house fire in Shanghai in 2010 were summarized and analyzed in this article, emphasizing the correlating issues of inhalation injury.

  4. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windl, Wolfgang; Blue, Thomas

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling tomore » understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.« less

  5. A scale-up field experiment for the monitoring of a burning process using chemical, audio, and video sensors.

    PubMed

    Stavrakakis, P; Agapiou, A; Mikedi, K; Karma, S; Statheropoulos, M; Pallis, G C; Pappa, A

    2014-01-01

    Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed. Chemical analysis, despite its limitations, corresponded to the burning process with a minor time delay. Nevertheless, the evolution profile of CO2, CO, NO, and O2 were detected and monitored. The chemical monitoring of smoke components enabled the observing of the different fire phases (flaming, smoldering) based on the emissions identified in each phase. The analysis of fire acoustical signals presented accurate and timely response to the fire event. In the same content, the use of a thermographic camera, for monitoring the biomass burning, was also considerable (both profiles of the intensities of average gray and red component greater than 230) and presented similar promising potentials to audio results. Further work is needed towards integrating sensors signals for automation purposes leading to potential applications in real situations.

  6. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    NASA Astrophysics Data System (ADS)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  7. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  8. GGA + U studies of the early actinide mononitrides and dinitrides

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2013-11-01

    We present a detailed comparative study of the electronic and mechanical properties of the early actinide mononitrides and dinitrides within the framework of the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA [PBE]) and GGA + U implementations of density functional theory with the inclusion of spin-orbit coupling. The dependence of selected observables of these materials on the effective U-parameter is investigated in detail. The properties include the lattice constant, bulk modulus, charge density distribution, hybridization of the atomic orbitals, energy of formation and the lattice dynamics. The inclusion of the Hubbard U parameter results in a proper description of the 5f electrons, and is subsequently used in the determination of the structural and electronic properties of these compounds. The mononitrides and dinitrides of the early actinides are metallic except for UN2, which is a semiconductor. These actinide nitrides are non-magnetic with the exception of UN, NpN, PuN, NpN2 and PuN2 that are magnetic systems with orbital-dependent magnetic moments oriented in the z-axis. We observed that ThN2 is elastically unstable to isotropic pressure. We discovered that UN2 is thermodynamically unstable, but may be stabilized by N vacancy formation.

  9. Effects of burn location and investigator on burn depth in a porcine model.

    PubMed

    Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek

    2016-02-01

    In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (P<0.001). Burn depth increased marginally from cephalic to caudal in non-debrided burns, but showed no statistical differences for these locations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  10. Determinants of burn first aid knowledge: Cross-sectional study.

    PubMed

    Wallace, Hilary J; O'Neill, Tomas B; Wood, Fiona M; Edgar, Dale W; Rea, Suzanne M

    2013-09-01

    This study investigated demographic factors, experience of burn/care and first aid course attendance as factors influencing burn first aid knowledge. A cross-sectional study was undertaken using convenience sampling of members of sporting and recreation clubs. The main outcome measure was the proportion of correct responses to multiple-choice questions relating to four burn scenarios: (1) scald, (2) contact burn, (3) ignited clothing, and (4) chemical burn. A total of 2602 responses were obtained. Large gaps (30-50% incorrect answers) were identified in burn first aid knowledge across all scenarios. 15% more individuals gave correct answers if they had attended a first aid course compared to those who had not (p<0.0001); this proportion increased if the course was undertaken within the previous five years (p<0.0001) or contained a burns-specific component (p<0.0001). Males and younger (≤25 years) and older (≥65 years) age-groups had relatively lower levels of burn first aid knowledge. Gender and age were significant predictors of first aid course attendance, with males and younger (≤25 years) and older (≥65 years) age-groups less likely to have attended a first aid course. In this sample, first aid training undertaken within the last 5 years with a specific burns component was associated with enhanced burn first aid knowledge. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. Outcomes important to burns patients during scar management and how they compare to the concepts captured in burn-specific patient reported outcome measures.

    PubMed

    Jones, Laura L; Calvert, Melanie; Moiemen, Naiem; Deeks, Jonathan J; Bishop, Jonathan; Kinghorn, Philip; Mathers, Jonathan

    2017-12-01

    Pressure garment therapy (PGT) is an established treatment for the prevention and treatment of hypertrophic scarring; however, there is limited evidence for its effectiveness. Burn survivors often experience multiple issues many of which are not adequately captured in current PGT trial measures. To assess the effectiveness of PGT it is important to understand what outcomes matter to patients and to consider whether patient-reported outcome measures (PROMs) can be used to ascertain the effect of treatments on patients' health-related quality of life. This study aimed to (a) understand the priorities and perspectives of adult burns patients and the parents of burns patients who have experienced PGT via in-depth qualitative data, and (b) compare these with the concepts captured within burn-specific PROMs. We undertook 40 semi-structured interviews with adults and parents of paediatric and adolescent burns patients who had experienced PGT to explore their priorities and perspectives on scar management. Interviews were audio-recorded, transcribed and thematically analysed. The outcomes interpreted within the interview data were then mapped against the concepts captured within burn-specific PROMs currently in the literature. Eight core outcome domains were identified as important to adult patients and parents: (1) scar characteristics and appearance, (2) movement and function, (3) scar sensation, (4) psychological distress, adjustments and a sense of normality, (5) body image and confidence, (6) engagement in activities, (7) impact on relationships, and (8) treatment burden. The outcome domains presented reflect a complex holistic patient experience of scar management and treatments such as PGT. Some currently available PROMs do capture the concepts described here, although none assess psychological adjustments and attainment of a sense of normality following burn injury. The routine use of PROMs that represent patient experience and their relative contribution to trial

  12. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  13. High temperature EXAFS experiments in molten actinide fluorides: The challenge of a triple containment cell for radioactive and aggressive liquids

    NASA Astrophysics Data System (ADS)

    Bessada, Catherine; Zanghi, Didier; Pauvert, Olivier; Maksoud, Louis; Gil-Martin, Ana; Sarou-Kanian, Vincent; Melin, Philippe; Brassamin, Séverine; Nezu, Atsushi; Matsuura, Haruaki

    2017-10-01

    An airtight double barrier cell with simple geometry has been developed for X-rays absorption measurements at high temperature in solid and molten actinide fluorides. The aim was both to improve the air tightness, to avoid any possible leakage and to maintain the high quality of the signal. The dimensions of the heating chamber were also constrained and minimized to be compatible with the limited space available usually on synchrotron beam lines and with a geometry suitable for absorption/diffraction measurements at high temperature. The design of the double barrier cell was also driven by the safety requirements in every experiment involving radioactive materials. The furnace itself was designed to ensure easy operating modes and disassembly, the aim being to consider the furnace as the ultimate containment. The cell has been tested with different molten fluorides up to more than 1000 °C, starting from non-radioactive LiF-ZrF4 mixtures in order to prove that the cell is absolutely airtight and that not any contamination of the environment occurs. Then it has been successfully applied to thorium fluoride- and uranium fluoride-alkali fluorides mixtures.

  14. American Burn Association

    MedlinePlus

    ... Quality Care Resources Prevention Prevention Resources Burn Prevention Poster Contest Burn Awareness Week Advocacy Education Annual Meeting ... Quality Care Resources Prevention Prevention Resources Burn Prevention Poster Contest Burn Awareness Week Advocacy Education Annual Meeting ...

  15. Burning mouth syndrome.

    PubMed

    Crow, Heidi C; Gonzalez, Yoly

    2013-02-01

    Pain in the tongue or oral tissues described as "burning" has been referred to by many terms including burning mouth syndrome. When a burning sensation in the mouth is caused by local or systemic factors, it is called secondary burning mouth syndrome and when these factors are treated the pain will resolve. When burning mouth syndrome occurs in the absence of identified risk indicators, the term primary burning mouth syndrome is utilized. This article focuses on descriptions, etiologic theories, and management of primary burning mouth syndrome, a condition for which underlying causative agents have been ruled out. Copyright © 2013. Published by Elsevier Inc.

  16. Does nurses'perceived burn prevention knowledge and ability to teach burn prevention correlate with their actual burn prevention knowledge?

    PubMed

    Lehna, Carlee; Myers, John

    2010-01-01

    The purpose of this study was to explore the relationship among nurses'perceived burn prevention knowledge, their perceived ability to teach about burn prevention, and their actual burn prevention knowledge and to test if their actual burn knowledge could be predicted by these perceived measures. A two-page, anonymous survey that included a 10-item burn prevention knowledge test and an assessment of nurses'perceived knowledge of burn prevention and their perceived ability to teach burn prevention was administered to 313 nurses. Actual burn prevention knowledge was determined and the correlation among actual burn prevention knowledge, perceived knowledge, and perceived ability to teach was determined. Differences in these outcome variables based on specialty area were tested using analysis of variance techniques. Generalized linear modeling techniques were used to investigate which variables significantly predict a nurse's actual burn prevention knowledge. Test for interaction effects were performed, and significance was set at .05. Responding nurses (N = 265) described practicing in a variety of settings, such as pediatric settings (40.2%, n = 105), emergency departments (25.4%, n = 86), medical/surgical settings (8.4%, n = 22), and one pediatric burn setting (4.1%, n = 14), with all specialty areas as having similar actual burn prevention knowledge (P = .052). Seventy-seven percent of the nurses said they never taught about burn prevention (n = 177). Perceived knowledge and actual knowledge (r = .124, P = .046) as well as perceived knowledge and perceived ability were correlated (r = .799, P < .001). Significant predictors of actual knowledge were years in practice (beta = -0.063, P = .034), years in current area (beta = 0.072, P = .003), perceived knowledge (beta = 0.109, P = .042), and perceived ability (beta = 0.137, P = .019). All nurses, regardless of specialty area, have poor burn prevention knowledge, which is correlated with their perceived lack of

  17. Impacts of Growing-Season Prescibed Burns in the Florida Pine Flatwoods Type

    Treesearch

    Kenneth W. Outcalt; John L. Foltz

    2004-01-01

    A considerable amount of experience and knowledge has been gained in the application of growing-season burning in pine communities across the Southeast. However, there is still concern that burning during this season will cause increased tree mortality and/or growth loss. Pine flatwoods stands in south Florida with 3 years of fuel accumulation were burned during the...

  18. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth's core

    NASA Astrophysics Data System (ADS)

    Rusov, V. D.; Pavlovich, V. N.; Vaschenko, V. N.; Tarasov, V. A.; Zelentsova, T. N.; Bolshakov, V. N.; Litvinov, D. A.; Kosenko, S. I.; Byegunova, O. A.

    2007-09-01

    We give an alternative description of the data produced in the KamLAND experiment. Assuming the existence of a natural nuclear reactor on the boundary of the liquid and solid phases of the Earth's core, a geoantineutrino spectrum is obtained. This assumption is based on the experimental results of V. Anisichkin and his collaborators on the interaction of uranium dioxide and uranium carbide with iron-nickel and silica-alumina melts at high pressure (5-10 GPa) and temperature (1600-2200°C), which led to the proposal of the existence of an actinide shell in the Earth's core. We describe the operating mechanism of this reactor as solitary waves of nuclear burning in 238U and/or 232Th medium, in particular, as neutron fission progressive waves of Feoktistov and/or Teller et al. type. Next, we propose a simplified model for the accumulation and burn-up kinetics in Feoktistov's U-Pu fuel cycle. We also apply this model for numerical simulations of neutron fission wave in a two-phase UO2/Fe medium on the surface of the Earth's solid core. The proposed georeactor model offers a mechanism for the generation of 3He. The 3He/4He distribution in the Earth's interior is calculated, which in turn can be used as a natural quantitative criterion of the georeactor thermal power. Finally, we give a tentative estimation of the geoantineutrino intensity and spectrum on the Earth's surface. For this purpose we use the O'Nions et al. geochemical model of mantle differentiation and crust growth complemented by a nuclear energy source (georeactor with power of 30 TW).

  19. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    NASA Astrophysics Data System (ADS)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  20. Scald Burns

    MedlinePlus

    Safety Tips & Info Scald Burns Thousands of scald burns occur annually, and ALL are preventable! The two high-risk populations are children under the age ... the single most important factor in preventing scald burns. Increased awareness is the key to scald prevention! ...

  1. Electric dipole moments of actinide atoms and RaO molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, V. V.

    We have calculated the atomic electric dipole moments (EDMs) induced in {sup 229}Pa and {sup 225}Ac by their respective nuclear Schiff moments S. The results are d({sup 229}Pa)=-9.5x10{sup -17} [S/(e fm)]e cm=-1.1x10{sup -20}{eta} e cm and d({sup 225}Ac)=-8.6x10{sup -17} [S/(e fm)]e cm=-0.8x10{sup -21}{eta} e cm. EDM of {sup 229}Pa is 3x10{sup 4} times larger than {sup 199}Hg EDM and 40 times larger than {sup 225}Ra EDM. Possible use of actinides in solid state experiments is also discussed. The (T,P)-odd spin-axis interaction in RaO molecule is 500 times larger than in TlF.

  2. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  3. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  4. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  5. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  6. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  7. Aqueous and pyrochemical reprocessing of actinide fuels

    NASA Astrophysics Data System (ADS)

    Toth, L. Mac; Bond, Walter D.; Avens, Larry R.

    1993-02-01

    Processing of the nuclear fuel actinides has developed in two independent directions—aqueous processing and pyroprocessing. Similarities in the two processes, their goals, and restraints are indicated in brief parallel descriptions along with distinguishing advantages and areas of future development. It is suggested that from a technical viewpoint, the ultimate process might be a hybrid which incorporates the best steps of each process.

  8. Burn epidemiology and cost of medication in paediatric burn patients.

    PubMed

    Koç, Zeliha; Sağlam, Zeynep

    2012-09-01

    Burns are common injuries that cause problems to societies throughout the world. In order to reduce the cost of burn treatment in children, it is extremely important to determine the burn epidemiology and the cost of medicines used in burn treatment. The present study used a retrospective design, with data collected from medical records of 140 paediatric patients admitted to a burn centre between 1 January 2009 and 31 December 2009. Medical records were examined to determine burn epidemiology, medication administered, dosage, and duration of use. Descriptive statistical analysis was completed for all variables; chi-square was used to examine the relationship between certain variables. It was found that 62.7% of paediatric burns occur in the kitchen, with 70.7% involving boiling water; 55.7% of cases resulted in third-degree burns, 19.3% required grafting, and mean duration of hospital stay was 27.5 ± 1.2 days. Medication costs varied between $1.38 US dollars (USD) and $14,159.09, total drug cost was $46,148.03 and average cost per patient was $329.63. In this study, the medication cost for burn patients was found to be relatively high, with antibiotics comprising the vast majority of medication expenditure. Most paediatric burns are preventable, so it is vital to educate families about potential household hazards that can be addressed to reduce the risk of a burn. Programmes are also recommended to reduce costs and the inappropriate prescribing of medication. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  9. The Southwest UK Burns Network (SWUK) experience of electronic cigarette explosions and review of literature.

    PubMed

    Arnaout, A; Khashaba, H; Dobbs, T; Dewi, F; Pope-Jones, S; Sack, A; Estela, C; Nguyen, D

    2017-06-01

    Since the introduction of e-cigarettes to the UK market in 2007 their popularity amongst young adults has significantly increased. These lithium-ion powered devices remain unregulated by the Standards Agency and as a result burns centres across the world have seen an increasing number of patients presenting with significant burns, resulting from poor quality batteries that appear to be liable to explode when over-heated, over-charged or incorrectly stored. Retrospective and perspective review of all e-cigarette related burns presenting to the Southwest Burns Network; South Wales Burns Centre (Morriston Hospital) or to Bristol burns centre (Southmead Hospital) between Oct 15-July 16, followed by a review of available literature performed and eligible papers identified using PRISMA 2009 Checklist. South Wales Burns Centre (Morriston Hospital) (N=5), Bristol burns centre (Southmead Hospital) (N=7). 92% of injuries were seen in male patients with a mean age of 34.58 (±12.7). The mean TSBA sustained 2.54% of mixed depth, most common anatomical area is the thigh 83% (n=10) with a mean 23.1(±5) days to heal with conservative management. The literature search yielded 3 case series (Colaianni et al., 2016; Kumetz et al., 2016; Nicoll et al., 2016) [8,9,12] and 4 case reports (Jablow and Sexton, 2015; Harrison and Hicklin, 2016; Walsh et al., 2016; Shastry and Langdorf, 2016) [6,7,10,11]. We compare our findings with the published studies. The import and sale of e-cigarettes remains unrestricted. This increases the risk of devices being available in the UK market that do not meet the British Standard Specification, potentially increasing their risk of causing fire and exploding. Consumers should be made aware of this risk, and advised of adequate charging and storage procedures. In case lithium ion compounds leak following a breach in the battery, first aid with mineral oil use is advocated to avoid a further chemical reaction. Copyright © 2017 Elsevier Ltd and ISBI. All

  10. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  11. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less

  12. Burns

    MedlinePlus

    ... occur by direct or indirect contact with heat, electric current, radiation, or chemical agents. Burns can lead ... is. The burn is caused by chemicals or electricity. The person shows signs of shock . The person ...

  13. Final Project Report for ER15351 “A Study of New Actinide Zintl Ion Materials”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter K. Dorhout

    2007-11-12

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorous-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metalmore » salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples.« less

  14. Peripheral Neuropathy and Nerve Compression Syndromes in Burns.

    PubMed

    Strong, Amy L; Agarwal, Shailesh; Cederna, Paul S; Levi, Benjamin

    2017-10-01

    Peripheral neuropathy and nerve compression syndromes lead to substantial morbidity following burn injury. Patients present with pain, paresthesias, or weakness along a specific nerve distribution or experience generalized peripheral neuropathy. The symptoms manifest at various times from within one week of hospitalization to many months after wound closure. Peripheral neuropathy may be caused by vascular occlusion of vasa nervorum, inflammation, neurotoxin production leading to apoptosis, and direct destruction of nerves from the burn injury. This article discusses the natural history, diagnosis, current treatments, and future directions for potential interventions for peripheral neuropathy and nerve compression syndromes related to burn injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The trends of burns epidemiology in a tropical regional burns centre.

    PubMed

    Hwee, Jolie; Song, Christopher; Tan, Kok Chai; Tan, Bien Keem; Chong, Si Jack

    2016-05-01

    Singapore General Hospital (SGH) is a regional burns centre in Southeast Asia and is the only dedicated burns facility providing specialized burns care in Singapore. A cohort study was performed for burns patients admitted to SGH from 2011 to 2013. We compared our data with earlier studies and observed the trends of burns epidemiology in Singapore. Results were analyzed using the SPSS programme. 655 patients were admitted during this study period, a 35.9% increase from 2003 to 2005. Scalding by water and flame injury remain the top causes of burns and the mean extent of burn is 9.5%. TBSA correlates with the incidence of burn infection, bacteremia and mortality. Patients with ≥20% TBSA are at a higher risk of bacteremia, and ≥ 34% TBSA is a predictor of mortality. 4.9% (n=32) of our patients developed bacteremia. Bacteremia was associated with a surgical duration of ≥80min. Patients with bacteremia incurred longer hospitalization, and had higher mortality rates. Overall mortality rate of our burns patients has decreased from 4.5% to 2.7% (n=18). Key factors of mortality include inhalational injury, bacteremia and ≥20% TBSA. This is a large epidemiology study of a tropical region burns centre. A total of 655 burns cases over a 3-year period were analyzed. We analysed the key factors associated with adverse outcomes including burns infection, bacteremia and mortality, factors associated with mortality, and discussed strategies on the optimization of burns care. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. Burn Wound Infections

    PubMed Central

    Church, Deirdre; Elsayed, Sameer; Reid, Owen; Winston, Brent; Lindsay, Robert

    2006-01-01

    Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. A current summary of the classifications of burn wound infections, including their diagnosis, treatment, and prevention, is given. Early excision of the eschar has substantially decreased the incidence of invasive burn wound infection and secondary sepsis, but most deaths in severely burn-injured patients are still due to burn wound sepsis or complications due to inhalation injury. Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices. PMID:16614255

  17. MORBIDITY AND SURVIVAL PROBABILITY IN BURN PATIENTS IN MODERN BURN CARE

    PubMed Central

    Jeschke, Marc G.; Pinto, Ruxandra; Kraft, Robert; Nathens, Avery B.; Finnerty, Celeste C.; Gamelli, Richard L.; Gibran, Nicole S.; Klein, Matthew B.; Arnoldo, Brett D.; Tompkins, Ronald G.; Herndon, David N.

    2014-01-01

    Objective Characterizing burn sizes that are associated with an increased risk of mortality and morbidity is critical because it would allow identifying patients who might derive the greatest benefit from individualized, experimental, or innovative therapies. Although scores have been established to predict mortality, few data addressing other outcomes exist. The objective of this study was to determine burn sizes that are associated with increased mortality and morbidity after burn. Design and Patients Burn patients were prospectively enrolled as part of the multicenter prospective cohort study, Inflammation and the Host Response to Injury Glue Grant, with the following inclusion criteria: 0–99 years of age, admission within 96 hours after injury, and >20% total body surface area burns requiring at least one surgical intervention. Setting Six major burn centers in North America. Measurements and Main Results Burn size cutoff values were determined for mortality, burn wound infection (at least two infections), sepsis (as defined by ABA sepsis criteria), pneumonia, acute respiratory distress syndrome, and multiple organ failure (DENVER2 score >3) for both children (<16 years) and adults (16–65 years). Five-hundred seventy-three patients were enrolled, of which 226 patients were children. Twenty-three patients were older than 65 years and were excluded from the cutoff analysis. In children, the cutoff burn size for mortality, sepsis, infection, and multiple organ failure was approximately 60% total body surface area burned. In adults, the cutoff for these outcomes was lower, at approximately 40% total body surface area burned. Conclusions In the modern burn care setting, adults with over 40% total body surface area burned and children with over 60% total body surface area burned are at high risk for morbidity and mortality, even in highly specialized centers. PMID:25559438

  18. Burns

    MedlinePlus

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  19. Overview of Asian Biomass Burning and Dust Aerosols Measured during the Dongsha Experiment in the Spring of 2010

    NASA Astrophysics Data System (ADS)

    Lin, N.; Tsay, S.; Wang, S.; Sheu, G.; Chi, K.; Lee, C.; Wang, J.

    2010-12-01

    The international campaign of Dongsha Experiment was conducted in the northern SE Asian region during March-May 2010. It is a pre-study of the Seven South East Asian Studies (7SEAS) which seeks to perform interdisciplinary research in the field of aerosol-meteorology and climate interaction in the Southeast Asian region, particularly for the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate. Participating countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, Taiwan, Vietnam, and USA (NASA, NRL, and NOAA). The main goals of Dongsha Experiment are (1) to develop the Dongsha Island (about 2 km2, 20°42'52" N, 116°43'51" E) in the South China Sea as an atmospheric observing platform of atmospheric chemistry, radiation and meteorological parameters, and (2) to characterize the chemical and physical properties of biomass burning aerosols in the northern SE Asian region. A monitoring network for ground-based measurements includes the Lulin Atmospheric Background Station (2,862 m MSL) in central Taiwan, Hen-Chun (coastal) in the very southern tip of Taiwan, Dongsha Island in South China Sea, Da Nang (near coastal region) in central Vietnam, and Chiang Mai (about 1,400 m, MSL) in northern Thailand. Besides, the Mobile Air Quality Station of Taiwan EPA and NASA/COMMIT were shipped to Dongsha Island for continuous measurements of CO, SO2, NOx, O3, and PM10, and aerosol optical and vertical profiles. Two Intensive Observation Periods (IOPs) for aerosol chemistry were conducted during 14-30 March and 10-20 April 2010, respectively. Ten aerosol samplers were deployed for each station for characterizing the compositions of PM2.5/PM10 (some for TSP) including water-soluble ions, metal elements, BC/OC, Hg and dioxins. Sampling tubes of VOCs were also deployed. Concurrent measurements with IOP-1, Taiwanese R/V also made a mission to South China Sea during 14-19 March. Enhanced sounding at Dongsha Island was

  20. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  1. The main concern of burn survivors in Iran

    PubMed Central

    Zamanzadeh, Vahid; Valizadeh, Lila; Lotfi, Mojgan; Salehi, Feridoon; Khalili, Assef

    2016-01-01

    Background: The present work was conducted to study the burn patients’ experiences to get an insight into their main concerns when they suffer the tragic event, recover from it, and adjust back in the society, so that better rehabilitation programs can be planned corresponding to their needs as well as to the needs of the society and the existing situations. Materials and Methods: In this qualitative study, 17 burn survivors were enrolled. Unstructured interviews were used for data collection. All the interviews were recorded, transcribed, and analyzed using qualitative content analysis method. Results: Based on the existing elements of the explicit textual meanings, two categories of threat and disturbance were formed. The category of threat was extracted from the following five subcategories: (a) Threat to physical life; (b) threat to the process of living; (c) psychological threat; (d) spiritual threat; and (e) social threat. The category of disturbance was extracted from the following three subcategories: (a) Sensory disturbance: Suffering pain; (b) self-concept disturbance; and (c) behavioral disturbance. Conclusions: Burn survivors experience severe pain, enduring and suffering in their daily activities after burn. Passing through these difficult trajectories is perceived as a threat and disturbance in self-integrity. PMID:27563326

  2. Evaluating Burning Mouth Syndrome as a Comorbidity of Atypical Odontalgia: The Impact on Pain Experiences.

    PubMed

    Tu, Trang T H; Miura, Anna; Shinohara, Yukiko; Mikuzuki, Lou; Kawasaki, Kaoru; Sugawara, Shiori; Suga, Takayuki; Watanabe, Takeshi; Watanabe, Motoko; Umezaki, Yojiro; Yoshikawa, Tatsuya; Motomura, Haruhiko; Takenoshita, Miho; Toyofuku, Akira

    2018-06-01

    This study aimed (1) to investigate the differences in clinical characteristics of patients between 2 groups, those who have atypical odontalgia (AO) only and those who have AO with burning mouth syndrome (BMS), and (2) to assess the influence of psychiatric comorbidity factors on patients' experiences. Medical records and psychiatric referral forms of patients visiting the Psychosomatic Dentistry Clinic of Tokyo Medical and Dental University between 2013 and 2016 were reviewed. The final sample included 2 groups of 355 patients: those who have AO only (n = 272) and those who have AO with BMS (AO-BMS; n = 83). Clinicodemographic variables (gender, age, comorbid psychiatric disorders, and history of headache or sleep disturbances) and pain variables (duration of illness, pain intensity, and severity of accompanying depression) were collected. Initial pain assessment was done using the Short-Form McGill Pain Questionnaire, and depressive state was determined using the Zung Self-Rating Depression Scale. The average age, female ratio, and sleep disturbance prevalence in the AO-only group were significantly lower than those in AO-BMS group. AO-BMS patients rated overall pain score and present pain intensity significantly higher than did the AO-only patients (P = 0.033 and P = 0.034, respectively), emphasizing sharp (P = 0.049), hot-burning (P = 0.000), and splitting (P = 0.003) characteristics of pain. Patients having comorbid psychiatric disorders had a higher proportion of sleep disturbance in both groups and a higher proportion of depressive state in the AO-only group. AO-BMS patients have different epidemiological characteristics, sleep quality, and pain experiences compared to AO-only patients. The presence of psychiatric comorbidities in both groups may exacerbate sleep quality. We suggest that BMS as a comorbid oral disorder in AO patients contributes to a more intensively painful experience. © 2017 The Authors. Pain Practice published by Wiley Periodicals, Inc

  3. OH-initiated Aging of Biomass Burning Aerosol during FIREX

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.

    2017-12-01

    Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.

  4. Paediatric sunburn: the experience of an Australian paediatric burns unit.

    PubMed

    Mah, Latifa; Di Giovine, Paul; Quinn, Linda; Sparnon, Anthony

    2013-08-01

    The number of hospital presentations and admissions for treatment of sunburn remains significant, despite efforts to educate the public regarding sun protection. Current literature chiefly examines public health campaigns and sun protection behaviours and attitudes. There are very few articles that explore paediatric sunburn requiring hospital presentation. This study was therefore undertaken to provide a snapshot of this issue and to identify patterns and causative factors in the development of severe sunburn requiring hospital presentation. Data were collected for retrospective analysis from case records of patients who presented with sunburn and were registered on the Burns Service database at the Women's and Children's Hospital in South Australia. This study includes patients who presented during the period of October 2006 to March 2011. There were 81 cases identified over the period of 2006-2011 from the Burns database that had sufficient information for the purpose of this study. Factors such as outdoor activity and water sports were predictably apparent, with patients being burned on days with extremely high ultraviolet ratings. Key patterns that emerged were location of sunburn and sun protection use, which were gender and age specific. Larger-scale studies are warranted to further delineate the contributing factors and to identify the specific populations of children at risk of sunburn. Future educational programmes can therefore target these subgroups and behaviours for effective prevention of sunburn. Tailored campaigns that address these factors may be of greater impact in reducing hospital presentations and admissions of significant sunburn. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M)more » carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.« less

  6. The Incidence of Burns Among Sex-Trafficking Victims in India

    PubMed Central

    Rahman, Nadia; Sinha, Indranil; Husain, Fatima; Shah, Ajul; Patel, Anup

    2014-01-01

    Sex trafficking remains a flagrant violation of human rights, creating many public health concerns. During the initiation period, these victims experience acts of violence including gang rapes, subjecting them to traumatic injuries that include burns. Furthermore, lack of access to health care, particularly surgical, keeps them from receiving treatment for these functionally debilitating contractures caused by burns. This piece provides an overview of burns among sex-trafficked victims in India and the efforts by Cents of Relief to address the associated surgical burden of disease. PMID:25191142

  7. Satisfaction with life after burn: A Burn Model System National Database Study.

    PubMed

    Goverman, J; Mathews, K; Nadler, D; Henderson, E; McMullen, K; Herndon, D; Meyer, W; Fauerbach, J A; Wiechman, S; Carrougher, G; Ryan, C M; Schneider, J C

    2016-08-01

    While mortality rates after burn are low, physical and psychosocial impairments are common. Clinical research is focusing on reducing morbidity and optimizing quality of life. This study examines self-reported Satisfaction With Life Scale scores in a longitudinal, multicenter cohort of survivors of major burns. Risk factors associated with Satisfaction With Life Scale scores are identified. Data from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) Burn Model System (BMS) database for burn survivors greater than 9 years of age, from 1994 to 2014, were analyzed. Demographic and medical data were collected on each subject. The primary outcome measures were the individual items and total Satisfaction With Life Scale (SWLS) scores at time of hospital discharge (pre-burn recall period) and 6, 12, and 24 months after burn. The SWLS is a validated 5-item instrument with items rated on a 1-7 Likert scale. The differences in scores over time were determined and scores for burn survivors were also compared to a non-burn, healthy population. Step-wise regression analysis was performed to determine predictors of SWLS scores at different time intervals. The SWLS was completed at time of discharge (1129 patients), 6 months after burn (1231 patients), 12 months after burn (1123 patients), and 24 months after burn (959 patients). There were no statistically significant differences between these groups in terms of medical or injury demographics. The majority of the population was Caucasian (62.9%) and male (72.6%), with a mean TBSA burned of 22.3%. Mean total SWLS scores for burn survivors were unchanged and significantly below that of a non-burn population at all examined time points after burn. Although the mean SWLS score was unchanged over time, a large number of subjects demonstrated improvement or decrement of at least one SWLS category. Gender, TBSA burned, LOS, and school status were associated with SWLS scores at 6 months

  8. Feet sunk in molten aluminium: The burn and its prevention.

    PubMed

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  9. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  10. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  11. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  12. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  13. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  14. Separation of actinides from lanthanides

    DOEpatents

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  15. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  16. Monitoring Shuttle Burns and Rocket Launches with GPS

    NASA Astrophysics Data System (ADS)

    Coster, A. J.; Bhatt, A.; O'Hanlon, B.; Rideout, W.

    2009-12-01

    We report on different GPS analysis techniques that can be used to examine the effects of rocket exhaust on the upper atmosphere. GPS observations of artificially produced electron density holes created by chemical releases from Space Shuttle Orbital Maneuvering System (OMS) engine burns will be discussed. The percentage drop in total electron content (TEC) and the temporal and spatial scales observed in the electron density hole for different Shuttle burn experiments will be compared. We will also report on observations of TEC depletions associated with Titan rocket launches on 8 April 2003 and on 19 October 2005. Finally we will discuss the use of GPS measurements of precipitable water vapor from time periods before, during, and after Shuttle burns.

  17. Smoke inhalation increases intensive care requirements and morbidity in paediatric burns.

    PubMed

    Tan, Alethea; Smailes, Sarah; Friebel, Thessa; Magdum, Ashish; Frew, Quentin; El-Muttardi, Naguib; Dziewulski, Peter

    2016-08-01

    Burn survival has improved with advancements in fluid resuscitation, surgical wound management, wound dressings, access to antibiotics and nutritional support for burn patients. Despite these advancements, the presence of smoke inhalation injury in addition to a cutaneous burn still significantly increases morbidity and mortality. The pathophysiology of smoke inhalation has been well studied in animal models. Translation of this knowledge into effectiveness of clinical management and correlation with patient outcomes including the paediatric population, is still limited. We retrospectively reviewed our experience of 13 years of paediatric burns admitted to a regional burn's intensive care unit. We compared critical care requirements and patient outcomes between those with cutaneous burns only and those with concurrent smoke inhalation injury. Smoke inhalation increases critical care requirements and mortality in the paediatric burn population. Therefore, early critical care input in the management of these patients is advised. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  18. Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Denny, Matthew D.

    The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.

  19. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides.

    PubMed

    Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David

    2011-01-01

    Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  20. Report From the California Burn Registry—The Causes of Major Burns

    PubMed Central

    Bongard, Frederic S.; Ostrow, Louis B.; Sacks, Susan T.; McGuire, Andrew; Trunkey, Donald D.

    1985-01-01

    In its first four years of operation, the California Burn Registry recorded 3,332 cases of burns, of which 73.1% were in male and 26.9% were in female patients of all ages. The average total body surface area burned was 15.4±0.3%. Flame burns were the most common (31.4%). Other common sources included scalds (24.5%) and flammable liquids (12.9%). Several other causes were cited with less frequency. Burns taking place at home occurred more commonly than at all other locations combined. In all, 221 deaths (6.6%) were reported, most (66.1%) of which were due to flame burns. PMID:4013280

  1. Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation.

    PubMed

    Kaur, Maninder; Zhang, Huijin; Martin, Leigh; Todd, Terry; Qiang, You

    2013-01-01

    A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.

  2. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M; Mueller, Don; Wagner, John C

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only ismore » based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available

  3. From carbon to actinides: A new universal 1MV accelerator mass spectrometer at ANSTO

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Hotchkis, M.; Levchenko, V.; Fink, D.; Hauser, T.; Kitchen, R.

    2015-10-01

    A new 1 MV NEC pelletron AMS system at ANSTO is presented. The spectrometer comprises large radius magnets for actinide measurements. A novel feature of the system is fast switching between isotopes both at low and high energy sections allowing measurements of up to 8 isotopes within a single sequence. Technical details and layout of the spectrometer is presented. Performance data for 14C, 10Be, 26Al and actinides demonstrate the system is ready for routine AMS measurements.

  4. Pattern and profile of electric burn injury cases at a Burn centre.

    PubMed

    Cheema, Saeed Ashraf

    2016-01-01

    Electrical burns are quite different from thermal and chemical burns. This study is from a centre which deals with job related electric burn injuries alone and thus can give a pure account of the electric burns and discuss the related peculiarities. Study aims to highlight the differences in the mechanism of electric burn injury, its mode of presentation, morbidity, complications and thus the treatment strategies as compared to rest of the burn injuries. This is a descriptive case series study of first consecutive 61 electric burn victims treated at a Burn Unit and Plastic Surgery centre. Cases were admitted and resuscitated at the emergency, and further treated at burn unit. Thorough history, examination findings and operative procedures were recorded. Patients were photographed for record as well. Emergency operative procedures, wound management, soft tissue coverage procedures and complications during the hospital stay were recorded and studied. Twenty cases (33%) were in the fifth decade of life. High voltage electric burn injury was seen in 42 (69%) of the cases. Whereas only 9 cases were treated conservatively, other 52 cases had 24 fasciotomies and 71 debridements. Series witnessed 10 expiries, and 22 amputations and all these were result of high voltage electric burns. Twenty eight soft tissue coverage procedures were carried out. Electric burn injuries are altogether different from rest of the burn injuries and must be treated accordingly. These injuries are peculiar for ongoing damage, extensive trauma, complications and prolonged morbidity. Treatment requires a high degree of suspicion, more aggressive management to unfold and minimize the deep seated insult.

  5. Burn Survivors' Perceptions regarding Relevant Sexual Education Strategies

    ERIC Educational Resources Information Center

    Parrott, Yolan; Esmail, Shaniff

    2010-01-01

    Purpose: This paper aims to investigate the unique issues childhood burn survivors experience in relation to sex education and sexual development. Design/methodology/approach: Using a phenomenological approach, participants described their lived experiences with regards to sex education and the sexuality issues they encountered as child burn…

  6. Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations

    NASA Technical Reports Server (NTRS)

    Stefanski, Philip L.

    2014-01-01

    A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.

  7. The wound/burn guidelines - 6: Guidelines for the management of burns.

    PubMed

    Yoshino, Yuichiro; Ohtsuka, Mikio; Kawaguchi, Masakazu; Sakai, Keisuke; Hashimoto, Akira; Hayashi, Masahiro; Madokoro, Naoki; Asano, Yoshihide; Abe, Masatoshi; Ishii, Takayuki; Isei, Taiki; Ito, Takaaki; Inoue, Yuji; Imafuku, Shinichi; Irisawa, Ryokichi; Ohtsuka, Masaki; Ogawa, Fumihide; Kadono, Takafumi; Kawakami, Tamihiro; Kukino, Ryuichi; Kono, Takeshi; Kodera, Masanari; Takahara, Masakazu; Tanioka, Miki; Nakanishi, Takeshi; Nakamura, Yasuhiro; Hasegawa, Minoru; Fujimoto, Manabu; Fujiwara, Hiroshi; Maekawa, Takeo; Matsuo, Koma; Yamasaki, Osamu; Le Pavoux, Andres; Tachibana, Takao; Ihn, Hironobu

    2016-09-01

    Burns are a common type of skin injury encountered at all levels of medical facilities from private clinics to core hospitals. Minor burns heal by topical treatment alone, but moderate to severe burns require systemic management, and skin grafting is often necessary also for topical treatment. Inappropriate initial treatment or delay of initial treatment may exert adverse effects on the subsequent treatment and course. Therefore, accurate evaluation of the severity and initiation of appropriate treatment are necessary. The Guidelines for the Management of Burn Injuries were issued in March 2009 from the Japanese Society for Burn Injuries as guidelines concerning burns, but they were focused on the treatment for extensive and severe burns in the acute period. Therefore, we prepared guidelines intended to support the appropriate diagnosis and initial treatment for patients with burns that are commonly encountered including minor as well as moderate and severe cases. Because of this intention of the present guidelines, there is no recommendation of individual surgical procedures. © 2016 Japanese Dermatological Association.

  8. Economic Burden of Drug Use in Patients with Acute Burns: Experience in a Developing Country

    PubMed Central

    Ogundipe, Kolawole Olubunmi; Adigun, Ismaila Abiona; Solagberu, Babatunde Akeeb

    2009-01-01

    Background/Objective. Burn injury is a devastating injury. The economic drain on the patient's purse is equally devastating. Few studies have examined the cost of managing burn patients particularly the drug component. Methods. The financial implication of drug use in the management of 69 consecutive patients admitted by the burn unit over a period of two years was retrospectively analysed. Results. Thirty-six (52.2%) patients were males and 33 (47.8%) females with a mean age of 17.9 years (SD = 18.4). The patients spent an average sum of $91.21 to procure drugs; 84.3% of the costs were for antibiotics, 11.1% for analgesics, and 4.6% for others. Conclusion. Significant amount of money is spent on the procurement of drugs. Most of the money is spent on prescribed antibiotics. Measures that reduce antibiotics use in burn management might relief patients of the huge economic burden associated with its use. PMID:20339469

  9. Resuscitation burn card--a useful tool for burn injury assessment.

    PubMed

    Malic, C C; Karoo, R O S; Austin, O; Phipps, A

    2007-03-01

    It is well recognised that the initial assessment of body surface area affected by a burn is often over estimated in Accident and Emergency Departments. A useful aide-memoir in the acute setting is Wallace's "rule of nines" or using the patients' palmar surface of the hand, which approximates 1% of the total body surface area, as a method of assessment. Unfortunately, as with every system, limitations apply. Factors such as patient size and the interpretation of what is exactly the 'palmar surface' may significantly influence burn size estimations and subsequently fluid resuscitation. Our aim is to develop a simple, quick and easy reproducible method of calculating burn injuries for medical professionals in the acute setting. Worldwide, the dimensions of a credit card are standardized (8.5 cm x 5.3 cm), thus producing a surface area of 45 cm2. We created a resuscitation burn card (RBC) using these exact same proportions, upon which a modified body surface area (BSA) nomogram was printed. Knowing the patient height and weight, we calculated the surface area of the card as percentage of total body surface area (TBSA). On the opposite site of the RBC, a Lund and Browder chart was printed, as well as the Parkland formula and a formula to calculate paediatric burn fluid requirements. The plastic, flexible RBC conformed well to the body contour and was designed for single use. We used the resuscitation burn card in the initial assessment of simulated burns in a Regional Burn Centre and in an Accident and Emergency Department. The information present on the card was found to be clear and straightforward to use. The evaluation of burn extent was found to be more accurately measured than the estimation obtained without the RBC. The resuscitation burn card can be a valuable tool in the hands of less experienced medical professionals for the early assessment and fluid resuscitation of a burn.

  10. American Burn Association Practice Guidelines: Burn Shock Resuscitation

    DTIC Science & Technology

    2008-02-01

    Ann Surg 1979;189: 546–52. 39. Jelenko C III, Williams JB, Wheeler ML, et al. Studies in shock and resuscitation, I: use of a hypertonic, albumin...SUMMARY ARTICLE American Burn Association Practice Guidelines Burn Shock Resuscitation Tam N. Pham, MD,* Leopoldo C . Cancio, MD,† Nicole S. Gibran...practice guidelines burn shock resuscitation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pham T. N., Cancio L. C

  11. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  12. Pollicization for thumb reconstruction in severe pediatric hand burns.

    PubMed

    Ward, J W; Pensler, J M; Parry, S W

    1985-12-01

    Our experience in pollicization of the index ray for severely burned hands in children is reviewed with attention to severity of burn, functional impairment, age at pollicization, procedure used, operative time, length of hospital stay, and long-term functional results. Fifteen pollicizations were performed in 11 patients with an average follow-up of over 5 years. Indication for pollicization was lack of prehension due to total loss of the thumb with the presence of a transposable index ray. The bipedicle flap method was used in two cases and the neurovascular pedicle technique was employed in all others. Skin grafts were necessary in all cases. Results were graded according to presence or absence of tip pinch, key pinch, grasp, and opposition. Significant functional improvement was seen in 14 of 15 cases (94 percent). Four patients (27 percent) developed complications requiring secondary procedures. In our experience, pollicization provides the most rapid and effective means of restoration of thumb function in the severe pediatric hand burn with multiple digit loss.

  13. Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis

    NASA Astrophysics Data System (ADS)

    Choi, Yunsoo; Elliott, Scott; Simpson, Isobel J.; Blake, Donald R.; Colman, Jonah J.; Dubey, Manvendra K.; Meinardi, Simone; Rowland, F. Sherwood; Shirai, Tomoko; Smith, Felisa A.

    2003-03-01

    Hydrocarbon and halocarbon measurements collected during the second airborne Biomass Burning and Lightning Experiment (BIBLE-B) were subjected to a principal component analysis (PCA), to test the capability for identifying intercorrelated compounds within a large whole air data set. The BIBLE expeditions have sought to quantify and understand the products of burning, electrical discharge, and general atmospheric chemical processes during flights arrayed along the western edge of the Pacific. Principal component analysis was found to offer a compact method for identifying the major modes of composition encountered in the regional whole air data set. Transecting the continental monsoon, urban and industrial tracers (e.g., combustion byproducts, chlorinated methanes and ethanes, xylenes, and longer chain alkanes) dominated the observed variability. Pentane enhancements reflected vehicular emissions. In general, ethyl and propyl nitrate groupings indicated oxidation under nitrogen oxide (NOx) rich conditions and hence city or lightning influences. Over the tropical ocean, methyl nitrate grouped with brominated compounds and sometimes with dimethyl sulfide and methyl iodide. Biomass burning signatures were observed during flights over the Australian continent. Strong indications of wetland anaerobics (methane) or liquefied petroleum gas leakage (propane) were conspicuous by their absence. When all flights were considered together, sources attributable to human activity emerged as the most important. We suggest that factor reductions in general and PCA in particular may soon play a vital role in the analysis of regional whole air data sets, as a complement to more familiar methods.

  14. Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides

    NASA Astrophysics Data System (ADS)

    Gotcu-Freis, P.; Hiernaut, J.-P.; Colle, J.-Y.; Nästrén, C.; Carretero, A. Fernandez; Konings, R. J. M.

    2011-04-01

    The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.

  15. Rapid method to determine actinides and 89/90Sr in limestone and marble samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...

    2016-04-12

    A new method for the determination of actinides and radiostrontium in limestone and marble samples has been developed that utilizes a rapid sodium hydroxide fusion to digest the sample. Following rapid pre-concentration steps to remove sample matrix interferences, the actinides and 89/90Sr are separated using extraction chromatographic resins and measured radiometrically. The advantages of sodium hydroxide fusion versus other fusion techniques will be discussed. Lastly, this approach has a sample preparation time for limestone and marble samples of <4 hours.

  16. Separation of actinides from irradiated An-Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl-KCl

    NASA Astrophysics Data System (ADS)

    Souček, P.; Murakami, T.; Claux, B.; Meier, R.; Malmbeck, R.; Tsukada, T.; Glatz, J.-P.

    2015-04-01

    An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl-KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An-Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U67-Pu19-Zr10-MA2-RE2 (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide-aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  17. Matrix infrared spectra and electronic structure calculations of the first actinide borylene: FB=ThF(2).

    PubMed

    Wang, Xuefeng; Roos, Björn O; Andrews, Lester

    2010-03-14

    Laser-ablated Th atoms react with BF(3) during condensation in excess argon at 6 K to form the first actinide borylene (FB=ThF(2)) and actinide-boron multiple bond. Three new product absorptions in the B-F and Th-F stretching regions of matrix infrared spectra are assigned to FB=ThF(2) from comparison to theoretically predicted vibrational frequencies.

  18. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less

  19. The Role of Hyperglycemia in Burned Patients: Evidence-Based Studies

    PubMed Central

    Mecott, Gabriel A.; Al-Mousawi, Ahmed M.; Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.

    2013-01-01

    Severely burned patients typically experience a systemic response expressed as increased metabolism, inflammation, alteration of cardiac and immune function, and associated hyperglycemia. Hyperglycemia has been associated with an increased risk of morbidity and mortality in critically ill patients. Until recently and for many years, hyperglycemia has been expectantly managed and considered a normal and desired response of an organism to stress. However, findings reported from recent studies now suggest beneficial effects of intensive insulin treatment for critically-ill patients. The literature on the management of hyperglycemia in severely burned patients is sparse, with most of the available studies involving only small numbers of burned patients. The purpose of this article is to describe the pathophysiology of hyperglycemia following severe burns and review the available literature on the outcome of intensive insulin treatment and other anti-hyperglycemic modalities in burned patients in an evidence-based-medicine approach. PMID:19503020

  20. Trivalent Actinide Uptake by Iron (Hydr)oxides.

    PubMed

    Finck, Nicolas; Nedel, Sorin; Dideriksen, Knud; Schlegel, Michel L

    2016-10-04

    The retention of Am(III) by coprecipitation with or adsorption onto preformed magnetite was investigated by X-ray diffraction (XRD), solution chemistry, and X-ray absorption spectroscopy (XAS). In the coprecipitation experiment, XAS data indicated the presence of seven O atoms at 2.44(1) Å, and can be explained by an Am incorporation at Fe structural sites at the magnetite surface. Next-nearest Fe were detected at distances suggesting that Am and Fe polyhedra share corners in geometries ranging from bent to close to linear Am-O-Fe bonds. After aging for two years, the coordination number and the distance to the first O shell significantly decreased, and atomic shells were detected at higher distances. These data suggest a structural reorganization and an increase in structural order around sorbed Am. Upon contact with preformed Fe 3 O 4 , Am(III) forms surface complexes with cosorbed Fe at the surface of magnetite, a possible consequence of the high concentration of dissolved Fe. In a separate experiment, chloride green rust (GR) was synthesized in the presence of Am(III), and subsequently converted to Fe(OH) 2 (s) intermixed with magnetite. XAS data indicated that the actinide is successively located first at octahedral brucite-like sites in the GR precursor, then in Fe(OH) 2 (s), an environment markedly distinct from that of Am(III) in Fe 3 O 4 . The findings indicate that the magnetite formation pathway dictates the magnitude of Am(III) incorporation within this solid.

  1. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  2. Planning for burn disasters: lessons learned from one hundred years of history.

    PubMed

    Barillo, David J; Wolf, Steven

    2006-01-01

    The terrorist attacks of September 11th have prompted interest in developing plans to manage thousands of burn casualties. There is little actual experience in the United States in managing disasters of this magnitude. As an alternative, lessons may be learned from the historical experiences of previous civilian burn or fire disasters occurring in this country. A review of relevant medical, fire service, and popular literature pertaining to civilian burn or fire disasters occurring in the United States between the years 1900 and 2000 was performed. In the 20th century, 73 major U.S. fire or burn disasters have occurred. With each disaster prompting a strengthening of fire regulations or building codes, the number of fatalities per incident has steadily decreased. Detailed examination of several landmark fires demonstrated that casualty counts were great but that most victims had fatal injuries and died on the scene or within 24 hours. A second large cohort comprised the walking wounded, who required minimal outpatient treatment. Patients requiring inpatient burn care comprise a small percentage of the total casualty figure but consume enormous resources during hospitalization. Burn mass casualty incidents are uncommon. The number of casualties per incident decreased over time. In most fire disasters, the majority of victims either rapidly die or have minimal injuries and can be treated and released. As a result, most disasters produce fewer than 25 to 50 patients requiring inpatient burn care. This would be a rational point to begin burn center preparations for mass casualty incidents. A robust outpatient capability to manage the walking wounded is also desirable.

  3. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  4. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.

    2016-07-01

    This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.

  5. Economics of pediatric burns.

    PubMed

    Bass, Michael J; Phillips, Linda G

    2008-07-01

    Sustaining a burn injury sets in motion a cycle of pain, disfigurement, and a search for survival. In pediatric burns, the injury extends to the parents where fear, ignorance, and helplessness forever change their lives. Pediatric burn injuries are caused by fire, hot liquids, clothing irons, hair curlers, caustic substances like drain cleaner, the grounding of an electrical source, and exposure to radiation. Efficiency in the delivery of pediatric burn care is critical. Maximizing resource utilization means continual self-evaluation and economic analysis of therapeutic modalities. Griffiths et al found that most childhood burns are due to scalds, which can be treated for $1061 per percent burn. Paddock et al reduced the cost of treating superficial pediatric burns and reduced the length of stay in hospital using silver-impregnated gauze over traditional methods. Barrett et al found improved cosmesis of skin grafts using cultured epithelial autografts but at a substantially increased cost. Corpron et al showed that pediatric burn units that treat burns >10% total body surface area and operative treatment of pediatric burns regardless of size generate positive revenue. There is a paucity of evidentiary pediatric burn economic data. More research is needed to address areas of pediatric burn care inefficiency. Improving knowledge of cost in all health care endeavors will create competition and drive down expenditures.

  6. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    PubMed

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  7. Experiment and Reactive-Burn Modeling in the RDX Based Explosive XTX 8004

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Murphy, Mike; Gustavsen, Rick; Jackson, Scott; Vincent, Samuel

    2015-06-01

    XTX 8004 consists of 80 wt. % cyclotrimethylenetrinitramine (RDX), and 20 wt. % Sylgard 182, a silicone rubber used as a binder. Nominal density is 1.5 g/cm3. Uncured XTX 8004 is putty like and can be molded or extruded. The XTX 8004 detonation product Hugoniot calibration was obtained from cylinder tests using a genetic algorithm approach to parameterize a Jones-Wilkins-Lee (JWL) equation of state. Additionally, we conducted four gas-gun experiments that were instrumented with embedded electromagnetic particle velocity gauges. These provided wave profiles to which we calibrated an Ignition and Growth reactive burn (IGRB) model in ALE3D for 1-D shock to detonation transitions. Further, acceptor and donor XTX 8004 were extruded into opposite sides of a monolithic polymethylmethacrylate (PMMA) block with a known thickness of PMMA forming the attenuator plate, the so-called monolithic gap test (MGT). Detonation and initiation in the XTX 8004 was recorded using multiple ultra-high-speed images of the position of the shock front in the PMMA. Input to the acceptor charge was estimated from stress wave profiles photographed inside the attenuator as well as with photonic Doppler velocimetry (PDV) measurements of the free surface velocity beneath the attenuator plate. Results were simulated using IGRB in ALE3D. Parameterization of IGRB to 1-D vs. 2-D experiments will be discussed.

  8. Preparation of Partial-Thickness Burn Wounds in Rodents Using a New Experimental Burning Device.

    PubMed

    Sakamoto, Michiharu; Morimoto, Naoki; Ogino, Shuichi; Jinno, Chizuru; Kawaguchi, Atsushi; Kawai, Katsuya; Suzuki, Shigehiko

    2016-06-01

    The manual application of hot water or hot metal to an animal's skin surface is often used to prepare burn wound models. However, manual burn creation is subject to human variability. We developed a new device that can control the temperature, time, and pressure of contact to produce precise and reproducible animal burn wounds and investigated the conditions required to prepare various burn wounds using our new device. We prepared burn wounds on F344 rats using 3 contact times 2, 4, and 10 seconds using a stamp heated to 80°C. We observed the wound-healing process macroscopically and histologically and evaluated the burn depth using a laser speckle contrast-imaging device, which evaluated the blood flow of the wound. The changes in the burned area over time, tissue perfusion of the burn wounds, histological evaluation of the burn depth by hematoxylin-eosin and azocarmine and aniline blue staining, and the epithelialization rate (the ratio of the epithelialized area to the wound length) were evaluated on histological sections. Results indicated that the burn wounds prepared with contact times of 2, 4, and 10 seconds corresponded to superficial dermal burns, deep dermal burns, and full-thickness burns, respectively. We demonstrated that partial- and full-thickness burn wounds can be precisely and reproducibly created with our new automated burning device.

  9. Improving mortality outcomes of Stevens Johnson syndrome/toxic epidermal necrolysis: A regional burns centre experience.

    PubMed

    Nizamoglu, M; Ward, J A; Frew, Q; Gerrish, H; Martin, N; Shaw, A; Barnes, D; Shelly, O; Philp, B; El-Muttardi, N; Dziewulski, P

    2018-05-01

    Stevens Johnson Syndrome/toxic epidermal necrolysis (SJS/TEN) are rare, potentially fatal desquamative disorders characterised by large areas of partial thickness skin and mucosal loss. The degree of epidermal detachment that occurs has led to SJS/TEN being described as a burn-like condition. These patients benefit from judicious critical care, early debridement and meticulous wound care. This is best undertaken within a multidisciplinary setting led by clinicians experienced in the management of massive skin loss and its sequelae. In this study, we examined the clinical outcomes of SJS/TEN overlap & TEN patients managed by our regional burns service over a 12-year period. We present our treatment model for other burn centres treating SJS/TEN patients. A retrospective case review was performed for all patients with a clinical diagnosis of TEN or SJS/TEN overlap admitted to our paediatric and adult burns centre between June 2004 and December 2016. Patient demographics, percentage total body surface area (%TBSA), mucosal involvement, causation, severity of illness score (SCORTEN), length of stay and survival were appraised with appropriate statistical analysis performed using Graph Pad Prism 7.02 Software. During the study period, 42 patients (M26; F: 16) with TEN (n=32) and SJS/TEN overlap (n=10) were managed within our burns service. Mean %TBSA of cutaneous involvement was 57% (range 10-100%) and mean length of stay (LOS) was 27 days (range 1-144 days). We observed 4 deaths in our series compared to 16 predicted by SCORTEN giving a standardised mortality ratio (SMR) of 24%. Management in our burns service with an aggressive wound care protocol involving debridement of blistered epidermis and wound closure with synthetic and biological dressings seems to have produced benefits in mortality when compared to predicted outcomes. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  10. Critical issues in burn care.

    PubMed

    Holmes, James H

    2008-01-01

    Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.

  11. Actinides in deer tissues at the rocky flats environmental technology site.

    PubMed

    Todd, Andrew S; Sattelberg, R Mark

    2005-11-01

    Limited hunting of deer at the future Rocky Flats National Wildlife Refuge has been proposed in U.S. Fish and Wildlife planning documents as a compatible wildlife-dependent public use. Historically, Rocky Flats site activities resulted in the contamination of surface environmental media with actinides, including isotopes of americium, plutonium, and uranium. In this study, measurements of actinides [Americium-241 (241Am); Plutonium-238 (238Pu); Plutonium-239,240 (239,240Pu); uranium-233,244 (233,234U); uranium-235,236 (235,236U); and uranium-238 (238U)] were completed on select liver, muscle, lung, bone, and kidney tissue samples harvested from resident Rocky Flats deer (N = 26) and control deer (N = 1). In total, only 17 of the more than 450 individual isotopic analyses conducted on Rocky Flats deer tissue samples measured actinide concentrations above method detection limits. Of these 17 detects, only 2 analyses, with analytical uncertainty values added, exceeded threshold values calculated around a 1 x 10(-6) risk level (isotopic americium, 0.01 pCi/g; isotopic plutonium, 0.02 pCi/g; isotopic uranium, 0.2 pCi/g). Subsequent, conservative risk calculations suggest minimal human risk associated with ingestion of these edible deer tissues. The maximum calculated risk level in this study (4.73 x 10(-6)) is at the low end of the U.S. Environmental Protection Agency's acceptable risk range.

  12. Actinide management with commercial fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohki, Shigeo

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  13. Efficacy of moist exposed burn ointment on burns.

    PubMed

    Zhang, Hong-Qi; Yip, Tsui-Pik; Hui, Irene; Lai, Vincy; Wong, Ann

    2005-01-01

    In this study, we sought to test the medical efficacy of a Chinese medical herb product, moist exposed burn ointment (MEBO), on wound healing rate and infection control in burn injury. Standardized deep burn wounds were created on the back skin of rats by applying a hot brass bar for 12 to 18 seconds. MEBO was applied four times per day and compared with petroleum jelly, silver sulfadiazine, and dry exposure therapy. Under such a controlled setting, although MEBO had a better wound healing rate than the dry exposure treatment, it did not show the medical advantage statistically, as has been claimed, over the other two treatments (P > .05), either in terms of wound healing rate or bacterial control. We conclude that the MEBO is not suitable for deep burn wound treatment, particularly when infection is a concern.

  14. How is the chlorophyll count affected by burned and unburned marsh areas?

    NASA Astrophysics Data System (ADS)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  15. Educational Materials - Burn Wise

    EPA Pesticide Factsheets

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  16. Work-Related Burn Injuries Hospitalized in US Burn Centers: 2002 to 2011.

    PubMed

    Huang, Zhenna; Friedman, Lee S

    2017-03-01

    To develop a comprehensive definition to identify work-related burns in the National Burn Repository (NBR) based on multiple fields and describes injuries by occupation. The NBR, which is an inpatient dataset, was used to compare type and severity of burn injuries by occupation. Using the definition developed for this analysis, 22,969 burn injuries were identified as work-related. In contrast, the single work-related field intended to capture occupational injuries only captured 4696 cases. The highest numbers of burns were observed in construction/extraction, food preparation, and durable goods production occupations. Occupations with a mean total body surface area (TBSA) burned greater than 10% include transportation and material-moving, architecture and engineering, and arts/design/entertainment/sports/media occupations. The NBR dataset should be further utilized for occupational burn injury investigations and multiple fields should be considered for case ascertainment.

  17. Minor burns - aftercare

    MedlinePlus

    ... Larger than 2 inches (5 cm) On the hand, foot, face, groin, buttocks, hip, knee, ankle, shoulder, elbow, or wrist First aid for Minor Burns First, calm and reassure the person who is burned. If clothing is not stuck to the burn, remove it. ...

  18. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    NASA Astrophysics Data System (ADS)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  19. Experimental Modeling of the Effect of Terrain Slope on Marginal Burning

    Treesearch

    X. Zhou; S. Mahalingam; D. Weise

    2005-01-01

    A series of laboratory fire spread experiments were completed to analyze the effect of terrain slope on marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. We attempted to burn single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient conditions. Seventy-three (or 42...

  20. Electrocautery burns: experience with three cases and review of literature

    PubMed Central

    Saaiq, M.; Zaib, S.; Ahmad, S.

    2012-01-01

    Summary This brief report highlights three cases of iatrogenic electrocautery burns with review of the relevant published literature. The aim is to prompt awareness among surgeons and theatre staff regarding this avoidable hazard associated with the equipment frequently used for the purpose of electrocautery. This may serve as a reminder to professionals to be cautious about the pitfalls that lead to such preventable injuries. PMID:23766755

  1. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  2. Burns - Multiple Languages

    MedlinePlus

    ... Burn Care - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section Burn ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section Burn ...

  3. California Burn Scars

    Atmospheric Science Data Center

    2014-05-15

    article title:  Burn Scars Across Southern California     ... California between October 21 and November 18, 2003. Burn scars and vegetation changes wrought by the fires are illustrated in these ... and Nov 18, 2003 Images:  California Burn Scars location:  United States region:  ...

  4. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low asmore » 43 MW).« less

  5. NMR Hole-Burning Experiments on Superionic Conductor Glasses

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Kuwata, N.; Hattori, T.

    2004-04-01

    Inhomogeneity is an inherent nature of glass, which is the density and concentration fluctuation frozen at glass transition temperature. The inhomogeneity of the glass plays significant role in so called superionic conductor glasses (SIG), since the mobile ions seek to move through energetically favorable paths. The localization of mobile ions in SIG near the 2nd glass transition is a remaining issue, where the trapping, percolation and many-body interactions are playing the roles. In order to investigate the trapping process in SIG, the authors have applied 109Ag NMR Hole-Burning technique to AgI containing SIG glasses. By using this technique, the slowing down process of the site-exchange rates between different sites were evaluated.

  6. Changes to oak woodland stand structure and ground flora composition caused by thinning and burning

    Treesearch

    Carter O. Kinkead; John M. Kabrick; Michael C. Stambaugh; Keith W. Grabner

    2013-01-01

    Our objective was to quantify the cumulative effects of prescribed burning and thinning on forest stocking and species composition at a woodland restoration experiment site in the Ozark Highlands of Missouri. Our study used four treatments (burn, harvest, harvest and burn, control) on three slope position and aspect combinations (south, north, ridge) replicated in...

  7. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  8. Lanthanide and actinide chemistry at high C/O ratios in the solar nebula

    NASA Technical Reports Server (NTRS)

    Lodders, Katharina; Fegley, Bruce, Jr.

    1993-01-01

    Chemical equilibrium calculations were performed to study the condensation chemistry of the REE and actinides under the highly reducing conditions which are necessary for the formation of the enstatite chondrites. Our calculations confirm that the REE and actinides condensed into oldhamite (CaS), the major REE and actinide host phase in enstatite chondrites, at a carbon-oxygen (C/O) ratio not less than 1 in an otherwise solar gas. Five basic types of REE abundance patterns, several of which are analogous to REE abundance patterns observed in the Ca, Al-rich inclusions in carbonaceous chondrites, are predicted to occur in meteoritic oldhamites. All of the reported REE patterns in oldhamites in enstatite chondrites can be interpreted in terms of our condensation calculations. The observed patterns fall into three of the five predicted categories. The reported Th and U enrichments and ratios in meteoritic oldhamites are also consistent with predictions of the condensation calculations. Pure REE sulfides are predicted to condense in the 10 exp -6 to 10 exp -9 bar range and may be found in enstatite chondrites if they formed in this pressure range.

  9. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  10. Lightning burns.

    PubMed

    Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

    2014-01-01

    We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury.

  11. Experimental Constraints on Iron Mobilization into Biomass Burning Aerosols

    NASA Astrophysics Data System (ADS)

    Sherry, A. M.; Romaniello, S. J.; Herckes, P.; Anbar, A. D.

    2017-12-01

    Atmospheric deposition of iron (Fe) can limit marine primary productivity and, therefore, carbon dioxide uptake. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. To address this hypothesis, we collected foliage samples from species representative of several biomes impacted by severe fire events. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from burning biomass, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass vs. entrained soil as a source of trace metals in burn aerosols, we conducted burn experiments using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS). Our results show that 0.06-0.86 % of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events, depending on the type of foliage. We used these results and estimates of annual global wildfire area to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. We estimate that biomass-derived Fe likely contributes 3% of the total soluble Fe flux from aerosols. Prior studies, which implicitly included both biomass and soil-derived Fe, concluded that biomass burning contributed as much as 7% of the total marine soluble Fe flux from aerosols. Together, these studies suggest that biomass and fire-entrained soil probably contribute equally to the total fire-derived Fe aerosol flux. Further study of solubility differences between plant- and soil-derived Fe is needed

  12. Burns in mobile home fires--descriptive study at a regional burn center.

    PubMed

    Mullins, Robert F; Alarm, Badrul; Huq Mian, Mohammad Anwarul; Samples, Jancie M; Friedman, Bruce C; Shaver, Joseph R; Brandigi, Claus; Hassan, Zaheed

    2009-01-01

    Death from fires and burns are the sixth most common cause of unintentional injury death in the United States. More than (3/4) of burn deaths occurring in the United States are in the home. Mobile home fires carry twice the death rate as other dwellings. The aim of the study was to describe the characteristics of deaths and injuries in mobile home fire admitted in a regional Burn Center and to identify possible risk factors. A cross-sectional retrospective study was carried out among all burn patients admitted to a regional Burn Center between January 2002 and December 2004 (3469 patients). The study included patients who suffered a burn injury from a mobile home fire. The demographic characteristics of the patients, location of mobile home, associated inhalation injury, source of fire, comorbidity of the victims, employment status, insurance status, family history of burns, and outcomes of the treatment were incorporated in a data collection record. There were 65 burn patients in mobile home fires admitted to the Burn Center during the studied period. The average age of the patients was 39 years (ranging from 2 to 81 years, SD=16.06), 77% were male, 67% were white, and 79% were the residents in the suburban areas of Georgia, South Carolina, North Carolina, and Florida. The average TBSA of burns was about 21% (ranging from 1 to 63%, SD=17.66), 63% of the patients had associated inhalation, three inhalation injury only, and 69% patients required ventilator support. The average length of stay per TBSA percentage of burn was 1.01 days (P=0.00), controlling for age, preexisting medical comorbidities, and inhalation injury. About 88% of the patients had preexisting medical comorbid conditions, 74% were smokers, 64% reported as alcoholic, and 72% had at least some form of health insurance coverage. In 40% of the cases, the cause of the fire was unknown, 31% were caused by accidental explosions, such as electric, gasoline, or kerosene appliances, and 29% were due to other

  13. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Adjunctive hyperbaric oxygen therapy in severe burns: Experience in Taiwan Formosa Water Park dust explosion disaster.

    PubMed

    Chiang, I-Han; Chen, Shyi-Gen; Huang, Kun-Lun; Chou, Yu-Ching; Dai, Niann-Tzyy; Peng, Chung-Kan

    2017-06-01

    Despite major advances in therapeutic strategies for the management of patients with severe burns, significant morbidity and mortality is observed. Hyperbaric oxygen therapy (HBOT) increases the supply of oxygen to burn areas. The aim of this study was to determine whether HBOT is effective in the treatment of major thermal burns. On June 27, 2015 in New Taipei, Taiwan, a mass casualty disaster occurred as fire erupted over a large crowd, injuring 499 people. Fifty-three victims (20 women and 33 men) were admitted to Tri-Service General Hospital. Thirty-eight patients underwent adjunctive HBOT (HBOT group), and 15 patients received routine burn therapy (control group). Serum procalcitonin (PCT) level, a sepsis biomarker, was measured until it reached normal levels (<0.5μg/L). The records of all patients from June 2015 to March 2016 were analyzed retrospectively. Outcome measures that were compared between the groups included the use of tracheostomy and hemodialysis, total body surface area (TBSA) and the number of skin graft operations, length of hospital stay, infection status, and mortality. The mean age of the patients was 22.4 years, and the mean TBSA was 43%. All the patients survived and were discharged without requiring limb amputation or being permanently disabled. Patient characteristics did not differ significantly between the groups. PCT levels returned to normal significantly faster (p=0.007) in the HBOT group. Multidisciplinary burn care combined with adjunctive HBOT improves sepsis control compared with standard treatment without HBOT. Prospective studies are required to define the role of HBOT in extensive burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  15. Did Aboriginal vegetation burning affect the Australian summer monsoon?

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-08-01

    For thousands of years, Aboriginal Australians burned forests, creating grasslands. Some studies have suggested that in addition to changing the landscape, these burning practices also affected the timing and intensity of the Australian summer monsoon. Different vegetation types can alter evaporation, roughness, and surface reflectivity, leading to changes in the weather and climate. On the basis of an ensemble of experiments with a global climate model, Notaro et al. conducted a comprehensive evaluation of the effects of decreased vegetation cover on the summer monsoon in northern Australia. They found that although decreased vegetation cover would have had only minor effects during the height of the monsoon season, during the premonsoon season, burning-induced vegetation loss would have caused significant decreases in precipitation and increases in temperature. Thus, by burning forests, Aboriginals altered the local climate, effectively extending the dry season and delaying the start of the monsoon season. (Geophysical Research Letters, doi:10.1029/2011GL047774, 2011)

  16. Burn Wise

    EPA Pesticide Factsheets

    Burn Wise is a partnership program of the U.S. Environmental Protection Agency that emphasizes the importance of burning the right wood, the right way, in the right appliance to protect your home, health, and the air we breathe.

  17. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, Terry T.

    1993-01-01

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  18. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, T.T.

    1993-03-02

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  19. Validation of the Zürich burn-biofilm model.

    PubMed

    Guggenheim, Merlin; Thurnheer, Thomas; Gmür, Rudolf; Giovanoli, Pietro; Guggenheim, Bernhard

    2011-11-01

    Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn-wound excision, bacterial infection remains a major problem in the management of burn victims today. The purpose of this study was to design and evaluate a polyspecies biofilm model with bacteria known to cause severe infections in burn patients. The model is simple to prepare, maintain and analyse, and allows for short-term exposure to antimicrobials. Initial experiments showed that it was impossible to establish balanced polyspecies biofilms with an inoculum of Gram-positive and -negative bacteria. After 64.5 h of incubation, the Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) had suppressed the Gram-positives (Enterococcus faecalis, Staphylococcus aureus and Streptococcus intermedius). However, adding the Gram-negative bacteria after 41.5 h to an established biofilm of Gram-positives resulted in a balanced microbial consortium. After 64.5 h, all species were present in high numbers (10(7) to 10(8) colony forming units (CFU) per biofilm). Multiple repetitions showed high reproducibility of biofilm formation without significant differences between and within experiments. Combined fluorescence in situ hybridisation/confocal laser scanning microscopy (FISH/CLSM) analyses, for which biofilms had to be grown on a different non-flexible substrate (hydroxy apatite), revealed that, by 41.5 h, the biofilm consisted of an almost confluent layer of bacteria firmly adherent to the substratum. After 64.5 h (22 h after the addition of the Gram negatives), the biofilm consisted of a confluent mixture of single cells, an abundance of galaxies of bacteria with small lacunae and large amounts of extracellular matrix polysaccharides. The polyspecies biofilm model contains the most prevalent burn-associated Gram-positive and Gram-negative bacterial pathogens and mimics the Gram-negative shift observed in vivo. It shows excellent reproducibility

  20. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred

  1. Outcomes of burns in the elderly: revised estimates from the Birmingham Burn Centre.

    PubMed

    Wearn, Christopher; Hardwicke, Joseph; Kitsios, Andreas; Siddons, Victoria; Nightingale, Peter; Moiemen, Naiem

    2015-09-01

    Outcomes after burn have continued to improve over the last 70 years in all age groups including the elderly. However, concerns have been raised that survival gains have not been to the same magnitude in elderly patients compared to younger age groups. The aims of this study were to analyze the recent outcomes of elderly burn injured patients admitted to the Birmingham Burn Centre, compare data with a historical cohort and published data from other burn centres worldwide. A retrospective review was conducted of all patients ≥65 years of age, admitted to our centre with cutaneous burns, between 2004 and 2012. Data was compared to a previously published historical cohort (1999-2003). 228 patients were included. The observed mortality for the study group was 14.9%. The median age of the study group was 79 years, the male to female ratio was 1:1 and median Total Body Surface Area (TBSA) burned was 5%. The incidence of inhalation injury was 13%. Median length of stay per TBSA burned for survivors was 2.4 days/% TBSA. Mortality has improved in all burn size groups, but differences were highly statistically significant in the medium burn size group (10-20% TBSA, p≤0.001). Burn outcomes in the elderly have improved over the last decade. This reduction has been impacted by a reduction in overall injury severity but is also likely due to general improvements in burn care, improved infrastructure, implementation of clinical guidelines and increased multi-disciplinary support, including Geriatric physicians. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  2. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  3. Wound management and outcome of 595 electrical burns in a major burn center.

    PubMed

    Li, Haisheng; Tan, Jianglin; Zhou, Junyi; Yuan, Zhiqiang; Zhang, Jiaping; Peng, Yizhi; Wu, Jun; Luo, Gaoxing

    2017-06-15

    Electrical burns are important causes of trauma worldwide. This study aims to analyze the clinical characteristics, wound management, and outcome of electric burns. This retrospective study was performed at the Institute of Burn Research of the Third Military Medical University during 2013-2015. Data including the demographics, injury patterns, wound treatment, and outcomes were collected and analyzed. A total of 595 electrical burn patients (93.8% males) were included. The average age was 37.3 ± 14.6 y, and most patients (73.5%) were aged 19∼50 years. Most patients (67.2%) were injured in work-related circumstances. The mean total body surface area was 8.8 ± 11.8% and most wounds (63.5%) were full-thickness burns. Operation times of high-voltage burns and current burns were higher than those of low-voltage burns and arc burns, respectively. Of the 375 operated patients, 83.2% (n = 312) underwent skin autografting and 49.3% (n = 185) required skin flap coverage. Common types of skin flaps were adjacent (50.3%), random (42.2%), and pedicle (35.7%). Amputation was performed in 107 cases (18.0%) and concentrated on the hands (43.9%) and upper limbs (39.3%). The mean length of stay was 42.9 ± 46.3 d and only one death occurred (0.2%). Current burns and higher numbers of operations were major risk factors for amputation and length of stay, respectively. Electrical burns mainly affected adult males with occupational exposures in China. Skin autografts and various skin flaps were commonly used for electric burn wound management. More standardized and effective strategies of treatment and prevention are still needed to decrease amputation rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Burning Mouth Syndrome.

    PubMed

    Kamala, K A; Sankethguddad, S; Sujith, S G; Tantradi, Praveena

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  5. Burning Mouth Syndrome

    PubMed Central

    Kamala, KA; Sankethguddad, S; Sujith, SG; Tantradi, Praveena

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS. PMID:26962284

  6. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgopolova, Ekaterina A.; Ejegbavwo, Otega A.; Martin, Corey R.

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successfulmore » attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.« less

  7. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  8. Pediatric burns: Kids' Inpatient Database vs the National Burn Repository.

    PubMed

    Soleimani, Tahereh; Evans, Tyler A; Sood, Rajiv; Hartman, Brett C; Hadad, Ivan; Tholpady, Sunil S

    2016-04-01

    Burn injuries are one of the leading causes of morbidity and mortality in young children. The Kids' Inpatient Database (KID) and National Burn Repository (NBR) are two large national databases that can be used to evaluate outcomes and help quality improvement in burn care. Differences in the design of the KID and NBR could lead to differing results affecting resultant conclusions and quality improvement programs. This study was designed to validate the use of KID for burn epidemiologic studies, as an adjunct to the NBR. Using the KID (2003, 2006, and 2009), a total of 17,300 nonelective burn patients younger than 20 y old were identified. Data from 13,828 similar patients were collected from the NBR. Outcome variables were compared between the two databases. Comparisons revealed similar patient distribution by gender, race, and burn size. Inhalation injury was more common among the NBR patients and was associated with increased mortality. The rates of respiratory failure, wound infection, cellulitis, sepsis, and urinary tract infection were higher in the KID. Multiple regression analysis adjusting for potential confounders demonstrated similar mortality rate but significantly longer length of stay for patients in the NBR. Despite differences in the design and sampling of the KID and NBR, the overall demographic and mortality results are similar. The differences in complication rate and length of stay should be explored by further studies to clarify underlying causes. Investigations into these differences should also better inform strategies to improve burn prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Psychosocial needs of burns nurses: a descriptive phenomenological inquiry.

    PubMed

    Kornhaber, Rachel Anne; Wilson, Anne

    2011-01-01

    The purpose of this qualitative study was to explore the psychosocial needs of nurses who care for patients with severe burn injuries. Burns nurses work in an emotionally challenging and confronting environment, for which they are in need of emotional and clinical support. Exposure to such high levels of stress in this occupational environment has implications for nurses' health and psychosocial well-being. Seven burns nurses were recruited in 2009 from a severe burn injury unit in New South Wales, Australia. A qualitative phenomenological methodology was used to construct themes depicting nurses' experiences. Participants were selected through purposeful sampling, and data were collected through in-depth individual semistructured interviews using open-ended questions. Data were analyzed with Colaizzi's phenomenological method of data analysis. The psychosocial needs of burns nurses were identified and organized into five categories: peer nursing support, informal support, lack of support, multidisciplinary team collaboration, and professional support. The findings clearly demonstrate that support and unity within the workplace are fundamental factors for the psychosocial well-being of nurses caring for patients who have sustained a severe burn injury. Support for nurses in the form of regular professional or collegial debriefing sessions and utilization of employee assistance programs could ease the impact of the stressful environment in which they operate, and could influence staff retention. However, a supportive workplace culture is necessary to encourage nurses to access these services.

  10. On the valence fluctuation in the early actinide metals

    DOE PAGES

    Soderlind, P.; Landa, A.; Tobin, J. G.; ...

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f 3 and f 4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both αmore » and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f 6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less

  11. Burn-associated bloodstream infections in pediatric burn patients: Time distribution of etiologic agents.

    PubMed

    Devrim, İlker; Kara, Ahu; Düzgöl, Mine; Karkıner, Aytaç; Bayram, Nuri; Temir, Günyüz; Şencan, Arzu; Sorguç, Yelda; Gülfidan, Gamze; Hoşgör, Münevver

    2017-02-01

    Infections are the leading cause of morbidity and mortality in patients with burns in burn units. Bloodstream infections (BSIs) in patients with burns may result from burn wound infection, use of invasive devices such as central venous catheters, and translocation of the gastrointestinal flora. In this study, we investigated the distribution and antimicrobial drug resistance of causative pathogens in children with burns and the durational changes of microorganisms in the distribution of BSIs in children. This study was conducted at the Pediatric Burn Unit (PBU) of Dr. Behçet Uz Children Research and Training Hospital during the period of November 2008-April 2015. The study subjects were all the patients admitted to the PBU, in whom microorganisms were isolated at least from one of the cultures, including blood and catheter cultures. Gram-positive bacteria were the most common causative agents of BSI in patients with burns (66.4%), followed by gram-negative bacteria (22.1%) and fungi (11.5%). The median duration of development of BSIs caused by gram-positive bacteria from the time of burn was 5 days (ranging from 2 to 54 days of burn), which was significantly shorter than that of BSIs caused by gram-negative bacteria (12 days) and fungal pathogens (13 days). The etiologic agents of BSIs in children may differ from those in adults. Gram-negative drug-resistant bacteria such as multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii were important agents of BSI in patients with burns, especially in the long term; however, gram-positive bacteria should also be considered while deciding the antimicrobial therapy, especially in the early periods of burn. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  12. Photoacoustic diagnosis of burns in rats: two-dimensional photo-acoustic imaging of burned tissue

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Okada, Yoshiaki; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2003-06-01

    We previously reported that for rat burn models, deep dermal burns and deep burns can be well differentiated by measuring the propagation time of the photoacoustic signals originated from the blood in the healthy skin tissue under the damaged tissue layer. However, the diagnosis was based on point measurement in the wound, and therefore site-dependent information on the injuries was not obtained; such information is very important for diagnosis of extended burns. In the present study, we scanned a photoacoustic detector on the wound and constructed two-dimensional (2-D) images of the blood-originated photoacoustic signals for superficial dermal burns (SDB), deep dermal burns (DDB), deep burns (DB), and healthy skins (control) in rats. For each burn model, site-dependent variation of the signal was observed; the variation probably reflects the distribution of blood vessels in the skin tissue. In spite of the variation, clear differentiation was obtained between SDB, DDB, and DB from the 2D images. The images were constructed as a function of post burn time. Temporal signal variation will be also presented.

  13. Exploring the effects of defects on DT burn, the DIME experiment and measuring capsule zero-order hydrodynamics using Polar direct drive

    NASA Astrophysics Data System (ADS)

    Magelssen, G. R.; Bradley, P. A.; Tregillis, I. L.; Schmitt, M. J.; Dodd, E. S.; Wysocki, F. J.; Hsu, S. C.; Cobble, J.; Batha, S. H.; Defriend Obrey, K. A.

    2010-11-01

    Small capsule perturbations may impact our ability to achieve high yields on NIF. Diagnosing the hydrodynamic development and the effect of defects on burn will be difficult. Los Alamos is developing a program to better understand the hydrodynamics of defects and how they influence burn. Our first effort to study the effects of defects was on Omega. Both thin-shelled (exploding pusher) and thick-shelled capsules were shot and the results published [1]. In this work we add experimental shots done recently on Omega. These shots were to complete the study of how the width and depth of the defect affects DT yield. Our AMR code is used to predict the yield. Comparisons between capsule and experimental yields will be given. Experiments are also being designed for Polar direct drive. Our first experiments are being designed to understand the zero-order hydrodynamics with Polar direct drive. Capsules about a millimeter in radius are being designed with one to two dopants in the CH shell for radiograph and MMI usage. Also, to minimize the effect of mix on the radius versus time trajectory, some capsules will replace the DT with Xe.[0pt] [1] Magelssen G. R. et al., to be published in the 2009 IFSA proceedings.

  14. An unsuspected cause of meal-time morbidity: instant noodle scald burns.

    PubMed

    Koltz, Peter F; Wasicek, Philip; Mays, Chester; Bell, Derek E

    2013-01-01

    Observational analysis revealed a concerning frequency of scald burns secondary to instant noodles. A literature review reveals studies with small sample sizes of pediatric populations and analysis of container engineering. The adult cohort, treatments, and short-term outcomes have been neglected. Considering these deficiencies, we reviewed our institution's experience with burns secondary to instant noodles. Patient encounters due to instant noodle burns from January 1, 2007, through May 15, 2011, were reviewed. Demographics, burn characteristics, treatment, length of stay, number of operative interventions, and complications were analyzed. Eight hundred fifty-two patients were seen (460 were admitted) for scald burns of all pathogenesis. Of these, 121 (14%) were seen for burns secondary to noodles (63 men and 58 women). Of these, 48 were older than age 4 (group 1), and 73 were younger than age 4 (group 2). TBSA was 2.34 in group 1 and 1.64 in group 2 (P = .04). The most commonly burned areas in group 1 were extremities (n = 43) and in group 2 were chest (n = 32) and extremities (n = 31). Seven patients in group 1 and two patients in group 2 required operative intervention. Length of stay in groups 1 and 2 were 3.5 and 6 days, respectively. Noodle scald burns cause morbidity at all ages. Pediatric burns due to noodles are frequently managed conservatively but more often necessitate inpatient treatment. The nonpediatric population has larger TBSA and requires more frequent operative intervention. The morbidity of noodle burns is significant. Increased public education and container re-engineering is warranted.

  15. Concepts in local treatment of extensive paediatric burns.

    PubMed

    Ungureanu, M

    2014-06-15

    There is a wide variety of local therapeutical methods for extensive burns. This article aims to be a general overview of the most common methods used in the local treatment for extensive burns, both in our clinic and globally. Clinical examples are shown from our clinic; cases of the last 8 years. None of the less there is no such thing as the "perfect method of treatment" but a thin balance between the clinical experience of plastic surgeons, every case particularities and specified characteristics, meaning advantages, disadvantages and limited indications of local topics or methods of skin covering.

  16. Concepts in local treatment of extensive paediatric burns

    PubMed Central

    Ungureanu, M

    2014-01-01

    Abstract There is a wide variety of local therapeutical methods for extensive burns. This article aims to be a general overview of the most common methods used in the local treatment for extensive burns, both in our clinic and globally. Clinical examples are shown from our clinic; cases of the last 8 years. None of the less there is no such thing as the "perfect method of treatment" but a thin balance between the clinical experience of plastic surgeons, every case particularities and specified characteristics, meaning advantages, disadvantages and limited indications of local topics or methods of skin covering. PMID:25408723

  17. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, N.

    2005-02-15

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{supmore » +n}:[L]{sub k} are compared, too.« less

  18. Improved Survival of Patients With Extensive Burns: Trends in Patient Characteristics and Mortality Among Burn Patients in a Tertiary Care Burn Facility, 2004-2013.

    PubMed

    Strassle, Paula D; Williams, Felicia N; Napravnik, Sonia; van Duin, David; Weber, David J; Charles, Anthony; Cairns, Bruce A; Jones, Samuel W

    Classic determinants of burn mortality are age, burn size, and the presence of inhalation injury. Our objective was to describe temporal trends in patient and burn characteristics, inpatient mortality, and the relationship between these characteristics and inpatient mortality over time. All patients aged 18 years or older and admitted with burn injury, including inhalation injury only, between 2004 and 2013 were included. Adjusted Cox proportional hazards regression models were used to estimate the relationship between admit year and inpatient mortality. A total of 5540 patients were admitted between 2004 and 2013. Significant differences in sex, race/ethnicity, burn mechanisms, TBSA, inhalation injury, and inpatient mortality were observed across calendar years. Patients admitted between 2011 and 2013 were more likely to be women, non-Hispanic Caucasian, with smaller burn size, and less likely to have an inhalation injury, in comparison with patients admitted from 2004 to 2010. After controlling for patient demographics, burn mechanisms, and differential lengths of stay, no calendar year trends in inpatient mortality were detected. However, a significant decrease in inpatient mortality was observed among patients with extensive burns (≥75% TBSA) in more recent calendar years. This large, tertiary care referral burn center has maintained low inpatient mortality rates among burn patients over the past 10 years. While observed decreases in mortality during this time are largely due to changes in patient and burn characteristics, survival among patients with extensive burns has improved.

  19. An assessment of burn prevention knowledge in a high burn-risk environment: restaurants.

    PubMed

    Piazza-Waggoner, Carrie; Adams, C D; Goldfarb, I W; Slater, H

    2002-01-01

    Our facility has seen an increase in the number of cases of children burned in restaurants. Fieldwork has revealed many unsafe serving practices in restaurants in our tristate area. The current research targets what appears to be an underexamined burn-risk environment, restaurants, to examine server knowledge about burn prevention and burn care with customers. Participants included 71 local restaurant servers and 53 servers from various restaurants who were recruited from undergraduate courses. All participants completed a brief demographic form as well as a Burn Knowledge Questionnaire. It was found that server knowledge was low (ie, less than 50% accuracy). Yet, most servers reported that they felt customer burn safety was important enough to change the way that they serve. Additionally, it was found that length of time employed as a server was a significant predictor of servers' burn knowledge (ie, more years serving associated with higher knowledge). Finally, individual items were examined to identify potential targets for developing prevention programs.

  20. Art Therapy on a Hospital Burn Unit: A Step towards Healing and Recovery.

    ERIC Educational Resources Information Center

    Russel, Johanna

    1995-01-01

    Describes how art therapy can benefit patients hospitalized due to severe burns, who suffer psychological as well as physical trauma. Outlines the psychological phases, identifies how burn patients typically experience their healing process, and discusses how art therapy can assist the patient at each stage of the recovery process. (JPS)

  1. A Burning Rate Emulator (BRE) for Study in Microgravity

    NASA Technical Reports Server (NTRS)

    Markan, A.; Sunderland, P. B.; Quintiere, J. G.; DeRis, J.; Stocker, D. P.

    2015-01-01

    A gas-fueled burner, the Burning Rate Emulator (BRE), is used to emulate condensed-phase fuel flames. The design has been validated to easily measure the burning behavior of condensed-phase fuels by igniting a controlled stream of gas fuel and diluent. Four properties, including the heat of combustion, the heat of gasification, the surface temperature, and the laminar smoke point, are assumed to be sufficient to define the steady burning rate of a condensed-phase fuel. The heat of gasification of the fuel is determined by measuring the heat flux and the fuel flow rate. Microgravity BRE tests in the NASA 5.2 s drop facility have examined the burning of pure methane and ethylene (pure and 50 in N2 balance). Fuel flow rates, chamber oxygen concentration and initial pressure have been varied. Two burner sizes, 25 and 50 mm respectively, are chosen to examine the nature of initial microgravity burning. The tests reveal bubble-like flames that increase within the 5.2s drop but the heat flux received from the flame appears to asymptotically approach steady state. Portions of the methane flames appear to locally detach and extinguish at center, while its shape remains fixed, but growing. The effective heat of gasification is computed from the final measured net heat flux and the fuel flow rate under the assumption of an achieved steady burning. Heat flux (or mass flux) and flame position are compared with stagnant layer burning theory. The analysis offers the prospect of more complete findings from future longer duration ISS experiments.

  2. The progress of Chinese burn medicine from the Third Military Medical University-in memory of its pioneer, Professor Li Ao.

    PubMed

    Li, Haisheng; Zhou, Junyi; Peng, Yizhi; Zhang, Jiaping; Peng, Xi; Luo, Qizhi; Yuan, Zhiqiang; Yan, Hong; Peng, Daizhi; He, Weifeng; Wang, Fengjun; Liang, Guangping; Huang, Yuesheng; Wu, Jun; Luo, Gaoxing

    2017-01-01

    Professor Li Ao was one of the founders of Chinese burn medicine and one of the most renowned doctors and researchers of burns in China. He established one of the Chinese earliest special departments for burns at Third Military Medical University (TMMU) in 1958. To memorialize Professor Li Ao on his 100th birthday in 2017 and introduce our extensive experience, it is our honor to briefly review the development and achievement of the Chinese burn medicine from TMMU. The epidemiology and outcomes of admitted burn patients since 1958 were reviewed. Furthermore, main achievements of basic and clinical research for the past roughly 60 years were presented. These achievements mainly included the Chinese Rule of Nine, fluid resuscitation protocol, experience in inhalation injury, wound treatment strategies, prevention and treatment of burn infections, nutrition therapy, organ support therapies, and rehabilitation. The progress shaped and enriched modern Chinese burn medicine and promoted the development of world burn medicine.

  3. Towards Synthesis and Usage of Actinide-Bearing REE Phosphate age Standards: A Progress Report

    NASA Astrophysics Data System (ADS)

    Pyle, J. M.; Cherniak, D. J.

    2006-05-01

    Electron microprobe (EMP) dates result from a concentration-time unit conversion, so use of a concentration- based (rather than isotope-ratio based) fictive age standard is warranted. This observation has motivated our mineral synthesis program, aimed at producing actinide-doped REE phosphate EMP dating standards that meet the following criteria: 1) known concentrations of U, Th, and Pb; 2) homogeneous intragrain distribution of all components; 3) of suitable size, either as a single-crystal or polycrystalline sintered ceramic. Single-crystal synthesis of actinide-doped LaPO4 by flux-growth methods results in disproportionation of lanthanide and flux, alkali, and actinide components into phosphate and oxide phases, respectively, and flux- growth methods were abandoned. Actinide-doped La phosphate is successfully prepared by high-T annealing and hydrothermal processing of microcrystalline phosphate; both homogeneity and charge-balance of (Ca, Th, Pb)-bearing LaPO4 increase with increasing solvent acidity during cold-seal hydrothermal synthesis. A combination of pressing and high-T (1400° C) sintering transforms fine-grained (0.1-10 μm) run- products to ceramic pellets with 90-95% theoretical density. Our most recent runs focused on a target composition of La80(CaTh)17(CaU)2(PbTh)1PO4 processed with 6% 2M HCl at 820° C, 0.75 kbar for 1 week. The run products are 0.1-2 μm crystals identified by XRD as La-actinide phosphate solid solution. 2 μm grains (N=16) give a composition (mean±2 sd) of La79.77(1.26)(CaTh)17.87(1.00)(CaU)1.53(0.42)(PbTh)0.82(0.09)PO4. Th (8.07-9.13 wt. %) is homogeneous at the level of analytical precision, and the Pb concentration range (3500-4350 ppm) is restricted relative to untreated precipitate. Uranium concentration values are more variable (6500-10000 ppm). This run yields a fictive age of 702±4 Ma (mean±2 se), compared to the fictive age of 794 Ma for the target composition.

  4. Particle agglomeration and fuel decomposition in burning slurry droplets

    NASA Astrophysics Data System (ADS)

    Choudhury, P. Roy; Gerstein, Melvin

    In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.

  5. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity.more » Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.« less

  6. [Combined burn trauma in the array of modern civilian and combat burns].

    PubMed

    Ivchenko, E V; Borisov, D N; Golota, A S; Krassiĭ, A B; Rusev, I T

    2015-02-01

    The current article positions the combined burn and non-burn injuries in the general array of civilian and combat burns. For that purpose the official state statistics and scientific medical publications, domestic as well as foreign, have been analyzed. It has been shown that in peace time the combined burn/trauma injuries are infrequent. But the same type of injury becomes routine especially among the civilian population in the conditions of the modern so called "hybrid war". And the medical service should be prepared for it.

  7. Actinide Solubility and Speciation in the WIPP [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repositorymore » concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.« less

  8. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    NASA Astrophysics Data System (ADS)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  9. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  10. Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment

    MedlinePlus

    ... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...

  11. Survival after burn in a sub-Saharan burn unit: challenges and opportunities.

    PubMed

    Tyson, Anna F; Boschini, Laura P; Kiser, Michelle M; Samuel, Jonathan C; Mjuweni, Steven N; Cairns, Bruce A; Charles, Anthony G

    2013-12-01

    Burns are among the most devastating of all injuries and a major global public health crisis, particularly in sub-Saharan Africa. In developed countries, aggressive management of burns continues to lower overall mortality and increase lethal total body surface area (TBSA) at which 50% of patients die (LA50). However, lack of resources and inadequate infrastructure significantly impede such improvements in developing countries. This study is a retrospective analysis of patients admitted to the burn center at Kamuzu Central Hospital in Lilongwe, Malawi between June 2011 and December 2012. We collected information including patient age, gender, date of admission, mechanism of injury, time to presentation to hospital, total body surface area (TBSA) burn, comorbidities, date and type of operative procedures, date of discharge, length of hospital stay, and survival. We then performed bivariate analysis and logistic regression to identify characteristics associated with increased mortality. A total of 454 patients were admitted during the study period with a median age of 4 years (range 0.5 months to 79 years). Of these patients, 53% were male. The overall mean TBSA was 18.5%, and average TBSA increased with age--17% for 0-18 year olds, 24% for 19-60 year olds, and 41% for patients over 60 years old. Scald and flame burns were the commonest mechanisms, 52% and 41% respectively, and flame burns were associated with higher mortality. Overall survival in this population was 82%; however survival reduced with increasing age categories (84% in patients 0-18 years old, 79% in patients 19-60 years old, and 36% in patients older than 60 years). TBSA remained the strongest predictor of mortality after adjusting for age and mechanism of burn. The LA50 for this population was 39% TBSA. Our data reiterate that burn in Malawi is largely a pediatric disease and that the high burn mortality and relatively low LA50 have modestly improved over the past two decades. The lack of financial

  12. Survival after burn in a sub-Saharan burn unit: Challenges and opportunities

    PubMed Central

    Tyson, Anna F.; Boschini, Laura P.; Kiser, Michelle M.; Samuel, Jonathan C.; Mjuweni, Steven N.; Cairns, Bruce A.; Charles, Anthony G.

    2013-01-01

    Background Burns are among the most devastating of all injuries and a major global public health crisis, particularly in sub-Saharan Africa. In developed countries, aggressive management of burns continues to lower overall mortality and increase lethal total body surface area (TBSA) at which 50% of patients die (LA50). However, lack of resources and inadequate infrastructure significantly impede such improvements in developing countries. Methods This study is a retrospective analysis of patients admitted to the burn center at Kamuzu Central Hospital in Lilongwe, Malawi between June 2011 and December 2012. We collected information including patient age, gender, date of admission, mechanism of injury, time to presentation to hospital, total body surface area (TBSA) burn, comorbidities, date and type of operative procedures, date of discharge, length of hospital stay, and survival. We then performed bivariate analysis and logistic regression to identify characteristics associated with increased mortality. Results A total of 454 patients were admitted during the study period with a median age of 4 years (range 0.5 months to 79 years). Of these patients, 53% were male. The overall mean TBSA was 18.5%, and average TBSA increased with age—17% for 0–18 year olds, 24% for 19–60 year olds, and 41% for patients over 60 years old. Scald and flame burns were the commonest mechanisms, 52% and 41% respectively, and flame burns were associated with higher mortality. Overall survival in this population was 82%; however survival reduced with increasing age categories (84% in patients 0–18 years old, 79% in patients 19–60 years old, and 36% in patients older than 60 years). TBSA remained the strongest predictor of mortality after adjusting for age and mechanism of burn. The LA50 for this population was 39% TBSA. Discussion Our data reiterate that burn in Malawi is largely a pediatric disease and that the high burn mortality and relatively low LA50 have modestly improved

  13. Minor burn management: potions and lotions

    PubMed Central

    Hyland, Ela J; Connolly, Siobhan M; Fox, Jade A; Harvey, John G

    2015-01-01

    Summary The first aid for burns is to run cold water over the burn for 20 minutes. This is effective for up to three hours after the injury. Assess the affected body surface area using the rule of nines. Consult a burn unit if more than 5% of the total body surface area is burnt in a child or if more than 10% in an adult. Extensive or deep burns and burns to special areas, such as the hands, should be referred. Chemical or electrical burns should also be assessed by a burn unit. For minor burns, antimicrobial dressings are recommended, but oral antibiotics should be avoided unless there are signs of infection. As burns are tetanus prone, check the patient’s immunisation status. Burns that become infected or are slow to heal should be discussed with a burn unit. The burn unit can also provide advice if there are uncertainties about how to manage a patient. PMID:26648640

  14. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  15. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory

    DOE PAGES

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...

    2016-01-01

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less

  16. Assesment of PM2.5 emission from corn stover burning determining in chamber combustion

    NASA Astrophysics Data System (ADS)

    Hafidawati; Lestari, P.; Sofyan, A.

    2018-04-01

    Chamber measurement were conducted to determine Particulate Matter (PM2.5) emission from open burning of corn straw at Garut District, West Java. The of this study is to estimate the concentration of PM2.5 for two types of corn (corncobs and cornstover) for five varieties (Bisma, P29, NK, Bisma, NW). Corn residues were collected and then burned in the chamber combustion. The chamber was designed to simulate the burning in the field, which was observed in the field experiment that meteorological condition was calm wind. The samples were collected using a minivol air sampler. The assessment results of PM2.5 concentrations (mg/m3) from open burning experiment in the chamber for five varieties of corn cobs (Bisma, P29, NK, Bisi, NW) was 9.187; 2.843; 7.409; 3.781; 1.895 respectively. Concentration for corn stover burn was 2.060; 5.283; 4.048; 5.306 and 5.697 respectively. Fluctuations in the value of concentration among these varieties reflect variations in combustion conditions (combustion efficiency) and other parameters including water content, biomass conditions and the meteorological conditions. The combustion efficiency (MCE) of the combustion chamber simulation of corncobs ia lower than the MCE of corn stover, that the concentration PM2.5 more emitted from the burning of corn stover. The results of this study presented provide useful information for the development of local emission factors for PM2.5 from open burning of corn stover in Indonesia.

  17. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    PubMed

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Epidemiology and screening of intentional burns in children in a Dutch burn centre.

    PubMed

    Bousema, Sara; Stas, Helene G; van de Merwe, Marjolijn H; Oen, Irma M M H; Baartmans, Martin G A; van Baar, Margriet E

    2016-09-01

    International estimates of the incidence of non-accidental burns (NAB) in children admitted to burn centres vary from 1% to 25%. Hardly any data about Dutch figures exist. The aim of this study was to evaluate the incidence, treatment and outcome of burns due to suspected child abuse in paediatric burns. We described the process of care and outcome, including the accuracy of the SPUTOVAMO screening tool and examined child, burn and treatment characteristics related to suspicions of child abuse or neglect. A retrospective study was conducted in children aged 0-17 years with a primary admission after burn injuries to the burn centre Rotterdam in the period 2009-2013. Data on patient, injury and treatment characteristics were collected, using the Dutch Burn Repository R3. In addition, medical records were reviewed. In 498 paediatric admissions, suspected child abuse or neglect was present in 43 children (9%). 442 screening questionnaires (89%) were completed. In 52 out of 442 questionnaires (12%) the completed SPUTOVAMO had one or more positive signs. Significant independent predictors for suspected child abuse were burns in the genital area or buttocks (OR=3.29; CI: 143-7.55) and a low socio-economic status (OR=2.52; 95%CI: 1.30-4.90). The incidence of suspected child abuse indicating generation of additional support in our population is comparable to studies with a similar design in other countries. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  19. Burns and Fire Safety

    MedlinePlus

    Number of Deaths Death Rate Burns and Fire Safety Fact Sheet (2015) Fatalities • 334 children ages 19 and under died from fires or burns ... burns were ages 4 and under. 1 The death rate for children this age (0.73 per 100, ...

  20. Long term health-related quality of life after burns is strongly dependent on pre-existing disease and psychosocial issues and less due to the burn itself.

    PubMed

    Orwelius, L; Willebrand, M; Gerdin, B; Ekselius, L; Fredrikson, M; Sjöberg, F

    2013-03-01

    Health-related quality of life (HRQoL) is reduced after a burn, and is affected by coexisting conditions. The aims of the investigation were to examine and describe effects of coexisting disease on HRQoL, and to quantify the proportion of burned people whose HRQoL was below that of a reference group matched for age, gender, and coexisting conditions. A nationwide study covering 9 years and examined HRQoL 12 and 24 months after the burn with the SF-36 questionnaire. The reference group was from the referral area of one of the hospitals. The HRQoL of the burned patients was below that of the reference group mainly in the mental dimensions, and only single patients were affected in the physical dimensions. The factor that significantly affected most HRQoL dimensions (n=6) after the burn was unemployment, whereas only smaller effects could be attributed directly to the burn. Poor HRQoL was recorded for only a small number of patients, and the decline were mostly in the mental dimensions when compared with a group adjusted for age, gender, and coexisting conditions. Factors other than the burn itself, such as mainly unemployment and pre-existing disease, were most important for the long term HRQoL experience in these patients. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  1. Scald burns in children aged 14 and younger in Australia and New Zealand—an analysis based on the Burn Registry of Australia and New Zealand (BRANZ).

    PubMed

    Riedlinger, Dorothee I; Jennings, Paul A; Edgar, Dale W; Harvey, John G; Cleland, Ms Heather J; Wood, Fiona M; Cameron, Peter A

    2015-05-01

    Scalds are a common injury in children and a frequent reason for hospitalisation despite being a preventable injury. This retrospective two year study reports data from 730 children aged 14 years or younger who sustained a scald between 2009 and 2010 and were admitted to a burns centre in Australia or New Zealand. Data were extracted from the Burn Registry of Australia and New Zealand (BRANZ), which included data from 13 burns centres in Australia and New Zealand. Scald injury contributed 56% (95% CI 53-59%) of all pediatric burns. There were two high risk groups; male toddlers age one to two, contributing 34% (95% CI 31-38%) of all scalds, and indigenous children who were over 3 times more likely to experience a scald requiring admission to a burns unit than their non-indigenous peers. First aid cooling by non-professionals was initiated in 89% (95% CI 86-91%) of cases but only 20% (95% CI 16-23%) performed it as recommended. This study highlights that effective burn first aid reduces hospital stay and reinforces the need to encourage, carers and bystanders to deliver effective first aid and the importance of targeted prevention campaigns that reduce the burden of pediatric scald burns in Australia and New Zealand. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  2. The burn surgeon: an endangered species. Can exposure in medical school increase interest in burn surgery?

    PubMed

    Kahn, Steven Alexander; Goldman, Matthew; Daul, Matthew; Lentz, Christopher W

    2011-01-01

    The nation is faced with a shortage of subspecialty physicians, including burn surgeons. Exposure to a specialty in medical school has been shown to influence students' career choices. The authors postulate that exposure to burn surgery increases their interest in the field. Students from a medical school with an American Burn Association-verified burn center and from a school without a burn center were anonymously surveyed and asked to report their interest and knowledge regarding burn surgery using a 5-point Likert scale. They were asked about their current year in school, gender, overall interest in surgery, and any prior exposure to burn surgery (eg, preceptorship or rotation). Students were asked whether exposure to burn surgery or to a strong mentor might increase their interest in the field. Finally, they were asked to pick the most important factor in a list of deterrents to pursuing a career in burn surgery. Predictors of interest in burn surgery were determined with regression analyses. A total of 380 of 662 students responded to the survey (57.4%). Significant predictors of interest in burn surgery were an interest in surgery (P < .001, odds ratio [OR] = 56.3), prior exposure to burn surgery (P = .02, OR = 5.7), and year in school (P = .006, OR = 1.7). First- and second-year students were more likely to report interest in burn surgery (P < .001). Gender and medical school attended were not significant predictors. Prior exposure to burn surgery became a stronger predictor in subgroup analysis of the fourth-year students (P < .001, OR = 24.5). The majority of students reported that exposure to burn surgery (76%) and a strong mentor (87%) would make them more likely to consider burn surgery as a career. "Not interested in surgery" was the most important deterrent to pursuing a career in burn surgery, which was selected by 33% of students. However, 25% of students chose "I don't know anything about burn surgery" as the most important deterrent. Factors

  3. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds

    Treesearch

    X. Zhou; D.R. Weise; S Mahalingam

    2005-01-01

    An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...

  4. Foot burns: epidemiology and management.

    PubMed

    Hemington-Gorse, S; Pellard, S; Wilson-Jones, N; Potokar, T

    2007-12-01

    This is a retrospective study of the epidemiology and management of isolated foot burns presenting to the Welsh Centre for Burns from January 1998 to December 2002. A total of 289 were treated of which 233 were included in this study. Approximately 40% were in the paediatric age group and the gender distribution varied dramatically for adults and children. In the adult group the male:female ratio was 3.5:1, however in the paediatric group the male:female ratio was more equal (1.6:1). Scald burns (65%) formed the largest group in children and scald (35%) and chemical burns (32%) in adults. Foot burns have a complication rate of 18% and prolonged hospital stay. Complications include hypertrophic scarring, graft loss/delayed healing and wound infection. Although isolated foot burns represent a small body surface area, over half require treatment as in patients to allow for initial aggressive conservative management of elevation and regular wound cleansing to avoid complications. This study suggests a protocol for the initial acute management of foot burns. This protocol states immediate referral of all foot burns to a burn centre, admission of these burns for 24-48 h for elevation, regular wound cleansing with change of dressings and prophylactic antibiotics.

  5. Acute hand burns in children: management and long-term outcome based on a 10-year experience with 698 injured hands.

    PubMed Central

    Sheridan, R L; Baryza, M J; Pessina, M A; O'Neill, K M; Cipullo, H M; Donelan, M B; Ryan, C M; Schulz, J T; Schnitzer, J J; Tompkins, R G

    1999-01-01

    OBJECTIVE: To document long-term results associated with an coordinated plan of care for acutely burned hands in children. SUMMARY AND BACKGROUND DATA: Optimal hand function is a crucial component of a high-quality survival after burn injury. This can be achieved only with a coordinated approach to the injuries. Long-term outcomes associated with such a plan of care have not been previously reported. METHODS: Over a 10-year period, 495 children with 698 acutely burned hands were managed at a regional pediatric burn facility; 219 children with 395 injured hands were followed in the authors' outpatient clinic for at least 1 year and an average of >5 years. The authors' approach to the acutely burned hand emphasizes ranging and splinting throughout the hospital stay, prompt sheet autograft wound closure as soon as practical, and the selective use of axial pin fixation and flaps. Long-term follow-up, hand therapy, and reconstructive surgery are emphasized. RESULTS: Normal functional results were seen in 97% of second-degree and 85% of third-degree injuries; in children with burns involving underlying tendon and bone, 70% could perform activities of daily living and 20% had normal function. Reconstructive hand surgery was required in 4.4% of second-degree burns, 32% of third-degree burns, and 65% of those with injuries involving underlying bone and tendon. CONCLUSIONS: When managed in a coordinated long-term program, the large majority of children with serious hand burns can be expected to have excellent functional results. Images Figure 1. Figure 2. PMID:10203090

  6. Column Experiments for Radionuclide Adsorption Studies of the Culebra Dolomite: Retardation Parameter Estimation for Non-Eluted Actinide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G.O.; Lucero, D.A.; Perkins, W.G.

    formation brines. No significant changes in transport behavior were observed for changes in brine. Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for the cores were obtained via experiments using conservative tracer `Na. Elution experiments carried out over periods of a few days with tracers `*U and %Np indicated that these tracers were weakly retarded as indicated by delayed elution of these species. Elution experiments with tracers `%, 24'Pu, and 24'Ani were performed, but no elution of any of these species was observed in any flow experiment to date, including experiments of up to two years duration. However, B-Core was subjected to tomographic analysis from which a retardation factor can be inferred for%. Moreover, the fact of non- elution for 24*Pu and 24'Am after more than two years brine flow through C-Core can be coupled with the minimum detectable activity for each of these species to compute minimum retardation factors in C-Core. The retardation factors for all three species can then be coupled with the apparent hydraulic characteristics to estimate an apparent minimum solutionhock distribution coefficient, &, for each actinide. The specific radionuclide isotopes used in these experiments were chosen to facilitate analysis. Even though these isotopes are not necessarily the same as those that are most important to WIPP performance, they are isotopes of the same elements, and . their chemical and transport properties are therefore identical to those of isotopes in the WIPP inventory. The retardation factors and & values deduced from experimental results strongly support the contention that sorption in the Culebra provides an effective barrier to release of Th, Pu, and Am during the regulatory period.« less

  7. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    NASA Astrophysics Data System (ADS)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  8. Fuel droplet burning rates at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1972-01-01

    Combustion of methanol, ethanol, propanol -1, n - pentane, n - heptane and n - decane was observed in air under natural convection conditions at pressures up to 100 atm. The droplets were simulated by porous spheres with diameters in the range 0.63 - 1.90 cm. The pressure levels of the tests were high enough so that near critical combustion was observed for methanol and ethanol. Measurements were made of the burning rate and liquid surface temperatures of the fuels. The data were compared with variable property analysis of the combustion process, including a correction for natural convection. The burning rate predictions of the various theories were similar and in fair agreement with the data. The high pressure theory gave the best prediction for the liquid surface temperatures of ethanol and propanol -1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 - 100 atm, which was in good agreement with the predictions of both the low and high pressure analysis.

  9. Trends in the short-term release of fission products and actinides to aqueous solution from used CANDU fuels at elevated temperature

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, S.

    1992-08-01

    A large number of short-term leaching experiments has been performed to determine fission product and actinide release from used CANDU (CANada Deuterium Uranium) fuels and to establish which factors affect release. Results are reported after30 ± 10 d leaching at 100-150°C under oxidizing (air) or reducing (Ar-3% H 2 or Ar) conditions, in various synthetic groundwaters. Cesium-137 release (0.007-6%) was positively correlated with increases in fuel power, leachant temperature and ionic strength. Strontium-90 release (0.0003-0.3%) generally increased with ionic strength, higher temperature and redox conditions. Actinide and Tc concentrations were compared to ranges calculated with a thermodynamic equilibrium model, that accounts for the uncertain geochemical parameters of a nuclear waste vault by calculating concentration ranges based on 40000 hypothetical cases. Experimental U concentrations (10 -8.5 to 10 -3 mol/kg) were higher than the model range, probably because of higher redox potentials in the experiments. Measured Pu concentrations (10 -12.5 to 10 -7 mol/kg) were at the low end of the calculated range. Americium and Cm concentrations (10 -12.5 to 10 -7 and 10 -15 to 10 -9 mol/kg, respectively) were highest under oxidizing conditions and higher temperatures. Technetium-99 concentrations (10 -5.5 to 10 -10.5 mol/kg) covered a much narrower range than calculated by the model.

  10. Current methods of burn reconstruction.

    PubMed

    Orgill, Dennis P; Ogawa, Rei

    2013-05-01

    After reading this article, the participant should be able to: 1. Explain the present challenges in reconstructive burn surgery. 2. Describe the most appropriate treatment methods and techniques for specific burn injury types, including skin grafts, dermal substitutes, and a variety of flap options. 3. Identify the appropriate use, advantages, and disadvantages of specific flaps in the treatment of burn injuries, including local, regional, superthin, prefabricated, prelaminated, and free flaps. Victims of thermal burns often form heavy scars and develop contractures around joints, inhibiting movement. As burns can occur in all cutaneous areas of the body, a wide range of reconstructive options have been utilized. Each method has advantages and disadvantages that must be considered by both patients and surgeons. The authors reviewed the literature for burn reconstruction and focused their discussion on areas that have been recently developed. They reviewed the mechanism of burn injury and discussed how this relates to the pathophysiology of the burn injury. Surgeons now have a wide array of plastic surgical techniques that can be used to treat burn victims. These range from skin grafts and local flaps to free flaps, prefabricated flaps, superthin flaps, and dermal scaffolds. Recent advances in burn reconstruction provide methods to decrease scar tissue and joint contractures. In the future, the authors hope that further developments in burn treatment will foster the development of new technologies that will allow site-specific reconstruction with minimal donor-site morbidity.

  11. Learn Not To Burn.

    ERIC Educational Resources Information Center

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  12. Statistical analysis of excitation energies in actinide and rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Levon, A. I.; Magner, A. G.; Radionov, S. V.

    2018-04-01

    Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our linear approach improves the comparison with experimental data at all desired spacings.

  13. The epidemiology of geriatric burns in Iran: A national burn registry-based study.

    PubMed

    Emami, Seyed-Abolhassan; Motevalian, Seyed Abbas; Momeni, Mahnoush; Karimi, Hamid

    2016-08-01

    Defining the epidemiology and outcome of geriatric burn patients is critical for specialized burn centers, health-care workers, and governments. Better resource use and effective guidelines are some of the advantages of studies focusing on this aspect. The outcome of these patients serves as an objective criterion for quality control, research, and preventive programs. We used data from the burn registry program in our country. For 2 years, >28,700 burn patients were recorded, 1721 of whom were admitted. Among them, 187 patients were ≥55 years old. Sixty-nine percent of patients were male and 31% female, with a male to female ratio of 2.22:1. The mean±standard deviation (SD) of age was 63.4±8.1. The cause of burns was flame (58.2%) and scalds (20.3%). Most of the burns were sustained at home. The mean duration of hospital stay was 19.5 days (range 3-59 days). The mean (SD) of the total body surface area (TBSA) was 20.3% (8.4%). The median hospital stay (length of stay (LOS)) was 11 days (SD=14). The increase in TBSA was related to a longer LOS (p<0.02). Burn wound infection developed in 44.3% of patients. The presence of inhalation injury was significantly related to mortality (p<0.001). Among the patients, 9% recovered completely, 74.9% recovered partially (requiring further treatment), 1% underwent amputation, and 12.8% died. The lack of insurance coverage did not affect the survival of our geriatric burn patients. However, being alone or single, ignition of clothing, cause of burn, comorbid illnesses, complications following the burn, TBSA, age, and sepsis were positively correlated with mortality. The mean cost of treatment for each patient was about $7450. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  14. Enhancing the clinical utility of the burn specific health scale-brief: not just for major burns.

    PubMed

    Finlay, V; Phillips, M; Wood, F; Hendrie, D; Allison, G T; Edgar, D

    2014-03-01

    Like many other Western burn services, the proportion of major to minor burns managed at Royal Perth Hospital (RPH) is in the order of 1:10. The Burn Specific Health Scale-Brief (BSHS-B) is an established measure of recovery after major burn, however its performance and validity in a population with a high volume of minor burns is uncertain. Utilizing the tool across burns of all sizes would be useful in service wide clinical practice. This study was designed to examine the reliability and validity of the BSHS-B across a sample of mostly minor burn patients. BSHS-B scores of patients, obtained between January 2006 and February 2013 and stored on a secure hospital database were collated and analyzed Cronbach's alpha, factor analysis, logistic regression and longitudinal regression were used to examine reliability and validity of the BSHS-B. Data from 927 burn patients (2031 surveys) with a mean % total burn surface area (TBSA) of 6.7 (SD 10.0) were available for analysis. The BSHS-B demonstrated excellent reliability with a Cronbach's alpha of 0.95. First and second order factor analyses reduced the 40 item scale to four domains: Work; Affect and Relations; Physical Function; Skin Involvement, as per the established construct. TBSA, length of stay and burn surgery all predicted burn specific health in the first three months of injury (p<0.001, p<0.001, p=0.03). BSHS-B whole scale and domain scores showed significant improvement over 24 months from burn (p<0.001). The results from this study show that the structure and performance of the BSHS-B in a burn population consisting of 90% minor burns is consistent with that demonstrated in major burns. The BSHS-B can be employed to track and predict recovery after burns of all sizes to assist the provision of targeted burn care. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Burn-related factors affecting anxiety, depression and self-esteem in burn patients: an exploratory study.

    PubMed

    Jain, M; Khadilkar, N; De Sousa, A

    2017-03-31

    Burns are physically, psychologically and economically challenging injuries, and the factors leading to them are many and under-studied. The aim of the current study was to assess level of anxiety, depression and self-esteem in burn patients, and look at various burn-related variables that affect them. This cross-sectional study included 100 patients with burn injuries admitted to a tertiary care private hospital in an urban metropolis in India. The patients were assessed for anxiety, depression and self-esteem using the Hamilton anxiety rating scale, Hamilton depression rating scale and Rosenberg self-esteem scale respectively. Assessment was carried out within 2-8 weeks of injury following medical stabilization. The data was tabulated and statistically analyzed. The study sample was predominantly male (54%), married (69%), with a mean age of 34.1 ± 10.8 years. Accidental burns (94%) were the most common modality of injury. The majority (46%) suffered burns involving 20-59% total body surface area (TBSA), and facial burns were present (57%). No significant association was found between TBSA and anxiety, depression or self-esteem, and the same was true for facial burns. Deep burns, however, were significantly associated with anxiety (p=0.03) and depression (p=0.0002). High rates of anxiety and depression are associated with burn injuries and related to burn depth. Adjustment and recovery in these patients depends on various other factors like the patient's psychological status, nature/extent of the injury and ensuing medical care. Further research is warranted to reveal the magnitude and predictors of psychological problems in burn patients.

  16. A review of burns patients admitted to the Burns Unit of Hospital Universiti Kebangsaan Malaysia.

    PubMed

    Chan, K Y; Hairol, O; Imtiaz, H; Zailani, M; Kumar, S; Somasundaram, S; Nasir-Zahari, M

    2002-12-01

    This is a retrospective review of 110 patients admitted to the Burns Units between October 1999 and November 2001. The aim was to determine the burns pattern of patients admitted to hospital UKM. There was an increasing trend for patients admitted. Female to male ratio was 1:2. Children consisted 34% of the total admission. Children had significant higher number of scald burns as compare to adult (p < 0.01). Domestic burns were consist of 75% overall admission. Mean percentage of TBSA (total body surface area) burns was 19%. Thirty percent of patients sustained more than 20% of TBSA. Sixty percent of patients had scald burns. Ninety percents of patients with second degree burns that were treated with biologic membrane dressing or split skin graft. Mean duration of hospital stay was 10 days. Over 70% of patients were discharged within 15 days. Overall mortality rate was 6.3%. The patients who died had significantly larger area of burns of more than 20% TBSA (p < 0.05) and a higher incidence of inhalation injury (p < 0.02). Hence, this study suggests a need for better preventive measures by the authority to prevent burns related accident and the expansion of the service provided by the Burns Unit.

  17. Brown carbon in fresh and aged biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Robinson, E.; Tkacik, D. S.; Ahern, A.; Liu, S.; Aiken, A. C.; Sullivan, R. C.; Presto, A. A.; Dubey, M.; Donahue, N. M.; Robinson, A. L.

    2013-12-01

    wavelength (lambda) of 550 nm increases linearly with the BC-to-OA ratio, while the spectral-dependence, w, where k¬OA = kOA,550nm*(550/lambda)w, is inversely proportional to the BC-to-OA ratio. These correlations were determined by examining emissions from small scale laboratory burns of six globally relevant fuels (black spruce, ponderosa pine, hay, rice straw, saw grass, and wire grass), assuming that their behavior can be extrapolated to other biomass fuels. Experiments were conducted during the Fire Laboratory at Missoula Campaign (FLAME 4). The BC-to-OA ratios in the experiments were between 0.01 and 0.2. Aging of the emissions (photo-oxidation or dark ozonolysis) was performed in a smog chamber. To determine the dependence of absorptivity on volatility, the SVOCs were stripped from the condensed phase by heating the emissions to 250 C inside a thermodenuder. This allowed for constraining the optical properties of the low-volatility residue. kOA values were retrieved by performing optical closure, which combines Mie theory calculations with measurements of light absorption, and total and BC size distributions.

  18. The effects of crude oil and remediation burning on three clones of smooth cordgrass (Spartina alterniflora Loisel.)

    USGS Publications Warehouse

    Smith, D.L.; Proffitt, C.E.

    1999-01-01

    Burning has been employed as an oil spill remediation technique in coastal marshes, even though the combined and interactive effects of soil and burning on vegetation are poorly understood. Variation among clones of perennial marsh grasses in response to these perturbations is not known. We performed a greenhouse experiment designed to assess the effects of Venezuelan crude oil alone and of oil followed by burning on three clonal genets of Spartina alterniflora. The fully-crossed 6-mo experiment involved five dosages of oil (0 l m-2, 4 l m-2, 8 l m-2, 16 l m-2, and 24 l m-2) and two burn treatments (burned or unburned) applied to ramets from three clones. All oil-only dosages reduced survival, but burning after oiling (oil + burn treatments) increased survival relative to oil-only groups in all except the highest two oil dosages. Higher oil-only treatments also reduced ramet densities and inhibited density increases over 6 mo. Burning after treatment with the 16 l m-2 oil concentration allowed increased production of new ramets, but burning exacerbated the negative impacts on ramet density at the oil concentration of 24 l m-2. At some intermediate oil dosages, burning remediated the negative effects of oil on aboveground biomass production and growth in height. There was a significant effect of oil-only treatments on numbers of flowering ramets produced, in which two clones responded with decreased flower production and one exhibited increased flowering. There was no main effect of oil + burn on flowering. There were significant among-clones differences in all response variables to one or both treatments. Our experiment demonstrates that burning of oiled S. alterniflora marshes may have little measurable effect at low levels of Venezuelan crude oil, can remediate the effects of oil at intermediate oil concentrations, but can increase the negative impacts at high concentrations of oil. These results indicate that oil spills have the potential to adversely affect

  19. DISTRIBUTION OF ACTINIDES BETWEEN THE AQUEOUS AND ORGANIC PHASES IN THE TALSPEAK PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; Kyser, E.

    2010-09-02

    demonstrated that Np(V) and Pu(III) were the predominate valences in the lactic acid/DTPA solution for the better part of a day following solution preparation. Based on these results, we chose to initially add HAN to the actinide tracer solution prepared for the distribution coefficient measurements (to produce Pu(III)) prior to combining with lactic acid and DTPA. The distribution coefficient measurements were expected to be complete in 2-3 h; therefore, Np(V) and Pu(III) valences would predominate in the solution during this time. Prior to adding the HAN to the actinide tracers, we added sufficient Am(III) activity to allow the measurement of distribution coefficients during the extraction experiments. Protactinium (V) distribution coefficients were also measured using the activity which was in secular equilibrium with the {sup 237}Np. The actinide distribution coefficients were measured at pH 2.8 and 3.5 and covered a range of temperatures from nominally 20 to 60 C.« less

  20. METHOD FOR THE PREPARATION OF STABLE ACTINIDE METAL OXIDE-CONTAINING SLURRIES AND OF THE OXIDES THEREFOR

    DOEpatents

    Hansen, R.S.; Minturn, R.E.

    1958-02-25

    This patent deals with a method of preparing actinide metal oxides of a very fine particle size and of forming stable suspensions therefrom. The process consists of dissolving the nitrate of the actinide element in a combustible organic solvent, converting the solution obtained into a spray, and igniting the spray whereby an oxide powder is obtained. The oxide powder is then slurried in an aqueous soiution of a substance which is adsorbable by said oxides, dspersed in a colloid mill whereby a suspension is obtained, and electrodialyzed until a low spectiic conductance is reached.

  1. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  2. Evaluation of possible physical-chemical processes that might lead to separations of actinides in ORNL waste tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Cul, G.D.; Toth, L.M.; Bond, W.D.

    The concern that there might be some physical-chemical process which would lead to a separation of the poisoning actinides ({sup 232}Th, {sup 238}U) from the fissionable ones ({sup 239}Pu, {sup 235}U) in waste storage tanks at Oak Ridge National Laboratory has led to a paper study of potential separations processes involving these elements. At the relatively high pH values (>8), the actinides are normally present as precipitated hydroxides. Mechanisms that might then selectively dissolve and reprecipitate the actinides through thermal processes or additions of reagents were addressed. Although redox reactions, pH changes, and complexation reactions were all considered, only themore » last type was regarded as having any significant probability. Furthermore, only carbonate accumulation, through continual unmonitored air sparging of the tank contents, could credibly account for gross transport and separation of the actinide components. From the large amount of equilibrium data in the literature, concentration differences in Th, U, and Pu due to carbonate complexation as a function of pH have been presented to demonstrate this phenomenon. While the carbonate effect does represent a potential separations process, control of long-term air sparging and solution pH, accompanied by routine determinations of soluble carbonate concentration, should ensure that this separations process does not occur.« less

  3. Predicted effects of prescribed burning and harvesting on forest recovery and sustainability in southwest Georgia, USA.

    PubMed

    Garten, Charles T

    2006-12-01

    A model-based analysis of the effect of prescribed burning and forest thinning or clear-cutting on stand recovery and sustainability was conducted at Fort Benning, GA, in the southeastern USA. Two experiments were performed with the model. In the first experiment, forest recovery from degraded soils was predicted for 100 years with or without prescribed burning. In the second experiment simulations began with 100 years of predicted stand growth, then forest sustainability was predicted for an additional 100 years under different combinations of prescribed burning and forest harvesting. Three levels of fire intensity (low, medium, and high), that corresponded to 17%, 33%, and 50% consumption of the forest floor C stock by fire, were evaluated at 1-, 2-, and 3-year fire return intervals. Relative to the control (no fire), prescribed burning with a 2- or 3-year return interval caused only a small reduction in predicted steady state soil C stocks (< or =25%) and had no effect on steady state tree wood biomass, regardless of fire intensity. Annual high intensity burns did adversely impact forest recovery and sustainability (after harvesting) on less sandy soils, but not on more sandy soils that had greater N availability. Higher intensity and frequency of ground fires increased the chance that tree biomass would not return to pre-harvest levels. Soil N limitation was indicated as the cause of unsustainable forests when prescribed burns were too frequent or too intense to permit stand recovery.

  4. The Global Impact of Biomass Burning: An Interview with EPA's Robert Huggett

    NASA Technical Reports Server (NTRS)

    Sevine, Joel S.

    1995-01-01

    The extent of biomass burning has increased significantly over the past 100 years because of human activities, and such burning is much more frequent and widespread than was previously believed. Biomass burning is now recognized as a significant global source of emissions, contributing as much as 40% of gross carbon dioxide and 38% of tropospheric ozone. Most of the world's burned biomass matter is from the savannas, and because two-thirds of the Earth's savannas are located in Africa, that continent is now recognized as the "burn center" of the planet. In the past few years the international scientific community has conducted field experiments using ground-based and airborne measurements in Africa, South America. and Siberia to better assess the global production of gases and particulates by biomass burning. Researchers are gathering this month in Williamsburg, VA, to discuss the results of these and other investigations at the Second Chapman Conference on Biomass Burning and Global Change, sponsored by the American Geophysical Union. The first international biomass burning conference, held in 1990, was attended by atmospheric chemists, climatologists, ecologists, forest and soil scientists, fire researchers, remote- sensins specialists, and environmental planners and managers from more than 25 countries.When we hear about biomass burning, we usually think of the burning of the worlds tropical forests for permanent land clearing. However, biomass burning serves a variety of land use changes, including the clearing of forests and savannas for agricultural and grazing use; shifting agriculture practices; the control of grass, weeds, and litter on agricultural and grazing lands; the elimination of stubble and waste on agricultural lands after the harvest; and the domestic use of biomass matter.

  5. Men, fire, and burns: Stories of fighting, healing, and emotions.

    PubMed

    Thakrar, Sulaye; Hunter, Tevya A; Medved, Maria I; Hiebert-Murphy, Diane; Brockmeier, Jens; Sareen, Jitender; Logsetty, Sarvesh

    2015-12-01

    Burn recovery is a difficult process full of physical and psychological challenges. With increasing survival rates, there has been renewed interest in the psychological aspects of burn recovery. As men represent over 70% of all burn patients, it is particularly important to study how men experience and interpret this process. We interviewed a purposeful sample of ten adult male burn survivors from different age and cultural groups in the first 16 weeks of their recovery and asked them to discuss the problems they faced. Narrative analysis was used to interpret the interviews. In their narratives, the men tended to emphasize gains in their physical recovery; that is, they often used metaphors of "fighting" to demonstrate how committed they were to their healing. Further, they put less emphasis on the emotional aspects of their recovery. In our discussion, we compare these complex storylines to coping strategies identified in the literature and discuss why men may choose these strategies. Based on our findings we argue that it is important for health care providers to be aware of societal pressures which may influence burn survivors to minimize affective elements of burn recovery. Additionally, we encourage exploring and capitalizing on men's "fighting" stories during rehabilitation in order to foster an active role which men can take in their recovery. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  6. Burning by prescription in chaparral

    Treesearch

    Lisle R. Green

    1981-01-01

    Prescribed burning is frequently suggested for reducing conflagration costs in chaparral. Preparation for a prescribed burn includes environmental impact reports, approval by higher levels of authority, and a burn plan. After objectives are stated, the prescription can be written. Elements of the burn prescription reflect fuel, weather, and other factors that determine...

  7. First Aid: Burns

    MedlinePlus

    ... for: Parents Kids Teens Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns ... Being Safe in the Kitchen Finding Out About Fireworks Safety Playing With Fire? Dealing With Burns Fireworks ...

  8. Incidence and characteristics of chemical burns.

    PubMed

    Koh, Dong-Hee; Lee, Sang-Gil; Kim, Hwan-Cheol

    2017-05-01

    Chemical burns can lead to serious health outcomes. Previous studies about chemical burns have been performed based on burn center data so these studies have provided limited information about the incidence of chemical burns at the national level. The aim of this study was to evaluate the incidence and characteristics of chemical burns using nationwide databases. A cohort representing the Korean population, which was established using a national health insurance database, and a nationwide workers' compensation database were used to evaluate the incidence and characteristics of chemical burns. Characteristics of the affected body region, depth of burns, industry, task, and causative agents were analyzed from two databases. The incidence of chemical burns was calculated according to employment status. The most common regions involving chemical burns with hospital visits were the skin followed by the eyes. For skin lesions, the hands and wrists were the most commonly affected regions. Second degree burns were the most common in terms of depth of skin lesions. The hospital visit incidence was 1.96 per 10,000 person-year in the general population. The compensated chemical burns incidence was 0.17 per 10,000 person-year. Employees and the self-employed showed a significantly increased risk of chemical burns undergoing hospital visits compared to their dependents. Chemical burns on the skin and eyes are almost equally prevalent. The working environment was associated with increased risk of chemical burns. Our results may aid in estimating the size of the problem and prioritizing prevention of chemical burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. Burn Severity Based Stream Buffers for Post Wildfire Salvage Logging Erosion

    NASA Astrophysics Data System (ADS)

    Bone, E. D.; Robichaud, P. R.; Brooks, E. S.; Brown, R. E.

    2017-12-01

    Riparian buffers may be managed for timber harvest disturbances to decrease the risk of hillslope erosion entering stream channels during runoff events. After a wildfire, burned riparian buffers may become less efficient at infiltrating runoff and reducing sedimentation, requiring wider dimensions. Testing riparian buffers under post-wildfire conditions may provide managers guidance on how to manage post-fire salvage logging operations on hillslopes and protect water quality in adjacent streams. We tested burned, unlogged hillslopes at the 2015 North Star Fire and 2016 Cayuse Mountain Fire locations in Washington, USA for their ability to reduce runoff flows and sedimentation. Our objectives were to: 1) measure the travel distances of concentrated flows using three sediment-laden flow rates, 2) measure the change in sediment concentration as each flow moves downslope, 3) test hillslopes under high burn-severity, low burn-severity and unburned conditions, and 4) conduct experiments at 0, 1 and 2 years since the fire events. Mean total flow length at the North Star Fire in year 1 was 211% greater at low burn-severity sites than unburned sites, and 467% greater at high burn-severity sites than unburned sites. Results decreased for all burned sites in year 2; by 40% at the high burn-severity sites, and by 30% at the low burn-severity sites, with no significant changes at the unburned sites. We tested only high burn-severity sites at the Cayuse Mountain Fire in year 0 and 1 where the mean total flow length between year 0 and year 1 decreased by 65%. The results of sediment concentration changes tracked closely with the magnitude of changes in flow travel lengths between treatments. Results indicate that managers may need to increase the widths of burned stream buffers during post-wildfire salvage logging for water quality protection, but stream buffer widths may decrease with less severe burn severity and increasing elapsed time (years) since fire.

  10. Actinide Sorption in a Brine/Dolomite Rock System: Evaluating the Degree of Conservatism in Kd Ranges used in Performance Assessment Modeling for the WIPP Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reed, D. T.

    2015-12-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM is the only operating nuclear waste repository in the US and has been accepting transuranic (TRU) waste since 1999. The WIPP is located in a salt deposit approximately 650 m below the surface and performance assessment (PA) modeling for a 10,000 year period is required to recertify the operating license with the US EPA every five years. The main pathway of concern for environmental release of radioactivity is a human intrusion caused by drilling into a pressurized brine reservoir below the repository. This could result in the flooding of the repository and subsequent transport in the high transmissivity layer (dolomite-rich Culebra formation) above the waste disposal rooms. We evaluate the degree of conservatism in the estimated sorption partition coefficients (Kds) ranges used in the PA based on an approach developed with granite rock and actinides (Dittrich and Reimus, 2015; Dittrich et al., 2015). Sorption onto the waste storage material (Fe drums) may also play a role in mobile actinide concentrations. We will present (1) a conceptual overview of how Kds are used in the PA model, (2) technical background of the evolution of the ranges and (3) results from batch and column experiments and model predictions for Kds with WIPP dolomite and clays, brine with various actinides, and ligands (e.g., acetate, citrate, EDTA) that could promote transport. The current Kd ranges used in performance models are based on oxidation state and are 5-400, 0.5-10,000, 0.03-200, and 0.03-20 mL g-1 for elements with oxidation states of III, IV, V, and VI, respectively. Based on redox conditions predicted in the brines, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will also discuss the challenges of upscaling from lab experiments to field scale predictions, the role of colloids, and the effect of engineered barrier materials (e.g., MgO) on transport conditions. Dittrich

  11. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  12. Progress on inert matrix fuels for minor actinide transmutation in fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnerot, Jean-Marc; Ferroud-Plattet, Marie-Pierre; Lamontagne, Jerome

    2007-07-01

    An extensive irradiation program has been devoted by CEA to the assessment of transmutation using minor actinide bearing inert support targets. A first irradiation experiment was performed in the fast neutron reactor Phenix, in parallel to other experiments carried out in the HFR and Siloe reactors, in order to assess the behavior under fast neutron flux of various materials intended as inert support matrix for transmutation targets. This experiment, which included the two steps MATINA 1 and MATINA 1A, was completed in 2004 and underwent complete post irradiation examinations (PIE) , whose results are presented in this paper. All themore » pure inert materials showed a satisfactory behavior under fast neutrons except Al{sub 2}O{sub 3} - which exhibits a swelling close to 11 vol. % after irradiation. In presence of UO{sub 2} fissile particles, MgAl{sub 2}O{sub 4} proved to be more stable in term of swelling as inert support than MgO and Al{sub 2}O{sub 3} matrices, under the same irradiation conditions. A second experiment ECRIX H in Phenix involving composite pellets with an MgO matrix and AmO{sub 2-x} particles was completed in 2006. The very first PIE results on ECRIX H are described in this paper. At the light of these first experiments, a second phase dedicated to the design optimization of the target was initiated and three new irradiation experiments - MATINA 2-3, CAMIX COCHIX in Phenix and HELIOS in HFR - were started in 2006 and 2007. (authors)« less

  13. Organic and Aqueous Redox Speciation of Cu(III) Periodate Oxidized Transuranium Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Kevin; Sinkov, Sergey I.; Lumetta, Gregg J.

    A hexavalent group actinide separation process could streamline used nuclear fuel recycle and waste management. The limiting factor to such a process compatible with current fuel dissolution practices is obtaining and maintaining hexavalent Am, in molar nitric acid due to the high reduction potential of the Am(VI)/Am(III) couple (1.68 V vs SCE). Two strong oxidants, sodium bismuthate and Cu(III) periodate, have demonstrated quantitative oxidation of Am under molar acid conditions and better than 50% recovery by diamyl amylphosphonate (DAAP) is possible under these same conditions. This work considers the use of Cu(III) periodate to oxidize Np(V) to Np(VI) and Pu(IV)more » to Pu(VI) and recover these elements by extraction with DAAP. A metal:oxidant ratio of 1:1.2 and 1:3 was necessary to quantitatively oxidize Np(V) and Pu(IV), respectively, to the hexavalent state. Extraction of hexavalent Np, Pu, and Am by 1 M DAAP in n-dodecane was measured using UV-Vis [Pu(VI), Am (VI)] and NIR [Np(VI)]. Distribution values of Am(VI) were found to match previous tracer level studies. The organic phase spectra of Np, Pu, and Am are presented and molar absorptivities are calculated for characteristic peaks. Hexavalent Pu was found to be stable in the organic phase while Np(VI) showed some reduction to Np(V) and Am was present as Am(III), Am(V), and Am(VI) species in aqueous and organic phases during the extraction experiments. These results demonstrate, for the first time, the ability to recover macroscopic amounts of americium that would be present during fuel reprocessing and are the first characterization of Am organic phase oxidation state speciation relevant to a hexavalent group actinide separation process under acidic conditions.« less

  14. Patient experiences of burn scars in adults and children and development of a health-related quality of life conceptual model: A qualitative study.

    PubMed

    Simons, Megan; Price, Nathaniel; Kimble, Roy; Tyack, Zephanie

    2016-05-01

    The aim of this study was to understand the impact of burn scars on health-related quality of life (HRQOL) from the perspective of adults and children with burn scars, and caregivers to inform the development of a conceptual model of burn scar HRQOL. Twenty-one participants (adults and children) with burn scars and nine caregivers participated in semi-structured, face-to-face interviews between 2012 and 2013. During the interviews, participants were asked to describe features about their (or their child's) burn scars and its impact on everyday life. Two coders conducted thematic analysis, with consensus achieved through discussion and review with a third coder. The literature on HRQOL models was then reviewed to further inform the development of a conceptual model of burn scar HRQOL. Five themes emerged from the qualitative data: 'physical and sensory symptoms', 'impact of burn scar interventions', 'impact of burn scar symptoms', 'personal factors' and 'change over time'. Caregivers offered further insights into family functioning after burn, and the impacts of burn scars and burn scar interventions on family life. In the conceptual model, symptoms (sensory and physical) of burn scars are considered proximal to HRQOL, with distal indicators including functioning (physical, emotional, social, cognitive), individual factors and the environment. Overall quality of life was affected by HRQOL. Understanding the impact of burn scars on HRQOL and the development of a conceptual model will inform future burn scar research and clinical practice. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Chemical and Common Burns in Children.

    PubMed

    Yin, Shan

    2017-05-01

    Burns are a common cause of preventable morbidity and mortality in children. Thermal and chemical burns are the most common types of burns. Their clinical appearance can be similar and the treatment is largely similar. Thermal burns in children occur primarily after exposure to a hot surface or liquid, or contact with fire. Burns are typically classified based on the depth and total body surface area, and the severity and onset of the burn can also depend on the temperature and duration of contact. Chemical burns are caused by chemicals-most commonly acids and alkalis-that can damage the skin on contact. In children, the most common cause of chemical burns is from household products such as toilet bowl cleaners, drain cleaners, detergents, and bleaches. Mild chemical burns generally cause redness and pain and can look similar to other common rashes or skin infections, whereas severe chemical burns are more extreme and may cause redness, blistering, skin peeling, and swelling.

  16. Gut microbiota trajectory in patients with severe burn: A time series study.

    PubMed

    Wang, Xinying; Yang, Jianbo; Tian, Feng; Zhang, Li; Lei, Qiucheng; Jiang, Tingting; Zhou, Jihong; Yuan, Siming; Wang, Jun; Feng, Zhijian; Li, Jieshou

    2017-12-01

    This time series experiments aimed to investigate the dynamic change of gut microbiomes after severe burn and its association with enteral nutrition (EN). Seven severely burned patients who suffered from a severe metal dust explosion injury were recruited in this study. The dynamic changes of gut microbiome of fecal samples at six time points (1-3days, 2, 3, 4, 5 and 6weeks after severe burn) were detected using 16S ribosomal RNA pyrosequencing technology. Following the post-burn temporal order, gut microbiota dysbiosis was detected in the gut microbiome after severe burn, then it was gradually resolved. The bio-diversity of gut bacteria was initially decreased, and then returned to normal level. In addition, at the early stage (from 2 to 4weeks), the majority of those patients' gut microbiome were opportunistic pathogen genus, Enterococcus and Escherichia; while at the end of this study, the majority was a beneficial genus, Bacteroides. EN can promote the recovery of gut microbiota, especially in EN well-tolerated patients. Severe burn injury can cause a dramatic dysbiosis of gut microbiota. A trend of enriched beneficial bacteria and diminished opportunistic pathogen bacteria may serve as prognosis microbiome biomarkers of severe burn patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Burn Wise Funding

    EPA Pesticide Factsheets

    EPA is working with federal, state, tribal and local agencies to find and promote viable funding options to replace wood-burning appliances with cleaner home heating. Includes Guide to Financing Options for Wood-burning Appliance Changeouts.

  18. Optimization of Equation of State and Burn Model Parameters for Explosives

    NASA Astrophysics Data System (ADS)

    Bergh, Magnus; Wedberg, Rasmus; Lundgren, Jonas

    2017-06-01

    A reactive burn model implemented in a multi-dimensional hydrocode can be a powerful tool for predicting non-ideal effects as well as initiation phenomena in explosives. Calibration against experiment is, however, critical and non-trivial. Here, a procedure is presented for calibrating the Ignition and Growth Model utilizing hydrocode simulation in conjunction with the optimization program LS-OPT. The model is applied to the explosive PBXN-109. First, a cylinder expansion test is presented together with a new automatic routine for product equation of state calibration. Secondly, rate stick tests and instrumented gap tests are presented. Data from these experiments are used to calibrate burn model parameters. Finally, we discuss the applicability and development of this optimization routine.

  19. Can Biomass Burning Explain Isotopically Light Fe in Marine Aerosols?

    NASA Astrophysics Data System (ADS)

    Sherry, A. M.; Anbar, A. D.; Herckes, P.; Romaniello, S. J.

    2016-02-01

    Iron (Fe) is an important micronutrient that limits primary productivity in large parts of the ocean. In these regions, atmospheric aerosol deposition is an important source of Fe to the surface ocean and thus has a critical impact on ocean biogeochemistry. Fe-bearing aerosols originate from many sources with potentially distinct Fe isotopic compositions. Consequently, Fe isotopes may provide a new tool to trace the sources of aerosol Fe to the oceans. Mead et al. (2013) first discovered that Fe in the fine fraction of Bermuda aerosols is often isotopically lighter than Fe from known anthropogenic and crustal sources. 1 These authors suggested that this light isotopic signature was likely the result of biomass burning, since Fe in plants is the only known source of isotopically light Fe. More recently, Conway et al. found that Fe in the soluble fraction of aerosols collected during 2010-2011 North Atlantic GEOTRACES cruises also showed light isotope values, which they likewise attributed to biomass burning.2 These studies are further supported by new modeling work which suggests that biomass burning aerosols should contribute significant amounts of soluble Fe to tropical and southern oceans.3To test if biomass burning releases aerosols with a light Fe isotope composition, we are conducting lab-scale biomass burning experiments using natural samples of vegetation and leaf litter. Burn aerosols were collected on cellulose filters, then digested and analyzed for trace metal concentrations using inductively-coupled mass spectrometry (ICP-MS). Fe isotopes were determined by using multiple collector ICP-MS following separation and purification of Fe using anion exchange chromatography. We will discuss metal concentration and isotope data from these experiments with implications for the interpretation of Fe isotope signals in aerosol samples. 1Mead, C et al. GRL, 2013, 40, 5722-5727. 2 Conway, T et al. Goldschmidt Abs 2015 593. 3Ito, A. ES&T Lett, 2015, 2, 70-75.

  20. Mental health outcomes of burn: A longitudinal population-based study of adults hospitalized for burns.

    PubMed

    Logsetty, Sarvesh; Shamlou, Amir; Gawaziuk, Justin P; March, Justin; Doupe, Malcolm; Chateau, Dan; Hoppensack, Mike; Khan, Sazzadul; Medved, Maria; Leslie, William D; Enns, Murray W; Stein, Murray B; Asmundson, Gordon J G; Sareen, Jitender

    2016-06-01

    This study investigates the increased risk of mental health outcomes and health care utilization associated with burn with two year of follow-up using a longitudinal population-based matched cohort design. Adult burn survivors (n=157) were identified from a provincial burn registry and matched 1:5 with non-burn control subjects from the general population (matching variables age and gender). The prevalence of mental health outcomes and the rates of health care utilization between the groups were compared for the 2years pre and post index date using anonymously linked population-based administrative health care data. Rates were adjusted for age, gender and sociodemographic characteristics. While the burn cohort had an increased prevalence of mental health problems after burn compared to the control cohort, the burn group also had an increased prevalence of pre-burn depression (16.6% vs 7.8%; p=0.0005) and substance use disorders (8.9% vs 3.2%; p=0.001) when compared to controls. Once the pre-existing prevalence of mental illness was taken into account there was no significant change in the prevalence of mental health problems when comparing the burn group to controls over time. Although burns may not increase rates of mental health issues and health care utilization, burn survivors are a vulnerable group who already demonstrate increased rates of psychopathology and need for care. The present study highlights the importance of assessment and treatment of mental health outcomes in this population. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.