Science.gov

Sample records for actinides recovery rar

  1. Actinide recovery process

    DOEpatents

    Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  2. Actinide recovery process

    DOEpatents

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  3. Engineering-Scale Distillation of Cadmium for Actinide Recovery

    SciTech Connect

    J.C. Price; D. Vaden; R.W. Benedict

    2007-10-01

    During the recovery of actinide products from spent nuclear fuel, cadmium is separated from the actinide products by a distillation process. Distillation occurs in an induction-heated furnace called a cathode processor capable of processing kilogram quantities of cadmium. Operating parameters have been established for sufficient recovery of the cadmium based on mass balance and product purity. A cadmium distillation rate similar to previous investigators has also been determined. The development of cadmium distillation for spent fuel treatment enhances the capabilities for actinide recovery processes.

  4. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  5. Actinide recovery techniques utilizing electromechanical processes

    SciTech Connect

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy.

  6. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    NASA Astrophysics Data System (ADS)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  7. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  8. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  9. Method for recovery of actinides from actinide-bearing scrap and waste nuclear material using O/sub 2/F/sub 2/

    DOEpatents

    Asprey, L.B.; Eller, P.G.

    1984-09-12

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof and from scrap materials containing the metal actinides using O/sub 2/F/sub 2/ to generate the hexafluorides of the actinides present therein. The fluorinating agent, O/sub 2/F/sub 2/, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not detroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  10. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    SciTech Connect

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  11. Method for recovery of actinides from refractory oxides thereof using O.sub. F.sub.2

    DOEpatents

    Asprey, Larned B.; Eller, Phillip G.

    1988-01-01

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof using O.sub.2 F.sub.2 to generate the hexafluorides of the actinides present therein. The fluorinating agent, O.sub.2 F.sub.2, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  12. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    SciTech Connect

    Allender, Jeffrey S.; Bridges, Nicholas J.; Loftin, Bradley M.; Dunsmuir, Michael D.

    2015-07-14

    Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, the world's supply of plutonium-244, an isotope of key importance to high-precision actinide measurement and other scientific and nonproliferation uses; and curium highly enriched in heavy isotopes (e.g., curium-246 and curium-248). In 2015 and 2016, SRNL is pursuing tasks that would reduce program risk and budget requirements, including further characterization of unprocessed targets; engineering studies for the use of the SRNL Shielded Cells Facility (SCF) for recovery; and development of onsite and offsite shipping methods including a replacement for the heavy (70 ton) cask previously used for onsite transfer of irradiated items at SRS. A status update is provided for the characterization, including modeling using the Monte Carlo N-Particle Transport Code (MCNP); direct non-destructive assay measurements; and cask design.

  13. Retinoic acid modulates RAR alpha and RAR beta receptors in human glioma cell lines.

    PubMed

    Carpentier, A F; Leonard, N; Lacombe, J; Zassadowski, F; Padua, R A; Degos, L; Daumas-Duport, C; Chomienne, C

    1999-01-01

    To identify retinoic acid (RA) signalling pathways involved in growth and differentiation in cells of the glial lineage, two human glioma ceh lines were studied. The three RA receptors (RARs) mRNAs were constitutively expressed, and of the three RXRs, RXR beta appeared predominant. Western blotting analysis confirmed the constitutive expression of RAR alpha and RAR beta. Treatment with all-trans-RA induced morphological changes in the two cell lines, which progressed from their normal pattern of randomly oriented spindle-shaped cells to fibroblast-like glial cells. RA up-regulated RAR alpha and RAR beta mRNAs in both cell lines. Interestingly, RA treatment up-regulated RAR beta proteins but not RAR alpha proteins, suggesting post-transcriptional regulations of RAR transcripts in glioma cells. PMID:10652610

  14. Recovery of minor actinides from spent fuel using TPEN-immobilized gels

    SciTech Connect

    Koyama, S.; Suto, M.; Ohbayashi, H.; Oaki, H.; Takeshita, K.

    2013-07-01

    A series of separation experiments was performed in order to study the recovery process for minor actinides (MAs), such as americium (Am) and curium (Cm), from the actual spent fuel by using an extraction chromatographic technique. N,N,N',N'-tetrakis-(4-propenyloxy-2-pyridylmethyl) ethylenediamine (TPPEN) is an N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) analogue consisting of an incorporated pyridine ring that acts as not only a ligand but also as a site for polymerization and crosslinking of the gel. The TPPEN and N-isopropylacrylamide (NIPA) were dissolved into dimethylformamide (DMF, Wako Co., Ltd.) and a silica beads polymer, and then TTPEN was immobilized chemically in a polymer gel (so called TPEN-gel). Mixed oxide (MOX) fuel, which was highly irradiated up to 119 GWD/MTM in the experimental fast reactor Joyo, was used as a reference spent fuel. First, uranium (U) and plutonium (Pu) were separated from the irradiated fuel using an ion-exchange method, and then, the platinum group elements were removed by CMPO to leave a mixed solution of MAs and lanthanides. The 3 mol% TPPEN-gel was packed with as an extraction column (CV: 1 ml) and then rinsed by 0.1 M NaNO{sub 3}(pH 4.0) for pH adjustment. After washing the column by 0.01 M NaNO{sub 3} (pH 4.0), Eu was detected and the recovery rate reached 93%. The MAs were then recovered by changing the eluent to 0.01 M NaNO{sub 3} (pH 2.0), and the recovery rate of Am was 48 %. The 10 mol% TPPEN-gel was used to improve adsorption coefficient of Am and a condition of eluent temperature was changed in order to confirm the temperature swing effect on TPEN-gel for MA. More than 90% Eu was detected in the eluent after washing with 0.01 M NaNO{sub 3} (pH 3.5) at 5 Celsius degrees. Americium was backwardly detected and eluted continuously during the same condition. After removal of Eu, the eluent temperature was changed to 32 Celsius degrees, then Am was detected (pH 3.0). Finally remained Am could be stripped

  15. A third human retinoic acid receptor, hRAR-. gamma

    SciTech Connect

    Krust, A.; Kastner, Ph.; Petkovich, M.; Zelent, A.; Chambon, P. )

    1989-07-01

    Retinoic acid receptors (RARs) are retinoic acid (RA)-inducible enhancer factors belonging to the superfamily of steroid/thyroid nuclear receptors. The authors have previously characterized two human RAR (hRAR-{alpha} and hRAR-{beta}) cDNAs and have recently cloned their murine cognates (mRAR-{alpha} and mRAR-{beta}) together with a third RAR (mRAR-{gamma}) whose RNA was detected predominantly in skin, a well-known target for RA. mRAR-{gamma} cDNA was used here to clone its human counterpart (hRAR-{gamma}) from a T47D breast cancer cell cDNA library. Using a transient transfection assay in HeLa cells and a reporter gene harboring a synthetic RA responsive element, they demonstrate that hRAR-{gamma} cDNA indeed encodes a RA-inducible transcriptional trans-activator. Interestingly, comparisons of the amino acid sequences of all six human and mouse RARs indicate that the interspecies conservation of a given member of the RAR subfamily (either {alpha}, {beta}, or {gamma}) is much higher than the conservation of all three receptors within a given species. These observations indicate that RAR-{alpha}, -{beta}, and -{gamma} may perform specific functions. They show also that hRAR-{gamma} RNA is the predominant RAR RNA species in human skin, which suggests that hRAR-{gamma} mediates some of the retinoid effects in this tissue.

  16. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    SciTech Connect

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-11-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of {sup 239}Np from {sup 243}Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers.

  17. Liganded RAR{alpha} and RAR{gamma} interact with but are repressed by TNIP1

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2009-11-20

    Nuclear receptor (NR) transcriptional activity is controlled by agonist binding and concomitant exchange of receptor-associating corepressor proteins for NR box-containing, receptor AF-2-targeting coactivator proteins. We report here that TNIP1 is an atypical NR coregulator. Requirements for TNIP1-RAR interaction-its NR boxes, ligand, and the receptor's AF-2 domain-are characteristic of coactivators. However, TNIP1 reduces RAR activity. Repression is partially relieved by SRC1, suggesting interference with coactivator recruitment as a mechanism of TNIP1 repression. TNIP1 does not bind RXR{alpha} and RAR{alpha} AF-2 domain, necessary for that receptor's association with TNIP1, is insufficient to confer upon RXR{alpha} interaction with TNIP1. Preferential interaction of RAR{alpha} over RAR{gamma} with TNIP1 can be mapped to RAR{alpha} ligand binding domain helices 5-9 and suggests regions outside the receptor helix 12 modulate interaction of NRs and NR box-containing corepressors. TNIP1 repression of RARs in the presence of RA places it in a small category of corepressors of agonist-bound NRs.

  18. Developmental expression of retinoic acid receptors (RARs)

    PubMed Central

    Dollé, Pascal

    2009-01-01

    Here, I review the developmental expression features of genes encoding the retinoic acid receptors (RARs) and the 'retinoid X' or rexinoid receptors (RXRs). The first detailed expression studies were performed in the mouse over two decades ago, following the cloning of the murine Rar genes. These studies revealed complex expression features at all stages of post-implantation development, one receptor gene (Rara) showing widespread expression, the two others (Rarb and Rarg) with highly regionalized and/or cell type-specific expression in both neural and non-neural tissues. Rxr genes also have either widespread (Rxra, Rxrb), or highly-restricted (Rxrg) expression patterns. Studies performed in zebrafish and Xenopus demonstrated expression of Rar and Rxr genes (both maternal and zygotic), at early pre-gastrulation stages. The eventual characterization of specific enzymes involved in the synthesis of retinoic acid (retinol/retinaldehyde dehydrogenases), or the triggering of its catabolism (CYP26 cytochrome P450s), all of them showing differential expression patterns, led to a clearer understanding of the phenomenons regulated by retinoic acid signaling during development. Functional studies involving targeted gene disruptions in the mouse, and additional approaches such as dominant negative receptor expression in other models, have pinpointed the specific, versus partly redundant, roles of the RARs and RXRs in many developing organ systems. These pleiotropic roles are summarized hereafter in relationship to the receptors’ expression patterns. PMID:19471585

  19. Method for the recovery of actinide elements from nuclear reactor waste

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.; Mason, George W.

    1979-01-01

    A process for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid.

  20. Conversion of actinide and RE oxides into nitrates and their recovery into fluids

    SciTech Connect

    Bondin, V.V.; Bychkov, S.I.; Efremov, I.G.; Revenko, Y.A.; Babain, V.A.; Murzin, A.A.; Romanovsky, V.N; Fedorov, Y.S.; Shadrin, A.Y.; Ryabkova, N.V.; Li, E.N.

    2007-07-01

    The conditions for uranium oxides completely convert into uranyl nitrate hexahydrate in nitrogen tetra-oxide media (75 deg. C, 0,5-3,0 MPa, [UO{sub x}]:[H{sub 2}O]:[NO{sub 2}]=1:8:6) were found out. The conversion of Pu contained simulator of oxide spent nuclear fuel of thermal reactors was successfully demonstrated. The possibility of uranium recovery up to 95% from TR SNF without plutonium separation from FP is practically showed, what corresponds with Non-proliferation Treaty. (authors)

  1. Selective recovery of minor trivalent actinides from high level liquid waste by R-BTP/SiO2-P adsorbents

    NASA Astrophysics Data System (ADS)

    Sano, Yuichi; Surugaya, Naoki; Yamamoto, Masahiko

    2010-03-01

    Concerning the selective recovery of minor trivalent actinides (MA(III) = Am(III) and Cm(III)) from high level liquid waste (HLLW) by extraction chromatography, adsorption and elution behaviours of MA(III) and fission products (FP) in a nitric acid media were studied using iHex-BTP/SiO2-P adsorbents, which is expected to show high adsorption affinity for MA(III) even in concentrated HNO3 solution, such as HLLW. In the batch experiments, Pd showed strong adsorption on iHex-BTP/SiO2-P adsorbents under any concentration of HNO3. The MA(III) and heavy Ln(III) (Sm(III), Eu(III) and Gd(III)) were also adsorbed at the condition of high HNO3 concentration, but they showed no adsorption under low HNO3concentration. The separation factor for MA(III)/heavy Ln(III) took the maximum value (over 100) at around 1mol/dm3 HNO3. It was difficult to elute MA(III) or heavy Ln(III) selectively by HNO3 from the iHex-BTP/SiO2-P adsorbents degradated by γ-ray irradiation. The chromatographic separation of real HLLW by an iHex-BTP/SiO2-P column showed that MA(III) could be recovered selectively by adjusting the acidity of the feed solution, i.e. HLLW, to 1mol/dm3 and using H2O as eluant. The adsorption of Pd(II) can be decreased by the addition of appropriate complexing reagents, e.g. DTPA, into HLLW without any effects on the MA(III) adsorption.

  2. Solid extractant on the base of bifunctional extractants and solvating diluents for recovery of rare-earth and actinide elements from strongly acidic media

    SciTech Connect

    Romanovskii, V.N.; Smirnov, I.V.

    1996-12-31

    Diphosphine dioxides of different structure were synthesized and studied with the goal of using as a base for preparation of solid extractants. Of all the studied compounds, DPDO-11 was chosen. The solid extractant on its base was prepared by impregnation of divinylbenzene - styrol matrix with the solution of 0.8 M DPDO in fluoropol-1083. The investigation of extraction and physico-chemical properties of this solid extractant shows that it can be used for selective recovery of actinide and rare-earth elements from aqueous solutions in the wide range of acidity.

  3. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  4. Complete recovery of actinides from UREX-like raffinates using a combination of hard and soft donor ligands. II. soft donor structure variation

    DOE PAGESBeta

    Zalupski, Peter R.; Klaehn, John R.; Peterman, Dean R.

    2015-07-30

    The feasibility of simultaneous separation of uranium, neptunium, plutonium, americium, and curium from a simulated dissolved used fuel simulant adjusted to 1.0 M nitric acid is investigated using a mixture of the soft donor bis(bis-3,5-trifluoromethyl)phenyl) dithiophosphinic acid (“0”) and the hard donor synergist trioctylphosphine oxide (TOPO) dissolved in toluene. The results reported in this work are compared to our recent demonstration of a complete actinide recovery from a simulated dissolved fuel solution using a synergistic combination of bis(o-trifluoromethylphenyl)dithiophosphinic acid (“1”) and TOPO dissolved in either toluene or trifluoromethylphenyl sulfone. While the extraction efficiency of americium was enhanced for the liquid-liquidmore » system containing “0”, enabling to accomplish a trivalent An/Ln separation at 1.0 M HNO3, the extraction of neptunium was drastically diminished, relative to “1”. The partitioning behavior of curium was also negatively impacted, introducing an effective opportunity for americium/curium separation. Radiometric and spectrophotometric studies demonstrate that the complete actinide recovery using the solvent based upon “0” and TOPO is not feasible. Additionally, the importance of radiolytic degradation processes is discussed through the comparisons of extraction properties of liquid-liquid systems based on both soft donor reagents.« less

  5. Complete recovery of actinides from UREX-like raffinates using a combination of hard and soft donor ligands. II. soft donor structure variation

    SciTech Connect

    Zalupski, Peter R.; Klaehn, John R.; Peterman, Dean R.

    2015-07-30

    The feasibility of simultaneous separation of uranium, neptunium, plutonium, americium, and curium from a simulated dissolved used fuel simulant adjusted to 1.0 M nitric acid is investigated using a mixture of the soft donor bis(bis-3,5-trifluoromethyl)phenyl) dithiophosphinic acid (“0”) and the hard donor synergist trioctylphosphine oxide (TOPO) dissolved in toluene. The results reported in this work are compared to our recent demonstration of a complete actinide recovery from a simulated dissolved fuel solution using a synergistic combination of bis(o-trifluoromethylphenyl)dithiophosphinic acid (“1”) and TOPO dissolved in either toluene or trifluoromethylphenyl sulfone. While the extraction efficiency of americium was enhanced for the liquid-liquid system containing “0”, enabling to accomplish a trivalent An/Ln separation at 1.0 M HNO3, the extraction of neptunium was drastically diminished, relative to “1”. The partitioning behavior of curium was also negatively impacted, introducing an effective opportunity for americium/curium separation. Radiometric and spectrophotometric studies demonstrate that the complete actinide recovery using the solvent based upon “0” and TOPO is not feasible. Additionally, the importance of radiolytic degradation processes is discussed through the comparisons of extraction properties of liquid-liquid systems based on both soft donor reagents.

  6. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  7. CSK Controls Retinoic Acid Receptor (RAR) Signaling: a RAR-c-SRC Signaling Axis Is Required for Neuritogenic Differentiation▿

    PubMed Central

    Dey, Nandini; De, Pradip K.; Wang, Mu; Zhang, Hongying; Dobrota, Erika A.; Robertson, Kent A.; Durden, Donald L.

    2007-01-01

    Herein, we report the first evidence that c-SRC is required for retinoic acid (RA) receptor (RAR) signaling, an observation that suggests a new paradigm for this family of nuclear hormone receptors. We observed that CSK negatively regulates RAR functions required for neuritogenic differentiation. CSK overexpression inhibited RA-mediated neurite outgrowth, a result which correlated with the inhibition of the SFK c-SRC. Consistent with an extranuclear effect of CSK on RAR signaling and neurite outgrowth, CSK overexpression blocked the downstream activation of RAC1. The conversion of GDP-RAC1 to GTP-RAC1 parallels the activation of c-SRC as early as 15 min following all-trans-retinoic acid treatment in LA-N-5 cells. The cytoplasmic colocalization of c-SRC and RARγ was confirmed by immunofluorescence staining and confocal microscopy. A direct and ligand-dependent binding of RAR with SRC was observed by surface plasmon resonance, and coimmunoprecipitation studies confirmed the in vivo binding of RARγ to c-SRC. Deletion of a proline-rich domain within RARγ abrogated this interaction in vivo. CSK blocked the RAR-RA-dependent activation of SRC and neurite outgrowth in LA-N-5 cells. The results suggest that transcriptional signaling events mediated by RA-RAR are necessary but not sufficient to mediate complex differentiation in neuronal cells. We have elucidated a nongenomic extranuclear signal mediated by the RAR-SRC interaction that is negatively regulated by CSK and is required for RA-induced neuronal differentiation. PMID:17325034

  8. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  9. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  10. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation

    PubMed Central

    Hubert, David A.; He, Yijian; McNulty, Brian C.; Tornero, Pablo; Dangl, Jeffery L.

    2009-01-01

    Both plants and animals require the activity of proteins containing nucleotide binding (NB) domain and leucine-rich repeat (LRR) domains for proper immune system function. NB-LRR proteins in plants (NLR proteins in animals) also require conserved regulation via the proteins SGT1 and cytosolic HSP90. RAR1, a protein specifically required for plant innate immunity, interacts with SGT1 and HSP90 to maintain proper NB-LRR protein steady-state levels. Here, we present the identification and characterization of specific mutations in Arabidopsis HSP90.2 that suppress all known phenotypes of rar1. These mutations are unique with respect to the many mutant alleles of HSP90 identified in all systems in that they can bypass the requirement for a cochaperone and result in the recovery of client protein accumulation and function. Additionally, these mutations separate HSP90 ATP hydrolysis from HSP90 function in client protein folding and/or accumulation. By recapitulating the activity of RAR1, these novel hsp90 alleles allow us to propose that RAR1 regulates the physical open–close cycling of a known “lid structure” that is used as a dynamic regulatory HSP90 mechanism. Thus, in rar1, lid cycling is locked into a conformation favoring NB-LRR client degradation, likely via SGT1 and the proteasome. PMID:19487680

  11. Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism.

    PubMed Central

    Boylan, J F; Lufkin, T; Achkar, C C; Taneja, R; Chambon, P; Gudas, L J

    1995-01-01

    F9 embryonic teratocarcinoma stem cells differentiate into an epithelial cell type called extraembryonic endoderm when treated with retinoic acid (RA), a derivative of retinol (vitamin A). This differentiation is presumably mediated through the actions of retinoid receptors, the RARs and RXRs. To delineate the functions of each of the different retinoid receptors in this model system, we have generated F9 cell lines in which both copies of either the RAR alpha gene or the RAR gamma gene are disrupted by homologous recombination. The absence of RAR alpha is associated with a reduction in the RA-induced expression of both the CRABP-II and Hoxb-1 (formerly 2.9) genes. The absence of RAR gamma is associated with a loss of the RA-inducible expression of the Hoxa-1 (formerly Hox-1.6), Hoxa-3 (formerly Hox-1.5), laminin B1, collagen IV (alpha 1), GATA-4, and BMP-2 genes. Furthermore, the loss of RAR gamma is associated with a reduction in the metabolism of all-trans-RA to more polar derivatives, while the loss of RAR alpha is associated with an increase in metabolism of RA relative to wild-type F9 cells. Thus, each of these RARs exhibits some specificity with respect to the regulation of differentiation-specific gene expression. These results provide an explanation for the expression of multiple RAR types within one cell type and suggest that each RAR has specific functions. PMID:7823950

  12. Actinides-1981

    SciTech Connect

    Not Available

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  13. Recovery of transplutonium elements from aqueous and water-ethanol solutions of sulfuric acid and their separation from other actinides

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-05-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on anion and cation exchangers in aqueous and water-ethanol solutions of sulfuric acid as a function of the various components of the solution has been investigated. It has been discovered that the presence of ethanol in sulfuric acid solutions causes an increase in the distribution coefficients both on cation exchangers and on anion exchangers. The possibility of the use of ion exchangers for the preconcentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements which form strong complexes with sulfate ions over a broad range of concentrations of sulfuric acid has been demonstrated.

  14. Report on ghosting in LL94 RAR data

    SciTech Connect

    Lehman, S.K.

    1996-01-23

    Ghosting in the Loch Linnhe 1994 (LL94) real aperture radar (RAR) data is the phenomenon of two range cells with high returns separated by two range cells with lower returns. The occurrence of ghosting is sporadic, there appears to be no relation between the value of the high returns, and there appears to be no relation between ghosting in the I (real) and Q (imaginary) parts of a range line. It was believed ghosting was due to a byte shift in the data. It only appears in data processed with the Livermore RAR codes. The authors present the steps used in diagnosing the problem, the eventual determination of the cause, and the solution.

  15. Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia.

    PubMed

    Alcalay, M; Zangrilli, D; Fagioli, M; Pandolfi, P P; Mencarelli, A; Lo Coco, F; Biondi, A; Grignani, F; Pelicci, P G

    1992-06-01

    Two chimeric genes, PML-RAR alpha and RAR alpha-PML, are formed as a consequence of the acute promyelocytic leukemia (APL)-specific reciprocal translocation of chromosomes 15 and 17 [t(15;17)]. PML-RAR alpha is expressed as a fusion protein. We investigated the organization and expression pattern of the RAR alpha-PML gene in a series of APL patients representative of the molecular heterogeneity of the t(15;17) and found (i) two types of RAR alpha-PML mRNA junctions (RAR alpha exon 2/PML exon 4 or RAR alpha exon 2/PML exon 7) that maintain the RAR alpha and PML longest open reading frames aligned and are the result of chromosome 15 breaking at two different sites; and (ii) 10 different RAR alpha-PML fusion transcripts that differ for the assembly of their PML coding exons. A RAR alpha-PML transcript was present in most, but not all, APL patients. PMID:1317574

  16. GSK3 is a regulator of RAR-mediated differentiation

    PubMed Central

    Gupta, K; Gulen, F; Sun, L; Aguilera, R; Chakrabarti, A; Kiselar, J; Agarwal, MK; Wald, DN

    2015-01-01

    Acute myeloid leukemia (AML) is the most common form of leukemia in adults. Unfortunately, the standard therapeutic agents used for this disease have high toxicities and poor efficacy. The one exception to these poor outcomes is the use of the retinoid, all-trans retinoic acid (ATRA), for a rare subtype of AML (APL). The use of the differentiation agent, ATRA, in combination with low-dose chemotherapy leads to the long-term survival and presumed cure of 75–85% of patients. Unfortunately ATRA has not been clinically useful for other subtypes of AML. Though many non-APL leukemic cells respond to ATRA, they require significantly higher concentrations of ATRA for effective differentiation. Here we show that the combination of ATRA with glycogen synthase kinase 3 (GSK3) inhibition significantly enhances ATRA-mediated AML differentiation and growth inhibition. These studies have revealed that ATRA's receptor, the retinoic acid receptor (RAR), is a novel target of GSK3 phosphorylation and that GSK3 can impact the expression and transcriptional activity of the RAR. Overall, our studies suggest the clinical potential of ATRA and GSK3 inhibition for AML and provide a mechanistic framework to explain the promising activity of this combination regimen. PMID:22222598

  17. GSK3 is a regulator of RAR-mediated differentiation.

    PubMed

    Gupta, K; Gulen, F; Sun, L; Aguilera, R; Chakrabarti, A; Kiselar, J; Agarwal, M K; Wald, D N

    2012-06-01

    Acute myeloid leukemia (AML) is the most common form of leukemia in adults. Unfortunately, the standard therapeutic agents used for this disease have high toxicities and poor efficacy. The one exception to these poor outcomes is the use of the retinoid, all-trans retinoic acid (ATRA), for a rare subtype of AML (APL). The use of the differentiation agent, ATRA, in combination with low-dose chemotherapy leads to the long-term survival and presumed cure of 75-85% of patients. Unfortunately ATRA has not been clinically useful for other subtypes of AML. Though many non-APL leukemic cells respond to ATRA, they require significantly higher concentrations of ATRA for effective differentiation. Here we show that the combination of ATRA with glycogen synthase kinase 3 (GSK3) inhibition significantly enhances ATRA-mediated AML differentiation and growth inhibition. These studies have revealed that ATRA's receptor, the retinoic acid receptor (RAR), is a novel target of GSK3 phosphorylation and that GSK3 can impact the expression and transcriptional activity of the RAR. Overall, our studies suggest the clinical potential of ATRA and GSK3 inhibition for AML and provide a mechanistic framework to explain the promising activity of this combination regimen. PMID:22222598

  18. An EGF receptor inhibitor induces RAR-{beta} expression in breast and ovarian cancer cells

    SciTech Connect

    Grunt, Thomas W. . E-mail: thomas.grunt@meduniwien.ac.at; Puckmair, Klaudia; Tomek, Katharina; Kainz, Birgit; Gaiger, Alexander

    2005-04-22

    Inhibition of the epidermal growth factor (EGF)-receptor (EGFR) has become a promising anticancer treatment strategy. In addition, application of retinoids yields encouraging results for cancer prevention and therapy. Many tumors express no or low amounts of retinoic acid receptor-{beta}2 (RAR-{beta}2) due to epigenetic silencing via DNA hypermethylation. RAR-{beta}2 is the main mediator of the antiproliferative effect of retinoids. RAR-{beta}2 re-expression causes reversal of transformation, cell cycle arrest, and restoration of retinoid sensitivity. RAR-{beta}2 is thus a tumor suppressor. Western blotting, colorimetric in vitro cell proliferation assays, and reverse transcription-polymerase chain reaction demonstrated that the EGFR inhibitor PD153035 not only blocked activation of EGFR and inhibited cell growth, but also stimulated RAR-{beta} expression in MDA-MB-468 breast and OVCAR-3 ovarian carcinoma cells. Upregulation of RAR-{beta} by PD153035 was confirmed by real-time reverse transcription-polymerase chain reaction. In contrast, expression of other retinoid receptors and of estrogen receptor-{alpha} was not affected. PD153035-mediated re-induction of RAR-{beta} was associated with demethylation of the RAR-{beta}2 gene promoter P2 as demonstrated by methylation-specific polymerase chain reaction. These novel results on the ErbB/retinoid receptor cross-talk may be useful for designing future anticancer combination regimens.

  19. RARS2 mutations in a sibship with infantile spasms.

    PubMed

    Ngoh, Adeline; Bras, Jose; Guerreiro, Rita; Meyer, Esther; McTague, Amy; Dawson, Eleanor; Mankad, Kshitij; Gunny, Roxana; Clayton, Peter; Mills, Philippa B; Thornton, Rachel; Lai, Ming; Forsyth, Robert; Kurian, Manju A

    2016-05-01

    Pontocerebellar hypoplasia is a group of heterogeneous neurodevelopmental disorders characterized by reduced volume of the brainstem and cerebellum. We report two male siblings who presented with early infantile clonic seizures, and then developed infantile spasms associated with prominent isolated cerebellar hypoplasia/atrophy on magnetic resonance imaging (MRI). Using whole exome sequencing techniques, both were found to be compound heterozygotes for one previously reported and one novel mutation in the gene encoding mitochondrial arginyl-tRNA synthetase 2 (RARS2). Mutations in this gene have been classically described in pontocerebellar hypoplasia type six (PCH6), a phenotype characterized by early (often intractable) seizures, profound developmental delay, and progressive pontocerebellar atrophy. The electroclinical spectrum of PCH6 is broad and includes a number of seizure types: myoclonic, generalized tonic-clonic, and focal clonic seizures. Our report expands the characterization of the PCH6 disease spectrum and presents infantile spasms as an associated electroclinical phenotype. PMID:27061686

  20. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements

    PubMed Central

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; d'Alché-Buc, Florence; Benoit, Gérard

    2015-01-01

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status. PMID:25897113

  1. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements.

    PubMed

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; d'Alché-Buc, Florence; Benoit, Gérard

    2015-05-26

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status. PMID:25897113

  2. Calibration of bremsstrahlung prefogged Kodak RAR 2492 film

    SciTech Connect

    Gorzen, D.F.; Armentrout, C.; Burek, A.; Bird, R.; Geddes, J.; Gerber, G. ); Rockett, P.D. )

    1990-10-01

    High-energy background radiation from PBFA II at Sandia National Laboratory introduces uncertainty regarding the effect of background fogging on the sensitivity of the x-ray film at soft x-ray energies. We have performed a calibration to determine how the sensitivity of the Kodak RAR 2492 film is affected by high-energy background radiation. To simulate the background radiation the film was fogged to various densities using a 10 keV bremsstrahlung spectrum. The film was then exposed to soft x-ray emission lines of Al {ital K}{alpha} and Ti {ital K}{alpha} selected by Bragg reflection from an electron bombardment source. The intensity of the x-ray flux was continuously monitored with a Si(Li) detector to eliminate error due to drift of the x-ray source's intensity. A microdensitometer with matched objectives was used to find the specular density of the exposed film. The results of the calibration are presented in the form of {ital D} vs log {ital l} for the various densities of the bremmstrahlung prefog exposures.

  3. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  4. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  5. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  6. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  7. Actinide metal processing

    SciTech Connect

    Sauer, N.N.; Watkin, J.G.

    1991-04-05

    This invention is comprised of a process of converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  8. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  9. Actinide sulfite tetrahydrate and actinide oxysulfite tetrahydrate

    SciTech Connect

    Baugh, D.; Watt, G.

    1980-07-08

    A compound is prepared that comprises an actinide sulfite tetrahydrate selected from the group consisting of uranium (IV) sulfite tetrahydrate and plutonium (IV) sulfite tetrahydrate. A compound is also prepared that comprises an actinide oxysulfite tetrahydrate selected from the group consisting of uranium (IV) oxysulfite tetrahydrate and plutonium (IV) oxysulfite tetrahydrate

  10. Actinide-ion sensor

    DOEpatents

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  11. Subdural effusions and lack of early pontocerebellar hypoplasia in siblings with RARS2 mutations.

    PubMed

    Kastrissianakis, Katherina; Anand, Geetha; Quaghebeur, Gerardine; Price, Sue; Prabhakar, Prab; Marinova, Jasmina; Brown, Garry; McShane, Tony

    2013-12-01

    Mutations in the recently described RARS2 gene encoding for mitochondrial arginyl-transfer RNA synthetase give rise to a disorder characterised by early onset seizures, progressive microcephaly and developmental delay. The disorder was named pontocerebellar hypoplasia type 6 (PCH6) based on the corresponding radiological findings observed in the original cases. We report two siblings with the RARS2 mutation who displayed typical clinical features of PCH6, but who had distinct neuroimaging features. Early scans showed marked supratentorial, rather than infratentorial, atrophy, and the pons remained preserved throughout. One sibling also had bilateral subdural effusions at presentation. The deceleration in head growth pointed to an evolving genetic/metabolic process giving rise to cerebral atrophy and secondary subdural effusions. RARS2 mutations should be considered in infants presenting with seizures, subdural effusions, decelerating head growth and evidence of cerebral atrophy even in the absence of pontocerebellar hypoplasia on imaging. PMID:24047924

  12. Antagonists of retinoic acid receptors (RARs) are potent growth inhibitors of prostate carcinoma cells

    PubMed Central

    Hammond, L A; Krinks, C H Van; Durham, J; Tomkins, S E; Burnett, R D; Jones, E L; Chandraratna, R A S; Brown, G

    2001-01-01

    Novel synthetic antagonists of retinoic acid receptors (RARs) have been developed. To avoid interference by serum retinoids when testing these compounds, we established serum-free grown sub-lines (>3 years) of the prostate carcinoma lines LNCaP, PC3 and DU145. A high affinity pan-RAR antagonist (AGN194310, Kd for binding to RARs = 2–5 nM) inhibited colony formation (by 50%) by all three lines at 16–34 nM, and led to a transient accumulation of flask-cultured cells in G1 followed by apoptosis. AGN194310 is 12–22 fold more potent than all-trans retinoic acid (ATRA) against cell lines and also more potent in inhibiting the growth of primary prostate carcinoma cells. PC3 and DU145 cells do not express RARβ, and an antagonist with predominant activity at RARβ and RARγ (AGN194431) inhibited colony formation at concentrations (∼100 nM) commensurate with a Kd value of 70 nM at RARγ. An RARα antagonist (AGN194301) was less potent (IC50 ∼200 nM), but was more active than specific agonists of RARα and of βγ. A component(s) of serum and of LNCaP-conditioned medium diminishes the activity of antagonists: this factor is not the most likely candidates IGF-1 and EGF. In vitro studies of RAR antagonists together with data from RAR-null mice lead to the hypothesis that RARγ-regulated gene transcription is necessary for the survival and maintenance of prostate epithelium. The increased potencies of RAR antagonists, as compared with agonists, suggest that antagonists may be useful in the treatment of prostate carcinoma. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487280

  13. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  14. Research in actinide chemistry

    SciTech Connect

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  15. Recovery

    NASA Video Gallery

    This video discusses the recovery events that occur in high-power rocketry and the various devices used in safely recovering the rocket. The video includes a discussion of black powder and ejection...

  16. [Recovery].

    PubMed

    Estingoy, Pierrette; Gilliot, Élodie; Parisot, Clément

    2015-01-01

    The historical fatalism of the impossibility of recovering from psychosis eased from the 1970s with the shaping of the idea of a possible recovery. Recovery is today the objective for the patient and caregivers. The key to achieving this lies in the encounter with Others. A collective approach, on the level of the institution, must be established. The aim is to create opportunities for the patient to express their doubts and feelings. PMID:26363659

  17. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  18. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  19. Extrinsic Apoptosis is Impeded by Direct Binding of the APL Fusion Protein NPM-RAR to TRADD

    PubMed Central

    Chattopadhyay, Anuja; Hood, Brian L.; Conrads, Thomas P.; Redner, Robert L.

    2014-01-01

    A subset of acute promyelocytic leukemia (APL) cases have been characterized by the t(5;17)(q35;q21) translocation variant which fuses nucleophosmin (NPM) to retinoic acid receptor alpha (RARA). The resultant NPM-RAR fusion protein blocks myeloid differentiation, and leads to a leukemic phenotype similar to that caused by the t(15;17)(q22;q21) PML-RAR fusion. The contribution of the N-terminal 117 amino acids of NPM contained within NPM-RAR has not been well studied. As a molecular chaperone, NPM interacts with a variety of proteins implicated in leukemogenesis. Therefore, a proteomic analysis was conducted to identify novel NPM-RAR associated proteins. Tumor necrosis factor receptor type 1-associated DEATH domain protein (TRADD) was identified as a relevant binding partner for NPM-RAR. This interaction was validated by co-precipitation and co-localization analysis. Biological assessment found that NPM-RAR expression impaired TNF-induced signaling through TRADD, blunting TNF-mediated activation of caspase 3 (CASP3) and caspase 8 (CASP8), to ultimately block apoptosis. Implications This study identifies a novel mechanism through which NPM-RAR impacts leukemogenesis. PMID:25033841

  20. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  1. Research in actinide chemistry

    SciTech Connect

    Not Available

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  2. Thermochemistry of the actinides

    SciTech Connect

    Kleinschmidt, P.D.

    1993-10-01

    The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

  3. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  4. Coiled-coil domain of PML is essential for the aberrant dynamics of PML-RAR{alpha}, resulting in sequestration and decreased mobility of SMRT

    SciTech Connect

    Huang Ying; Qiu Jihui; Chen Guoqiang; Dong Shuo

    2008-01-11

    Promyelocytic leukemia-retinoic acid receptor {alpha} (PML-RAR{alpha}) is the most frequent RAR{alpha} fusion protein in acute promyelocytic leukemia (APL). Our previous study has demonstrated that, compared with RAR{alpha}, PML-RAR{alpha} had reduced intranuclear mobility accompanied with mislocalization. To understand the molecular basis for the altered dynamics of PML-RAR{alpha} fusion protein, we performed FRAP analysis at a single cell level. Results indicated that three known sumoylation site mutated PML-RAR{alpha} had same intracellular localization and reduced mobility as wild-type counterpart. The coiled-coil domain of PML is responsible for the aberrant dynamics of PML-RAR{alpha}. In addition, we revealed that co-repressor SMRT co-localized with PML-RAR{alpha}, resulting in the immobilization of SMRT while ATRA treatment eliminated their association and reversed the immobile effect of SMRT. Furthermore, co-activator CBP, co-localized with PML-RAR{alpha} in an ATRA-independent way, was demonstrated as a high dynamic intranuclear molecule. These results would shed new insights for the molecular mechanisms of PML-RAR{alpha}-associated leukemogenesis.

  5. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  6. Transcriptional regulation of human retinoic acid receptor-alpha (RAR-{alpha}) by Wilms` tumour gene product

    SciTech Connect

    Goodyer, P.R.; Torban, E.; Dehbi, M.

    1994-09-01

    The Wilms` tumor gene encodes a 47-49 kDa transcription factor expressed in kidney, gonads and mesothelium during embryogenesis. Inherited mutations of WT1 lead to aberrant urogenital development and Wilms` tumor, but the role of WT1 in development is not fully understood. Since the human RAR-{alpha} gene contains a potential WT1 binding site at its 5{prime} end, we studied the effect of WT1 co-transfection on expression of an RAR-{alpha} promoter/CAT reporter construct in COS cells. COS cells were plated at 5X10{sup 5} cells/dish in DMEM with 10% FBS and transfected by the Ca/PO4 method with an expression plasmid containing the full-length WT1 (-/-) cDNA under the control of the CMV promoter, plasmid containing the RAR-{alpha} promoter (-519 to +36)/CAT reporter and TK/growth hormone plasmid to control for efficiency of transfection. CAT/GH activity at 48 hours was inhibited by co-transfection with increasing amounts of WT1 (-/-); maximum inhibition = 5% of control. WT1 co-transfection did not affect expression of TKGH, nor of a CMV-CAT vector. Expression of WT1 protein in tranfected COS cells was demonstrated by Western blotting. Minimal inhibiton of RAR-{alpha}/CAT activity was seen when cells were co-transfected with vectors containing WT1 deletion mutants, alternate WT1 splicing variants, or WT1 (-/-) cDNA bearing a mutation identified in a patient with Drash syndrome. Gel shift assays indicated binding of WT1 to RAR-{alpha} cDNA but not to an RAR-{alpha} deletion mutant lacking the GCGGGGGGCG site. These observations suggest that WT1 may function to regulate RAR-{alpha} expression during normal development.

  7. Measurements of the counting statistics on RAR-2497 and DEF x-ray film

    NASA Astrophysics Data System (ADS)

    Dunham, Greg; Rochau, G. A.; Lake, P.; Nielsen-Weber, L.; Schuster, D.

    2004-10-01

    X-ray film is commonly used to diagnose high temperature plasmas. Quantitative analysis of the recorded film exposure requires knowledge of the counting statistics inherent to each particular film type. To address this issue, RAR-2497 and DEF film were exposed on a Manson x-ray source for multiple fluence values and photon energies. The fluctuations in the measured intensity were found by determining the statistical distribution of the recorded photon intensity using Henke's calibration tables to relate the net film density to the incident intensity. The resulting measurements of the statistical fluctuations in photon intensity are presented for each film type.

  8. Accretion disks around neutron and strange stars in R+aR2 gravity

    NASA Astrophysics Data System (ADS)

    Staykov, Kalin V.; Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-08-01

    We study the electromagnetic spectrum of accretion disks around neutron and strange stars in R+aR2 gravity. Both static and rapidly rotating models are investigated. The results are compared with the General Relativistic results. We found difference between the results in both theories of about 50% for the electromagnetic flux and about 20% in the luminosity for models with equal mass and angular velocity in both theories. The observed differences are much lower for models rotating with Keplerian velocity and with equal masses.

  9. Research in actinide chemistry

    SciTech Connect

    Not Available

    1989-01-01

    Research continued to be focused broadly on the chemistry of the actinide cations in solution. While the direct concern is the actinide elements, their radioactivity limits the techniques which can be applied to their study. A major area of interest continues to be the thermodynamics of interaction of the f-elements with a broad spectrum of inorganic and organic ligands. Solvent extraction (for tracer levels), potentiometric and calorimetric titration and absorption spectrometry have been used to obtain stability constants and the associated enthalpy and entropy changes for complexation. A number of studies were performed to provide a better data base and a better understanding of the more significant species determining the behavior of actinides in natural waters (e.g., hydrolysis and silicate interaction). A second major area has been kinetics. NpO{sub 2}{sup 2+} reduction by hydroxy and carboxylic acids was studied to obtain an understanding of how such functional groups in humic substances may influence actinyl redox. The kinetics of dissociation of UO{sub 2}{sup 2+} and Ln{sup 3+} (La{sup 3+} = lanthanide element cations) from synthetic polyelectrolytes and humics provided significantly increased understanding of actinide complexation by these macromolecules. A third area of activity used laser induced fluorescence to study the hydration state of Eu(III) in a number of systems. Finally, several other studies, not in these major areas, were conducted. These included investigation of NpO{sub 2}{sup +} cation-cation complexes, the extraction of Am(III) by MX (M = Li, Na, NH{sub 4}{sup +}, K{sup +}; X = ClO{sub 4}{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, BrO{sub 3}{sup {minus}}) over a concentration range from 0.01 M to saturated and the thermodynamics of synergistic extraction of actinides by crown ethers and {beta}-diketonates. 23 refs., 1 fig.

  10. Overexpression of RAR{beta}4 and p53 in murine lung cancer

    SciTech Connect

    Landers, M.; Bradley, W.E.C.

    1994-09-01

    Lung cancer is the leading cause of cancer death in western societies. There are four major histological types: small cell, epidemoid carcinoma, adenocarcinoma and large cell carcinoma, the adenocarcinoma being the only type generally found in the mouse. Earlier studies have shown that the transgenes coding for isoform 4 of the retinoic acid receptor {beta} and a mutant form of the tumor suppressor p53 are involved in the development of lung cancer. These results led us to ask whether the two genes may contribute to lung carcinogenesis in a synergistic manner. Mice overexpressing a RAR{beta}4-like isoform transgene (which causes very marked hyperplasia of alveolar type II cells) and mutated p53 transgene were crossed and progeny were analyzed after treatment with the lung carcinogen urethane. The results to date suggest that in the double transgenic mice, lung tumor kinetics do not result from cooperation between those transgenes since the effect of the transgenes was additive rather than synergistic. We conclude that RAR{beta}4 and p53 are involved in different tumorigenic pathways.

  11. Carcinogen exposure differentially modulates RAR-beta promoter hypermethylation, an early and frequent event in mouse lung carcinogenesis.

    PubMed

    Vuillemenot, Brian R; Pulling, Leah C; Palmisano, William A; Hutt, Julie A; Belinsky, Steven A

    2004-04-01

    The retinoic acid receptor beta (RAR-beta) gene encodes one of the primary receptors for retinoic acid, an important signaling molecule in lung growth, differentiation and carcinogenesis. RAR-beta has been shown to be down-regulated by methylation in human lung cancer. We have used previously lung tumors induced in mice to evaluate the timing and effect of specific carcinogen exposures on targeting genes altered in human lung cancer. These studies were extended to characterize the role of methylation of the RAR-beta gene in murine lung cancers. After treatment with the demethylating agent 5-aza-2'-deoxycytidine (DAC), RAR-beta was re-expressed in silenced cell lines or expressed at a higher rate than without DAC, supporting methylation as the inactivating mechanism. Bisulfite sequencing detected dense methylation in the area of the CpG island that contained the 5' untranslated region and the first translated exon in non-expressing cell lines, compared with minimal and heterogeneous methylation in normal mouse lung. Methylation-specific PCR revealed that this gene is targeted differentially by carcinogen exposures with the detection of methylated alleles in virtually all primary tumors associated with cigarette smoke or 4-methylnitrosamino-1-(3-pyridyl)-butanone (NNK) in contrast to half of tumors induced by methylene chloride or vinyl carbamate. RAR-beta methylation was also detected in 54% of preneoplastic hyperplasias induced by treatment with NNK. Bisulfite sequencing of both premalignant and malignant lesions detected dense methylation in the same area observed in cell lines, substantiating that this gene is functionally inactivated at the earliest histologic stage of adenocarcinoma development. These studies demonstrate that aberrant methylation of RAR-beta is an early and common alteration in murine lung tumors induced by several environmentally relevant exposures. PMID:14656941

  12. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    SciTech Connect

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas.

  13. Device for Detecting Actinides, Method for Detecting Actinides

    SciTech Connect

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  14. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  15. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species.

    PubMed

    Carter, Christopher J; Rand, Christopher; Mohammad, Imtiaz; Lepp, Amanda; Vesprini, Nicholas; Wiebe, Olivia; Carlone, Robert; Spencer, Gaynor E

    2015-01-01

    The vitamin A metabolite, retinoic acid, is an important molecule in nervous system development and regeneration in vertebrates. Retinoic acid signaling in vertebrates is mediated by two classes of nuclear receptors, the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Recently, evidence has emerged to suggest that many effects of retinoic acid are conserved between vertebrate and invertebrate nervous systems, even though the RARs were previously thought to be a vertebrate innovation and to not exist in non-chordates. We have cloned a full-length putative RAR from the CNS of the mollusc Lymnaea stagnalis (LymRAR). Immunoreactivity for the RAR protein was found in axons of adult neurons in the central nervous system and in growth cones of regenerating neurons in vitro. A vertebrate RAR antagonist blocked growth cone turning induced by exogenous all-trans retinoic acid, possibly suggesting a role for this receptor in axon guidance. We also provide immunostaining evidence for the presence of RAR protein in the developing, embryonic CNS, where it is also found in axonal processes. Using qPCR, we determined that LymRAR mRNA is detectable in the early veliger stage embryo and that mRNA levels increase significantly during embryonic development. Putative disruption of retinoid signaling in Lymnaea embryos using vertebrate RAR antagonists resulted in abnormal eye and shell development and in some instances completely halted development, resembling the effects of all-trans retinoic acid. This study provides evidence for RAR functioning in a protostome species. PMID:25504929

  16. Environmental speciation of actinides.

    PubMed

    Maher, Kate; Bargar, John R; Brown, Gordon E

    2013-04-01

    Although minor in abundance in Earth's crust (U, 2-4 ppm; Th, 10-15 ppm) and in seawater (U, 0.003 ppm; Th, 0.0007 ppm), light actinides (Th, Pa, U, Np, Pu, Am, and Cm) are important environmental contaminants associated with anthropogenic activities such as the mining and milling of uranium ores, generation of nuclear energy, and storage of legacy waste resulting from the manufacturing and testing of nuclear weapons. In this review, we discuss the abundance, production, and environmental sources of naturally occurring and some man-made light actinides. As is the case with other environmental contaminants, the solubility, transport properties, bioavailability, and toxicity of actinides are dependent on their speciation (composition, oxidation state, molecular-level structure, and nature of the phase in which the contaminant element or molecule occurs). We review the aqueous speciation of U, Np, and Pu as a function of pH and Eh, their interaction with common inorganic and organic ligands in natural waters, and some of the common U-containing minerals. We also discuss the interaction of U, Np, Pu, and Am solution complexes with common Earth materials, including minerals, colloids, gels, natural organic matter (NOM), and microbial organisms, based on simplified model system studies. These surface interactions can inhibit (e.g., sorption to mineral surfaces, formation of insoluble biominerals) or enhance (e.g., colloid-facilitated transport) the dispersal of light actinides in the biosphere and in some cases (e.g., interaction with dissimilatory metal-reducing bacteria, NOM, or Mn- and Fe-containing minerals) can modify the oxidation states and, consequently, the behavior of redox-sensitive light actinides (U, Np, and Pu). Finally, we review the speciation of U and Pu, their chemical transformations, and cleanup histories at several U.S. Department of Energy field sites that have been used to mill U ores, produce fissile materials for reactors and weapons, and store

  17. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  18. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  19. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC).

    PubMed

    Feng, Hongxiang; Zhang, Zhenrong; Qing, Xin; Wang, Xiaowei; Liang, Chaoyang; Liu, Deruo

    2016-02-01

    Aberrant promoter hypermethylations of tumor suppressor genes are promising markers for lung cancer diagnosis and prognosis. The purpose of this study was to determine methylation status at APC and RAR-β promoters in primary NSCLC, and whether they have any relationship with survival. APC and RAR-β promoter methylation status were determined in 41 NSCLC patients using methylation specific PCR. APC promoter methylation was detectable in 9 (22.0%) tumor samples and 6 (14.6%) corresponding non-tumor samples (P=0.391). RAR-β promoter methylation was detectable in 13 (31.7%) tumor samples and 4 (9.8%) corresponding non-tumor samples (P=0.049) in the NSCLC patients. APC promoter methylation was found to be associated with T stage (P=0.046) and nodal status (P=0.019) in non-tumor samples, and with smoking (P=0.004) in tumor samples. RAR-β promoter methylation was found associated with age (P=0.031) in non-tumor samples and with primary tumor site in tumor samples. Patients with APC promoter methylation in tumor samples showed significantly longer survival than patients without it (Log-rank P=0.014). In a multivariate analysis of prognostic factors, APC methylation in tumor samples was an independent prognostic factor (P=0.012), as were N1 positive lymph node number (P=0.025) and N2 positive lymph node number (P=0.06). Our study shows that RAR-β methylation detected in lung tissue may be used as a predictive marker for NSCLC diagnosis and that APC methylation in tumor sample may be a useful marker for superior survival in NSCLC patients. PMID:26681652

  20. Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor {alpha} (RAR{alpha})-, RAR{beta}-, or RAR{gamma}-selective ligand in combination with retinoid Z receptor-specific ligand

    SciTech Connect

    Roy, B.; Taneja, R.; Chambon, P.

    1995-12-01

    This research indicates thatn retinoic acid receptor (RAR)-retinoid X receptor (RXR) heterodimers activate transcription of RA-responsive genes and induce cell differentiation of P19 and F9 cells in a ligand-dependent manner. 43 refs., 4 figs., 2 tabs.

  1. Assessment of the Thermochemical Properties of Actinides in Molten Chlorides

    NASA Astrophysics Data System (ADS)

    Masset, Patrick I.; Apostolidis, Christos; Malmbeck, Rikard; Rebizant, Jean; Serp, Jérôme; Glatz, Jean-Paul

    2008-02-01

    The electrochemical properties of the chlorides of the actinides U, Pu, Np and Am (AnCl3) were investigated by transient electrochemical techniques in the LiCl-KCl eutectic at 400 - 550 °C. The diffusion coefficients of the cations and the apparent standard potentials of the redox systems on an inert W electrode were measured. The Gibbs energy of dilute solutions of AnCl3 as well as the activity coefficients were derived from electrochemical measurements. In addition, the electrochemical behaviour of the actinides on an Al electrode was investigated. They formed AnAl4 alloys, the formation potentials of which allowed a quantitative recovery of the actinides and their separation from fission products and especially from lanthanides. In addition, the thermochemical properties of the AnAl4 alloys were determined by electrochemical measurements.

  2. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  3. Rapid determination of alpha emitters using Actinide resin.

    PubMed

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

  4. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  5. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  6. PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors.

    PubMed Central

    Chen, Z; Guidez, F; Rousselot, P; Agadir, A; Chen, S J; Wang, Z Y; Degos, L; Zelent, A; Waxman, S; Chomienne, C

    1994-01-01

    Recently, we described a recurrent variant translocation, t(11;17)(q23;q21), in acute promyelocytic leukemia (APL) which juxtaposes PLZF, a gene encoding a zinc finger protein, to RARA, encoding retinoic acid receptor alpha (RAR alpha). We have now cloned cDNAs encoding PLZF-RAR alpha chimeric proteins and studied their transactivating activities. In transient-expression assays, both the PLZF(A)-RAR alpha and PLZF(B)-RAR alpha fusion proteins like the PML-RAR alpha protein resulting from the well-known t(15;17) translocation in APL, antagonized endogenous and transfected wild-type RAR alpha in the presence of retinoic acid. Cotransfection assays showed that a significant repression of RAR alpha transactivation activity was obtained even with a very low PLZF-RAR alpha-expressing plasmid concentration. A "dominant negative" effect was observed when PLZF-RAR alpha fusion proteins were cotransfected with vectors expressing RAR alpha and retinoid X receptor alpha (RXR alpha). These abnormal transactivation properties observed in retinoic acid-sensitive myeloid cells strongly implicate the PLZF-RAR alpha fusion proteins in the molecular pathogenesis of APL. Images PMID:8302850

  7. Managing Inventories of Heavy Actinides

    SciTech Connect

    Wham, Robert M; Patton, Bradley D

    2011-01-01

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  8. Actinide Burning in CANDU Reactors

    SciTech Connect

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  9. Actinide-lanthanide separation with solvents on the base of amides of heterocyclic diacids

    SciTech Connect

    Babain, V.A.; Alyapyshev, M.Y.; Tkachenko, L.I.

    2013-07-01

    The separation of actinides from lanthanides with a particular emphasis on Am(III) from Eu(III) with amides of heterocyclic dicarboxylic diacids was reviewed. It was shown that the di-amides of the 2,2'-dipyridyl-6,6'-dicarboxylic acid are the most promising ligands for the simultaneous selective recovery of actinides from HLLW (high level radioactive liquid waste) within the GANEX concept. (author)

  10. Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana.

    PubMed

    Ito, Makoto; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development. PMID:25482800

  11. A rare single cytogenetic finding of isochromosome 14q in a female with refractory anemia with ring sideroblasts (RARS)

    SciTech Connect

    Haag, M.M.; Sutcliffe, M.J.; Nelson, R.P. |

    1994-09-01

    Clonal cytogenetic abnormalities occur in 79% of patients with myelodysplastic syndrome (MDS) and can be used to diagnose malignancy. Some of these clonal chromosomal changes have been useful in evaluation of the pathobiological similarity between MDS and acute nonlymphocytic leukemia (ANLL) and can be used to monitor the disease progression. A 44-year-old woman, presenting with normochromic, normocytic anemia was clinically asymptomatic and physical examination revealed no lymphadenopathy or hepatosplenomegaly. Stains for iron demonstrated adequate stores but with numerours ring sideroblasts which constituted approximately 15% of the total erythoblastic population. No increased reticulum or fibrosis was noted. These findings supported a diagnosis of MDS, classification refractory anemia with ring sideroblasts (RARS). Bone marrow cytogentic analysis showed an isochromosome 14q as the sole chromosome abnormality and this was confirmed by molecular cytogenetics using a whole chromosome Coatasome probe for No. 14. A population of 46,XX cells (20%) was also observed. Numerous interphase cells had three isolated fluorescent signals for No. 14. Structural and numerical abnormalities of chromosome No. 14 are reported in many hematological disorders, but few structural abnormalities have been reported for RARS and no extra copies, including i(14q), have been reported for MD or RARS. However, examples of extra copies of No. 14, including the isochromosome form, have been reported for ANLL. Since 15% of RARS patients progress to ANLL, there may be prognostic significance to this chromosome abnormality for his patient. The patient is awaiting a suitable donor for bone marrow transplantation. The presence of isochromosome No. 14 in the malignant cells offers an opportunity to monitor disease progression pre-transplantation and minimal residual disease post-transplantation.

  12. Environmental research on actinide elements

    SciTech Connect

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  13. Grouped actinide separation in advanced nuclear fuel cycles

    SciTech Connect

    Glatz, J.P.; Malmbeck, R.; Ougier, M.; Soucek, P.; Murakamin, T.; Tsukada, T.; Koyama, T.

    2013-07-01

    Aiming at cleaner waste streams (containing only the short-lived fission products) a partitioning and transmutation (P-T) scheme can significantly reduce the quantities of long-lived radionuclides consigned to waste. Many issues and options are being discussed and studied at present in view of selecting the optimal route. The choice is between individual treatment of the relevant elements and a grouped treatment of all actinides together. In the European Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), grouped separation options derived from an aqueous extraction or from a dry pyroprocessing route were extensively investigated. Successful demonstration tests for both systems have been carried out in the frame of this project. The aqueous process called GANEX (Grouped Actinide Extraction) is composed of 2 cycles, a first one to recover the major part of U followed by a co-extraction of Np, Pu, Am, and Cm altogether. The pyro-reprocessing primarily applicable to metallic fuels such as the U-Pu-Zr alloy originally developed by the Argonne National Laboratory (US) in the mid 1980s, has also been applied to the METAPHIX fuels containing up to 5% of minor actinides and 5% of lanthanides (e.g. U{sub 60}Pu{sub 20}-Zr{sub 10}Am{sub 2}Nd{sub 3.5}Y{sub 0.5}Ce{sub 0.5}Gd{sub 0.5}). A grouped actinide separation has been successfully carried out by electrorefining on solid Al cathodes. At present the recovery of the actinides from the alloy formed with Al upon electrodeposition is under investigation, because an efficient P-T cycle requires multiple re-fabrication and re-irradiation. (authors)

  14. PLZF-RAR[alpha] fusion proteins generated from the variant t(11; 17)(q23; q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors

    SciTech Connect

    Chen, Zhu; Chen, Sai-Juan; Wang, Zhen-Yi ); Guidez, F.; Rousselot, P.; Agadir, A.; Degos, L.; Chomienne, C. ); Zelent, A. ); Waxman, S. )

    1994-02-01

    Recently, the authors described a recurrent variant translocation, t(11;17)(q23;q21), in acute promyelocytic leukemia (APL) which juxtaposes PLZF, a gene encoding a zinc finger protein, to RARA, encoding retinoic acid receptor [alpha] (RAR[alpha]). They have now cloned cDNAs encoding PLZF-RAR[alpha] chimeric proteins and studied their transactivating activities. In transient-expression assays, both the PLZF(A)-RAR[alpha] and PLZF(B)-RAR[alpha] fusion proteins like the PML-RAR[alpha] protein resulting from the well-known t(15;17) translocation in APL, antagonized endogenous and transfected wild-type RAR[alpha] in the presence of retinoic acid. Cotransfection assays showed that a significant repression of RAR[alpha] transactivation activity was obtained even with a very low PLZF-RAR[alpha]-expressing plasmid concentration. A [open quotes]dominant negative[close quotes] effect was observed with vectors expressing RAR[alpha] and retinoid X receptor [alpha] (RXR[alpha]). These abnormal transactivation properties observed in retinoic acid-sensitive myeloid cells strongly implicate the PLZF-RAR[alpha] fusion proteins in the molecular pathogenesis of APL.

  15. Evaluation of actinide biosorption by microorganisms

    SciTech Connect

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  16. Rapid assessment response (RAR) study: drug use and health risk - Pretoria, South Africa

    PubMed Central

    2011-01-01

    Background Within a ten year period South Africa has developed a substantial illicit drug market. Data on HIV risk among drug using populations clearly indicate high levels of HIV risk behaviour due to the sharing of injecting equipment and/or drug-related unprotected sex. While there is international evidence on and experience with adequate responses, limited responses addressing drug use and drug-use-related HIV and other health risks are witnessed in South Africa. This study aimed to explore the emerging problem of drug-related HIV transmission and to stimulate the development of adequate health services for the drug users, by linking international expertise and local research. Methods A Rapid Assessment and Response (RAR) methodology was adopted for the study. For individual and focus group interviews a semi-structured questionnaire was utilised that addressed key issues. Interviews were conducted with a total of 84 key informant (KI) participants, 63 drug user KI participants (49 males, 14 females) and 21 KI service providers (8 male, 13 female). Results and Discussion Adverse living conditions and poor education levels were cited as making access to treatment harder, especially for those living in disadvantaged areas. Heroin was found to be the substance most available and used in a problematic way within the Pretoria area. Participants were not fully aware of the concrete health risks involved in drug use, and the vague ideas held appear not to allow for concrete measures to protect themselves. Knowledge with regards to substance related HIV/AIDS transmission is not yet widespread, with some information sources disseminating incorrect or unspecific information. Conclusions The implementation of pragmatic harm-reduction and other evidence-based public health care policies that are designed to reduce the harmful consequences associated with substance use and HIV/AIDS should be considered. HIV testing and treatment services also need to be made available in

  17. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    SciTech Connect

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  18. 33rd Actinide Separations Conference

    SciTech Connect

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  19. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  20. Actinides and Life's Origins

    NASA Astrophysics Data System (ADS)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  1. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  2. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  3. Actinide cation-cation complexes

    SciTech Connect

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.

  4. Involvement of the RAR{beta}1 and dlk genes in small cell lung carcinogenesis and in human development

    SciTech Connect

    Toulouse, A.; Pelletier, M.; Morin, J.

    1994-09-01

    Lung cancer is the most lethal malignant disease in western societies. It encompasses four major histological types: squamous carcinoma, adenocarcinoma, and large cell carcinoma (known together as non-small-cell lung cancers) and a fourth type which is small cell carcinoma. This last histological class is a particularly aggressive malignant disease; it is characterized by an early development of metastasis so that upon time of diagnosis these are already widespread throughout the body. Our group is interested in defining and understanding the role of the retinoic acid receptor {beta}(RAR{beta}) gene in human lung cancer. This gene encodes nuclear transcription factors which are part of the thyroid and steroid hormone receptor superfamily. Four isoforms are known in mouse, which are generated by alternative splicing from two promoters, P{sub 1} (isoforms {beta}1 and {beta}3) and P{sub 2} (isoforms {beta}2 and {beta}4). In human only the isoforms {beta}2 (a tumor suppressor gene) and {beta}4 were known until recently when our group cloned the sequences encoding the 5{prime} end of the mRNA for RAR{beta}1. Expression studies have shown that this isoform is expressed during development in almost all tissues tested and that it is also expressed in a particular subset of human small cell carcinoma lines. It is not expressed in any adult tissue examined so far. Recently, Laborda et al. have cloned a human gene (dlk for delta-like) similar to the drosophila neurogenic gene Delta. We have found striking similarities in the expression pattern of dlk and RAR{beta}1 since the two genes are coexpressed in all fetal tissues examined and are also coexpressed in virtually identical subsets of SCLC lines. These results have implications for human embryogenesis and tumorigenesis.

  5. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  6. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  7. Neuropathologic Characterization of Pontocerebellar Hypoplasia Type 6 Associated With Cardiomyopathy and Hydrops Fetalis and Severe Multisystem Respiratory Chain Deficiency due to Novel RARS2 Mutations

    PubMed Central

    Lax, Nichola Z.; Alston, Charlotte L.; Schon, Katherine; Park, Soo-Mi; Krishnakumar, Deepa; He, Langping; Falkous, Gavin; Ogilvy-Stuart, Amanda; Lees, Christoph; King, Rosalind H.; Hargreaves, Iain P.; Brown, Garry K.; McFarland, Robert; Dean, Andrew F.; Taylor, Robert W.

    2015-01-01

    Abstract Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6–8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues. PMID:26083569

  8. The granulocyte-colony stimulating factor receptor (G-CSFR) interacts with retinoic acid receptors (RARs) in the regulation of myeloid differentiation.

    PubMed

    Chee, Lynette C Y; Hendy, Jean; Purton, Louise E; McArthur, Grant A

    2013-02-01

    The key roles of RARs and G-CSFR in the regulation of granulopoiesis have been well-documented. In this study, we sought to investigate the interaction between G-CSFR and RARs in myeloid differentiation of adult mice through conditional deletion of RARα or RARγ on a G-CSFR(-/-) background and by pharmacological intervention of WT and G-CSFR(-/-) mice with a pan-RAR inverse agonist, NRX194310. Our findings show that residual granulopoiesis still persists in mice doubly null for G-CSFR and RARα or RARγ, confirming that RARs and G-CSFR are dispensable in maintaining residual granulopoiesis. Moreover, an increase in mature myeloid cells was seen in the conditional RARγ(Δ/Δ) mice and WT mice treated with NRX194310, likely mediated through increased G-CSF production. However, with the loss of G-CSFR, this expansion in granulopoiesis was attenuated, supporting the hypothesis that G-CSFR signaling interacts with RARs in the regulation of myeloid differentiation. PMID:23136256

  9. Actinide partitioning-transmutation program final report. I. Overall assessment

    SciTech Connect

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of /sup 99/Tc and /sup 129/I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted.

  10. Actinide partitioning processes for fuel reprocessing and refabrication plant wastes

    SciTech Connect

    Finney, B.C.; Tedder, D.W.

    1980-01-01

    Chemical processing methods have been developed on a laboratory scale to partition the actinides from the liquid and solid fuel reprocessing plant (FRP) and refabrication plant (FFP) wastes. It was envisioned that these processes would be incorporated into separate waste treatment facilities (WTFs) that are adjacent to, but not integrated with, the fuel reprocessing and refabrication plants. Engineering equipment and material balance flowsheets have been developed for WTFs in support of a 2000-MTHM/year FRP and a 660-MTHM/year MOX-FFP. The processing subsystems incorporated in the FRP-WTF are: High-Level Solid Waste Treatment, High-Level Liquid Waste Treatment, Solid Alpha Waste Treatment, Cation Exchange Chromatography, Salt Waste Treatment, Actinide Recovery, Solvent Cleanup and recycle, Off-Gas Treatment, Actinide Product Concentration, and Acid and Water Recycle. The WTF supporting a fuel refabrication facility, although similar, does not contain subsystems (1) and (2). Based on the results of the laboratory and hot-cell experimental work, we believe that the processes and flowsheets offer the potential to reduce the total unrecovered actinides in FRP and FFP wastes to less than or equal to 0.25%. The actinide partitioning processes and the WTF concept represent advanced technology that would require substantial work before commercialization. It is estimated that an orderly development program would require 15 to 20 years to complete and would cost about 700 million 1979 dollars. It is estimated that the capital cost and annual operating cost, in mid-1979 dollars, for the FRP-WTF are $1035 million and $71.5 million/year, and for the FFP-WTF are $436 million and $25.6 million/year, respectively.

  11. Separations of actinides, lanthanides and other metals

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  12. Retinoic acid activates human inducible nitric oxide synthase gene through binding of RAR{alpha}/RXR{alpha} heterodimer to a novel retinoic acid response element in the promoter

    SciTech Connect

    Zou Fang; Liu Yan; Liu Li; Wu Kailang; Wei Wei; Zhu Ying . E-mail: yingzhu@whu.edu.cn; Wu Jianguo . E-mail: wu9988@vip.sina.com

    2007-04-06

    Human inducible nitric oxide synthase (hiNOS) catalyzes nitric oxide (NO) which has a significant effect on tumor suppression and cancer therapy. Here we revealed the detailed molecular mechanism involved in the regulation of hiNOS expression induced by retinoic acid (RA). We showed that RAR{alpha}/RXR{alpha} heterodimer was important in hiNOS promoter activation, hiNOS protein expression, and NO production. Serial deletion and site-directed mutation analysis revealed two half-sites of retinoic acid response element (RARE) spaced by 5 bp located at -172 to -156 in the hiNOS promoter. EMSA and ChIP assays demonstrated that RAR{alpha}/RXR{alpha} directly bound to this RARE of hiNOS promoter. Our results suggested the identification of a novel RARE in the hiNOS promoter and the roles of the nuclear receptors (RAR{alpha}/RXR{alpha}) in the induction of hiNOS by RA.

  13. "Computational Modeling of Actinide Complexes"

    SciTech Connect

    Balasubramanian, K

    2007-03-07

    We will present our recent studies on computational actinide chemistry of complexes which are not only interesting from the standpoint of actinide coordination chemistry but also of relevance to environmental management of high-level nuclear wastes. We will be discussing our recent collaborative efforts with Professor Heino Nitsche of LBNL whose research group has been actively carrying out experimental studies on these species. Computations of actinide complexes are also quintessential to our understanding of the complexes found in geochemical, biochemical environments and actinide chemistry relevant to advanced nuclear systems. In particular we have been studying uranyl, plutonyl, and Cm(III) complexes are in aqueous solution. These studies are made with a variety of relativistic methods such as coupled cluster methods, DFT, and complete active space multi-configuration self-consistent-field (CASSCF) followed by large-scale CI computations and relativistic CI (RCI) computations up to 60 million configurations. Our computational studies on actinide complexes were motivated by ongoing EXAFS studies of speciated complexes in geo and biochemical environments carried out by Prof Heino Nitsche's group at Berkeley, Dr. David Clark at Los Alamos and Dr. Gibson's work on small actinide molecules at ORNL. The hydrolysis reactions of urnayl, neputyl and plutonyl complexes have received considerable attention due to their geochemical and biochemical importance but the results of free energies in solution and the mechanism of deprotonation have been topic of considerable uncertainty. We have computed deprotonating and migration of one water molecule from the first solvation shell to the second shell in UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}, UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}NpO{sub 2}(H{sub 2}O){sub 6}{sup +}, and PuO{sub 2}(H{sub 2}O){sub 5}{sup 2+} complexes. Our computed Gibbs free energy(7.27 kcal/m) in solution for the first time agrees with the experiment (7.1 kcal

  14. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  15. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  16. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  17. Actinide Studies with Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Broussard, Leah

    2014-03-01

    Understanding the effects of sputtering due to nuclear fission is crucial to the nuclear industry and has wide-reaching applications, including nuclear energy, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. UCN are an ideal tool for finely controlling induced fission as a function of depth in an actinide sample. The mechanism for fission-induced surface damage is not well understood, especially regarding the effect of a surface oxide layer. We will discuss our experimental strategy for studies of UCN-induced fission and the ejected material, and present preliminary data from enriched and depleted uranium. We gratefully acknowledge the support of the G. T. Seaborg Institute for Transactinium Science and the U.S. Department of Energy through the LANL/LDRD Program for this work.

  18. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance.

    PubMed

    Wang, Guan-Feng; Fan, Renchun; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi

    2015-04-01

    RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance. PMID:25697954

  19. Actinide Waste Forms and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  20. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2009-11-09

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

  1. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  2. Variant complex translocations involving chromosomes 1, 9, 9, 15 and 17 in acute promyelocytic leukemia without RAR alpha/PML gene fusion rearrangement.

    PubMed

    Gogineni, S K; Shah, H O; Chester, M; Lin, J H; Garrison, M; Alidina, A; Bayani, E; Verma, R S

    1997-04-01

    Acute promyelocytic leukemia (APL;M3) is specifically characterized by a predominance of malignant promyelocytes having atypical reciprocal translocation involving chromosome 15 and 17 [t(15;17)(q22;q11)] resulting in the fusion of retinoic acid receptor alpha (RAR alpha) on chromosome 17 and the putative transcription factor gene PML, ie the translocation generates two fusion transcripts, PML/RAR alpha and RAR alpha/PML. We describe a patient with clinical and morphologic characteristics of atypical APL but with a previously undescribed variant translocation. A 35-year-old Hispanic having atypical APL was referred for cytogenetic evaluation. The cytogenetic findings with GTG-banding coupled with FISH analysis revealed the following karyotype: 46,XX,der(9)t(1;9)(q25;q34)der(9)t(9;?)(q34;?), t(15;17)(q22;q11)ish. der(9)t(1;9)(q25;q34)(WCP1+,WCP9+),t(9;17;15)(q34;q11;q22) (WCP9+,WCP15+,PML+;WCP17+,RAR alpha +;WCP15+,WCP17+,PML-)[20]/46,XX[5]. The chromosome 17q was translocated to the chromosome 15q. However, chromosome 15q including the PML gene normally translocating to 17q and creating the RAR alpha/PML fusion gene, translocated to chromosome 9q. Does this patient have another subset of APL? Or is the genetics of APL different in cases with variant translocations as opposed to those with atypical t(15;17) translocation, though in the majority of the cases their clinical presentation remains the same. PMID:9096691

  3. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  4. Prompt fission neutron spectra of actinides

    DOE PAGESBeta

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  5. Minor Actinides Recycling in PWRs

    SciTech Connect

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-07-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  6. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  7. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  8. Separation of actinides from lanthanides

    DOEpatents

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  9. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. PMID:25169914

  10. Actinide ion sensor for pyroprocess monitoring

    DOEpatents

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  11. Actinide co-conversion by internal gelation

    SciTech Connect

    Robisson, Anne-Charlotte; Dauby, Jacques; Dumont-Shintu, Corinne; Machon, Estelle; Grandjean, Stephane

    2007-07-01

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  12. Swedish-German actinide migration experiment at ASPO hard rock laboratory.

    PubMed

    Kienzler, B; Vejmelka, P; Römer, J; Fanghänel, E; Jansson, M; Eriksen, T E; Wikberg, P

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Aspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was < or = 40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed. PMID:12598106

  13. Rapid actinide-separation methods

    SciTech Connect

    Maxwell, S.L. III

    1997-12-31

    New high-speed actinide-separation methods have been developed by the Savannah River Site Central Laboratory that can be applied to nuclear materials process samples, waste solutions and environmental samples. As part of a reengineering effort to improve efficiencies and reduce operating costs, solvent extraction methods (TTA, Hexone, TBP and TIOA) used for over thirty years in the SRS Central Laboratory were replaced with new rapid extraction column methods able to handle a variety of difficult sample matrices and actinide levels. Significant costs savings were realized and costly mixed-waste controls were avoided by using applied vacuum and 50-100 micron particle-size resins from Eichrom Industries. TEVA Resin{reg_sign}, UTEVA Resin{reg_sign}, and TRU Resin{reg_sign} columns are used with flow rates of approximately two to three milliliters per minute to minimize sample turnaround times. Single-column, dual-column and sequential-cartridge methods for plutonium, uranium, neptunium, americium and curium were developed that enable rapid, cost-effective separations prior to alpha-particle counting, thermal ionization and inductively coupled plasma mass spectrometry, and laser phosphorescence measurements.

  14. Pontocerebellar hypoplasia type 6 caused by mutations in RARS2: definition of the clinical spectrum and molecular findings in five patients.

    PubMed

    Cassandrini, Denise; Cilio, Maria Roberta; Bianchi, Marzia; Doimo, Mara; Balestri, Martina; Tessa, Alessandra; Rizza, Teresa; Sartori, Geppo; Meschini, Maria Chiara; Nesti, Claudia; Tozzi, Giulia; Petruzzella, Vittoria; Piemonte, Fiorella; Bisceglia, Luigi; Bruno, Claudio; Dionisi-Vici, Carlo; D'Amico, Adele; Fattori, Fabiana; Carrozzo, Rosalba; Salviati, Leonardo; Santorelli, Filippo M; Bertini, Enrico

    2013-01-01

    Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy. PMID:22569581

  15. Decontamination of matrices containing actinide oxides

    SciTech Connect

    Villarreal, Robert

    1997-12-01

    There is provided a method for removing actinides and actinide oxides, particularly fired actinides, from soil and other contaminated matrices, comprising: (a) contacting a contaminated material with a solution of at least one inhibited fluoride and an acid to form a mixture; (b) heating the mixture of contaminated material and solution to a temperature in the range from about 30 C to about 90 C while stirring; (c) separating the solution from any undissolved matrix material in the mixture; (d) washing the undissolved matrix material to remove any residual materials; and (e) drying and returning the treated matrix material to the environment.

  16. Experimental studies of actinides in molten salts

    SciTech Connect

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  17. Novel mutations in WWOX, RARS2, and C10orf2 genes in consanguineous Arab families with intellectual disability.

    PubMed

    Alkhateeb, Asem M; Aburahma, Samah K; Habbab, Wesal; Thompson, I Richard

    2016-08-01

    Intellectual disability is a heterogeneous disease with many genes and mutations influencing the phenotype. Consanguineous families constitute a rich resource for the identification of rare variants causing autosomal recessive disease, due to the effects of inbreeding. Here, we examine three consanguineous Arab families, recruited in a quest to identify novel genes/mutations. All the families had multiple offspring with non-specific intellectual disability. We identified homozygosity (autozygosity) intervals in those families through SNP genotyping and whole exome sequencing, with variants filtered using Ingenuity Variant Analysis (IVA) software. The families showed heterogeneity and novel mutations in three different genes known to be associated with intellectual disability. These mutations were not found in 514 ethnically matched control chromosomes. p.G410C in WWOX, p.H530Y in RARS2, and p.I69F in C10orf2 are novel changes that affect protein function and could give new insights into the development and function of the central nervous system. PMID:27121845

  18. Rapid Assessment Response (RAR) study: drug use, health and systemic risks—Emthonjeni Correctional Centre, Pretoria, South Africa

    PubMed Central

    2014-01-01

    Background Correctional centre populations are one of the populations most at risk of contracting HIV infection for many reasons, such as unprotected sex, violence, rape and tattooing with contaminated equipment. Specific data on drug users in correctional centres is not available for the majority of countries, including South Africa. The study aimed to identify the attitudes and knowledge of key informant (KI) offender and correctional centre staff regarding drug use, health and systemic-related problems so as to facilitate the long-term planning of activities in the field of drug-use prevention and systems strengthening in correctional centres, including suggestions for the development of appropriate intervention and rehabilitation programmes. Method A Rapid Assessment Response (RAR) methodology was adopted which included observation, mapping of service providers (SP), KI interviews (staff and offenders) and focus groups (FGs). The study was implemented in Emthonjeni Youth Correctional Centre, Pretoria, South Africa. Fifteen KI staff participants were interviewed and 45 KI offenders. Results Drug use is fairly prevalent in the centre, with tobacco most commonly smoked, followed by cannabis and heroin. The banning of tobacco has also led to black-market features such as transactional sex, violence, gangsterism and smuggling in order to obtain mainly prohibited tobacco products, as well as illicit substances. Conclusion HIV, health and systemic-related risk reduction within the Correctional Service sector needs to focus on measures such as improvement of staff capacity and security measures, deregulation of tobacco products and the development and implementation of comprehensive health promotion programmes. PMID:24708609

  19. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  20. PF-4 actinide disposition strategy

    SciTech Connect

    Margevicius, Robert W

    2010-05-28

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  1. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  2. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  3. Recovery and use of fission product noble metals

    SciTech Connect

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  4. Actinide consumption: Nuclear resource conservation without breeding

    SciTech Connect

    Hannum, W.H.; Battles, J.E.; Johnson, T.R.; McPheeters, C.C.

    1991-01-01

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs.

  5. Overview of actinide chemistry in the WIPP

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K; Reed, Donald T; Khaing, Hnin; Swanson, Juliet

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  6. Electronic structure and correlation effects in actinides

    SciTech Connect

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  7. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  8. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  9. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2015-01-09

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  10. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  11. Preparation of actinide targets by electrodeposition

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  12. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  13. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides. PMID:16604724

  14. Synergism of trivalent actinides and lanthanides

    SciTech Connect

    Mathur, J.N.

    1983-01-01

    The synergism of trivalent actinides and lanthanides has been reviewed critically. Different systems including ..beta..-di-ketones and several other chelating agents with various neutral donors have been discussed. The thermodynamic parameters, effect of diluents, auto-synergism and synergism with eutectic mixtures have been discussed in the case of trivalent actinides and lanthanides. Also the mechanism of synergism and the various possible uses of this phenomenon have been referred to with the possible data available. 160 references, 4 tables.

  15. Structural and magnetic characterization of actinide materials

    SciTech Connect

    Cort, B.; Allen, T.H.; Lawson, A.C.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors have successfully used neutron scattering techniques to investigate physicochemical properties of elements, compounds, and alloys of the light actinides. The focus of this work is to extend the fundamental research capability and to address questions of practical importance to stockpile integrity and long-term storage of nuclear material. Specific subject areas are developing neutron diffraction techniques for smaller actinide samples; modeling of inelastic scattering data for actinide metal hydrides; characterizing actinide oxide structures; and investigating aging effects in actinides. These studies utilize neutron scattering supported by equilibrium studies, kinetics, and x-ray diffraction. Major accomplishments include (1) development of encapsulation techniques for small actinide samples and neutron diffraction studies of AmD{sub 2.4} and PuO{sub 2.3}; (2) refinement of lattice dynamics model to elucidate hydrogen-hydrogen and hydrogen-metal interactions in rare-earth and actinide hydrides; (3) kinetic studies with PuO{sub 2} indicating that the recombination reaction is faster than radiolytic decomposition of adsorbed water but a chemical reaction produces H{sub 2}; (4) PVT studies of the reaction between PuO{sub 2} and water demonstrate that PuO{sub 2+x} and H{sub 2} form and that PuO{sub 2} is not the thermodynamically stable form of the oxide in air; and (5) model calculations of helium in growth in aged plutonium predicting bubble formation only at grain boundaries at room temperature. The work performed in this project has application to fundamental properties of actinides, aging, and long-term storage of plutonium.

  16. Rapid determination of actinides in seawater samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  17. Recent progress in actinide borate chemistry

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-01-01

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB₅O₆(OH)₆][BO(OH)₂]·2.5H₂O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO4- Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials.

  18. Recent progress in actinide borate chemistry.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  19. Rapid determination of actinides in seawater samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.

  20. NEW METHOD FOR DETERMINATION OF ACTINIDES AND STRONTIUM IN ANIMAL TISSUE

    SciTech Connect

    Maxwell, S; Jay Hutchison, J; Don Faison, D

    2007-05-07

    The analysis of actinides in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. Sr-90 is collected on Sr Resin{reg_sign} from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and Sr-89/90 are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  1. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  2. TUCS/phosphate mineralization of actinides

    SciTech Connect

    Nash, K.L.

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  3. Nonaqueous method for dissolving lanthanide and actinide metals

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  4. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  5. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  6. Synthetic retinoid Am80 inhibits interaction of KLF5 with RAR alpha through inducing KLF5 dephosphorylation mediated by the PI3K/Akt signaling in vascular smooth muscle cells.

    PubMed

    Zhang, Xin-hua; Zheng, Bin; Han, Mei; Miao, Sui-bing; Wen, Jin-kun

    2009-04-17

    Krüppel-like factor 5 (KLF5) is known to physically interact with retinoic acid receptor-alpha (RAR alpha). Here, we show that Am80 inhibited the interaction between KLF5 and RAR alpha and this inhibitory effect was accompanied by the dephosphorylation of KLF5 in VSMCs. Treating VSMCs with LY294002, the PI3K/Akt inhibitor, abrogated Am80-induced KLF5 dephosphorylation and reversed Am80-induced suppression of interaction between KLF5 and RAR alpha, whereas treating vascular smooth muscle cells (VSMCs) with SB203580, the p38 kinase inhibitor, attenuated the interaction between KLF5 and RAR alpha. Constitutively active p38 kinase MKK6b infection prevented the KLF5 dephosphorylation induced by Am80. In conclusion, Am80 induces KLF5 dephosphorylation by activating PI3K/Akt signaling, and inhibits KLF5 phosphorylation by blocking p38 signaling, subsequently leading to the suppression of interaction of KLF5 with RAR alpha. PMID:19292987

  7. THEORY FOR THE XPS OF ACTINIDES

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.

    2013-08-01

    Two aspects of the electronic structure of actinide oxides that significantly affect the XPS spectra are described; these aspects are also important for the materials properties of the oxides. The two aspects considered are: (1) The spin-orbit coupling of the open 5f shell electrons in actinide cations and how this coupling affects the electronic structure. And, (2) the covalent character of the metal oxygen interaction in actinide compounds. Because of this covalent character, there are strong departures from the nominal oxidation states that are significantly larger in core-hole states than in the ground state. The consequences for the XPS of this covalent character are examined. A proper understanding of the way in which they influence the XPS makes it possible to use the XPS to correctly characterize the electronic structure of the oxides.

  8. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  9. Preparation of actinide-metal research materials

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Laboratory. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films. The actinide-metal processing capabilities of the IRML are continuing to be improved and applied to a wide variety of custom material preparations to meet the needs of the world-wide research community.

  10. The Actinide-Lanthanide Separation Process

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Carter, Jennifer C.; Niver, Cynthia M.; Smoot, Margaret R.

    2014-02-21

    The Actinide-Lanthanide SEParation (ALSEP) process is described. The process uses an extractant phase consisting of either N,N,N',N'-tetraoctyldiglycolamide (TODGA) or N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). The neutral TODGA or T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid media. Switching the aqueous phase chemistry to a citrate buffered diethylenetriaminepentaacetic acid (DTPA) solution at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus resulting in separation of these two groups of elements.

  11. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  12. Complexation of Actinides in Solution: Thermodynamic Measurementsand Structural Characterization

    SciTech Connect

    Rao, L.

    2007-02-01

    This paper presents a brief introduction of the studies of actinide complexation in solution at Lawrence Berkeley National Laboratory. An integrated approach of thermodynamic measurements and structural characterization is taken to obtain fundamental understanding of actinide complexation in solution that is of importance in predicting the behavior of actinides in separation processes and environmental transport.

  13. Actinide Lanthanide Separation Process – ALSEP

    SciTech Connect

    Gelis, Artem V.; Lumetta, Gregg J.

    2014-01-29

    Separation of the minor actinides (Am, Cm) from the lanthanides at an industrial scale remains a significant technical challenge for closing the nuclear fuel cycle. To increase the safety of used nuclear fuel (UNF) reprocessing, as well as reduce associated costs, a novel solvent extraction process has been developed. The process allows for partitioning minor actinides, lanthanides and fission products following uranium/plutonium/neptunium removal; minimizing the number of separation steps, flowsheets, chemical consumption, and waste. This new process, Actinide Lanthanide SEParation (ALSEP), uses an organic solvent consisting of a neutral diglycolamide extractant, either N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) or N,N,N',N'-tetraoctyldiglycolamide (TODGA), and an acidic extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]), dissolved in an aliphatic diluent (e.g. n-dodecane). The An/Ln co-extraction is conducted from moderate-to-strong nitric acid, while the selective stripping of the minor actinides from the lanthanides is carried out using a polyaminocarboxylic acid/citrate buffered solution at pH anywhere between 3 and 4.5. The extraction and separation of the actinides from the fission products is very effective in a wide range of HNO3 concentrations and the minimum separation factors for lanthanide/Am exceed 30 for Nd/Am, reaching > 60 for Eu/Am under some conditions. The experimental results presented here demonstrate the great potential for a combined system, consisting of a neutral extractant such as T2EHDGA or TODGA, and an acidic extractant such as HEH[EHP], for separating the minor actinides from the lanthanides.

  14. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply. PMID:17735740

  15. Elevated concentrations of actinides in Mono Lake

    SciTech Connect

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  16. Strong correlations in actinide redox reactions

    NASA Astrophysics Data System (ADS)

    Horowitz, S. E.; Marston, J. B.

    2011-02-01

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  17. Stability of tetravalent actinides in perovskites

    SciTech Connect

    Williams, C.W.; Morss, L.R.; Choi, I.K.

    1983-01-01

    This paper reports the first determination of the enthalpy of formation of a complex actinide(IV) oxide: ..delta..H/sup 0//sub f/ (BaUO/sub 3/, s, 298 K) = -1690 +- 10 kJ mol/sup -1/. The preparation and properties of this and other actinide(IV) complex oxides are described and are compared with other perovskites BaMO/sub 3/. The relative stabilities of tetravalent and hexavalent uranium in various environments are compared in terms of the oxidation-reduction behavior of uranium in geological nuclear waste storage media; in perovskite, uranium(IV) is very unstable in comparison with uranium(VI).

  18. Systematization of actinides using cluster analysis

    SciTech Connect

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  19. Preparation of actinide-metal research

    SciTech Connect

    Aaron, W.S.; Culpepper, C.A.; Campbell, K.B.

    1986-01-01

    The preparation of actinide-metal research materials is one of many functions of the Isotope Research Materials Laboratory (IRML) at Oak Ridge National Lab. Research samples of uranium, plutonium, americium, and curium, typically from milligram quantities up to approx. 100 g, are prepared as pure metals or alloys to customer specifications. Larger quantities, up to many kilograms, of the lower activity actinides, such as /sup 235/U, /sup 238/U, and /sup 232/Th, are also fabricated into custom research forms. Physical forms of these metals include rolled foils or sheets, castings (ingot, rod, or special shapes), and evaporated or sputtered films.

  20. Spin-orbit coupling in actinide cations

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jørgen Aa.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  1. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    SciTech Connect

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  2. Photonuclear reactions of actinide and pre-actinide nuclei at intermediate energies

    SciTech Connect

    Mukhopadhyay, Tapan; Basu, D. N.

    2007-12-15

    Photonuclear reaction is described with an approach based on the quasideuteron nuclear photoabsorption model followed by the process of competition between light particle evaporation and fission for the excited nucleus. Thus fission process is considered as a decay mode. The evaporation-fission process of the compound nucleus is simulated in a Monte Carlo framework. Photofission reaction cross sections are analysed in a systematic manner in the energy range {approx}50-70 MeV for the actinides {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, and {sup 237}Np and the pre-actinide nuclei {sup 208}Pb and {sup 209}Bi. The study reproduces satisfactorily well the available experimental data of photofission cross sections at energies {approx}50-70 MeV and the increasing trend of nuclear fissility with the fissility parameter Z{sup 2}/A for the actinides and pre-actinides at intermediate energies ({approx}20-140 MeV)

  3. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  4. Collection of Lanthanides and Actinides from Natural Waters with Conventional and Nanoporous Sorbents

    SciTech Connect

    Johnson, Bryce E.; Santschi, Peter H.; Chuang, Chia-Ying; Otosaka, Shigeyoshi; Addleman, Raymond S.; Douglas, Matthew; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Davidson, Joseph D.; Fryxell, Glen E.; Schwantes, Jon M.

    2012-10-16

    Effective collection of trace-level lanthanides and actinides is advantageous for recovery and recycling of valuable resources, environmental remediation, chemical separations and in-situ monitoring. Using isotopic tracers, we have evaluated a number of conventional and nanoporous sorbent materials for their ability to capture and remove selected lanthanides (Ce and Eu) and actinides (Th, Pa, U, and Np) from fresh and salt water systems. In general, the nanostructured materials demonstrated a higher level of performance and consistency. Nanoporous silica surface modified with 3,4- hydroxypyridinone provided excellent collection and consistency in both river water and seawater. The MnO2 materials, particular the high surface area small particle material also demonstrated good performance. Other conventional sorbents typically performed at the levels below the nanostructured sorbents and demonstrate a larger variability and matrix dependency.

  5. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  6. Applying qualitative data derived from a Rapid Assessment and Response (RAR) approach to develop a community-based HIV prevention program for adolescents in Thailand.

    PubMed

    Watthayu, Nantiya; Wenzel, Jennifer; Panchareounworakul, Kobkul

    2015-01-01

    HIV education programs are needed to address risk-taking behavior for adolescents. The purpose of our study was to use the World Health Organization's Rapid Assessment and Response (RAR) method to design a community-based, cultural- and age-appropriate HIV prevention program for adolescents in Bangkok, Thailand. Adolescent single-gender-specific focus groups (n = 3; 28 participants) were used to gather reactions/ideas about program topics/approaches. An adult, mixed-gender group was held to review information identified by adolescents. Sessions were audiotaped and transcribed verbatim. Themes regarding HIV content and the process of implementation emerged from a qualitative content analysis of the data. Community representatives recommended incorporation of HIV information and risk-prevention skills. Information delivery suggestions included small group discussions, interactive games/role-playing, program materials/terminology, and HIV-infected program facilitators. Community members provided critical input toward an HIV prevention program tailored to meet adolescents' unique needs/interests. The RAR model provides opportunities to engage communities in developing health-related interventions. PMID:26279387

  7. Trends in actinide processing at Hanford

    SciTech Connect

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn`t eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report.

  8. Optical properties of actinide and lanthanide ions

    SciTech Connect

    Hessler, J.P.; Carnall, W.T.

    1980-01-01

    This paper reviews some of the recent developments in this area of spectroscopy, emphasizing the optical properties of the tripositive lanthanide and actinide ions. In particular, the single ion properties of line positon, intensity, width, and fluorescence lifetime are discussed. 53 reference, 3 figures, 4 tables.

  9. Actinide valences in xenotime and monazite

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Zhang, Y.; McLeod, T.; Davis, J.

    2011-02-01

    Tetravalent U, Np and Pu can be substituted by ceramic methods into the rare earth site of xenotime and monazite in air atmospheres using Ca ions as charge compensators, while no evidence of penta- or hexavalent actinide ions was found. Some Pu 3+ and Np 3+ can be incorporated in xenotime samples fired in a reducing atmosphere.

  10. Rapid determination of actinides in asphalt samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  11. COMPLEXANTS FOR ACTINIDE ELEMENT COORDINATION AND IMMOBILIZATION

    EPA Science Inventory

    We propose that inorganic clusters known as polyoxoanions (POAs) can be exploited as complexants for actinide (An) ion coordination and immobilization. Our objective is to develop rugged, stoichiometrically well-defined POAs that act as molecular containers of An elements. Poly...

  12. Actinide measurements by AMS using fluoride matrices

    NASA Astrophysics Data System (ADS)

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  13. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  14. Rapid determination of actinides in asphalt samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  15. Cross sections for actinide burner reactors

    SciTech Connect

    Difilippo, F.C.

    1991-01-01

    Recent studies have shown the feasibility of burning higher actinides (i.e., transuranium (TRU) elements excluding plutonium) in ad hoc designed reactors (Actinide Burner Reactors: ABR) which, because of their hard neutron spectra, enhance the fission of TRU. The transmutation of long-lived radionuclides into stable or short-lived isotopes reduces considerably the burden of handling high-level waste from either LWR or Fast Breeder Reactors (FBR) fuels. Because of the large concentrations of higher actinides in these novel reactor designs the Doppler effect due to TRU materials is the most important temperature coefficient from the point of view of reactor safety. Here we report calculations of energy group-averaged capture and fission cross sections as function of temperature and dilution for higher actinides in the resolved and unresolved resonance regions. The calculations were done with the codes SAMMY in the resolved region and URR in the unresolved regions and compared with an independent calculation. 4 refs., 2 figs., 2 tabs.

  16. Environmental Impact of the Nuclear Fuel Cycle: Fate of Actinides

    SciTech Connect

    Ewing, Rodney C.; Runde, W.; Albrecht-Schmitt, Thomas E.

    2011-01-31

    The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.

  17. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  18. Sample preparation for actinide solid state research

    NASA Astrophysics Data System (ADS)

    Spirlet, J. C.

    1982-09-01

    The actinide elements (5f elements) and their compounds constitute a very interesting group for solid state research. The electronic properties of the 5f elements show intermediate behavior between the well-understood, completely localized 4f system (lanthanides) and the 3d system (transition elements). The possibility of understanding some unexplained properties of the 3d elements through a systematic investigation of the electronic structures of the actinides considerably increased interest in samples with well-defined composition and structure and with well-known purity. In some cases, single crystals of low defect densities and high purity levels are needed to allow sophisticated investigations of physical properties. Actinide compounds are easily obtained at a high purity level by direct synthesis from pure elements using noncontaminating techniques. Examples of these techniques are the reaction of the actinide metal powder with the vapor of an oxidant in a sealed quartz ampoule, leviation melting on a water-cooled pedestal or melting in a Huking crucible. Actinide metals are produced by metallothermic reduction of commercially available oxides or carbides or by the van Arkel purification process. The metals are refined to the desired purity level by evaporation in vacuum for the more volatile elements (Ac, Pu, Am, Cm, Bk) and by the van Arkel process for the metals with low vapor pressure. Single crystals of actinide compounds have been grown by chemical vapor transport methods (oxides, chalcogenides), high temperature solution growth techniques (oxides), and pulling from the melt by the Czochralski method (oxides, intermetallics). Thin solid films have been prepared by vacuum evaporation or by focused ion-beam sputtering. The materials are analyzed for trace-level impurity content by inductively-coupled plasma spectroscopy, by spark source mass spectroscopy and by secondary-ion mass spectroscopy. The chemical composition of the compounds is determined by

  19. Electrorecovery of actinides at room temperature

    SciTech Connect

    Stoll, Michael E; Oldham, Warren J; Costa, David A

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  20. Actinide phosphonate complexes in aqueous solutions

    SciTech Connect

    Nash, K.L.

    1993-10-01

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO{sub 3}H{sub 2}) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described.

  1. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  2. Further delineation of pontocerebellar hypoplasia type 6 due to mutations in the gene encoding mitochondrial arginyl-tRNA synthetase, RARS2.

    PubMed

    Glamuzina, Emma; Brown, Ruth; Hogarth, Kieran; Saunders, Dawn; Russell-Eggitt, Isabelle; Pitt, Matthew; de Sousa, Carlos; Rahman, Shamima; Brown, Garry; Grunewald, Stephanie

    2012-05-01

    Pontocerebellar hypoplasia type 6 (PCH6) (MIM #611523) is a recently described disorder caused by mutations in RARS2 (MIM *611524), the gene encoding mitochondrial arginyl-transfer RNA (tRNA) synthetase, a protein essential for translation of all mitochondrially synthesised proteins. This case confirms that progressive cerebellar and cerebral atrophy with microcephaly and complex epilepsy are characteristic features of PCH6. Additional features of PCH subtypes 2 and 4, including severe dystonia, optic atrophy and thinning of the corpus callosum, are demonstrated. Congenital lactic acidosis can be present, but respiratory chain dysfunction may be mild or absent, suggesting that disordered mitochondrial messenger RNA (mRNA) translation may not be the only mechanism of impairment or that a secondary mechanism exists to allow some translation. We report two novel mutations and expand the phenotypic spectrum of this likely underdiagnosed PCH variant, where recognition of the characteristic neuroradiological phenotype could potentially expedite genetic diagnosis and limit invasive investigations. PMID:22086604

  3. In vitro removal of actinide (IV) ions

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  4. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  5. Surrogate Reactions in the Actinide Region

    SciTech Connect

    Burke, J T; Bernstein, L A; Scielzo, N D; Bleuel, D L; Lesher, S R; Escher, J; Ahle, L; Dietrich, F S; Hoffman, R D; Norman, E B; Sheets, S A; Phair, L; Fallon, P; Clark, R M; Gibelin, J; Jewett, C; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Wiedeking, M; Lyles, B F; Beausang, C W; Allmond, J M; Ai, H; Cizewski, J A; Hatarik, R; O'Malley, P D; Swan, T

    2008-01-30

    Over the past three years we have studied various surrogate reactions (d,p), ({sup 3}He,t), ({alpha},{alpha}{prime}) on several uranium isotopes {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U. An overview of the STARS/LIBERACE surrogate research program as it pertains to the actinides is discussed. A summary of results to date will be presented along with a discussion of experimental difficulties encountered in surrogate experiments and future research directions.

  6. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, N.F.; Williams, J.L.

    In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  7. Study on separation of minor actinides from HLLW with new extractant of TODGA-DHOA/Kerosene

    SciTech Connect

    Ye, Guo-an; Zhu, Wen-bin; Li, Feng-feng; Lin, Ru-shan; Li, Hui-rong

    2013-07-01

    The extraction behavior of U, Np, Pu, Am, rare earth elements and Sr from nitric acid solutions by TODGA/dodecan, DHOA/dodecane and TODGA-DHOA/dodecane were investigated, respectively. Based on experimental results, a separation process was proposed for minor actinide isolation from high level liquid waste (HLLW): the TODGA-DHOA/kerosene system. The multi-stage counter-current cascade experiments were carried out for the purpose by 0.1 mol/l TODGA-1.0 mol/l DHOA/kerosene with miniature mixer- settler contactor rigs (8 stages for extraction, 6 stages for scrubbing, 8 stages for first stripping, 8 stages for second stripping). The results show that the recovery efficiencies of the actinides and lanthanides are more than 99.9%, whereas less than 1% Sr was extracted by 0.1 mol/l TODGA - 1.0 mol/l DHOA/kerosene. The stripping efficiencies of U, Np and Pu are more than 95% in the first stripping step by 0.5 mol/l HNO{sub 3} + 0.5 mol/l AHA(aceto-hydroxamic acid), all of the remained actinides and lanthanides can be stripped by 0.01 mol/l HNO{sub 3} in the second stripping step. 99% Sr was extracted by 0.1 mol/l TODGA/kerosene, so Sr can be recovered efficiently directly from the raffinate by 0.1 mol/l TODGA/kerosene. (authors)

  8. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  9. Actinide and lanthanide separation process (ALSEP)

    SciTech Connect

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  10. Development of the Actinide-Lanthanide Separation (ALSEP) Process

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2014-09-30

    Separating the minor actinide elements (Am and Cm) from acidic high-level raffinates arising from the reprocessing of irradiated nuclear fuel is an important step in closing the nuclear fuel cycle. Most proposed approaches to this problem involve two solvent extraction steps: 1) co-extraction of the trivalent lanthanides and actinides, followed by 2) separation of the actinides from the lanthanides. The objective of our work is to develop a single solvent-extraction process for isolating the minor actinide elements. We report here a solvent containing N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) that can be used to separate the minor actinides in a single solvent-extraction process. T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid solution. Switching the aqueous phase chemistry to a citrate buffered solution of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus affecting separation of the actinides from the lanthanides. Separation factors between the lanthanides and actinides are approximately 20 in the pH range of 3 to 4, and the distribution ratios are not highly dependent on the pH in this system.

  11. Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses

    SciTech Connect

    B. Forget; M. Asgari; R. Ferrer; S. Bays

    2007-09-01

    Previous fast reactor transmutation studies generally disregarded higher mass minor actinides beyond Cm-246 due to various considerations including deficiencies in nuclear cross-section data. Although omission of these higher mass actinides does not significantly impact the neutronic calculations and fuel cycle performance parameters follow-on neutron dose calculations related to fuel recycling, transportation and handling are significantly impacted. This report shows that including the minor actinides in the equilibrium fast reactor calculations will increase the predicted neutron emission by about 30%. In addition a sensitivity study was initiated by comparing the impact of different cross-section evaluation file for representing these minor actinides.

  12. Reading Recovery.

    ERIC Educational Resources Information Center

    Jones, Joanna R., Ed.

    1992-01-01

    This issue of the Arizona Reading Journal focuses on the theme "reading recovery" and includes the following articles: "Why Is an Inservice Programme for Reading Recovery Teachers Necessary?" (Marie M. Clay); "What Is Reading Recovery?" (Gay Su Pinnell); "Teaching a Hard To Teach Child" (Constance A. Compton); "Reading Recovery in Arizona--A…

  13. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  14. Method for actinides and Sr-90 determination in urine samples.

    PubMed

    Alvarez, A; Navarro, N

    1996-01-01

    The primary goal of radiation protection in decommissioning and decontamination of the old nuclear facilities of the CIEMAT is to monitor and minimize exposure of personnel. Monitoring programs include determination of actinides and 90Sr in biological samples. A technique for the sequential measurement of low levels of 239Pu, 241Am and 90Sr in urine samples has been developed. The method involves coprecipitation of these radionuclides as phosphates from bulk urine sample. Separation of Plutonium is carried out using a conventional anion exchange technique. Americium and strontium isolations are achieved sequentially by chromatographic extraction (Tru.Spec and Sr.Spec columns) from the load and rinse solutions coming from the anion exchange column. Plutonium and Americium measurements are performed by alpha spectrometry. The mean recovery obtained is 80% and the detection limit for 24 h urine sample (1.41) is 0.6 mBq L-1. 90Sr determination is made by liquid scintillation counting. The detection limit in this case is 1.1 E-01 Bq/L. PMID:8976042

  15. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  16. Detailed calculations of minor actinide transmutation in a fast reactor

    SciTech Connect

    Takeda, Toshikazu

    2015-12-31

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  17. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  18. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  19. Process for Making a Ceramic Composition for Immobilization of Actinides

    SciTech Connect

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Curtis, Paul G.; Hobson, Beverly F.; Farmer, Joseph; Herman, Connie Cicero; Herman, David Thomas

    1999-06-22

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  20. Detailed calculations of minor actinide transmutation in a fast reactor

    NASA Astrophysics Data System (ADS)

    Takeda, Toshikazu

    2015-12-01

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  1. Study of actinide chemistry in saturated potassium fluoride solution

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Thalmayer, C. E.

    1969-01-01

    Study concerning the chemistry of actinides in saturated KF solution included work with neptunium, uranium, and americium. Solubilities, absorption spectra, oxidation-reduction reactions, and solid compounds which can be produced in KF solution were examined. The information is used for preparation of various materials from salts of the actinides.

  2. Photofission of Actinides with Linearly Polarized Photons

    SciTech Connect

    Dale, D. S.; Cole, P. L.; Conn, A.; Forest, T. A.; Kosinov, O.; Setiniyaz, S.; Shapovlov, R.; Starovoitova, V.; Swanson, J.; Bodily, R.; Kelley, K.

    2010-08-04

    Idaho State University and the Idaho Accelerator Center are developing a polarized photon facility in the 10 MeV region using the off axis bremsstrahlung technique. Initial tests have been performed with the aim of using the high analyzing power of the photodisintegration of the deuteron to measure the beam polarization. A program is currently underway to measure the potential angular asymmetries of neutrons arising from the angular distribution of the fission fragments from photofission with linearly polarized photons. In this paper, we describe the Idaho State University Polarized Photon Facility, present results of commissioning runs, and describe potential application of polarized photofission in detecting actinides for homeland security and safeguards applications.

  3. Actinide management with commercial fast reactors

    NASA Astrophysics Data System (ADS)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  4. Actinide management with commercial fast reactors

    SciTech Connect

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  5. Status of nuclear data for actinides

    SciTech Connect

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N.

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  6. {alpha} Decay of Deformed Actinide Nuclei

    SciTech Connect

    Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.

    1996-07-01

    {alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}

  7. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  8. Actinides and Rare Earths Topical Conference (Code AC)

    SciTech Connect

    Tobin, J G

    2009-11-24

    Actinide and the Rare Earth materials exhibit many unique and diverse physical, chemical and magnetic properties, in large part because of the complexity of their f electronic structure. This Topical Conference will focus upon the chemistry, physics and materials science in Lanthanide and Actinide materials, driven by 4f and 5f electronic structure. Particular emphasis will be placed upon 4f/5f magnetic structure, surface science and thin film properties. For the actinides, fundamental actinide science and its role in resolving technical challenges posed by actinide materials will be stressed. Both basic and applied experimental approaches, including synchrotron-radiation-based investigations, as well as theoretical modeling and computational simulations, are planned to be part of the Topical Conference. Of particular importance are the issues related to the potential renaissance in Nuclear Fuels, including synthesis, oxidation, corrosion, intermixing, stability in extreme environments, prediction of properties via benchmarked simulations, separation science, environmental impact and disposal of waste products.

  9. Research in actinide chemistry. Progress report, 1990--1993

    SciTech Connect

    Choppin, G.R.

    1993-04-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, PO{sub 4}{sup 3{minus}}, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements.

  10. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  11. Selective Media for Actinide Collection and Pre-Concentration: Results of FY 2006 Studies

    SciTech Connect

    Lumetta, Gregg J.; Addleman, Raymond S.; Hay, Benjamin P.; Hubler, Timothy L.; Levitskaia, Tatiana G.; Sinkov, Sergey I.; Snow, Lanee A.; Warner, Marvin G.; Latesky, Stanley L.

    2006-11-17

    3] > 0.3 M. Preliminary results suggest that the Kl?ui resins can separate Pu(IV) from sample solutions containing high concentrations of competing ions. Conceptual protocols for recovery of the Pu from the resin for subsequent analysis have been proposed, but further work is needed to perfect these techniques. Work on this subject will be continued in FY 2007. Automated laboratory equipment (in conjunction with Task 3 of the NA-22 Automation Project) will be used in FY 2007 to improve the efficiency of these experiments. The sorption of actinide ions on self-assembled monolayer on mesoporous supports materials containing diphosphonate groups was also investigated. These materials also showed a very high affinity for tetravalent actinides, and they also sorbed U(VI) fairly strongly. Computational Ligand Design An extended MM3 molecular mechanics model was developed for calculating the structures of Kl?ui ligand complexes. This laid the groundwork necessary to perform the computer-aided design of bis-Kl?ui architectures tailored for Pu(IV) complexation. Calculated structures of the Kl?ui ligand complexes [Pu(Kl?ui)2(OH2)2]2+ and [Fe(Kl?ui)2]+ indicate a ''bent'' sandwich arrangement of the Kl?ui ligands in the Pu(IV) complex, whereas the Fe(III) complex prefers a ''linear'' octahedral arrangement of the two Kl?ui ligands. This offers the possibility that two Kl?ui ligands can be tethered together to form a material with very high binding affinity for Pu(IV) over Fe(III). The next step in the design process is to use de novo molecule building software (HostDesigner) to identify potential candidate architectures.

  12. Actinide Solubility and Speciation in the WIPP

    SciTech Connect

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  13. Actinide transmutation in a thermal reactor

    SciTech Connect

    Facchini, A.; Sanjust, V.

    1993-12-31

    The long term radiotoxicity of nuclear wastes may be substantially reduced by long irradiation in thermal reactors. Preliminary calculations showed that appreciable quantities of the minor actinides and long lived fission products may be recycled in a power PWR, and that, a few centuries after 20--30 years of irradiation, they reach radiotoxicity levels comparable to those of the uranium quantity required to make the corresponding fuel amount. The purpose of the present work is to investigate the conceptual possibility of reducing the level of the long term radiotoxicity, due to Minor Actinides and Long-Lived Fission Products (MA/LLFP) produced in UO{sub 2} fuel, by long irradiation of them in a power PWR. More precisely the authors pursued the objective of determining what fraction of the MA/LLFP mixture produced in a 1,000 MWe PWR during its whole life, may be burned in a similar power reactor. A waste burning efficiency has been considered satisfactory if the long term radiotoxicity of the MA/LLFP contained in a given quantity of spent fuel reaches, a few centuries after its irradiation, the level corresponding to that of the amount of natural uranium required to produce the same quantity of fresh fuel. This waiting time is in fact necessary in any case for cooling the other fission products to a sufficiently low radioactivity level and is a time span not unreasonable when considering man-made barriers against the radionuclide diffusion into the biosphere.

  14. Fusion-Fission Burner for Transuranic Actinides

    NASA Astrophysics Data System (ADS)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  15. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    SciTech Connect

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead

  16. On the suitability of lanthanides as actinide analogs

    SciTech Connect

    Raymond, Kenneth; Szigethy, Geza

    2008-07-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  17. On the Suitability of Lanthanides as Actinide Analogs

    SciTech Connect

    Szigethy, Geza; Raymond, Kenneth N.

    2008-04-11

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.

  18. End point control of an actinide precipitation reactor

    SciTech Connect

    Muske, K.R.; Palmer, M.J.

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  19. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  20. Thin extractive membrane for monitoring actinides in aqueous streams.

    PubMed

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples. PMID:23747462

  1. Separation of actinides from spent nuclear fuel: A review.

    PubMed

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  2. Plutonium and ''minor'' actinides: safe sequestration [rapid communication

    NASA Astrophysics Data System (ADS)

    Ewing, Rodney C.

    2005-01-01

    The actinides exhibit a number of unique chemical and nuclear properties. Of particular interest are the man-made actinides (Np, Pu, Cm and Am) that are produced in significant enough quantities that they are a source of energy in fission reactions, a source of fissile material for nuclear weapons and of environmental concern because of their long half-lives and radiotoxicity. During the past 50 yr, over 1400 mT of Pu and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. There are two basic strategies for the disposition of these elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of isometric pyrochlore, A 2B 2O 7 (A=rare earths; B=Ti, Zr, Sn and Hf), for the immobilization of actinides, particularly plutonium. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B=Zr, Hf) are stable to very high doses of α-decay event damage. The radiation stability of these compositions is closely related to the structural distortions that occur for specific pyrochlore compositions and the electronic structure of the B-site cation. This understanding provides the basis for designing materials for the safe, long-term immobilization and sequestration of actinides.

  3. Design and synthesis of novel derivatives of all-trans retinoic acid demonstrate the combined importance of acid moiety and conjugated double bonds in its binding to PML–RAR-α oncogene in acute promyelocytic leukemia

    PubMed Central

    Schinke, Carolina; Goel, Swati; Bhagat, Tushar D.; Zhou, Li; Mo, Yongkai; Gallagher, Robert; Kabalka, George W.; Platanias, Leonidas C.; Verma, Amit; Das, Bhaskar

    2014-01-01

    The binding of all-trans retinoic acid (ATRA) to retinoid receptor-α (RAR-α) relieves transcriptional repression induced by the promyelocytic leukemia–retinoic acid receptor (PML–RAR) oncoprotein. The ATRA molecule contains a cyclohexenyl ring, a polyene chain containing conjugated double alkene bonds, and a terminal carboxyl group. To determine the contributions of these structural components of ATRA to its clinical efficacy, we synthesized three novel retinoids. These consisted of either a modified conjugated alkene backbone with an intact acid moiety (13a) or a modified conjugated alkene backbone and conversion of the acid group to either an ester (13b) or an aromatic amide (13c). Reporter assays demonstrated that compound 13a successfully relieved transcriptional repression by RAR-α, while 13b and 13c could not, demonstrating the critical role of the acid moiety in this binding. However, only ATRA was able to significantly inhibit the proliferation of APL cells while 13a, 13b, or 13c was not. Furthermore, only 13a led to partial non-significant differentiation of NB4 cells, demonstrating the importance of C9–C10 double bonds in differentiation induced CD11 expression. Our results demonstrate that both the acid moiety and conjugated double bonds present in the ATRA molecule are important for its biological activity in APL and have important implications for the design of future novel retinoids. PMID:20536349

  4. Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment

    NASA Astrophysics Data System (ADS)

    Basu, Basudhara; Bhattacharyya, D. P.; Biswas, S.; O'Sullivan, D.; Thompson, A.

    A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra heavy nuclei of charges of Z ranging from 72 to 96 compatible with the expected results from restricted energy loss calculations. The estimated actinide sub-actinide flux ratio has been found to be 0.0636±0.0248 which is comparable to the earlier observations by Fowler et al., Thompson et al. and O'Sullivan.

  5. 5f-electron localization in the actinide metals: thorides, actinides and the Mott transition

    NASA Astrophysics Data System (ADS)

    Lawson, A. C.

    2016-03-01

    For the light actinides Ac-Cm, the numbers of localized and itinerant 5f-electrons are determined by comparing various estimates of the f-electron counts. At least one itinerant f-electron is found for each element, Pa-Cm. These results resolve certain disagreements among electron counts determined by different methods and are consistent with the Mott transition model and with the picture of the 5f-electrons' dual nature.

  6. Separations and Actinide Science -- 2005 Roadmap

    SciTech Connect

    Not Available

    2005-09-01

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by

  7. Chemistry of tetravalent actinide phosphates-Part I

    SciTech Connect

    Brandel, V. . E-mail: vbrandel@neuf.fr; Dacheux, N. . E-mail: dacheux@ipno.in2p3.fr

    2004-12-01

    The chemistry and crystal structure of phosphates of tetravalent cations, including that of actinides was reviewed several times up to 1985. Later, new compounds were synthesized and characterized. In more recent studies, it was found that some of previously reported phases, especially those of thorium, uranium and neptunium, were wrongly identified. In the light of these new facts an update review and classification of the tetravalent actinide phosphates is proposed in the two parts of this paper. Their crystal structure and some chemical properties are also compared to non-actinide cation phosphates.

  8. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  9. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  10. Theoretical atomic volumes of the light actinides

    SciTech Connect

    Jones, M. D.; Boettger, J. C.; Albers, R. C.; Singh, D. J.

    2000-02-15

    The zero-pressure zero-temperature equilibrium volumes and bulk moduli are calculated for the light actinides Th through Pu using two independent all-electron, full-potential, electronic-structure methods: the full-potential linear augmented-plane-wave method and the linear combinations of Gaussian-type orbitals-fitting function method. The results produced by these two distinctly different electronic-structure techniques are in good agreement with each other, but differ significantly from previously published calculations using the full-potential linear muffin-tin-orbital (FP-LMTO) method. The theoretically calculated equilibrium volumes are in some cases nearly 10% larger than the previous FP-LMTO calculations, bringing them much closer to the experimentally observed volumes. We also discuss the anomalous upturn in equilibrium volume seen experimentally for {alpha}-Pu. (c) 2000 The American Physical Society.

  11. Aqueous processing of actinides at Savannah River

    SciTech Connect

    Gray, J.H.

    1990-01-01

    A number of changes affecting the DP-Complex are having an impact on operations at the Savannah River Site (SRS). In order for SRS to continue as a major contributor within the DP-Complex and remain in position to respond to requests based on new initiatives, programs aimed at redirecting the actinide processing activities have been started. One area undergoing process modifications is F-Canyon, where most of the plutonium feedstocks are processed. Programs already underway that are affecting the dissolution of plutonium materials in canyon dissolvers and the purification of aqueous streams in the second plutonium solvent extraction cycle are discussed. Issues influencing program direction involve environmental concerns, waste minimization, health protection, storage limitations, and material recycle. Each of these issues is discussed in relation to operations in F-Canyon and results based on initial development studies are presented.

  12. Complexation of actinides with derivatives of oxydiaceticacid

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2006-01-04

    Complexation of Np(V), U(VI) and Nd(III) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) was studied in comparison with the complexation with oxydiacetic acid (ODA). Stability constants and enthalpy of complexation were determined by potentiometry, spectrophotometry and calorimetry. Thermodynamic parameters, in conjunction with structural information of solid compounds, indicate that DMOGA and TMOGA form tridentate complexes with the ether-oxygen participating in bonding with actinide/lanthanide ions. The trends in the stability constants, enthalpy and entropy of complexation are discussed in terms of the difference in the hydration of the amide groups and carboxylate groups and the difference in the charge density of the metal ions.

  13. Electrochemical decontamination of actinide processing gloveboxes

    SciTech Connect

    Lugo, J.L.; Wedman, D.E.; Nelson, T.O.

    1997-12-31

    Electrochemical technology for the decontamination of metallic surfaces has been successfully demonstrated. Highly enriched uranium and stainless steel surfaces are readily decontaminated to Low Level Waste (LLW) criteria using this process. This process is similar to electropolishing and utilizes the anodic dissolution of the substrate material to generate a clean surface. The surface contaminants are thus removed and collected along with the stripped substrate material as a compact precipitate. This separation allows the electrolyte to be recycled indefinitely. Using an alkaline Sodium Sulfate electrolyte solution, we are able to decontaminate to low levels of alpha activity, gloveboxes previously used in Actinide processing. Surfaces with contamination levels > 1,000,000 cpm alpha activity have been decontaminated to levels as low as 7,000. The process is rapid with decontamination occurring at a rate of over 3 square cm/sec.

  14. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J.W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  15. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    SciTech Connect

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  16. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  17. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

  18. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  19. In-situ mineralization of actinides with phytic acid

    SciTech Connect

    Nash, K.L.; Jensen, M.P.; Morss, L.R.; Appelman, E.H.

    1997-12-31

    A new approach to the remediation of actinide contamination is described. A hydrolytically unstable organophosphorus compound, phytic acid, is introduced into the contaminated environment. In the short term (up to several hundred years), phytate acts as a cation exchanger to absorb mobile actinide ions from ground waters. Ultimately, phytate decomposes to release phosphate and promote the formation of insoluble phosphate mineral phases, considered an ideal medium to immobilize actinides, as it forms compounds with the lowest solubility of any candidate mineral species. This overview will discuss the rate of hydrolysis of phytic acid, the formation of lanthanide/actinide phosphate mineral forms, the cation exchange behavior of insoluble phytate, and results from laboratory demonstration of the application to soils from the Fernald site.

  20. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants

    SciTech Connect

    D. R. Peterman; M. R. Greenhalgh; R. D. Tillotson; J. R. Klaehn; M. K. Harrup; T. A. Luther; J. D. Law; L. M. Daniels

    2008-09-01

    The selective extraction of the minor actinides (Am(III) and Cm(III)) from the lanthanides is an important part of advanced reprocessing of spent nuclear fuel. This separation would allow the Am/Cm to be fabricated into targets and recycled to a reactor and the lanthanides to be dispositioned. This separation is difficult to accomplish due to the similarities in the chemical properties of the trivalent actinides and lanthanides. Research efforts at the Idaho National Laboratory have identified an innovative synthetic pathway yielding new regiospecific dithiophosphinic acid (DPAH) extractants. The synthesis provides DPAH derivatives that can address the issues concerning minor actinide separation and extractant stability. For this work, two new symmetric DPAH extractants have been prepared. The use of these extractants for the separation of minor actinides from lanthanides will be discussed.

  1. Actinide targets for the synthesis of super-heavy elements

    DOE PAGESBeta

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  2. Actinide Source Term Program, position paper. Revision 1

    SciTech Connect

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-11-15

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA {open_quotes}expert panel{close_quotes} model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the {open_quotes}inventory limits{close_quotes} model is the only existing defensible model for the actinide source term. The model effort in progress, {open_quotes}chemical modeling of mobile actinide concentrations{close_quotes}, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the {open_quotes}Inventory limits{close_quotes} model.

  3. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  4. Recovery Online

    ERIC Educational Resources Information Center

    Clark, John R.

    2007-01-01

    Since the founding of Alcoholics Anonymous (AA) in 1935, programs offering opportunity for recovery from alcoholism and other addictions have undergone vast changes. The Internet has created nearly limitless opportunities for recovering people and those seeking recovery to find both meetings and places where they can gather virtually and discuss…

  5. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  6. A Heterogeneous Sodium Fast Reactor Designed to Transmute Minor Actinide Actinide Waste Isotopes into Plutonium Fuel

    SciTech Connect

    Samuel E. Bays

    2011-02-01

    An axial heterogeneous sodium fast reactor design is developed for converting minor actinide waste isotopes into plutonium fuel. The reactor design incorporates zirconium hydride moderating rods in an axial blanket above the active core. The blanket design traps the active core’s axial leakage for the purpose of transmuting Am-241 into Pu-238. This Pu-238 is then co-recycled with the spent driver fuel to make new driver fuel. Because Pu-238 is significantly more fissile than Am-241 in a fast neutron spectrum, the fissile worth of the initial minor actinide material is upgraded by its preconditioning via transmutation in the axial targets. Because, the Am-241 neutron capture worth is significantly stronger in a moderated epithermal spectrum than the fast spectrum, the axial targets serve as a neutron trap which recovers the axial leakage lost by the active core. The sodium fast reactor proposed by this work is designed as an overall transuranic burner. Therefore, a low transuranic conversion ratio is achieved by a degree of core flattening which increases axial leakage. Unlike a traditional “pancake” design, neutron leakage is recovered by the axial target/blanket system. This heterogeneous core design is constrained to have sodium void and Doppler reactivity worth similar to that of an equivalent homogeneous design. Because minor actinides are irradiated only once in the axial target region; elemental partitioning is not required. This fact enables the use of metal targets with electrochemical reprocessing. Therefore, the irradiation environment of both drivers and targets was constrained to ensure applicability of the established experience database for metal alloy sodium fast reactor fuels.

  7. Microbial transformations of actinides in the environment

    NASA Astrophysics Data System (ADS)

    Livens, F. R.; Al-Bokari, M.; Fomina, M.; Gadd, G. M.; Geissler, A.; Lloyd, J. R.; Renshaw, J. C.; Vaughan, D. J.

    2010-03-01

    The diversity of microorganisms is still far from understood, although many examples of the microbial biotransformation of stable, pollutant and radioactive elements, involving Bacteria, Archaea and Fungi, are known. In estuarine sediments from the Irish Sea basin, which have been labelled by low level effluent discharges, there is evidence of an annual cycle in Pu solubility, and microcosm experiments have demonstrated both shifts in the bacterial community and changes in Pu solubility as a result of changes in redox conditions. In the laboratory, redox transformation of both U and Pu by Geobacter sulfurreducens has been demonstrated and EXAFS spectroscopy has been used to understand the inability of G. sufurreducens to reduce Np(V). Fungi promote corrosion of metallic U alloy through production of a range of carboxylic acid metabolites, and are capable of translocating the dissolved U before precipitating it externally to the hyphae, as U(VI) phosphate phases. These examples illustrate the far-reaching but complex effects which microorganisms can have on actinide behaviour.

  8. Synthesis of crystalline ceramics for actinide immobilisation

    SciTech Connect

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-07-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  9. Actinides AMS at CIRCE in Caserta (Italy)

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; Gialanella, L.; Rogalla, D.; Petraglia, A.; Guan, Y.; De Cesare, N.; D'Onofrio, A.; Quinto, F.; Roca, V.; Sabbarese, C.; Terrasi, F.

    2010-04-01

    The operation of Nuclear Power Plants and atmospheric tests of nuclear weapons performed in the past, together with production, transport and reprocessing of nuclear fuel, lead to the release into the environment of a wide range of radioactive nuclides, such as uranium, plutonium, fission and activation products. These nuclides are present in the environment at ultra trace levels. Their detection requires sensitive techniques like AMS (Accelerator Mass Spectrometry). In order to perform isotopic ratio measurements of the longer-lived actinides, e.g., of 236U relative to the primary 238U and various Pu isotopes relative to 239Pu, an upgrade of the CIRCE accelerator (Center for Isotopic Research on Cultural and Environmental Heritage) in Caserta, Italy, is underway. In this paper we report on the results of simulations aiming to define the best ion optics and to understand the origin of possible measurement background. The design of a high resolution TOF- E (Time of Flight-Energy) detector system is described, which will be used to identify the rare isotopes among interfering background signals.

  10. Electrochemical decontamination system for actinide processing gloveboxes

    SciTech Connect

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  11. Correlation and relativistic effects in actinide ions

    SciTech Connect

    Safronova, U. I.; Safronova, M. S.

    2011-11-15

    Wavelengths, line strengths, and transition rates are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited 6s{sup 2}6p{sup 5}nl and 6s6p{sup 6}nl states and the ground 6s{sup 2}6p{sup 6} state in Ac{sup 3+}, Th{sup 4+}, and U{sup 6+} Rn-like ions. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in these hole-particle systems. The RMBPT method agrees with multiconfigurational Dirac-Fock (MCDF) calculations in lowest order, includes all second-order correlation corrections, and includes corrections from negative-energy states. The calculations start from a [Xe]4f{sup 14}5d{sup 10}6s{sup 2}6p{sup 6} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. Evaluated multipole matrix elements for transitions from excited states to the ground states are used to determine the line strengths, transition rates, and multipole polarizabilities. This work provides a number of yet unmeasured properties of these actinide ions for various applications and for benchmark tests of theory and experiment.

  12. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  13. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  14. Crystal growth methods dedicated to low solubility actinide oxalates

    NASA Astrophysics Data System (ADS)

    Tamain, C.; Arab-Chapelet, B.; Rivenet, M.; Grandjean, S.; Abraham, F.

    2016-04-01

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am2(C2O4)3(H2O)3·xH2O, Th(C2O4)2·6H2O, M2+x[PuIV2-xPuIIIx(C2O4)5]·nH2O and M1-x[PuIII1-xPuIVx(C2O4)2·H2O]·nH2O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV-visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds.

  15. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.

    PubMed

    Allred, Benjamin E; Rupert, Peter B; Gauny, Stacey S; An, Dahlia D; Ralston, Corie Y; Sturzbecher-Hoehne, Manuel; Strong, Roland K; Abergel, Rebecca J

    2015-08-18

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications. PMID:26240330

  16. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  17. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  18. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides

    PubMed Central

    Allred, Benjamin E.; Rupert, Peter B.; Gauny, Stacey S.; An, Dahlia D.; Ralston, Corie Y.; Sturzbecher-Hoehne, Manuel; Strong, Roland K.; Abergel, Rebecca J.

    2015-01-01

    Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications. PMID:26240330

  19. A prospective study of common variants in the RAR-related orphan receptor alpha (RORalpha) gene and risk of neovascular age-related macular degeneration

    PubMed Central

    Schaumberg, Debra A.; Chasman, Daniel; Morrison, Margaux A.; Adams, Scott M.; Guo, Qun; Hunter, David J.; Hankinson, Susan E.; DeAngelis, Margaret M.

    2010-01-01

    Objectives The RAR-related orphan receptor alpha (RORalpha) gene is implicated as a candidate for age-related macular degeneration (AMD) through a previous microarray expression study, linkage data, biological plausibility, and two clinic-based cross sectional studies. We aimed to determine if common variants in RORalpha predict future risk of neovascular AMD. Methods We measured genotypes for 18 variants in intron 1 of the RORalpha gene among 164 cases who developed neovascular AMD and 485 age- and sex-matched controls in a prospective nested case-control study within the Nurses’ Health Study and the Health Professionals Follow-up Study. We determined the incidence rate ratios (IRR) and 95% confidence intervals (CI) for neovascular AMD for each variant, and examined interactions with other AMD-associated variants and modifiable risk factors. Results We identified a single SNP (rs12900948) that was significantly associated with increased incidence of neovascular AMD. Participants with one and two copies of the “G” allele were 1.73 (CI= 1.32–2.27) and 2.99 (CI=1.74–5.14) times more likely to develop neovascular AMD. Individuals homozygous for both the “G” allele of rs12900948 and ARMS2 A69S had a 40.8-fold increased risk of neovascular AMD (CI=10.1–164; P for interaction=0.017). Cigarette smokers who carried two copies of the “G” allele had a 9.89-fold risk of neovascular AMD, but the interaction was not significant (P=0.08). We identified a significant AMD-associated haplotype block containing SNPs rs730754, rs8034864, and rs12900948, with P-values for ACA=1.16 × 10−9, ACG=5.85 × 10−12, and GAA=0.0001 when compared to all other haplotypes. Conclusion Common variants and haplotypes within the RORalpha gene appear to act synergistically with the ARMS2 A69S polymorphism to increase risk of neovascular AMD. These data add further evidence of a high level of complexity linking genetic and modifiable risk factors to AMD development and should

  20. Prompt Fission Neutron Spectra of Actinides

    SciTech Connect

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  1. Modeling actinide chemistry with ASPEN PLUS

    SciTech Connect

    Grigsby, C.O.

    1995-12-31

    When chemical engineers think of chemical processing, they often do not include the US government or the national laboratories as significant participants. Compared to the scale of chemical processing in the chemical process, petrochemical and pharmaceutical industries, the government contribution to chemical processing is not large. However, for the past fifty years, the US government has been, heavily involved in chemical processing of some very specialized materials, in particular, uranium and plutonium for nuclear weapons. Individuals and corporations have paid taxes that, in part have been used to construct and to maintain a series of very expensive laboratories and production facilities throughout the country. Even ignoring the ongoing R & D costs, the price per pound of enriched uranium or of plutonium exceeds that of platinum by a wide margin. Now, with the end of the cold war, the government is decommissioning large numbers of nuclear weapons and cleaning up the legacy of radioactive wastes generated over the last fifty years. It is likely that the costs associated with the build-down and clean-up of the nuclear weapons complex will exceed the investment of the past fifty years of production. Los Alamos National Laboratory occupies a special place in the history of nuclear weapons. The first weapons were designed and assembled at Los Alamos using uranium produced in Oak Ridge, Tennessee or plutonium produced in Richland, Washington. Many of the thermophysical and metallurgical properties of actinide elements have been investigated at Los Alamos. The only plutonium processing facility currently operating in the US is in Los Alamos, and the Laboratory is striving to capture and maintain the uranium processing technology applicable to the post-cold war era. Laboratory researchers are actively involved in developing methods for cleaning up the wastes associated with production of nuclear weapons throughout the US.

  2. In pursuit of homoleptic actinide alkyl complexes.

    PubMed

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory. PMID:22716022

  3. Advancing the scientific basis of trivalent actinide-lanthanide separations

    SciTech Connect

    Nash, K.L.

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  4. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Astrophysics Data System (ADS)

    Murrell, M. T.; Burnett, D. S.

    1987-04-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  5. Systematic view of optical absorption spectra in the actinide series

    SciTech Connect

    Carnall, W.T.

    1985-01-01

    In recent years sufficient new spectra of actinides in their numerous valence states have been measured to encourage a broader scale analysis effort than was attempted in the past. Theoretical modelling in terms of effective operators has also undergone development. Well established electronic structure parameters for the trivalent actinides are being used as a basis for estimating parameters in other valence states and relationships to atomic spectra are being extended. Recent contributions to our understanding of the spectra of 4+ actinides have been particularly revealing and supportive of a developing general effort to progress beyond a preoccupation with modelling structure to consideration of the much broader area of structure-bonding relationships. We summarize here both the developments in modelling electronic structure and the interpretation of apparent trends in bonding. 60 refs., 9 figs., 1 tab.

  6. Advances in actinide solid-state and coordination chemistry

    SciTech Connect

    Burns, Peter C; Ikeda, Y.; Czerwinski, K.

    2011-01-31

    Actinide solid-state and coordination chemistry has advanced through unexpected results that have further revealed the complex nature of the 5f elements. Nanoscale control of actinide materials is emerging, as shown by the creation of a considerable range of cluster and tubular topologies. Departures from established structural trends for actinyl ions are provided by cation-cation interactions in which an O atom of one actinyl ion is an equatorial ligand of a bipyramid of another actinyl ion. The solid-state structural complexity of actinide materials has been further demonstrated by open framework materials with interesting properties. The U(VI) tetraoxide core has been added to this cation's repertoire of coordination possibilities. The emergence of pentavalent uranium solid-state and coordination chemistry has resulted from the prudent selection of ligands. Finally, analogues of the uranyl ion have challenged our understanding of this normally unreactive functional group.

  7. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1987-01-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  8. Actinide Dioxides in Water: Interactions at the Interface

    SciTech Connect

    Alexandrov, Vitaly; Shvareva, Tatiana Y.; Hayun, Shmuel; Asta, Mark; Navrotsky, Alexandra

    2011-12-15

    A comprehensive understanding of chemical interactions between water and actinide dioxide surfaces is critical for safe operation and storage of nuclear fuels. Despite substantial previous research, understanding the nature of these interactions remains incomplete. In this work, we combine accurate calorimetric measurements with first-principles computational studies to characterize surface energies and adsorption enthalpies of water on two fluorite-structured compounds, ThO₂ and CeO₂, that are relevant for understanding the behavior of water on actinide oxide surfaces more generally. We determine coverage-dependent adsorption enthalpies and demonstrate a mixed molecular and dissociative structure for the first hydration layer. The results show a correlation between the magnitude of the anhydrous surface energy and the water adsorption enthalpy. Further, they suggest a structural model featuring one adsorbed water molecule per one surface cation on the most stable facet that is expected to be a common structural signature of water adsorbed on actinide dioxide compounds.

  9. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  10. FY2010 Annual Report for the Actinide Isomer Detection Project

    SciTech Connect

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Miller, Erin A.; Hatarik, R.

    2011-01-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for Special Nuclear Materials (SNM). Future work will include a follow-up measurement scheduled for December 2010 at LBNL. Lessons learned from the July 2010 measurements will be incorporated into these new measurements. Analysis of both the July and December experiments will be completed in a few months. A research paper to be submitted to a peer-reviewed journal will be drafted if the conclusions from the measurements warrant publication.

  11. Removal of actinides from nuclear fuel reprocessing wastes using an organophosphorous extractant. [DHDECMP

    SciTech Connect

    Chamberlain, D.B.; Maxey, H.R.; McIsaac, L.D.; McManus, G.J.

    1980-01-01

    By removing actinides from nuclear fuel reprocessing wastes, long term waste storage hazards are reduced. A solvent extraction process to remove actinides has been demonstrated in miniature mixer-settlers and in simulated columns using actinide feeds. Nonradioactive pilot plant results have established the feasibility of using pulse columns for the process.

  12. Selection of actinide chemical analogues for WIPP tests

    SciTech Connect

    Villarreal, R.; Spall, D.

    1995-07-05

    The Department of Energy must demonstrate the effectiveness of the Waste Isolation Pilot Plant (WIPP) as a permanent repository for the disposal of transuranic (TRU) waste. Performance assessments of the WIPP require that estimates of the transportability and outcome of the radionuclides (actinides) be determined from disposal rooms that may become either partially or completely filled with brine. Federal regulations limit the amount of radioactivity that may be unintentionally released to the accessible environment by any mechanism during the post closure phase up to 10,000 years. Thermodynamic models have been developed to predict the concentrations of actinides in the WIPP disposal rooms under various situations and chemical conditions. These models are based on empirical and theoretical projections of the chemistry that might be present in and around the disposal room zone for both near and long-term periods. The actinides that are known to be present in the TRU wastes (and are included in the model) are Th, U, Np, Pu, and Am. Knowledge of the chemistry that might occur in the disposal rooms when the waste comes in contact with brine is important in understanding the range of oxidation states that might be present under different conditions. There is a need to establish the mechanisms and resultant rate of transport, migration, or effective retardation of actinides beyond the disposal rooms to the boundary of the accessible environment. The influence of the bulk salt rock, clay sediments and other geologic matrices on the transport behavior of actinides must be determined to establish the overall performance and capability of the WIPP in isolating waste from the environment. Tests to determine the capabilities of the WIPP geologic formations in retarding actinide species in several projected oxidation states would provide a means to demonstrate the effectiveness of the WIPP in retaining TRU wastes.

  13. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    SciTech Connect

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  14. MINING INTEGRAL ACTINIDES CROSS SECTIONS FROM REACTOR DATA

    SciTech Connect

    PUIGH RJ

    2009-09-11

    The conclusions of this paper are: (1) mining of actinide cross-sections from reactor data is a viable and inexpensive approach to confirm burn-up codes; (2) extensive data for actinides in Hanford test data ({approx} 200 radiochemical analyses); (3) not only cross-section values and reaction rates can be established but also possible benchmark like data can be constructed to test and validate reactor and criticality safety codes such as SCALE/KENO or MCNPX; and (4) analysis along multiple transmutation paths can be evaluated to show consistency.

  15. New cubic structure compounds as actinide host phases

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.

    2010-03-01

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite

  16. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  17. Thermally unstable complexants/phosphate mineralization of actinides

    SciTech Connect

    Nash, K.

    1996-10-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn`t be worse than the disease) and verification of system performance.

  18. Physics studies of higher actinide consumption in an LMR

    SciTech Connect

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  19. Production of heavy actinides in incomplete fusion reactions

    NASA Astrophysics Data System (ADS)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  20. Analogue Study of Actinide Transport at Sites in Russia

    SciTech Connect

    Novikov, A P; Simmons, A M; Halsey, W G

    2003-02-12

    The U. S. Department of Energy (DOE) and the Russian Academy of Sciences (RAS) are engaged in a three-year cooperative study to observe the behavior of actinides in the natural environment at selected disposal sites and/or contamination sites in Russia. The purpose is to develop experimental data and models for actinide speciation, mobilization and transport processes in support of geologic repository design, safety and performance analyses. Currently at the mid-point of the study, the accomplishments to date include: evaluation of existing data and data needs, site screening and selection, initial data acquisition, and development of preliminary conceptual models.

  1. Observation of Large Scissors Resonance Strength in Actinides

    NASA Astrophysics Data System (ADS)

    Guttormsen, M.; Bernstein, L. A.; Bürger, A.; Görgen, A.; Gunsing, F.; Hagen, T. W.; Larsen, A. C.; Renstrøm, T.; Siem, S.; Wiedeking, M.; Wilson, J. N.

    2012-10-01

    The orbital M1 scissors resonance has been measured for the first time in the quasicontinuum of actinides. Particle-γ coincidences are recorded with deuteron and He3-induced reactions on Th232. The residual nuclei Th231,232,233 and 232,233Pa show an unexpectedly strong integrated strength of BM1=11-15μn2 in the Eγ=1.0-3.5MeV region. The increased γ-decay probability in actinides due to scissors resonance is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have an impact on stellar nucleosynthesis.

  2. Novel complexing agents for the efficient separation of actinides and remediation of actinide-contaminated sites

    SciTech Connect

    Baisden, P.; Kadkhodayan, B.

    1996-03-15

    Research into the coordination chemistry of transactinide elements should provide us with new fundamental knowledge about structure, geometry, and stability of these metal complexes. Our approach involves the design, synthesis, and characterization of {open_quotes}expanded porphyrin{close_quotes} macrocyclic ligands which coordinate the actinide metal cations with high thermodynamic affinity and kinetic stability. We can use the knowledge from understanding the fundamental coordination chemistry of these elements as a stepping stone to heavy metal detoxification, radioactive waste cleanup, and possibly radioactive isotope separation. The critical components of this research endeavor, along with the viability of metal complex formation, will be correlated to ring size and core geometry of the ligand and, the atomic radius, oxidation state, coordination geometry and coordination number of the transactinium metal ion. These chelating agents may have certain applications to the solution of some radioactive waste problems if they can be attached to polymer supports and used to chemically separate the radioactive components in waste.

  3. Joint Recovery of f-Elements Using Solvent Based on Carbamoyl-phosphine Oxides Heading Toward ORGA-Process

    SciTech Connect

    Ozawa, M.; Babain, V.; Shadrin, A.; Strelkov, S.; Kiseleva, R.; Murzin, A.

    2007-07-01

    Development of the recovery system which allows realizing joint recovery of all the actinides from the HLW is one of the relevant questions in radiochemistry. Carbamoyl-phosphine oxides (CMPO) were proposed and studied as extractant for rare-earth and transplutonium elements (RE and TPE) recovery from HLW with high acidity, for example TRUEX- and SETFICS-process. Organic system CMPO with TBP in kerosene is usually used as a solvent. However, low solubility of actinide adducts with CMPO results in third phase formation when the actinides concentration in organic phase is high. Application of fluorinated polar diluents increases the solubility of CMPO adducts with actinides in organic phase. It was shown that solvent based on carbamoyl-phosphonate in fluorinated polar diluents allows to recover both uranium and minor actinides concurrently, and there was no precipitation or third phase formation even at high uranium concentration in organic phase. The f-elements joint recovery process based on this solvent was proposed. Solvent containing octyl-phenyl-N,N-di-isobutyl-carbamoyl-methylene-phosphine oxide (O{phi}D[iB]CMPO) in polar diluent meta-nitro-benzo-trifluoride (fluoro-pole-732) was screened out for these studies. And, combined use of them with TBP modifier allows to provide uranium and europium (americium) high recovery characteristics concurrently with an opportunity of attainment of f-elements high concentration in organic phase. As it was indicated, precipitates or third phase was absent even when uranium content in organic phase was 100 g/l. Recovery efficiency to europium remained sufficiently high for its effective recovery. Organic phase saturation about 100% from theoretical attains in europium recovery with this system. Increasing of (O{phi}D[iB]CMPO) concentration in recovery system from 0.2 to 0.8 M results in europium content increasing in organic phase, but no third phase formation is observed. The highest possible europium content in organic phase

  4. Methyltrihydroborate complexes of the lanthanides and actinides

    SciTech Connect

    Shinomoto, R.S.

    1984-11-01

    Reaction of MC1/sub 4/ (M = Zr, Hf, U, Th, Np) with LiBH/sub 3/CH/sub 3/ in chlorobenzene produces volatile, hexane-soluble M(BH/sub 3/CH/sub 3/)/sub 4/. Crystal structures are monomeric, tetrahedral species. Lewis base adducts prepared include U(BH/sub 3/CH/sub 3/)/sub 4/.THT, Th(BH/sub 3/CH/sub 3/)/sub 4/.L (L = THF (tetrahydrofuran), THT (tetrahydrothiophene), SMe/sub 2/, OMe/sub 2/), U(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, pyridine, NH/sub 3/), Th(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, THT, py, NH/sub 3/), M(BH/sub 3/CH/sub 3/)/sub 4/.L-L (M = U, Th; L-L = dme (1,2-dimethoxyethane), bmte (bis(1,2-methylthio)ethane), tmed (N,N,N',N'-tetramethylethylenediamine), dmpe (1,2-dimethylphosphinoethane)) and Th(BH/sub 3/CH/sub 3/)/sub 4/.1/2 OEt/sub 2/. Reaction of MC1/sub 3/ (M = Ho, Yb, Lu) with LiBH/sub 3/CH/sub 3/ in diethyl ether produces volatile, toluene-soluble M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/. Other Lewis base adducts prepared from M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/ include Ho(BH/sub 3/CH/sub 3/)/sub 3/.L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.2L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.tmed, Ho(BH/sub 3/CH/sub 3/)/sub 3/.3/2 L-L (L-L = dmpe, bmte), Yb(BH/sub 3/CH/sub 3/)/sub 3/.3/2 dmpe, Yb(BH/sub 3/Ch/sub 3/).L (L = THF, dme), Yb(BH/sub 3/CH/sub 3/)/sub 3/.2THF, and Lu(BH/sub 3/CH/sub 3/)/sub 3/.THF. By structural criteria, the bonding in actinide and lanthanide methyltrihydroborate complexes is primarily ionic in character even though they display covalent-like physical properties. Spectroscopic measurements indicate that there is some degree of covalent bonding in U(BH/sub 3/CH/sub 3/)/sub 4/.

  5. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    SciTech Connect

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  6. Separation of actinides from irradiated An-Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl-KCl

    NASA Astrophysics Data System (ADS)

    Souček, P.; Murakami, T.; Claux, B.; Meier, R.; Malmbeck, R.; Tsukada, T.; Glatz, J.-P.

    2015-04-01

    An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl-KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An-Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U67-Pu19-Zr10-MA2-RE2 (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide-aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  7. Selective recovery of uranium and thorium ions from dilute aqueous solutions by animal biopolymers.

    PubMed

    Ishikawa, Shin-ichi; Suyama, Kyozo; Arihara, Keizo; Itoh, Makoto

    2002-06-01

    Selective actinide ion recovery from dilute, aqueous, multication waste streams is an important problem. The recovery of uranium (U) and thorium (Th) by various animal biopolymers was examined. Of four species of biopolymers tested, a high uptake of uranium and thorium was found in hen eggshell membrane (ESM) and silk proteins, with the maximum uranium and thorium recovery exceeding 98% and 79%, respectively. The uptake of U and Th was significantly affected by the pH of the solution. The optimum pH values were 6 and 3 for the uptake of U and Th, respectively. The effect of temperature differed with the metal. The uptake of U decreased with increasing temperature (30-50 degrees C), whereas the Th uptake increased with increasing temperature. Selective recovery of U and Th from dilute aqueous binary and multimetal solutions was also examined. ESM and silk proteins tested were effective and selective for removing each metal by controlling the pH and temperature of the solution. In multimetal systems, the order of sorption of ESM proteins was preferential: U > Cu > Cd > Mn > Pb > Th > Ni > Co > Zn at pH 6 and Th > U > Cu > Pb > Cd > Mn > Co > Ni = Zn at pH 3. These biopolymers appear to have potential for use in a commercial process for actinide recovery from actinide-containing wastewater. PMID:12019520

  8. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  9. Electronic structure and ionicity of actinide oxides from first principles

    NASA Astrophysics Data System (ADS)

    Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W. M.; Stocks, G. M.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO , A2O3 , and AO2 ( A=U , Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f -electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely, corresponding to A4+ ions in the dioxide and A3+ ions in the sesquioxides. In contrast, the A2+ ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground-state valency agrees with the nominal valency expected from a simple charge counting.

  10. Citrate based ``TALSPEAK`` lanthanide-actinide separation process

    SciTech Connect

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

  11. Molecular solids of actinide hexacyanoferrate: Structure and bonding

    NASA Astrophysics Data System (ADS)

    Dupouy, G.; Dumas, T.; Fillaux, C.; Guillaumont, D.; Moisy, P.; Den Auwer, C.; Le Naour, C.; Simoni, E.; Fuster, E. G.; Papalardo, R.; Sanchez Marcos, E.; Hennig, C.; Scheinost, A.; Conradson, S. D.; Shuh, D. K.; Tyliszczak, T.

    2010-03-01

    The hexacyanometallate family is well known in transition metal chemistry because the remarkable electronic delocalization along the metal-cyano-metal bond can be tuned in order to design systems that undergo a reversible and controlled change of their physical properties. We have been working for few years on the description of the molecular and electronic structure of materials formed with [Fe(CN)6]n- building blocks and actinide ions (An = Th, U, Np, Pu, Am) and have compared these new materials to those obtained with lanthanide cations at oxidation state +III. In order to evaluate the influence of the actinide coordination polyhedron on the three-dimensional molecular structure, both atomic number and formal oxidation state have been varied : oxidation states +III, +IV. EXAFS at both iron K edge and actinide LIII edge is the dedicated structural probe to obtain structural information on these systems. Data at both edges have been combined to obtain a three-dimensional model. In addition, qualitative electronic information has been gathered with two spectroscopic tools : UV-Near IR spectrophotometry and low energy XANES data that can probe each atom of the structural unit : Fe, C, N and An. Coupling these spectroscopic tools to theoretical calculations will lead in the future to a better description of bonding in these molecular solids. Of primary interest is the actinide cation ability to form ionic — covalent bonding as 5f orbitals are being filled by modification of oxidation state and/or atomic number.

  12. Actinide Targets for Neutron Cross Section Measurements (C)

    SciTech Connect

    J. D. Baker; C. A. McGrath

    2006-04-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from “minor” actinides that currently have poorly known (n,g) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  13. ACTINIDE-SPECIFIC INTERFACIAL CHEMISTRY OF MONOLAYER COATED MESOPOROUS CERAMICS

    EPA Science Inventory

    The need exists in the management of Hanford's high level wastes (HLW) to be able to selectively and completely remove the actinides so that HLW volume can be minimized and the non-radioactive components can be segregated and disposed of as low level waste. In addition, the short...

  14. ACTINIDE BIOCOLLOID FORMATION IN BRINE BY HALOPHILIC BACTERIA

    SciTech Connect

    GILLOW,J.B.; FRANCIS,A.J.; DODGE,C.J.; HARRIS,R.; BEVERIDGE,T.J.; BRADY,P.B.; PAPENGUTH,H.W.

    1998-11-09

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  15. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    SciTech Connect

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  16. Actinide biocolloid formation in brine by halophilic bacteria

    SciTech Connect

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1998-12-31

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  17. Placental transfer of the actinides and related heavy elements

    SciTech Connect

    Sikov, M.R.

    1986-11-01

    A selective literature review dealing with prenatal exposure of animals and humans to actinides and related heavy elements, comparative aspects of placental transfer and fetoplacental distribution are considered. General patterns have been derived from typical quantitative values, and used to compare similarities and dissimilarities, and to examine factors responsible for observed differences. 37 refs., 2 tabs.

  18. ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

  19. The INE-Beamline for actinide science at ANKA

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Butorin, S.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Löble, M.; Metz, V.; Seibert, A.; Steppert, M.; Vitova, T.; Walther, C.; Geckeis, H.

    2012-04-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R&D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 × 10+6 times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ˜2.1 keV (P K-edge) and ˜25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  20. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.

    PubMed

    Durbin, Patricia W

    2008-11-01

    All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-LI(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage. PMID:18849679

  1. Actinide Speciation and Solubility in a Salt Repository (Invited)

    NASA Astrophysics Data System (ADS)

    Reed, D.; Borkowski, M.; Richmann, M.; Lucchini, J.; Khaing, H.; Swanson, J.

    2009-12-01

    The use of bedded salt deposits for the permanent disposal of nuclear waste continues to receive much attention in the United States and internationally. This is largely based on the highly successful Waste Isolation Pilot Plant (WIPP) transuranic waste repository that was opened in 1999 in Southeastern New Mexico. A bedded salt formation, such as the one in which the WIPP is located, has many advantages that make it an ideal geology for permanent disposal of nuclear waste. This includes well established mining techniques, self-sealing that lead to a naturally-induced geologic isolation, a relatively dry environment, and a favorable chemistry. Herein we report on recent progress in our investigations, as part of ongoing recertification effort for the operating WIPP repository, to establish the redox distribution and overall solubility of actinides in brine. The overall ranking of actinides, from the perspective of potential contribution to release from the WIPP, is: Pu ~ Am >>U > Th >> Np, Cm. Our recent research emphasis has centered on the redox chemistry of multivalent actinides (e.g., U, Pu and Np) with the use of oxidation-state-invariant analogs (Th and Nd) to establish the solubilities. Under a wide range of conditions investigated, the predominant oxidation states established are Pu(III) and Pu(IV) for plutonium, U(IV) and U(VI) for uranium, and Am (III) for americium. Reduction pathways for plutonium include reaction with organics, reaction with reduced iron, and bioreduction by halophiles under anaerobic conditions. Uranium(VI) can also be reduced to U(IV) by reduced iron and microbial processes. Solubility data for neodymium (+3 analog), Uranium (+6 analog) and thorium (+4 analog) in brine are also reported. These data extend our past understanding of WIPP-specific actinide chemistry and show the WIPP, and salt-based repositories in general, to be a robust repository design from the perspective of actinide containment and immobilization.

  2. Sequestering agents for the removal of actinides from waste streams

    SciTech Connect

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R.

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  3. The INE-Beamline for actinide science at ANKA

    SciTech Connect

    Rothe, J.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Loeble, M.; Metz, V.; Steppert, M.; Vitova, T.; Geckeis, H.; Butorin, S.; Seibert, A.; Walther, C.

    2012-04-15

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R and D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 x 10{sup +6} times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between {approx}2.1 keV (P K-edge) and {approx}25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  4. Development and Testing of Diglycolamide Functionalized Mesoporous Silica for Sorption of Trivalent Actinides and Lanthanides.

    PubMed

    Shusterman, Jennifer A; Mason, Harris E; Bowers, Jon; Bruchet, Anthony; Uribe, Eva C; Kersting, Annie B; Nitsche, Heino

    2015-09-23

    Sequestration of trivalent actinides and lanthanides present in used nuclear fuel and legacy wastes is necessary for appropriate long-term stewardship of these metals, particularly to prevent their release into the environment. Organically modified mesoporous silica is an efficient material for recovery and potential subsequent separation of actinides and lanthanides because of its high surface area, tunable ligand selection, and chemically robust substrate. We have synthesized the first novel hybrid material composed of SBA-15 type mesoporous silica functionalized with diglycolamide ligands (DGA-SBA). Because of the high surface area substrate, the DGA-SBA was found to have the highest Eu capacity reported so far in the literature of all DGA solid-phase extractants. The sorption behavior of europium and americium on DGA-SBA in nitric and hydrochloric acid media was tested in batch contact experiments. DGA-SBA was found to have high sorption of Am and Eu in pH 1, 1 M, and 3 M nitric and hydrochloric acid concentrations, which makes it promising for sequestration of these metals from used nuclear fuel or legacy waste. The kinetics of Eu sorption were found to be two times slower than that for Am in 1 M HNO3. Additionally, the short-term susceptibility of DGA-SBA to degradation in the presence of acid was probed using (29)Si and (13)C solid-state NMR spectroscopy. The material was found to be relatively stable under these conditions, with the ligand remaining intact after 24 h of contact with 1 M HNO3, an important consideration in use of the DGA-SBA as an extractant from acidic media. PMID:26334933

  5. Internal contamination by actinides after wounding: a robust rodent model for assessment of local and distant actinide retention.

    PubMed

    Griffiths, N M; Wilk, J C; Abram, M C; Renault, D; Chau, Q; Helfer, N; Guichet, C; Van der Meeren, A

    2012-08-01

    Internal contamination by actinides following wounding may occur in nuclear fuel industry workers or subsequent to terrorist activities, causing dissemination of radioactive elements. Contamination by alpha particle emitting actinides can result in pathological effects, either local or distant from the site of entry. The objective of the present study was to develop a robust experimental approach in the rat for short- and long- term actinide contamination following wounding by incision of the skin and muscles of the hind limb. Anesthetized rats were contaminated with Mixed OXide (MOX, uranium, plutonium oxides containing 7.1% plutonium) or plutonium nitrate (Pu nitrate) following wounding by deep incision of the hind leg. Actinide excretion and tissue levels were measured as well as histological changes from 2 h to 3 mo. Humid swabs were used for rapid evaluation of contamination levels and proved to be an initial guide for contamination levels. Although the activity transferred from wound to blood is higher after contamination with a moderately soluble form of plutonium (nitrate), at 7 d most of the MOX (98%) or Pu nitrate (87%) was retained at the wound site. Rapid actinide retention in liver and bone was observed within 24 h, which increased up to 3 mo. After MOX contamination, a more rapid initial urinary excretion of americium was observed compared with plutonium. At 3 mo, around 95% of activity remained at the wound site, and excretion of Pu and Am was extremely low. This experimental approach could be applied to other situations involving contamination following wounding including rupture of the dermal, vascular, and muscle barriers. PMID:22951478

  6. Laboratory actinide partitioning - Whitlockite/liquid and influence of actinide concentration levels

    NASA Technical Reports Server (NTRS)

    Benjamin, T. M.; Jones, J. H.; Heuser, W. R.; Burnett, D. S.

    1983-01-01

    The partition coefficients between synthetic whitlockite (beta Ca-phosphate) and coexisting silicate melts are determined for the actinide elements Th, U and Pu. Experiments were performed at 1 bar pressure and 1250 C at oxygen fugacities from 10 to the -8.5 to 10 to the -0.7 bars, and partitioning was determined from trace element radiography combined with conventional electron microprobe analysis. Results show Pu to be more readily incorporated into crystalline phases than U or Th under reducing conditions, which is attributed to the observation that Pu exists primarily in the trivalent state, while U and Th are tetravalent. Corrected partition coefficients for whitlockite of 3.6, less than or equal to 0.6, 1.2, 0.5 and less than or equal to 0.002 are estimated for Pu(+3), Pu(+4), Th(+4), U(+4) and U(+6), respectively. Experiments performed at trace levels and percent levels of UO2 indicate that Si is involved in U substitution in whitlockite, and show a reduced partition coefficient at higher concentrations of U that can be explained by effects on melt structure or the fraction of tetravalent U.

  7. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  8. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  9. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    DOEpatents

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  10. X-Ray Absorption Spectroscopy of the Actinides

    NASA Astrophysics Data System (ADS)

    Antonio, Mark R.; Soderholm, Lynda

    The recent availability of synchrotron radiation has revolutionized actinide chemistry. This is particularly true in environmental studies, where heterogeneous samples add to the already multifaceted chemistry exhibited by these ions. Environmental samples are often inhomogeneous, chemically diverse, and amorphous or poorly crystalline. Even surrogates prepared in the laboratory to simplify the natural complexity are plagued by multiple oxidation state and varied coordination polyhedra that are a reflection of inherent 5f chemistry. For example, plutonium can be found as Pu3+ Pu4+ Pu(V)O2 +, and Pu(VI)O2 2 + within naturally occurring pH-Eh conditions, consequently complex equilibria are found between these oxidation states in one solution. In addition, dissolved actinides have significant affinities for various mineral surfaces, to which they can adsorb with or without concomitant reduction-oxidation (redox) activity, depending on details of the solution and surface conditions.

  11. Actinide-specific sequestering agents and decontamination applications

    SciTech Connect

    Smith, William L.; Raymond, Kenneth N.

    1981-04-07

    With the commercial development of nuclear reactors, the actinides have become very important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. The acute chemical toxicity of tetravalent actinides, as exemplified by Th(IV), is similar to Cr(III) or Al(III). However, the acute toxicity of 239Pu(IV) is similar to strychnine, which is much more toxic than any of the non-radioactive metals such as mercury. Although the more radioactive isotopes of the transuranium elements are more acutely toxic by weight than plutonium, the acute toxicities of 239Pu, 241Am, and 244Cm are nearly identical in radiation dose, ~100 μCi/kg in rodents. Finally and thus, the extreme acute toxicity of 239Pu is attributed to its high specific activity of alpha emission.

  12. The pentavalent actinide solution chemistry in the environment.

    PubMed

    Topin, Sylvain; Aupiais, Jean

    2016-03-01

    With regard to environmental monitoring of certain nuclear facilities, pentavalent actinides, in particular neptunium and plutonium, play a key role, as the chief soluble, mobile forms of actinides. In the past five years, investigations carried out by hyphenating capillary electrophoresis to ICP-MS (CE-ICP-MS) have allowed a number of hitherto unknown thermodynamic data to be determined for Np(V) and Pu(V) interactions with the chief environmentally abundant anions. For the first time, data were provided for Pu(V) interactions with carbonate, sulfate, oxalate, chloride, and nitrate ions, allowing the Np(V)/Pu(V) analogy to be verified experimentally. Knowledge of Np(V) chemistry, especially in carbonate, and sulfate media, was also refined. These CE-ICP-MS studies, combined with some earlier findings, have brought about a renewal in the knowledge of An(V) chemistry in solution. PMID:26808225

  13. Thermodynamics of trivalent lanthanide and actinide elements in carbonate solutions

    SciTech Connect

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.

    1995-12-01

    Knowledge of the thermodynamics of actinide and lanthanide elements in various aqueous electrolyte solutions is essential for the development of actinide separation techniques. It is particularly important to understand the thermodynamics of these elements in basic and concentrated electrolyte solutions if the separation techniques are in concentrated electrolytes and to be applied to the treatment of nuclear wastes, since many of these wastes contain concentrated electrolytes and are under strongly basic conditions. Solubility experiments were conducted for neodymium(III) in bicarbonate and carbonate solutions. Experimental results were analyzed with the specific ion-interaction approach of Pitzer. A thermodynamic model was developed to describe the solubilities of corresponding carbonate compounds of neodymium(III) and americium(III) under wide ranges of pH and carbonate concentrations.

  14. Actinide solubility and spectroscopic speciation in alkaline Hanford waste solutions

    SciTech Connect

    Rao, L.; Felmy, A.R.; Rai, D.

    1996-10-01

    Information on the solubility and the speciation of actinide elements, especially plutonium and neptunium, in alkaline solutions is of importance in the development of separation techniques for the Hanford tank HLW supernatant. In the present study, experimental data on the solubilities of plutonium in simulated Hanford tank solutions were analyzed with Pitzer`s specific ion-interaction approach, which is applicable in dilute to highly concentrated electrolyte solutions. In order to investigate the formation of actinide species in alkaline solutions with ligands (e.g., hydroxide, aluminate and carbonate), spectroscopic measurements of neptunium (V), as a chemical analog of plutonium (V), were conducted. Based on the solubility data and available information on both solid and aqueous species, a thermodynamic model was proposed. The applicability and limitations of this model are discussed.

  15. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    NASA Astrophysics Data System (ADS)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  16. Crystalline matrices for immobilization of actinides: Corrosion resistance in water

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Aleksandrova, E. V.; Livshits, T. S.; Mal'kovskii, V. I.; Bychkova, Ya. V.; Tagirov, B. R.

    2014-10-01

    The rate of leaching of actinide-simulating rare-earth elements from two types of crystalline matrices consisting of titanate and titanozirconate phases was examined. The experiments were carried out at 95°C in distilled water. The rates of REE leaching from the samples were below 10-3 g/m2 day, which satisfied the requirements for the characteristics of matrices for immobilization of actinides. After passing the treated solutions through filters of 450 to 25 nm pore sizes, the REE content was changed slightly or not at all. This fact points to the minor role or to the absence of the colloidal form of REE in the solutions after the experiments.

  17. Observation of large scissors resonance strength in actinides.

    PubMed

    Guttormsen, M; Bernstein, L A; Bürger, A; Görgen, A; Gunsing, F; Hagen, T W; Larsen, A C; Renstrøm, T; Siem, S; Wiedeking, M; Wilson, J N

    2012-10-19

    The orbital M1 scissors resonance has been measured for the first time in the quasicontinuum of actinides. Particle-γ coincidences are recorded with deuteron and (3)He-induced reactions on (232)Th. The residual nuclei (231,232,233)Th and (232,233) Pa show an unexpectedly strong integrated strength of B(M1)=11-15μ(n)(2) in the E(γ)=1.0-3.5 MeV region. The increased γ-decay probability in actinides due to scissors resonance is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have an impact on stellar nucleosynthesis. PMID:23215072

  18. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  19. Pulsed photothermal spectroscopy applied to lanthanide and actinide speciation

    SciTech Connect

    Berg, J.M.; Morris, D.E.; Clark, D.L.; Tait, C.D.; Woodruff, W.H. ); Ven Der Sluys, W.G. . Dept. of Chemistry)

    1991-01-01

    Several key elements important for the application of laser-based photothermal spectroscopies to the study of the complexation chemistry of lanthanides and actinides in solution have been demonstrated. The sensitivity of f-f electronic transition energies and band intensities to subtle changes in complexation was illustrated through comparison of visible and near infra-red absorption spectra of well-characterized U(IV) dimers with alkoxide ligands. Significant improvements in spectroscopic band resolution and energy measurement precision for solution species were shown to be achievable through work in frozen glasses at 77 K using a very simple cryogenic apparatus. A pulsed-laser photothermal spectroscopy apparatus was constructed and shown to be sensitive to optical density changes of 10{sup {minus}5} in an aqueous Nd{sup 3+} solution. In addition, the capability of obtaining photothermal lensing spectra of dilute actinide solutions in frozen glasses at 77 K was demonstrated. 6 refs., 5 figs.

  20. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: An excellent combination for extraction chromatography of actinides.

    PubMed

    Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K

    2016-05-27

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions. PMID:27130582

  1. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    SciTech Connect

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  2. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    SciTech Connect

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  3. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    NASA Astrophysics Data System (ADS)

    Den Auwer, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P.; Digandomenico, V.; Le Naour, C.; Trubert, D.; Simoni, E.; Hennig, C.; Scheinost, A.; Conradson, S. D.

    2007-02-01

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations.

  4. Impact of actinide recycle on nuclear fuel cycle health risks

    SciTech Connect

    Michaels, G.E.

    1992-06-01

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR){sup 1} and Integral Fast Reactor (IF){sup 2} technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle.

  5. Relativistic effects on the thermal expansion of the actinide elements

    SciTech Connect

    Soederlind, P.; Nordstroem, L.; Lou Yongming; Johansson, B. )

    1990-09-01

    The room-temperature linear thermal-expansion coefficient is calculated for the light actinides thorium, protactinium, uranium, neptunium, and plutonium for the fcc crystal structure. The relativistic spin-orbit interaction is included in these calculations. We show that the spin-orbit splitting of the 5{ital f} band gives rise to a considerable increase of the thermal expansion and to a large extent explains the observed anomalously large thermal expansion for the neptunium and plutonium metals.

  6. Molecular Characterization of Actinide Oxocations from Protactinium to Plutonium

    SciTech Connect

    Den Auwer, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P.; Hennig, C.; Scheinost, A.; Conradson, S. D.

    2007-02-02

    This presentation addresses the structural characterization by EXAFS of actinide cations at oxidation states (V) and (VI) as one walks across the periodic table from Z = 91 (protactinium) to Z = 94 (plutonium). A structural comparison between Pa, U, Np and Pu oxocations in aqueous solution at formal oxidation states (V) and (VI) is carried out. These results are corroborated by quantum chemical and molecular dynamics calculations.

  7. Determination of actinides in urine and fecal samples

    SciTech Connect

    McKibbin, T.T.

    1992-12-31

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  8. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, Terry T.

    1993-01-01

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  9. Determination of actinides in urine and fecal samples

    DOEpatents

    McKibbin, T.T.

    1993-03-02

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  10. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    NASA Astrophysics Data System (ADS)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  11. Chemical properties of the heavier actinides and transactinides

    SciTech Connect

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  12. Toward laser ablation Accelerator Mass Spectrometry of actinides

    NASA Astrophysics Data System (ADS)

    Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Paul, M.; Collon, P.; Deibel, C.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Fonnesbeck, J.; Imel, G.

    2013-01-01

    A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

  13. A literature review of actinide-carbonate mineral interactions

    SciTech Connect

    Stout, D.L.; Carroll, S.A.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

  14. Disposition of actinides released from high-level waste glass

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-05-01

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90{degrees}C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials.

  15. Role of Strong Correlations in Disproportionation of Aqueous Actinides

    NASA Astrophysics Data System (ADS)

    Horowitz, Steven E.

    2005-03-01

    We study the role of strong electronic correlations in the disproportionation of aqueous actinide complexes An(aq) and AnO2(aq) where An = U, Np, and Pu. Correlations are expected to be important due to the localized nature of the actinide 5f orbitals. We first confirm that relativisitic DFTootnotetextADF2004.01, SCMhttp://www.scm.com, Theoretical Chemistry, Vrije Universiteit., despite yielding reasonable geometries and bond lengths, fails to reproduceootnotetextP. J. Hay, R. L. Martin, and G. Schreckenbach, J. Phys. Chem. A 104, 6259 (2000). experimentally observed degeneracies of the redox potentialsootnotetextD. L. Clark in Los Alamos Science No. 26 Vol. II (2000).. By using a continuum model for the water beyond the first solvation sphere we are able to construct and diagonalize reduced Hubbard-like models of the actinide complexes, and incorporate the missing physics of strong intra-atomic Coulomb repulsionootnotetextM. X. LaBute et al., J. Chem. Phys. 116, 3681 (2002). ootnotetextD. V. Efremov et al., cond-mat/0303414http://arxiv.org/abs/cond-mat/?0303414; E. Runge et al., cond-mat/0402124http://arxiv.org/abs/cond-mat/?0402124..

  16. Crystalline matrices for the immobilization of plutonium and actinides

    SciTech Connect

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G.

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  17. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    M. K. Meyer; S. L. Hayes; W. J. Carmack; H. Tsai

    2009-07-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior. This paper provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  18. Behavior of actinides in the Integral Fast Reactor fuel cycle

    SciTech Connect

    Courtney, J.C.; Lineberry, M.J.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  19. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

    2008-06-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

  20. Isomorphism of actinides and REE in synthetic ferrite garnets

    NASA Astrophysics Data System (ADS)

    Livshits, T. S.

    2010-02-01

    The reprocessing of spent nuclear fuel (SNF) is accompanied by the formation of liquid high-level radioactive waste (HLW). To increase the safety of handling HLW, it is proposed to extract actinide isotopes (An) and REE from them. These elements may be incorporated into crystalline matrices, e.g., based on ferrites with garnet structure, and then disposed in a geologic repository. The actinide-REE fraction is characterized by a complex composition. In addition to major components (An and REE), Al, Si, Na, and Sn occur therein in small amounts (a few wt %). Possible incorporation of the admixtures into ferrite garnets, as well as their effect on the phase composition of matrices and Th, Ce, Gd, and La contents were studied. It was shown that admixtures enter into garnet by means of isomorphic replacement. The properties of samples change only when admixtures are added in amounts exceeding their concentrations in HLW. The ability of ferrite garnets to accumulate significant amounts of An, REE, and admixture elements makes them suitable for use as matrices in immobilizing actinide-REE HLW of complex composition.

  1. Studies of Nuclear Structure and Decay Properties of Actinide Nuclei

    SciTech Connect

    Kondev, F. G.; Ahmad, I.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Moore, E. F.; Seweryniak, D.; Zhu, S.; Kellett, M. A.; Nichols, A. L.

    2009-01-28

    The identification of single-particle states in heavy actinide nuclei by means of studying their decay schemes plays a seminal role in understanding the structure of the heaviest elements and testing the predictive power of modern theoretical models. The heaviest odd-mass nuclides available in sufficient quantity for detailed decay spectroscopic studies are 20-h {sup 255} Fm(for neutrons) and 20-d {sup 253}Es(for protons). Decay spectra of these isotopes, together with those for the odd-odd 276-d {sup 254}Es nuclide, were measured using a variety of {alpha}-particle and {gamma}-ray spectroscopy techniques. Well-defined decay data are also essential pre-requisites for the detection and accurate characterization of fissile radionuclides. The parameters of greatest relevance include actinide half-lives, branching fractions, and {alpha}-particle and {gamma}-ray energies and emission probabilities. Their quantification to good accuracy provides the means of monitoring their presence, behavior and transport in nuclear facilities as well as any clandestine movement and usage. As a consequence of recommendations made at recent IAEA research coordination meetings on 'Updated Decay Data Library for Actinides,' measurements were undertaken to determine specific decay data of the more inadequately defined radionuclides.

  2. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

  3. Method for the concentration and separation of actinides from biological and environmental samples

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1989-01-01

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting.

  4. Method for the concentration and separation of actinides from biological and environmental samples

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1989-05-30

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

  5. On-line Monitoring of Actinide Concentrations in Molten Salt Electrolyte

    SciTech Connect

    Curtis W. Johnson; Mary Lou Dunzik-Gougar; Shelly X. Li

    2006-11-01

    Pyroprocessing, a treatment method for spent nuclear fuel (SNF), is currently being studied at the Idaho National Laboratory. The key operation of pyroprocessing which takes place in an electrorefiner is the electrochemical separation of actinides from other constituents in spent fuel. Efficient operation of the electrorefiner requires online monitoring of actinide concentrations in the molten salt electrolyte. Square-wave voltammetry (SWV) and normal pulse voltammetry (NPV) are being investigated to assess their applicability to the measurement of actinide concentrations in the electrorefiner.

  6. Feasibility of actinide separation from UREX-like raffinates using a combination of sulfur- and oxygen-donor extractants

    SciTech Connect

    Peter R. Zalupski; Dean R. Peterman; Catherine L. Riddle

    2013-09-01

    A synergistic combination of bis(o-trifluoromethylphenyl)dithiosphosphinic acid and trioctylphosphine oxide has been recently shown to selectively remove uranium, neptunium, plutonium and americium from aqueous environment containing up to 0.5 M nitric acid and 5.5 g/L fission products. Here the feasibility of performing this complete actinide recovery from aqueous mixtures is forecasted for a new organic formulation containing sulfur donor extractant of modified structure based on Am(III) and Eu(III) extraction data. A mixture of bis(bis-m,m-trifluoromethyl)phenyl)-dithiosphosphinic acid and TOPO in toluene enhances the extraction performance, accomplishing Am/Eu differentiation in aqueous mixtures up to 1 M nitric acid. The new organic recipe is also less susceptible to oxidative damage resulting from radiolysis.

  7. Feasibility of actinide separation from UREX-like raffinates using a combination of sulfur- and oxygen-donor extractants

    SciTech Connect

    Zalupski, P.R.; Peterman, D.R.; Riddle, C.L.

    2013-07-01

    A synergistic combination of bis(o-trifluoromethylphenyl)dithios-phosphinic acid and trioctylphosphine oxide has been recently shown to selectively remove uranium, neptunium, plutonium and americium from aqueous environment containing up to 0.5 M nitric acid and 5.5 g/l fission products. Here the feasibility of performing this complete actinide recovery from aqueous mixtures is forecasted for a new organic formulation containing sulfur donor extractant of modified structure based on Am(III) and Eu(III) extraction data. A mixture of bis(bis-m,m-trifluoromethyl)phenyl)-dithios-phosphinic acid and TOPO in toluene enhances the extraction performance, accomplishing Am/Eu differentiation in aqueous mixtures up to 1 M nitric acid. The new organic recipe is also less susceptible to oxidative damage resulting from radiolysis. (authors)

  8. Reading Recovery. [Fact Sheets].

    ERIC Educational Resources Information Center

    Reading Recovery Council of North America, Columbus, OH.

    This set of 10 fact sheets (each 2 to 4 pages long) addresses aspects of Reading Recovery, a program that helps children to be proficient readers and writers by the end of the first grade. It discusses the basic facts of Reading Recovery; Reading Recovery for Spanish literacy; Reading Recovery lessons; Reading Recovery professional development;…

  9. Understanding the Chemistry of the Actinides in HL Waste Tank Systems: Actinide Speciation in Oxalic Acid Solutions in the Presence of Significant Quantities of Aluminum, Iron, and Manganese

    SciTech Connect

    Clark, Sue

    2006-07-30

    The overall goal of this research plan is to provide a thermodynamic basis for describing actinide speciation over a range of tank-like conditions, including elevated temperature, elevated OH- concentrations, and the presence of various organic ligands. With support from DOE�s EMSP program, we have made significant progress towards measuring thermodynamic parameters for actinide complexation as a function of temperature. We have used the needs of the ESP modelers to guide our work to date, and we have made important progress defining the effect of temperature for actinide complexation by organic, and for hydrolysis of the hexa- and pentvalent oxidation states.

  10. Solubility testing of actinides on breathing-zone and area air samples

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

  11. Separation techniques for low-level determination of actinides in soil samples.

    PubMed

    Eikenberg, J; Jäggi, M; Beer, H; Rüthi, M; Zumsteg, I

    2009-05-01

    The separation methods for soil samples applied at PSI are based on extraction chromatography and ion exchange. After sample leaching, the actinides are pre-concentrated via precipitation using oxalic acid. Besides the classical separation methods applying the extraction chromatographic resins U/TEVA (for U, Th), TRU (Pu, Am), new methods were recently implemented to increase the radiochemical recovery of particularly trivalent Am and Cm. These methods do not require initial reduction of Pu(IV) to Pu(III) but stabilize Pu on the tetravalent oxidation state using a mixture of NaNO(2)/H(2)O(2) in strong acidic medium. The Pu-fraction is then fixed along with Th onto Dowex AG 1-X2 anion exchanger resin. Th is eluted via complexation with 10M HCl, Pu via reduction with HI. The fractions of Am+Cm and U are loaded onto DGA resin. This resin shows extraordinary high distribution coefficients (k'-values) exceeding 10(4) (for Am) in strong nitric acid medium. The separation between U and Am is obtained quantitatively by decreasing the HNO(3) concentration from 3 to 0.25 M (stripping of the U-fraction) while Am can be easily eluted thereafter using 0.25 M HCl as complexation compound. PMID:19243967

  12. Microbial Transformation of TRU and Mixed Waste: Actinide Speciation and Waste Volume

    SciTech Connect

    Halada, Gary P

    2008-04-10

    In order to understand the susceptibility of transuranic and mixed waste to microbial degradation (as well as any mechanism which depends upon either complexation and/or redox of metal ions), it is essential to understand the association of metal ions with organic ligands present in mixed wastes. These ligands have been found in our previous EMSP study to limit electron transfer reactions and strongly affect transport and the eventual fate of radionuclides in the environment. As transuranic waste (and especially mixed waste) will be retained in burial sites and in legacy containment for (potentially) many years while awaiting treatment and removal (or remaining in place under stewardship agreements at government subsurface waste sites), it is also essential to understand the aging of mixed wastes and its implications for remediation and fate of radionuclides. Mixed waste containing actinides and organic materials are especially complex and require extensive study. The EMSP program described in this report is part of a joint program with the Environmental Sciences Department at Brookhaven National Laboratory. The Stony Brook University portion of this award has focused on the association of uranium (U(VI)) and transuranic analogs (Ce(III) and Eu(III)) with cellulosic materials and related compounds, with development of implications for microbial transformation of mixed wastes. The elucidation of the chemical nature of mixed waste is essential for the formulation of remediation and encapsulation technologies, for understanding the fate of contaminant exposed to the environment, and for development of meaningful models for contaminant storage and recovery.

  13. Heart Attack Recovery FAQs

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Heart Attack Recovery FAQs Updated:Aug 24,2016 Most people ... recovery. View an animation of a heart attack . Heart Attack Recovery Questions and Answers What treatments will I ...

  14. Screening Evaluation of Sodium Nonatitanate for Strontium and Actinide Removal from Alkaline Salt Solution

    SciTech Connect

    Hobbs, D.T.

    2001-02-13

    This report describes results from screening tests evaluating strontium and actinide removal characteristics of a sodium titanate material developed by Clearfield and coworkers at Texas A and M University and offered commercially by Honeywell. Sodium nonatitanate may exhibit improved actinide removal kinetics and filtration characteristics compared to MST and thus merit testing.

  15. Actinide (An = Th-Pu) dimetallocenes: promising candidates for metal-metal multiple bonds.

    PubMed

    Wang, Cong-Zhi; Gibson, John K; Lan, Jian-Hui; Wu, Qun-Yan; Zhao, Yu-Liang; Li, Jun; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-10-21

    Synthesis of complexes with direct actinide-actinide (An-An) bonding is an experimental 'holy grail' in actinide chemistry. In this work, a series of actinide dimetallocenes An2Cp (Cp(*) = C5(CH3)5, An = Th-Pu) with An-An multiple bonds have been systematically investigated using quantum chemical calculations. The coaxial Cp(*)-An-An-Cp(*) structures are found to be the most stable species for all the dimetallocenes. A Th-Th triple bond is predicted in the Th2Cp complex, and the calculated An-An bond orders decrease across the actinide series from Pa to Pu. The covalent character of the An-An bonds is analyzed by using natural bond orbitals (NBO), molecular orbitals (MO), the quantum theory of atoms in molecules (QTAIM), and electron density difference (EDD). While Th 6d orbitals dominate the Th-Th bonds in Th2Cp, the An 6d-orbital characters decrease and 5f-orbital characters increase for complexes from Pa2Cp to Pu2Cp. All these actinide dimetallocenes are stable in the gas phase relative to the AnCp(*) reference at room temperature. Based on the reactions of AnCp and An, Th2Cp, Pa2Cp and possibly also U2Cp should be accessible as isolated molecules under suitable synthetic conditions. Our results shed light on the molecular design of ligands for stabilizing actinide-actinide multiple bonds. PMID:26374594

  16. FINAL REPORT. LONG-TERM RISK FROM ACTINIDES IN THE ENVIRONMENT: MODES OF MOBILITY

    EPA Science Inventory

    The mobility of actinides in surface soils is the major driver of risks to human health and the environment for DOE facilities in arid and semiarid environments. Understanding actinide mobility is an EMSP priority in the category of Health/Ecology/Risk for addressing numerous and...

  17. Actinides in Hanford Tank Waste Simulants: Chemistry of Selected Species in Oxidizing Alkaline Solutions

    SciTech Connect

    Nash, Kenneth L.; Laszak, Ivan; Borkowski, Marian; Hancock, Melissa; Rao, Linfeng; Reed, Wendy

    2004-03-30

    To enhance removal of selected troublesome nonradioactive matrix elements (P, Cr, Al, S) from the sludges in radioactive waste tanks at the Hanford site, various chemical washing procedures have been evaluated. It is intended that leaching should leave the actinides in the residual sludge phase for direct vitrification. Oxidative treatment with strongly alkaline solutions has emerged as the best approach to accomplishing this feat. However, because the most important actinide ions in the sludge can exist in multiple oxidation states, it is conceivable that changes in actinide oxidation state speciation could interfere with hopes and plans for actinide insolubility. In this presentation, we discuss both the impact of oxidative alkaline leachants on actinide oxidation state speciation and the chemistry of oxidized actinide species in the solution phase. Actinide oxidation does occur during leaching, but the solubility behavior is complex. Mixed ligand complexes may dominate solution phase speciation of actinides under some circumstances. This work was supported by the U.S. Department of Energy, Offices of Science and Waste Management, Environmental Management Science Program under Contract DEAC03- 76SF0098 at Lawrence Berkeley National Laboratory and Contract W-31-109- ENG-38 at Argonne National Laboratory.

  18. Mathematical modeling of the effects of aerobic and anaerobic chelate bioegradation on actinide speciation.

    SciTech Connect

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-03-19

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems.

  19. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  20. Hybridization effects in selected actinides and their compounds

    NASA Astrophysics Data System (ADS)

    El-Khatib, Sami T.

    Many actinide systems exhibit 'unusual' phenomena that differ from the normal text-book behavior. This occurs because the 5f electrons of the actinides and their compounds experience a delicate balance between local-moment and itinerant magnetism. It is well established that strong-electron correlations affect the different properties in such systems. Even though the actinides and their compounds have been extensively studied in recent decades, both experimentally and theoretically, to date, no complete understanding of the full range of their properties has been achieved. My thesis focuses mainly on understanding the role of 5f electrons and their interactions with the electron states of the surrounding ligands. Particularly, the effect of the 5f-ligand hybridization in the development of bulk properties is investigated. The experimental studies utilized macroscopic techniques, such as magnetization, electrical-resistivity, specific-heat and resonant-ultrasound-spectroscopy measurements, as well as microscopic techniques, such as neutron-diffraction and muon-spin-resonance studies. The results are used to disentangle the importance of direct 5f--5f overlap and 5 f-ligand hybridization. The following features have been investigated in this thesis: (a) the dual nature of hybridization effects (magnetic moment reduction vs. exchange mediation) was studied for two isostructural uranium compounds U2Pd2Sn and U2Ni2 In; (b) the formation of complex magnetic structures and its connection to the hybridization effects was studied for UCuSn, UPdSn and UPdGe; (c) the tuning of the hybridization to critical values through substitutions was attempted for two single crystals of UCoAl1-xSn x and UNi1-xRh xAl alloys; (d) the effects of compositional deficiencies was studied for the copper-deficient compound in UCu1.5Sn 2; and finally, (e) the influence of strong electron correlations on the elastic properties was studied in the case of alpha-Pu.

  1. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  2. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  3. FTICR/MS studies of gas-phase actinide ion reactions: fundamental chemical and physical properties of atomic and molecular actinide ions and neutrals

    NASA Astrophysics Data System (ADS)

    Gibson, J. K.; Haire, R. G.; Marçalo, J.; Santos, M.; Leal, J. P.; Pires de Matos, A.; Tyagi, R.; Mrozik, M. K.; Pitzer, R. M.; Bursten, B. E.

    2007-10-01

    Fundamental aspects of the chemical and physical properties of atomic and molecular actinide ions and neutrals are being examined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR/MS). To date, gas-phase reactivity studies of bare and ligated An+ and An2+ ions, where An = Th, Pa, U, Np, Pu, Am, and Cm, with oxidants and with hydrocarbons have been performed. Among the information that has been deduced from these studies are thermodynamic properties of neutral and ionic actinide oxide molecules and the role of the 5f electrons in actinide chemistry. Parallel theoretical studies of selected actinide molecular ions have also been carried out to substantiate the interpretation of the experimental observations.

  4. Plutonium and minor actinides utilization in Thorium molten salt reactor

    SciTech Connect

    Waris, Abdul; Aji, Indarta K.; Novitrian,; Kurniadi, Rizal; Su'ud, Zaki

    2012-06-06

    FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/{sup 233}U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu and MA composition in the fuel of 5.96% or more.

  5. Plutonium and minor actinides utilization in Thorium molten salt reactor

    NASA Astrophysics Data System (ADS)

    Waris, Abdul; Aji, Indarta K.; Novitrian, Kurniadi, Rizal; Su'ud, Zaki

    2012-06-01

    FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/233U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu & MA composition in the fuel of 5.96% or more.

  6. Extraction of actinides and nitric acid by crown ethers

    SciTech Connect

    Rozen, A.M.; Nikolotova, Z.I.; Kartasheva, N.A.; Luk'yanenko, N.G.; Bogatskii, A.V.

    1982-10-01

    This work studied the extraction of thorium nitrate, and an extraction isotherm of uranyl nitrate was obtained; the distribution of HNO/sub 3/ was studied over a wide range of acidity (up to 18M), which uses different concepts on the mechanism of the process. The extraction of Pu(VI) and Np(IV) was studied up to a 12 M acidity; two crown ethers had not previously been used for the extraction of the actinides. A quantitative description of the equilibria studied is given, and the influence of the structure of the ethers on the complex formation is discussed.

  7. Plasma mass filtering for separation of actinides from lanthanides

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Fisch, N. J.

    2014-06-01

    Separating lanthanides from actinides is a key process in reprocessing nuclear spent fuel. Plasma mass filters, which operate on dissociated elements, offer conceptual advantages for such a task as compared with conventional chemical methods. The capabilities of a specific plasma mass filter concept, called the magnetic centrifugal mass filter, are analyzed within this particular context. Numerical simulations indicate separation of americium ions from a mixture of lanthanides ions for plasma densities of the order of 1012 cm-3, and ion temperatures of about 10 eV. In light of collision considerations, separating small fractions of heavy elements from a larger volume of lighter ones is shown to enhance the separation capabilities.

  8. Manifestation of cluster effects in the structure of actinides

    NASA Astrophysics Data System (ADS)

    Shneidman, T. M.; Adamian, G. G.; Antonenko, N. V.; Jolos, R. V.; Zhou, Shan-Gui

    2016-01-01

    We developed a cluster model which allows to take into account both shape deformation parameters and cluster degrees of freedom. The model is based on the assumption that the wave function of nucleus can be treated as a superposition of a mononucleus and two-cluster configurations. The model is applied to describe the multiple negative-parity bands in deformed actinides. Special emphasis is made on the investigation of the recently measured positive parity 0+2 rotational band of reflection-asymmetric nature in 240Pu. The results suggest that this band might be understood as the one built on the lowest excited state in mass asymmetry degree of freedom.

  9. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  10. Vitrification of actinide solutions in SRS separations facilities

    SciTech Connect

    Minichan, R.L.; Ramsey, W.G.

    1995-09-01

    The actinide vitrification system being developed at SRS provides the capability to convert specialized or unique forms of nuclear material into a stable solid glass product that can be safely shipped, stored or reprocessed according to the DOE complex mission. This project is an application of technology developed through funds from the Office of Technology Development (OTD). This technology is ideally suited for vitrifying relatively small quantities of fissile or special nuclear material since it is designed to be critically safe. Successful demonstration of this system to safely vitrify radioactive material could open up numerous opportunities for transferring this technology to applications throughout the DOE complex.

  11. Scissors strength in the quasi-continuum of actinides

    NASA Astrophysics Data System (ADS)

    Guttormsen, M.; Bernstein, L. A.; Bürger, A.; Görgen, A.; Gunsing, F.; Hagen, T. W.; Larsen, A. C.; Renstrøm, T.; Siem, S.; Wiedeking, M.; Wilson, J. N.

    2014-03-01

    The M1-scissors resonance has been measured for the first time in the quasi-continuum of actinides. The strength and position of the resonances in 231,232,233Th were determined by particle-γ coincidences using deuteron induced reactions on a 232Th target. The residual nuclei show a strong integrated strength of BM1 = 9 - 11 µn2 in the Eγ = 1.0 - 3.5 MeV region. The presence of the scissors resonance modifies significantly the (n,γ) cross section, which has impact on fuel-cycle simulations of fast nuclear reactors and nucleosynthesis in explosive stellar environments.

  12. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect

    Francy, Christopher J.

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  13. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    SciTech Connect

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F.; Mills, J.; Howard, G.; Freiser, H.; Muralidharan, S.

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  14. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    SciTech Connect

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited.

  15. X-Ray Absorption Studies of Borosilicate Glasses Containing Dissolved Actinides Or Surrogates

    SciTech Connect

    Lopez, C.; Deschanels, X.; Den Auwer, C.; Cachia, J.-N.; Peuget, S.; Bart, J.-M.

    2006-10-27

    The solubility of actinides and actinide surrogates in a nuclear borosilicate glass was studied with cerium, hafnium, neodymium, thorium and plutonium. Cerium is a possible surrogate for tetravalent and trivalent actinides such as plutonium, hafnium for tetravalent actinide such as thorium, and neodymium for trivalent actinides such as curium or americium. X-ray absorption spectroscopy was used to obtain data on the local environment of the dissolved elements in the glass network. For glasses melted at 1200 C, the solubility limits of the elements studied were as follows Nd > Ce > Th > Pu > Hf. A correlation has been established between the cation bonding covalence, the oxygen polyhedron and the solubility limit of the elements: the greater the solubility, the larger the oxygen bonds.

  16. A retinoic acid receptor agonist Am80 rescues neurons, attenuates inflammatory reactions, and improves behavioral recovery after intracerebral hemorrhage in mice.

    PubMed

    Matsushita, Hideaki; Hijioka, Masanori; Hisatsune, Akinori; Isohama, Yoichiro; Shudo, Koichi; Katsuki, Hiroshi

    2011-01-01

    Am80 (tamibarotene) is a retinoic acid receptor (RAR) agonist clinically available for treatment of acute promyelocytic leukemia. As intracerebral hemorrhage (ICH) accompanies inflammatory reactions in the brain and also because retinoids may suppress activation of microglia, we investigated the effect of Am80 on collagenase-induced experimental model of ICH in adult mice. Daily oral administration of Am80 (5 mg/kg) starting from 1 day before or from up to 6 hours after intrastriatal injection of collagenase significantly inhibited the decrease in the number of striatal neurons at 3 days after the insult. Am80 showed no significant effect on the hematoma size and the extent of edema associated with hemorrhage. Prominent expression of RARα was observed in activated microglia/macrophages, and the number of activated microglia/macrophages in the perihematoma region was lower in Am80-treated mice than in vehicle-treated mice. Am80 treatment also reduced areas affected by hemorrhage-associated oxidative stress as indicated by nitrotyrosine immunoreactivity, and attenuated heme oxygenase-1 expression in activated microglia/macrophages. Moreover, Am80-treated mice exhibited better recovery from hemorrhage-induced neurologic deficits than vehicle-treated mice. These results suggest that RAR is a promising target of neuroprotective therapy for ICH. PMID:20551971

  17. A retinoic acid receptor agonist Am80 rescues neurons, attenuates inflammatory reactions, and improves behavioral recovery after intracerebral hemorrhage in mice

    PubMed Central

    Matsushita, Hideaki; Hijioka, Masanori; Hisatsune, Akinori; Isohama, Yoichiro; Shudo, Koichi; Katsuki, Hiroshi

    2011-01-01

    Am80 (tamibarotene) is a retinoic acid receptor (RAR) agonist clinically available for treatment of acute promyelocytic leukemia. As intracerebral hemorrhage (ICH) accompanies inflammatory reactions in the brain and also because retinoids may suppress activation of microglia, we investigated the effect of Am80 on collagenase-induced experimental model of ICH in adult mice. Daily oral administration of Am80 (5 mg/kg) starting from 1 day before or from up to 6 hours after intrastriatal injection of collagenase significantly inhibited the decrease in the number of striatal neurons at 3 days after the insult. Am80 showed no significant effect on the hematoma size and the extent of edema associated with hemorrhage. Prominent expression of RARα was observed in activated microglia/macrophages, and the number of activated microglia/macrophages in the perihematoma region was lower in Am80-treated mice than in vehicle-treated mice. Am80 treatment also reduced areas affected by hemorrhage-associated oxidative stress as indicated by nitrotyrosine immunoreactivity, and attenuated heme oxygenase-1 expression in activated microglia/macrophages. Moreover, Am80-treated mice exhibited better recovery from hemorrhage-induced neurologic deficits than vehicle-treated mice. These results suggest that RAR is a promising target of neuroprotective therapy for ICH. PMID:20551971

  18. Lanthanide titanates as promising matrices for immobilization of actinide wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.

    2015-02-01

    The samples on the basis of Ln2Ti2O7 and Ln4Ti9O24 lanthanide titanates were obtained by compacting-sintering and melting-crystallization processes. The substances as such are promising as immobilizing matrices for the rare earth-actinide fraction of wastes of the treatment of used nuclear fuel. The content of simulators of the rare earth-actinide fraction in the obtained phases was as high as 50 mass % or more. The phases were characterized by a narrow range of variations of their composition. The admixtures of zirconium and aluminum caused the formation of zirconolite; the excess of titanium resulted in the formation of rutile or rhombic titanate (in the cases of Ln4Ti9O24 and Ln2Ti2O7, respectively). The use of these crystalline matrices for immobilization of long-lived radionuclides should provide a considerable decrease in the volume of solidified radioactive wastes to be disposed in deep-seated storage.

  19. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  20. Energy-Dependent Fission Q Values Generalized for All Actinides

    SciTech Connect

    Vogt, R

    2008-09-25

    We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.

  1. Effects of actinide burning on waste disposal at Yucca Mountain

    SciTech Connect

    Hirschfelder, J.

    1992-07-01

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes.

  2. Reflections on the criticality of special actinide elements

    SciTech Connect

    Clayton, E.D.

    1987-04-01

    During recent years, the list of nuclides known to be capable of supporting a chain reaction has substantially increased. Since the criticality aspects for some of these nuclides differ in important respects from those of the most common fissile nuclides, /sup 235//sub 92/U, and /sup 239//sub 94/Pu, a new term, ''fissible'' was recently proposed in nuclear engineering to help distinguish differences. Activation energies for fission have been calculated for 41 of the actinide isotopes which are grouped according to four types of nuclides, those with even-Z, even-N, odd-Z, odd-N, odd-Z, even-N, and even-Z, odd-N. With the possible exception of /sup 237//sub 92/U, all fissible isotopes listed have even N. The activation energy for fission is less in the case of the even-Z, even-N isotopes, but almost without eception it is the odd-N isotopes that undergo fission with thermal neutrons and which constitute the principal criticality problem. This paper reviews the criticality and fissionability aspects of the fissile and fissible actinide isotopes. The criticality of aqueous mixtures of fissile and fissible isotopes also is briefly discussed, including limits for criticality control.

  3. Dynamics of Critical Dedicated Cores for Minor Actinide Transmutation

    SciTech Connect

    Massara, S.; Tommasi, J.; Vanier, M.; Koeberl, O.

    2005-02-15

    Fast spectrum minor actinide (MA) burner designs, with high minor actinide loads and consumptions, have been assessed. As reactivity and kinetic coefficients are poor in such cores (low delayed neutron fraction and Doppler feedback, high coolant void coefficient), special attention has been paid to their dynamic behavior during transient conditions. A dynamics code, MAT4 DYN, has been expressly developed to study loss-of-flow, reactivity insertion, and loss-of-coolant accidents. It takes into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium).Three nitride-fuel configurations are analyzed according to their coolant: sodium and lead (both with pin fuel) and helium (with particle fuel). Dynamics calculations show that if the fuel nature is appropriately chosen, with sufficient margins during transients, then this can counterbalance the poor reactivity coefficients for liquid-metal-cooled cores, thus proving the interest of this kind of concept. On the other hand, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient in a hard spectrum, this effect being amplified by the very low thermal inertia of the fuel particles. Hence, concepts other than a particle-bed fuel should be investigated for a helium-cooled fast-spectrum MA burner.

  4. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  5. Actinide production from xenon bombardments of curium-248

    SciTech Connect

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

  6. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. PMID:24801893

  7. Spectroscopy of Actinide Nuclei - Perspectives with Position Sensitive HPGe Detectors

    NASA Astrophysics Data System (ADS)

    Reiter, P.; Birkenbach, B.; Kotthaus, T.

    Recent advances in in-beam gamma-ray spectroscopy of actinide nuclei are based on highly efficient arrays of escape-suppressed spectrometers. The sensitivity of these detector arrays is greatly enhanced by the combination with powerful mass separators or particle detector systems. This technique is demonstrated by an experiment to investigate excited states in 234U after the one-neutron-transfer reaction 235U(d,t). In coincidence with the outgoing tritons, γ-rays were detected with the highly efficient MINIBALL spectrometer. In the near future an even enhanced sensitivity will be achieved by utilizing position sensitive HPGe detectors which will exploit the novel detection method of gamma-ray energy tracking in electrically segmented germanium detectors. An example for this novel approach is the investigation neutron-rich actinide Th and U nuclei after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL, Italy. A primary 136Xe beam hitting a 238U target was used to produce the nuclei of interest. Beam-like reaction products after neutron transfer were selected by the PRISMA spectrometer. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique, which was successfully exploited in this region.

  8. Actinide determination and analytical support for characterization of environmental samples

    SciTech Connect

    Rokop, D.J.; Efurd, D.W.; Perrin, R.E.

    1994-03-01

    Clean chemical and Thermal Ionization Mass Spectrometry (TIMS) procedures have been developed to permit the determination of environmental actinide element concentrations and isotopic signatures. The isotopic signatures help identify element origin and separate naturally occurring or background contributions from local anthropogenic sources. Typical sample sizes for processing are 2 liters of water, 1--10 grams of sediment, and 1--20 grams of soil. Measurement limits for Pu, Am, and Np are < 1 {times} 18{sup 8} atoms, and for U are < 2.5 {times} 10{sup 12} atoms. For isotopic signatures, < 5 {times} 10{sup 8} atoms of Pu, Am, and Np are necessary, and 8 {times} 10{sup 12} atoms of U are required. Of potential interest to the IAEA is the incorporation of these techniques into their Safeguards Analytical Laboratory for environmental sampling. Studies made of surface waters, sediments and soils from the Rocky Flats Plant (RFP) in Colorado, US, are used as examples of this methodology. These studies showed that, although plant boundary actinide concentrations approached, on the downstream side, natural or background levels, isotopic signatures characteristic of plant operations were still discernible.

  9. Stabilization of actinides and lanthanides in unusually high oxidation states

    SciTech Connect

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO/sub 3/ or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF/sub 5//HF solution or Pu(VII) in Li/sub 5/PuO/sub 6/). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs.

  10. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    SciTech Connect

    Wills, John M; Mattsson, Ann E

    2012-06-06

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  11. Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction

    SciTech Connect

    Ruggiero, Christy

    2004-06-01

    This project seeks to understand the influence of phytosiderophore-producing plants (grasses, including crops such as wheat and barley) on the biogeochemistry of actinide and other metal contaminants in the subsurface environment, and to determine the potential of phytosiderophoreproducing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system, as for Fe is being investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes. We may also show possible harm caused by increased chelation of actinides, which may increase actinide mobilization & migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or can be used to develop plant-based soil stabilization/remediation technologies. Such technologies could be the low-cost, low risk solution to many DOE actinide contamination problems.

  12. Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction

    SciTech Connect

    Ruggiero, Christy

    2005-06-01

    This project seeks to understand the influence of phytosiderophore-producing plants (grasses, including crops such as wheat and barley) on the biogeochemistry of actinide and other metal contaminants in the subsurface environment, and to determine the potential of phytosiderophore-producing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system as for Fe is being investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes. We may also show possible harm caused by these plants through increased chelation of actinides that increase in actinide mobilization & migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or can be used to develop plant-based soil stabilization/remediation technologies. Such technologies could be the low-cost, low risk solution to many DOE actinide contamination problems.

  13. MICROBIAL TRANSFORMATIONS OF PLUTONIUM AND OTHER ACTINIDES IN TRANSURANIC AND MIXED WASTES.

    SciTech Connect

    FRANCIS,A.J.

    2003-07-06

    The presence of the actinides Th, U, Np, Pu, and Am in transuranic (TRU) and mixed wastes is a major concern because of their potential for migration from the waste repositories and long-term contamination of the environment. The toxicity of the actinide elements and the long half-lives of their isotopes are the primary causes for concern. In addition to the radionuclides the TRU waste consists a variety of organic materials (cellulose, plastic, rubber, chelating agents) and inorganic compounds (nitrate and sulfate). Significant microbial activity is expected in the waste because of the presence of organic compounds and nitrate, which serve as carbon and nitrogen sources and in the absence of oxygen the microbes can use nitrate and sulfate as alternate electron acceptors. Biodegradation of the TRU waste can result in gas generation and pressurization of containment areas, and waste volume reduction and subsidence in the repository. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of actinides have been investigated, we have only limited information on the effects of microbial processes. Microbial activity could affect the chemical nature of the actinides by altering the speciation, solubility and sorption properties and thus could increase or decrease the concentrations of actinides in solution. Under appropriate conditions, dissolution or immobilization of actinides is brought about by direct enzymatic or indirect non-enzymatic actions of microorganisms. Dissolution of actinides by microorganisms is brought about by changes in the Eh and pH of the medium, by their production of organic acids, such as citric acid, siderophores and extracellular metabolites. Immobilization or precipitation of actinides is due to changes in the Eh of the environment, enzymatic reductive precipitation (reduction from higher to lower oxidation state), biosorption, bioaccumulation, biotransformation of actinides complexed

  14. FY2011 Annual Report for the Actinide Isomer Detection Project

    SciTech Connect

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha; Hatarik, R.

    2011-10-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 {mu}s. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit

  15. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    SciTech Connect

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  16. Fission-product data analysis from actinide samples exposed in the Dounreay Prototype Fast Reactor

    SciTech Connect

    Murphy, B.D.; Dickens, J.K.; Walker, R.L.; Newton, T.D.

    1994-12-31

    Since 1979 a cooperative agreement has been in effect between the United States and the United Kingdom to investigate the irradiation of various actinide species placed in the core of the Dounreay Prototype Fast Reactor (PFR). The irradiated species were isotopes of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium. A set of actinide samples (mg quantities) was exposed to about 490 effective full power days (EFPD) of reactor operations. The fission-product results are reported here. The actinide results will be report elsewhere.

  17. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2005-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  18. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2006-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  19. Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel

    SciTech Connect

    Horak, W.C.; Lu, Ming-Shih

    1991-12-01

    This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

  20. Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction

    SciTech Connect

    Ruggiero, Christy

    2003-06-01

    This project seeks to determine the potential of phytosiderophore-producing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system as for Fe is hereby investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes.

  1. Establishment of a room temperature molten salt capability to measure fundamental thermodynamic properties of actinide elements

    SciTech Connect

    Smith, W.H.; Costa, D.A.

    1998-12-31

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this work was to establish a capability for the measurement of fundamental thermodynamic properties of actinide elements in room temperature molten salts. This capability will be used to study in detail the actinide chloro- and oxo-coordination chemistries that dominate in the chloride-based molten salt media. Uranium will be the first actinide element under investigation.

  2. Practical Combinations of Light-Water Reactors and Fast-Reactors for Future Actinide Transmutation

    SciTech Connect

    Collins, Emory D; Renier, John-Paul

    2007-01-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle.

  3. Irradiaton of Metallic and Oxide Fuels for Actinide Transmutation in the ATR

    SciTech Connect

    Heather J. MacLean; Steven L. Hayes

    2007-09-01

    Metallic fuels containing minor actinides and rare earth additions have been fabricated and are prepared for irradiation in the ATR, scheduled to begin during the summer of 2007. Oxide fuels containing minor actinides are being fabricated and will be ready for irradiation in ATR, scheduled to begin during the summer of 2008. Fabrication and irradiation of these fuels will provide detailed studies of actinide transmutation in support of the Global Nuclear Energy Partnership. These fuel irradiations include new fuel compositions that have never before been tested. Results from these tests will provide fundamental data on fuel irradiation performance and will advance the state of knowledge for transmutation fuels.

  4. Advanced space recovery systems

    NASA Technical Reports Server (NTRS)

    Wailes, William K.

    1989-01-01

    The design evolution of a space recovery system designed by a NASA-contracted study is described, with particular attention given to the design of a recovery system for a propulsion/avionics module (P/AM), which weighs 60,000 lb at the recovery initiation and achieves subsonic terminal descent at or above 50,000 ft msl. The components of the recovery system concept are described together with the operational sequences of the recovery. The recovery system concept offers low cost, low weight, good performance, a potential for pinpoint landing, and an operational flexibility.

  5. Recovery of transplutonium elements from nuclear reactor waste

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1977-05-24

    A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.

  6. Relaxation of Actinide Surfaces: An All Electron Study

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok

    2006-10-01

    Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.

  7. Actinide target preparation at IRMM—then and now

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Eykens, Roger; Moens, Andre; Aregbe, Yetunde

    2010-02-01

    Since the beginning of its activity IRMM (originally CBNM, Central Bureau for Nuclear Measurements) was engaged in measurements of parameters relevant to nuclear energy. High-purity samples and targets of radioactive materials required for measurements of cross-sections and studies of fission fragments or fuel elements were prepared by the IRMM's target group by means of various techniques reviewed in this presentation. Applying these techniques the target group had been preparing targets of U, Pu, Np, Am, Th for in-house physicists and for external customers. Recently, after a long process of decontamination and refurbishment of the old equipment, custom-made 233U and 235U targets were prepared by electro-deposition and by high-vacuum evaporation. Other actinide targets (U, Th) have been prepared using mechanical reshaping techniques.

  8. Magnetic structures of actinide materials by pulsed neutron diffraction

    SciTech Connect

    Lawson, A.C.; Goldstone, J.A.; Huber, J.G.; Giorgi, A.L.; Conant, J.W.; Severing, A.; Cort, B.; Robinson, R.A.

    1990-01-01

    We describe some attempts to observe magnetic structure in various actinide (5f-electron) materials. Our experimental technique is neutron powder diffraction as practiced at a spallation (pulsed) neutron source. We will discuss our investigations of {alpha}-Pu, {delta}-Pu, {alpha}-UD{sub 3} and {beta}-UD{sub 3}. {beta}-UD{sub 3} is a simple ferromagnet: surprisingly, the moments on the two non-equivalent uranium atoms are the same within experimental error. {alpha}-UD{sub 3}, {alpha}-Pu and {delta}-Pu are non-magnetic, within the limits of our observations. Our work with pulsed neutron diffraction shows that it is a useful technique for research on magnetic materials.

  9. Specific sequestering agents for iron and the actinides

    SciTech Connect

    Raymond, K.N.

    1983-06-01

    The transuranium actinide ions represent one unique environmental hazard associated with the waste of the nuclear power industry. A major component associated with that waste and a potential hazard is plutonium. The synthesis of metal-ion-specific complexing agents for ions such as Pu(IV) potentially represents a powerful new approach to many of the problems posed by waste treatment. This document is a progress report of a rational approach to the synthesis of such chelating agents based on the similarities of Pu(IV) and Fe(III), the structures of naturally-occurring complexing agents which are highly specific for Fe(III), and the incorporation of the same kinds of ligating groups present in the iron complexes to make octadentate complexes highly specific for plutonium. Both thermodynamic and animal test results indicate that a relatively high degree of success has already been achieved in this aim.

  10. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented. PMID:15787373

  11. Actinides in Solution: Disproportionation, Strong Correlations, and Emergence

    NASA Astrophysics Data System (ADS)

    Marston, Brad; Horowitz, Steven

    2010-03-01

    Plutonium in acid solutions can be found in oxidation states III through VI. There is a striking near perfect degeneracy of the reduction-oxidation (redox) potentials, each being about 1 volt. Neptunium is the only other element that approaches this degree of degeneracy. One consequence of the redox degeneracy is a marked tendency of plutonium ions to disproportionate; up to four different oxidation states can coexist simultaneously in the same solution, greatly complicating the environmental chemistry of the element. While the degeneracy could simply be a coincidence, it could also be the manifestation of a higher-level organizing principle at work. Other systems that exhibit disproportionation raise the possibility of an emergent negative-U attractive interaction. The hypothesis is tested by combining first-principles relativistic density-functional calculations using the Amsterdam Density Functional (ADF) package with exact diagonalizations of Hubbard-like models of the strong correlations between the actinide 5f electrons.

  12. Neutron Capture and Fission Measurements on Actinides at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Rodger; Gostic, Julie; Ullmann, John; Jandel, Marian; Bredeweg, Todd; Couture, Aaron; Lee, Hye Young; Haight, Robert; O'Donnell, John

    2011-10-01

    Neutron capture and fission measurements on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement build at LANL) together with PPAC (avalanche technique based fission tagging detector designed and fabricated at LLNL) were used to measure the prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf. These measured spectra together with the unfolded ones will be presented. The unfolding technique will be described. In addition the 238Pu(n , γ) cross section will be presented, which was measured using DANCE alone and also is the first such measurement in a laboratory environment. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Autoradiographic studies of actinide sorption in groundwater systems

    SciTech Connect

    O'Kelley, G. D.; Beall, G. W.; Allard, B.

    1980-01-01

    Autoradiography is a convenient and sensitive technique for the study of spacial distributions of alpha radioactive nuclides on slabs of rock or on other planar surfaces. The autoradiographic camera contains an arrangement for placing in firm contact Polaroid sheet film, a plastic scintillator screen, and the radioactive face of the specimen. As an example of the use of the autoradiographic method, a series of sorption experiments were carried out in which synthetic groundwater solutions of americium, neptunium, uranium, and plutonium were contacted with Climax Stock granite under aerated and anoxic conditions at pH 8 to 9. The sorption observed at specific mineral sites was correlated with data on sorption of these actinides on pure minerals.

  14. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  15. Laboratory studies of actinide partitioning relevant to 244Pu chronometry

    NASA Technical Reports Server (NTRS)

    Benjamin, T.; Heuser, W. R.; Burnett, D. S.

    1978-01-01

    Actinide partitioning and light lanthanide fractionation have been studied to gain an understanding of Pu chemistry under meteoritic and lunar conditions. The goal of the study was to identify conditions and samples from which chronological information can be retrieved. The laboratory investigations involved particle track radiography of the crystal/liquid partitioning of Th, U and Pu among diopsidic clinopyroxene, whitlockite and liquid. It is found that trivalent Pu plays an important role in partitioning for lunar and most meteoritic conditions. The use of Pu/Nd for relative age assessments is supported to some extent by the investigations; samples with unfractionated U, Th and Nd abundances (relative to average solar system values) may be suitable for Pu chronometry.

  16. Decontamination of actinides and fission products from stainless steel surfaces

    SciTech Connect

    Mertz, C.; Chamberlain, D.B.; Chen, L.; Conner, C.; Vandegrift, G.F.; Drockelman, D.; Kaminski, M.; Landsberger, S.; Stubbins, J.

    1996-04-01

    Seven in situ decontamination processes were evaluated as possible candidates to reduce radioactivity levels in nuclear facilities throughout the DOE complex. These processes were tested using stainless steel coupons (Type 304) contaminated with actinides (Pu and Am) or fission products (a mixture of Cs, Sr, and Gd). The seven processes were decontamination with nitric acid, nitric acid plus hydrofluoric acid, fluoboric acid, silver(II) persulfate, hydrogen peroxide plus oxalic acid plus hydrofluoric acid, alkaline persulfate followed by citric acid plus oxalic acid, and electropolishing using nitric acid electrolyte. Of the seven processes, the nitric acid plus hydrofluoric acid and fluoboric acid solutions gave the best results; the decontamination factors for 3- to 6-h contacts at 80{degree}C were as high as 600 for plutonium, 5500 for americium, 700 for cesium, 15000 for strontium, and 1100 for gadolinium.

  17. Density functional calculations of Hubbard parameter in actinide series

    SciTech Connect

    Puri, A.; Sen, K.D.

    1993-05-01

    The calculations of Hubbard parameter, U, which defines the polar state formation energy of the reaction 2(5f{sup n} 6d{sup 1} 7d{sup 2}) {yields} 5f{sup n-1} 6d{sup 2}7s{sup 2} + 5f{sup n+1} 7s{sup 2} for the actinide atoms, Th-No, have been carried out using the self-interaction-corrected (SIC) quasi-relativistic local spin density (LSD) functional due to Perdew and Zunger. Based on the available bandwidth calculations for the 5f metals and its monotonically decreasing trend with increasing nuclear charge it is predicted that the 5f state is iterent in Th-Np beyond which it becomes localized. These calculations agree with the conclusions drawn earlier by Johansson using the semiempirical data.

  18. VUV and soft x-ray spectroscopy of actinides

    SciTech Connect

    Olson, C. G.; Joyce, J. J.; Durakiewicz, T.; Guziewicz, E.

    2004-01-01

    Optical and photoelectron spectroscopies using VUV and Soft X-ray photons are powerful tools for studies of elemental and compound actinides. Large changes in the relative atomic cross sections of the 5f, 6d and sp electrons allow decomposition of the character of the valence bands using photoemission. Resonant enhancement of photoelectrons and Auger electrons at the 5d core threshold further aids the decomposition and gives a measure of elemental specificity. Angle-resolved photoemission can be used to map the momentum dependence of the electronic states. The large changes in relative cross section with photon energy yields further details when the mapping is done at equivalent points in multiple zones. Spectra for well understood rare earth materials will be presented to establish spectral characteristics for known atomic character initial states. These signatures will be applied to the case of USb to investigate f-d hybridization near the Fermi level.

  19. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  20. Delayed Neutron and Delayed Photon Characteristics from Photofission of Actinides

    SciTech Connect

    Dore, D.; Berthoumieux, E.; Leprince, A.; Ridikas, D.

    2011-12-13

    Delayed neutron (DN) and delayed photon (DP) emissions from photofission reactions play an important role for applications involving nuclear material detection and characterization. To provide new, accurate, basic nuclear data for evaluations and data libraries, an experimental programme of DN and DP measurements has been undertaken for actinides with bremsstrahlung endpoint energy in the giant resonance region ({approx}15 MeV). In this paper, the experimental setup and the data analysis method will be described. Experimental results for DN and DP characteristics will be presented for {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu. Finally, an example of an application to study the contents of nuclear waste packages will be briefly discussed.

  1. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  2. Solid-state actinide acid phosphites from phosphorous acid melts

    NASA Astrophysics Data System (ADS)

    Oh, George N.; Burns, Peter C.

    2014-07-01

    The reaction of UO3 and H3PO3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH2(CH3)2)[UO2(HPO2OH)(HPO3)]. This compound crystallizes in space group P21/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO2OH)4 (An=U, Th) and of the mixed acid phosphite-phosphite U(HPO3)(HPO2OH)2(H2O)·2(H2O). α- and β-An(HPO2OH)4 crystallize in space groups C2/c and P21/n, respectively, and comprise a three-dimensional network of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO3)(HPO2OH)2(H2O)2·(H2O) crystallizes in a layered structure in space group Pbca that is composed of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized.

  3. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  4. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  5. Density functional theory calculations of the redox potentials of actinide(VI)/actinide(V) couple in water.

    PubMed

    Steele, Helen M; Guillaumont, Dominique; Moisy, Philippe

    2013-05-30

    The measured redox potential of an actinide at an electrode surface involves the transfer of a single electron from the electrode surface on to the actinide center. Before electron transfer takes place, the complexing ligands and molecules of solvation need to become structurally arranged such that the electron transfer is at its most favorable. Following the electron transfer, there is further rearrangement to obtain the minimum energy structure for the reduced state. As such, there are three parts to the total energy cycle required to take the complex from its ground state oxidized form to its ground state reduced form. The first part of the energy comes from the structural rearrangement and solvation energies of the actinide species before the electron transfer or charge transfer process; the second part, the energy of the electron transfer; the third part, the energy required to reorganize the ligands and molecules of solvation around the reduced species. The time resolution of electrochemical techniques such as cyclic voltammetry is inadequate to determine to what extent bond and solvation rearrangement occurs before or after electron transfer; only for a couple to be classed as reversible is it fast in terms of the experimental time. Consequently, the partitioning of the energy theoretically is of importance to obtain good experimental agreement. Here we investigate the magnitude of the instantaneous charge transfer through calculating the fast one electron reduction energies of AnO2(H2O)n(2+), where An = U, Np, and Pu, for n = 4-6, in solution without inclusion of the structural optimization energy of the reduced form. These calculations have been performed using a number of DFT functionals, including the recently developed functionals of Zhao and Truhlar. The results obtained for calculated electron affinities in the aqueous phase for the AnO2(H2O)5(2+/+) couples are within 0.04 V of accepted experimental redox potentials, nearly an order of magnitude

  6. Disaster Recovery Planning.

    ERIC Educational Resources Information Center

    Wilkins, Jeannine W.

    1985-01-01

    Every school needs an effective disaster recovery plan that is flexible, comprehensive and designed to take into account unexpected disasters. Presents guidelines for preparing such a plan, with immediate and long-range recovery procedures. (MD)

  7. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  8. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  9. CHEMICAL AND CERAMIC METHODS TOWARD SAFE STORAGE OF ACTINIDES USING MONAZITE

    EPA Science Inventory

    The program will address more particularly the section, "Plutonium behaviorin mixed matrices - specialized waste forms", with the concept that monazite ceramic will provide the most safe, most secure, geologically tested, very long term, containment for actinides. That monazites...

  10. FINAL REPORT. ACTINIDE-SPECIFIC INTERFACIAL CHEMISTRY OF MONOLAYER COATED MESOPOROUS CERAMICS

    EPA Science Inventory

    The objective of this program was the design, synthesis and evaluation of high-efficiency, high-capacity sorbent materials capable of selectively sequestering actinides and other radionuclides from complex aqueous mixtures. Self-assembled monolayers on mesoporous supports (SAMMS)...

  11. Organophosphorus reagents in actinide separations: Unique tools for production, cleanup and disposal

    SciTech Connect

    Nash, K. L.

    2000-01-12

    Interactions of actinide ions with phosphate and organophosphorus reagents have figured prominently in nuclear science and technology, particularly in the hydrometallurgical processing of irradiated nuclear fuel. Actinide interactions with phosphorus-containing species impact all aspects from the stability of naturally occurring actinides in phosphate mineral phases through the application of the bismuth phosphate and PUREX processes for large-scale production of transuranic elements to the development of analytical separation and environment restoration processes based on new organophosphorus reagents. In this report, an overview of the unique role of organophosphorus compounds in actinide production, disposal, and environment restoration is presented. The broad utility of these reagents and their unique chemical properties is emphasized.

  12. Evaluation of different solvent extraction methods for removing actinides from high acid waste streams

    SciTech Connect

    Yarbro, S.L.; Schreiber, S.B.; Dunn, S.L. ); Rogers, J. )

    1991-01-01

    At the Los Alamos National Laboratory Plutonium Facility, anion exchange is used to recover plutonium from nitric acid solutions. Although this approach recovers >99%, trace amounts of plutonium and other actinides remain the effluent and require additional processing. Currently, a ferric hydroxide carrier precipitation is used to remove the trace actinides and the resulting sludge is cemented. Because it costs approximately $10,000 per drum for disposal, we are developing an additional polishing step so that the effluent actinide levels are reduced to below 100 nCi/g. This would allow the resulting waste sludge to disposed as low-level waste at approximately $200 per drum. We are investigating various solvent extraction techniques for removing actinides. The most promising are chelating resins and membrane-based liquid-liquid solvent extraction. This report details some of our preliminary results. 4 refs., 3 tabs.

  13. Theoretical Studies of the Electronic Structure of the Compounds of the Actinide Elements

    SciTech Connect

    Kaltsoyannis, Nikolas; Hay, P. Jeffrey; Li, Jun; Blaudeau, Jean-Philippe; Bursten, Bruce E.

    2006-02-02

    In this chapter, we will present an overview of the theoretical and computational developments that have increased our understanding of the electronic structure of actinide-containing molecules and ions. The application of modern electronic structure methodologies to actinide systems remains one of the great challenges in quantum chemistry; indeed, as will be discussed below, there is no other portion of the periodic table that leads to the confluence of complexity with respect to the calculation of ground- and excited-state energies, bonding descriptions, and molecular properties. But there is also no place in the periodic table in which effective computational modeling of electronic structure can be more useful. The difficulties in creating, isolating, and handling many of the actinide elements provide an opportunity for computational chemistry to be an unusually important partner in developing the chemistry of these elements. The importance of actinide electronic structure begins with the earliest studies of uranium chemistry and predates the discovery of quantum mechanics. The fluorescence of uranyl compounds was observed as early as 1833 (Jørgensen and Reisfeld, 1983), a presage of the development of actinometry as a tool for measuring photochemical quantum yields. Interest in nuclear fuels has stimulated tremendous interest in understanding the properties, including electronic properties, of small actinide-containing molecules and ions, especially the oxides and halides of uranium and plutonium. The synthesis of uranocene in 1968 (Streitwieser and Mu¨ ller-Westerhoff, 1968) led to the flurry of activity in the organometallic chemistry of the actinides that continues today. Actinide organometallics (or organoactinides) are nearly always molecular systems and are often volatile, which makes them amenable to an arsenal of experimental probes of molecular and electronic structure (Marks and Fischer, 1979). Theoretical and computational studies of the electronic

  14. SYNTHESIS AND CHARACTERIZATION OF TEMPLATED ION EXCHANGE RESINS FOR THE SELECTIVE COMPLEXATION OF ACTINIDE IONS

    EPA Science Inventory

    Current technologies for the production and handling of the actinides produce significant environmental impacts at existing sites. Leaks and leachings of wastes from tanks, resulting in contamination of the environment, can result in expensive clean up procedures. Normal methods ...

  15. Patterns in the stability of the lower oxidation states of the actinides and lanthanides

    SciTech Connect

    Mikheev, N.B.; Auerman, L.N.; Ionova, G.V.; Korshunov, B.G.; Spitsyn, V.I.

    1986-09-01

    The authors compare the first half of the lanthanides and the second half of the actinides by considering the specifics of the electronic structure of the valence atoms of the f-, d-, and s-orbitals, consisting of he following: The lanthanides from praseodymium to europium and from dysprosium to ytterbium, as well as the actinides from californium to nobelium, have the same electronic configuration f /SUP n/ s/sub 2/ in the state of free neutral atoms, which corresponds to their divalent state. On the basis of a consideration of the energy characteristics of the valence orbitals of the elements of the lanthanide and actinide famililies and as a result of an experimental determination of the standard oxidation potential of these elements, the authors consider the profound similarity between the elements of the first half of the lanthanide family and the second half of the actinide family to be established.

  16. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  17. Youth in Recovery

    ERIC Educational Resources Information Center

    de Miranda, John; Williams, Greg

    2011-01-01

    Young people are entering long-term recovery probably in greater numbers than ever before. A key word here is "probably" because we know precious little about the phenomenon of young people who recover from alcohol and drug addition. This article is a preliminary exploration of youth in recovery. It reviews several types of recovery support…

  18. What Is "No Recovery?"

    ERIC Educational Resources Information Center

    Kauffman, Jeffrey

    2008-01-01

    Thanatologists, as Balk recently commented (Balk, 2004), have been saying that there is no recovery from bereavement, or that we should not speak of bereavement as leading to a recovery. The term recovery has a high level of plasticity and can be shaped to fit diverse meanings, including contradictory meanings. We will sort our way through some of…

  19. Enhanced oil recovery update

    SciTech Connect

    Smith, R.V

    1989-03-01

    Technology continues to grow in the realm of enhanced oil recovery. Since 1950 several processes have proven economic for oil recovery. Others are still in their infancy and must be custom designed for each reservoir. This paper gives a general overview of these processes. The author focuses on the latest technology and the outlook for enhanced oil recovery operations.

  20. Key features of the Talspeak and similar trivalent actinide-lanthanide partitioning processes

    SciTech Connect

    Nash, Kenneth L.

    2008-07-01

    As closing of the nuclear-fuel cycle via the suite of UREX processes under development in the U.S. progresses, the Trivalent Actinide-Lanthanide Separation by Phosphorus Extractants and Aqueous Komplexants (TALSPEAK) process has been selected as the baseline process for partition of trivalent actinides away from fission-product lanthanides. In this report, selected features of the chemistry of the TALSPEAK process and the limited parallel information on other TALSPEAK-like processes are discussed. (author)

  1. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGESBeta

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  2. Actinides in the Source of Cosmic Rays and the Present Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Kratz, K. -L.

    2003-01-01

    The abundances of the actinide elements in the cosmic rays can provide critical constraints on the major sites of their acceleration. Using recent calculations of the r-process yields in core collapse supernovae, we have determined the actinide abundances averaged over various assumed time intervals for their supernova generation and their cosmic-ray acceleration. Using standard Galactic chemical evolution models, we have also determined the expected actinide abundances in the present interstellar medium. From these two components, we have calculated the U/Th and other actinide abundances expected in the supernova-active cores of superbubbles, as a function of their ages and mean metallicity resulting from dilution with interstellar cloud debris. Then, using observations of the fractions of Galactic supernovae that occur in superbubbles and in the rest of the interstellar medium, we calculate the expected actinide abundances in cosmic rays accelerated by Galactic supernovae. We find that the current measurements of actinide/Pt-group and preliminary estimates of the UPuCm/Th ratio in cosmic rays are all consistent with the expected values if superbubble cores have mean metallicities of around 3 times solar. Such metallicities are quite comparable to the superbubble core metallicities inferred from other cosmic-ray observations. Future, more precise measurements of these ratios with experiments such as ECCO are needed to provide a better measure of the mean source metallicity sampled by the local Galactic cosmic rays. Measurements of the cosmic- ray actinide abundances have been favorably compared with the protosolar ratio, inferred from present solar system abundances, to infer that the cosmic rays are accelerated from the general interstellar medium. We suggest, however, that such an inference is not valid because the expected actinide abundances in the present interstellar medium are very different from the protosolar values, which sampled the interstellar medium

  3. 237Np Mössbauer studies on actinide superconductors and related materials

    NASA Astrophysics Data System (ADS)

    Colineau, Eric; Gaczyński, Piotr; Griveau, Jean-Christophe; Eloirdi, Rachel; Caciuffo, Roberto

    2012-03-01

    Actinide materials play a special role in condensed matter physics, spanning behaviours of itinerant d-electron and localized 4f-electron materials. This duality of the 5f electrons confer to actinide-based intermetallic compounds a broad variety of physical properties such as magnetic or multipolar ordering, heavy fermion behaviour, quantum criticality, unconventional superconductivity... 237Np Mössbauer spectroscopy is a unique microscopic tool for gaining information on the electronic and magnetic properties of Np systems.

  4. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    SciTech Connect

    Yu, S.-W.; Tobin, J. G.; Chung, B. W.

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  5. Characterization of Tank 48H Samples for Alpha Activity and Actinide Isotopics

    SciTech Connect

    Hobbs, D.T.; Coleman, C.J.; Hay, M.S.

    1995-12-04

    This document reports the total alpha activity and actinide isotopic results for samples taken from Tank 48H prior to the addition of sodium tetraphenylborate and MST in Batch {number_sign}1 of the ITP process. This information used to determine the quantity of MST for Batch {number_sign}1 of the ITP process and the total actinide content in the tank for dose calculations.

  6. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  7. Extraction of trivalent lanthanides and actinides by ``CMPO-like`` calixarenes

    SciTech Connect

    Delmau, L.H.; Simon, N.; Schwing-Weill, M.J.

    1999-04-01

    Extractive properties of calix[4]arenes bearing carbamoylmethylphosphine oxide moieties on their upper rim toward trivalent lanthanide and actinide cations were investigated. The study revealed that these molecules selectively extract light lanthanides and actinides from heavy lanthanides. All parameters present in the extraction system were varied to determine the origin of the selectivity. It was found that this selectivity requires a calix[4]arene platform and acetamidophosphine oxide groups containing phenyl substituents on the four phosphorus atoms.

  8. A conceptual performance assessment model of the dissolved actinide source term for the WIPP

    SciTech Connect

    Weiner, R.F.; Stockman, C.T.; Wang, Y.; Novak, C.F.

    1996-12-31

    This paper presents a performance assessment model of dissolved actinide concentrations for the Waste Isolation Pilot Plant (WIPP). The model assesses the concentration of each actinide oxidation state and combines these concentrations with an oxidation state distribution. The chemical behavior of actinides in the same oxidation state is presumed to be very similar for almost all situations, but exceptions arising from experimental evidence are accommodated. The code BRAGFLO calculates the gas pressure, brine mass, gas volume, and mass of remaining Fe and cellulosics for each time step and computational cell. The total CO{sub 2} in the repository and dissolved Ca(OH){sub 2} is estimated. Lookup tables are constructed for pmH and f(CO{sub 2}) as a function of brine type and volume, moles of CO{sub 2}, and Ca(OH){sub 2}. Amounts of five soluble complexants are considered. A model based on the formulation of Harvie et al. produces tables of solubilities for each actinide oxidation state as a function of pmH, f(CO{sub 2}), brine composition, and complexant. Experimental data yield lookup tables of fractions of Th, U, Np, Pu, and Am in each oxidation state as a function of f(CO{sub 2}) and complexant. The tables are then used to provide a concentration of a particular actinide at particular values of pmH and f(CO{sub 2}). Under steady-state conditions, the oxidation state of each actinide that is most stable in the particular chemical environment controls the concentration of that actinide in solution. In the absence of steady-state conditions, the oxidation state distribution of interest is that of the dissolved actinide, and the oxidation states may be treated as if they were separate compounds.

  9. DISTRIBUTION OF ACTINIDES BETWEEN THE AQUEOUS AND ORGANIC PHASES IN THE TALSPEAK PROCESS

    SciTech Connect

    Rudisill, T.; Kyser, E.

    2010-09-02

    One objective of the US Department of Energy's Office of Nuclear Energy (DOE-NE) is the development of sustainable nuclear fuel cycles which improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and complement institutional measures limiting proliferation risks. Activities in progress which support this objective include the development of advanced separation technologies to recover the actinides from used nuclear fuels. With the increased interest in the development of technology to allow closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, at this time, the level of understanding associated with the chemistry and the control of the process variables is not acceptable for deployment of the process on an industrial scale. To address this issue, DOE-NE is supporting basic scientific studies focused on the TALSPEAK process through its Fuel Cycle Research and Development (R&D) program. One aspect of these studies is an experimental program at the Savannah River National Laboratory (SRNL) in which temperature-dependent distribution coefficients for the extraction of actinide elements in the TALSPEAK process were measured. The data were subsequently used to calculate conditional enthalpies and entropies of extraction by van't Hoff analysis to better understand the thermodynamic driving forces for the TALSPEAK process. In the SRNL studies, the distribution of Pu(III) in the TALSPEAK process was of particular interest. A small amount of Pu(III) would be present in the feed due to process losses and valence adjustment in prior recovery operations. Actinide elements such as Np and Pu have multiple stable oxidation states in aqueous solutions; therefore the oxidation state for these elements must be controlled in the TALSPEAK process, as the extraction chemistry is dependent upon

  10. Long-term risk from actinides in the environment: Modes of mobility. 1998 annual progress report

    SciTech Connect

    Breshears, D.D.; Whicker, J.J.; Ibrahim, S.A.; Whicker, F.W.; Hakonson, T.E.

    1998-06-01

    'The mobility of actinides in surface soils is a key issue of concern at several DOE facilities in arid and semiarid environments, including Rocky Flats, Hanford, Nevada Test Site, Idaho National Engineering Laboratory, and Los Alamos National Laboratory and the Waste Isolation Pilot Plant (WIPP). Key sources of uncertainty in assessing Pu mobility are the magnitudes of mobility resulting from three modes of transport: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depend on numerous environmental factors and they compete with one another, particularly for actinides in very shallow soils ({approximately} 1 mm). The overall goal of the study is to quantify the mobility of soil actinides from all three modes. The authors study is using field measurements, laboratory experiments, and ecological modeling to address these three processes at three DOE facilities where actinide kinetics are of concern: WIPP, Rocky Flats, and Hanford. Wind erosion is being measured with suite of monitoring equipment, water erosion is being studied with rainfall simulation experiments, vertical migration is being studied in controlled laboratory experiments, and the three processes are being integrated using ecological modeling. Estimates for clean up of soil actinides for the extensive tracts of DOE land range to hundreds of billion $ in the US. Without studies of these processes, unnecessary clean-up of these areas may waste billions of dollars and cause irreparable ecological damage through the soil removal. Further, the outcomes of litigation against DOE are dependent on quantifying the mobility of actinides in surface soils.'

  11. Actinide solubility-controlling phases during the dissolution of phosphate ceramics

    NASA Astrophysics Data System (ADS)

    Du Fou de Kerdaniel, E.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R.

    2007-05-01

    Phosphate ceramics (britholites, monazite/brabantite solid solutions, thorium phosphate diphosphate, i.e. β-TPD, and associated β-TPD/monazite composites) are often considered as potential candidates to immobilize tri- and tetravalent actinides. In order to study the properties of such materials on the retention of actinides during aqueous alteration, phosphate-based neoformed phases were prepared using under- and over-saturation processes then extensively characterized (involving grazing XRD, EPMA, μ-Raman, IR or SEM). In over-saturation conditions, lanthanides (used as surrogates of trivalent actinides) are quickly precipitated as three hydrated forms (monazite, rhabdophane or xenotime) depending on the temperature, the heating time and the ionic radius of the element. Moreover, as already described for thorium, tetravalent actinides (Th, U, Np, Pu) are more often immobilized as phosphate hydrogenphosphate compounds. However, samples of (Ln,Ca,Th)-rhabdophane can also precipitate in the presence of large concentrations of calcium. Such neoformed phases were also precipitated at the surface of leached phosphate-based ceramics during under-saturation experiments. The associated thermodynamic solubility constants at infinite dilution were estimated. Due to their rapid precipitation and their very low solubility constants, these actinide phosphate solubility-controlling phases appear of significant interest in the field of the evaluation of the long-term performance of actinide-doped phosphate ceramics.

  12. Electrochemical separation of actinides and fission products in molten salt electrolyte

    NASA Astrophysics Data System (ADS)

    Gay, R. L.; Grantham, L. F.; Fusselman, S. P.; Grimmett, D. L.; Roy, J. J.

    1995-09-01

    Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

  13. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  14. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE PAGESBeta

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in a singlemore » process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  15. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    SciTech Connect

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in a single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).

  16. Factors influencing the transport of actinides in the groundwater environment. Final report

    SciTech Connect

    Sheppard, J.C.; Kittrick, J.A.

    1983-07-31

    This report summarizes investigations of factors that significantly influence the transport of actinide cations in the groundwater environment. Briefly, measurements of diffusion coefficients for Am(III), Cm(III), and Np(V) in moist US soils indicated that diffusion is negligible compared to mass transport in flowing groundwater. Diffusion coefficients do, however, indicate that, in the absence of flowing water, actinide elements will migrate only a few centimeters in a thousand years. The remaining investigations were devoted to the determination of distribution ratios (K/sub d/s) for representative US soils, factors influencing them, and chemical and physical processes related to transport of actinides in groundwaters. The computer code GARD was modified to include complex formation to test the importance of humic acid complexing on the rate of transport of actinides in groundwaters. Use of the formation constant and a range of humic acid, even at rather low concentrations of 10/sup -5/ to 10/sup -6/ molar, significantly increases the actinide transport rate in a flowing aquifer. These computer calculations show that any strong complexing agent will have a similar effect on actinide transport in the groundwater environment. 32 references, 9 figures.

  17. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  18. Battleground Energy Recovery Project

    SciTech Connect

    Bullock, Daniel

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  19. Synthesis and characterization of templated ion exchange resins for the selective complexation of actinide ions. 1998 annual progress report

    SciTech Connect

    Murray, G.M.; Uy, O.M.

    1998-06-01

    'The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and body fluids). Selectivity for a specific actinide ion is obtained by providing polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The polymers will provide useful sequestering agents for removing actinide ions from wastes and will form the basis for a variety of analytical techniques for actinide determinations.'

  20. Chemical aspects of actinides in the geosphere: towards a rational nuclear materials management

    SciTech Connect

    Allen, P; Sylwester, E

    2001-02-09

    A complete understanding of actinide interactions in the geosphere is paramount for developing a rational Nuclear and Environmental Materials Management Policy. One of the key challenges towards understanding the fate and transport of actinides is determining their speciation (i.e., oxidation state and structure). Since an element's speciation directly dictates physical properties such as toxicity and solubility, this information is critical for evaluating and controlling the evolution of an actinide element through the environment. Specific areas within nuclear and environmental management programs where speciation is important are (1) waste processing and separations; (2) wasteform materials for long-term disposition; and (3) aqueous geochemistry. The goal of this project was to develop Actinide X-ray Absorption Spectroscopy ( U S ) as a core capability at LLNL and integrate it with existing facilities, providing a multi-technique approach to actinide speciation. XAS is an element-specific structural probe which determines the oxidation state and structure for most atoms. XAS can be more incisive than other spectroscopies because it originates from an atomic process and the information is always attainable, regardless of an element's speciation. Despite the utility, XAS is relatively complex due to the need for synchrotron radiation and significant expertise with data acquisition and analysis. The coupling of these technical hurdles with the safe handling of actinides at a general user synchrotron facility such as the Stanford Synchrotron Radiation Facility (SSRL) make such experiments even more difficult. As a result, XAS has been underutilized by programs that could benefit by its application. We achieved our project goals by implementing key state-of-the-art Actinide XAS instrumentation at SSRL (Ge detector and remote positioning equipment), and by determining the chemical speciation of actinides (Th, U, and Np) in aqueous solutions, wasteform cements, and

  1. Enhancing VVER Annular Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    G. S. Chang

    2007-06-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. The merits of nuclear energy are the high-density energy, and low environmental impacts i.e. almost zero greenhouse gas emission. Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current LWR as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce the spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope 238Pu /Pu ratio. For future advanced nuclear systems, the minor actinides are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. In this paper, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. We concluded that the concept of MARA, involves the use of transuranic nuclides (237Np and/or 241Am), can not only drastically

  2. Proliferation Resistance Evaluation of ACR-1000 Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2008-09-01

    The Global Nuclear Energy Partnership (GNEP) program is to significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics

  3. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm3) to the top (0.35 g/cm3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides (237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms

  4. Enhancing BWR proliferation resistance fuel with minor actinides

    NASA Astrophysics Data System (ADS)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in

  5. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  6. Extraction of actinides into aqueous polyethylene glycol solutions from carbonate media in the presence of alizarin complexone

    SciTech Connect

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Actinide extraction in a two-phase aqueous system based on polyethylene glycol from carbonate solutions of various compositions in presence of alizarin complexone is studied. It is shown that the nature of the alkali metals affects actinide extraction into the polyethylene glycol phase. Tri- and tetravalent actinides are extracted maximally from sodium carbonate solutions. Separation of actinides in different oxidation states is more effective in potassium carbonate solutions. The behavior of americium in different oxidation states in the system carbonate-polyethylene glycol-complexone is studied. The possibility of extraction separation of microamount of americium(V) from curium in carbonate solutions in presence of alizarin complexone is shown.

  7. Method for fluorination of actinide fluorides and oxyfluorides thereof using O[sub 2]F[sub 2

    DOEpatents

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1988-11-08

    Method is described for fluorination of actinides and fluorides and oxyfluorides thereof using O[sub 2]F[sub 2] which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O[sub 2]F[sub 2], has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  8. DEVELOPMENT OF BIODEGRADABLE ISOSACCHARINATE-CONTAINING FOAMS FOR DECONTAMINATION OF ACTINIDES: THERMODYNAMIC AND KINETIC REACTIONS BETWEEN ISOSACCHARINATE AND ACTINIDES ON METAL AND CONCRETE SURFACES

    EPA Science Inventory

    Actinide contamination of steel and concrete surfaces is a major problem within the U.S. Department of Energy (DOE) complex. For steel surfaces, the primary problem is contamination of sections of nuclear power reactors, weapons production facilities, laboratories, and waste tank...

  9. Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides.

    PubMed

    Wang, Cong-Zhi; Lan, Jian-Hui; Wu, Qun-Yan; Zhao, Yu-Liang; Wang, Xiang-Ke; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-06-21

    At present, designing novel ligands for efficient actinide extraction in spent nuclear fuel reprocessing is extremely challenging due to the complicated chemical behaviors of actinides, the similar chemical properties of minor actinides (MA) and lanthanides, and the vulnerability of organic ligands in acidic radioactive solutions. In this work, a quantum chemical study on Am(III), Cm(III) and Eu(III) complexes with N,N,N',N'-tetraoctyl diglycolamide (TODGA) and N,N'-dimethyl-N,N'-diheptyl-3-oxapentanediamide (DMDHOPDA) has been carried out to explore the extraction behaviors of trivalent actinides (An) and lanthanides (Ln) with diglycolamides from acidic media. It has been found that in the 1 : 1 (ligand : metal) and 2 : 1 stoichiometric complexes, the carbonyl oxygen atoms have stronger coordination ability than the ether oxygen atoms, and the interactions between metal cations and organic ligands are substantially ionic. The neutral ML(NO3)3 (M = Am, Cm, Eu) complexes seem to be the most favorable species in the extraction process, and the predicted relative selectivities are in agreement with experimental results, i.e., the diglycolamide ligands have slightly higher selectivity for Am(III) over Eu(III). Such a thermodynamical priority is probably caused by the higher stabilities of Eu(III) hydration species and Eu(III)-L complexes in aqueous solution compared to their analogues. In addition, our thermodynamic analysis from water to organic medium confirms that DMDHOPDA has higher extraction ability for the trivalent actinides and lanthanides than TODGA, which may be due to the steric hindrance of the bulky alkyl groups of TODGA ligands. This work might provide an insight into understanding the origin of the actinide selectivity and a theoretical basis for designing highly efficient extractants for actinide separation. PMID:24769618

  10. Paving the way for the synthesis of a series of divalent actinide complexes: a theoretical perspective.

    PubMed

    Wu, Q-Y; Lan, J-H; Wang, C-Z; Cheng, Z-P; Chai, Z-F; Gibson, J K; Shi, W-Q

    2016-02-21

    Recently, the +2 formal oxidation state in soluble molecular complexes for lanthanides (La-Nd, Sm-Lu) and actinides (Th and U) has been discovered [W. J. Evans, et al., J. Am. Chem. Soc., 2011, 133, 15914; J. Am. Chem. Soc., 2012, 134, 8420; J. Am. Chem. Soc., 2013, 135, 13310; Chem. Sci., 2015, 6, 517]. To explore the nature of the bonding and stabilities of the low-valent actinide complexes, a series of divalent actinide species, [AnCp'3](-) (An[double bond, length as m-dash]Th-Am, Cp' = [η(5)-C5H4(SiMe3)](-)) have been investigated in THF solution using scalar relativistic density functional theory. The electronic structures and electron affinity properties were systematically studied to identify the interactions between the +2 actinide ions and Cp' ligands. The ground state electron configurations for the [AnCp'3](-) species are [ThCp'3](-) 6d(2), [PaCp'3](-) 5f(2)6d(1), [UCp'3](-) 5f(3)6d(1), [NpCp'3](-) 5f(5), [PuCp'3](-) 5f(6), and [AmCp'3](-) 5f(7), respectively, according to the MO analysis. The total bonding energy decreases from the Th- to the Am-complex and the electrostatic interactions mainly dominate the bonding between the actinide atom and ligands. The electron affinity analysis suggests that the reduction reaction of AnCp'3→ [AnCp'3](-) should become increasingly facile across the actinide series from Th to Am, in accord with the known An(iii/ii) reduction potentials. This work expands the knowledge on the low oxidation state chemistry of actinides, and further motivates and guides the synthesis of related low oxidation state compounds of 5f elements. PMID:26777518

  11. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    SciTech Connect

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)

  12. Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

    SciTech Connect

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

  13. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  14. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    SciTech Connect

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate is seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.

  15. SODIUM ALUMINOSILICATE SOLIDS AFFINITY FOR CESIUM AND ACTINIDES

    SciTech Connect

    Peters, T; Bill Wilmarth, B; Samuel Fink, S

    2007-07-31

    Washed sodium-aluminosilicate (NAS) solids at initial concentrations of 3.55 and 5.4 g/L sorb or uptake virtually no cesium over 288 hours, nor do any NAS solids generated during that time. These concentrations of solids are believed to conservatively bound current and near-term operations. Hence, the NAS solids should not have affected measurements of the cesium during the mass transfer tests and there is minimal risk of accumulating cesium during routine operations (and hence posing a gamma radiation exposure risk in maintenance). With respect to actinide uptake, it appears that NAS solids sorb minimal quantities of uranium - up to 58 mg U per kg NAS solid. The behavior with plutonium is less well understood. Additional study may be needed for radioactive operations relative to plutonium or other fissile component sorption or trapping by the solids. We recommend this testing be incorporated in the planned tests using samples from Tank 25F and Tank 49H to extend the duration to bound expected inventory time for solution.

  16. On the valence fluctuation in the early actinide metals

    DOE PAGESBeta

    Soderlind, P.; Landa, A.; Tobin, J. G.; Allen, P.; Medling, S.; Booth, C. H.; Bauer, E. D.; Cooley, J. C.; Sokaras, D.; Weng, T. -C.; et al

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f3 and f4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δmore » phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less

  17. Actinide ions for testing the spatial α -variation hypothesis

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Safronova, M. S.; Safronova, U. I.; Flambaum, V. V.

    2015-12-01

    Testing the spatial variation of the fine-structure constant α indicated by Webb et al. [J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107, 191101 (2011), 10.1103/PhysRevLett.107.191101] with terrestrial laboratory atomic measurements requires at least α ˙/α ˜10-19yr-1 sensitivity. We conduct a systematic search of atomic systems for such a test that have all features of the best optical clock transitions leading to the possibility of the frequency measurements with fractional accuracy on the level of 10-18 or better and have a factor of 100 extra enhancement of α variation in comparison to experimental frequency ratio measurement accuracy. We identify the pair of actinide Cf15 + and Es16 + ions as the best system for a test of spatial α -variation hypothesis as it satisfies both of these requirements and has sufficiently simple electronic structure to allow for high-precision predictions of all atomic properties required for rapid experimental progress.

  18. Autoradiographic study of actinide sorption on climax stock granite

    SciTech Connect

    Beall, G.W.; O'Kelley, G.D.; Allard, B.

    1980-06-01

    An autoradiographic technique that employed an arrangement for placing in firm contact Polaroid sheet film, a scintillator screen, and the radioactive face of a specimen was applied to a study of the sorption of americium, neptunium, plutonium, and uranium on Climax Stock granite under varying conditions of pH and Eh. Qualitative agreement was found between the sorption of americium on crushed, pure minerals and on the minerals comprising the specimen of Climax Stock granite. The observations also supported a mechanism for reduction of Np(V) to Np(IV) and Pu(VI) to Pu(IV) by Fe(II)-containing minerals. There was no evidence for reduction of U(VI) by the Fe(II)-containing minerals, although the uranium, assumed to be present as UO/sub 2//sup 2 +/, appeared to be the only actinide species to exhibit sorption by a simple, cation-exchange mechanism at particular mineral sites. Some implications of these results for nuclear waste isolation are discussed briefly.

  19. Thermodynamic and Structural Investigation of Synthetic Actinide-Peptide Scaffolds.

    PubMed

    Safi, Samir; Jeanson, Aurélie; Roques, Jérome; Solari, Pier Lorenzo; Charnay-Pouget, Florence; Den Auwer, Christophe; Creff, Gaëlle; Aitken, David J; Simoni, Eric

    2016-01-19

    The complexation of uranium and europium, in oxidation states +VI and +III, respectively, was investigated with pertinent bio-inorganic systems. Three aspartate-rich pentapeptides with different structural properties were selected for study to rationalize the structure-affinity relationships. Thermodynamic results, crosschecked by both isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy, showed different affinity depending on the peptide for both Eu(III) and U(VI). The thermodynamic aspects were correlated to structural predictions, which were acquired by density functional theory quantum chemical calculations and from IR and extended X-ray absorption fine structure experiments. The combination of these microscopic properties revealed that carbonyl-metal interactions affected the entropy in the case of europium, while the larger uranyl cation was mostly affected by preorganization and steric effects, so that the affinity was enhanced through enthalpy. The approach described here revealed various microscopic aspects governing peptide actinide affinity. Highlighting these mechanisms should certainly contribute to the rational synthesis of higher affinity biomimetic aspartic ligands. PMID:26727631

  20. Melting of aluminum, molybdenum and the light actinides

    SciTech Connect

    Ross, M; Yang, L H; Boehler, R

    2004-06-25

    A semi-empirical model was used to explain why the measured melting curves of molybdenum, and the other bcc transition metals, have an unusually low slope (dT/dP{approx}0). The total binding energy of Mo is written as the sum of the repulsive energy of the ions and sp-electrons (modeled by an inverse 6th power potential) and the d-band cohesive energy described by the well known Friedel equation. Using literature values for the Mo band width energy, the number of d-electrons and their volume dependence, we find that a small broadening of the liquid d-band width ({approx}1%) leads to an increase in the stability of the liquid relative to the solid. This is sufficient to depress the melting temperature and lower the melting slope to a value in agreement with the diamond-anvil cell measurements. Omission of the d-band physics results in an Al-like melting curve with a much steeper melt slope. The model, when applied to the f-electrons of the light actinides (Th-Am), gives agreement with the observed fall and rise in the melting temperature with increasing atomic number.