Science.gov

Sample records for actinomycetales mce operons

  1. Analysis of expression profile of mce operon genes (mce1, mce2, mce3 operon) in different Mycobacterium tuberculosis isolates at different growth phases

    PubMed Central

    Singh, Pratibha; Katoch, V.M.; Mohanty, K.K.; Chauhan, Devendra Singh

    2016-01-01

    Background & objectives: Mycobacterium tuberculosis (M. tuberculosis) has four homologous mammalian cell entry (mce) operons (mce1-4) that encode exported proteins and have a possible role in the virulence mechanism of this pathogen. The expression of mce operon is considered to be complex and not completely understood. Although expression of mce operon at different in vitro growth phases has been studied earlier, its expression in different M. tuberculosis isolates under different growth phases is not yet studied. The present preliminary study was conducted on a limited number of isolates to know the trend of expression pattern of mce operon genes in different M. tuberculosis isolates under different growth stages. Methods: In this study, we monitored the transcriptional profile of selected mce operon genes (mce1A, mce1D, mce2A, mce2D, mce3A, mce3C) in different M. tuberculosis isolates (MDR1, MDR2, and sensitive isolate) at early exponential and stationary phases using real-time quantitative PCR. Results: The expression ratio of all selected mce operon genes in all M. tuberculosis isolates was reduced at the initial phase and increased substantially at a later phase of growth. Higher expression of mce1 operon genes was found in all M. tuberculosis isolates as compared to other mce operon genes (mce2 and mce3 operons) at stationary growth phase. Interpretation & conclusions: The higher expression of mce operon genes at stationary phase (as compared to early exponential phase) suggested growth phase dependent expression of mce operon genes. This indicated that the mce operon genes might have a role in M. tuberculosis survival and adaptation on the onset of adverse condition like stationary phase. Identification of differentially expressed genes will add to our understanding of the bacilli involved in adaptation to different growth conditions. PMID:27377506

  2. Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis

    PubMed Central

    2013-01-01

    Background Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the agent of human tuberculosis, has developed strategies involving proteins and other compounds called virulence factors to subvert human host defences and damage and invade the human host. Among these virulence-related proteins are the Mce proteins, which are encoded in the mce1, mce2, mce3 and mce4 operons of M. tuberculosis. The expression of the mce2 operon is negatively regulated by the Mce2R transcriptional repressor. Here we evaluated the role of Mce2R during the infection of M. tuberculosis in mice and macrophages and defined the genes whose expression is in vitro regulated by this transcriptional repressor. Results We used a specialized transduction method for generating a mce2R mutant of M. tuberculosis H37Rv. Although we found equivalent replication of the MtΔmce2R mutant and the wild type strains in mouse lungs, overexpression of Mce2R in the complemented strain (MtΔmce2RComp) significantly impaired its replication. During in vitro infection of macrophages, we observed a significantly increased association of the late endosomal marker LAMP-2 to MtΔmce2RComp-containing phagosomes as compared to MtΔmce2R and the wild type strains. Whole transcriptional analysis showed that Mce2R regulates mainly the expression of the mce2 operon, in the in vitro conditions studied. Conclusions The findings of the current study indicate that Mce2R weakly represses the in vivo expression of the mce2 operon in the studied conditions and argue for a role of the proteins encoded in Mce2R regulon in the arrest of phagosome maturation induced by M. tuberculosis. PMID:24007602

  3. Sulfolipid accumulation in Mycobacterium tuberculosis disrupted in the mce2 operon.

    PubMed

    Marjanovic, Olivera; Iavarone, Anthony T; Riley, Lee W

    2011-06-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, has a lipid-rich cell wall that serves as an effective barrier against drugs and toxic host cell products, which may contribute to the organism's persistence in a host. M. tuberculosis contains four homologous operons called nice (mce1-4) that encode putative ABC transporters involved in lipid importation across the cell wall. Here, we analyzed the lipid composition of M. tuberculosis disrupted in the mce2 operon. High resolution mass spectrometric and thin layer chromatographic analyses of the mutant's cell wall lipid extracts showed accumulation of SL-1 and SL(1278) molecules. Radiographic quantitative analysis and densitometry revealed 2.9, 3.9 and 9.8-fold greater amount of [(35)S] SL-1 in the mce2 operon mutant compared to the wild type M. tuberculosis during the early/mid logarithmic, late logarithmic and stationary phase of growth in liquid broth, respectively. The amount of [(35)S] SL(1278) in the mutant also increased progressively over the same growth phases. The expression of the mce2 operon genes in the wild type strain progressively increased from the logarithmic to the stationary phase of bacterial growth in vitro, which inversely correlated with the proportion of radiolabel incorporation into SL-1 and SL(1278) at these phases. Since the mce2 operon is regulated in wild type M. tuberculosis, its cell wall may undergo changes in SL-1 and SL(1278) contents during a natural course of infection and this may serve as an important adaptive strategy for M. tuberculosis to maintain persistence in a host. PMID:21717330

  4. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    PubMed

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. PMID:26319139

  5. Functional analysis of mce4A gene of Mycobacterium tuberculosis H37Rv using antisense approach.

    PubMed

    Chandolia, Amita; Rathor, Nisha; Sharma, Monika; Saini, Neeraj Kumar; Sinha, Rajesh; Malhotra, Pawan; Brahmachari, Vani; Bose, Mridula

    2014-01-01

    Antisense strategy is an attractive substitute for knockout mutations created for gene silencing. mce genes have been shown to be involved in mycobacterial uptake and intracellular survival. Here we report reduced expression of mce4A and mce1A genes of Mycobacterium tuberculosis using antisense technology. For this, 1.1 kb region of mce4A and mce1A was cloned in reverse orientation in pSD5 shuttle vector, resulting into antisense constructs pSD5-4AS and pSD5-1AS, respectively. In M. tuberculosis H37Rv approximately 60% reduction in Mce4A and 66% reduction in expression of Mce1A protein were observed. We also observed significantly reduced intracellular survival ability of both antisense strains in comparison to M. tuberculosis containing pSD5 alone. RT-PCR analysis showed antisense did not alter the transcription of upstream and downstream of mceA genes of the respective operon. The colony morphology, in vitro growth characteristics and drug susceptibility profile of the antisense construct remained unchanged. These results demonstrate that antisense can be a promising approach to assign function of a gene in a multiunit operon and could be suitably applied as a strategy. PMID:24556072

  6. Polyclonal antibody against conserved sequences of mce1A protein blocks MTB infection in macrophages.

    PubMed

    Sivagnanam, Sasikala; Namasivayam, Nalini; Chellam, Rajamanickam

    2012-03-01

    The pathogenesis of Mycobacterium tuberculosis is largely due to its ability to enter and survive within human macrophages. It is suggested that a specific protein namely mammalian cell entry protein is involved in the pathogenesis and the specific gene for this protein mce1A has been identified in several pathogenic organisms such as Rickettsia, Shigella, Escherichia coli, Helicobacter, Streptomyces, Klebsiella, Vibrio, Neisseria, Rhodococcus, Nocardioides, Saccharopolyspora erthyrae, and Pseudomonas. Analysis of mce1 operons in the above mentioned organisms through bioinformatics tools has revealed the presence of unique sequences (conserved regions) suggesting that these sequences may be involved in the process of infection. Presently, the mce1A full-length (1,365 bp) region from Mycobacterium bovis and its conserved regions (303 bp) were cloned in to an expression vector and the purified expressed proteins of molecular weight ~47 and ~11 kDa, respectively, were injected to rabbits to raise the polyclonal antibodies. The purified polyclonal antibodies were checked for their ability to inhibit the Mycobacterium infection in cultured human macrophages. In macrophage invasion assay, when antibody added at high concentration, decrease in viable counts was observed in all cell cultures within the first 5 days after infection, where the intracellular bacterial CFU obtained from the infected MTB increased by the 3rd day at low concentration of antibody. The macrophage invasion assay has indicated that the purified antibodies of mce1A conserved region can inhibit the infection of Mycobacterium. PMID:22159737

  7. Peptidoglycan cross-linking in glycopeptide-resistant Actinomycetales.

    PubMed

    Hugonnet, Jean-Emmanuel; Haddache, Nabila; Veckerlé, Carole; Dubost, Lionel; Marie, Arul; Shikura, Noriyasu; Mainardi, Jean-Luc; Rice, Louis B; Arthur, Michel

    2014-01-01

    Synthesis of peptidoglycan precursors ending in D-lactate (D-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by L,D-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in D-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of D-Lac into cytoplasmic precursors. This was due to a D,D-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of D-Lac for D-Ala and Gly. The contribution of L,D-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-D,D-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal D-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by D,D-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of L,D-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-D,D-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that L,D-transpeptidases merely act as a tolerance mechanism in this bacterium. PMID:24395229

  8. Is the lower atmosphere a readily accessible reservoir of culturable, antimicrobial compound-producing Actinomycetales?

    PubMed

    Weber, Carolyn F; Werth, Jason T

    2015-01-01

    Recent metagenomic studies have revealed that microbial diversity in the atmosphere rivals that of surface environments. This indicates that the atmosphere may be worth bioprospecting in for novel microorganisms, especially those selected for by harsh atmospheric conditions. This is interesting in light of the antibiotic resistance crisis and renewed interests in bioprospecting for members of the Actinomycetales, which harbor novel secondary metabolite-producing pathways and produce spores that make them well suited for atmospheric travel. The latter leads to the hypothesis that the atmosphere may be a promising environment in which to search for novel Actinomycetales. Although ubiquitous in soils, where bioprospecting efforts for Actinomycetales have been and are largely still focused, we present novel data indicating that culturable members of this taxonomic order are 3-5.6 times more abundant in air samples collected at 1.5, 4.5, 7.5, and 18 m above the ground, than in the underlying soil. These results support the hypothesis that mining the vast and readily accessible lower atmosphere for novel Actinomycetales in the search for undescribed secondary metabolites could prove fruitful. PMID:26300868

  9. Is the lower atmosphere a readily accessible reservoir of culturable, antimicrobial compound-producing Actinomycetales?

    PubMed Central

    Weber, Carolyn F.; Werth, Jason T.

    2015-01-01

    Recent metagenomic studies have revealed that microbial diversity in the atmosphere rivals that of surface environments. This indicates that the atmosphere may be worth bioprospecting in for novel microorganisms, especially those selected for by harsh atmospheric conditions. This is interesting in light of the antibiotic resistance crisis and renewed interests in bioprospecting for members of the Actinomycetales, which harbor novel secondary metabolite-producing pathways and produce spores that make them well suited for atmospheric travel. The latter leads to the hypothesis that the atmosphere may be a promising environment in which to search for novel Actinomycetales. Although ubiquitous in soils, where bioprospecting efforts for Actinomycetales have been and are largely still focused, we present novel data indicating that culturable members of this taxonomic order are 3–5.6 times more abundant in air samples collected at 1.5, 4.5, 7.5, and 18 m above the ground, than in the underlying soil. These results support the hypothesis that mining the vast and readily accessible lower atmosphere for novel Actinomycetales in the search for undescribed secondary metabolites could prove fruitful. PMID:26300868

  10. F420H2-Dependent Degradation of Aflatoxin and other Furanocoumarins Is Widespread throughout the Actinomycetales

    PubMed Central

    Lapalikar, Gauri V.; Taylor, Matthew C.; Warden, Andrew C.; Scott, Colin; Russell, Robyn J.; Oakeshott, John G.

    2012-01-01

    Two classes of F420-dependent reductases (FDR-A and FDR-B) that can reduce aflatoxins and thereby degrade them have previously been isolated from Mycobacterium smegmatis. One class, the FDR-A enzymes, has up to 100 times more activity than the other. F420 is a cofactor with a low reduction potential that is largely confined to the Actinomycetales and some Archaea and Proteobacteria. We have heterologously expressed ten FDR-A enzymes from diverse Actinomycetales, finding that nine can also use F420H2 to reduce aflatoxin. Thus FDR-As may be responsible for the previously observed degradation of aflatoxin in other Actinomycetales. The one FDR-A enzyme that we found not to reduce aflatoxin belonged to a distinct clade (herein denoted FDR-AA), and our subsequent expression and analysis of seven other FDR-AAs from M. smegmatis found that none could reduce aflatoxin. Certain FDR-A and FDR-B enzymes that could reduce aflatoxin also showed activity with coumarin and three furanocoumarins (angelicin, 8-methoxysporalen and imperatorin), but none of the FDR-AAs tested showed any of these activities. The shared feature of the compounds that were substrates was an α,β-unsaturated lactone moiety. This moiety occurs in a wide variety of otherwise recalcitrant xenobiotics and antibiotics, so the FDR-As and FDR-Bs may have evolved to harness the reducing power of F420 to metabolise such compounds. Mass spectrometry on the products of the FDR-catalyzed reduction of coumarin and the other furanocoumarins shows their spontaneous hydrolysis to multiple products. PMID:22383957

  11. Long-term ferrocyanide application via deicing salts promotes the establishment of Actinomycetales assimilating ferrocyanide-derived carbon in soil.

    PubMed

    Gschwendtner, Silvia; Mansfeldt, Tim; Kublik, Susanne; Touliari, Evangelia; Buegger, Franz; Schloter, Michael

    2016-07-01

    Cyanides are highly toxic and produced by various microorganisms as defence strategy or to increase their competitiveness. As degradation is the most efficient way of detoxification, some microbes developed the capability to use cyanides as carbon and nitrogen source. However, it is not clear if this potential also helps to lower cyanide concentrations in roadside soils where deicing salt application leads to significant inputs of ferrocyanide. The question remains if biodegradation in soils can occur without previous photolysis. By conducting a microcosm experiment using soils with/without pre-exposition to road salts spiked with (13) C-labelled ferrocyanide, we were able to confirm biodegradation and in parallel to identify bacteria using ferrocyanide as C source via DNA stable isotope probing (DNA-SIP), TRFLP fingerprinting and pyrosequencing. Bacteria assimilating (13) C were highly similar in the pre-exposed soils, belonging mostly to Actinomycetales (Kineosporia, Mycobacterium, Micromonosporaceae). In the soil without pre-exposition, bacteria belonging to Acidobacteria (Gp3, Gp4, Gp6), Gemmatimonadetes (Gemmatimonas) and Gammaproteobacteria (Thermomonas, Xanthomonadaceae) used ferrocyanide as C source but not the present Actinomycetales. This indicated that (i) various bacteria are able to assimilate ferrocyanide-derived C and (ii) long-term exposition to ferrocyanide applied with deicing salts leads to Actinomycetales outcompeting other microorganisms for the use of ferrocyanide as C source. PMID:27194597

  12. A Comparison of the Mandatory Continuing Education (MCE) Requirements of the Regulated Health Occupations in Minnesota.

    ERIC Educational Resources Information Center

    Green-Eide, Beth

    A study reviewed and compared initial and renewal practices for licensure/registration of 13 health care occupations regulated in the state of Minnesota. It examined mandatory continuing education (MCE) documentation and the practices of licensing boards in their enforcement of the MCE legislation. The Minnesota Statutes and Rules for the…

  13. Modeling operon dynamics: the tryptophan and lactose operons as paradigms.

    PubMed

    Mackey, Michael C; Santillán, Moisés; Yildirim, Necmettin

    2004-03-01

    Understanding the regulation of gene control networks and their ensuing dynamics will be a critical component in the understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical modeling work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and inducible operons. PMID:15127892

  14. Operon prediction in Pyrococcus furiosus

    PubMed Central

    Tran, Thao T.; Dam, Phuongan; Su, Zhengchang; Poole, Farris L.; Adams, Michael W. W.; Zhou, G. Tong; Xu, Ying

    2007-01-01

    Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three existing algorithms using a neural network (NN). These algorithms use intergenic distances, phylogenetic profiles, functional categories and gene-order conservation in their operon prediction. Our method takes as inputs the confidence scores of the three programs, and outputs a prediction of whether adjacent genes on the same strand belong to the same operon. In addition, we have applied Gene Ontology (GO) and KEGG pathway information to improve the accuracy of our algorithm. The parameters of this NN predictor are trained on a subset of all experimentally verified operon gene pairs of Bacillus subtilis. It subsequently achieved 86.5% prediction accuracy when applied to a subset of gene pairs for Escherichia coli, which is substantially better than any of the three prediction programs. Using this new algorithm, we predicted 470 operons in the P.furiosus genome. Of these, 349 were validated using DNA microarray data. PMID:17148478

  15. The Life-cycle of Operons

    SciTech Connect

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  16. Genome Sequence of Taylorella equigenitalis MCE9, the Causative Agent of Contagious Equine Metritis▿

    PubMed Central

    Hébert, Laurent; Moumen, Bouziane; Duquesne, Fabien; Breuil, Marie-France; Laugier, Claire; Batto, Jean-Michel; Renault, Pierre; Petry, Sandrine

    2011-01-01

    Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE9, isolated in 2005 from the urethral fossa of a 4-year-old stallion in France. PMID:21278298

  17. Draft Genome Sequence of Taylorella equigenitalis Strain MCE529, Isolated from a Belgian Warmblood Horse

    PubMed Central

    Hébert, Laurent; Touzain, Fabrice; de Boisséson, Claire; Breuil, Marie-France; Duquesne, Fabien; Laugier, Claire; Blanchard, Yannick

    2014-01-01

    Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE529, isolated in 2009 from the urethral fossa of a 15-year-old Belgian Warmblood horse in France. PMID:25428969

  18. Genome sequence of Taylorella equigenitalis MCE9, the causative agent of contagious equine metritis.

    PubMed

    Hébert, Laurent; Moumen, Bouziane; Duquesne, Fabien; Breuil, Marie-France; Laugier, Claire; Batto, Jean-Michel; Renault, Pierre; Petry, Sandrine

    2011-04-01

    Taylorella equigenitalis is the causative agent of contagious equine metritis (CEM), a sexually transmitted infection of horses. We herein report the genome sequence of T. equigenitalis strain MCE9, isolated in 2005 from the urethral fossa of a 4-year-old stallion in France. PMID:21278298

  19. Investigating Evolutionary Dynamics of RHA1 Operons

    PubMed Central

    Chen, Yong; Geng, Dandan; Ehrhardt, Kristina; Zhang, Shaoqiang

    2016-01-01

    Grouping genes as operons is an important genomic feature of prokaryotic organisms. The comprehensive understanding of the operon organizations would be helpful to decipher transcriptional mechanisms, cellular pathways, and the evolutionary landscape of prokaryotic genomes. Although thousands of prokaryotes have been sequenced, genome-wide investigation of the evolutionary dynamics (division and recombination) of operons among these genomes remains unexplored. Here, we systematically analyzed the operon dynamics of Rhodococcus jostii RHA1 (RHA1), an oleaginous bacterium with high potential applications in biofuel, by comparing 340 prokaryotic genomes that were carefully selected from different genera. Interestingly, 99% of RHA1 operons were observed to exhibit evolutionary events of division and recombination among the 340 compared genomes. An operon that encodes all enzymes related to histidine biosynthesis in RHA1 (His-operon) was found to be segmented into smaller gene groups (sub-operons) in diverse genomes. These sub-operons were further reorganized with different functional genes as novel operons that are related to different biochemical processes. Comparatively, the operons involved in the functional categories of lipid transport and metabolism are relatively conserved among the 340 compared genomes. At the pathway level, RHA1 operons found to be significantly conserved were involved in ribosome synthesis, oxidative phosphorylation, and fatty acid synthesis. These analyses provide evolutionary insights of operon organization and the dynamic associations of various biochemical pathways in different prokaryotes. PMID:27398020

  20. The Life-cycle of Operons

    SciTech Connect

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  1. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  2. Detecting uber-operons in prokaryotic genomes

    PubMed Central

    Che, Dongsheng; Li, Guojun; Mao, Fenglou; Wu, Hongwei; Xu, Ying

    2006-01-01

    We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: , the first of its kind. PMID:16682449

  3. The Bacillus subtilis sin Operon

    PubMed Central

    Voigt, Christopher A.; Wolf, Denise M.; Arkin, Adam P.

    2005-01-01

    The strategy of combining genes from a regulatory protein and its antagonist within the same operon, but controlling their activities differentially, can lead to diverse regulatory functions. This protein-antagonist motif is ubiquitous and present in evolutionarily unrelated regulatory pathways. Using the sin operon from the Bacillus subtilis sporulation pathway as a model system, we built a theoretical model, parameterized it using data from the literature, and used bifurcation analyses to determine the circuit functions it could encode. The model demonstrated that this motif can generate a bistable switch with tunable control over the switching threshold and the degree of population heterogeneity. Further, the model predicted that a small perturbation of a single critical parameter can bias this architecture into functioning like a graded response, a bistable switch, an oscillator, or a pulse generator. By mapping the parameters of the model to specific DNA regions and comparing the genomic sequences of Bacillus species, we showed that phylogenetic variation tends to occur in those regions that tune the switch threshold without disturbing the circuit function. The dynamical plasticity of the protein-antagonist operon motif suggests that it is an evolutionarily convergent design selected not only for particular immediate function but also for its evolvability. PMID:15466432

  4. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling.

    PubMed

    Li, Jie; Chai, Qi-Yao; Zhang, Yong; Li, Bing-Xi; Wang, Jing; Qiu, Xiao-Bo; Liu, Cui Hua

    2015-04-15

    Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis. PMID:25780035

  5. Problem-solving test: Tryptophan operon mutants.

    PubMed

    Szeberényi, József

    2010-09-01

    Terms to be familiar with before you start to solve the test: tryptophan, operon, operator, repressor, inducer, corepressor, promoter, RNA polymerase, chromosome-polysome complex, regulatory gene, cis-acting element, trans-acting element, plasmid, transformation. PMID:21567855

  6. Immunoglobulin G response to mammalian cell entry 1A (Mce1A) protein as biomarker of active tuberculosis.

    PubMed

    Takenami, Iukary; de Oliveira, Carolina C; Lima, Filipe R; Soares, Jéssica; Machado, Almério; Riley, Lee W; Arruda, Sérgio

    2016-09-01

    Cell wall components are major determinants of virulence of Mycobacterium tuberculosis and they contribute to the induction of both humoral and cell-mediated immune response. The mammalian cell entry protein 1A (Mce1A), in the cell wall of M. tuberculosis, mediates entry of the pathogen into mammalian cells. Here, we examined serum immunoglobulin levels (IgA, IgM and total IgG) against Mce1A as a potential biomarker for diagnosis and monitoring tuberculosis (TB) treatment response. Serum samples of 39 pulmonary TB patients and 65 controls (15 healthy household contacts, 19 latently infected household contacts, 13 non-TB and 18 leprosy patients) were screened by ELISA. The median levels of all immunoglobulin classes were significantly higher in TB patients when compared with control groups. The positive test results for IgA, IgM and total IgG were 62, 54 and 82%, respectively. For comparison, routine sputum smear examination diagnosed only 26 (67%) of 39 TB cases. Sensitivities of IgA, IgM and IgG test were 59, 51.3 and 79.5%, respectively, while the specificities observed were 77.3, 83.3 and 84.4%, respectively. A significant decrease compared with baseline was also shown after TB treatment. These results suggest that circulating total IgG antibody to Mce1A could be a complementary tool to diagnosis pulmonary TB. PMID:27553414

  7. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  8. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran).

    PubMed

    Motlagh, Zeynab Karimzadeh; Sayadi, Mohammad Hossein

    2015-12-01

    The rapid municipal solid waste growth of Birjand plain causes to find an appropriate site selection for the landfill. In order to reduce the negative impacts of waste, the use of novel tools and technologies to gain a suitable site for landfill seems imperative. The present paper aimed to exhibits the Multi Criteria Evaluation (MCE) for the landfill site selection of the Birjand plain because till date a suitable action has not been implicated. In the present research, the parameters such as environmental and socio-economical factors have been used. The factors like slope, water resources, soil parameters, landuse, fault and protected areas in the model of effective environmental criteria and the factors viz. distance from road, urban areas, village, airport, historical place, and industries in the model of socio-economic criteria were investigated and with the use of Weighted Linear Combination (WLC) and Analytical Network Process (ANP) models were compounded and according to the Ordered Weighted Averaging (OWA) and Fuzzy Linguistic Quantifier (LQ) were aggregated. The paper focuses on the OWA method as well as an approach for integrating Geographic Information System (GIS) and OWA. OWA has been developed as a generalization of multi-criteria combination. In this study we attained comparable data via the technique of ANP and five scenarios of OWA method were used. The results of field studies, fifth scenario for the study area proposed. Based on the research findings, OWA method had a great potential and flexibility in the modeling of the complex decision-making problems. PMID:26321380

  9. Teaching the Big Ideas of Biology with Operon Models

    ERIC Educational Resources Information Center

    Cooper, Robert A.

    2015-01-01

    This paper presents an activity that engages students in model-based reasoning, requiring them to predict the behavior of the trp and lac operons under different environmental conditions. Students are presented six scenarios for the "trp" operon and five for the "lac" operon. In most of the scenarios, specific mutations have…

  10. Origin of bistability in the lac Operon.

    PubMed

    Santillán, M; Mackey, M C; Zeron, E S

    2007-06-01

    Multistability is an emergent dynamic property that has been invoked to explain multiple coexisting biological states. In this work, we investigate the origin of bistability in the lac operon. To do this, we develop a mathematical model for the regulatory pathway in this system and compare the model predictions with other experimental results in which a nonmetabolizable inducer was employed. We investigate the effect of lactose metabolism using this model, and show that it greatly modifies the bistable region in the external lactose (Le) versus external glucose (Ge) parameter space. The model also predicts that lactose metabolism can cause bistability to disappear for very low Ge. We have also carried out stochastic numerical simulations of the model for several values of Ge and Le. Our results indicate that bistability can help guarantee that Escherichia coli consumes glucose and lactose in the most efficient possible way. Namely, the lac operon is induced only when there is almost no glucose in the growing medium, but if Le is high, the operon induction level increases abruptly when the levels of glucose in the environment decrease to very low values. We demonstrate that this behavior could not be obtained without bistability if the stability of the induced and uninduced states is to be preserved. Finally, we point out that the present methods and results may be useful to study the emergence of multistability in biological systems other than the lac operon. PMID:17351004

  11. GIS and Multi-criteria evaluation (MCE) for landform geodiversity assessment

    NASA Astrophysics Data System (ADS)

    Najwer, Alicja; Reynard, Emmanuel; Zwoliński, Zbigniew

    2014-05-01

    In geomorphology, at the contemporary stage of methodology and methodological development, it is very significant to undertake new research problems, from theoretical and application point of view. As an example of applying geoconservation results in landscape studies and environmental conservation one can refer to the problem of the landform geodiversity. The concept of geodiversity was created relatively recently and, therefore, little progress has been made in its objective assessment and mapping. In order to ensure clarity and coherency, it is recommended that the evaluation process to be rigorous. Multi-criteria evaluation meets these criteria well. The main objective of this presentation is to demonstrate a new methodology for the assessment of the selected natural environment components in response to the definition of geodiversity, as well as visualization of the landforms geodiversity, using the opportunities offered by the geoinformation environment. The study area consists of two peculiar alpine valleys: Illgraben and Derborence, located in the Swiss Alps. Apart from glacial and fluvial landforms, the morphology of these two sites is largely due to the extreme phenomena(rockslides, torrential processes). Both valleys are recognized as geosites of national importance. The basis of the assessment is the selection of the geographical environment features. Firstly, six factor maps were prepared for each area: the landform energy, the landform fragmentation, the contemporary landform preservation, geological settings and hydrographic elements (lakes and streams). Input maps were then standardized and resulted from map algebra operations carried out by multi-criteria evaluation (MCE) with GIS-based Weighted Sum technique. Weights for particular classes were calculated using pair-comparison matrixes method. The final stage of deriving landform geodiversity maps was the reclassification procedure with the use of natural breaks method. The final maps of landform

  12. Physiological regulation of a decontrolled lac operon.

    PubMed Central

    Wanner, B L; Kodaira, R; Neidhardt, F C

    1977-01-01

    The expression of the lac operon was studied under a variety of growth conditions in induced and in constitutive cells of Escherichia coli that carried different catabolite-insensitive lac promoters. Use of such "decontrolled" lac operons permitted a study of the expression of an operon that was presumably subject only to passive control. Since the use of toluenized cells was demonstrated not to be completely reliable, all enzyme assays were performed on sonic supernatant fluids. The cells contained different catabolite-insensitive promoters, which included the L1 and UV5 lac promoters, as well as others isolated in this study. There were three major observations. First, small but real carbon source effects were seen. Second, there was only a small change in beta-galactosidase specific activity with changes in the growth rate. This result implies a limited transcription and/or translation capacity within the cell. Third, at rapid growth rates, most promoters exhibited a decreased expression. The UV5 promoter, which was the "strongest" promoter, was an exception. A mechanism to explain this promoter-dependent control is discussed. PMID:323228

  13. gltBDF operon of Escherichia coli.

    PubMed Central

    Castaño, I; Bastarrachea, F; Covarrubias, A A

    1988-01-01

    A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega. Images PMID:2448295

  14. Transcriptome dynamics-based operon prediction in prokaryotes

    PubMed Central

    2014-01-01

    Background Inferring operon maps is crucial to understanding the regulatory networks of prokaryotic genomes. Recently, RNA-seq based transcriptome studies revealed that in many bacterial species the operon structure vary with the change of environmental conditions. Therefore, new computational solutions that use both static and dynamic data are necessary to create condition specific operon predictions. Results In this work, we propose a novel classification method that integrates RNA-seq based transcriptome profiles with genomic sequence features to accurately identify the operons that are expressed under a measured condition. The classifiers are trained on a small set of confirmed operons and then used to classify the remaining gene pairs of the organism studied. Finally, by linking consecutive gene pairs classified as operons, our computational approach produces condition-dependent operon maps. We evaluated our approach on various RNA-seq expression profiles of the bacteria Haemophilus somni, Porphyromonas gingivalis, Escherichia coli and Salmonella enterica. Our results demonstrate that, using features depending on both transcriptome dynamics and genome sequence characteristics, we can identify operon pairs with high accuracy. Moreover, the combination of DNA sequence and expression data results in more accurate predictions than each one alone. Conclusion We present a computational strategy for the comprehensive analysis of condition-dependent operon maps in prokaryotes. Our method can be used to generate condition specific operon maps of many bacterial organisms for which high-resolution transcriptome data is available. PMID:24884724

  15. Operons Are a Conserved Feature of Nematode Genomes

    PubMed Central

    Pettitt, Jonathan; Philippe, Lucas; Sarkar, Debjani; Johnston, Christopher; Gothe, Henrike Johanna; Massie, Diane; Connolly, Bernadette; Müller, Berndt

    2014-01-01

    The organization of genes into operons, clusters of genes that are co-transcribed to produce polycistronic pre-mRNAs, is a trait found in a wide range of eukaryotic groups, including multiple animal phyla. Operons are present in the class Chromadorea, one of the two main nematode classes, but their distribution in the other class, the Enoplea, is not known. We have surveyed the genomes of Trichinella spiralis, Trichuris muris, and Romanomermis culicivorax and identified the first putative operons in members of the Enoplea. Consistent with the mechanism of polycistronic RNA resolution in other nematodes, the mRNAs produced by genes downstream of the first gene in the T. spiralis and T. muris operons are trans-spliced to spliced leader RNAs, and we are able to detect polycistronic RNAs derived from these operons. Importantly, a putative intercistronic region from one of these potential enoplean operons confers polycistronic processing activity when expressed as part of a chimeric operon in Caenorhabditis elegans. We find that T. spiralis genes located in operons have an increased likelihood of having operonic C. elegans homologs. However, operon structure in terms of synteny and gene content is not tightly conserved between the two taxa, consistent with models of operon evolution. We have nevertheless identified putative operons conserved between Enoplea and Chromadorea. Our data suggest that operons and “spliced leader” (SL) trans-splicing predate the radiation of the nematode phylum, an inference which is supported by the phylogenetic profile of proteins known to be involved in nematode SL trans-splicing. PMID:24931407

  16. Operons are a conserved feature of nematode genomes.

    PubMed

    Pettitt, Jonathan; Philippe, Lucas; Sarkar, Debjani; Johnston, Christopher; Gothe, Henrike Johanna; Massie, Diane; Connolly, Bernadette; Müller, Berndt

    2014-08-01

    The organization of genes into operons, clusters of genes that are co-transcribed to produce polycistronic pre-mRNAs, is a trait found in a wide range of eukaryotic groups, including multiple animal phyla. Operons are present in the class Chromadorea, one of the two main nematode classes, but their distribution in the other class, the Enoplea, is not known. We have surveyed the genomes of Trichinella spiralis, Trichuris muris, and Romanomermis culicivorax and identified the first putative operons in members of the Enoplea. Consistent with the mechanism of polycistronic RNA resolution in other nematodes, the mRNAs produced by genes downstream of the first gene in the T. spiralis and T. muris operons are trans-spliced to spliced leader RNAs, and we are able to detect polycistronic RNAs derived from these operons. Importantly, a putative intercistronic region from one of these potential enoplean operons confers polycistronic processing activity when expressed as part of a chimeric operon in Caenorhabditis elegans. We find that T. spiralis genes located in operons have an increased likelihood of having operonic C. elegans homologs. However, operon structure in terms of synteny and gene content is not tightly conserved between the two taxa, consistent with models of operon evolution. We have nevertheless identified putative operons conserved between Enoplea and Chromadorea. Our data suggest that operons and "spliced leader" (SL) trans-splicing predate the radiation of the nematode phylum, an inference which is supported by the phylogenetic profile of proteins known to be involved in nematode SL trans-splicing. PMID:24931407

  17. Spatial extent of potential habitats of the Mesophotic Coral Ecosystem (MCE, 20-80 m) in the tropical North Atlantic (TNA)

    NASA Astrophysics Data System (ADS)

    Ginsburg, R. N.

    2012-12-01

    The Mesophotic Coral Ecosystem is the deeper-water extension of the much-studied, shallow reef community. It occurs on steep slopes and shelf areas, in the TNA off Belize, the Bahamas, the US Virgin Islands, and the Flower Garden Banks. Framework-building corals at these depths are primarily platy montastraeids and agariciids, with lesser amounts of massive encrusting species. The closely-spaced, platy colonies, expanding up to nearly two meters in diameter have up to 50% live coral cover. The colonies are elevated above the substrate. Their growth creates a thicket-like structure with large, open spaces for mobile species (fish and crustaceans) and extensive habitat for attached and grazing invertebrates. The MCE includes genera or species of zooxanthellate corals, invertebrates and fish, some of which are the same as those in shallow water. Given, the widespread, recent declines of TNA coral communities at depth less than 20 m, it is essential to know the total regional extent of the MCE. To determine the likely depth locations of these deeper coral communities we used methods pioneered by REEFS AT RISK,1998 that incorporates data from the Danish Hydrological Institute (DHI), "MIKE C-MAP" depth points and data on coastline location *NASA, "Sea WiFS" and NIMA, "VMAP," 1997. The results for the larger areas of reef development and for shelf areas are below:Potential MCE shelf habitats.t; Potential MCE platform margin habitats.t;

  18. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/. PMID:20385580

  19. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola.

    PubMed

    Xu, Meimei; Hillwig, Matthew L; Lane, Amy L; Tiernan, Mollie S; Moore, Bradley S; Peters, Reuben J

    2014-09-26

    While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe-microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms. PMID:25203741

  20. Characterization of an Orphan Diterpenoid Biosynthetic Operon from Salinispora arenicola

    PubMed Central

    2015-01-01

    While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe–microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms. PMID:25203741

  1. cAMP Regulation of the lactose operon.

    PubMed

    Szeberenyi, Jozsef

    2004-05-01

    Terms to be familiar with before you start to solve the test: lactose operon, adenylate cyclase, cAMP, catabolite activator protein (CAP), expression plasmid, lac operator, lac repressor, lactose, glucose, promoter, cis- and trans-acting factors. PMID:21706723

  2. Evolution and Biophysics of the Escherichia coli lac Operon

    NASA Astrophysics Data System (ADS)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  3. Boolean models can explain bistability in the lac operon.

    PubMed

    Veliz-Cuba, Alan; Stigler, Brandilyn

    2011-06-01

    The lac operon in Escherichia coli has been studied extensively and is one of the earliest gene systems found to undergo both positive and negative control. The lac operon is known to exhibit bistability, in the sense that the operon is either induced or uninduced. Many dynamical models have been proposed to capture this phenomenon. While most are based on complex mathematical formulations, it has been suggested that for other gene systems network topology is sufficient to produce the desired dynamical behavior. We present a Boolean network as a discrete model for the lac operon. Our model includes the two main glucose control mechanisms of catabolite repression and inducer exclusion. We show that this Boolean model is capable of predicting the ON and OFF steady states and bistability. Further, we present a reduced model which shows that lac mRNA and lactose form the core of the lac operon, and that this reduced model exhibits the same dynamics. This work suggests that the key to model qualitative dynamics of gene systems is the topology of the network and Boolean models are well suited for this purpose. PMID:21563979

  4. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage.

    PubMed Central

    Komeda, Y

    1982-01-01

    Previous studies have defined 29 genes necessary for synthesis of the Escherichia coli flagellar apparatus. This study analyzed the transcriptional control of flagellar genes, using Mu d (Apr lac) phage to generate flagellar mutants by insertion. These mutants contained operon fusions of flagellar genes to the lac genes of the Mu d phage and allowed the measurement of flagellar operon expression by detection of beta-galactosidase activity. These fusion mutants expressed the enzyme activity constitutively, and an autogenous regulation mechanism was not revealed. Lambda transducing phages carrying these chromosomal fla-lac fusions were also isolated and used to examine the effect of different fla mutations on expression of each flagellar operon. The results showed that flagellar operons are divided into six classes; (class 1) the flbB operon, which controls all of the other flagellar operons; (class 2) the flaU and flbC operons, which are controlled by the flbB operon gene products and are not required for the expression of other Fla operons; (class 3) the flbA, flaG, flaD, flaN, flaB, and flaA operons, which are under flbB operon control and are required for the expression of other fla operons; (class4) the flaZ operon, which is controlled by the gene products of the group 1 and 3 operons and is required for hag transcription; (class 5) the mocha and flaS operons, which are controlled by the gene products of the group 1 and 3 operons; and (class 6) the hag operon. These results are discussed with respect to the possible assembly sequence of the fla gene products. PMID:7037746

  5. Genome Data from DOOR: a Database for prOkaryotic OpeRons

    DOE Data Explorer

    DOOR (Database of prOkaryotic OpeRons) is an operon database developed by Computational Systems Biology Lab (CSBL) at University of Georgia. Although the operons in the database are based on prediction, there are some unique features. These are: • A algorithm is consistently best at all aspects including sensitivity and specificity for both true positives and true negatives, and the overall accuracy reaches 90 percent. The prediction algorithm is based on this paper: P. Dam, V. Olman, K. Harris, Z. Su, Y. Xu., Operon prediction using both genome-specific and general genomic information, Nucleic Acids Res., 35(1):288-98, 2007 • DOOR provides one of the largest data sets of operon information available to the public. DOOR provides operons for 675 prokaryotic genomes. Although most of operons in DOOR are not verified by experiments, the creators are also trying to provide some limited literature information, which is extracted from ODB. They emphasize that if the users are looking for strictly experimentally verified operons, they should look into DBTBS and RegulonDB first. • Operons which include RNA genes, which are rarely seen in other operon databases especially for predicted operon databases • Defined the similarity scores between operons, which is based on weighted maximum matching between operons. Similar operon groups can be used to predict accurate orthologous genes,and their upstream regions can be used to find the consensus binding motifs. • Integration of two motif finding programs in the database: MEME and CUBIC. DOOR provides an Organism View for browsing, a gene search tool, an operon search tool, and the operon prediction interface.[Text taken and edited from http://csbl1.bmb.uga.edu/OperonDB/tutorial.php

  6. Cost-benefit tradeoffs in engineered lac operons.

    PubMed

    Eames, Matt; Kortemme, Tanja

    2012-05-18

    Cells must balance the cost and benefit of protein expression to optimize organismal fitness. The lac operon of the bacterium Escherichia coli has been a model for quantifying the physiological impact of costly protein production and for elucidating the resulting regulatory mechanisms. We report quantitative fitness measurements in 27 redesigned operons that suggested that protein production is not the primary origin of fitness costs. Instead, we discovered that the lac permease activity, which relates linearly to cost, is the major physiological burden to the cell. These findings explain control points in the lac operon that minimize the cost of lac permease activity, not protein expression. Characterizing similar relationships in other systems will be important to map the impact of cost/benefit tradeoffs on cell physiology and regulation. PMID:22605776

  7. {NiLn} (Ln = Gd, Dy) rod-like nano-sized heteronuclear coordination clusters with a double carbonate bridge skeleton and remarkable MCE behaviour.

    PubMed

    Guarda, Eliana; Bader, Katharina; van Slageren, Joris; Alborés, Pablo

    2016-05-17

    The newly obtained complexes [NiLn(Piv)16(teaH)6(OCH3)2(CO3)2(H2O)2] Ln = Gd, Dy, show a remarkable μ5-carbonate bridged octanuclear planar {Ni4Ln4} core further capped with embedded {Ni3Ln} cubane motifs to afford a rod shaped nano-sized molecule of about 1.2 × 2.8 nm. Unusual MCE behaviour has been found due to multiple low lying excited states arising from competing ferromagnetic and anti-ferromagnetic Ni-Ni and Ni-Ln exchange interactions. PMID:27126965

  8. Dynamic model of gene regulation for the lac operon

    NASA Astrophysics Data System (ADS)

    Angelova, Maia; Ben-Halim, Asma

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  9. Characterization of the Cobalamin and Fep Operons in Methylobium petrolphilum PM1

    SciTech Connect

    Ewing, J

    2005-09-06

    The bacterium Methylobium petroleophilum PM1 is economically important due to its ability to degrade methyl tert-butyl ether (MTBE), a fuel additive. Because PM1 is a representative of all MTBE degraders, it is important to understand the transport pathways critical for the organism to survive in its particular environment. In this study, the cobalamin pathway and select iron transport genes will be characterized to help further understand all metabolic pathways in PM1. PM1 contains a total of four cobalamin operons. A single operon is located on the chromosome. Located on the megaplasmid are two tandem repeats of cob operons and a very close representative of the cob operon located on the chromosome. The fep operon, an iron transport mechanism, lies within the multiple copies of the cob operon. The cob operon and the fep operon appear to be unrelated except for a shared need for the T-on-B-dependent energy transduction complex to assist the operons in moving large molecules across the outer membrane of the cell. A genomic study of the cob and the fep operons with that of phylogenetically related organisms helped to confirm the identity of the cob and fep operons and to represent the pathways. More study of the pathways should be done to find the relationship that positions the two seemingly unrelated cob and fep genes together in what appears to be one operon.

  10. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  11. Development of a Lac Operon Concept Inventory (LOCI)

    PubMed Central

    Stefanski, Katherine M.; Gardner, Grant E.; Seipelt-Thiemann, Rebecca L.

    2016-01-01

    Concept inventories (CIs) are valuable tools for educators that assess student achievement and identify misconceptions held by students. Results of student responses can be used to adjust or develop new instructional methods for a given topic. The regulation of gene expression in both prokaryotes and eukaryotes is an important concept in genetics and one that is particularly challenging for undergraduate students. As part of a larger study examining instructional methods related to gene regulation, the authors developed a 12-item CI assessing student knowledge of the lac operon. Using an established protocol, the authors wrote open-ended questions and conducted in-class testing with undergraduate microbiology and genetics students to discover common errors made by students about the lac operon and to determine aspects of item validity. Using these results, we constructed a 12-item multiple-choice lac operon CI called the Lac Operon Concept Inventory (LOCI), The LOCI was reviewed by two experts in the field for content validity. The LOCI underwent item analysis and was assessed for reliability with a sample of undergraduate genetics students (n = 115). The data obtained were found to be valid and reliable (coefficient alpha = 0.994) with adequate discriminatory power and item difficulty. PMID:27252300

  12. Development of a Lac Operon Concept Inventory (LOCI).

    PubMed

    Stefanski, Katherine M; Gardner, Grant E; Seipelt-Thiemann, Rebecca L

    2016-01-01

    Concept inventories (CIs) are valuable tools for educators that assess student achievement and identify misconceptions held by students. Results of student responses can be used to adjust or develop new instructional methods for a given topic. The regulation of gene expression in both prokaryotes and eukaryotes is an important concept in genetics and one that is particularly challenging for undergraduate students. As part of a larger study examining instructional methods related to gene regulation, the authors developed a 12-item CI assessing student knowledge of the lac operon. Using an established protocol, the authors wrote open-ended questions and conducted in-class testing with undergraduate microbiology and genetics students to discover common errors made by students about the lac operon and to determine aspects of item validity. Using these results, we constructed a 12-item multiple-choice lac operon CI called the Lac Operon Concept Inventory (LOCI), The LOCI was reviewed by two experts in the field for content validity. The LOCI underwent item analysis and was assessed for reliability with a sample of undergraduate genetics students (n = 115). The data obtained were found to be valid and reliable (coefficient alpha = 0.994) with adequate discriminatory power and item difficulty. PMID:27252300

  13. Exchange of Spacer Regions between Rrna Operons in Escherichia Coli

    PubMed Central

    Harvey, S.; Hill, C. W.

    1990-01-01

    The Escherichia coli rRNA operons each have one of two types of spacer separating the 16S and 23S coding regions. The spacers of four operons encode tRNA(Glu2) and the other three encode both tRNA(Ile) and tRNA(Ala 1 B). We have prepared a series of mutants in which the spacer region of a particular rrn operon has been replaced by the opposite type. Included among these were a mutant retaining only a single copy of the tRNA(Glu2) spacer (at rrnG) and another retaining only a single copy of the tRNA(Ile)-tRNA(Ala 1 B) spacer (at rrnA). While both mutants grew more slowly than controls, the mutant deficient in tRNA(Glu2) spacers was more severely affected. At a frequency of 6 X 10(-5), these mutants phenotypically reverted to faster growing types by increasing the copy number of the deficient spacer. In most of these phenotypic revertants, the deficient spacer type appeared in a rrn operon which previously contained the surplus type, bringing the ratio of spacer types closer to normal. In a few cases, these spacer changes were accompanied by an inversion of the chromosomal material between the donor and recipient rrn operons. Two examples of inversion of one-half of the E. coli chromosome between rrnG and rrnH were observed. The correlation of spacer change with inversion indicated that, in these particular cases, the change was due to an intrachromatid gene conversion event accompanied by a reciprocal crossover rather than reciprocal exchange between sister chromatids. PMID:2168847

  14. Modelling, property verification and behavioural equivalence of lactose operon regulation.

    PubMed

    Pinto, Marcelo Cezar; Foss, Luciana; Mombach, José Carlos Merino; Ribeiro, Leila

    2007-02-01

    Understanding biochemical pathways is one of the biggest challenges in the field of molecular biology nowadays. Computer science can contribute in this area by providing formalisms and tools to simulate and analyse pathways. One formalism that is suited for modelling concurrent systems is Milner's Calculus of Communicating Systems (CCS). This paper shows the viability of using CCS to model and reason about biochemical networks. As a case study, we describe the regulation of lactose operon. After describing this operon formally using CCS, we validate our model by automatically checking some known properties for lactose regulation. Moreover, since biological systems tend to be very complex, we propose to use multiple descriptions of the same system at different levels of abstraction. The compatibility of these multiple views can be assured via mathematical proofs of observational equivalence. PMID:16620804

  15. Evolution of bacterial trp operons and their regulation.

    PubMed

    Merino, Enrique; Jensen, Roy A; Yanofsky, Charles

    2008-04-01

    Survival and replication of most bacteria require the ability to synthesize the amino acid L-tryptophan whenever it is not available from the environment. In this article we describe the genes, operons, proteins, and reactions involved in tryptophan biosynthesis in bacteria, and the mechanisms they use in regulating tryptophan formation. We show that although the reactions of tryptophan biosynthesis are essentially identical, gene organization varies among species--from whole-pathway operons to completely dispersed genes. We also show that the regulatory mechanisms used for these genes vary greatly. We address the question--what are some potential advantages of the gene organization and regulation variation associated with this conserved, important pathway? PMID:18374625

  16. Positive and Negative Control of the Lac Operon

    NASA Astrophysics Data System (ADS)

    Qaddour, Jihad S.; Werman, Steven D.; Misra, Prasanta K.

    1997-03-01

    We present a mathematical model for the positive and negative control of lac operon. We investigate a steady state solution for the coupled nonlinear differential equations representing the dynamic behaviors of the repressor-inducer components of negative control as well as the cyclic AMP receptor components of the positive control. A dimensionless derivation of the lac operon system is employed to produce singularly perturbed models. The first model represents the dynamical behavior of the operator while the slow model represents the dynamical behaviors of the inducer and the repressor. We use the singular perturbation theory to show that the behavior of the system can be described as a rapid on-off switch of structural gene transformation.

  17. Promoter of the Mycoplasma pneumoniae rRNA operon.

    PubMed Central

    Hyman, H C; Gafny, R; Glaser, G; Razin, S

    1988-01-01

    RNA transcripts starting from the 5' end of the single Mycoplasma pneumoniae rRNA operon were analyzed by several methods. By primer extension analysis a start site was found 62 nucleotides upstream from the start site of the 16S rRNA. This site was preceded by a putative Pribnow box; however, a defined -35 recognition region was absent. The cloned rRNA operon was transcribed in vitro by using purified RNA polymerase of Escherichia coli. A single start site could be demonstrated within a few nucleotides of the start site found by primer extension analysis of M. pneumoniae transcripts. When fragments from the cloned operon were used as hybridization probes, S1 nuclease mapping yielded a single transcript extending approximately 193 nucleotides upstream from the 16S rRNA start site. The region surrounding this endpoint did not resemble any known promoter sequence. Dot blot hybridization of M. pneumoniae RNA to three oligonucleotides consisting of nucleotides -5 to -21, -38 to -54, and -112 to -132 (from the start of the 16S rRNA gene) indicated that most rRNA transcripts were processed at the stem site preceding the 16S rRNA gene. The majority of the longer precursor transcripts, extending beyond this point, did not extend further upstream to an oligonucleotide consisting of nucleotides -112 to -132. It was concluded that transcription of the rRNA operon of M. pneumoniae is initiated by a single promoter. The nucleotide sequence of the region is presented. Images PMID:2838465

  18. Direct involvement of IS26 in an antibiotic resistance operon.

    PubMed Central

    Lee, K Y; Hopkins, J D; Syvanen, M

    1990-01-01

    The plasmid pBWH77, originally found in an isolate of Klebsiella pneumoniae, harbors a new antibiotic resistance operon containing two resistance genes transcribed from an IS26-hybrid promoter, as shown by nucleotide sequencing, mRNA mapping, and the effect of inserting a transcription terminator within the promoter-proximal gene. The nucleotide sequence of this region revealed that the operon (IAB) is made up of three sections that are closely related to previously described genetic elements. The -35 region of the promoter, together with the adjacent sequence, is identical to sequences of the IS26 element. One of the resistance genes, aphA7, which is located next to the hybrid promoter, confers assistance to neomycin and structurally related aminoglycosides. This aphA7 gene is highly homologous to aphA1 of Tn903, with five nucleotide differences. The second gene, blaS2A, encodes an evolved SHV-type beta-lactamase with a pI of 7.6 that confers resistance to the broad-spectrum cephalosporins cefotaxime and ceftizoxime. The deduced amino acid sequence of SHV-2A shows that amino acid 238 is a serine, a residue reported to confer resistance to cefotaxime. We discuss how the operon may have evolved by a combination of insertion sequence-mediated genetic rearrangements and acquisitive evolution. Using phylogenetic parsimony, we show that aphA7 in the IAB operon evolved from an ancestral form similar to aphA1 in Tn903 and that blaS2A evolved from an ancestral form similar to blaS1. Images PMID:2160941

  19. Regulation of tryptophan operon expression in the archaeon Methanothermobacter thermautotrophicus.

    PubMed

    Xie, Yunwei; Reeve, John N

    2005-09-01

    Conserved trp genes encode enzymes that catalyze tryptophan biosynthesis in all three biological domains, and studies of their expression in Bacteria and eukaryotes have revealed a variety of different regulatory mechanisms. The results reported here provide the first detailed description of an archaeal trp gene regulatory system. We have established that the trpEGCFBAD operon in Methanothermobacter thermautotrophicus is transcribed divergently from a gene (designated trpY) that encodes a tryptophan-sensitive transcription regulator. TrpY binds to TRP box sequences (consensus, TGTACA) located in the overlapping promoter regions between trpY and trpE, inhibiting trpY transcription in the absence of tryptophan and both trpY and trpEGCFBAD transcription in the presence of tryptophan. TrpY apparently inhibits trpY transcription by blocking RNA polymerase access to the site of trpY transcription initiation and represses trpEGCFBAD transcription by preventing TATA box binding protein (TBP) binding to the TATA box sequence. Given that residue 2 (W2) is the only tryptophan in TrpY and in TrpY homologues in other Euryarchaea and that there is only one tryptophan codon in the entire trpEGCFBAD operon (trpB encodes W175), expression of the trp operon may also be regulated in vivo by the supply of charged tRNA(Trp) available to translate the second codon of the trpY mRNA. PMID:16159776

  20. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization.

    PubMed Central

    Saxena, I M; Kudlicka, K; Okuda, K; Brown, R M

    1994-01-01

    The synthesis of an extracellular ribbon of cellulose in the bacterium Acetobacter xylinum takes place from linearly arranged, membrane-localized, cellulose-synthesizing and extrusion complexes that direct the coupled steps of polymerization and crystallization. To identify the different components involved in this process, we isolated an Acetobacter cellulose-synthesizing (acs) operon from this bacterium. Analysis of DNA sequence shows the presence of three genes in the acs operon, in which the first gene (acsAB) codes for a polypeptide with a molecular mass of 168 kDa, which was identified as the cellulose synthase. A single base change in the previously reported DNA sequence of this gene, resulting in a frameshift and synthesis of a larger protein, is described in the present paper, along with the sequences of the other two genes (acsC and acsD). The requirement of the acs operon genes for cellulose production was determined using site-determined TnphoA/Kanr GenBlock insertion mutants. Mutant analysis showed that while the acsAB and acsC genes were essential for cellulose production in vivo, the acsD mutant produced reduced amounts of two cellulose allomorphs (cellulose I and cellulose II), suggesting that the acsD gene is involved in cellulose crystallization. The role of the acs operon genes in determining the linear array of intramembranous particles, which are believed to be sites of cellulose synthesis, was investigated for the different mutants; however, this arrangement was observed only in cells that actively produced cellulose microfibrils, suggesting that it may be influenced by the crystallization of the nascent glucan chains. Images PMID:8083166

  1. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria.

    PubMed

    Gutierrez-Preciado, A; Jensen, R A; Yanofsky, C; Merino, E

    2005-08-01

    The tryptophan operon of Bacillus subtilis serves as an excellent model for investigating transcription regulation in Gram-positive bacteria. In this article, we extend this knowledge by analyzing the predicted regulatory regions in the trp operons of other fully sequenced Gram-positive bacteria. Interestingly, it appears that in eight of the organisms examined, transcription of the trp operon appears to be regulated by tandem T-box elements. These regulatory elements have recently been described in the trp operons of two bacterial species. Single T-box elements are commonly found in Gram-positive bacteria in operons encoding aminoacyl tRNA synthetases and proteins performing other functions. Different regulatory mechanisms appear to be associated with variations of trp gene organization within the trp operon. PMID:15953653

  2. The ars operon of Escherichia coli confers arsenical and antimonial resistance.

    PubMed Central

    Carlin, A; Shi, W; Dey, S; Rosen, B P

    1995-01-01

    The chromosomally encoded arsenical resistance (ars) operon subcloned into a multicopy plasmid was found to confer a moderate level of resistance to arsenite and antimonite in Escherichia coli. When the operon was deleted from the chromosome, the cells exhibited hypersensitivity to arsenite, antimonite, and arsenate. Expression of the ars genes was inducible by arsenite. By Southern hybridization, the operon was found in all strains of E. coli examined but not in Salmonella typhimurium, Pseudomonas aeruginosa, or Bacillus subtilis. PMID:7860609

  3. Comparison of tryptophan biosynthetic operon regulation in different Gram-positive bacterial species.

    PubMed

    Gutiérrez-Preciado, Ana; Yanofsky, Charles; Merino, Enrique

    2007-09-01

    The tryptophan biosynthetic operon has been widely used as a model system for studying transcription regulation. In Bacillus subtilis, the trp operon is primarily regulated by a tryptophan-activated RNA-binding protein, TRAP. Here we show that in many other Gram-positive species the trp operon is regulated differently, by tRNA(Trp) sensing by the RNA-based T-box mechanism, with T-boxes arranged in tandem. Our analyses reveal an apparent relationship between trp operon organization and the specific regulatory mechanism(s) used. PMID:17555843

  4. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number.

    PubMed

    Gyorfy, Zsuzsanna; Draskovits, Gabor; Vernyik, Viktor; Blattner, Frederick F; Gaal, Tamas; Posfai, Gyorgy

    2015-02-18

    Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5-10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7-8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, 'feast and famine' life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology. PMID:25618851

  5. Characterization of the mannitol catabolic operon of Corynebacterium glutamicum.

    PubMed

    Peng, Xue; Okai, Naoko; Vertès, Alain A; Inatomi, Ken-Ichi; Inui, Masayuki; Yukawa, Hideaki

    2011-09-01

    Corynebacterium glutamicum encodes a mannitol catabolic operon, which comprises three genes: the DeoR-type repressor coding gene mtlR (sucR), an MFS transporter gene (mtlT), and a mannitol 2-dehydrogenase gene (mtlD). The mtlR gene is located upstream of the mtlTD genes in the opposite orientation. In spite of this, wild-type C. glutamicum lacks the ability to utilize mannitol. This wild-type phenotype results from the genetic regulation of the genes coding for mannitol transport and catalytic proteins mediated by the autoregulated MtlR protein since mtlR mutants grow on mannitol as the sole carbon source. MtlR binds to sites near the mtlR (two sites) and mtlTD promoters (one site downstream of the promoter), with the consensus sequence 5'-TCTAACA-3' being required for its binding. The newly discovered operon comprises the three basic functional elements required for mannitol utilization: regulation, transport, and metabolism to fructose, further processed to the common intermediate of glycolysis fructose-6-phosphate. When relieved from MtlR repression, C. glutamicum, which lacks a functional fructokinase, excretes the fructose derived from mannitol and imports it by the fructose-specific PTS. In order to use mannitol from seaweed biomass hydrolysates as a carbon source for the production of useful commodity chemicals and materials, an overexpression system using the tac promoter was developed. For congruence with the operon, we propose to rename sucR as the mtlR gene. PMID:21655984

  6. An inducible tellurite-resistance operon in Proteus mirabilis.

    PubMed

    Toptchieva, Anna; Sisson, Gary; Bryden, Louis J; Taylor, Diane E; Hoffman, Paul S

    2003-05-01

    Tellurite resistance (Te(r)) is widespread in nature and it is shown here that the natural resistance of Proteus mirabilis to tellurite is due to a chromosomally located orthologue of plasmid-borne ter genes found in enteric bacteria. The P. mirabilis ter locus (terZABCDE) was identified in a screen of Tn5lacZ-generated mutants of which one contained an insertion in terC. The P. mirabilis terC mutant displayed increased susceptibility to tellurite (Te(s)) and complementation with terC carried on a multicopy plasmid restored high-level Te(r). Primer extension analysis revealed a single transcriptional start site upstream of terZ, but only with RNA harvested from bacteria grown in the presence of tellurite. Northern blotting and reverse transcriptase-PCR (RT-PCR) analyses confirmed that the ter operon was inducible by tellurite and to a lesser extent by oxidative stress inducers such as hydrogen peroxide and methyl viologen (paraquat). Direct and inverted repeat sequences were identified in the ter promoter region as well as motifs upstream of the -35 hexamer that resembled OxyR-binding sequences. Finally, the 390 bp intergenic promoter region located between orf3 and terZ showed no DNA sequence identity with any other published ter sequences, whereas terZABCDE genes exhibited 73-85 % DNA sequence identity. The ter operon was present in all clinical isolates of P. mirabilis and Proteus vulgaris tested and is inferred for Morganella and Providencia spp. based on screening for high level Te(r) and preliminary PCR analysis. Thus, a chromosomally located inducible tellurite resistance operon appears to be a common feature of the genus Proteus. PMID:12724390

  7. Economy of operon formation: cotranscription minimizes shortfall in protein complexes.

    PubMed

    Sneppen, Kim; Pedersen, Steen; Krishna, Sandeep; Dodd, Ian; Semsey, Szabolcs

    2010-01-01

    Genes of prokaryotes and Archaea are often organized in cotranscribed groups, or operons. In contrast, eukaryotic genes are generally transcribed independently. Here we show that there is a substantial economic gain for the cell to cotranscribe genes encoding protein complexes because it synchronizes the fluctuations, or noise, in the levels of the different components. This correlation substantially reduces the shortfall in production of the complex. This benefit is relatively large in small cells such as bacterial cells, in which there are few mRNAs and proteins per cell, and is diminished in larger cells such as eukaryotic cells. PMID:20877578

  8. Dynamic behavior in mathematical models of the tryptophan operon

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Mackey, Michael C.

    2001-03-01

    This paper surveys the general theory of operon regulation as first formulated by Goodwin and Griffith, and then goes on to consider in detail models of regulation of tryptophan production by Bliss, Sinha, and Santillán and Mackey, and the interrelationships between them. We further give a linear stability analysis of the Santillán and Mackey model for wild type E. coli as well as three different mutant strains that have been previously studied in the literature. This stability analysis indicates that the tryptophan production systems should be stable, which is in accord with our numerical results.

  9. Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes.

    PubMed

    Andersson, Ulrika; Molenaar, Douwe; Rådström, Peter; de Vos, Willem M

    2005-04-01

    Global regulatory circuits together with more specific local regulators play a notable role when cells are adapting to environmental changes. Lactococcus lactis is a lactic acid bacterium abundant in nature fermenting most mono- and disaccharides. Comparative genomics analysis of the operons encoding the proteins and enzymes crucial for catabolism of lactose, maltose and threhalose revealed an obvious unity in operon organisation . The local regulator of each operon was located in a divergent transcriptional direction to the rest of the operon including the transport protein-encoding genes. Furthermore, in all three operons a catabolite responsive element (CRE) site was detected inbetween the gene encoding the local regulator and one of the genes encoding a sugar transport protein. It is evident that regardless of type of transport system and catabolic enzymes acting upon lactose, maltose and trehalose, respectively, Lc. lactis shows unity in both operon organisation and regulation of these catabolic operons. This knowledge was further extended to other catabolic operons in Lc. lactis and the two related bacteria Lactobacillus plantarum and Listeria monocytogenes. Thirty-nine catabolic operons responsible for degradation of sugars and sugar alcohols in Lc. lactis, Lb. plantarum and L. monocytogenes were investigated and the majority of those possessed the same organisation as the lactose, maltose and trehalose operons of Lc. lactis. Though, the frequency of CRE sites and their location varied among the bacteria. Both Lc. lactis and Lb. plantarum showed CRE sites in direct proximity to genes coding for proteins responsible for sugar uptake. However, in L. monocytogenes CRE sites were not frequently found and not in the vicinity of genes encoding transport proteins, suggesting a more local mode of regulation of the catabolic operons found and/or the use of inducer control in this bacterium. PMID:15900965

  10. Unprecedented High-Resolution View of Bacterial Operon Architecture Revealed by RNA Sequencing

    PubMed Central

    Creecy, James P.; Maddox, Scott M.; Grissom, Joe E.; Conkle, Trevor L.; Shadid, Tyler M.; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada

    2014-01-01

    ABSTRACT We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3′ transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5′ ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. PMID:25006232

  11. Transcriptional Regulation of the Streptococcus salivarius 57.I Urease Operon

    PubMed Central

    Chen, Yi-Ywan M.; Weaver, Cheryl A.; Mendelsohn, David R.; Burne, Robert A.

    1998-01-01

    The Streptococcus salivarius 57.I ure cluster was organized as an operon, beginning with ureI, followed by ureABC (structural genes) and ureEFGD (accessory genes). Northern analyses revealed transcripts encompassing structural genes and transcripts containing the entire operon. A ς70-like promoter could be mapped 5′ to ureI (PureI) by primer extension analysis. The intensity of the signal increased when cells were grown at an acidic pH and was further enhanced by excess carbohydrate. To determine the function(s) of two inverted repeats located 5′ to PureI, transcriptional fusions of the full-length promoter region (PureI), or a deletion derivative (PureIΔ100), and a promoterless chloramphenicol acetyltransferase (CAT) gene were constructed and integrated into the chromosome to generate strains PureICAT and PureIΔ100CAT, respectively. CAT specific activities of PureICAT were repressed at pH 7.0 and induced at pH 5.5 and by excess carbohydrate. In PureIΔ100CAT, CAT activity was 60-fold higher than in PureICAT at pH 7.0 and pH induction was nearly eliminated, indicating that expression was negatively regulated. Thus, it was concluded that PureI was the predominant, regulated promoter and that regulation was governed by a mechanism differing markedly from other known mechanisms for bacterial urease expression. PMID:9791132

  12. Chromosomal Organization of Rrna Operons in Bacillus Subtilis

    PubMed Central

    Jarvis, E. D.; Widom, R. L.; LaFauci, G.; Setoguchi, Y.; Richter, I. R.; Rudner, R.

    1988-01-01

    Integrative mapping with vectors containing ribosomal DNA sequences were used to complete the mapping of the 10 rRNA gene sets in the endospore forming bacterium Bacillus subtilis. Southern hybridizations allowed the assignment of nine operons to distinct BclI restriction fragments and their genetic locus identified by transductional crosses. Nine of the ten rRNA gene sets are located between 0 and 70° on the genomic map. In the region surrounding cysA14, two sets of closely spaced tandem clusters are present. The first (rrnJ and rrnW) is located between purA16 and cysA14 closely linked to the latter; the second (rrnI, rrnH and rrnG) previously mapped within this area is located between attSPO2 and glpT6. The operons at or near the origin of replication (rrnO,rrnA and rrnJ,rrnW) represent ``hot spots'' of plasmid insertion. PMID:2465199

  13. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. PMID:19029721

  14. In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose.

    PubMed

    van Hoek, M J A; Hogeweg, P

    2006-10-15

    Bistability in the lac operon of Escherichia coli has been widely studied, both experimentally and theoretically. Experimentally, bistability has been observed when E. coli is induced by an artificial, nonmetabolizable, inducer. However, if the lac operon is induced with lactose, the natural inducer, bistability has not been demonstrated. We derive an analytical expression that can predict the occurrence of bistability both for artificial inducers and lactose. We find very different conditions for bistability in the two cases. Indeed, for artificial inducers bistability is predicted, but for lactose the condition for bistability is much more difficult to satisfy. Moreover, we demonstrate that in silico evolution of the lac operon generates an operon that avoids bistability with respect to lactose, but does exhibit bistability with respect to artificial inducers. The activity of this evolved operon strikingly resembles the experimentally observed activity of the operon. Thus our computational experiments suggest that the wild-type lac operon, which regulates lactose metabolism, is not a bistable switch. Nevertheless, for engineering purposes, this operon can be used as a bistable switch with artificial inducers. PMID:16877514

  15. The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons.

    PubMed

    Muro, Enrique M; Mah, Nancy; Moreno-Hagelsieb, Gabriel; Andrade-Navarro, Miguel A

    2011-03-01

    Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae's genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae's pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3' (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10(-7)). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5' (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts. PMID:21051341

  16. The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons

    PubMed Central

    Muro, Enrique M.; Mah, Nancy; Moreno-Hagelsieb, Gabriel; Andrade-Navarro, Miguel A.

    2011-01-01

    Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae’s genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae’s pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3′ (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10−7). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5′ (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts. PMID:21051341

  17. RNase III cleavage of Escherichia coli beta-galactosidase and tryptophan operon mRNA.

    PubMed Central

    Shen, V; Imamoto, F; Schlessinger, D

    1982-01-01

    Purified RNase III of Escherichia coli cleaved the initial 479-nucleotide sequence of lac operon mRNA at four specific sites and also gave limited cleavage of trp operon mRNA. This action explains the inactivation of mRNA coding capacity by RNase III in vitro. Images PMID:6176575

  18. Characterization of the RRN Operons in the Channel Catfish Pathogen Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To advance diagnostics and phylogenetics of Edwardsiella ictaluri by sequencing and characterizing its rrn operons. Methods and Results: The Edw. ictaluri rrn operons were identified from a 5-7 kb insert lambda library and from Edw. ictaluri fosmid clones. We present the complete sequences...

  19. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons

    PubMed Central

    Tian, Tian; Salis, Howard M.

    2015-01-01

    Natural and engineered genetic systems require the coordinated expression of proteins. In bacteria, translational coupling provides a genetically encoded mechanism to control expression level ratios within multi-cistronic operons. We have developed a sequence-to-function biophysical model of translational coupling to predict expression level ratios in natural operons and to design synthetic operons with desired expression level ratios. To quantitatively measure ribosome re-initiation rates, we designed and characterized 22 bi-cistronic operon variants with systematically modified intergenic distances and upstream translation rates. We then derived a thermodynamic free energy model to calculate de novo initiation rates as a result of ribosome-assisted unfolding of intergenic RNA structures. The complete biophysical model has only five free parameters, but was able to accurately predict downstream translation rates for 120 synthetic bi-cistronic and tri-cistronic operons with rationally designed intergenic regions and systematically increased upstream translation rates. The biophysical model also accurately predicted the translation rates of the nine protein atp operon, compared to ribosome profiling measurements. Altogether, the biophysical model quantitatively predicts how translational coupling controls protein expression levels in synthetic and natural bacterial operons, providing a deeper understanding of an important post-transcriptional regulatory mechanism and offering the ability to rationally engineer operons with desired behaviors. PMID:26117546

  20. The htpAB operon of Legionella pneumophila cannot be deleted in the presence of the groE chaperonin operon of Escherichia coli.

    PubMed

    Nasrallah, Gheyath K; Gagnon, Elizabeth; Orton, Dennis J; Garduño, Rafael A

    2011-11-01

    HtpB, the chaperonin of the intracellular bacterial pathogen Legionella pneumophila , displays several virulence-related functions in vitro. To confirm HtpB's role in vivo, host infections with an htpB deletion mutant would be required. However, we previously reported that the htpAB operon (encoding co-chaperonin and chaperonin) is essential. We attempted here to delete htpAB in a L. pneumophila strain carrying the groE operon (encoding the Escherichia coli co-chaperonin and chaperonin). The groE operon was inserted into the chromosome of L. pneumophila Lp02, and then allelic replacement of htpAB with a gentamicin resistance cassette was attempted. Although numerous potential postallelic replacement transformants showed a correct selection phenotype, we still detected htpAB by PCR and full-size HtpB by immunoblot. Southern blot and PCR analysis indicated that the gentamicin resistance cassette had apparently integrated in a duplicated htpAB region. However, we showed by Southern blot that strain Lp02, and the Lp02 derivative carrying the groE operon, have only one copy of htpAB. These results confirmed that the htpAB operon cannot be deleted, not even in the presence of the groE operon, and suggested that attempts to delete htpAB under strong phenotypic selection result in aberrant genetic recombinations that could involve duplication of the htpAB locus. PMID:22029459

  1. [New method of construction of artificial translational-coupled operons in bacterial chromosome].

    PubMed

    Gulevich, A Iu; Skorokhodova, A Iu; Ermishev, V Iu; Krylov, A A; Minaeva, N I; Polonskaia, Z M; Zimenkov, D V; Biriukova, I V; Mashko, S V

    2009-01-01

    The new method of translational-coupled operons construction in bacterial chromosome has been developed on the basis of recombineering approach. It includes construction in vitro of the artificial operon with efficiently translated proximal cistron followed by its insertion E. coli chromosome, modification of the operon due to Red-driven insertion of the special "Junction" with excisable selective marker in the intercistronic region of the initial operon and excising the marker. The structure of this Junction has been designed and tested in the present investigation. It consists of: 1) E. coli rplC-rplD intercistronic region for placing the TAA-codon of the proximal operon's gene in the SD-sequence (TAAGGAG) of rplD; 2) Cm(R)-gene flanked by lambdaattL/R-sites in such a fashion that after lambdaInt/Xis-driven excision of the marker the residual lambdaattB-site would not contain the termination codons in frame with ATG of rplD; 3) E. coli trpE-trpD intercistronic region for location of ATG of trpD at the position of initiation codon of the distal gene of original operon. The general design of desired construction provides the conversion of the original two-cistronic operon into three-cistronic operon with translational-coupled genes, where the coupling of the artificial ORF (rplD'-lambdaattB-'trpE) with the proximal gene is occurred due to rplC-rplD intercistronic region and the coupling of this ORF with the distal gene--due to trpE-trpD. The experimental implementation of the described strategy was showed by construction of artificial operon P(tac-aroG4-serA5, where expression optimization of the distal serA5 gene was achieved via construction of three-cistronic operon with translational-coupled genes. PMID:19548541

  2. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009

    PubMed Central

    Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; Yang, Suping

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we investigated how arsenic multi-operons contributed to arsenic detoxification in R. palustris. The expression of ars2 or ars3 operons increased with increasing environmental arsenite (As(III)) concentrations (up to 1.0 mM) while transcript of ars1 operon was not detected in the middle log-phase (55 h). ars2 operon was actively expressed even at the low concentration of As(III) (0.01 μM), whereas the ars3 operon was expressed at 1.0 μM of As(III), indicating that there was a differential regulation mechanism for the three arsenic operons. Furthermore, ars2 and ars3 operons were maximally transcribed in the early log-phase where ars2 operon was 5.4-fold higher than that of ars3 operon. A low level of ars1 transcript was only detected at 43 h (early log-phase). Arsenic speciation analysis demonstrated that R. palustris could reduce As(V) to As(III). Collectively, strain CGA009 detoxified arsenic by using arsenic reduction and methylating arsenic mechanism, while the latter might occur with the presence of higher concentrations of arsenic. PMID:26441915

  3. The rise of operon-like gene clusters in plants.

    PubMed

    Boycheva, Svetlana; Daviet, Laurent; Wolfender, Jean-Luc; Fitzpatrick, Teresa B

    2014-07-01

    Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science. PMID:24582794

  4. Polarity effects in the lactose operon of Escherichia coli.

    PubMed

    Li, Yong; Altman, Sidney

    2004-05-21

    An intergenic RNA segment between lacY and lacA of the lactose operon in Escherichia coli is cleaved by RNase P, an endoribonuclease. The cleavage of the intergenic RNA was ten times less efficient than cleavage of a tRNA precursor in vitro. Fragments of the RNase P cleavage product are detectable in vivo in the wild-type strain but not in a mutant strain at the restrictive temperature. The cleavage product that contains lacA in the wild-type strain was quickly degraded. When this intergenic segment was cloned upstream of a reporter gene, the expression of the reporter gene was also inhibited substantially in wild-type E.coli, but not in a temperature sensitive mutant strain in RNase P at the restrictive temperature. These results support data regarding the natural polarity between lacZ versus lacA, the downstream gene. PMID:15123418

  5. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    PubMed

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes. PMID:25763016

  6. The role of FIS in trans activation of stable RNA operons of E. coli.

    PubMed

    Nilsson, L; Vanet, A; Vijgenboom, E; Bosch, L

    1990-03-01

    The thrU(tufB) operon of Escherichia coli is endowed with a cis-acting region upstream of the promoter, designated UAS for Upstream Activator Sequence. A protein fraction has been isolated that binds specifically to DNA fragments of the UAS, thus forming three protein-DNA complexes corresponding to three binding sites on the UAS. It stimulates in vitro transcription of the operon by facilitating the binding of the RNA polymerase to the promoter. All three protein-DNA complexes contain one and the same protein. Dissociation constants for the three complexes have been determined, the lowest being in the sub-nanomolar range. The protein also binds to the UAS of the tyrT operon and to the UAS upstream of the P1 promoter of the rrnB operon, suggesting that transcription of the three operons, if not of more stable RNA operons, is activated by a common trans activator. We demonstrate that the E.coli protein FIS (Factor for Inversion Stimulation) also binds to the UAS of the thrU(tufB) operon forming three protein-DNA complexes. A burst of UAS- and FIS-dependent promoter activity is observed after reinitiation of growth of stationary cultures in fresh medium. PMID:1690124

  7. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon.

    PubMed Central

    Jansen, R; Briaire, J; Kamp, E M; Gielkens, A L; Smits, M A

    1993-01-01

    Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI), an important virulence factor, is secreted by serotypes 1, 5, 9, 10, and 11 of A. pleuropneumoniae. However, sequences homologous to the secretion genes apxIBD of the ApxI operon are present in all 12 serotypes except serotype 3. The purpose of this study was to determine and compare the structures of the ApxI operons of the 12 A. pleuropneumoniae serotypes. We focused on the nucleotide sequence comparison of the ApxI-coding genes, the structures of the ApxI operons, and the transcription of the ApxI operons. We determined the nucleotide sequences of the toxin-encoding apxICA genes of serotype 9 and found that the gene for the structural toxin, apxIA, was almost identical to the apxIA gene of serotype 1. The toxin-encoding genes of the other serotypes are also similar for the main part; nevertheless, two variants were identified, one in serotypes 1, 9, and 11 and one in serotypes 5 and 10. The two apxIA variants differ mainly within the distal 110 nucleotides. Structural analysis demonstrated that intact ApxI operons, consisting of the four contiguous genes apxICABD, are present in serotypes 1, 5, 9, 10, and 11. ApxI operons with a major deletion in the apxICA genes are present in serotypes 2, 4, 6, 7, 8, and 12. Serotype 3 does not contain ApxI operon sequences. We found that all ApxI operons are transcriptionally active despite the partial deletion of the operon in some serotypes. The implications of these data for the expression and secretion of ApxI and the other Apx-toxins, ApxII and ApxIII, as well as for the development of a subunit vaccine against A. pleuropneumoniae will be discussed. Images PMID:8359891

  8. Ancient origin of the tryptophan operon and the dynamics of evolutionary change.

    PubMed

    Xie, Gary; Keyhani, Nemat O; Bonner, Carol A; Jensen, Roy A

    2003-09-01

    The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting

  9. Quantitative approaches to the study of bistability in the lac operon of Escherichia coli.

    PubMed

    Santillán, Moisés; Mackey, Michael C

    2008-08-01

    In this paper, the history and importance of the lac operon in the development of molecular and systems biology are briefly reviewed. We start by presenting a description of the regulatory mechanisms in this operon, taking into account the most recent discoveries. Then we offer a survey of the history of the lac operon, including the discovery of its main elements and the subsequent influence on the development of molecular and systems biology. Next the bistable behaviour of the operon is discussed, both with respect to its discovery and its molecular origin. A review of the literature in which this bistable phenomenon has been studied from a mathematical modelling viewpoint is then given. We conclude with some brief remarks. PMID:18426771

  10. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  11. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments.

    PubMed

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  12. Cycling expression and cooperative operator interaction in the trp operon of Escherichia coli.

    PubMed

    Hernández-Valdez, Areli; Santillán, Moisés; Zeron, Eduardo S

    2010-04-01

    Oscillatory behaviour in the tryptophan operon of an Escherichia coli mutant strain lacking the enzyme-inhibition regulatory mechanism has been observed by Bliss et al. but not confirmed by others. This behaviour could be important from the standpoint of synthetic biology, whose goals include the engineering of intracellular genetic oscillators. This work is devoted to investigating, from a mathematical modelling point of view, the possibility that the trp operon of the E. coli inhibition-free strain expresses cyclically. For that we extend a previously introduced model for the regulatory pathway of the tryptophan operon in Escherichia coli to account for the observed multiplicity and cooperativity of repressor binding sites. Thereafter we investigate the model dynamics using deterministic numeric solutions, stochastic simulations, and analytic studies. Our results suggest that a quasi-periodic behaviour could be observed in the trp operon expression level of single bacteria. PMID:20004672

  13. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium.

    PubMed Central

    Bäumler, A J; Heffron, F

    1995-01-01

    A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences. PMID:7721701

  14. Escherichia coli tryptophan operon directs the in vivo synthesis of a leader peptide.

    PubMed Central

    Dekel-Gorodetsky, L; Schoulaker-Schwarz, R; Engelberg-Kulka, H

    1986-01-01

    Here we report the identification of the Escherichia coli trp leader peptide synthesized in vivo. We identified the peptide in UV-irradiated maxicells by selective labeling with radioactive amino acids which are included in the predicted sequence of this peptide. Our results support the hypothesis that translation of the peptide-coding region of the leader RNA has a role in the mechanism of attenuation of biosynthetic operons in general and in the E. coli trp operon in particular. Images PMID:2419306

  15. ROLE OF NA+ IN TRANSPORT OF HG2+ AND INDUCTION OF THE TN21 "MER" OPERON

    EPA Science Inventory

    The effects of sodium ions on the uptake of Hg 2 + and induction of the TN21 mer operon were studied using E. coli HMS174 harboring the reporter plasmids pRB28 and pOS14. lasmid pRB28 carries merRT' and pOS14 carries merRTPC of the mer operon, both cloned upstream of a promoterle...

  16. A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge.

    PubMed

    Ansari, Kambiz; Ying, Jasmine Yuen Shu; Hauser, Peter C; de Rooij, Nico F; Rodriguez, Isabel

    2013-05-01

    A new design for a compact portable lab-on-a-chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC(4) D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm(3) (w × l × h), and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip, the associated high-voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrated into the device housing with an exchangeable plug-and-play cartridge format. The design of the dC(4) D cell has been optimized for maximum performance. The cartridge includes the top-bottom excitation and pick up electrodes incorporated into the cell and connected to push-pull self-latching pins that are insulated with plastic. The metal frame of the cartridge is grounded completely to eliminate electronic interferences. The cartridge is designed to clamp a thin fluidic chip at the detection point. The cartridges are replaceable whereby different cartridges have different detection electrode configurations to employ according to the sensitivity or resolution needed in the specific analytical application. The second compartment consists of all the electronics, data acquisition card, high-voltage modules of up to ±5 kV both polarity, and batteries for 10 h of operation. The improved detector performance is illustrated by the electrophoresis analysis of six cations (NH4 (+) , K(+) , Ca(2+) , Na(+) , Mg(2+) , Li(+) ) with a detection limit of approximately 5 μM and the analysis of the anions (Br(-) , Cl(-) , NO2 (-) , NO3 (-) , SO4 (2-) , F(-) ) with a detection limit of about 3 μM. Analytical capabilities of the instrument for food and medical applications were evaluated by simultaneous detection of organic and inorganic acids in fruit juice and inorganic cations and anions in rabbit blood samples and human urine samples are also demonstrated. PMID:23420647

  17. A mgl-like operon in Treponema pallidum, the syphilis spirochete.

    PubMed

    Porcella, S F; Popova, T G; Hagman, K E; Penn, C W; Radolf, J D; Norgard, M V

    1996-10-24

    A 38-kDa lipoprotein of Treponema pallidum subsp. pallidum (T. pallidum), the syphilis spirochete, previously was identified as a putative homolog of E. coli MglB [Becker et al. (1994) Infect. Immun. 62, 1381-1391]. In the present study, genome walking in regions adjacent to the T. pallidum 38-kDa lipoprotein gene has identified three contiguous genes (tp-mglB [formerly tpp38], tp-mglA, and tp-mglC) which appear to comprise a mgl-like operon in T. pallidum. A prominent transcript corresponding to tp-mglB, the first gene of the operon which encodes the carbohydrate receptor, is synthesized by T. pallidum along with lesser abundant transcript(s) corresponding to the entire T. pallidum mgl operon. An active promoter 135 bp upstream of tp-mglB is believed to direct mRNA synthesis for the operon. This is the first membrane protein-encoding operon of T. pallidum for which a putative function (glucose import) has been assigned. Furthermore, by analogy with E. coli MglB which interacts with the sensory transducer Trg to induce a chemotactic response, it is possible that T. pallidum also contains a homolog of E. coli Trg or other methyl-accepting chemotaxis proteins. The existence of a mgl operon in T. pallidum thus may have important implications with respect to T. pallidum survival, tissue dissemination, and sensory transduction during virulence expression. PMID:8921855

  18. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  19. Eukaryotic operon-like transcription of functionally related genes in Drosophila

    PubMed Central

    Ben-Shahar, Yehuda; Nannapaneni, Kishore; Casavant, Thomas L.; Scheetz, Todd E.; Welsh, Michael J.

    2007-01-01

    Complex biological processes require coordinated function of many genes. One evolutionary solution to the problem of coordinately expressing functionally related genes in bacteria and nematodes is organization of genes in operons. Surprisingly, eukaryotic operons are considered rare outside the nematode lineage. In Drosophila melanogaster, we found lounge lizard (llz), which encodes a degenerin/ENaC cation channel, cotranscribed with CheB42a, a nonhomologous gene of unknown function residing <100 bp upstream. These two genes were transcribed from a single promoter as one primary transcript and were processed posttranscriptionally to generate individual mRNAs. The mechanism did not involve alternative splicing, and it differed from the trans splicing used in nematode operons. Both genes were expressed in the same tissues, and previous work suggested that both may be involved in courtship behavior. A bioinformatic approach identified numerous additional loci as potential Drosophila operons. These data reveal eukaryotic operon-like transcription of functionally related genes in Drosophila. The results also suggest that operon-based transcription may be more common in eukaryotes than previously appreciated. PMID:17190802

  20. A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context

    PubMed Central

    Edwards, Martin T.; Rison, Stuart C. G.; Stoker, Neil G.; Wernisch, Lorenz

    2005-01-01

    An important step in understanding the regulation of a prokaryotic genome is the generation of its transcription unit map. The current strongest operon predictor depends on the distributions of intergenic distances (IGD) separating adjacent genes within and between operons. Unfortunately, experimental data on these distance distributions are limited to Escherichia coli and Bacillus subtilis. We suggest a new graph algorithmic approach based on comparative genomics to identify clusters of conserved genes independent of IGD and conservation of gene order. As a consequence, distance distributions of operon pairs for any arbitrary prokaryotic genome can be inferred. For E.coli, the algorithm predicts 854 conserved adjacent pairs with a precision of 85%. The IGD distribution for these pairs is virtually identical to the E.coli operon pair distribution. Statistical analysis of the predicted pair IGD distribution allows estimation of a genome-specific operon IGD cut-off, obviating the requirement for a training set in IGD-based operon prediction. We apply the method to a representative set of eight genomes, and show that these genome-specific IGD distributions differ considerably from each other and from the distribution in E.coli. PMID:15942028

  1. Solving a discrete model of the lac operon using Z3

    NASA Astrophysics Data System (ADS)

    Gutierrez, Natalia A.

    2014-05-01

    A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.

  2. Comparative functional analysis of the lac operons in Streptococcus pyogenes.

    PubMed

    Loughman, Jennifer A; Caparon, Michael G

    2007-04-01

    Having no known environmental reservoir, Streptococcus pyogenes, a bacterium responsible for a wider variety of human diseases than any other bacterial species, must rely on its host for metabolic substrates. Although a streptococcal aldolase, LacD.1, has been adapted to virulence gene regulation, both LacD.1 and a paralogous protein, LacD.2, are predicted to function in the tagatose 6-phosphate pathway for lactose and galactose utilization. In order to gain insight into the mechanism of the LacD.1 regulatory pathway and the role of genome context in the emergence of LacD.1's novel regulatory functions, we compared the function and regulation of the Lac.1 and Lac.2 loci. The Lac.1 operon is not inducible, and regulation by LacD.1 is independent of a functional tagatose 6-phosphate pathway and enhanced by the conserved truncation of upstream Lac.1 genes. In contrast, Lac.2 expression is sensitive to environmental carbohydrates, and LacD.2, not LacD.1, contributes to growth on galactose. Thus, we conclude that the Lac.1 locus has been specialized to participate in regulation, leaving efficient utilization of carbohydrate sources to the Lac.2 locus. The adaptation of LacD for transcription regulation may be an underappreciated strategy among prokaryotes, as homologues of this multifaceted enzyme are present in a broad range of species. PMID:17371500

  3. Analysis of a ribosomal RNA operon in the actinomycete Frankia.

    PubMed

    Normand, P; Cournoyer, B; Simonet, P; Nazaret, S

    1992-02-01

    The organisation of ribosomal RNA-encoding (rrn) genes has been studied in Frankia sp. strain ORS020606. The two rrn clusters present in Frankia strain ORS020606 were isolated from genomic banks in phage lambda EMBL3 by hybridization with oligodeoxyribonucleotide probes. The 5'-3' gene order is the usual one for bacteria: 16S-23S-5S. The two clusters are not distinguishable by restriction enzyme mapping inside the coding section, but vary considerably outside it. Sequencing showed that the 16S-rRNA-encoding gene of ORS020606 is very closely related to that of another Alnus-infective Frankia strain (Ag45/Mut15) and highly homologous to corresponding genes of Streptomyces spp. Two possible promoter sequences were detected upstream from the 16S gene, while no tRNA-encoding gene was detected in the whole operon. Regions with a high proportion of divergence for the study of phylogenetic relationships within the genus were looked for and found in the first intergenic spacer, in the 23S and in the 16S gene. PMID:1372279

  4. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    PubMed Central

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  5. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon.

    PubMed

    Slack, F J; Mueller, J P; Strauch, M A; Mathiopoulos, C; Sonenshein, A L

    1991-08-01

    The Bacillus subtilis dciA operon, which encodes a dipeptide transport system, was induced rapidly by several conditions that caused the cells to enter stationary phase and initiate sporulation. The in vivo start point of transcription was mapped precisely and shown to correspond to a site of transcription initiation in vitro by the major vegetative form of RNA polymerase. Post-exponential expression was prevented by a mutation in the spo0A gene (whose product is a known regulator of early sporulation genes) but was restored in a spo0A abrB double mutant. This implicated AbrB, another known regulator, as a repressor of dciA. In fact, purified AbrB protein bound to a portion of the dciA promoter region, protecting it against DNase I digestion. Expression of dciA in growing cells was also repressed independently by glucose and by a mixture of amino acids; neither of these effects was mediated by AbrB. PMID:1766371

  6. Exploiting Bacterial Operons To Illuminate Human Iron-Sulfur Proteins.

    PubMed

    Andreini, Claudia; Banci, Lucia; Rosato, Antonio

    2016-04-01

    Organisms from all kingdoms of life use iron-sulfur proteins (FeS-Ps) in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of FeS-Ps. Sixty-one percent of human FeS-Ps bind Fe4S4 clusters, whereas 39% bind Fe2S2 clusters. However, this relative ratio varies significantly depending on the specific cellular compartment. We compared the portfolio of human FeS-Ps to 12 other eukaryotes and to about 700 prokaryotes. The comparative analysis of the organization of the prokaryotic homologues of human FeS-Ps within operons allowed us to reconstruct the human functional networks involving the conserved FeS-Ps common to prokaryotes and eukaryotes. These functional networks have been maintained during evolution and thus presumably represent fundamental cellular processes. The respiratory chain and the ISC machinery for FeS-P biogenesis are the two conserved processes that involve the majority of human FeS-Ps. Purine metabolism is another process including several FeS-Ps, in which BOLA proteins possibly have a regulatory role. The analysis of the co-occurrence of human FeS-Ps with other proteins highlighted numerous links between the iron-sulfur cluster machinery and the response mechanisms to cell damage, from repair to apoptosis. This relationship probably relates to the production of reactive oxygen species within the biogenesis and degradation of FeS-Ps. PMID:26889782

  7. Characterization of fig operon mutants of Francisella novicida U112

    PubMed Central

    Kiss, Katalin; Liu, Wei; Huntley, Jason F.; Norgard, Michael V.; Hansen, Eric J.

    2009-01-01

    Francisella species secrete a polycarboxylate siderophore that resembles rhizoferrin to acquire ferric iron. Several of the Francisella siderophore synthesis genes are contained in a Fur-regulated operon (designated fig or fsl) comprised of at least seven open reading frames (ORFs) including fur. Reverse transcriptase-PCR showed transcriptional linkage between figD and figE and between figE and figF. Mutations were constructed in four of these ORFs (figB, figC, figD, and figE) in F. novicida U112. All four of these new mutants and a F. novicida figA mutant grew at rates comparable to that of wild-type under iron-replete conditions but growth of all five mutants was stunted in iron-limiting media. When ferric rhizoferrin was added to the iron-limited media, growth of the figA, figB, figC, and figD mutants was restored to levels similar to those obtained in iron-replete media. However, this exogenously added siderophore could not rescue the figE mutant. When Chrome Azurol S assays were used to measure siderophore production, the figA, figB, and figC mutants were markedly deficient in their ability to synthesize siderophore whereas the figD and figE mutants produced siderophore at levels equivalent to the wild-type parent strain. PMID:18564336

  8. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.

    PubMed

    Römling, Ute; Galperin, Michael Y

    2015-09-01

    Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host. PMID:26077867

  9. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed Central

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-01-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  10. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-02-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  11. Ribosomal Multi-Operon Diversity: An Original Perspective on the Genus Aeromonas

    PubMed Central

    Roger, Frédéric; Lamy, Brigitte; Jumas-Bilak, Estelle; Kodjo, Angeli; F., Carmagnol; E., Chachaty; C., Alba-Sauviat; C., Auvray; D., Barraud; Z., Benseddik; A., Bertrou; F., Bessis; H., Biessy; V., Blanc; Y., Boucaud-Maitre; P., Brunet; A., Michel; B., Cancet; J., Carrere; A., Cecille; G., Chambreuil; P., Chantelat; H., Chardon; C., Charrel; H., De Montclos; J.W., Decousser; J. M., Delarbre; A., Gravet; D., Deligne; C., Denoix; J., Deregnaucourt; F., Desroys du Roure; S., Dubourdieu; Z., El Harrif; C., Eloy; A., Evers; C., Febvre; D., Fevre; S., Gabriel; M. J., Galanti; E., Garnotel; M., Gavignet; F., Geffroy; G., Grise; I., Gros; I., Hermes; J., Heurte; E., Heusse; D., Jan; E., Jaouen; S., Laluque; R., Lamarca; Laurens, E.; A., Le Coustumier; E., Lecaillon; C., Lemble; M., Leneveu; S., Leotard; M. N., Letouzey; C., Malbrunot; O., Menouni; M., Morel; C., Olive; B., Pangon; J. G., Paul; J. M., Perez; P., Pouedras; D., Pressac; R., Sanchez; Y., Scat; A., Secher; J., Semon; D., Simeon; C., Simonin; J. P., Thellier; B., Tourand; A., Vachée; C., Varache; J., Vaucel; A. C., Vautrin; A., Verhaeghe; M., Villemain; L., Villeneuve; Marchandin, Hélène

    2012-01-01

    16S rRNA gene (rrs) is considered of low taxonomic interest in the genus Aeromonas. Here, 195 Aeromonas strains belonging to populations structured by multilocus phylogeny were studied using an original approach that considered Ribosomal Multi-Operon Diversity. This approach associated pulsed-field gel electrophoresis (PFGE) to assess rrn operon number and distribution across the chromosome and PCR-temporal temperature gel electrophoresis (TTGE) to assess rrs V3 region heterogeneity. Aeromonads harbored 8 to 11 rrn operons, 10 operons being observed in more than 92% of the strains. Intraspecific variability was low or nul except for A. salmonicida and A. aquariorum suggesting that large chromosomic rearrangements might occur in these two species while being extremely rarely encountered in the evolution of other taxa. rrn operon number at 8 as well as PFGE patterns were shown valuable for taxonomic purpose allowing resolution of species complexes. PCR-TTGE revealed a high rate of strains (41.5%) displaying intragenomic rrs heterogeneity. Strains isolated from human samples more frequently displayed intragenomic heterogeneity than strains recovered from non-human and environmental specimens. Intraspecific variability ranged from 0 to 76.5% of the strains. The observation of species-specific TTGE bands, the recovery of identical V3 regions in different species and the variability of intragenomic heterogeneity (1–13 divergent nucleotides) supported the occurrence of mutations and horizontal transfer in aeromonad rrs evolution. Altogether, the presence of a high number of rrn operon, the high proportion of strains harboring divergent rrs V3 region and the previously demonstrated high level of genetic diversity argued in favor of highly adaptative capabilities of aeromonads. Outstanding features observed for A. caviae supported the ongoing process of adaptation to a specialized niche represented by the gut, previously hypothesized. 16S rRNA gene is an informative

  12. Kinetic approaches to lactose operon induction and bimodality.

    PubMed

    Michel, Denis

    2013-05-21

    The quasi-equilibrium approximation is acceptable when molecular interactions are fast enough compared to circuit dynamics, but is no longer allowed when cellular activities are governed by rare events. A typical example is the lactose operon (lac), one of the most famous paradigms of transcription regulation, for which several theories still coexist to describe its behaviors. The lac system is generally analyzed by using equilibrium constants, contradicting single-event hypotheses long suggested by Novick and Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA 43, 553-566) and recently refined in the study of (Choi et al., 2008. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442-446). In the present report, a lac repressor (LacI)-mediated DNA immunoprecipitation experiment reveals that the natural LacI-lac DNA complex built in vivo is extremely tight and long-lived compared to the time scale of lac expression dynamics, which could functionally disconnect the abortive expression bursts and forbid using the standard modes of lac bistability. As alternatives, purely kinetic mechanisms are examined for their capacity to restrict induction through: (i) widely scattered derepression related to the arrival time variance of a predominantly backward asymmetric random walk and (ii) an induction threshold arising in a single window of derepression without recourse to nonlinear multimeric binding and Hill functions. Considering the complete disengagement of the lac repressor from the lac promoter as the probabilistic consequence of a transient stepwise mechanism, is sufficient to explain the sigmoidal lac responses as functions of time and of inducer concentration. This sigmoidal shape can be misleadingly interpreted as a phenomenon of equilibrium cooperativity classically used to explain bistability, but which has been reported to be weak in this system. PMID:23454080

  13. Divergent Operons and the Genetic Structure of the Maltose B Region in ESCHERICHIA COLI K12

    PubMed Central

    Hofnung, Maurice

    1974-01-01

    Complementation and polarity suppression data are interpreted in terms of the genetic structure of the maltose B region. It is proposed that this region comprises two divergent operons. One operon includes malK, a cistron involved in maltose permeation, and lamB the only known cistron specifically involved in λ receptor synthesis. The other operon includes malJ1 and malJ2 which are most probably two different cistrons, both involved in maltose permeation*. It is further assumed that expression of the two operons is controlled by malT, the positive regulatory gene of the maltose system, located in the malA region. The target(s) for the action of the malT product is (are) most likely to be located between malJ1 and malK. There is an indication that the two operons might overlap in the region of their promoters. The structure of such an overlap as well as the possible function of the products of the different cistrons in malB are briefly discussed. PMID:4595640

  14. Promoter- and attenuator-related metabolic regulation of the Salmonella typhimurium histidine operon.

    PubMed Central

    Winkler, M E; Roth, D J; Hartman, P E

    1978-01-01

    Expression of the histidine (his) operon in Salmonella typhimurium was found to be positively correlated with the intracellular level of guanosine tetraphosphate (ppGpp). Limitation for amino acids other than histidine elicited a histidine-independent metabolic regulation of the operon. In bacteria grown at decreased growth rates, his operon expression was metabolically regulated up to a point, after which further decreases in growth rate no longer resulted in further enhancement of operon expression. Studies using strains carrying various regulatory and deletion mutations indicated that metabolic regulation is achieved predominantly by increased RNA chain initiations at the primary (P1) and internal (P2) promoters. Metabolic regulation ordinarly did not involve changes in RNA chain terminations at the attenuator site of the his operon. A model is proposed that involves ppGpp-induced changes in RNA polymerase initiation specificity at particular promoters. A second, special form of metabolic regulation may operate which also is histidine independent, but does involve relief of attenuation. PMID:342509

  15. [CpcHID operon as a new tool for classification and identification of Arthrospira platensis strains].

    PubMed

    Yang, Ling-yong; Wang, Zhi-ping; Cao, Xue-cheng; Chen, Xiao-yan; Xu, Bu-jin; Li, Xue-bin; Huang, Hui

    2006-12-01

    Arthrospira is a photoautotrophic filamentous cyanobacterium belonging to the family Oscillatoriaceae, phylum Cyanophyta. Morphological criteria alone were inadequate for classification of Arthrospira . To develop new molecular markers, in this study, the cpcHID operon, 16S rRNA and 16S-23S rRNA internally transcribed spacer (ITS) of seven Arthrospira platensis strains, Sp-10, Sp-2, Sp-9, Sp-1, Sp-1ll, Sp-3 and Sp-5, were cloned and sequenced. And the results of bioinformatics and molecular phylogenetics analyses with BioEdit 7.0, Clustal X 1.81 and Phylip 3.65 were as follows: (1) The sequences of cpcHID operon, 16S rRNA and ITS from the seven strains were highly homologous to the each corresponding gene based on multiple pair-wise comparison. (2) The mean absolute deviation of the G + C content, the ratio of different sites and the genetic distance coefficient based on the sequences of cpcHID operon in the seven strains were generally greater than that based on 16S rRNA and ITS region. (3) The phylogenetic dendrogram based on the sequences of cpcHID operon was almost same with that based on the sequences of 16S rRNA and ITS region. Therefore, it revealed that cpcHID operon could be applied as a new molecular marker to classification and identification of cyanobacterium, and more appropriate for species or strains determination due to its abundant information. PMID:17302170

  16. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    PubMed

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment. PMID:25016342

  17. Escherichia coli mutant with altered respiratory control of the frd operon.

    PubMed Central

    Iuchi, S; Kuritzkes, D R; Lin, E C

    1985-01-01

    In wild-type Escherichia coli, fumarate reductase encoded by the frd operon is inducible by its substrate in the absence of molecular oxygen and nitrate. Synthesis of this enzyme under permissive conditions requires the fnr+ gene product, which is believed to be a pleiotropic regulatory protein that activates transcription. A spontaneous mutant was isolated in which the expression of the frd operon no longer depended on the presence of fumarate or the fnr+ gene product. Aerobic repression of the operon was abolished, but nitrate repression remained intact. Transductional analysis showed that the mutation was closely linked to the frd locus. The mutant phenotype strongly suggests that repression by molecular oxygen and nitrate is mediated by different mechanisms. PMID:3882660

  18. The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei.

    PubMed

    Neuhaus, F C; Heaton, M P; Debabov, D V; Zhang, Q

    1996-01-01

    The D-alanine incorporation system allows Lactobacillus casei to modulate the chemical properties of lipoteichoic acid (LTA) and hence control its proposed functions, i.e., regulation of autolysin action, metal ion binding, and the electromechanical properties of the cell wall. The system requires the D-alanine-D-alanyl carrier protein ligase (Dcl) and the D-alanyl carrier protein (Dcp). Our results indicate that the genes for these proteins are encoded in the dlt operon and that this operon contains at least 2 other genes, dltB and dltD. The aim of this paper is to describe the genetic organization of the operon, the role of the D-alanyl carrier protein, and the function of the putative protein encoded by dltB in the intramembranal translocation of the activated D-alanine. PMID:9158726

  19. Transcriptome dynamics-based operon prediction and verification in Streptomyces coelicolor

    PubMed Central

    Charaniya, Salim; Mehra, Sarika; Lian, Wei; Jayapal, Karthik P.; Karypis, George; Hu, Wei-Shou

    2007-01-01

    Streptomyces spp. produce a variety of valuable secondary metabolites, which are regulated in a spatio-temporal manner by a complex network of inter-connected gene products. Using a compilation of genome-scale temporal transcriptome data for the model organism, Streptomyces coelicolor, under different environmental and genetic perturbations, we have developed a supervised machine-learning method for operon prediction in this microorganism. We demonstrate that, using features dependent on transcriptome dynamics and genome sequence, a support vector machines (SVM)-based classification algorithm can accurately classify >90% of gene pairs in a set of known operons. Based on model predictions for the entire genome, we verified the co-transcription of more than 250 gene pairs by RT-PCR. These results vastly increase the database of known operons in S. coelicolor and provide valuable information for exploring gene function and regulation to harness the potential of this differentiating microorganism for synthesis of natural products. PMID:17959654

  20. Characterization and Nucleotide Sequence of the Cryptic Cel Operon of Escherichia Coli K12

    PubMed Central

    Parker, L. L.; Hall, B. G.

    1990-01-01

    Wild-type Escherichia coli are not able to utilize β-glucoside sugars because the genes for utilization of these sugars are cryptic. Spontaneous mutations in the cel operon allow its expression and enable the organism to ferment cellobiose, arbutin and salicin. In this report we describe the structure and nucleotide sequence of the cel operon. The cel operon consists of five genes: celA, whose function is unknown; celB and celC which encode phosphoenolpyruvate-dependent phosphotransferase system enzyme II(cel) and enzyme III(cel), respectively, for the transport and phosphorylation of β-glucoside sugars; celD, which encodes a negative regulatory protein; and celF, which encodes a phospho-β-glucosidase that acts on phosphorylated cellobiose, arbutin and salicin. The mutationally activated cel operon is induced in the presence of its substrates, and is repressed in their absence. A comparison of proteins encoded by the cel operon with functionally equivalent proteins of the bgl operon, another cryptic E. coli gene system responsible for the catabolism of β-glucoside sugars, revealed no significant homology between these two systems despite common functional characteristics. The celD and celF encoded repressor and phospho-β-glucosidase proteins are homologous to the melibiose regulatory protein and to the melA encoded α-galactosidase of E. coli, respectively. Furthermore, the celC encoded PEP-dependent phosphotransferase system enzyme III(cel) is strikingly homologous to an enzyme III(lac) of the Gram-positive organism Staphylococcus aureus. We conclude that the genes for these two enzyme IIIs diverged much more recently than did their hosts, indicating that E. coli and S. aureus have undergone relatively recent exchange of chromosomal genes. PMID:2179047

  1. Sequencing and Characterization of the xyl Operon of a Gram-Positive Bacterium, Tetragenococcus halophila

    PubMed Central

    Takeda, Yasuo; Takase, Kazuma; Yamato, Ichiro; Abe, Keietsu

    1998-01-01

    The xyl operon of a gram-positive bacterium, Tetragenococcus halophila (previously called Pediococcus halophilus), was cloned and sequenced. The DNA was about 7.7 kb long and contained genes for a ribose binding protein and part of a ribose transporter, xylR (a putative regulatory gene), and the xyl operon, along with its regulatory region and transcription termination signal, in this order. The DNA was AT rich, the GC content being 35.8%, consistent with the GC content of this gram-positive bacterium. The xyl operon consisted of three genes, xylA, encoding a xylose isomerase, xylB, encoding a xylulose kinase, and xylE, encoding a xylose transporter, with predicted molecular weights of 49,400, 56,400, and 51,600, respectively. The deduced amino acid sequences of the XylR, XylA, XylB, and XylE proteins were similar to those of the corresponding proteins in other gram-positive and -negative bacteria, the similarities being 37 to 64%. Each polypeptide of XylB and XylE was expressed functionally in Escherichia coli. XylE transported d-xylose in a sodium ion-dependent manner, suggesting that it is the first described xylose/Na+ symporter. The XylR protein contained a consensus sequence for binding catabolites of glucose, such as glucose-6-phosphate, which has been discovered in glucose and fructose kinases in bacteria. Correspondingly, the regulatory region of this operon contained a putative binding site of XylR with a palindromic structure. Furthermore, it contained a consensus sequence, CRE (catabolite-responsive element), for binding CcpA (catabolite control protein A). We speculate that the transcriptional regulation of this operon resembles the regulation of catabolite-repressible operons such as the amy, lev, xyl, and gnt operons in various gram-positive bacteria. We discuss the significance of the regulation of gene expression of this operon in T. halophila. PMID:9647823

  2. Sequencing and characterization of the xyl operon of a gram-positive bacterium, Tetragenococcus halophila.

    PubMed

    Takeda, Y; Takase, K; Yamato, I; Abe, K

    1998-07-01

    The xyl operon of a gram-positive bacterium, Tetragenococcus halophila (previously called Pediococcus halophilus), was cloned and sequenced. The DNA was about 7.7 kb long and contained genes for a ribose binding protein and part of a ribose transporter, xylR (a putative regulatory gene), and the xyl operon, along with its regulatory region and transcription termination signal, in this order. The DNA was AT rich, the GC content being 35.8%, consistent with the GC content of this gram-positive bacterium. The xyl operon consisted of three genes, xylA, encoding a xylose isomerase, xylB, encoding a xylulose kinase, and xylE, encoding a xylose transporter, with predicted molecular weights of 49,400, 56,400, and 51,600, respectively. The deduced amino acid sequences of the XylR, XylA, XylB, and XylE proteins were similar to those of the corresponding proteins in other gram-positive and -negative bacteria, the similarities being 37 to 64%. Each polypeptide of XylB and XylE was expressed functionally in Escherichia coli. XylE transported D-xylose in a sodium ion-dependent manner, suggesting that it is the first described xylose/Na+ symporter. The XylR protein contained a consensus sequence for binding catabolites of glucose, such as glucose-6-phosphate, which has been discovered in glucose and fructose kinases in bacteria. Correspondingly, the regulatory region of this operon contained a putative binding site of XylR with a palindromic structure. Furthermore, it contained a consensus sequence, CRE (catabolite-responsive element), for binding CcpA (catabolite control protein A). We speculate that the transcriptional regulation of this operon resembles the regulation of catabolite-repressible operons such as the amy, lev, xyl, and gnt operons in various gram-positive bacteria. We discuss the significance of the regulation of gene expression of this operon in T. halophila. PMID:9647823

  3. Organization and regulation of the ilvGEDA operon in Salmonella typhimurium LT2.

    PubMed

    Berg, C M; Shaw, K J

    1981-02-01

    A total of 102 isoleucine- and isoleucine-valine-requiring (ilv) mutants induced by insertion of the transposable element Tn10 have been classified to cistron by growth requirement, cross-feeding behavior, and enzyme assays. The mutations are in a polycistronic operon transcribed in the order ilvGEDA and in a monocistronic operon ilvC. Analysis of distal gene expression in these polar insertion mutants revealed the existence of two constitutive interval promoters, one preceding ilvE and the other preceding ilvD. PMID:7007356

  4. The Mangotoxin Biosynthetic Operon (mbo) Is Specifically Distributed within Pseudomonas syringae Genomospecies 1 and Was Acquired Only Once during Evolution

    PubMed Central

    Carrión, Víctor J.; Gutiérrez-Barranquero, José A.; Arrebola, Eva; Bardaji, Leire; Codina, Juan C.; de Vicente, Antonio

    2013-01-01

    Mangotoxin production was first described in Pseudomonas syringae pv. syringae strains. A phenotypic characterization of 94 P. syringae strains was carried out to determine the genetic evolution of the mangotoxin biosynthetic operon (mbo). We designed a PCR primer pair specific for the mbo operon to examine its distribution within the P. syringae complex. These primers amplified a 692-bp DNA fragment from 52 mangotoxin-producing strains and from 7 non-mangotoxin-producing strains that harbor the mbo operon, whereas 35 non-mangotoxin-producing strains did not yield any amplification. This, together with the analysis of draft genomes, allowed the identification of the mbo operon in five pathovars (pathovars aptata, avellanae, japonica, pisi, and syringae), all of which belong to genomospecies 1, suggesting a limited distribution of the mbo genes in the P. syringae complex. Phylogenetic analyses using partial sequences from housekeeping genes differentiated three groups within genomospecies 1. All of the strains containing the mbo operon clustered in groups I and II, whereas those lacking the operon clustered in group III; however, the relative branching order of these three groups is dependent on the genes used to construct the phylogeny. The mbo operon maintains synteny and is inserted in the same genomic location, with high sequence conservation around the insertion point, for all the strains in groups I and II. These data support the idea that the mbo operon was acquired horizontally and only once by the ancestor of groups I and II from genomospecies 1 within the P. syringae complex. PMID:23144138

  5. Tn9 and IS1 inserts in a ribosomal ribonucleic acid operon of Escherichia coli are incompletely polar.

    PubMed Central

    Brewster, J M; Morgan, E A

    1981-01-01

    Transcription is known to be coupled to translation in many or all bacterial operons which code for proteins. In these operons, nonsense codons which prevent normal translation often result in premature termination of transcription (polarity). However, efficient transcription of ribosomal ribonucleic acid operons (rrn operons) occurs, although rrn transcripts are not translated. It therefore seemed possible that insertion sequences and transposable elements which are polar in protein-coding operons might not be polar in rrn operons. Previously, it has been shown (E. A. Morgan, Cell 21:257-265, 1980) that Tn10 is incompletely polar in the rrnX operon. Here we show that the transposon Tn9 and the insertion sequence IS1 also incompletely polar in rrnX. In normal cells expression of sequences distal to the insertions can be detected by genetic methods. In ultraviolet-irradiated cells expression of distal sequences is about 80% of that observed in uninterrupted rrnX operons. These observations provide evidence that ribonucleic acid polymerase molecules beginning at rrnX promoters can read through Tn9 and IS1 and that, at least in ultraviolet-irradiated cells, read-through is very efficient. Images PMID:6171559

  6. Positions of Trp codons in the leader peptide-coding region of the at operon influence anti-trap synthesis and trp operon expression in Bacillus licheniformis.

    PubMed

    Levitin, Anastasia; Yanofsky, Charles

    2010-03-01

    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNA(Trp). Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNA(Trp). In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNA(Trp) deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467

  7. Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons.

    PubMed Central

    Raina, S; Missiakas, D; Baird, L; Kumar, S; Georgopoulos, C

    1993-01-01

    We have characterized a new Escherichia coli operon consisting of two genes, ecpD and htrE. The ecpD gene encodes a 27-kDa protein which is 40% identical at the amino acid level to the pilin chaperone PapD family of proteins. Immediately downstream of the ecpD gene is the htrE gene. The htrE gene encodes a polypeptide of 95 kDa which is processed to a 92-kDa mature species. The HtrE protein is 38% identical to the type II pilin porin protein PapC. The ecpD htrE operon is located at 3.3 min on the genetic map, corresponding to the region from kbp 153 to 157 of the E. coli physical map. The htrE gene was identified on the basis of a Tn5 insertion mutation which resulted in a temperature-sensitive growth phenotype above 43.5 degrees C. The transcription of this operon is induced with a temperature shift from 22 to 37 or 42 degrees C but not to higher temperatures, e.g., 50 degrees C. Consistent with this result, the temperature-induced transcription was shown to be independent of the rpoH gene product (sigma 32). The transcription of this operon was further shown to require functional integration host factor protein, since himA or himD mutant bacteria possessed lower levels of ecpD htrE transcripts. Among the three transcriptional start sites discovered, one, defined by the P2 promoter, was found to be under the positive regulation of the katF (rpoS) gene, which encodes a putative sigma factor required for the transcription of many growth phase-regulated genes. Images PMID:8102362

  8. Label-free Quantitative Proteomics Reveals a Role for the Mycobacterium tuberculosis SecA2 Pathway in Exporting Solute Binding Proteins and Mce Transporters to the Cell Wall*

    PubMed Central

    Feltcher, Meghan E.; Gunawardena, Harsha P.; Zulauf, Katelyn E.; Malik, Seidu; Griffin, Jennifer E.; Sassetti, Christopher M.; Chen, Xian; Braunstein, Miriam

    2015-01-01

    Mycobacterium tuberculosis is an example of a bacterial pathogen with a specialized SecA2-dependent protein export system that contributes to its virulence. Our understanding of the mechanistic basis of SecA2-dependent export and the role(s) of the SecA2 pathway in M. tuberculosis pathogenesis has been hindered by our limited knowledge of the proteins exported by the pathway. Here, we set out to identify M. tuberculosis proteins that use the SecA2 pathway for their export from the bacterial cytoplasm to the cell wall. Using label-free quantitative proteomics involving spectral counting, we compared the cell wall and cytoplasmic proteomes of wild type M. tuberculosis to that of a ΔsecA2 mutant. This work revealed a role for the M. tuberculosis SecA2 pathway in the cell wall localization of solute binding proteins that work with ABC transporters to import solutes. Another discovery was a profound effect of SecA2 on the cell wall localization of the Mce1 and Mce4 lipid transporters, which contribute to M. tuberculosis virulence. In addition to the effects on solute binding proteins and Mce transporter export, our label-free quantitative analysis revealed an unexpected relationship between SecA2 and the hypoxia-induced DosR regulon, which is associated with M. tuberculosis latency. Nearly half of the transcriptionally controlled DosR regulon of cytoplasmic proteins were detected at higher levels in the ΔsecA2 mutant versus wild type M. tuberculosis. By increasing the list of M. tuberculosis proteins known to be affected by the SecA2 pathway, this study expands our appreciation of the types of proteins exported by this pathway and guides our understanding of the mechanism of SecA2-dependent protein export in mycobacteria. At the same time, the newly identified SecA2-dependent proteins are helpful for understanding the significance of this pathway to M. tuberculosis virulence and physiology. PMID:25813378

  9. Cloning and characterization of two groESL operons of Rhodobacter sphaeroides: transcriptional regulation of the heat-induced groESL operon.

    PubMed Central

    Lee, W T; Terlesky, K C; Tabita, F R

    1997-01-01

    The nonsulfur purple bacterium Rhodobacter sphaeroides was found to contain two groESL operons. The groESL1 heat shock operon was cloned from a genomic library, and a 2.8-kb DNA fragment was sequenced and found to contain the groES and groEL genes. The deduced amino acid sequences of GroEL1 (cpn60) and GroES1 (cpn10) were in agreement with N-terminal sequences previously obtained for the isolated proteins (K. C. Terlesky and F. R. Tabita, Biochemistry 30:8181-8186, 1991). These sequences show a high degree of similarity to groESL genes isolated from other bacteria. Northern analysis indicated that the groESL1 genes were expressed as part of a 2.2-kb polycistronic transcript that is induced 13-fold after heat shock. Transcript size was not affected by heat shock; however, the amount of transcript was induced to its greatest extent 15 to 30 min after a 40 degrees C heat shock, from an initial temperature of 28 degrees C, and remained elevated up to 120 min. The R. sphaeroides groESL1 operon contains a putative hairpin loop at the start of the transcript that is present in other bacterial heat shock genes. Primer extension of the message showed that the transcription start site is at the start of this conserved hairpin loop. In this region were also found putative -35 and -10 sequences that are conserved upstream from other bacterial heat shock genes. Transcription of the groESL1 genes was unexpectedly low under photoautotrophic growth conditions. Thus far, it has not been possible to construct a groESL1 deletion strain, perhaps indicating that these genes are essential for growth. A second operon (groESL2) was also cloned from R. sphaeroides, using a groEL1 gene fragment as a probe; however, no transcript was observed for this operon under several different growth conditions. A groESL2 deletion strain was constructed, but there was no detectable change in the phenotype of this strain compared to the parental strain. PMID:8990302

  10. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1

    PubMed Central

    Yu, Xuefei; Zheng, Wei; Bhat, Somanath; Aquilina, J. Andrew

    2015-01-01

    Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons. PMID:26355338

  11. Determining the bistability parameter ranges of artificially induced lac operon using the root locus method.

    PubMed

    Avcu, N; Alyürük, H; Demir, G K; Pekergin, F; Cavas, L; Güzeliş, C

    2015-06-01

    This paper employs the root locus method to conduct a detailed investigation of the parameter regions that ensure bistability in a well-studied gene regulatory network namely, lac operon of Escherichia coli (E. coli). In contrast to previous works, the parametric bistability conditions observed in this study constitute a complete set of necessary and sufficient conditions. These conditions were derived by applying the root locus method to the polynomial equilibrium equation of the lac operon model to determine the parameter values yielding the multiple real roots necessary for bistability. The lac operon model used was defined as an ordinary differential equation system in a state equation form with a rational right hand side, and it was compatible with the Hill and Michaelis-Menten approaches of enzyme kinetics used to describe biochemical reactions that govern lactose metabolism. The developed root locus method can be used to study the steady-state behavior of any type of convergent biological system model based on mass action kinetics. This method provides a solution to the problem of analyzing gene regulatory networks under parameter uncertainties because the root locus method considers the model parameters as variable, rather than fixed. The obtained bistability ranges for the lac operon model parameters have the potential to elucidate the appearance of bistability for E. coli cells in in vivo experiments, and they could also be used to design robust hysteretic switches in synthetic biology. PMID:25864166

  12. Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate.

    PubMed

    Santillán, M

    2008-03-15

    This work is a continuation from another study previously published in this journal. Both the former and the present works are dedicated to investigating the bistable behavior of the lac operon in Escherichia coli from a mathematical modeling point of view. In the previous article, we developed a detailed mathematical model that accounts for all of the known regulatory mechanisms in this system, and studied the effect of inducing the operon with lactose instead of an artificial inducer. In this article, the model is improved to account, in a more detailed way, for the interaction of the repressor molecules with the three lac operators. A recently discovered cooperative interaction between the CAP molecule (an activator of the lactose operon) and Operator 3 (which influences DNA folding) is also included in this new version of the model. The growth rate dependence on the rate of energy entering the bacteria (in the form of transported glucose molecules and of metabolized lactose molecules) is also considered. A large number of numerical experiments is carried out with this improved model. The results are discussed in regard to the bistable behavior of the lactose operon. Special attention is paid to the effect that a variable growth rate has on the system dynamics. PMID:18065471

  13. Lack of evidence for horizontal transfer of the lac operon into Escherichia coli.

    PubMed

    Stoebel, Daniel M

    2005-03-01

    The idea that Escherichia coli gained the lac operon via horizontal transfer, allowing it to invade a new niche and form a new species, has become a paradigmatic example of bacterial nonpathogenic adaptation and speciation catalyzed by horizontal transfer. Surprisingly, empirical evidence for this event is essentially nonexistent. To see whether horizontal transfer occurred, I compared a phylogeny of 14 Enterobacteriaceae based on two housekeeping genes to a phylogeny of a part of their lac operon. Although several species in this clade appear to have acquired some or all of the operon via horizontal transfer, there is no evidence of horizontal transfer into E. coli. It is not clear whether the horizontal transfer events for which there is evidence were adaptive because those species which have acquired the operon are not thought to live in high lactose environments. I propose that vertical transmission from the common ancestor of the Enterobacteriaceae, with subsequent loss of these genes in many species can explain much of the patchy distribution of lactose use in this clade. Finally, I argue that we need new, well-supported examples of horizontal transfer spurring niche expansion and speciation, particularly in nonpathogenic cases, before we can accept claims that horizontal transfer is a hallmark of bacterial adaptation. PMID:15563718

  14. Novel Functions and Regulation of Cryptic Cellobiose Operons in Escherichia coli

    PubMed Central

    Parisutham, Vinuselvi; Lee, Sung Kuk

    2015-01-01

    Presence of cellobiose as a sole carbon source induces mutations in the chb and asc operons of Escherichia coli and allows it to grow on cellobiose. We previously engineered these two operons with synthetic constitutive promoters and achieved efficient cellobiose metabolism through adaptive evolution. In this study, we characterized two mutations observed in the efficient cellobiose metabolizing strain: duplication of RBS of ascB gene, (β-glucosidase of asc operon) and nonsense mutation in yebK, (an uncharacterized transcription factor). Mutations in yebK play a dominant role by modulating the length of lag phase, relative to the growth rate of the strain when transferred from a rich medium to minimal cellobiose medium. Mutations in ascB, on the other hand, are specific for cellobiose and help in enhancing the specific growth rate. Taken together, our results show that ascB of the asc operon is controlled by an internal putative promoter in addition to the native cryptic promoter, and the transcription factor yebK helps to remodel the host physiology for cellobiose metabolism. While previous studies characterized the stress-induced mutations that allowed growth on cellobiose, here, we characterize the adaptation-induced mutations that help in enhancing cellobiose metabolic ability. This study will shed new light on the regulatory changes and factors that are needed for the functional coupling of the host physiology to the activated cryptic cellobiose metabolism. PMID:26121029

  15. Decreases in average bacterial community rRNA operon copy number during succession.

    PubMed

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  16. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli

    PubMed Central

    Fulcrand, Geraldine; Dages, Samantha; Zhi, Xiaoduo; Chapagain, Prem; Gerstman, Bernard S.; Dunlap, David; Leng, Fenfei

    2016-01-01

    Escherichia coli lac repressor (LacI) is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. This tetrameric protein specifically binds to the O1, O2 and O3 operators of the lac operon and forms a DNA loop to repress transcription from the adjacent lac promoter. In this article, we demonstrate that upon binding to the O1 and O2 operators at their native positions LacI constrains three (−) supercoils within the 401-bp DNA loop of the lac promoter and forms a topological barrier. The stability of LacI-mediated DNA topological barriers is directly proportional to its DNA binding affinity. However, we find that DNA supercoiling modulates the basal expression from the lac operon in E. coli. Our results are consistent with the hypothesis that LacI functions as a topological barrier to constrain free, unconstrained (−) supercoils within the 401-bp DNA loop of the lac promoter. These constrained (−) supercoils enhance LacI’s DNA-binding affinity and thereby the repression of the promoter. Thus, LacI binding is superhelically modulated to control the expression of lacZYA in the lac operon under varying growth conditions. PMID:26763930

  17. clpC operon regulates cell architecture and sporulation in Bacillus anthracis

    PubMed Central

    Singh, Lalit K.; Dhasmana, Neha; Sajid, Andaleeb; Kumar, Prasun; Bhaduri, Asani; Bharadwaj, Mitasha; Gandotra, Sheetal; Kalia, Vipin C.; Das, Taposh K.; Goel, Ajay K.; Pomerantsev, Andrei P.; Misra, Richa; Gerth, Ulf; Leppla, Stephen H.; Singh, Yogendra

    2014-01-01

    The clpC operon is known to regulate several processes such as genetic competence, protein degradation and stress survival in bacteria. Here, we describe the role of clpC operon in Bacillus anthracis. We generated knock-out strains of the clpC operon genes to investigate the impact of CtsR, McsA, McsB and ClpC deletion on essential processes of B. anthracis. We observed that growth, cell division, sporulation and germination were severely affected in mcsB and clpC deleted strains, while none of deletions affected toxin secretion. Growth defect in these strains was pronounced at elevated temperature. The growth pattern gets restored on complementation of mcsB and clpC in respective mutants. Electron microscopic examination revealed that mcsB and clpC deletion also causes defect in septum formation leading to cell elongation. These vegetative cell deformities were accompanied by inability of mutant strains to generate morphologically intact spores. Higher levels of polyhydroxybutyrate granules accumulation were also observed in these deletion strains, indicating a defect in sporulation process. Our results demonstrate, for the first time, the vital role played by McsB and ClpC in physiology of B. anthracis and opens up further interest on this operon, which might be of importance to success of B. anthracis as pathogen PMID:24947607

  18. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5.

    PubMed

    Urzúa, Lucia Soto; Vázquez-Candanedo, Ada P; Sánchez-Espíndola, Adriana; Ramírez, Carlos Ávila; Baca, Beatriz E

    2013-06-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-Km(R) -mutant strains in a medium without iron supplementation and in a medium containing 2, 2'-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-Km(R) -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus. PMID:23624722

  19. Nonhemolytic Streptococcus pyogenes Isolates That Lack Large Regions of the sag Operon Mediating Streptolysin S Production▿

    PubMed Central

    Yoshino, Miho; Murayama, Somay Y.; Sunaoshi, Katsuhiko; Wajima, Takeaki; Takahashi, Miki; Masaki, Junko; Kurokawa, Iku; Ubukata, Kimiko

    2010-01-01

    Among nonhemolytic Streptococcus pyogenes (group A streptococcus) strains (n = 9) isolated from patients with pharyngitis or acute otitis media, we identified three deletions in the region from the epf gene, encoding the extracellular matrix binding protein, to the sag operon, mediating streptolysin S production. PMID:20018818

  20. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1.

    PubMed

    Yu, Xuefei; Zheng, Wei; Bhat, Somanath; Aquilina, J Andrew; Zhang, Ren

    2015-01-01

    Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons. PMID:26355338

  1. Using the TxtAB Operon to Quantify Pathogenic Streptomyces in Potato Tubers and Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytotoxin thaxtomin, produced by plant pathogenic Streptomyces species, is a pathogenicity determinant for common scab. In this study a SYBR Green quantitative real-time PCR assay using primers targeted on the txtAB operon of Streptomyces was developed to quantify pathogenic bacterial populati...

  2. The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa.

    PubMed

    Gliese, Nicole; Khodaverdi, Viola; Görisch, Helmut

    2010-01-01

    Gene PA1990 of Pseudomonas aeruginosa, located downstream of pqqE and encoding a putative peptidase, was shown to be involved in excretion of PQQ into the culture supernatant. This gene is cotranscribed with the pqqABCDE cluster and was named pqqH. A PA1990::Km(r) mutant (VK3) did not show any effect in growth behaviour; however, in contrast to the wild-type, no excretion of PQQ into the culture supernatant was observed. The putative pqqF gene of P. aeruginosa was shown to be essential for PQQ biosynthesis. A pqqF::Km(r) mutant did not grow aerobically on ethanol, because of its inability to produce PQQ. Transcription of the pqqABCDEH operon was induced upon aerobic growth on ethanol, 1-propanol, 1,2-propanediol and 1-butanol, while on glycerol, succinate and acetate, transcription was low. Transcription of the pqqABCDEH operon was also found upon anoxic growth on ethanol with nitrate as electron acceptor, but no PQQ was produced. Expression of the pqqABCDEH operon is regulated at the transcriptional level. In contrast, the pqqF operon appeared to be transcribed constitutively at a very low level under all growth conditions studied. PMID:19902179

  3. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli.

    PubMed

    Fulcrand, Geraldine; Dages, Samantha; Zhi, Xiaoduo; Chapagain, Prem; Gerstman, Bernard S; Dunlap, David; Leng, Fenfei

    2016-01-01

    Escherichia coli lac repressor (LacI) is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. This tetrameric protein specifically binds to the O1, O2 and O3 operators of the lac operon and forms a DNA loop to repress transcription from the adjacent lac promoter. In this article, we demonstrate that upon binding to the O1 and O2 operators at their native positions LacI constrains three (-) supercoils within the 401-bp DNA loop of the lac promoter and forms a topological barrier. The stability of LacI-mediated DNA topological barriers is directly proportional to its DNA binding affinity. However, we find that DNA supercoiling modulates the basal expression from the lac operon in E. coli. Our results are consistent with the hypothesis that LacI functions as a topological barrier to constrain free, unconstrained (-) supercoils within the 401-bp DNA loop of the lac promoter. These constrained (-) supercoils enhance LacI's DNA-binding affinity and thereby the repression of the promoter. Thus, LacI binding is superhelically modulated to control the expression of lacZYA in the lac operon under varying growth conditions. PMID:26763930

  4. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus

    PubMed Central

    Sahukhal, Gyan S.; Batte, Justin L.; Elasri, Mohamed O.

    2015-01-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm. PMID:25724778

  5. ISOLATION OF AN OPERON INVOLVED IN XYLITOL METABOLISM FROM PANTOEA ANANATIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An operon involved in xylitol metabolism in a xylitol-utilizing Pantoea ananatis mutant was cloned by the transposon tagging method. Sequencing analysis revealed that seven consecutive open reading frames (ORFs) are located in the same strand (xytA-G). Sequence homology search suggested that the o...

  6. Analysis of a ribosomal RNA operon (rrn) from “Candiatus Liberibacter asiaticus”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 5,005 bp DNA sequence containing a nearly complete rrn operon of “Candidatus Liberibacter asiaticus”, a bacterium associated with citrus Huanglongbing (yellow shoot disease), was obtained by PCR using sequences conserved for Rhizobiaceae in the alpha-proteobacteria as primers. The rrn locus consis...

  7. Tryptophan auxotrophs were obtained by random transposon insertions in the Methanococcus maripaludis tryptophan operon.

    PubMed

    Porat, Iris; Whitman, William B

    2009-08-01

    Methanococcus maripaludis is an anaerobic, methane-producing archaeon that utilizes H(2) or formate for the reduction of CO(2) to methane. Tryptophan auxotrophs were constructed by in vitro insertions of the Tn5 transposon into the tryptophan operon, followed by transformation into M. maripaludis. This method could serve for rapid insertions into large cloned DNA regions. PMID:19566682

  8. Mechanisms of Activation of the Cryptic Cel Operon of Escherichia Coli K12

    PubMed Central

    Parker, L. L.; Hall, B. G.

    1990-01-01

    The cel (cellobiose utilization) operon of Escherichia coli K12 is not expressed in the wild-type organism. However, mutants that can express the operon and thereby utilize the β-glucoside sugars cellobiose, arbutin and salicin are easily isolated. Two kinds of mutations are capable of activating the operon. The first involves mutations that allow the repressor to recognize the substrates cellobiose, arbutin and salicin as inducers. We have identified the sequence changes in five different active alleles and found those differences to be single base pair changes at one of two lysine codons in the repressor gene. The second kind of mutation involves the integration of the insertion sequences IS1, IS2 or IS5 into a 108-bp region 72-180 bp upstream of the start of transcription. Integration occurs at several different sites and in different orientations. Transcription of the cel operon begins at the same base pair in all mutants examined. Of 44 independent cel(+) mutants, 27 were activated by point mutations and 17 were activated by insertion sequences. The preferred mechanism of activation appears to be strain dependent, since one of the parents yielded 94% insertionally activated alleles, while another yielded 100% point mutation activated alleles. PMID:2179048

  9. In Vitro Activation of the Transcription of araBAD Operon by araC Activator

    PubMed Central

    Lee, Nancy; Wilcox, Gary; Gielow, William; Arnold, John; Cleary, Paul; Englesberg, Ellis

    1974-01-01

    The transcription of araBAD operon requires araC activator and cyclic AMP. D-Fucose inhibits ara mRNA synthesis. Our results indicate that the positive control by araC activator is exerted at the level of transcription. PMID:4362626

  10. Genetic Characterization of a Streptococcus mutans LraI Family Operon and Role in Virulence

    PubMed Central

    Kitten, Todd; Munro, Cindy L.; Michalek, Suzanne M.; Macrina, Francis L.

    2000-01-01

    Proteins belonging to the LraI (for “lipoprotein receptor antigen”) family function as adhesins in several streptococci, as a virulence factor for endocarditis in at least one of these species, and potentially as metal transporters in many bacteria. We have identified and characterized the chromosomal locus containing the LraI family gene (designated sloC) from Streptococcus mutans, an agent of dental caries and endocarditis in humans. Northern blot analysis indicated that sloC is cotranscribed with three other genes. As with other LraI operons, the sloA and sloB genes apparently encode components of an ATP-binding cassette transport system. The product of the fourth gene, sloR, has homology to the metal-dependent regulator from Corynebacterium diphtheriae, DtxR. A potential binding site for SloR was identified upstream from the sloABCR operon and was conserved upstream from LraI operons in several other streptococci. Potential SloR homologs were identified in the unfinished genomic sequences from two of these, S. pneumoniae and S. pyogenes. Mutagenesis of sloC in S. mutans resulted in apparent loss of expression of the entire operon as assessed by Northern blot analysis. The sloC mutant was indistinguishable from its wild-type parent in a gnotobiotic rat model of caries but was significantly less virulent in a rat model of endocarditis. Virulence for endocarditis was restored by correction of the sloC mutation but not by provision of the sloC gene in trans, suggesting that virulence requires the expression of other genes in the sloC operon. PMID:10899841

  11. Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression.

    PubMed

    Cruz-Vera, Luis R; Yang, Rui; Yanofsky, Charles

    2009-11-01

    Expression of the tna operon of Escherichia coli and of Proteus vulgaris is induced by L-tryptophan. In E. coli, tryptophan action is dependent on the presence of several critical residues (underlined) in the newly synthesized TnaC leader peptide, WFNIDXXL/IXXXXP. These residues are conserved in TnaC of P. vulgaris and of other bacterial species. TnaC of P. vulgaris has one additional feature, distinguishing it from TnaC of E. coli; it contains two C-terminal lysine residues following the conserved proline residue. In the present study, we investigated L-tryptophan induction of the P. vulgaris tna operon, transferred on a plasmid into E. coli. Induction was shown to be L-tryptophan dependent; however, the range of induction was less than that observed for the E. coli tna operon. We compared the genetic organization of both operons and predicted similar folding patterns for their respective leader mRNA segments. However, additional analyses revealed that L-tryptophan action in the P. vulgaris tna operon involves inhibition of TnaC elongation, following addition of proline, rather than inhibition of leader peptide termination. Our findings also establish that the conserved residues in TnaC of P. vulgaris are essential for L-tryptophan induction, and for inhibition of peptide elongation. TnaC synthesis is thus an excellent model system for studies of regulation of both peptide termination and peptide elongation, and for studies of ribosome recognition of the features of a nascent peptide. PMID:19767424

  12. Feedback regulation of the spc operon in Escherichia coli: translational coupling and mRNA processing.

    PubMed Central

    Mattheakis, L C; Nomura, M

    1988-01-01

    The spc operon of Escherichia coli encodes 10 ribosomal proteins in the order L14, L24, L5, S14, S8, L6, L18, S5, L30, and L15. This operon is feedback regulated by S8, which binds near the translation start site of L5 and inhibits translation of L5 directly and that of the distal genes indirectly. We constructed plasmids carrying a major portion of the spc operon genes under lac transcriptional control. The plasmids carried a point mutation in the S8 target site which abolished regulation and resulted in overproduction of plasmid-encoded ribosomal proteins upon induction. We showed that alteration of the AUG start codon of L5 to UAG decreased the synthesis rates of plasmid-encoded distal proteins, as well as L5, by approximately 20-fold, with a much smaller (if any) effect on mRNA synthesis rates, indicating coupling of the distal cistrons' translation with the translation of L5. This conclusion was also supported by experiments in which S8 was overproduced in trans. In this case, there was a threefold reduction in the synthesis rates of chromosome-encoded L5 and the distal spc operon proteins, but no decrease in the mRNA synthesis rate. These observations also suggest that transcription from ribosomal protein promoters may be special, perhaps able to overcome transcription termination signals. We also analyzed the state of ribosomal protein mRNA after overproduction of S8 in these experiments and found that repression of ribosomal protein synthesis was accompanied by stimulation of processing (and degradation) of spc operon mRNA. The possible role of mRNA degradation in tightening the regulation is discussed. Images PMID:3049533

  13. Formation of DNA Methylation Patterns: Nonmethylated GATC Sequences in gut and pap Operons

    PubMed Central

    van der Woude, Marjan; Hale, W. Bradley; Low, David A.

    1998-01-01

    Most of the adenine residues in GATC sequences in the Escherichia coli chromosome are methylated by the enzyme deoxyadenosine methyltransferase (Dam). However, at least 20 GATC sequences remain nonmethylated throughout the cell cycle. Here we examined how the DNA methylation patterns of GATC sequences within the regulatory regions of the pyelonephritis-associated pilus (pap) operon and the glucitol utilization (gut) operon were formed. The results obtained with an in vitro methylation protection assay showed that the addition of the leucine-responsive regulatory protein (Lrp) to pap DNA was sufficient to protect the two GATC sequences in the pap regulatory region, GATC-I and GATC-II, from methylation by Dam. This finding was consistent with previously published data showing that Lrp was essential for methylation protection of these DNA sites in vivo. Methylation protection also occurred at a GATC site (GATC-44.5) centered 44.5 bp upstream of the transcription start site of the gutABD operon. Two proteins, GutR and the catabolite gene activator protein (CAP), bound to DNA sites overlapping the GATC-44.5-containing region of the gutABD operon. GutR, an operon-specific repressor, was essential for methylation protection in vivo, and binding of GutR protected GATC-44.5 from methylation in vitro. In contrast, binding of CAP at a site overlapping GATC-44.5 did not protect this site from methylation. Mutational analyses indicated that gutABD gene regulation was not controlled by methylation of GATC-44.5, in contrast to regulation of Pap pilus expression, which is directly controlled by methylation of the pap GATC-I and GATC-II sites. PMID:9811649

  14. Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells.

    PubMed

    Yu, H; Chu, L; Misra, T K

    1996-05-01

    Experiments involving mercury resistance mer operon-lacZ fusions, point mutations in the mercuric ion reductase merA gene, and transcomplementation have revealed that in Hg2+-resistant cells, the inducer Hg2+ concentration is rate determining for activation of transcription. mer operon expression is activated by the presence of nanomolar concentrations of Hg2+ in liquid media only when the mercuric ion reductase function is artificially inactivated in cells, whereas cells with active mercuric ion reductase require micromolar concentrations of Hg2+ for effective induction of the operon. PMID:8626343

  15. The ilvIH operon of Escherichia coli is positively regulated.

    PubMed Central

    Platko, J V; Willins, D A; Calvo, J M

    1990-01-01

    The ilvIH operon of Escherichia coli (located near min 2) encodes acetohydroxyacid synthase III, an isozyme involved in branched-chain amino acid biosynthesis. A strain with lacZ fused to the ilvIH promoter was constructed. Transposon Tn10 was introduced into this strain, and tetracycline-resistant derivatives were screened for those in which ilvIH promoter expression was markedly reduced. In one such derivative, strain CV1008, beta-galactosidase expression was reduced more than 30-fold. The transposon giving rise to this phenotype inserted near min 20 on the E. coli chromosome. Extract from a wild-type strain contains a protein, the IHB protein, that binds to two sites upstream of the ilvIH promoter (E. Ricca, D. A. Aker, and J. M. Calvo, J. Bacteriol. 171:1658-1664, 1989). Extract from strain CV1008 lacks IHB-binding activity. These results indicate that the IHB protein is a positive regulator of ilvIH operon expression. The gene that encodes the IHB protein, ihb, was cloned by complementing the transposon-induced mutation. Definitive evidence that the cloned DNA encodes the IHB protein was provided by determining the sequence of more than 17 amino acids at the N terminus of the IHB protein and comparing it with the nucleotide sequence. A mutation that prevents repression of the ilvIH operon by leucine in vivo and that alters the DNA-binding characteristics of the IHB protein in vitro was shown to be an allele of the ihb gene. The ihb gene is identical to oppI, a gene that regulates the oppABCDF operon (E. A. Austin, J. C. Andrews, and S. A. Short, Abstr. Mol. Genet. Bacteria Phages, p. 153, 1989). Thus, oppI/ihb encodes a protein that regulates both ilvIH, an operon that is repressed by leucine, and oppABCDF, an operon involved in peptide transport that is induced by leucine. We propose that the designation lrp be used in the future instead of oppI or ihb and that Lrp (leucine-responsive regulatory protein) be used in place of IHB. Images PMID:2115869

  16. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis.

    PubMed

    Yanofsky, Charles

    2004-08-01

    Escherichia coli and Bacillus subtilis use different mechanisms of sensing and responding to tryptophan and uncharged tRNA(Trp) as regulatory signals. In E. coli, tryptophan activates a repressor that binds to the trp promoter- operator, inhibiting transcription initiation. In B. subtilis, tryptophan activates an RNA-binding protein, TRAP, which binds to the trp operon leader RNA, causing transcription termination. In E. coli uncharged tRNA(Trp) accumulation stalls the ribosome attempting translation of tandem Trp codons in the leader-peptide coding region of the operon. This stalling permits the formation of an RNA antiterminator structure, preventing transcription termination. In B. subtilis uncharged tRNA(Trp) accumulation activates transcription and translation of the at operon. AT protein inhibits tryptophan-activated TRAP, thereby preventing TRAP-mediated transcription termination. These differences might reflect the unique organizational features of the respective trp operons and their ancestry. PMID:15262409

  17. High Sensitivity Proteomics Assisted Discovery of a Novel Operon Involved in the Assembly of Photosystem II, a Membrane Protein Complex

    SciTech Connect

    Wegener, Kimberly M.; Welsh, Eric A.; Thornton, Leeann E.; Keren, Nir S.; Jacobs, Jon M.; Hixson, Kim K.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

    2008-10-10

    Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation reactions of the photosynthetic electron transport chain in plants, algae, and cyanobacteria. Utilizing a high-throughput proteomic analysis of isolated PSII complexes from the cyanobacterium Synechocystis sp. PCC 6803, we have identified four PSII associated proteins that are encoded by the cofactor integration operon (cio). This operon contains genes with putative binding domains for chlorophyll, iron-sulfur centers, and bilins. Protein levels of this operon are more abundant in several PSII lumenal mutants, suggesting an accumulation of cio products in partially assembled PSII complexes. This provides a rare example of a bacterial operon whose protein products are translationally coordinated and associated with a single protein complex. Genetic deletion of cio results in decreased oxygen evolution by PSII, suggesting that cio products may function as regulators of PSII complex assembly or degradation, maybe facilitating an uncharacterized step in PSII assembly.

  18. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    PubMed

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor. PMID:18800304

  19. Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer

    NASA Astrophysics Data System (ADS)

    Lewis, Mitchell; Chang, Geoffrey; Horton, Nancy C.; Kercher, Michele A.; Pace, Helen C.; Schumacher, Maria A.; Brennan, Richard G.; Lu, Ponzy

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-β-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

  20. Diverse galactooligosaccharides consumption by bifidobacteria: implications of β-galactosidase--LacS operon.

    PubMed

    Akiyama, Takuya; Kimura, Kazumasa; Hatano, Hiroshi

    2015-01-01

    Galactooligosaccharides (GOS) possess prebiotic properties that specifically increase the number of bifidobacteria in the human intestine, thus giving health benefits to the host. Although the bifidogenic effect of GOS has been demonstrated in numerous studies, the utilization of GOS by specific bifidobacteria remains unclear. The goal of our study was to elucidate GOS consumption by specific bifidobacteria and gain insights into the mechanism. First, we examined GOS consumption by 14 bifidobacterial strains belonging to seven different species by comparing growth rate, carbohydrate consumption, and acid production. We then performed a transcription analysis in the case of one strong GOS consumer, Bifidobacterium adolescentis YIT 4011(T), to predict the operon contributing to GOS use. The study indicated the contribution of an operon consisted of LacS symporter and β-galactosidase to bifidobacterial GOS consumption. PMID:25483279

  1. Overexpression, purification and crystallization of the tetrameric form of SorC sorbitol operon regulator

    SciTech Connect

    Sanctis, Daniele de; Rêgo, Ana T.; Marçal, David; McVey, Colin E.; Carrondo, Maria A.; Enguita, Francisco J.

    2008-01-01

    The sorbitol operon regulator from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 3.2 Å. The sorbitol operon regulator (SorC) regulates the metabolism of l-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 Å. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit.

  2. Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence.

    PubMed

    Miyakoshi, Masatoshi; Urata, Masaaki; Habe, Hiroshi; Omori, Toshio; Yamane, Hisakazu; Nojiri, Hideaki

    2006-03-31

    The carbazole catabolic car operons from Pseudomonas resinovorans CA10 and Janthinobacterium sp. J3 have nearly identical nucleotide sequences in their structural and intergenic regions but not in their flanking regions. Transposition of ISPre1 from the anthranilate catabolic ant operon located an inducible promoter Pant upstream of the carCA10 operon, which is regulated by the AraC/XylS family activator AntR in response to anthranilate. The transposed Pant drives transcription of the carCA10 operon, which is composed of the car-AaAaBaBbCAcAdDFECA10 structural genes. Transcriptional fusion truncating Pant upstream of carAaCA10 resulted in constitutive luciferase expression. Primer extension analysis identified a transcription start point of the constitutive mRNA of the carCA10 operon at 385 nucleotides upstream of the carAaCA10 translation start point, and the PcarAa promoter was found. On the other hand, a GntR family regulatory gene carRJ3 is divergently located upstream of the carJ3 operon. The Pu13 promoter, required for inducible transcription of the carJ3 operon in the presence of carbazole, was identified in the region upstream of carAaJ3, which had been replaced with the Pant promoter in the carCA10 operon. Deletion of carRJ3 from a transcriptional fusion resulted in high level constitutive expression from Pu13. Purified CarRJ3 protein bound at two operator sequences OI and OII, showing that CarRJ3 directly represses Pu13 in the absence of its inducer, which was identified as 2-hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoate, an intermediate of the carbazole degradation pathway. PMID:16455652

  3. Deterministic and stochastic simulation and analysis of biochemical reaction networks the lactose operon example.

    PubMed

    Yildirim, Necmettin; Kazanci, Caner

    2011-01-01

    A brief introduction to mathematical modeling of biochemical regulatory reaction networks is presented. Both deterministic and stochastic modeling techniques are covered with examples from enzyme kinetics, coupled reaction networks with oscillatory dynamics and bistability. The Yildirim-Mackey model for lactose operon is used as an example to discuss and show how deterministic and stochastic methods can be used to investigate various aspects of this bacterial circuit. PMID:21187231

  4. Identification of Regulatory Elements That Control Expression of the tbpBA Operon in Neisseria gonorrhoeae

    PubMed Central

    Vélez Acevedo, Rosuany N.; Ronpirin, Chalinee; Kandler, Justin L.; Shafer, William M.

    2014-01-01

    Iron is an essential nutrient for survival and establishment of infection by Neisseria gonorrhoeae. The neisserial transferrin binding proteins (Tbps) comprise a bipartite system for iron acquisition from human transferrin. TbpA is the TonB-dependent transporter that accomplishes iron internalization. TbpB is a surface-exposed lipoprotein that makes the iron uptake process more efficient. Previous studies have shown that the genes encoding these proteins are arranged in a bicistronic operon, with the tbpB gene located upstream of tbpA and separated from it by an inverted repeat. The operon is under the control of the ferric uptake regulator (Fur); however, promoter elements necessary for regulated expression of the genes have not been experimentally defined. In this study, putative regulatory motifs were identified and confirmed by mutagenesis. Further examination of the sequence upstream of these promoter/operator motifs led to the identification of several novel repeats. We hypothesized that these repeats are involved in additional regulation of the operon. Insertional mutagenesis of regions upstream of the characterized promoter region resulted in decreased tbpB and tbpA transcript levels but increased protein levels for both TbpA and TbpB. Using RNA sequencing (RNA-Seq) technology, we determined that a long RNA was produced from the region upstream of tbpB. We localized the 5′ endpoint of this transcript to between the two upstream insertions by qualitative RT-PCR. We propose that expression of this upstream RNA leads to optimized expression of the gene products from within the tbpBA operon. PMID:24837286

  5. Unusual Regulation of a Leaderless Operon Involved in the Catabolism of Dimethylsulfoniopropionate in Rhodobacter sphaeroides

    PubMed Central

    Sullivan, Matthew J.; Curson, Andrew R. J.; Shearer, Neil; Todd, Jonathan D.; Green, Robert T.; Johnston, Andrew W. B.

    2011-01-01

    Rhodobacter sphaeroides strain 2.4.1 is a widely studied bacterium that has recently been shown to cleave the abundant marine anti-stress molecule dimethylsulfoniopropionate (DMSP) into acrylate plus gaseous dimethyl sulfide. It does so by using a lyase encoded by dddL, the promoter-distal gene of a three-gene operon, acuR-acuI-dddL. Transcription of the operon was enhanced when cells were pre-grown with the substrate DMSP, but this induction is indirect, and requires the conversion of DMSP to the product acrylate, the bona fide co-inducer. This regulation is mediated by the product of the promoter-proximal gene acuR, a transcriptional regulator in the TetR family. AcuR represses the operon in the absence of acrylate, but this is relieved by the presence of the co-inducer. Another unusual regulatory feature is that the acuR-acuI-dddL mRNA transcript is leaderless, such that acuR lacks a Shine-Dalgarno ribosomal binding site and 5′-UTR, and is translated at a lower level compared to the downstream genes. This regulatory unit may be quite widespread in bacteria, since several other taxonomically diverse lineages have adjacent acuR-like and acuI-like genes; these operons also have no 5′ leader sequences or ribosomal binding sites and their predicted cis-acting regulatory sequences resemble those of R. sphaeroides acuR-acuI-dddL. PMID:21249136

  6. Restriction endonuclease analysis of the ilvGEDA operon of members of the family Enterobacteriaceae.

    PubMed

    Driver, R P; Lawther, R P

    1985-06-01

    Four of the genes required for the biosynthesis of isoleucine and valine form the ilvGEDA operon in Escherichia coli K-12 and Salmonella typhimurium. The structural relationship of these genes was examined in eight other members of the family Enterobacteriaceae by genomic Southern blot hybridization. These genes are contiguous in all the strains examined, and specific restriction sites appear to be highly conserved, indicating the possible functional importance of the DNA sequences of which they are part. PMID:2987189

  7. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine.

    PubMed Central

    Grandoni, J A; Fulmer, S B; Brizzio, V; Zahler, S A; Calvo, J M

    1993-01-01

    The ilv-leu operon of Bacillus subtilis is regulated in part by transcription attenuation. The cis-acting elements required for regulation by leucine lie within a 683-bp fragment of DNA from the region upstream of ilvB, the first gene of the operon. This fragment contains the ilv-leu promoter and 482 bp of the ilv-leu leader region. Spontaneous mutations that lead to increased expression of the operon were shown to lie in an imperfect inverted repeat encoding the terminator stem within the leader region. Mutations within the inverted repeat of the terminator destroyed most of the leucine-mediated repression. The remaining leucine-mediated repression probably resulted from a decrease in transcription initiation. A systematic analysis of other deletions within the ilv-leu leader region identified a 40-bp region required for the derepression that occurred during leucine limitation. This region lies within a potential RNA stem-and-loop structure that is probably required for leucine-dependent control. Deletion analysis also suggested that alternate secondary structures proximal to the terminator are involved in allowing transcription to proceed beyond the terminator. Additional experiments suggested that attenuation of the ilv-leu operon is not dependent on coupling translation to transcription of the leader region. Our data support a model proposed by Grundy and Henkin (F. J. Grundy and T. M. Henkin, Cell 74:475-482, 1993) in which uncharged tRNA acts as a positive regulatory factor to increase gene expression during amino acid limitation. Images PMID:8244927

  8. Influence of Catabolite Repression and Inducer Exclusion on the Bistable Behavior of the lac Operon

    PubMed Central

    Santillán, Moisés; Mackey, Michael C.

    2004-01-01

    A mathematical model of the lac operon which includes all of the known regulatory mechanisms, including external-glucose-dependent catabolite repression and inducer exclusion, as well as the time delays inherent to transcription and translation, is presented. With this model we investigate the influence of external glucose, by means of catabolite repression and the regulation of lactose uptake, on the bistable behavior of this system. PMID:14990461

  9. The Xis2d protein of CTnDOT binds to the intergenic region between the mob and tra operons.

    PubMed

    Hopp, Crystal M; Gardner, Jeffrey F; Salyers, Abigail A

    2015-09-01

    CTnDOT is a 65kbp integrative and conjugative element (ICE) that carries genes encoding both tetracycline and erythromycin resistances. The excision operon of this element encodes Xis2c, Xis2d, and Exc proteins involved in the excision of CTnDOT from host chromosomes. These proteins are also required in the complex transcriptional regulation of the divergently transcribed transfer (tra) and mobilization (mob) operons of CTnDOT. Transcription of the tra operon is positively regulated by Xis2c and Xis2d, whereas, transcription of the mob operon is positively regulated by Xis2d and Exc. Xis2d is the only protein that is involved in the excision reaction, as well as the transcriptional regulation of both the mob and tra operons. This paper helps establish how Xis2d binds the DNA in the mob and tra region. Unlike other excisionase proteins, Xis2d binds a region of dyad symmetry. The binding site is located in the intergenic region between the mob and tra promoters, and once bound Xis2d induces a bend in the DNA. Xis2d binding to this region could be the preliminary step for the activation of both operons. Then the other proteins, like Exc, can interact with Xis2d and form higher order complexes. PMID:26212728

  10. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides.

    PubMed Central

    Gibson, J L; Tabita, F R

    1993-01-01

    Structural genes encoding Calvin cycle enzymes in Rhodobacter sphaeroides are duplicated and organized within two physically distinct transcriptional units, the form I and form II cbb operons. Nucleotide sequence determination of the region upstream of the form I operon revealed a divergently transcribed open reading frame, cbbR, that showed significant similarity to the LysR family of transcriptional regulatory proteins. Mutants containing an insertionally inactivated cbbR gene were impaired in photoheterotrophic growth and completely unable to grow photolithoautotrophically with CO2 as the sole carbon source. In the cbbR strain, expression of genes within the form I operon was completely abolished and that of the form II operon was reduced to about 30% of the wild-type level. The cloned cbbR gene complemented the mutant for wild-type growth characteristics, and normal levels of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) were observed. However, rocket immunoelectrophoresis revealed that the wild-type level of RubisCO was due to overexpression of the form II enzyme, whereas expression of the form I RubisCO was 10% of that of the wild-type strain. The cbbR insertional inactivation did not appear to affect aerobic expression of either CO2 fixation operon, but preliminary evidence suggests that the constitutive expression of the form II operon observed in the cbbR strain may be subject to repression during aerobic growth. PMID:8376325

  11. Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch.

    PubMed

    Robert, Lydia; Paul, Gregory; Chen, Yong; Taddei, François; Baigl, Damien; Lindner, Ariel B

    2010-04-13

    The lactose operon regulation in Escherichia coli is a primary model of phenotypic switching, reminiscent of cell fate determination in higher organisms. Under conditions of bistability, an isogenic cell population partitions into two subpopulations, with the operon's genes turned on or remaining off. It is generally hypothesized that the final state of a cell depends solely on stochastic fluctuations of the network's protein concentrations, particularly on bursts of lactose permease expression. Nevertheless, the mechanisms underlying the cell switching decision are not fully understood. We designed a microfluidic system to follow the formation of a transiently bimodal population within growing microcolonies. The analysis of genealogy and cell history revealed the existence of pre-disposing factors for switching that are epigenetically inherited. Both the pre-induction expression stochasticity of the lactose operon repressor LacI and the cellular growth rate are predictive factors of the cell's response upon induction, with low LacI concentration and slow growth correlating with higher switching probability. Thus, stochasticity at the local level of the network and global physiology are synergistically involved in cell response determination. PMID:20393577

  12. OpWise: Operons aid the identification of differentially expressedgenes in bacterial microarray experiments

    SciTech Connect

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-23

    Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known. Results-OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions. In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify additional changers by assigning genes higher confidence if they are consistent with other genes in the same operon. Although microarray data can contain large amounts of systematic error, operons provide an external standard and allow for reasonable estimates of significance. OpWise is available at http://microbesonline.org/OpWise.

  13. Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development.

    PubMed

    Honma, Kiyonobu; Inagaki, Satoru; Okuda, Katsuji; Kuramitsu, Howard K; Sharma, Ashu

    2007-04-01

    Tannerella forsythia is a Gram-negative oral anaerobe implicated in the development of periodontitis, a chronic inflammatory disease induced by bacterial infections which leads to tooth loss if untreated. Since biofilms formed by periodontal bacteria are considered important in disease progression and pose difficulties in treatment, we sought to investigate the underlying mechanisms of T. forsythia biofilm formation. This was carried out by screening random insertion mutants of T. forsythia for alterations in biofilm development. This approach lead to the identification of an operon involved in exopolysaccharide (EPS) synthesis. An isogenic mutant of one of the genes, wecC, contained within the operon was constructed. The isogenic wecC mutant showed increased ability to form biofilms as compared to the parent strain. The wecC mutant also formed aggregated microcolonies and showed increased cell-surface associated hydrophobicity as compared to the parent strain. Moreover, biochemical characterization of the wecC mutant indicated that glycosylation of surface glycoproteins was reduced. Therefore, our results suggest that the wecC operon is associated with glycosylation of surface-glycoprotein expression and likely plays an inhibitory role in T. forsythia biofilm formation. PMID:17363213

  14. The Cytochrome c Maturation Operon Is Involved in Manganese Oxidation in Pseudomonas putida GB-1

    PubMed Central

    de Vrind, J. P. M.; Brouwers, G. J.; Corstjens, P. L. A. M.; den Dulk, J.; de Vrind-de Jong, E. W.

    1998-01-01

    A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed. PMID:9758767

  15. Distinct noise-controlling roles of multiple negative feedback mechanisms in a prokaryotic operon system.

    PubMed

    Nguyen, L K; Kulasiri, D

    2011-03-01

    Molecular fluctuations are known to affect dynamics of cellular systems in important ways. Studies aimed at understanding how molecular systems of certain regulatory architectures control noise therefore become essential. The interplay between feedback regulation and noise has been previously explored for cellular networks governed by a single negative feedback loop. However, similar issues within networks consisting of more complex regulatory structures remain elusive. The authors investigate how negative feedback loops manage noise within a biochemical cascade concurrently governed by multiple negative feedback loops, using the prokaryotic tryptophan (trp) operon system in Escherechia coli as the model system. To the authors knowledge, this is the first study of noise in the trp operon system. They show that the loops in the trp operon system possess distinct, even opposing, noise-controlling effects despite their seemingly analogous feedback structures. The enzyme inhibition loop, although controlling the last reaction of the cascade, was found to suppress noise not only for the tryptophan output but also for other upstream components. In contrast, the Repression (Rep) loop enhances noise for all systems components. Attenuation (Att) poses intermediate effects by attenuating noise for the upstream components but promoting noise for components downstream of its target. Regarding noise at the output tryptophan, Rep and Att can be categorised as noise-enhancing loops whereas Enzyme Inhibition as a noise-reducing loop. These findings suggest novel implications in how cellular systems with multiple feedback mechanisms control noise. [Includes supplementary material]. PMID:21405203

  16. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads.

    PubMed

    Adhikary, Hemanta; Sanghavi, Paulomi B; Macwan, Silviya R; Archana, Gattupalli; Naresh Kumar, G

    2014-01-01

    Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1) and citrate transporter (citC) genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP) buffered medium, which was sufficient to release 200-1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration. PMID:25259527

  17. Transcription of the tRNA-tufB operon of Escherichia coli: activation, termination and antitermination.

    PubMed Central

    van Delft, J H; Mariñon, B; Schmidt, D S; Bosch, L

    1987-01-01

    Signals setting the level of transcription of the tRNA-tufB operon have been studied by deletion mapping. TufB transcription was measured in vivo with plasmid-borne tRNA-tufB:galk operon fusions. Removal of the sequences from -133 to -58 with respect to the transcription start point, results in a 90% decrease of tufB transcription. This demonstrates the presence of a region, upstream of the tRNA-tufB promoter, that enhances the expression of the operon. DNA fragments bearing this upstream activator region do not display an abnormal electrophoretic mobility, as has been observed for the rrnB P1 upstream activator. Deletions starting in the first tRNA gene and directing towards tufB reveal at least two sites that influence tufB transcription. One signals transcription termination in the intergenic region between thrT and tufB. The other may be involved in antitermination. Possible mechanisms underlying antitermination and termination are considered in the light of the nucleotide sequence. Images PMID:3317280

  18. Comparison of Deterministic and Stochastic Models of the lac Operon Genetic Network

    PubMed Central

    Stamatakis, Michail; Mantzaris, Nikos V.

    2009-01-01

    The lac operon has been a paradigm for genetic regulation with positive feedback, and several modeling studies have described its dynamics at various levels of detail. However, it has not yet been analyzed how stochasticity can enrich the system's behavior, creating effects that are not observed in the deterministic case. To address this problem we use a comparative approach. We develop a reaction network for the dynamics of the lac operon genetic switch and derive corresponding deterministic and stochastic models that incorporate biological details. We then analyze the effects of key biomolecular mechanisms, such as promoter strength and binding affinities, on the behavior of the models. No assumptions or approximations are made when building the models other than those utilized in the reaction network. Thus, we are able to carry out a meaningful comparison between the predictions of the two models to demonstrate genuine effects of stochasticity. Such a comparison reveals that in the presence of stochasticity, certain biomolecular mechanisms can profoundly influence the region where the system exhibits bistability, a key characteristic of the lac operon dynamics. For these cases, the temporal asymptotic behavior of the deterministic model remains unchanged, indicating a role of stochasticity in modulating the behavior of the system. PMID:19186128

  19. The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1

    SciTech Connect

    Vrind, J.P.M. de; Brouwers, G.J.; Corstijens, P.L.A.M.; Dulk, J. den; Vrind-de Jong, E.W. de

    1998-10-01

    A Pseudomonas putida strain, strain GB-1, oxidizes Mn{sup 2+} to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn{sup 2+} oxidation and/or secretion of the Mn{sup 2+}-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn{sup 2+} oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn{sup 2+}-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn{sup 2+} oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.

  20. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.

    PubMed

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-05-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  1. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome.

    PubMed

    Anda, Mizue; Ohtsubo, Yoshiyuki; Okubo, Takashi; Sugawara, Masayuki; Nagata, Yuji; Tsuda, Masataka; Minamisawa, Kiwamu; Mitsui, Hisayuki

    2015-11-17

    rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general. PMID:26534993

  2. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    SciTech Connect

    Tan, K.; Borovilos, M.; Zhou, M; Horer, S; Clancy, S; Moy, S; Volkart, LL; Sassoon, J; Baumann, U; Joachimiak, A

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representing a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.

  3. Transcriptional activity of the transposable element Tn10 in the Salmonella typhimurium ilvGEDA operon.

    PubMed

    Blazey, D L; Burns, R O

    1982-08-01

    Polarity of Tn10 insertion mutations in the Salmonella typhimurium ilvGEDA operon depends on both the location and the orientation of the Tn10 element. One orientation of Tn10 insertions in ilvG and ilvE permits low-level expression of the downstream ilvEDA and ilvDA genes, respectively. Our analysis of Salmonella ilv recombinant plasmids shows that this residual ilv expression must result from Tn10-directed transcription and does not reflect the presence of internal promoters in the ilvGEDA operon, as was previously suggested. The opposite orientation of Tn10 insertion in ilvE prevents ilvDA expression, indicating that only one end of Tn10 is normally active in transcribing adjacent genes. Both orientations of Tn10 insertion in ilvD exert absolute polarity on ilvA expression. Expression of ilvA is known to be dependent on effective translation of ilvD, perhaps reflecting the lack of a ribosome binding site proximal to the ilvA sequence. Therefore, recognition of the ability of Tn10 to promote transcription of contiguous genes in the ilvGEDA operon apparently requires the presence of associated ribosome binding sites. PMID:6289328

  4. Comparison of the regulatory regions of ilvGEDA operons from several enteric organisms.

    PubMed

    Harms, E; Hsu, J H; Subrahmanyam, C S; Umbarger, H E

    1985-10-01

    The nucleotide sequence preceding the ilvGEDA operon has been examined and compared in five enteric organisms. The sequence in Escherichia coli B was identical to the earlier-described strain K-12 sequence. The sequences of Salmonella typhimurium and Klebsiella aerogenes were remarkably similar to that of E. coli and identical in that part of the leader region that specified the putative 32-amino-acid peptide. Thus, identical secondary structures could be postulated for the leaders of all three organisms, and regulation of operon expression could be like that postulated earlier for E. coli. Different secondary structures had to be postulated for the leader transcripts of Edwardsiella tarda and Serratia marcescens. Control of attenuation of the operon in these organisms by the level of leucyl tRNA could be explained only if ribosome stalling occurred at a single leucine codon. In both organisms, that single leucine codon is the rarely used CUA rather than the CUG that is in E. coli, S. typhimurium, and K. aerogenes. PMID:3900037

  5. The Rhizobium etli opt operon is required for symbiosis and stress resistance.

    PubMed

    Vos, K; Braeken, K; Fauvart, M; Ndayizeye, M; Verhaert, J; Zachurzok, S; Lambrichts, I; Michiels, J

    2007-07-01

    Rhizobium etli is a Gram-negative root-colonizing soil bacterium capable of fixing nitrogen while living in symbiosis with its leguminous host Phaseolus vulgaris. A genome-wide screening for R. etli symbiotic mutants revealed a R. etli operon encoding an oligopeptide ABC-transporter (Opt), two redA homologous genes and one redB gene. Expression analysis showed this opt operon to be transcribed both under free-living and symbiotic conditions and expression levels were demonstrated to be growth-phase-dependent. Plants nodulated by R. etli opt mutants showed a reduced symbiotic nitrogen fixation activity (approximately 50% reduction). Growth experiments with opt mutants in the presence of oligopeptides as the sole nitrogen source confirmed the involvement of the opt genes in oligopeptide uptake. Further phenotypic analysis of the opt mutants revealed them to display an enhanced resistance to the oligopeptide antibiotic bacitracin, an increased susceptibility to the beta-lactam antibiotic ampicillin and a decreased osmotolerance. In conclusion, our results demonstrate that the opt operon plays a crucial role during symbiosis and stress resistance. PMID:17564602

  6. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon

    PubMed Central

    Møller, Thorleif; Franch, Thomas; Udesen, Christina; Gerdes, Kenn; Valentin-Hansen, Poul

    2002-01-01

    The physiological role of Escherichia coli Spot 42 RNA has remained obscure, even though the 109-nucleotide RNA was discovered almost three decades ago. Structural features of Spot 42 RNA and previous work suggested to us that the RNA might be a regulator of discoordinate gene expression of the galactose operon, a control that is only understood at the phenomenological level. The effects of controlled expression of Spot 42 RNA or deleting the gene (spf) encoding the RNA supported this hypothesis. Down-regulation of galK expression, the third gene in the gal operon, was only observed in the presence of Spot 42 RNA and required growth conditions that caused derepression of the spf gene. Subsequent biochemical studies showed that Spot 42 RNA specifically bound at the galK Shine-Dalgarno region of the galETKM mRNA, thereby blocking ribosome binding. We conclude that Spot 42 RNA is an antisense RNA that acts to differentially regulate genes that are expressed from the same transcription unit. Our results reveal an interesting mechanism by which the expression of a promoter distal gene in an operon can be modulated and underline the importance of antisense control in bacterial gene regulation. PMID:12101127

  7. Ler Is a Negative Autoregulator of the LEE1 Operon in Enteropathogenic Escherichia coli

    PubMed Central

    Berdichevsky, Tatiana; Friedberg, Devorah; Nadler, Chen; Rokney, Assaf; Oppenheim, Amos; Rosenshine, Ilan

    2005-01-01

    Enteropathogenic Escherichia coli (EPEC) causes severe diarrhea in young children. Essential for colonization of the host intestine is the LEE pathogenicity island, which comprises a cluster of operons encoding a type III secretion system and related proteins. The LEE1 operon encodes Ler, which positively regulates many EPEC virulence genes in the LEE region and elsewhere in the chromosome. We found that Ler acts as a specific autorepressor of LEE1 transcription. We further show that Ler specifically binds upstream of the LEE1 operon in vivo and in vitro. A comparison of the Ler affinities to different DNA regions suggests that the autoregulation mechanism limits the steady-state level of Ler to concentrations that are just sufficient for activation of the LEE2 and LEE3 promoters and probably other LEE promoters. This mechanism may reflect the need of EPEC to balance maximizing the colonization efficiency by increasing the expression of the virulence genes and minimizing the immune response of the host by limiting their expression. In addition, we found that the autoregulation mechanism reduces the cell-to-cell variability in the levels of LEE1 expression. Our findings point to a new negative regulatory circuit that suppresses the noise and optimizes the expression levels of ler and other LEE1 genes. PMID:15601719

  8. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli

    SciTech Connect

    Widenhorn, K.A.; Boos, W.; Somers, J.M.; Kay, W.W.

    1988-02-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambdagtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambdaTn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C-protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar (/sup 14/C) fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to (/sup 14/C) fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis.

  9. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome

    PubMed Central

    Anda, Mizue; Ohtsubo, Yoshiyuki; Okubo, Takashi; Sugawara, Masayuki; Nagata, Yuji; Tsuda, Masataka; Minamisawa, Kiwamu; Mitsui, Hisayuki

    2015-01-01

    rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the “main” chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general. PMID:26534993

  10. Role of Ribosome Release in Regulation of tna Operon Expression in Escherichia coli

    PubMed Central

    Konan, Kouacou Vincent; Yanofsky, Charles

    1999-01-01

    Expression of the degradative tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. In cultures growing in the absence of added tryptophan, transcription of the structural genes of the tna operon is limited by Rho-dependent transcription termination in the leader region of the operon. Tryptophan induction prevents this Rho-dependent termination, and requires in-frame translation of a 24-residue leader peptide coding region, tnaC, that contains a single, crucial, Trp codon. Studies with a lacZ reporter construct lacking the spacer region between tnaC and the first major structural gene, tnaA, suggested that tryptophan induction might involve cis action by the TnaC leader peptide on the ribosome translating the tnaC coding region. The leader peptide was hypothesized to inhibit ribosome release at the tnaC stop codon, thereby blocking Rho’s access to the transcript. Regulatory studies with deletion constructs of the tna operon of Proteus vulgaris supported this interpretation. In the present study the putative role of the tnaC stop codon in tna operon regulation in E. coli was examined further by replacing the natural tnaC stop codon, UGA, with UAG or UAA in a tnaC-stop codon-tnaA′-′lacZ reporter construct. Basal level expression was reduced to 20 and 50% when the UGA stop codon was replaced by UAG or UAA, respectively, consistent with the finding that in E. coli translation terminates more efficiently at UAG and UAA than at UGA. Tryptophan induction was observed in strains with any of the stop codons. However, when UAG or UAA replaced UGA, the induced level of expression was also reduced to 15 and 50% of that obtained with UGA as the tnaC stop codon, respectively. Introduction of a mutant allele encoding a temperature-sensitive release factor 1, prfA1, increased basal level expression 60-fold when the tnaC stop codon was UAG and 3-fold when this stop codon was UAA; basal level

  11. Hydrogenolysis of cellulose to C4-C7 alcohols over bi-functional CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction.

    PubMed

    Wu, Yanhua; Gu, Fangna; Xu, Guangwen; Zhong, Ziyi; Su, Fabing

    2013-06-01

    This work demonstrates the efficient hydrogenolysis of cellulose to C4-C7 alcohols and gas products (reaction 1) by coupling it with the reforming reaction of methanol (reaction 2) over bi-functional CuO-based catalysts. In this process, the CuO-based catalysts catalyze both the reactions 1 and 2, and the in situ regenerated H2 in the reaction 2 is used for the reaction 1. A series of CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts were prepared by the co-precipitation method. Among these catalysts, CuO-ZnO/Al2O3 exhibited the highest activity to generate a high cellulose conversion of 88% and a high C4-C7 alcohols content above 95% in the liquid products. The CuO-ZnO/Al2O3 catalyst was stable under the reaction conditions and reusable after 4 runs. This work provides a cost-effective route to convert abundant renewable cellulose to liquid fuels. PMID:23591118

  12. Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation.

    PubMed Central

    Atlung, T; Knudsen, K; Heerfordt, L; Brøndsted, L

    1997-01-01

    The transcriptional regulation of two energy metabolism operons, hya and cbdAB-appA, has been investigated during carbon and phosphate starvation. The hya operon encodes hydrogenase 1, and the cbdAB-appA operon encodes cytochrome bd-II oxidase and acid phosphatase, pH 2.5. Both operons are targets for the transcriptional activator AppY. In exponential growth, expression of the hya and cbd operons was reduced in an rpoS mutant lacking the RNA polymerase sigmaS factor, and the induction of the two operons by entry into stationary phase in rich medium was strongly dependent on sigmaS. Both operons were induced by carbon starvation, but only induction of the hya operon was dependent on sigmaS, whereas that of the cbd promoter was dependent on AppY. The appY gene also showed sigmaS-dependent induction by carbon starvation. The cbd and hya operons were also found to exhibit a sigmaS-dependent transient twofold induction by osmotic upshift. Like the cbd operon, the hya operon was highly induced by phosphate starvation. For both operons the induction was strongly dependent on AppY. The induction ratio of the two operons was the same in rpoS+ and rpoS mutant strains, indicating that the phosphate starvation-induced increase in sigmaS concentration is not involved in the phosphate regulation of these operons. PMID:9079897

  13. Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation.

    PubMed

    Atlung, T; Knudsen, K; Heerfordt, L; Brøndsted, L

    1997-04-01

    The transcriptional regulation of two energy metabolism operons, hya and cbdAB-appA, has been investigated during carbon and phosphate starvation. The hya operon encodes hydrogenase 1, and the cbdAB-appA operon encodes cytochrome bd-II oxidase and acid phosphatase, pH 2.5. Both operons are targets for the transcriptional activator AppY. In exponential growth, expression of the hya and cbd operons was reduced in an rpoS mutant lacking the RNA polymerase sigmaS factor, and the induction of the two operons by entry into stationary phase in rich medium was strongly dependent on sigmaS. Both operons were induced by carbon starvation, but only induction of the hya operon was dependent on sigmaS, whereas that of the cbd promoter was dependent on AppY. The appY gene also showed sigmaS-dependent induction by carbon starvation. The cbd and hya operons were also found to exhibit a sigmaS-dependent transient twofold induction by osmotic upshift. Like the cbd operon, the hya operon was highly induced by phosphate starvation. For both operons the induction was strongly dependent on AppY. The induction ratio of the two operons was the same in rpoS+ and rpoS mutant strains, indicating that the phosphate starvation-induced increase in sigmaS concentration is not involved in the phosphate regulation of these operons. PMID:9079897

  14. Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol.

    PubMed Central

    Chen, Y M; Lu, Z; Lin, E C

    1989-01-01

    L-1,2-Propanediol is an irretrievable end product of L-fucose fermentation by Escherichia coli. Selection for increased aerobic growth rate on propanediol results in the escalation of basal synthesis of the NAD+-linked oxidoreductase encoded by fucO, a member of the fuc regulon for the utilization of L-fucose. In general, when fucO becomes constitutively expressed, two other simultaneous changes occur: the fucA gene encoding fuculose-1-phosphate aldolase becomes constitutively expressed and the fucPIK operon encoding fucose permease, fucose isomerase, and fuculose kinase becomes noninducible. In the present study, we show that fucO and fucA form an operon which is divergently transcribed from the adjacent fucPIK operon. In propanediol-positive and fucose-negative mutants the cis-controlling region shared by the operons fucAO and fucPIK is lengthened by 1.2 kilobases. DNA hybridization identified the insertion element to be IS5. This element, always oriented in the same direction with the left end (the BglII end) proximal to fucA, apparently causes constitutive expression of fucAO and noninducibility of fucPIK. The DNA of the fucAO operon and a part of the adjacent fucP was sequenced. Images PMID:2553671

  15. Loss of the lac operon contributes to Salmonella invasion of epithelial cells through derepression of flagellar synthesis.

    PubMed

    Jiang, Lingyan; Ni, Zhiwei; Wang, Lei; Feng, Lu; Liu, Bin

    2015-03-01

    Salmonella, a genus that is closely related to Escherichia coli, includes many pathogens of humans and other animals. A notable feature that distinguishes Salmonella from E. coli is lactose negativity, because the lac operon is lost in most Salmonella genomes. Here, we expressed the lac operon in Salmonella enterica serovar Typhimurium and compared the virulence of the Lac(+) strain to that of the wild-type strain in a murine model, invasion assays, and macrophage replication assays. We showed that the Lac(+) strain is attenuated in vivo and the attenuation of virulence is caused by its defect in epithelial cell invasion. However, the invasion-defective phenotype is unrelated to lactose utilization. Through sequencing and the comparison of the transcriptome profile between the Lac(+) and wild-type strains during invasion, we found that most flagellar genes were markedly downregulated in the Lac(+) strain, while other genes associated with invasion, such as the majority of genes encoded in Salmonella pathogenicity island 1, were not differentially expressed. Moreover, we discovered that lacA is the major repressor of flagellar gene expression in the lac operon. In conclusion, these data demonstrate that the lac operon decreases Salmonella invasion of epithelial cells through repression of flagellar biosynthesis. As the ability to invade epithelial cells is a critical virulence determinant of Salmonella, our results provide important evidence that the loss of the lac operon contributes to the evolution of Salmonella pathogenicity. PMID:25362512

  16. A mutation in a new gene bglJ, activates the bgl operon in Escherichia coli K-12

    SciTech Connect

    Giel, M.; Desnoyer, M.; Lopilato, J.

    1996-06-01

    A new mutation , bglJ4, has been characterized that results in the expression of the silent bgl operon. The bgl operon encodes proteins necessary for the transport and utilization of the aromatic {beta}-glucosides arbutin and salicin. A variety of mutations activate the operon and result in a Bgl{sup +} phenotype. Activating mutations are located upstream of the bgl promoter and in genes located elsewhere on the chromosome. Mutations outside of the bgl operon occur in the genes encoding DNA gyrase and in the gene encoding the nucleoid associated protein H-NS. The mutation described here, bglJ4, has been mapped to a new locus at min 99 on the Escherichia coli K-12 genetic map. The putative protein encoded by the bglJ gene has homology to a family of transcriptional activators. Evidence is presented that increased expression of the bglJ product is needed for activation of the bgl operon. 56 refs., 3 figs., 3 tabs.

  17. Evidence that repression mechanisms can exert control over the thr, leu, and ilv operons of Escherichia coli K-12.

    PubMed Central

    Johnson, D I; Somerville, R L

    1983-01-01

    Mutants of Escherichia coli K-12 resistant to either the threonine analog DL-alpha-amino-beta-hydroxyvaleric acid or the leucine analog 5',5',5'-trifluoro-DL-leucine were isolated. One DL-alpha-amino-beta-hydroxyvaleric acid-resistant mutant strain, designated SP572, constitutively expressed the thr and ilv operons. The mutant allele, avr-16, was localized between trpR and the thr operon at min 0. The wildtype allele of avr-16, designated ileR, is trans dominant. One 5',5',5'-trifluoro-DL-leucine-resistant mutant strain, designated FLR9, expressed the leu and ilv operons constitutively. The mutant allele, flr-9, is linked to entA at min 13. The constitutive expression of the thr, leu, and ilv operons in mutants avr-16 and flr-9 was partly reversed in cells harboring a plasmid, which leads to elevated levels of the trpR gene product, the Trp aporepressor protein. Operator-like sequences situated upstream from the transcription startpoints of the thr, leu, and ilv operons are plausible candidates for targets of systems of repressor-operator control functioning in parallel with attenuation. PMID:6408066

  18. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus.

    PubMed

    Pfeiler, Erika A; Azcarate-Peril, M Andrea; Klaenhammer, Todd R

    2007-07-01

    Lactobacillus acidophilus NCFM is an industrially important strain used extensively as a probiotic culture. Tolerance of the presence of bile is an attribute important to microbial survival in the intestinal tract. A whole-genome microarray was employed to examine the effects of bile on the global transcriptional profile of this strain, with the intention of elucidating genes contributing to bile tolerance. Genes involved in carbohydrate metabolism were generally induced, while genes involved in other aspects of cellular growth were mostly repressed. A 7-kb eight-gene operon encoding a two-component regulatory system (2CRS), a transporter, an oxidoreductase, and four hypothetical proteins was significantly upregulated in the presence of bile. Deletion mutations were constructed in six genes of the operon. Transcriptional analysis of the 2CRS mutants showed that mutation of the histidine protein kinase (HPK) had no effect on the induction of the operon, whereas the mutated response regulator (RR) showed enhanced induction when the cells were exposed to bile. These results indicate that the 2CRS plays a role in bile tolerance and that the operon it resides in is negatively controlled by the RR. Mutations in the transporter, the HPK, the RR, and a hypothetical protein each resulted in loss of tolerance of bile. Mutations in genes encoding another hypothetical protein and a putative oxidoreductase resulted in significant increases in bile tolerance. This functional analysis showed that the operon encoded proteins involved in both bile tolerance and bile sensitivity. PMID:17449631

  19. Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon.

    PubMed Central

    Federspiel, N A; Grossman, A R

    1990-01-01

    Many biological processes in photosynthetic organisms can be regulated by light quantity or light quality or both. A unique example of the effect of specific wavelengths of light on the composition of the photosynthetic apparatus occurs in cyanobacteria that undergo complementary chromatic adaptation. These organisms alter the composition of their light-harvesting organelle, the phycobilisome, and exhibit distinct morphological features as a function of the wavelength of incident light. Fremyella diplosiphon, a filamentous cyanobacterium, responds to green light by activating transcription of the cpeBA operon, which encodes the pigmented light-harvesting component phycoerythrin. We have isolated and determined the complete nucleotide sequence of another operon, cpeCD, that encodes the linker proteins associated with phycoerythrin hexamers in the phycobilisome. The cpeCD operon is activated in green light and expressed as two major transcripts with the same 5' start site but differing 3' ends. Analysis of the kinetics of transcript accumulation in cultures of F. diplosiphon shifted from red light to green light and vice versa shows that the cpeBA and cpeCD operons are regulated coordinately. A common 17-base-pair sequence is found upstream of the transcription start sites of both operons. A comparison of the predicted amino acid sequences of the phycoerythrin-associated linker proteins CpeC and CpeD with sequences of other previously characterized rod linker proteins shows 49 invariant residues, most of which are in the amino-terminal half of the proteins. Images PMID:1694529

  20. Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis to acidic environments.

    PubMed

    Song, Houhui; Huff, Jason; Janik, Katharine; Walter, Kerstin; Keller, Christine; Ehlers, Stefan; Bossmann, Stefan H; Niederweis, Michael

    2011-05-01

    Homeostasis of intracellular pH is a trait critical for survival of Mycobacterium tuberculosis in macrophages. However, mechanisms by which M. tuberculosis adapts to acidic environments are poorly understood. In this study, we analysed the physiological functions of OmpATb, a surface-accessible protein of M. tuberculosis. OmpATb did not complement the permeability defects of a Mycobacterium smegmatis porin mutant to glucose, serine and glycerol, in contrast to the porin MspA. Uptake rates of these solutes were unchanged in an ompATb operon mutant of M. tuberculosis indicating that OmpATb is not a general porin. Chemical analysis of low-pH culture filtrates showed that the proteins encoded by the ompATb operon are involved in generating a rapid ammonia burst, which neutralized medium pH and preceded exponential growth of M. tuberculosis. Addition of ammonia accelerated growth of the ompATb operon mutant demonstrating that ammonia secretion is indeed a mechanism by which M. tuberculosis neutralizes acidic environments. Infection experiments revealed that the ompATb operon was not required for full virulence in mice suggesting that M. tuberculosis has multiple mechanisms of resisting phagosomal acidification. Taken together, these results show that the ompATb operon is necessary for rapid ammonia secretion and adaptation of M. tuberculosis to acidic environments in vitro but not in mice. PMID:21410778

  1. Determinants of bistability in induction of the Escherichia coli lac operon.

    PubMed

    Dreisigmeyer, D W; Stajic, J; Nemenman, I; Hlavacek, W S; Wall, M E

    2008-09-01

    The authors have developed a mathematical model of regulation of expression of the Escherichia coli lac operon, and have investigated bistability in its steady-state induction behaviour in the absence of external glucose. Numerical analysis of equations describing regulation by artificial inducers revealed two natural bistability parameters that can be used to control the range of inducer concentrations over which the model exhibits bistability. By tuning these bistability parameters, the authors found a family of biophysically reasonable systems that are consistent with an experimentally determined bistable region for induction by thio-methylgalactoside (TMG) (in Ozbudak et al. Nature, 2004, 427; p. 737). To model regulation by lactose, the authors developed similar equations in which allolactose, a metabolic intermediate in lactose metabolism and a natural inducer of lac, is the inducer. For biophysically reasonable parameter values, these equations yield no bistability in response to induction by lactose - only systems with an unphysically small permease-dependent export effect can exhibit small amounts of bistability for limited ranges of parameter values. These results cast doubt on the relevance of bistability in the lac operon within the natural context of E. coli, and help shed light on the controversy among existing theoretical studies that address this issue. The results also motivate a deeper experimental characterisation of permease-independent transport of lac inducers, and suggest an experimental approach to address the relevance of bistability in the lac operon within the natural context of E. coli. The sensitivity of lac bistability to the type of inducer emphasises the importance of metabolism in determining the functions of genetic regulatory networks. PMID:19045824

  2. The effect of stochasticity on the lac operon: an evolutionary perspective.

    PubMed

    van Hoek, Milan; Hogeweg, Paulien

    2007-06-01

    The role of stochasticity on gene expression is widely discussed. Both potential advantages and disadvantages have been revealed. In some systems, noise in gene expression has been quantified, in among others the lac operon of Escherichia coli. Whether stochastic gene expression in this system is detrimental or beneficial for the cells is, however, still unclear. We are interested in the effects of stochasticity from an evolutionary point of view. We study this question in the lac operon, taking a computational approach: using a detailed, quantitative, spatial model, we evolve through a mutation-selection process the shape of the promoter function and therewith the effective amount of stochasticity. We find that noise values for lactose, the natural inducer, are much lower than for artificial, nonmetabolizable inducers, because these artificial inducers experience a stronger positive feedback. In the evolved promoter functions, noise due to stochasticity in gene expression, when induced by lactose, only plays a very minor role in short-term physiological adaptation, because other sources of population heterogeneity dominate. Finally, promoter functions evolved in the stochastic model evolve to higher repressed transcription rates than those evolved in a deterministic version of the model. This causes these promoter functions to experience less stochasticity in gene expression. We show that a high repression rate and hence high stochasticity increases the delay in lactose uptake in a variable environment. We conclude that the lac operon evolved such that the impact of stochastic gene expression is minor in its natural environment, but happens to respond with much stronger stochasticity when confronted with artificial inducers. In this particular system, we have shown that stochasticity is detrimental. Moreover, we demonstrate that in silico evolution in a quantitative model, by mutating the parameters of interest, is a promising way to unravel the functional

  3. Segmental message stabilization as a mechanism for differential expression from the Zymomonas mobilis gas operon

    SciTech Connect

    Eddy, C.K.; Keshav, K.F.; An, H.; Utt, E.A.; Mejia, J.P.; Ingram, L.O. )

    1991-01-01

    In Zymomonas mobilis, three- to fourfold more glyceraldehyde-3-phosphate dehydrogenase protein than phosphoglycerate kinase is needed for glycolysis because of differences in catalytic efficiency. Consistent with this requirement, higher levels of glyceraldehyde-3-phosphate dehydrogenase were observed with two-dimensional polyacrylamide gel electrophoresis. The genes encoding these enzymes (gap and pgk, respectively) form a bicistronic operon, and some form of regulation is required to provide this differential expression. Two transcripts were observed in Northern RNA analyses with segments of gap as a probe: a more abundant 1.2-kb transcript that contained gap alone and a 2.7-kb transcript that contained both genes. Based on the relative amounts of these transcripts, the coding regions for glyceraldehyde-3-phosphate dehydrogenase were calculated to be fivefold more abundant than those for phosphoglycerate kinase. Assuming equal translational efficiency, this is sufficient to provide the observed differences in expression. Operon fusions with lacZ provided no evidence for intercistronic terminators or attenuation mechanisms. Both gap operon messages were very stable, with half-lives of approximately 16 min (1.2-kb transcript) and 7 min (2.7-kb transcript). Transcript mapping and turnover studies indicated that the shorter gap message was a stable degradation product of the full-length message. Thus differential expression of gap and pgk results primarily from increased translation of the more stable 5' segment of the transcript containing gap. The slow turnover of the messages encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase is proposed as a major feature contributing to the high level of expression of these essential enzymes.

  4. A response regulator that represses transcription of several virulence operons in the group A streptococcus.

    PubMed

    Federle, M J; McIver, K S; Scott, J R

    1999-06-01

    A search for homologs of the Bacillus subtilis PhoP response regulator in the group A streptococcus (GAS) genome revealed three good candidates. Inactivation of one of these, recently identified as csrR (J. C. Levin and M. R. Wessels, Mol. Microbiol. 30:209-219, 1998), caused the strain to produce mucoid colonies and to increase transcription of hasA, the first gene in the operon for capsule synthesis. We report here that a nonpolar insertion in this gene also increased transcription of ska (encoding streptokinase), sagA (streptolysin S), and speMF (mitogenic factor) but did not affect transcription of slo (streptolysin O), mga (multiple gene regulator of GAS), emm (M protein), scpA (complement C5a peptidase), or speB or speC (pyrogenic exotoxins B and C). The amounts of streptokinase, streptolysin S, and capsule paralleled the levels of transcription of their genes in all cases. Because CsrR represses genes unrelated to those for capsule synthesis, and because CsrA-CsrB is a global regulatory system in Escherichia coli whose mechanism is unrelated to that of these genes in GAS, the locus has been renamed covR, for "control of virulence genes" in GAS. Transcription of the covR operon was also increased in the nonpolar insertion mutant, indicating that CovR represses its own synthesis as well. All phenotypes of the covR nonpolar insertion mutant were complemented by the covR gene on a plasmid. CovR acts on operons expressed both in exponential and in stationary phase, demonstrating that the CovR-CovS pathway is separate from growth phase-dependent regulation in GAS. Therefore, CovR is the first multiple-gene repressor of virulence factors described for this important human pathogen. PMID:10368137

  5. Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages

    PubMed Central

    Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D.

    2015-01-01

    Background Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. Principal Findings In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. Conclusions These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a

  6. Nucleotide sequence and characterization of the pyrF operon of Escherichia coli K12.

    PubMed

    Turnbough, C L; Kerr, K H; Funderburg, W R; Donahue, J P; Powell, F E

    1987-07-25

    The pyrF gene of Escherichia coli K12, which encodes the pyrimidine biosynthetic enzyme orotidine-5'-monophosphate (OMP) decarboxylase, is part of an operon that includes a downstream gene designated orfF. The orfF gene product is a small polypeptide of unknown function. The nucleotide sequence of a 1549-base pair chromosomal fragment containing this operon was determined. An open reading frame capable of encoding the 27-kDa OMP decarboxylase subunit was identified and shown to be the pyrF structural gene by purifying and characterizing OMP decarboxylase. The subunit molecular weight (Mr = 26,350), amino-terminal amino acid sequence, and amino acid composition of the polypeptide predicted from the nucleotide sequence are in excellent agreement with those properties determined for the purified enzyme. The orfF structural gene was tentatively identified and apparently encodes an 11,396-dalton polypeptide. The orfF translational initiation codon overlaps the pyrF termination codon, which may indicate translational coupling in the expression of these genes. The pyrF promoter was mapped by primer extension of in vivo transcripts. The primary transcriptional initiation site is 51 base pairs upstream of the pyrF structural gene. The level of pyrF transcription and OMP decarboxylase synthesis was found to be coordinately derepressed by pyrimidine limitation, indicating that regulation of pyrF gene expression occurs at the transcriptional level. Inspection of the nucleotide sequence indicates that pyrF gene expression is not regulated by an attenuation control mechanism similar to that described for the pyrBI operon or pyrE gene. Finally, we compared the amino acid sequences of the OMP decarboxylases from E. coli, Saccharomyces cerevisiae, Neurospora crassa, and Ehrlich ascites cells to identify conserved regions. PMID:2956254

  7. Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon.

    PubMed Central

    Slack, F J; Mueller, J P; Sonenshein, A L

    1993-01-01

    The Bacillus subtilis dciA operon encodes a dipeptide transport complex that is induced rapidly as cells enter stationary phase and initiate sporulation. Expression of this operon in growing cells is repressed by glucose, by a mixture of amino acids, and by the AbrB protein. A genetic screen was devised to identify mutations that allow inappropriate expression from the dciA promoter during growth. These mutations resulted in increased dciA transcription during growth in nutrient broth, in minimal amino acids medium, and in minimal glucose medium. Some of the mutations, called dcs (dciA control site), were cloned and shown by sequence analysis to cluster near the start site of dciA transcription. Primer extension and in vitro transcription analysis revealed that the dcs mutations did not create a new promoter. These mutations may therefore disrupt an operator site necessary for the binding of a negative regulator responsive to the nutritional state of the cell. The dcs mutant promoters were still subject to AbrB control, suggesting that the dciA operon is regulated by at least two proteins, AbrB and a nutritionally responsive regulator. The gene(s) for the putative nutritional regulator may be defined by the cod (control of dciA) mutations, which appeared to relieve amino acid and glucose repression of dciA by altering a diffusible factor. An abrB cod double mutant exhibited high-level expression of dciA during exponential growth phase. Images PMID:8335620

  8. Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon.

    PubMed

    Slack, F J; Mueller, J P; Sonenshein, A L

    1993-08-01

    The Bacillus subtilis dciA operon encodes a dipeptide transport complex that is induced rapidly as cells enter stationary phase and initiate sporulation. Expression of this operon in growing cells is repressed by glucose, by a mixture of amino acids, and by the AbrB protein. A genetic screen was devised to identify mutations that allow inappropriate expression from the dciA promoter during growth. These mutations resulted in increased dciA transcription during growth in nutrient broth, in minimal amino acids medium, and in minimal glucose medium. Some of the mutations, called dcs (dciA control site), were cloned and shown by sequence analysis to cluster near the start site of dciA transcription. Primer extension and in vitro transcription analysis revealed that the dcs mutations did not create a new promoter. These mutations may therefore disrupt an operator site necessary for the binding of a negative regulator responsive to the nutritional state of the cell. The dcs mutant promoters were still subject to AbrB control, suggesting that the dciA operon is regulated by at least two proteins, AbrB and a nutritionally responsive regulator. The gene(s) for the putative nutritional regulator may be defined by the cod (control of dciA) mutations, which appeared to relieve amino acid and glucose repression of dciA by altering a diffusible factor. An abrB cod double mutant exhibited high-level expression of dciA during exponential growth phase. PMID:8335620

  9. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum

    PubMed Central

    Raynaud, Céline; Sarçabal, Patricia; Meynial-Salles, Isabelle; Croux, Christian; Soucaille, Philippe

    2003-01-01

    The genes encoding the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum VPI1718 were characterized from a molecular and a biochemical point of view. This operon is composed of three genes, dhaB1, dhaB2, and dhaT. When grown in a vitamin B12-free mineral medium with glycerol as carbon source, Escherichia coli expressing dhaB1, dhaB2, and dhaT produces 1,3-PD and high glycerol dehydratase and 1,3-PD dehydrogenase activities. dhaB1 and dhaB2 encode, respectively, a new type of glycerol dehydratase and its activator protein. The deduced proteins DhaB1 and DhaB2, with calculated molecular masses of 88,074 and 34,149 Da, respectively, showed no homology with the known glycerol dehydratases that are all B12 dependent but significant similarity with the pyruvate formate lyases and pyruvate formate lyases activating enzymes and their homologues. The 1,158-bp dhaT gene codes for a 1,3-PD dehydrogenase with a calculated molecular mass of 41,558 Da, revealing a high level of identity with other DhaT proteins from natural 1,3-PD producers. The expression of the 1,3-PD operon in C. butyricum is regulated at the transcriptional level, and this regulation seems to involve a two-component signal transduction system DhaAS/DhaA, which may have a similar function to DhaR, a transcriptional regulator found in other natural 1,3-PD producers. The discovery of a glycerol dehydratase, coenzyme B12 independent, should significantly influence the development of an economical vitamin B12-free biological process for the production of 1,3-PD from renewable resources. PMID:12704244

  10. A Response Regulator That Represses Transcription of Several Virulence Operons in the Group A Streptococcus

    PubMed Central

    Federle, Michael J.; McIver, Kevin S.; Scott, June R.

    1999-01-01

    A search for homologs of the Bacillus subtilis PhoP response regulator in the group A streptococcus (GAS) genome revealed three good candidates. Inactivation of one of these, recently identified as csrR (J. C. Levin and M. R. Wessels, Mol. Microbiol. 30:209–219, 1998), caused the strain to produce mucoid colonies and to increase transcription of hasA, the first gene in the operon for capsule synthesis. We report here that a nonpolar insertion in this gene also increased transcription of ska (encoding streptokinase), sagA (streptolysin S), and speMF (mitogenic factor) but did not affect transcription of slo (streptolysin O), mga (multiple gene regulator of GAS), emm (M protein), scpA (complement C5a peptidase), or speB or speC (pyrogenic exotoxins B and C). The amounts of streptokinase, streptolysin S, and capsule paralleled the levels of transcription of their genes in all cases. Because CsrR represses genes unrelated to those for capsule synthesis, and because CsrA-CsrB is a global regulatory system in Escherichia coli whose mechanism is unrelated to that of these genes in GAS, the locus has been renamed covR, for “control of virulence genes” in GAS. Transcription of the covR operon was also increased in the nonpolar insertion mutant, indicating that CovR represses its own synthesis as well. All phenotypes of the covR nonpolar insertion mutant were complemented by the covR gene on a plasmid. CovR acts on operons expressed both in exponential and in stationary phase, demonstrating that the CovR-CovS pathway is separate from growth phase-dependent regulation in GAS. Therefore, CovR is the first multiple-gene repressor of virulence factors described for this important human pathogen. PMID:10368137

  11. A Fluorescent Bioreporter for Acetophenone and 1-Phenylethanol derived from a Specifically Induced Catabolic Operon

    PubMed Central

    Muhr, Enrico; Leicht, Oliver; González Sierra, Silvia; Thanbichler, Martin; Heider, Johann

    2016-01-01

    The β-proteobacterium Aromatoleum aromaticum degrades the aromatic ketone acetophenone, a key intermediate of anaerobic ethylbenzene metabolism, either aerobically or anaerobically via a complex ATP-dependent acetophenone carboxylase and a benzoylacetate-CoA ligase. The genes coding for these enzymes (apcABCDE and bal) are organized in an apparent operon and are expressed in the presence of the substrate acetophenone. To study the conditions under which this operon is expressed in more detail, we constructed a reporter strain by inserting a gene fusion of apcA, the first gene of the apc-bal operon, with the gene for the fluorescent protein mCherry into the chromosome of A. aromaticum. The fusion protein indeed accumulated consistently with the expression pattern of the acetophenone-metabolic enzymes under various growth conditions. After evaluating and quantifying the data by fluorescence microscopy, fluorescence-based flow cytometry and immunoblot analysis, mCherry production was found to be proportional to the applied acetophenone concentrations. The reporter strain allowed quantification of acetophenone within a concentration range of 50 μM (detection limit) to 250 μM after 12 and 24 h. Moreover, production of the Apc-mCherry fusion protein in the reporter strain was highly specific and responded to acetophenone and both enantiomers of 1-phenylethanol, which are easily converted to acetophenone. Other analogous substrates showed either a significantly weaker response or none at all. Therefore, the reporter strain provides a basis for the development of a specific bioreporter system for acetophenone with an application potential reaching from environmental monitoring to petroleum prospecting. PMID:26858693

  12. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase.

    PubMed Central

    Schäferjohann, J; Yoo, J G; Kusian, B; Bowien, B

    1993-01-01

    The two highly homologous cbb operons of Alcaligenes eutrophus H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated cbbT and cbbZ, at equivalent positions within the operons. Comparisons with known sequences suggested cbbT to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for cbbZ. Although both regions exhibited very high nucleotide identities, 93% (cbbZ) and 96% (cbbT), only the chromosomally encoded genes were heterologously expressed to high levels in Escherichia coli. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in E. coli clones expressing cbbT, confirming the identity of the gene. Strains of E. coli harboring the chromosomal cbbZ gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type E. coli. Derepression of the cbb operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in A. eutrophus, although the pHG1-encoded cbbZ gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism. Images PMID:8226680

  13. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    PubMed Central

    Agervald, Åsa; Stensjö, Karin; Holmqvist, Marie; Lindblad, Peter

    2008-01-01

    Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs) were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the assembly of the small subunit of

  14. Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress.

    PubMed

    Li, Bing; Lin, Jianqun; Mi, Shuang; Lin, Jianqiang

    2010-12-01

    The response of Leptospirillum ferriphilum ML-04 to arsenic stress was analyzed using two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Thirty-eight of 65 significantly differentially expressed arsenic response proteins were identified, and 25 of them have known functions. Three proteins are arsenic resistance system (ARS) member proteins. Two ars operons appear to be present in this strain. In addition to the ARS system, phosphate regulation and glutathione (GSH) synthesis appear involved in As[V] and As[III] tolerance, respectively. These findings provide information potentially useful for the genetic engineering of arsenic resistant organisms. PMID:20696570

  15. A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon.

    PubMed Central

    Marta, P T; Ladner, R D; Grandoni, J A

    1996-01-01

    Regulation of the ilv-leu operon probably involves interaction of a tR NA(GAG) with leader region mRNA. Conversion of a CUC (Leu) triplet located within the leader region to UUC (Phe), CGC (Arg), or UAC (Tyr) converted reporter gene expression to control by corresponding amino acids. Conversion of the CUC triplet to CUU (Leu) decreased expression and disrupted regulation. The results suggested that other tRNAs can substitute for tRNA(Leu) but that interactions in addition to pairing of the anticodon with the CUC triplet are important for proper control. PMID:8606198

  16. Characterization of lip expression in Salmonella typhimurium: analysis of lip::lac operon fusions.

    PubMed

    Smith, R L; Pelley, J W; Jeter, R M

    1991-10-01

    Strains of Salmonella typhimurium which have an auxotrophic requirement for lipoic acid were isolated by mutagenesis with the transposable element Mu dJ. The chromosomal location of these insertion mutations was determined to be at 14 map units by bacteriophage P22-mediated cotransduction. The lip gene is transcribed in the clockwise direction relative to the S. typhimurium genetic map. Strains with lip::lac operon fusions were used to characterize the transcriptional activity of the lip promoter. Transcription of the lip gene is not regulated by catabolite repression or lipoic acid concentration. The data indicate that the lip gene product is expressed constitutively at a low level. PMID:1663151

  17. The Mercury Resistance Operon: From an Origin in a Geothermal Environment to an Efficient Detoxification Machine

    PubMed Central

    Boyd, Eric S.; Barkay, Tamar

    2012-01-01

    Mercuric mercury (Hg[II]) is a highly toxic and mobile element that is likely to have had a pronounced and adverse effect on biology since Earth’s oxygenation ∼2.4 billion years ago due to its high affinity for protein sulfhydryl groups, which upon binding destabilize protein structure and decrease enzyme activity, resulting in a decreased organismal fitness. The central enzyme in the microbial mercury detoxification system is the mercuric reductase (MerA) protein, which catalyzes the reduction of Hg(II) to volatile Hg(0). In addition to MerA, mer operons encode for proteins involved in regulation, Hg binding, and organomercury degradation. Mer-mediated approaches have had broad applications in the bioremediation of mercury-contaminated environments and industrial waste streams. Here, we examine the composition of 272 individual mer operons and quantitatively map the distribution of mer-encoded functions on both taxonomic SSU rRNA gene and MerA phylogenies. The results indicate an origin and early evolution of MerA among thermophilic bacteria and an overall increase in the complexity of mer operons through evolutionary time, suggesting continual gene recruitment and evolution leading to an improved efficiency and functional potential of the Mer detoxification system. Consistent with a positive relationship between the evolutionary history and topology of MerA and SSU rRNA gene phylogenies (Mantel R = 0.81, p < 0.01), the distribution of the majority of mer functions, when mapped on these phylograms, indicates an overall tendency to inherit mer-encoded functions through vertical descent. However, individual mer functions display evidence of a variable degree of vertical inheritance, with several genes exhibiting strong evidence for acquisition via lateral gene transfer and/or gene loss. Collectively, these data suggest that (i) mer has evolved from a simple system in geothermal environments to a widely distributed and more complex and efficient

  18. Aromatic acid metabolites of Escherichia coli K-12 can induce the marRAB operon.

    PubMed

    Chubiz, Lon M; Rao, Christopher V

    2010-09-01

    MarR is a key regulator of the marRAB operon involved in antibiotic resistance and solvent stress tolerance in Escherichia coli. We show that two metabolic intermediates, 2,3-dihydroxybenzoate and anthranilate, involved in enterobactin and tryptophan biosynthesis, respectively, can activate marRAB transcription. We also found that a third intermediate involved in ubiquinone biosynthesis, 4-hydroxybenzoate, activates marRAB transcription in the absence of TolC. Of the three, however, only 2,3-dihydroxybenzoate directly binds MarR and affects its activity. PMID:20639340

  19. The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression.

    PubMed

    Tang, Shao-Jun

    2016-01-01

    In eukaryotic genomes, it is essential to coordinate the activity of genes that function together to fulfill the same biological processes. Genomic organization likely plays a key role in coordinating transcription of different genes. However, little is known about how co-regulated genes are organized in the cell nucleus and how the chromosomal organization facilitates the co-regulation of different genes. I propose that eukaryotic genomes are organized into repeat assembly (RA)-based structural domains ("R-operons") in the nuclear space. R-operons result from the interaction of homologous DNA repeats. In an R-operon, genes in different loci of the linear genome are brought into spatial vicinity and co-regulated by the same pool of transcription factors. This type of large-scale chromosomal organization may provide a mechanism for functional compartmentation of chromosomes to facilitate the transcriptional coordination of gene expression. PMID:27110825

  20. Escherichia coli Lrp (Leucine-Responsive Regulatory Protein) Does Not Directly Regulate Expression of the leu Operon Promoter

    PubMed Central

    Landgraf, Jeffrey R.; Boxer, Jonathan A.; Calvo, Joseph M.

    1999-01-01

    Studies by R. Lin et al. (J. Bacteriol. 174:1948–1955, 1992) suggested that the Escherichia coli leu operon might be a member of the Lrp regulon. Their results were obtained with a leucine auxotroph; in leucine prototrophs grown in a medium lacking leucine, there was little difference in leu operon expression between lrp+ and lrp strains. Furthermore, when leuP-lacZ transcriptional fusions that lacked the leu attenuator were used, expression from the leu promoter varied less than twofold between lrp+ and lrp strains, irrespective of whether or not excess leucine was added to the medium. The simplest explanation of the observations of Lin et al. is that the known elevated leucine transport capacity of lrp strains (S. A. Haney et al., J. Bacteriol. 174:108–115, 1992) leads to very high intracellular levels of leucine for strains grown with leucine, resulting in the superattenuation of leu operon expression. PMID:10515950

  1. Rv2031c of Mycobacterium tuberculosis: a master regulator of Rv2028–Rv2031 (HspX) operon

    PubMed Central

    Mushtaq, Khurram; Sheikh, Javaid A.; Amir, Mohammed; Khan, Nargis; Singh, Balvinder; Agrewala, Javed N.

    2015-01-01

    Genes belonging to the same operon are transcribed as a single mRNA molecule in all prokaryotes. The genes of the same operon are presumed to be involved in similar metabolic and physiological processes. Hence, computational analysis of constituent proteins could provide important clues to the functional relationships within the operonic genes. This tends to be more fruitful in the case of Mycobacterium tuberculosis (Mtb), considering the number of hypothetical genes with unknown functions and interacting partners. Dramatic advances in the past decade have increased our knowledge of the mechanisms that tubercle bacilli employ to survive within the host. But the phenomenon of Mtb latency continues to baffle all. Rv2031c belonging to dormancy regulon of Mtb is predominantly expressed during latency, with myriad immunological roles. Thus we attempted to analyze the operon comprising Rv2031c protein to gain insights into its role during latency. In the current study, we have carried out computational analysis of proteins encoded by genes known to be a part of this operon. Our study includes phylogenetic analysis, modeling of protein 3D structures, and protein interaction network analysis. We describe the mechanistic role in the establishment of latency and regulation of DevS–DevR component system. Additionally, we have identified the probable role of these proteins in carbohydrate metabolism, erythromycin tolerance, and nucleotide synthesis. Hence, these proteins can modulate the metabolism of Mtb inside the host cells and can be important for its survival in latency. The functional characterization and interactome of this important operon can give insight into its role during latency along with the exploitation of constituent proteins as drug targets and vaccine candidates. PMID:25964780

  2. Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within gram-negative bacteria.

    PubMed

    Costa, Rodrigo; van Aarle, Ingrid M; Mendes, Rodrigo; van Elsas, Jan Dirk

    2009-01-01

    Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containing the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood. PMID:18793314

  3. Dynamics and bistability in a reduced model of the lac operon.

    PubMed

    Yildirim, Necmettin; Santillan, Moises; Horike, Daisuke; Mackey, Michael C

    2004-06-01

    It is known that the lac operon regulatory pathway is capable of showing bistable behavior. This is an important complex feature, arising from the nonlinearity of the involved mechanisms, which is essential to understand the dynamic behavior of this molecular regulatory system. To find which of the mechanisms involved in the regulation of the lac operon is the origin of bistability, we take a previously published model which accounts for the dynamics of mRNA, lactose, allolactose, permease and beta-galactosidase involvement and simplify it by ignoring permease dynamics (assuming a constant permease concentration). To test the behavior of the reduced model, three existing sets of data on beta-galactosidase levels as a function of time are simulated and we obtain a reasonable agreement between the data and the model predictions. The steady states of the reduced model were numerically and analytically analyzed and it was shown that it may indeed display bistability, depending on the extracellular lactose concentration and growth rate. PMID:15189056

  4. Dynamics and bistability in a reduced model of the lac operon

    NASA Astrophysics Data System (ADS)

    Yildirim, Necmettin; Santillán, Moisés; Horike, Daisuke; Mackey, Michael C.

    2004-06-01

    It is known that the lac operon regulatory pathway is capable of showing bistable behavior. This is an important complex feature, arising from the nonlinearity of the involved mechanisms, which is essential to understand the dynamic behavior of this molecular regulatory system. To find which of the mechanisms involved in the regulation of the lac operon is the origin of bistability, we take a previously published model which accounts for the dynamics of mRNA, lactose, allolactose, permease and β-galactosidase involvement and simplify it by ignoring permease dynamics (assuming a constant permease concentration). To test the behavior of the reduced model, three existing sets of data on β-galactosidase levels as a function of time are simulated and we obtain a reasonable agreement between the data and the model predictions. The steady states of the reduced model were numerically and analytically analyzed and it was shown that it may indeed display bistability, depending on the extracellular lactose concentration and growth rate.

  5. Relationship between the persistence of mer operon sequences in Escherichia coli and their resistance to mercury.

    PubMed

    Murtaza, Imtiyaz; Dutt, Amit; Ali, Arif

    2002-03-01

    Studies related to geographic distribution of E. coli carrying mer operon sequences were carried out on the Indian subcontinent. Out of the 80 E. coli isolates, collected from five geographically distinct regions of India, 68 were found to be resistant to one or the other heavy metal used in the study. Among these isolates, 36 were found to be resistant to the inorganic form (HgCl2) and only 5 to resist both the inorganic and organic forms of mercury. Colony hybridization studies revealed 35 isolates out of 68 to hybridize with the probe. Interestingly, some of the mercury-sensitive isolates (Hgs), especially from the Dal Lake, were found positive in hybridization studies. These findings, supported by mercury volatilization studies, indicate the presence of nonfunctional/vestigial mer sequences in the isolates collected from different environments. On the other hand, few of the mercury-resistant isolates (Hgr) from the Yamuna River did not show any sign of hybridization. Further, volatilization studies also indicated an alternate mode of resistance mechanism operating in them. The studies demonstrate that the mer operon sequences share very high homology among the E. coli isolates collected from different geographical locations, and this metal resistance may be a genetic character that arose from a common ancestral background. PMID:11821925

  6. Reduced leu operon expression in a miaA mutant of Salmonella typhimurium.

    PubMed Central

    Blum, P H

    1988-01-01

    Salmonella typhimurium miaA mutants lacking the tRNA base modification cis-2-methylthioribosylzeatin (ms2io6A) were examined and found to be sensitive to a variety of chemical oxidants and unable to grow aerobically at 42 degrees C in a defined medium. Leucine supplementation suppressed both of these phenotypes, suggesting that leucine synthesis was defective. Intracellular levels of leucine decreased 40-fold in mutant strains after a shift from 30 to 42 degrees C during growth, and expression of a leu-lacZ transcriptional fusion ceased. Steady-state levels of leu mRNA were also significantly reduced during growth at elevated temperatures. Failure of miaA mutant leu-lacZ expression to be fully derepressed during L-leucine limitation at 30 degrees C and suppression of the miaA mutation by a mutation in the S. typhimurium leu attenuator suggests that translational control of the transcription termination mechanism regulating leu expression is defective. Since the S. typhimurium miaA mutation was also suppressed by the Escherichia coli leu operon in trans, phenotypic differences between E. coli and S. typhimurium miaA mutants may result from a difference between their respective leu operons. Images PMID:3141379

  7. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  8. The mercury resistance (mer) operon in a marine gliding flavobacterium, Tenacibaculum discolor 9A5.

    PubMed

    Allen, Rachel C; Tu, Yen-Kuei; Nevarez, Michael J; Bobbs, Alexander S; Friesen, Joseph W; Lorsch, Jon R; McCauley, John A; Voet, Judith G; Hamlett, Nancy V

    2013-01-01

    Genes conferring mercury resistance have been investigated in a variety of bacteria and archaea but not in bacteria of the phylum Bacteroidetes, despite their importance in many environments. We found, however, that a marine gliding Bacteroidetes species, Tenacibaculum discolor, was the predominant mercury-resistant bacterial taxon cultured from a salt marsh fertilized with mercury-contaminated sewage sludge. Here we report characterization of the mercuric reductase and the narrow-spectrum mercury resistance (mer) operon from one of these strains - T. discolor 9A5. This mer operon, which confers mercury resistance when cloned into Flavobacterium johnsoniae, encodes a novel mercury-responsive ArsR/SmtB family transcriptional regulator that appears to have evolved independently from other mercury-responsive regulators, a novel putative transport protein consisting of a fusion between the integral membrane Hg(II) transporter MerT and the periplasmic Hg(II)-binding protein MerP, an additional MerP protein, and a mercuric reductase that is phylogenetically distinct from other known mercuric reductases. PMID:22816663

  9. BosR Functions as a Repressor of the ospAB Operon in Borrelia burgdorferi

    PubMed Central

    Shi, Yanlin; Dadhwal, Poonam; Li, Xin; Liang, Fang Ting

    2014-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, must abundantly produce outer surface lipoprotein A (OspA) in the tick vector but downregulate OspA in mammals in order to evade the immune system and maintain its natural enzootic cycle. Here, we show that BosR binds two regulatory elements of the ospAB operon and that increasing BosR expression leads to downregulation of OspA. Both regulatory sequences, cisI and cisII, showed strong BosR-binding and cisII bound much tighter than cisI. A promoterless bosR gene fused with an inducible promoter was introduced into an rpoS mutant and a wild-type strain to assess RpoS-independent and -dependent downregulation of OspA by BosR. With the induction of BosR expression, OspA expression was reduced more significantly in the RpoS-deficient than wild-type background, but not completely repressed. In the presence of constitutive expression of OspC, DbpA and DbpB, increasing BosR production resulted in complete repression of OspA in the RpoS mutant. Taken together, the study clearly demonstrated BosR serves as a repressor that binds both regulatory elements of the ospAB operon and shuts off expression. PMID:25271631

  10. Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease.

    PubMed

    Folkesson, A; Advani, A; Sukupolvi, S; Pfeifer, J D; Normark, S; Löfdahl, S

    1999-08-01

    On centisome 7, Salmonella spp. contain a large region not present in the corresponding region of Escherichia coli. This region is flanked by sequences with significant homology to the E. coli tRNA gene aspV and the hypothetical E. coli open reading frame yafV. The locus consists of a mosaic of differentially acquired inserts forming a dynamic cs7 region of horizontally transferred inserts. Salmonella enterica subspecies I, responsible for most Salmonella infections in warm-blooded animals, carries a fimbrial gene cluster (saf) in this region as well as a regulatory gene (sinR). These genes are flanked by inverted repeats and are inserted in another laterally transferred region present in most members of Salmonella spp. encoding a putative invasin (pagN ). S. enterica subspecies I serovar Typhi, the Salmonella serovar that causes the most severe form of human salmonellosis, contains an additional insert of at least 8 kb in the sinR-pagN intergenic region harbouring a novel fimbrial operon (tcf ) similar to the coo operon encoding the CS1 fimbrial adhesin expressed by human-specific enterotoxigenic E. coli. It is suggested that the multiple insertions of fimbrial genes that have occurred in the cs7 region have contributed to phylogenetic diversity and host adaptation of Salmonella spp. PMID:10417651

  11. An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus

    PubMed Central

    Galhardo, Rodrigo S.; Rocha, Raquel P.; Marques, Marilis V.; Menck, Carlos F. M.

    2005-01-01

    DNA polymerases of the Y-family, such as Escherichia coli UmuC and DinB, are specialized enzymes induced by the SOS response, which bypass lesions allowing the continuation of DNA replication. umuDC orthologs are absent in Caulobacter crescentus and other bacteria, raising the question about the existence of SOS mutagenesis in these organisms. Here, we report that the C.crescentus dinB ortholog is not involved in damage-induced mutagenesis. However, an operon composed of two hypothetical genes and dnaE2, encoding a second copy of the catalytic subunit of Pol III, is damage inducible in a recA-dependent manner, and is responsible for most ultraviolet (UV) and mitomycin C-induced mutations in C.crescentus. The results demonstrate that the three genes are required for the error-prone processing of DNA lesions. The two hypothetical genes were named imuA and imuB, after inducible mutagenesis. ImuB is similar to proteins of the Y-family of polymerases, and possibly cooperates with DnaE2 in lesion bypass. The mutations arising as a consequence of the activity of the imuAB dnaE2 operon are rather unusual for UV irradiation, including G:C to C:G transversions. PMID:15886391

  12. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis.

    PubMed Central

    Grandoni, J A; Zahler, S A; Calvo, J M

    1992-01-01

    We used primer extension and mutational analysis to identify a promoter upstream of ilvB, the first gene in the ilv-leu operon of Bacillus subtilis. Between the promoter and ilvB, there is a 482-bp leader region which contains a sequence that resembles a factor-independent transcription terminator. In in vitro transcription experiments, 90% of transcripts initiated at the ilvB promoter ended at a site near this terminator. Primer extension analysis of RNA synthesized in vivo showed that the steady-state level of mRNA upstream of the terminator was twofold higher from cells limited for leucine than it was from cells grown with excess leucine. mRNA downstream of the terminator was 14-fold higher in cells limited for leucine than in cells grown with excess leucine. Measurement of mRNA degradation rates showed that the half-life of ilv-leu mRNA was the same when the cells were grown with or without leucine. These data demonstrate that the ilv-leu operon is regulated by transcription attenuation. Images PMID:1577690

  13. Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon.

    PubMed

    Kane, Aunica L; Al-Shayeb, Basem; Holec, Patrick V; Rajan, Srijay; Le Mieux, Nicholas E; Heinsch, Stephen C; Psarska, Sona; Aukema, Kelly G; Sarkar, Casim A; Nater, Edward A; Gralnick, Jeffrey A

    2016-01-01

    Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation. PMID:26761437

  14. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer

    SciTech Connect

    Lewis, M.; Chang, G.; Horton, N.C.

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor a product of the lacl gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-B-D-1thiogalactoside (IPTG) and the lac repressor complexed with a 21 base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and the repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quarternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites in the genomic DNA. 76 refs., 11 figs., 1 tab.

  15. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-09-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  16. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon

    SciTech Connect

    Zylstra, G.J.; McCombie, W.R.; Gibson, D.T.; Finette, B.A.

    1988-06-01

    Pseudomonas putida PpF1 degrades toluene through cis-toluene dihydrodiol to 3-methylcatechol. The latter compound is metabolized through the well-established meta pathway for catechol degradation. The first four steps in the pathway involve the sequential action of toluene dioxygenase (todABC1C2), cis-toluene, dihydrodiol dehydrogenase (todD), 3-methylcatechol 2,3-dioxygenase (todE), and 2-hydroxy-6-oxo-2,4-heptadienoate hydrolase (todF). The genes for these enzymes form part of the tod operon which is responsible for the degradation of toluene by this organism. A combination of transposon mutagenesis of the PpF1 chromosome, was well as the analysis of cloned chromosomal fragments, was used to determine the physical order of the genes in the tod operon. The genes were determined to be transcribed in the order todF, todC1, todC2, todB, todA, todD, todE.

  17. Structure of Intergenic Spacer IGS1 of Ribosomal Operon from Schistidium Mosses.

    PubMed

    Milyutina, I A; Ignatova, E A; Ignatov, M S; Goryunov, D V; Troitsky, A V

    2015-11-01

    The structure of the intergenic spacer 1 (IGS1) of the ribosomal operon from 12 species of Schistidium mosses was studied. In the IGS1 sequences of these species, three conserved regions and two areas of GC- and A-enriched repeats were identified. All of the studied mosses have a conserved pyrimidine-enriched motif at the 5'-end of IGS1. Species-specific nucleotide substitutions and insertions were found in the conserved areas. The repeated units contain single nucleotide substitutions that make unique the majority of repeated units. The positions of such repeats in IGS1 are species-specific, but their number can vary within the species and among operons of the same specimen. The comparison of IGS1 sequences from the Schistidium species and from representatives of ten other moss genera revealed the presence of common conserved motifs with similar localization. Presumably, these motifs are elements of termination of the pre-rRNA transcription and processing of rRNA. PMID:26615440

  18. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon.

    PubMed Central

    Poole, K; Krebes, K; McNally, C; Neshat, S

    1993-01-01

    An outer membrane protein of 50 kDa (OprK) was overproduced in a siderophore-deficient mutant of Pseudomonas aeruginosa capable of growth on iron-deficient minimal medium containing 2,2'-dipyridyl (0.5 mM). The expression of OprK in the mutant (strain K385) was associated with enhanced resistance to a number of antimicrobial agents, including ciprofloxacin, nalidixic acid, tetracycline, chloramphenicol, and streptonigrin. OprK was inducible in the parent strain by growth under severe iron limitation, as provided, for example, by the addition of dipyridyl or ZnSO4 to the growth medium. The gene encoding OprK (previously identified as ORFC) forms part of an operon composed of three genes (ORFABC) implicated in the secretion of the siderophore pyoverdine. Mutants defective in ORFA, ORFB, or ORFC exhibited enhanced susceptibility to tetracycline, chloramphenicol, ciprofloxacin, streptonigrin, and dipyridyl, consistent with a role for the ORFABC operon in multiple antibiotic resistance in P. aeruginosa. Sequence analysis of ORFC (oprK) revealed that its product is homologous to a class of outer membrane proteins involved in export. Similarly, the products of ORFA and ORFB exhibit homology to previously described bacterial export proteins located in the cytoplasmic membrane. These data suggest that ORFA-ORFB-oprK (ORFC)-dependent drug efflux contributes to multiple antibiotic resistance in P. aeruginosa. We propose, therefore, the designation mexAB (multiple efflux) for ORFAB. Images PMID:8226684

  19. Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon

    PubMed Central

    Kane, Aunica L.; Al-Shayeb, Basem; Holec, Patrick V.; Rajan, Srijay; Le Mieux, Nicholas E.; Heinsch, Stephen C.; Psarska, Sona; Aukema, Kelly G.; Sarkar, Casim A.; Nater, Edward A.; Gralnick, Jeffrey A.

    2016-01-01

    Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation. PMID:26761437

  20. Cytochrome bd Biosynthesis in Bacillus subtilis: Characterization of the cydABCD Operon

    PubMed Central

    Winstedt, Lena; Yoshida, Ken-Ichi; Fujita, Yasutaro; von Wachenfeldt, Claes

    1998-01-01

    Under aerobic conditions Bacillus subtilis utilizes a branched electron transport chain comprising various cytochromes and terminal oxidases. At present there is evidence for three types of terminal oxidases in B. subtilis: a caa3-, an aa3-, and a bd-type oxidase. We report here the cloning of the structural genes (cydA and cydB) encoding the cytochrome bd complex. Downstream of the structural genes, cydC and cydD are located. These genes encode proteins showing similarity to bacterial ATP-binding cassette (ABC)-type transporters. Analysis of isolated cell membranes showed that inactivation of cydA or deletion of cydABCD resulted in the loss of spectral features associated with cytochrome bd. Gene disruption experiments and complementation analysis showed that the cydC and cydD gene products are required for the expression of a functional cytochrome bd complex. Disruption of the cyd genes had no apparent effect on the growth of cells in broth or defined media. The expression of the cydABCD operon was investigated by Northern blot analysis and by transcriptional and translational cyd-lacZ fusions. Northern blot analysis confirmed that cydABCD is transcribed as a polycistronic message. The operon was found to be expressed maximally under conditions of low oxygen tension. PMID:9852001

  1. Identification of the Operon for the Sorbitol (Glucitol) Phosphoenolpyruvate:Sugar Phosphotransferase System in Streptococcus mutans

    PubMed Central

    Boyd, David A.; Thevenot, Tracy; Gumbmann, Markus; Honeyman, Allen L.; Hamilton, Ian R.

    2000-01-01

    Transposon mutagenesis and marker rescue were used to isolate and identify an 8.5-kb contiguous region containing six open reading frames constituting the operon for the sorbitol P-enolpyruvate phosphotransferase transport system (PTS) of Streptococcus mutans LT11. The first gene, srlD, codes for sorbitol-6-phosphate dehydrogenase, followed downstream by srlR, coding for a transcriptional regulator; srlM, coding for a putative activator; and the srlA, srlE, and srlB genes, coding for the EIIC, EIIBC, and EIIA components of the sorbitol PTS, respectively. Among all sorbitol PTS operons characterized to date, the srlD gene is found after the genes coding for the EII components; thus, the location of the gene in S. mutans is unique. The SrlR protein is similar to several transcriptional regulators found in Bacillus spp. that contain PTS regulator domains (J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-Verstraete, Mol. Microbiol. 28:865–874, 1998), and its gene overlaps the srlM gene by 1 bp. The arrangement of these two regulatory genes is unique, having not been reported for other bacteria. PMID:10639465

  2. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase.

    PubMed Central

    Llanos, R M; Harris, C J; Hillier, A J; Davidson, B E

    1993-01-01

    The discovery of a novel multicistronic operon that encodes phosphofructokinase, pyruvate kinase, and lactate dehydrogenase in the lactic acid bacterium Lactococcus lactis is reported. The three genes in the operon, designated pfk, pyk, and ldh, contain 340, 502, and 325 codons, respectively. The intergenic distances are 87 bp between pfk and pyk and 117 bp between pyk and ldh. Plasmids containing pfk and pyk conferred phosphofructokinase and pyruvate kinase activity, respectively, on their host. The identity of ldh was established previously by the same approach (R. M. Llanos, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 174:6956-6964, 1992). Each of the genes is preceded by a potential ribosome binding site. The operon is expressed in a 4.1-kb transcript. The 5' end of the transcript was determined to be a G nucleotide positioned 81 bp upstream from the pfk start codon. The pattern of codon usage within the operon is highly biased, with 11 unused amino acid codons. This degree of bias suggests that the operon is highly expressed. The three proteins encoded on the operon are key enzymes in the Embden-Meyerhoff pathway, the central pathway of energy production and lactic acid synthesis in L. lactis. For this reason, we have called the operon the las (lactic acid synthesis) operon. Images PMID:8478320

  3. Cross-Regulation between the phz1 and phz2 Operons Maintain a Balanced Level of Phenazine Biosynthesis in Pseudomonas aeruginosa PAO1.

    PubMed

    Cui, Qinna; Lv, Huinan; Qi, Zhuangzhuang; Jiang, Bei; Xiao, Bo; Liu, Linde; Ge, Yihe; Hu, Xiaomei

    2016-01-01

    Gene duplication often provides selective advantages for the survival of microorganisms in adapting to varying environmental conditions. P. aeruginosa PAO1 possesses two seven-gene operons [phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2)] that are involved in the biosynthesis of phenazine-1-carboxylic acid and its derivatives. Although the two operons are highly homologous and their functions are well known, it is unclear how the two phz operons coordinate their expressions to maintain the phenazine biosynthesis. By constructing single and double deletion mutants of the two phz operons, we found that the phz1-deletion mutant produced the same or less amount of phenazine-1-carboxylic acid and pyocyanin in GA medium than the phz2-knockout mutant while the phz1-phz2 double knockout mutant did not produce any phenazines. By generating phzA1 and phzA2 translational and transcriptional fusions with a truncated lacZ reporter, we found that the expression of the phz1 operon increased significantly at the post-transcriptional level and did not alter at the transcriptional level in the absence of the phz2 operon. Surprisingly, the expression the phz2 operon increased significantly at the post-transcriptional level and only moderately at the transcriptional level in the absence of the phz1 operon. Our findings suggested that a complex cross-regulation existed between the phz1 and phz2 operons. By mediating the upregulation of one phz operon expression while the other was deleted, this crosstalk would maintain the homeostatic balance of phenazine biosynthesis in P. aeruginosa PAO1. PMID:26735915

  4. Cross-Regulation between the phz1 and phz2 Operons Maintain a Balanced Level of Phenazine Biosynthesis in Pseudomonas aeruginosa PAO1

    PubMed Central

    Jiang, Bei; Xiao, Bo; Liu, Linde; Ge, Yihe; Hu, Xiaomei

    2016-01-01

    Gene duplication often provides selective advantages for the survival of microorganisms in adapting to varying environmental conditions. P. aeruginosa PAO1 possesses two seven-gene operons [phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2)] that are involved in the biosynthesis of phenazine-1-carboxylic acid and its derivatives. Although the two operons are highly homologous and their functions are well known, it is unclear how the two phz operons coordinate their expressions to maintain the phenazine biosynthesis. By constructing single and double deletion mutants of the two phz operons, we found that the phz1-deletion mutant produced the same or less amount of phenazine-1-carboxylic acid and pyocyanin in GA medium than the phz2-knockout mutant while the phz1-phz2 double knockout mutant did not produce any phenazines. By generating phzA1 and phzA2 translational and transcriptional fusions with a truncated lacZ reporter, we found that the expression of the phz1 operon increased significantly at the post-transcriptional level and did not alter at the transcriptional level in the absence of the phz2 operon. Surprisingly, the expression the phz2 operon increased significantly at the post-transcriptional level and only moderately at the transcriptional level in the absence of the phz1 operon. Our findings suggested that a complex cross-regulation existed between the phz1 and phz2 operons. By mediating the upregulation of one phz operon expression while the other was deleted, this crosstalk would maintain the homeostatic balance of phenazine biosynthesis in P. aeruginosa PAO1. PMID:26735915

  5. Effect of DNA looping on the induction kinetics of the lac operon.

    PubMed

    Narang, Atul

    2007-08-21

    The induction of the lac operon follows cooperative kinetics. The first mechanistic model of these kinetics is the de facto standard in the modeling literature [Yagil, G., Yagil, E., 1971. On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11-17]. Yet, subsequent studies have shown that the model is based on incorrect assumptions. Specifically, the repressor is a tetramer with four (not two) inducer-binding sites, and the operon contains two auxiliary operators (in addition to the main operator). Furthermore, these structural features are crucial for the formation of DNA loops, the key determinants of lac repression and induction. Indeed, the repression is determined almost entirely (>95%) by the looped complexes [Oehler, S., Eismann, E.R., Krämer, H., Müller-Hill, B., 1990. The three operators of the lac operon cooperate in repression. EMBO J. 9(4), 973-979], and the pronounced cooperativity of the induction curve hinges upon the existence of the looped complexes [Oehler, S., Alberti, S., Müller-Hill, B., 2006. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res. 34(2), 606-612]. Here, we formulate a model of lac induction taking due account of the tetrameric structure of the repressor and the existence of looped complexes. We show that: (1) The kinetics are significantly more cooperative than those predicted by the Yagil and Yagil model. The cooperativity is higher because the formation of looped complexes is easily abolished by repressor-inducer binding. (2) The model provides good fits to the repression data for cells containing wild-type tetrameric or mutant dimeric repressor, as well as the induction curves for 6 different strains of Escherichia coli. It also implies that the ratios of certain looped and non-looped complexes are independent of inducer and repressor levels, a conclusion that can be rigorously tested by gel electrophoresis. (3

  6. RbsR Activates Capsule but Represses the rbsUDK Operon in Staphylococcus aureus

    PubMed Central

    Lei, Mei G.

    2015-01-01

    ABSTRACT Staphylococcus aureus capsule is an important virulence factor that is regulated by a large number of regulators. Capsule genes are expressed from a major promoter upstream of the cap operon. A 10-bp inverted repeat (IR) located 13 bp upstream of the −35 region of the promoter was previously shown to affect capsule gene transcription. However, little is known about transcriptional activation of the cap promoter. To search for potential proteins which directly interact with the cap promoter region (Pcap), we directly analyzed the proteins interacting with the Pcap DNA fragment from shifted gel bands identified by electrophoretic mobility shift assay. One of these regulators, RbsR, was further characterized and found to positively regulate cap gene expression by specifically binding to the cap promoter region. Footprinting analyses showed that RbsR protected a DNA region encompassing the 10-bp IR. Our results further showed that rbsR was directly controlled by SigB and that RbsR was a repressor of the rbsUDK operon, involved in ribose uptake and phosphorylation. The repression of rbsUDK by RbsR could be derepressed by d-ribose. However, d-ribose did not affect RbsR activation of capsule. IMPORTANCE Staphylococcus aureus is an important human pathogen which produces a large number of virulence factors. We have been using capsule as a model virulence factor to study virulence regulation. Although many capsule regulators have been identified, the mechanism of regulation of most of these regulators is unknown. We show here that RbsR activates capsule by direct promoter binding and that SigB is required for the expression of rbsR. These results define a new pathway wherein SigB activates capsule through RbsR. Our results further demonstrate that RbsR inhibits the rbs operon involved in ribose utilization, thereby providing an example of coregulation of metabolism and virulence in S. aureus. Thus, this study further advances our understanding of staphylococcal

  7. Genes aroA and serC of Salmonella typhimurium constitute an operon.

    PubMed Central

    Hoiseth, S K; Stocker, B A

    1985-01-01

    Genetic analysis of aroA554::Tn10 derivatives of two mouse-virulent Salmonella typhimurium strains, "FIRN" and "WRAY," and of a nonreverting derivative of each constructed for use as a live vaccine, showed the site of the insertion among mapped aroA point mutants. The WRAY live-vaccine strain gave no aro+ recombinants in crosses with aroA point mutations to one side of the insertion, indicating a deletion from Tn10 through the sites of these point mutations. The FIRN live-vaccine strain gave wild-type recombinants with all tested point mutants; it probably has a deletion or inversion extending from Tn10 into aroA but not as far as the nearest point mutation. Some tetracycline-sensitive mutants of aroA554::Tn10 strains required serine and pyridoxine, indicating loss of serC function, and some that were found to be SerC- did not produce gas from glucose, indicating a loss of pfl function. These results show the gene order pfl-serC-aroA, as in Escherichia coli. Ampicillin enrichment applied to pools of tetracycline-sensitive mutants of strains with Tn10 insertions near aroA (i.e., zbj::Tn10 strains) yielded Aro- SerC- Pfl-, Aro- SerC+ Pfl+, and Aro- SerC- Pfl+ mutants but none which were Aro+ SerC-. All of the mutants are explicable by deletions or inversions extending clockwise from zbj::Tn10 into or through an operon comprising serC (promoter-proximal) and aroA. Such an operon was also shown by the identification of two Tn10 insertions causing phenotype Aro- SerC-, each able to revert to Aro+ SerC+ by precise excision. serC corresponds to the open reading frame promoter-proximal to aroA that was identified elsewhere by base sequencing of a cloned aroA segment of S. typhimurium (Comai et al., Science 221:370-371, 1983). Both serine and chorismate are precursors of enterochelin; this may be why serC and aroA are in a single operon. PMID:2989248

  8. Sequestering and characterization of sequence of a ribosomal RNA operon (rrn) from “Candiatus Liberibacter asiaticus”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus Huanglongbing (HLB, yellow shoot disease) is a highly destructive disease in citrus production worldwide. The disease is associated with the infection of “Candidatus Liberibacter asiaticus”. Analyses of rrn operon sequence are important in “Ca. L. asiaticus” characterization. Thus far, only s...

  9. Transformation and characterization of an arsenic gene operon from urease-positive thermophilic Campylobacter (UPTC) in Escherichia coli.

    PubMed

    Matsuda, M; Kuribayashi, T; Yamamoto, S; Millar, B C; Moore, J E

    2016-01-01

    An arsenate susceptibility test was performed with transformed and cultured Escherichia coli DH5α cells, which carried recombinant DNA of full-length arsenic (ars) operon, namely a putative membrane permease, ArsP; a transcriptional repressor, ArsR; an arsenate reductase, ArsC; and an arsenical-resistance membrane transporter, Acr3, from the Japanese urease-positive thermophilic Campylobacter lari (UPTC) CF89-12. The E. coli DH5α transformant showed reduced susceptibility to arsenate (~1536 μg/mL), compared to the control. Thus, these ars four-genes from the UPTC CF89-12 strain cells could confer a reduced susceptibility to arsenate in the transformed and E. coli DH5α cells. E. coli transformants with truncated ars operons, acr3 (acr3) and arsC-acr3 (∆arsC-acr3), of the ars operon, showed an MIC value of 384 μg/mL (~384 μg/mL), similar to the E. coli cells which carried the pGEM-T vector (control). Reverse transcription PCR confirmed in vivo transcription of recombinant full-length ars operon and deletion variants (∆acr3 and ∆arsC-acr3) in the transformed E. coli cells. PMID:26122364

  10. Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude.

    PubMed

    Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús

    2012-10-01

    In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. PMID:22713856

  11. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes.

    PubMed

    Macaluso, A; Best, E A; Bender, R A

    1990-12-01

    A positive, genetic selection against the activity of the nitrogen regulatory (NTR) system was used to isolate insertion mutations affecting nitrogen regulation in Klebsiella aerogenes. Two classes of mutation were obtained: those affecting the NTR system itself and leading to the loss of almost all nitrogen regulation, and those affecting the nac locus and leading to a loss of nitrogen regulation of a family of nitrogen-regulated enzymes. The set of these nac-dependent enzymes included histidase, glutamate dehydrogenase, glutamate synthase, proline oxidase, and urease. The enzymes shown to be nac independent included glutamine synthetase, asparaginase, tryptophan permease, nitrate reductase, the product of the nifLA operon, and perhaps nitrite reductase. The expression of the nac gene was itself highly nitrogen regulated, and this regulation was mediated by the NTR system. The loss of nitrogen regulation was found in each of the four insertion mutants studied, showing that loss of nitrogen regulation resulted from the absence of nac function rather than from an altered form of the nac gene product. Thus we propose two classes of nitrogen-regulated operons: in class I, the NTR system directly activates expression of the operon; in class II, the NTR system activates nac expression and the product(s) of the nac locus activates expression of the operon. PMID:1979323

  12. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon.

    PubMed

    Kuritz, T; Bocanera, L V; Rivera, N S

    1997-05-01

    Nitrate is essential for lindane dechlorination by the cyanobacteria Anabaena sp. strain PCC7120 and Nostoc ellipsosporum, as it is for dechlorination of other organic compounds by heterotrophic microorganisms. Based on analyses of mutants and effects of environmental factors, we conclude that lindane dechlorination by Anabaena sp. requires a functional nir operon that encodes the enzymes for nitrate utilization. PMID:9150239

  13. Functional Conservation of the Capacity for ent-Kaurene Biosynthesis and an Associated Operon in Certain Rhizobia

    PubMed Central

    Hershey, David M.; Lu, Xuan; Zi, Jiachen

    2014-01-01

    Bacterial interactions with plants are accompanied by complex signal exchange processes. Previously, the nitrogen-fixing symbiotic (rhizo)bacterium Bradyrhizobium japonicum was found to carry adjacent genes encoding two sequentially acting diterpene cyclases that together transform geranylgeranyl diphosphate to ent-kaurene, the olefin precursor to the gibberellin plant hormones. Species from the three other major genera of rhizobia were found to have homologous terpene synthase genes. Cloning and functional characterization of a representative set of these enzymes confirmed the capacity of each genus to produce ent-kaurene. Moreover, comparison of their genomic context revealed that these diterpene synthases are found in a conserved operon which includes an adjacent isoprenyl diphosphate synthase, shown here to produce the geranylgeranyl diphosphate precursor, providing a critical link to central metabolism. In addition, the rest of the operon consists of enzymatic genes that presumably lead to a more elaborated diterpenoid, although the production of gibberellins was not observed. Nevertheless, it has previously been shown that the operon is selectively expressed during nodulation, and the scattered distribution of the operon via independent horizontal gene transfer within the symbiotic plasmid or genomic island shown here suggests that such diterpenoid production may modulate the interaction of these particular symbionts with their host plants. PMID:24142247

  14. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    PubMed

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. PMID:25704162

  15. Regulation of Internal Promoters in a Zinc-Responsive Operon Is Influenced by Transcription from Upstream Promoters

    PubMed Central

    Napolitano, Mauro; Rubio, Miguel Ángel; Camargo, Sergio

    2013-01-01

    In the cyanobacterium Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120), a zinc-responsive operon (all4725-all4721) has been described, which contains 4 distinct promoters. The two most upstream ones bind Zur with high affinity, whereas the other two do not or do so with a very low affinity. In this paper, a detailed characterization of the four promoters is presented, showing that all four were induced by metal depletion, and they were constitutively derepressed in a zur mutant, despite the two downstream promoters not being direct targets for this regulator. Crucially, induction by metal depletion of the two downstream promoters was abrogated when transcription initiated at the upstream promoters was interrupted by a polar insertion midway in the operon. In contrast, insertion of a nitrogen-responsive promoter at a roughly similar position provoked the two downstream promoters to adopt a regulatory pattern mimicking that of the inserted promoter. Thus, regulation of the two downstream promoters is apparently influenced by transcription from promoters upstream. Evidence is presented indicating that the activity of the two downstream promoters is kept basal in Anabaena by repression. A regulatory model compatible with these results is proposed, where promoters controlled by repression in bacterial operons may be subjected to a hierarchical regulation depending on their position in the operon. According to this model, internal promoters may respond to stimuli governing the activity of promoters upstream by an indirect regulation and to specific stimuli by a direct regulation. PMID:23316045

  16. A Quantitative bgl Operon Model for E. coli Requires BglF Conformational Change for Sugar Transport

    NASA Astrophysics Data System (ADS)

    Chopra, Paras; Bender, Andreas

    The bgl operon is responsible for the metabolism of β-glucoside sugars such as salicin or arbutin in E. coli. Its regulatory system involves both positive and negative feedback mechanisms and it can be assumed to be more complex than that of the more closely studied lac and trp operons. We have developed a quantitative model for the regulation of the bgl operon which is subject to in silico experiments investigating its behavior under different hypothetical conditions. Upon administration of 5mM salicin as an inducer our model shows 80-fold induction, which compares well with the 60-fold induction measured experimentally. Under practical conditions 5-10mM inducer are employed, which is in line with the minimum inducer concentration of 1mM required by our model. The necessity of BglF conformational change for sugar transport has been hypothesized previously, and in line with those hypotheses our model shows only minor induction if conformational change is not allowed. Overall, this first quantitative model for the bgl operon gives reasonable predictions that are close to experimental results (where measured). It will be further refined as values of the parameters are determined experimentally. The model was developed in Systems Biology Markup Language (SBML) and it is available from the authors and from the Biomodels repository [www.ebi.ac.uk/biomodels].

  17. Optimal performance of the tryptophan operon of E. coli: a stochastic, dynamical, mathematical-modeling approach.

    PubMed

    Salazar-Cavazos, Emanuel; Santillán, Moisés

    2014-02-01

    In this work, we develop a detailed, stochastic, dynamical model for the tryptophan operon of E. coli, and estimate all of the model parameters from reported experimental data. We further employ the model to study the system performance, considering the amount of biochemical noise in the trp level, the system rise time after a nutritional shift, and the amount of repressor molecules necessary to maintain an adequate level of repression, as indicators of the system performance regime. We demonstrate that the level of cooperativity between repressor molecules bound to the first two operators in the trp promoter affects all of the above enlisted performance characteristics. Moreover, the cooperativity level found in the wild-type bacterial strain optimizes a cost-benefit function involving low biochemical noise in the tryptophan level, short rise time after a nutritional shift, and low number of regulatory molecules. PMID:24307084

  18. Delineation of the regulatory region sequences of Agrobacterium tumefaciens virB operon.

    PubMed Central

    Das, A; Pazour, G J

    1989-01-01

    A virB-lacZ translational fusion was constructed to monitor expression of the Agrobacterium tumefaciens virB operon. Expression of the fusion gene was dependent on the presence of pTiA6 virA, virG, and a plant factor acetosyringone. Analysis of deletion mutants, constructed by exonuclease Bal31 digestion, showed that 68 residues upstream of the virB transcription initiation site was necessary for its expression. A TT----CC substitution at positions -62 and -61 led to a 7 fold reduction in virB expression. The virB upstream region contains a tetradecameric sequence, dPuT/ATDCAATGHAAPy (D = A, G or T; H = A, C or T), that is conserved in the non-transcribed regions of all vir genes. Alteration of the position of this sequence relative to the promoter region sequences had a drastic negative effect on virB expression. PMID:2748333

  19. Operon structure and cotranslational subunit association direct protein assembly in bacteria.

    PubMed

    Shieh, Yu-Wei; Minguez, Pablo; Bork, Peer; Auburger, Josef J; Guilbride, D Lys; Kramer, Günter; Bukau, Bernd

    2015-11-01

    Assembly of protein complexes is considered a posttranslational process involving random collision of subunits. We show that within the Escherichia coli cytosol, bacterial luciferase subunits LuxA and LuxB assemble into complexes close to the site of subunit synthesis. Assembly efficiency decreases markedly if subunits are synthesized on separate messenger RNAs from genes integrated at distant chromosomal sites. Subunit assembly initiates cotranslationally on nascent LuxB in vivo. The ribosome-associated chaperone trigger factor delays the onset of cotranslational interactions until the LuxB dimer interface is fully exposed. Protein assembly is thus directly coupled to the translation process and involves spatially confined, actively chaperoned cotranslational subunit interactions. Bacterial gene organization into operons therefore reflects a fundamental cotranslational mechanism for spatial and temporal regulation that is vital to effective assembly of protein complexes. PMID:26405228

  20. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs

    PubMed Central

    Li, Yong; Altman, Sidney

    2003-01-01

    The rnpA mutation, A49, in Escherichia coli reduces the level of RNase P at 43°C because of a temperature-sensitive mutation in C5 protein, the protein subunit of the enzyme. Microarray analysis reveals the expression of several noncoding intergenic regions that are increased at 43°C compared with 30°C. These regions are substrates for RNase P, and they are cleaved less efficiently than, for example, tRNA precursors. An analysis of the tna, secG, rbs, and his operons, all of which contain RNase P cleavage sites, indicates that RNase P affects gene expression for regions downstream of its cleavage sites. PMID:14585931

  1. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons.

    PubMed

    Jaschke, Paul R; Saer, Rafael G; Noll, Stephan; Beatty, J Thomas

    2011-01-01

    The α-proteobacterium Rhodobacter sphaeroides is an exemplary model organism for the creation and study of novel protein expression systems, especially membrane protein complexes that harvest light energy to yield electrical energy. Advantages of this organism include a sequenced genome, tools for genetic engineering, a well-characterized metabolism, and a large membrane surface area when grown under hypoxic or anoxic conditions. This chapter provides a framework for the utilization of R. sphaeroides as a model organism for membrane protein expression, highlighting key advantages and shortcomings. Procedures covered in this chapter include the creation of chromosomal gene deletions, disruptions, and replacements, as well as the construction of a synthetic operon using a model promoter to induce expression of modified photosynthetic reaction center proteins for structural and functional analysis. PMID:21601102

  2. Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance.

    PubMed

    Ghosh, Semanti; Bagchi, Angshuman

    2015-12-01

    Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio

  3. The Use of Amino Sugars by Bacillus subtilis: Presence of a Unique Operon for the Catabolism of Glucosamine

    PubMed Central

    Gaugué, Isabelle; Oberto, Jacques; Putzer, Harald; Plumbridge, Jacqueline

    2013-01-01

    B. subtilis grows more rapidly using the amino sugar glucosamine as carbon source, than with N-acetylglucosamine. Genes for the transport and metabolism of N-acetylglucosamine (nagP and nagAB) are found in all the sequenced Bacilli (except Anoxybacillus flavithermus). In B. subtilis there is an additional operon (gamAP) encoding second copies of genes for the transport and catabolism of glucosamine. We have developed a method to make multiple deletion mutations in B. subtilis employing an excisable spectinomycin resistance cassette. Using this method we have analysed the contribution of the different genes of the nag and gam operons for their role in utilization of glucosamine and N-acetylglucosamine. Faster growth on glucosamine is due to the presence of the gamAP operon, which is strongly induced by glucosamine. Although the gamA and nagB genes encode isozymes of GlcN6P deaminase, catabolism of N-acetylglucosamine relies mostly upon the gamA gene product. The genes for use of N-acetylglucosamine, nagAB and nagP, are repressed by YvoA (NagR), a GntR family regulator, whose gene is part of the nagAB yvoA(nagR) operon. The gamAP operon is repressed by YbgA, another GntR family repressor, whose gene is expressed divergently from gamAP. The nagAB yvoA synton is found throughout the Bacilli and most firmicutes. On the other hand the ybgA-gamAP synton, which includes the ybgB gene for a small protein of unknown provenance, is only found in B. subtilis (and a few very close relatives). The origin of ybgBA-gamAP grouping is unknown but synteny analysis suggests lateral transfer from an unidentified donor. The presence of gamAP has enabled B. subtilis to efficiently use glucosamine as carbon source. PMID:23667565

  4. Identification of a positive transcription regulatory element within the coding region of the nifLA operon in Azotobacter vinelandii.

    PubMed

    Mitra, Ranjana; Das, Hirendra K; Dixit, Aparna

    2005-07-01

    Nitrogen fixation in Azotobacter vinelandii is regulated by the nifLA operon. NifA activates the transcription of nif genes, while NifL antagonizes the transcriptional activator NifA in response to fixed nitrogen and molecular oxygen levels. However, transcriptional regulation of the nifLA operon of A. vinelandii itself is not fully understood. Using the S1 nuclease assay, we mapped the transcription start site of the nifLA operon, showing it to be similar to the sigma54-dependent promoters. We also identified a positive cis-acting regulatory element (+134 to +790) of the nifLA operon within the coding region of the nifL gene of A. vinelandii. Deletion of this element results in complete loss of promoter activity. Several protein factors bind to this region, and the specific binding sites have been mapped by DNase I foot printing. Two of these sites, namely dR1 (+134 to +204) and dR2 (+745 to +765), are involved in regulating the nifLA promoter activity. The absence of NtrC-like binding sites in the upstream region of the nifLA operon in A. vinelandii makes the identification of these downstream elements a highly significant finding. The interaction of the promoter with the proteins binding to the dR2 region spanning +745 to +765 appears to be dependent on the face of the helix as introduction of 4 bases just before this region completely disrupts promoter activity. Thus, the positive regulatory element present within the BglII-BglII fragment may play, in part; an important role in nifLA regulation in A. vinelandii. PMID:16000781

  5. The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex.

    PubMed Central

    Rossi, M; Pollock, W B; Reij, M W; Keon, R G; Fu, R; Voordouw, G

    1993-01-01

    The nucleotide sequence of the hmc operon from Desulfovibrio vulgaris subsp. vulgaris Hildenborough indicated the presence of eight open reading frames, encoding proteins Orf1 to Orf6, Rrf1, and Rrf2. Orf1 is the periplasmic, high-molecular-weight cytochrome (Hmc) containing 16 c-type hemes and described before (W. B. R. Pollock, M. Loutfi, M. Bruschi, B. J. Rapp-Giles, J. D. Wall, and G. Voordouw, J. Bacteriol. 173:220-228, 1991). Orf2 is a transmembrane redox protein with four iron-sulfur clusters, as indicated by its similarity to DmsB from Escherichia coli. Orf3, Orf4, and Orf5 are all highly hydrophobic, integral membrane proteins with similarities to subunits of NADH dehydrogenase or cytochrome c reductase. Orf6 is a cytoplasmic redox protein containing two iron-sulfur clusters, as indicated by its similarity to the ferredoxin domain of [Fe] hydrogenase from Desulfovibrio species. Rrf1 belongs to the family of response regulator proteins, while the function of Rrf2 cannot be derived from the gene sequence. The expression of individual genes in E. coli with the T7 system confirmed the open reading frames for Orf2, Orf6, and Rrf1. Deletion of 0.4 kb upstream from orf1 abolished the expression of Hmc in D. desulfuricans G200, indicating this region to contain the hmc operon promoter. The expression of two truncated hmc genes in D. desulfuricans G200 resulted in stable periplasmic c-type cytochromes, confirming the domain structure of Hmc. We propose that Hmc and Orf2 to Orf6 form a transmembrane protein complex that allows electron flow from the periplasmic hydrogenases to the cytoplasmic enzymes that catalyze the reduction of sulfate. The domain structure of Hmc may be required to allow interaction with multiple hydrogenases. Images PMID:8335628

  6. Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae.

    PubMed Central

    Lim, C K; Cooksey, D A

    1993-01-01

    Copper-resistant and copper-sensitive strains of Pseudomonas syringae, as well as many other pseudomonads, contain chromosomal DNA homologous to the plasmid-borne copper resistance operon (copABCD). cop homologs were cloned from the chromosome of P. syringae pv. tomato PT12.2, which had an elevated level of resistance to copper compared with typical copper-sensitive strains of other P. syringae pathovars and showed an unusually high frequency of spontaneous mutation to high levels of copper resistance. Two chromosomal cop homolog regions were cloned. Homolog 1 hybridized with copA and copB, and homolog 2 hybridized with copA, copB, copC, and the copper-responsive regulatory genes copRS. Homolog 1 had no detectable function when transferred to a copper-sensitive strain of P. syringae. However, homolog 2 conferred the low level of copper resistance observed with PT12.2 and produced proteins related to CopA and CopC. In addition, homolog 2 conferred a high frequency of mutation to full copper resistance. In a spontaneously mutated derivative of the cloned homolog 2 (pCOPH2R) that conferred copper resistance, an increased level of CopA was observed. pCOPH2R also supported a higher level of transcriptional activity of the cop promoter that was fused to lacZ and provided in trans (pCOP38), suggesting that the spontaneous mutation was regulatory, probably involving the copRS homologs. Homolog 2 was similar but not identical to the plasmid-borne cop operon, and it did not complement site-specific mutations in cop genes. Images PMID:8331076

  7. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity.

    PubMed

    Schwalbach, M S; Tripp, H J; Steindler, L; Smith, D P; Giovannoni, S J

    2010-02-01

    Bacteria in the SAR11 clade are highly abundant in marine surface waters, but currently little is known about the carbon compounds that support these large heterotrophic populations. To better understand the carbon requirements of these organisms, we conducted a multiphasic exploration of carbohydrate utilization among SAR11 isolates from the Northeast Pacific Ocean and the Sargasso Sea. A comparison of three SAR11 genomes showed they all lacked a recognizable PTS system, the oxidative portion of the pentose phosphate shunt (zwf-, pgl-), genes for the Embden-Meyerhoff-Parnas (pfk-, pyk-) and Entner-Doudoroff (eda-) pathways of glycolysis. Strain HTCC7211, isolated from an ocean gyre, was missing other glycolysis genes as well. Growth assays, radioisotopes, metagenomics and microarrays were used to test the hypothesis that these isolates might be limited in their abilities to transport and oxidize exogenous carbohydrates. Galactose, fucose, rhamnose, arabinose, ribose and mannose could not serve as carbon sources for the isolates tested. However, differences in glucose utilization were detected between coastal and ocean gyre isolates, with the coastal isolates capable of transporting, incorporating and oxidizing glucose while the open ocean isolate could not. Subsequent microarray analysis of a coastal isolate suggested that an operon encoding a variant of the Entner-Doudoroff pathway is likely responsible for the observed differences in glucose utilization. Metagenomic analysis indicated this operon is more commonly found in coastal environments and is positively correlated with chlorophyll a concentrations. Our results indicated that glycolysis is a variable metabolic property of SAR11 metabolism and suggest that glycolytic SAR11 are more common in productive marine environments. PMID:19889000

  8. Transcriptional regulation mechanism of ter operon by OxyR in Yersinia pestis.

    PubMed

    Ni, Bin; Zhang, Yiquan; Huang, Xinxiang; Yang, Ruifu; Zhou, Dongsheng

    2014-07-01

    The aim of this work was to study the transcriptional regulation mechanism of ter operon by OxyR in Yersinia pestis. Total RNAs were extracted from the wild-type (WT) strain and the oxyR null mutant (ΔoxyR) strain. Primer extension assay was employed to detect the promoter activity (the amount of primer extension product) of terZ in WT and ΔoxyR. terZ promoter-proximal region was cloned into the pRW50 plasmid containing a promoterless lacZ gene. The recombinant LacZ reporter plasmid was transformed into WT and ΔoxyR, respectively, to measure the promoter activity (the β-galactosidase activity) of terZ in WT and ΔoxyR by using the β-galactosidase enzyme assay system. The entire promoter-proximal region of the terZ gene was amplified by PCR from Y. pestis strain 201, and the over-expressed His-OxyR was also purified under native conditions with nickel loaded HiTrap Chelating Sepharose columns (Amersham). Electrophoretic mobility shift assay was applied to analyze the DNA-binding activity of His-OxyR to terZ promoter region in vitro. Primer extension assay detected only one transcriptional start site located at 50 bp upstream of terZ, whose transcript was directly activated by OxyR in Y. pestis. The EMSA result shows that His-OxyR has the ability to bind to the upstream DNA region of terZ. The transcription of ter operon was found to be directly activated by OxyR in Y. pestis. PMID:24577613

  9. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus.

    PubMed

    Sapp, April M; Mogen, Austin B; Almand, Erin A; Rivera, Frances E; Shaw, Lindsey N; Richardson, Anthony R; Rice, Kelly C

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  10. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose. PMID:2834341

  11. Contribution of the nos-pdt Operon to Virulence Phenotypes in Methicillin-Sensitive Staphylococcus aureus

    PubMed Central

    Almand, Erin A.; Rivera, Frances E.; Shaw, Lindsey N.; Richardson, Anthony R.; Rice, Kelly C.

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  12. Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. [Bacteria

    SciTech Connect

    Ross, W.; Park, S.J.; Summers, A.O. )

    1989-07-01

    Transcription of the Tn21 mercury resistance operon (mer) is controlled by the toxic metal cation Hg(II). This control is mediated by the product of the merR gene, a 144-amino-acid protein which represses transcription of the structural genes (merTPCAD) in the absence of Hg(II) and activates transcription in the presence of Hg(II). We have used a mer-lac transcriptional fusion to obtain regulatory mutants in this metal-responsive system. Some mutants were defective in Hg(II)-induced activation while retaining repression function, others were defective in repression but not activation, and some had lost both functions. Mutations in three of the four cysteine residues of merR resulted in complete loss of Hg(II)-inducible activation but retention of the repressor function. Other lesions adjacent to or very near these cysteines exhibited severely reduced activation and also retained repressor function. There were two putative helix-turn-helix (HTH) domains in merR, and mutants in each had very different phenotypes. A partially dominant mutation in the more amino-terminal region of the two putative HTH regions resulted in loss of both activation and repression, consistent with a role for this region in DNA binding. Mutations in the more centrally located HTH region resulted only in loss of Hg(II)-induced activation. Lesions in the central and in the carboxy-terminal regions of merR exhibited both Hg(II)-independent and Hg(II)-dependent transcriptional activation. The sole cis-acting mutant obtained with this operon fusion strategy, a down-promoter mutation, lies in a highly conserved base in the -35 region of the merTPCAD promoter.

  13. The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene.

    PubMed

    Cerretti, D P; Dean, D; Davis, G R; Bedwell, D M; Nomura, M

    1983-05-11

    The genes encoding the 52 ribosomal proteins (r-proteins) of Escherichia coli are organized into approximately 19 operons scattered throughout the chromosome. One of these, the spc operon, contains the genes for ten ribosomal proteins: L14, L24, L5, S14, S8, L6, L18, S5, L30 and L15 (rp1N, rp1X, rp1E, rpsN, rpsH, rp1F, rp1R, rpsE, rpmD, and rp1O). We now report the entire 5.9 kb nucleotide sequence of the spc operon. DNA sequence analysis has confirmed the genetic organization and refined the amino acid sequence of the ten r-proteins in this operon. It has also revealed the presence of two open reading frames past the last known gene (L15) of the spc operon. One of these corresponds to a gene (pr1A or secY) which recently has been shown by others to be involved in protein export. In addition, S1 mapping experiments indicate that a significant proportion of transcription initiated from the spc operon continues not only into the two putative genes, but also without termination into the downstream alpha r-protein operon. PMID:6222285

  14. The napF and narG Nitrate Reductase Operons in Escherichia coli Are Differentially Expressed in Response to Submicromolar Concentrations of Nitrate but Not Nitrite

    PubMed Central

    Wang, Henian; Tseng, Ching-Ping; Gunsalus, Robert P.

    1999-01-01

    Escherichia coli synthesizes two biochemically distinct nitrate reductase enzymes, a membrane-bound enzyme encoded by the narGHJI operon and a periplasmic cytochrome c-linked nitrate reductase encoded by the napFDAGHBC operon. To address why the cell makes these two enzymes, continuous cell culture techniques were used to examine napF and narG gene expression in response to different concentrations of nitrate and/or nitrite. Expression of the napF-lacZ and narG-lacZ reporter fusions in strains grown at different steady-state levels of nitrate revealed that the two nitrate reductase operons are differentially expressed in a complementary pattern. The napF operon apparently encodes a “low-substrate-induced” reductase that is maximally expressed only at low levels of nitrate. Expression is suppressed under high-nitrate conditions. In contrast, the narGHJI operon is only weakly expressed at low nitrate levels but is maximally expressed when nitrate is elevated. The narGHJI operon is therefore a “high-substrate-induced” operon that somehow provides a second and distinct role in nitrate metabolism by the cell. Interestingly, nitrite, the end product of each enzyme, had only a minor effect on the expression of either operon. Finally, nitrate, but not nitrite, was essential for repression of napF gene expression. These studies reveal that nitrate rather than nitrite is the primary signal that controls the expression of these two nitrate reductase operons in a differential and complementary fashion. In light of these findings, prior models for the roles of nitrate and nitrite in control of narG and napF expression must be reconsidered. PMID:10464201

  15. Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons.

    PubMed Central

    Bartkus, J M; Tyler, B; Calvo, J M

    1991-01-01

    Four adjacent Leu codons within the leu leader RNA are critically important in transcription attenuation-mediated control of leu operon expression in Salmonella typhimurium and Escherichia coli (P. W. Carter, D. L. Weiss, H. L. Weith, and J. M. Calvo, J. Bacteriol. 162:943-949, 1985). The leader region from S. typhimurium was altered by site-directed mutagenesis to produce constructs having between one and seven adjacent Leu codons, all CUA. leu operon expression was measured in strains containing six of these constructs, each integrated into the chromosome in a single copy. Operon expression was sufficiently high that all strains grew in minimal medium unsupplemented by leucine. Expression of the operon was measured in strains cultured in such a way that their growth was limited by the intracellular concentration of either leucine or of leucyl-tRNA. In general, the leu operon for each construct responded similarly to the parent construct in terms of the degree of expression as a function of the degree of limitation. However, a strain containing (CUA)1 and, to a certain extent, a strain having (CUA)2 responded somewhat more sluggishly and strains containing (CUA)6 and (CUA)7 responded more sensitively to limitations than did the parent construct. In addition, DNA fragments containing the leu promoter and leader region were used as templates in in vitro transcription reactions employing purified RNA polymerase. With nucleoside triphosphate concentrations of 200 microM, RNA polymerase paused during transcription of the leu leader region at a site about 95 bp downstream from the site of transcription initiation. The halftimes of the pause were 1 min at 37 degrees C and 3 min at 22 degrees C. The pause was lengthened substantially when the GTP concentration was lowered to 20 micromoles. Our results are interpreted most easily in terms of an all-or-none model. Given two Leu control codons, the operon responds with nearly maximum output over a wide range of leucine

  16. The Na(+)-F(1)F(0)-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kda.

    PubMed

    Rahlfs, S; Aufurth, S; Müller, V

    1999-11-26

    Eight genes (atpI, atpB, atpE(1), atpE(2), atpE(3), atpF, atpH, and atpA) upstream of and contiguous with the previously described genes atpG, atpD, and atpC were cloned from chromosomal DNA of Acetobacterium woodii. Northern blot analysis revealed that the eleven atp genes are transcribed as a polycistronic message. The atp operon encodes the Na(+)-F(1)F(0)-ATPase of A. woodii, as evident from a comparison of the biochemically derived N termini of the subunits with the amino acid sequences deduced from the DNA sequences. The molecular analysis revealed that all of the F(1)F(0)-encoding genes from Escherichia coli have homologs in the Na(+)-F(1)F(0)-ATPase operon from A. woodii, despite the fact that only six subunits were found in previous preparations of the enzyme from A. woodii. These results unequivocally prove that the Na(+)-ATPase from A. woodii is an enzyme of the F(1)F(0) class. Most interestingly, the gene encoding the proteolipid underwent quadruplication. Two gene copies (atpE(2) and atpE(3)) encode identical 8-kDa proteolipids. Two additional gene copies were fused to form the atpE(1) gene. Heterologous expression experiments as well as immunolabeling studies with native membranes revealed that atpE(1) encodes a duplicated 18-kDa proteolipid. This is the first demonstration of multiplication and fusion of proteolipid-encoding genes in F(1)F(0)-ATPase operons. Furthermore, AtpE(1) is the first duplicated proteolipid ever found to be encoded by an F(1)F(0)-ATPase operon. PMID:10567365

  17. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose.

    PubMed

    Narang, Atul; Pilyugin, Sergei S

    2008-05-01

    The lac operon of Escherichia coli can exhibit bistability. Early studies showed that bistability occurs during growth on TMG/succinate and lactose+glucose, but not during growth on lactose. More recently, studies with lacGFP-transfected cells show bistability during growth on TMG/succinate, but not during growth on lactose and lactose+glucose. In the literature, these results are invariably attributed to variations in the destabilizing effect of the positive feedback generated by induction. Specifically, during growth on TMG/succinate, lac induction generates strong positive feedback because the permease stimulates the accumulation of intracellular TMG, which in turn, promotes the synthesis of even more permease. This positive feedback is attenuated during growth on lactose because hydrolysis of intracellular lactose by beta-galactosidase suppresses the stimulatory effect of the permease. It is attenuated even more during growth on lactose + glucose because glucose inhibits the uptake of lactose. But it is clear that the stabilizing effect of dilution also changes dramatically as a function of the medium composition. For instance, during growth on TMG/succinate, the dilution rate of lac permease is proportional to its activity, e, because the specific growth rate is independent of e (it is completely determined by the concentration of succinate). However, during growth on lactose, the dilution rate of the permease is proportional to e2 because the specific growth rate is proportional to the specific lactose uptake rate, which in turn, proportional to e. We show that: (a) This dependence on e2 creates such a strong stabilizing effect that bistability is virtually impossible during growth on lactose, even in the face of the intense positive feedback generated by induction. (b) This stabilizing effect is weakened during growth on lactose+glucose because the specific growth rate on glucose is independent of e, so that the dilution rate once again contains a term that

  18. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly.

    PubMed Central

    Gong, L; Lee, J K; Kaplan, S

    1994-01-01

    The Q gene of the facultative photoheterotroph Rhodobacter sphaeroides, localized immediately upstream of the oxygen- and light-regulated puf operon, encodes a 77-amino-acid polypeptide. The 5' and 3' ends of the 561-bp Q transcript were determined. To gain insight into the role of the Q gene product, a number of Q mutations were constructed by oligonucleotide-directed mutagenesis and subsequent substitution of the mutated form of the gene in single copy for the chromosomal copy via homologous recombination. The resulting mutants can grow photosynthetically, with the exception of QSTART, in which the initiation codon for the Q protein was altered. Spectral analysis of the intracytoplasmic membranes showed that one of the missense mutants (QdA) was deficient in the formation of detectable B875 light-harvesting complex (LHC), whereas deletion of the stem-loop structure (Qloop) failed to form B800-850 LHC when grown anaerobically either in the dark or under light intensity of 100 W/m2. Other missense mutants (QuA and QuB) contained either more B800-850 LHC or more B875 LHC, respectively, than the wild type. Although the levels of puf and puc transcripts isolated from QSTART grown anaerobically on succinate-dimethyl sulfoxide in the dark were comparable to wild-type levels, no B875 spectral complex was detected and there was a greater than 90% reduction in the level of the B800-850 pigment-protein complex. It has also been confirmed that the ultimate cellular levels of either the B875 or B800-850 spectral complexes can vary over wide limits without any change in the level(s) of complex specific transcripts. When the wild-type Q gene was reintroduced in trans into the Q mutations, QSTART was able to grow photosynthetically and both B800-850 and B875 spectral complexes were formed in either QdA or Qloop. Finally, we demonstrated that the level of each puf-specific mRNA behaves independently of one another as well as independently of the level(s) of Q gene-specific m

  19. Proteus mirabilis urease: operon fusion and linker insertion analysis of ure gene organization, regulation, and function.

    PubMed

    Island, M D; Mobley, H L

    1995-10-01

    Urease is an inducible virulence factor of uropathogenic Proteus mirabilis. Although eight contiguous genes necessary for urease activity have been cloned and sequenced, the transcriptional organization and regulation of specific genes within the Proteus gene cluster has not been investigated in detail. The first gene, ureR, is located 400 bp upstream and is oriented in the direction opposite the other seven genes, ureDABCEFG. The structural subunits of urease are encoded by ureABC. Previously, UreR was shown to contain a putative helix-turn-helix DNA-binding motif 30 residues upstream of a consensus sequence which is a signature for the AraC family of positive regulators; this polypeptide is homologous to other DNA-binding regulatory proteins. Nested deletions of ureR linked to either ureD-lacZ or ureA-lacZ operon fusions demonstrated that an intact ureR is required for urea-induced synthesis of LacZ from either ureA or ureD and identified a urea-regulated promoter in the ureR-ureD intergenic region. However, lacZ operon fusions to fragments encompassing putative promoter regions upstream of ureA and ureF demonstrated that no urea-regulated promoters occur upstream of these open reading frames; regions upstream of ureR, ureE, and ureG were not tested. These data suggest that UreR acts as a positive regulator in the presence of urea, activating transcription of urease structural and accessory genes via sequences upstream of ureD. To address the role of the nonstructural regulatory and accessory genes, we constructed deletion, cassette, and linker insertion mutations throughout the ure gene cluster and determined the effect of these mutations on production and regulation of urease activity in Escherichia coli. Mutations were obtained, with locations determine by DNA sequencing, in all genes except ureA and ureE. In each case, the mutation resulted in a urease-negative phenotype. PMID:7559355

  20. Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG.

    PubMed

    Díaz-Hernández, Orlando; Santillán, Moisés

    2010-01-01

    In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions. PMID:21423364

  1. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon.

    PubMed

    Wei, Wei; Liu, Xiangzhi; Sun, Peiqing; Wang, Xin; Zhu, Hong; Hong, Mei; Mao, Zong-Wan; Zhao, Jing

    2014-03-18

    A lead-specific binding protein, PbrR, and promoter pbr from the lead resistance operon, pbr, of Cupriavidus metallidurans CH34 was incorporated into E. coli in conjunction with an engineered downstream RFP (red fluorescence protein), which allowed for highly sensitive and selective whole-cell detection of lead ions. The subsequent display of PbrR on the E. coli cell surface permitted selective adsorption of lead ions from solution containing various heavy metal ions. The surface-engineered E. coli bacteria effectively protected Arabidopsis thaliana seed germination from the toxicity of lead ions at high concentrations. Engineering the E. coli bacteria harboring these lead-specific elements from the pbr operon may potentially be a valuable general strategy for biodetection and bioremediation of toxic heavy metal ions in the environment. PMID:24564581

  2. The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression

    PubMed Central

    Tang, Shao-Jun

    2016-01-01

    In eukaryotic genomes, it is essential to coordinate the activity of genes that function together to fulfill the same biological processes. Genomic organization likely plays a key role in coordinating transcription of different genes. However, little is known about how co-regulated genes are organized in the cell nucleus and how the chromosomal organization facilitates the co-regulation of different genes. I propose that eukaryotic genomes are organized into repeat assembly (RA)-based structural domains (“R-operons”) in the nuclear space. R-operons result from the interaction of homologous DNA repeats. In an R-operon, genes in different loci of the linear genome are brought into spatial vicinity and co-regulated by the same pool of transcription factors. This type of large-scale chromosomal organization may provide a mechanism for functional compartmentation of chromosomes to facilitate the transcriptional coordination of gene expression. PMID:27110825

  3. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications. PMID:25447786

  4. Examination of the internal promoter, PE, in the ilvGMEDA operon of E. coli K-12.

    PubMed Central

    Wek, R C; Hatfield, G W

    1986-01-01

    The ilvGMEDA operon of Escherichia coli K-12 contains an internal promoter, PE, in the distal portion of the ilvM gene immediately upstream from the ilvE gene. The location of this promoter was determined using S1 nuclease protection analyses of in vivo and in vitro transcripts. The transcriptional activity of the internal promoter was compared to the transcriptional activity of the operon-proximal promoter P1P2 using transcriptional fusion vectors and plasmid copy number determinations. These measurements showed that the P1P2 promoter is 52-fold stronger than the internal PE promoter. Estimates of the transcriptional role of the internal promoter on ilvE gene expression during growth conditions in excess and limiting branch chain amino acids is presented. Images PMID:2421252

  5. GSEL version 2, an online genome-wide query system of operon organization and regulatory sequence elements of Geobacter sulfurreducens.

    PubMed

    Qu, Yanhua; Brown, Peter; Barbe, Jose F; Puljic, Marko; Merino, Enrique; Adkins, Ronald M; Lovley, Derek R; Krushkal, Julia

    2009-10-01

    Geobacter sulfurreducens is a model organism within the delta-Proteobacterial family Geobacteraceae, members of which can participate in environmental bioremediation of metal and organic waste contaminants and in production of bioenergy. In this report, we describe a new, significantly expanded and updated, version 2 of the GSEL (Geobacter Sequence Elements) database ( http://geobacter.org/research/gsel2/ and http://geobacter.org/refs/gsel2/ ) and its accompanying online query system, which compiles information on operon organization and regulatory sequence elements in the genome of G. sulfurreducens. It incorporates a new online graphical browser, provides novel search capabilities, and includes updated operon predictions along with new information on predicted and experimentally validated genome regulatory sites. The GSEL database and online search system provides a unique and comprehensive tool cataloging information about gene regulation in G. sulfurreducens, aiding in investigation of mechanisms that regulate its ability to generate electric power, bioremediate environmental waste, and adapt to environmental changes. PMID:19792871

  6. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    PubMed

    Eastman, Alexander W; Yuan, Ze-Chun

    2014-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  7. Organization, transcription, and expression of the 5' region of the fla operon of Treponema phagedenis and Treponema pallidum.

    PubMed Central

    Limberger, R J; Slivienski, L L; El-Afandi, M C; Dantuono, L A

    1996-01-01

    A locus encoding polypeptides associated with flagellar structure and function was identified, sequenced, and characterized in Treponema phagedenis and Treponema pallidum. This locus includes homologs of the FlgD, FlgE, MotA, MOB, FliL, and FliM polypeptides found in Salmonella typhimurium and Bacillus subtilis. These polypeptides are extensively conserved between the two treponemes. Several additional polypeptides or unknown function, including Tapl, located upstream of FlgD, and ORF4, located between FlgE and MotA, were also identified. Transcription analysis using RNA PCR indicated that these genes are likely transcribed as part of a single operon and comprise the 5' region of the treponemal fla operon. Primer extension analysis identified a putative promoter, preceding T. phagedenis tap1 in a region of divergent transcription. Pfla resembles the class II or class III motility-related promoters of S. typhimurium. FlgE and Tap1 were further characterized. Western blotting (immunoblotting) indicated that T. pallidum FlgE exhibited an unusual polypeptide ladder that was similar but not identical to that of T. phagedenis. Triton X-114 phase partitioning of T. phagedenis cells coupled with Western blotting revealed that Tap1 was located in the aqueous phase. Computer analysis indicated that Tap1 had no significant membrane spanning regions, suggesting that it resides primarily in the cytoplasm. The organization and expression of this operon are similar in both treponemes but different from those of previously described motility-related operons. These results indicate that despite extensive amino acid sequence conservation, the expression of spirochete flagellar polypeptides is different from that in other bacteria. PMID:8755894

  8. Molecular Characterization and Regulation of the aguBA Operon, Responsible for Agmatine Utilization in Pseudomonas aeruginosa PAO1

    PubMed Central

    Nakada, Yuji; Jiang, Ying; Nishijyo, Takayuki; Itoh, Yoshifumi; Lu, Chung-Dar

    2001-01-01

    Pseudomonas aeruginosa PAO1 utilizes agmatine as the sole carbon and nitrogen source via two reactions catalyzed successively by agmatine deiminase (encoded by aguA; also called agmatine iminohydrolase) and N-carbamoylputrescine amidohydrolase (encoded by aguB). The aguBA and adjacent aguR genes were cloned and characterized. The predicted AguB protein (Mr 32,759; 292 amino acids) displayed sequence similarity (≤60% identity) to enzymes of the β-alanine synthase/nitrilase family. While the deduced AguA protein (Mr 41,190; 368 amino acids) showed no significant similarity to any protein of known function, assignment of agmatine deiminase to AguA in this report discovered a new family of carbon-nitrogen hydrolases widely distributed in organisms ranging from bacteria to Arabidopsis. The aguR gene encoded a putative regulatory protein (Mr 24,424; 221 amino acids) of the TetR protein family. Measurements of agmatine deiminase and N-carbamoylputrescine amidohydrolase activities indicated the induction effect of agmatine and N-carbamoylputrescine on expression of the aguBA operon. The presence of an inducible promoter for the aguBA operon in the aguR-aguB intergenic region was demonstrated by lacZ fusion experiments, and the transcription start of this promoter was localized 99 bp upstream from the initiation codon of aguB by S1 nuclease mapping. Experiments with knockout mutants of aguR established that expression of the aguBA operon became constitutive in the aguR background. Interaction of AguR overproduced in Escherichia coli with the aguBA regulatory region was demonstrated by gel retardation assays, supporting the hypothesis that AguR serves as the negative regulator of the aguBA operon, and binding of agmatine and N-carbamoylputrescine to AguR would antagonize its repressor function. PMID:11673419

  9. Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1.

    PubMed

    Nakada, Y; Jiang, Y; Nishijyo, T; Itoh, Y; Lu, C D

    2001-11-01

    Pseudomonas aeruginosa PAO1 utilizes agmatine as the sole carbon and nitrogen source via two reactions catalyzed successively by agmatine deiminase (encoded by aguA; also called agmatine iminohydrolase) and N-carbamoylputrescine amidohydrolase (encoded by aguB). The aguBA and adjacent aguR genes were cloned and characterized. The predicted AguB protein (M(r) 32,759; 292 amino acids) displayed sequence similarity (< or =60% identity) to enzymes of the beta-alanine synthase/nitrilase family. While the deduced AguA protein (M(r) 41,190; 368 amino acids) showed no significant similarity to any protein of known function, assignment of agmatine deiminase to AguA in this report discovered a new family of carbon-nitrogen hydrolases widely distributed in organisms ranging from bacteria to Arabidopsis. The aguR gene encoded a putative regulatory protein (M(r) 24,424; 221 amino acids) of the TetR protein family. Measurements of agmatine deiminase and N-carbamoylputrescine amidohydrolase activities indicated the induction effect of agmatine and N-carbamoylputrescine on expression of the aguBA operon. The presence of an inducible promoter for the aguBA operon in the aguR-aguB intergenic region was demonstrated by lacZ fusion experiments, and the transcription start of this promoter was localized 99 bp upstream from the initiation codon of aguB by S1 nuclease mapping. Experiments with knockout mutants of aguR established that expression of the aguBA operon became constitutive in the aguR background. Interaction of AguR overproduced in Escherichia coli with the aguBA regulatory region was demonstrated by gel retardation assays, supporting the hypothesis that AguR serves as the negative regulator of the aguBA operon, and binding of agmatine and N-carbamoylputrescine to AguR would antagonize its repressor function. PMID:11673419

  10. Characterization of the sat Operon in Streptococcus mutans: Evidence for a Role of Ffh in Acid Tolerance

    PubMed Central

    Kremer, Bas H. A.; van der Kraan, Marieke; Crowley, Paula J.; Hamilton, Ian R.; Brady, L. Jeannine; Bleiweis, Arnold S.

    2001-01-01

    An essential protein translocation pathway in Escherichia coli and Bacillus subtilis involves the signal recognition particle (SRP), of which the 54-kDa homolog (Ffh) is an essential component. In a previous study, we found that a transposon insertion in the ylxM-ffh intergenic region of the designated secretion and acid tolerance (sat) operon of Streptococcus mutans resulted in an acid-sensitive phenotype. In the present study, we further characterized this genomic region in S. mutans after construction of bonafide sat operon mutants and confirmed the role of the SRP pathway in acid resistance. Northern blot and primer extension analyses identified an acid-inducible promoter upstream of ylxM that was responsible for upregulating the coordinate expression of all five genes of the sat operon when cells were grown at acid pH. Two constitutive promoters, one immediately upstream of satD and one just 3′ to the acid-inducible promoter, were also identified. Except for Ffh, the functions of the sat operon gene products are unknown. SatC, SatD, and SatE have no homology to proteins with known functions, although YlxM may function as a transcriptional regulator linked to genes encoding SRP pathway proteins. Nonpolar mutations created in each of the five genes of the sat locus resulted in viable mutants. Most striking, however, was the finding that a mutation in ffh did not result in loss of cell viability, as is the case in all other microbial species in which this pathway has been described. This mutant also lacked immunologically detectable Ffh and was severely affected in resistance to acid. Complementation of the mutation resulted in restoration of acid tolerance and reappearance of cytoplasmic Ffh. These data provide evidence that the SRP pathway plays an important role in acid tolerance in S. mutans. PMID:11274114

  11. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  12. Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production

    PubMed Central

    2012-01-01

    Background Mangotoxin is an antimetabolite toxin that is produced by strains of Pseudomonas syringae pv. syringae; mangotoxin-producing strains are primarily isolated from mango tissues with symptoms of bacterial apical necrosis. The toxin is an oligopeptide that inhibits ornithine N-acetyl transferase (OAT), a key enzyme in the biosynthetic pathway of the essential amino acids ornithine and arginine. The involvement of a putative nonribosomal peptide synthetase gene (mgoA) in mangotoxin production and virulence has been reported. Results In the present study, we performed a RT-PCR analysis, insertional inactivation mutagenesis, a promoter expression analysis and terminator localisation to study the gene cluster containing the mgoA gene. Additionally, we evaluated the importance of mgoC, mgoA and mgoD in mangotoxin production. A sequence analysis revealed an operon-like organisation. A promoter sequence was located upstream of the mgoB gene and was found to drive lacZ transcription. Two terminators were located downstream of the mgoD gene. RT-PCR experiments indicated that the four genes (mgoBCAD) constitute a transcriptional unit. This operon is similar in genetic organisation to those in the three other P. syringae pathovars for which complete genomes are available (P. syringae pv. syringae B728a, P. syringae pv. tomato DC3000 and P. syringae pv. phaseolicola 1448A). Interestingly, none of these three reference strains is capable of producing mangotoxin. Additionally, extract complementation resulted in a recovery of mangotoxin production when the defective mutant was complemented with wild-type extracts. Conclusions The results of this study confirm that mgoB, mgoC, mgoA and mgoD function as a transcriptional unit and operon. While this operon is composed of four genes, only the last three are directly involved in mangotoxin production. PMID:22251433

  13. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control.

    PubMed Central

    Bartlett, D H; Frantz, B B; Matsumura, P

    1988-01-01

    The regulation of the expression of the operons in the flagella-chemotaxis regulon in Escherichia coli has been shown to be a highly ordered cascade which closely parallels the assembly of the flagellar structure and the chemotaxis machinery (T. Iino, Annu. Rev. Genet. 11:161-182, 1977; Y. Komeda, J. Bacteriol. 168: 1315-1318). The master operon, flbB, has been sequenced, and one of its gene products (FlaI) has been identified. On the basis of the deduced amino acid sequence, the FlbB protein has similarity to an alternate sigma factor which is responsible for expression of flagella in Bacillus subtilis. In addition, we have sequenced the 5' regions of a number of flagellar operons and compared these sequences with the 5' region of flagellar operons directly and indirectly under FlbB and FlaI control. We found both a consensus sequence which has been shown to be in all other flagellar operons (J. D. Helmann and M. J. Chamberlin, Proc. Natl. Acad. Sci. USA 84:6422-6424) and a derivative consensus sequence, which is found only in the 5' region of operons directly under FlbB and FlaI control. Images PMID:2832369

  14. The yydFGHIJ Operon of Bacillus subtilis Encodes a Peptide That Induces the LiaRS Two-Component System▿

    PubMed Central

    Butcher, Bronwyn G.; Lin, Yi-Pin; Helmann, John D.

    2007-01-01

    The Bacillus subtilis LiaRS two-component system (TCS) responds to perturbations of the cell envelope induced by lipid II-interacting antibiotics, such as vancomycin, ramoplanin, nisin, and bacitracin. Here, we characterize Tn7-generated mutations that induce the liaRS TCS. In addition to insertions in liaF, a known negative regulator of the LiaRS TCS, we identified two disruptions in the last two genes of the yydFGHIJ operon. This operon is predicted to encode a 49-amino-acid peptide (YydF), a modification enzyme (YydG), a membrane-embedded protease (YydH), and an ATP-binding cassette (ABC) transporter (YydIJ). Genome sequence comparisons suggest that the yydFGHIJ operon may have been acquired by horizontal transfer. Inactivation of the YydIJ transporter resulted in increased expression from the LiaR-dependent PliaI promoter only in the presence of the yydFGH genes. Cells harboring the complete yydFGHIJ operon induced LiaR activity in cocultured cells lacking either this transporter or the complete operon. These results suggest that this operon is involved in the synthesis and export of a modified peptide (YydF*) that elicits cell envelope stress sensed by the LiaRS TCS. PMID:17921301

  15. Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis.

    PubMed Central

    Andersen, P S; Martinussen, J; Hammer, K

    1996-01-01

    Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon in Lactococcus lactis. Two of the genes are the well-known pyr genes pyrDb and pyrF, encoding dihydroorotate dehydrogenase and orotidine monophosphate decarboxylase, respectively. The third gene encodes a protein which was shown to be necessary for the activity of the pyrDb-encoded dihydroorotate dehydrogenase; we propose to name the gene pyrK. The pyrK-encoded protein is homologous to a number of proteins which are involved in electron transfer. The lactococcal pyrKDbF operon is highly homologous to the corresponding part of the much-larger pyr operon of Bacillus subtilis. orf2, the pyrK homolog in B. subtilis, has also been shown to be necessary for pyrimidine biosynthesis (A. E. Kahler and R. L. Switzer, J. Bacteriol. 178:5013-5016, 1996). Four genes adjacent to the operon, i.e., orfE, orfA, orfC, and gidB, were also sequenced. Three of these were excluded as members of the pyr operon by insertional analysis (orfA) or by their opposite direction of transcription (orfE and gidB). orfC, however, seems to be the distal gene in the pyrKDbF-orfC operon. PMID:8759867

  16. Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of the dlt Operon.

    PubMed

    Mechler, Lukas; Bonetti, Eve-Julie; Reichert, Sebastian; Flötenmeyer, Matthias; Schrenzel, Jacques; Bertram, Ralph; François, Patrice; Götz, Friedrich

    2016-05-01

    Understanding the mechanisms of how bacteria become tolerant toward antibiotics during clinical therapy is a very important object. In a previous study, we showed that increased daptomycin (DAP) tolerance of Staphylococcus aureus was due to a point mutation in pitA (inorganic phosphate transporter) that led to intracellular accumulation of both inorganic phosphate (Pi) and polyphosphate (polyP). DAP tolerance in the pitA6 mutant differs from classical resistance mechanisms since there is no increase in the MIC. In this follow-up study, we demonstrate that DAP tolerance in the pitA6 mutant is not triggered by the accumulation of polyP. Transcriptome analysis revealed that 234 genes were at least 2.0-fold differentially expressed in the mutant. Particularly, genes involved in protein biosynthesis, carbohydrate and lipid metabolism, and replication and maintenance of DNA were downregulated. However, the most important change was the upregulation of the dlt operon, which is induced by the accumulation of intracellular Pi The GraXRS system, known as an activator of the dlt operon (d-alanylation of teichoic acids) and of the mprF gene (multiple peptide resistance factor), is not involved in DAP tolerance of the pitA6 mutant. In conclusion, DAP tolerance of the pitA6 mutant is due to an upregulation of the dlt operon, triggered directly or indirectly by the accumulation of Pi. PMID:26883712

  17. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    PubMed

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals. PMID:26454865

  18. Characterization of a Glutamate Transporter Operon, glnQHMP, in Streptococcus mutans and Its Role in Acid Tolerance▿ †

    PubMed Central

    Krastel, Kirsten; Senadheera, Dilani B.; Mair, Richard; Downey, Jennifer S.; Goodman, Steven D.; Cvitkovitch, Dennis G.

    2010-01-01

    Glutamate contributes to the acid tolerance response (ATR) of many Gram-negative and Gram-positive bacteria, but its role in the ATR of the oral bacterium Streptococcus mutans is unknown. This study describes the discovery and characterization of a glutamate transporter operon designated glnQHMP (Smu.1519 to Smu.1522) and investigates its potential role in acid tolerance. Deletion of glnQHMP resulted in a 95% reduction in transport of radiolabeled glutamate compared to the wild-type UA159 strain. The addition of glutamate to metabolizing UA159 cells resulted in an increased production of acidic end products, whereas the glnQHMP mutant produced less lactic acid than UA159, suggesting a link between glutamate metabolism and acid production and possible acid tolerance. To investigate this possibility, we conducted a microarray analysis with glutamate and under pH 5.5 and pH 7.5 conditions which showed that expression of the glnQHMP operon was downregulated by both glutamate and mild acid. We also measured the growth kinetics of UA159 and its glnQHMP-negative derivative at pH 5.5 and found that the mutant doubled at a much slower rate than the parent strain but survived at pH 3.5 significantly better than the wild type. Taken together, these findings support the involvement of the glutamate transporter operon glnQHMP in the acid tolerance response in S. mutans. PMID:20023025

  19. The Switch Regulating Transcription of the Escherichia coli Biotin Operon Does Not Require Extensive Protein-Protein Interactions

    PubMed Central

    Solbiati, José; Cronan, John E.

    2009-01-01

    Transcription of the Escherichia coli biotin (bio) operon is regulated by BirA, a protein that is not only the repressor that regulates bio operon expression by DNA binding but also the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein that is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (bio-AMP), the obligatory intermediate of the attachment reaction. The current model postulates that the unmodified acceptor protein binds the monomeric BirA:bio-AMP complex and thereby blocks assembly (dimerization) of the form of BirA that binds DNA. We report that expression of fusion proteins that carry synthetic biotin accepting peptide sequences was as effective as the natural acceptor protein in derepression of bio operon transcription. These peptide sequences have sequences that are remarkably dissimilar to that of the natural acceptor protein and thus our data argue that the regulatory switch does not require the extensive protein-protein interactions postulated in the current model. PMID:20142036

  20. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression.

    PubMed Central

    Bahrani, F K; Mobley, H L

    1994-01-01

    Proteus mirabilis, an agent of urinary tract infection, expresses at least four fimbrial types. Among these are the MR/P (mannose-resistant/Proteus-like) fimbriae. MrpA, the structural subunit, is optimally expressed at 37 degrees C in Luria broth cultured statically for 48 h by each of seven strains examined. Genes encoding this fimbria were isolated, and the complete nucleotide sequence was determined. The mrp gene cluster encoded by 7,293 bp predicts eight polypeptides: MrpI (22,133 Da), MrpA (17,909 Da), MrpB (19,632 Da), MrpC (96,823 Da), MrpD (27,886 Da), MrpE (19,470 Da), MrpF (17,363 Da), and MrpG (13,169 Da). mrpI is upstream of the gene encoding the major structural subunit gene mrpA and is transcribed in the direction opposite to that of the rest of the operon. All predicted polypeptides share > or = 25% amino acid identity with at least one other enteric fimbrial gene product encoded by the pap, fim, smf, fan, or mrk gene clusters. Images PMID:7910820

  1. Effect of salt bridge on transcription activation of CRP-dependent lactose operon in Escherichia coli.

    PubMed

    Tutar, Yusuf; Harman, James G

    2006-09-15

    Expression of catabolite-sensitive operons in Escherichia coli is cAMP-dependent and mediated through the CRP:cAMP complex binding to specific sequences in DNA. Five specific ionic or polar interactions occur in cAMP binding pocket of CRP. E72 interacts with the cAMP 2' OH, R82 and S83 interact with the negatively charged phosphate moiety, and T127 and S128 interact with the adenine ring. There is evidence to suggest that E72 and R82 may mediate an essential CRP molecular switch mechanism. Therefore, stimulation of CRP transcription activation was examined by perturbing these residues. Further, CRP:cAMP complex was treated with a specific DNA sequence containing the lac CRP binding site along with RNA polymerase to mimic in vivo conditions. Biochemical and biophysical results revealed that regulation of transcription activation depends on alignment of CRP tertiary structure through inter-domain communication and it was concluded that positions 72 and 82 are essential in the activation of CRP by cAMP. PMID:16934214

  2. Phosphoglycerate kinase gene from Zymomonas mobilis: cloning sequencing, and localization within the gap operon

    SciTech Connect

    Conway, T.; Ingram, L.O.

    1988-04-01

    The Zymomonas mobilis gene encoding phosphoglycerate kinase (EC 2.7.3.2), pgk, has been cloned into Escherichia coli and sequenced. It consists of 336 amino acids, including the N-terminal methionine, with a molecular weight of 47,384. This promoterless gene is located 225 base pairs downstream from the gap gene and is part of the gap operon. Previous studies have shown that the specific activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase do not change coordinately in Z. mobilis, although the two enzymes appear to be under the control of a common promoter. The translated amino acid sequence for the Z. mobilis phosphoglycerte kinase is less conserved than those of eucaryotic genes. A comparison of known sequences for phosphoglycerate kinase revealed a high degree of conservation of structure with 102 amino acid positions being retained by all. In general, the amino acid positions at the boundaries of ..beta..-sheet and ..cap alpha..-helical regions and those connecting these regions were more highly conserved than the amino acid positions within regions of secondary structure.

  3. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al.

    PubMed

    Lin, J T; Goldman, B S; Stewart, V

    1994-05-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae. PMID:8169203

  4. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al.

    PubMed Central

    Lin, J T; Goldman, B S; Stewart, V

    1994-01-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae. PMID:8169203

  5. Biofilm formation of ica operon-positive Staphylococcus epidermidis from different sources.

    PubMed

    Argudín, Maria Angeles; Vanderhaeghen, Wannes; Vandendriessche, Stien; Vandecandelaere, Ilse; Denis, Olivier; Coenye, Tom; Butaye, Patrick

    2015-12-01

    Information on the prevalence of biofilm-related factors (PIA, Bhp, Aap, Embp) in Staphylococcus epidermidis of animal origin is scarce. In this study, 263 S. epidermidis isolates of diverse origin (animal, farmers, patients, and laboratory staff) were investigated for the presence of the ica operon (icaRADBC). The icaRADBC-positive isolates were further characterized by means of biofilm formation, presence of other biofilm-related genes, antimicrobial resistance, and population structure. Of all isolates, 28.5% (n = 75) were icaRADBC-positive, including 16.5% of animal origin, 29.1% farmer isolates, and 44.6% hospital-associated isolates (including patients and laboratory staff isolates). Most icaRADBC-positive isolates carried embp (n = 73), aap (n = 57), bhp (n = 22), and IS256 (n = 29). Statistical differences were found between animal and patient isolates for the presence of icaRADBC, bhp, and aap. No statistically significant relation was found between the presence of one or more genes and the level of biofilm formation. Most icaRADBC-positive isolates belonged to the clonal complex 5 (formerly 2) and most sequence types corresponded to types previously observed in community and nosocomial S. epidermidis populations. Although the prevalence of S. epidermidis in the nasal cavity of bovines and poultry is low, some isolates belong to STs related to ica-positive clinical strains. PMID:26547374

  6. Cloning and Expression of Poly 3-Hydroxybutyrate Operon Into Escherichia coli

    PubMed Central

    Jari, Maryam; Khatami, Saeid Reza; Galehdari, Hamid; Shafiei, Mohammad

    2015-01-01

    Background: Poly 3-Hydroxybutyrate (PHB), a class of Poly Hydroxyalkanoates (PHAs), is a group of bacterial storage polymers, produced by various microorganisms in response to nutrient limitation. PHAs are biodegradable polymers which could be a good substitute for current petrochemical plastics. PHB has been synthesized during three enzymatic steps including three genes. Objectives: Our aim was PHB production from recombinant bacteria. Materials and Methods: Ralstonia eutropha was cultured and its genomic DNA was extracted. The phbCAB operon was amplified using designed primers. The fragment was cloned into pET-28a expression vector and then transformed into Escherichia coli BL21. Sudan black staining was used to show the production of PHB. Results: The extracted recombinant plasmid was digested with restriction enzymes. Separation of the desired fragment from the vector was performed to prove the correct insertion of the PCR products into the vector. The colony PCR and sequencing results confirmed the successful transformation. The production of PHB was confirmed by Sudan Black B staining under a light microscope. Conclusions: Various metabolic and fermentation methods have been used in some bacterial strains for PHB production. The use of a recombinant system harboring PHB synthesis genes can produce PHB in higher concentrations compare to natural PHA-producing bacteria. The present study was one of the most important and basic steps of designing a recombinant E. coli that can produce PHB. PMID:25834710

  7. Characterization of the glnK-amtB operon of Azotobacter vinelandii.

    PubMed

    Meletzus, D; Rudnick, P; Doetsch, N; Green, A; Kennedy, C

    1998-06-01

    To determine whether in Azotobacter vinelandii the PII protein influences the regulation of nif gene expression in response to fluxes in the ammonium supply, the gene encoding PII was isolated and characterized. Its deduced translation product was highly similar to PII proteins from other organisms, with the greatest degree of relatedness being exhibited to the Escherichia coli glnK gene product. A gene designated amtB was found downstream of and was contranscribed with glnK as in E. coli. The AmtB protein is similar to functionally characterized ammonium transport proteins from a few other eukaryotes and one other prokaryote. glnK and amtB comprise an operon. Attempts to isolate a stable glnK mutant strain were unsuccessful, suggesting that glnK, like glnA, is an essential gene in A. vinelandii. amtB mutants were isolated, and although growth on limiting amounts of ammonium was similar in the mutant and wild-type strains, the mutants were unable to transport [14C]methylammonium. PMID:9620984

  8. Gene position in a long operon governs motility development in Bacillus subtilis

    PubMed Central

    Cozy, Loralyn M.; Kearns, Daniel B.

    2010-01-01

    Growing cultures of Bacillus subtilis bifurcate into subpopulations of motile individuals and non-motile chains of cells that are differentiated at the level of gene expression. The motile cells are ON and the chaining cells are OFF for transcription that depends on RNA polymerase and the alternative sigma factor σD. Here we show that chaining cells were OFF for σD-dependent gene expression because σD levels fell below a threshold, and σD activity was inhibited by the anti-sigma factor FlgM. The probability that σD exceeded the threshold was governed by the position of the sigD genes. The proportion of ON cells increased when sigD was artificially moved forward in the 27kb fla/che operon. In addition, we identified a new σD-dependent promoter that increases sigD expression and may provide positive feedback to stabilize the ON state. Finally, we demonstrate that ON/OFF motility states in B. subtilis are a form of development because mosaics of stable and differentiated epigenotypes were evident when the normally dispersed bacteria were forced to grow in one dimension. PMID:20233303

  9. The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments

    PubMed Central

    Loza-Correa, Maria; Sahr, Tobias; Rolando, Monica; Daniels, Craig; Petit, Pierre; Skarina, Tania; Valero, Laura Gomez; Dervins-Ravault, Delphine; Honoré, Nadine; Savchenko, Aleksey; Buchrieser, Carmen

    2014-01-01

    Summary Legionella pneumophila uses aquatic protozoa as replication niche and protection from harsh environments. Although L. pneumophila is not known to have a circadian clock, it encodes homologues of the KaiBC proteins of Cyanobacteria that regulate circadian gene expression. We show that L. pneumophila kaiB, kaiC and the downstream gene lpp1114, are transcribed as a unit under the control of the stress sigma factor RpoS. KaiC and KaiB of L. pneumophila do not interact as evidenced by yeast and bacterial two-hybrid analyses. Fusion of the C-terminal residues of cyanobacterial KaiB to Legionella KaiB restores their interaction. In contrast, KaiC of L. pneumophila conserved autophosphorylation activity, but KaiB does not trigger the dephosphorylation of KaiC like in Cyanobacteria. The crystal structure of L. pneumophila KaiB suggests that it is an oxidoreductase-like protein with a typical thioredoxin fold. Indeed, mutant analyses revealed that the kai operon-encoded proteins increase fitness of L. pneumophila in competitive environments, and confer higher resistance to oxidative and sodium stress. The phylogenetic analysis indicates that L. pneumophila KaiBC resemble Synechosystis KaiC2B2 and not circadian KaiB1C1. Thus, the L. pneumophila Kai proteins do not encode a circadian clock, but enhance stress resistance and adaption to changes in the environments. PMID:23957615

  10. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-01-01

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant(1,2), but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability(3,4). We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements(5) or inferences(6,7). PMID:27617693

  11. Acetoin catabolic system of Klebsiella pneumoniae CG43: sequence, expression, and organization of the aco operon.

    PubMed Central

    Deng, W L; Chang, H Y; Peng, H L

    1994-01-01

    A cosmid clone which was capable of depleting acetoin in vivo was isolated from a library of Klebsiella pneumoniae CG43 cosmids. The smallest functional subclone contained a 3.9-kb DNA fragment of the cosmid clone. Sequencing of the DNA fragment revealed three open reading frames (ORFs A, B, and C) encoding polypeptides of 34, 36, and 52 kDa, respectively. The presence of these proteins was demonstrated by expression of the recombinant DNA clone in Escherichia coli. Considerable similarities between the deduced amino acid sequences of the ORFs and those of the following enzymes were found: acetoin dissimilation enzymes, pyruvate dehydrogenase complex, 2-oxoglutarate dehydrogenase complex, and branched-chain 2-oxo acid dehydrogenase complex of various origins. Activities of these enzymes, including acetoin-dependent dichlorophenolin-dohenol oxidoreductase and dihydrolipoamide acetyltransferase, were detected in the extracts of E. coli harboring the genes encoding products of the three ORFs. Although not required for acetoin depletion in vivo, a possible fourth ORF (ORF D), located 39 nucleotides downstream of ORF C, was also identified. The deduced N-terminal sequence of the ORF D product was highly homologous to the dihydrolipoamide dehydrogenases of several organisms. Primer extension analysis identified the transcriptional start of the operon as an A residue 72 nucleotides upstream of ORF A. Images PMID:8206829

  12. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade.

    PubMed

    Koblížek, Michal; Moulisová, Vladimíra; Muroňová, Markéta; Oborník, Miroslav

    2015-01-01

    The Roseobacter clade represents one of the most important bacterial groups in marine environments. While some of its members are heterotrophs, many Roseobacter clade members contain bacterial photosynthetic reaction centers. We investigated the phylogeny of pufL and pufM genes encoding the L and M subunits of reaction centers using available genomic data and our own cultured species. Interestingly, phylogeny of pufL and pufM genes largely deviated from 16S rRNA-based phylogeny. The sequences split into two clearly distinct clades. While most of the studied species contained pufL and pufM sequences related to those found in Roseobacter litoralis, some of the marine species contained sequences related to the freshwater Rhodobacter species. In addition, genomic data documents that Roseobacter-type centers contain cytochrome c subunits (pufC gene product), whereas Rhodobacter-type centers incorporate PufX proteins. This indicates that the two forms of the reaction centers are not only distinct phylogenetically, but also structurally. The large deviation of pufL and pufM phylogeny from 16S phylogeny indicates multiple horizontal transfers of the puf operon among members of the order Rhodobacterales. PMID:25090942

  13. [Insertional Inactivation of Virulence Operon in Population of Persistent Bordetella pertussis Bacteria].

    PubMed

    Karataev, G I; Sinyashina, L N; Medkova, A Yu; Semin, E G; Shevtsova, Z V; Matua, A Z; Kondzariya, I G; Amichba, A A; Kubrava, D T; Mikvabia, Z Ya

    2016-04-01

    Avirulent B. pertussis bacteria containing IS elements in the bvgAS operon were detected during the study of whooping cough patients and bacilli carriers. The present work is devoted to the study of the accumulation dynamics and the mechanisms of generation of persistent forms of the B. pertussis bacteria in lower monkeys as the most adequate model for extrapolation ofthe experiment results to humans. By means of the real-time PCR method, it was established that the B. pertussis bacteria lived more than three months in the upper respiratory tract after a single intranasal monkey infection; the period was reduced to 14-28 days during repeated infection. An increase in the portion of B. pertussis Bvg mutants in the population to tens of percent from the total number of registered bacteria was registered. The experimental confirmation ofthe development and accumulation of avirulent B. pertussis Bvg mutants during the development of the infectious process was obtained. Further study of the composition of the B. pertussis persistent bacteria population at different stages of the disease will make it possible to formulate new approaches to the whooping cough diagnostics and prevention and creation of fundamentally new drugs. PMID:27529975

  14. Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data.

    PubMed

    Yildirim, Necmettin; Mackey, Michael C

    2003-05-01

    A mathematical model for the regulation of induction in the lac operon in Escherichia coli is presented. This model takes into account the dynamics of the permease facilitating the internalization of external lactose; internal lactose; beta-galactosidase, which is involved in the conversion of lactose to allolactose, glucose and galactose; the allolactose interactions with the lac repressor; and mRNA. The final model consists of five nonlinear differential delay equations with delays due to the transcription and translation process. We have paid particular attention to the estimation of the parameters in the model. We have tested our model against two sets of beta-galactosidase activity versus time data, as well as a set of data on beta-galactosidase activity during periodic phosphate feeding. In all three cases we find excellent agreement between the data and the model predictions. Analytical and numerical studies also indicate that for physiologically realistic values of the external lactose and the bacterial growth rate, a regime exists where there may be bistable steady-state behavior, and that this corresponds to a cusp bifurcation in the model dynamics. PMID:12719218

  15. Tandem attenuators control expression of the Salmonella mgtCBR virulence operon.

    PubMed

    Lee, Eun-Jin; Groisman, Eduardo A

    2012-10-01

    The mgtCBR operon from Salmonella enterica serovar Typhimurium specifies the virulence protein MgtC, the Mg(2+) transporter MgtB and the regulatory peptide MgtR. The mgtCBR transcript includes a long leader region harbouring two short open reading frames (ORFs). Translation of these ORFs is anticipated to impact the formation of particular stem-loop structures and control transcription of the coding region by an attenuation-like mechanism. We previously reported that ORF mgtM enables Salmonella to promote transcription of the mgtC and mgtB coding regions when experiencing a rise in cytoplasmic ATP levels. We now show that the proline codon-rich ORF mgtP mediates an increase in transcription of the mgtC and mgtB coding regions under conditions predicted to decrease the levels of proline-charged tRNA(Pro) . The high ATP and low proline signals act independently in an additive form. Replacing conserved mgtP proline codons with codons specifying other amino acids abolished the response to proline limitation but had no effect on the response to ATP. Substitution of conserved adenine nucleotides in mgtM abolished the response to ATP but had no effect in the response to proline limitation. This provides a singular example of a leader mRNA with tandem attenuators responding to different signals. PMID:22857388

  16. Influence of the operon structure on poly(3-hydroxypropionate) synthesis in Shimwellia blattae.

    PubMed

    Andreeßen, Björn; Johanningmeier, Benjamin; Burbank, Joachim; Steinbüchel, Alexander

    2014-09-01

    Glycerol has become a cheap and abundant carbon source due to biodiesel production at a large scale, and it is available for several biotechnological applications. We recently established poly(3-hydroxypropionate) [poly(3HP)] synthesis in a recombinant Shimwellia blattae strain (Heinrich et al. Appl Environ Microbiol 79:3582-3589, 2013). The major drawbacks of the current strains are (i) low poly(3HP) yields, (ii) low plasmid stability and (iii) insufficient conversion rates. In this study, we demonstrated the influence of alterations of the operon structure, consisting of 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate:coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2 and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16. It was shown that S. blattae ATCC33430/pBBR1MCS-2::dhaT::pct::aldD::phaC1 synthesized up to 14.5 % (wtPHA/wtCDW) in a 2-L fed-batch fermentation process. Furthermore, we overcame the problem of plasmid losses during the fermentation period by engineering a carbon source-dependent plasmid addiction system in a triose phosphate isomerase knockout mutant. An assumed poly(3-hydroxyalkanoic acid) degrading activity of the lipase/esterase YbfF could not be confirmed. PMID:24859521

  17. Genetic analysis of the stationary phase-induced mcb operon promoter in Escherichia coli.

    PubMed

    Mao, W; Siegele, D A

    1998-01-01

    A combination of deletion analysis and random mutagenesis was used to identify regulatory elements in Pmcb, the stationary phase-induced promoter of the mcb operon. Our results indicate that Pmcb is controlled by at least three different factors, two previously identified and at least one unknown factor, which act at four different sites in the promoter. Sequences between -344 and -164 upstream of the transcriptional start site were required for wild-type levels of mcb transcription in stationary phase. More dramatic reductions in both exponential and stationary phase expression were observed when sequences from -164 to -54 were deleted. Point mutations located between -105 and -138 decreased both exponential and stationary phase expression. All but one of these mutations decreased OmpR-dependent activation of Pmcb transcription. EmrR, also known as MprA, acts directly or indirectly at sequences downstream of -54 to repress Pmcb. A minimal promoter containing sequences from -34 to +79 was still induced > or = 10-fold in stationary phase. Point mutations within this region identified sequences at -8, -11, -30, -31 and -32 as important for Pmcb activity. These bases are in the gearbox sequence, present in Pmcb and several other stationary phase-induced Escherichia coli promoters. PMID:9484896

  18. Characterization of the glnK-amtB Operon of Azotobacter vinelandii

    PubMed Central

    Meletzus, Dietmar; Rudnick, Paul; Doetsch, Natalie; Green, Andrew; Kennedy, Christina

    1998-01-01

    To determine whether in Azotobacter vinelandii the PII protein influences the regulation of nif gene expression in response to fluxes in the ammonium supply, the gene encoding PII was isolated and characterized. Its deduced translation product was highly similar to PII proteins from other organisms, with the greatest degree of relatedness being exhibited to the Escherichia coli glnK gene product. A gene designated amtB was found downstream of and was cotranscribed with glnK as in E. coli. The AmtB protein is similar to functionally characterized ammonium transport proteins from a few other eukaryotes and one other prokaryote. glnK and amtB comprise an operon. Attempts to isolate a stable glnK mutant strain were unsuccessful, suggesting that glnK, like glnA, is an essential gene in A. vinelandii. amtB mutants were isolated, and although growth on limiting amounts of ammonium was similar in the mutant and wild-type strains, the mutants were unable to transport [14C]methylammonium. PMID:9620984

  19. Expression of the Oligopeptide Permease Operon of Moraxella catarrhalis Is Regulated by Temperature and Nutrient Availability.

    PubMed

    Jones, Megan M; Murphy, Timothy F

    2015-09-01

    Moraxella catarrhalis causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. Together, these two conditions contribute to enormous morbidity and mortality worldwide. The oligopeptide permease (opp) ABC transport system is a nutritional virulence factor important for the utilization of peptides. The substrate binding protein OppA, which binds peptides for uptake, is a potential vaccine antigen, but little was known about the regulation of gene expression. The five opp genes oppB, oppC, oppD, oppF, and oppA are in the same open reading frame. Sequence analysis predicted two promoters, one located upstream of oppB and one within the intergenic region between oppF and oppA. We have characterized the gene cluster as an operon with two functional promoters and show that cold shock at 26°C for ≤ 0.5 h and the presence of a peptide substrate increase gene transcript levels. Additionally, the putative promoter upstream of oppA contributes to the transcription of oppA but is not influenced by the same environmental cues as the promoter upstream of oppB. We conclude that temperature and nutrient availability contribute to the regulation of the Opp system, which is an important nutritional virulence factor in M. catarrhalis. PMID:26099587

  20. Transcriptional Regulation and Evolution of Lactose Genes in the Galactose-Lactose Operon of Lactococcus lactis NCDO2054

    PubMed Central

    Vaughan, Elaine E.; Pridmore, R. David; Mollet, Beat

    1998-01-01

    The genetics of lactose utilization within the slow-lactose-fermenting Lactococcus lactis strain NCDO2054 was studied with respect to the organization, expression, and evolution of the lac genes. Initially the β-galactosidase gene (lacZ) was cloned by complementation of an Escherichia coli mutant on a 7-kb HpaI fragment. Nucleotide sequence analysis of the complete fragment revealed part of a gal-lac operon, and the genes were characterized by inactivation and complementation analyses and in vitro enzyme activity measurements. The gene order is galK-galT-lacA-lacZ-galE; the gal genes encode enzymes of the Leloir pathway for galactose metabolism, and lacA encodes a galactoside acetyltransferase. The galT and galE genes of L. lactis LM0230 (a lactose plasmid-cured derivative of the fast-lactose-fermenting L. lactis C2) were highly similar at the nucleotide sequence level to their counterparts in strain NCDO2054 and, furthermore, had the same gene order except for the presence of the intervening lacA-lacZ strain NCDO2054. Analysis of mRNA for the gal and lac genes revealed an unusual transcriptional organization for the operon, with a surprisingly large number of transcriptional units. The regulation of the lac genes was further investigated by using fusions consisting of putative promoter fragments and the promoterless β-glucuronidase gene (gusA) from E. coli, which identified three lactose-inducible intergenic promoters in the gal-lac operon. The greater similarity of the lacA and lacZ genes to homologs in gram-negative organisms than to those of gram-positive bacteria, in contrast to the homologies of the gal genes, suggests that the genes within the gal operon of L. lactis NCDO2054 have been recently acquired. Thus, the lacA-lacZ genes appear to have engaged the promoters of the gal operon in order to direct and control their expression. PMID:9733693

  1. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.

    PubMed

    Wong, P; Gladney, S; Keasling, J D

    1997-01-01

    A mathematical model of the lactose (lac) operon was developed to study diauxic growth on glucose and lactose. The model includes catabolite repression, inducer exclusion, lactose hydrolysis to glucose and galactose, and synthesis and degradation of allolactose. Two models for catabolite repression were tested: (i) cyclic AMP (cAMP) synthesis inversely correlated with the external glucose concentration and (ii) synthesis inversely correlated with the glucose transport rate. No significant differences in the two models were observed. In addition to synthesis, degradation and secretion of cAMP were also included in the model. Two models for the phosphorylation of the glucose produced from lactose hydrolysis were also tested: (i) phosphorylation by intracellular hexokinase and (ii) secretion of glucose and subsequent phosphorylation upon transport back into the cell. The latter model resulted in weak catabolite repression when the glucose produced from lactose was transported out of the cell, whereas the former model showed no catabolite repression during growth on lactose. Parameter sensitivity analysis indicates the importance of key parameters to lac operon expression and cell growth: the lactose and allolactose transformation rates by beta-galactosidase and the glucose concentrations that affect catabolite repression and inducer exclusion. Large values of the allolactose hydrolysis rate resulted in low concentrations of allolactose, low-level expression of the lac operon, and slow growth due to limited import and metabolism of lactose; small values resulted in a high concentration of allolactose, high-level expression of the lac operon, and slow growth due to a limiting concentration of glucose 6-phosphate formed from allolactose. Changes in the rates of all beta-galactosidase-catalyzed reactions showed similar behavior, but had more drastic effects on the growth rate. Changes in the glucose concentration that inhibited lactose transport could extend or contract

  2. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis.

    PubMed

    Ray, Sujay; Banerjee, Arundhati

    2015-10-01

    Participation of Pseudomonas putida-derived methyl phenol (dmp) operon and DmpR protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentation documents that P. putida has DmpR protein which positively regulates dmp operon in the presence of inducers; like phenols. From the operon, phenol hydroxylase encoded by dmpN gene, participates in degrading phenols after dmp operon is expressed. For the purpose, the 3-D models of the four domains from DmpR protein and of the DNA sequences from the two Upstream Activation Sequences (UAS) present at the promoter region of the operon were demonstrated using discrete molecular modeling techniques. The best modeled structures satisfying their stereo-chemical properties were selected in each of the cases. To stabilize the individual structures, energy optimization was performed. In the presence of inducers, probable interactions among domains and then the two independent DNA structures with the fourth domain were perused by manifold molecular docking simulations. The complex structures were made to be stable by minimizing their overall energy. Responsible amino acid residues, nucleotide bases and binding patterns for the biodegradation, were examined. In the presence of the inducers, the biodegradation process is initiated by the interaction of phe50 from the first protein domain with the inducers. Only after the interaction of the last domain with the DNA sequences individually, the operon is expressed. This novel residue level study is paramount for initiating transcription in the operon; thereby leading to expression of phenol hydroxylase followed by phenol biodegradation. PMID:26456616

  3. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    PubMed

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R; Kim, Myung Hee; Choi, Sang Ho

    2015-09-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  4. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus

    PubMed Central

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R.; Kim, Myung Hee; Choi, Sang Ho

    2015-01-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3′,5′-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  5. Identification of the Staphylococcus aureus vfrAB Operon, a Novel Virulence Factor Regulatory Locus

    PubMed Central

    Daly, Seth M.; Hall, Pamela R.; Bayles, Kenneth W.

    2014-01-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis. PMID:24549328

  6. Biomolecular Mechanisms of Mercury Transfers and Transformations by Proteins of the Mer Operon

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Hong, B.; Nauss, R.; Momany, C.; Summers, A. O.; Feng, X.; Harwood, I.; Stroud, R.

    2008-12-01

    Aerobic bacteria exhibiting resistance to the toxic effects of Hg(II) and organomercurials [RHg(I), e.g. MeHg(I)] and are widely found in both pristine and mercury contaminated environments. Resistance, afforded by a plasmid- or transposon-associated mer operon, involves an unusual pathway where Hg(II) and organomercurials [RHg(I)] undergo facilitated entry into the bacterial cytoplasm via an integral membrane transport protein (MerT) and are then "detoxified" by the concerted effort of two enzymes, organomercurial lyase (MerB), which catalyzes dealkylation (i.e., demethylation) of RHg(I) to Hg(II) and a hydrocarbon, and mercuric ion reductase (MerA), which catalyzes reduction of Hg(II) to Hg(0) as the ultimate detoxification for the organism. With a widespread distribution, these bacterial transformations play a significant role in the fate of mercury in the environment. Our focus is on elucidation of the molecular mechanisms for the transport and catalytic transformations of RHg(I) and Hg(II) by these proteins and the factors that influence the overall efficiency of the process. Current efforts are focused primarily on elucidating details of RHg(I) binding and dealkylation by MerB as well as the mechanism for transfer of the Hg(II) product to MerA. Key findings include the demonstration of a non-cysteine residue as essential for the catalytic activity and demonstration that direct transfer of Hg(II) to MerA proceeds more rapidly and more completely than transfer to small MW thiols such as cysteines or glutathione. Reuslts of these studies as well as an overview of our current understanding of the whole system will be presented.

  7. Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli

    PubMed Central

    2013-01-01

    Background While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli. Results E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis. Conclusions The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions. PMID:24074355

  8. Operon for Biosynthesis of Lipstatin, the Beta-Lactone Inhibitor of Human Pancreatic Lipase

    PubMed Central

    Bai, Tingli; Zhang, Daozhong; Lin, Shuangjun; Long, Qingshan; Wang, Yemin; Ou, Hongyu; Kang, Qianjin; Deng, Zixin; Liu, Wen

    2014-01-01

    Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl–acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring. PMID:25239907

  9. Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp.

    PubMed

    Yin, Jin; Fu, Xiao-Zhi; Wu, Qiong; Chen, Jin-Chun; Chen, Guo-Qiang

    2014-11-01

    Since halophile Halomonas spp. can grow contamination free in seawater under unsterile and continuous conditions, it holds great promise for industrial biotechnology to produce low-cost chemicals in an economic way. Yet, metabolic engineering methods are urgently needed for Halomonas spp. It is commonly known that chromosomal expression is more stable yet weaker than plasmid one is. To overcome this challenge, a novel chromosomal expression method was developed for halophile Halomonas TD01 and its derivatives based on a strongly expressed porin gene as a site for external gene integration. The gene of interest was inserted downstream the porin gene, forming an artificial operon porin-inserted gene. This chromosome expression system was proven functional by some examples: First, chromosomal expression of heterologous polyhydroxybutyrate (PHB) synthase gene phaC Re from Ralstonia eutropha completely restored the PHB accumulation level in endogenous phaC knockout mutant of Halomonas TD01. The integrated phaC Re was expressed at the highest level when inserted at the locus of porin compared with insertions in other chromosome locations. Second, an inducible expression system was constructed in phaC-deleted Halomonas TD01 by integrating the lac repressor gene (lacI) into the porin site in the host chromosome. The native porin promoter was inserted with the key 21 bp DNA of lac operator (lacO) sequence to become an inducible promoter encoded in a plasmid. This inducible system allowed on-off switch of gene expression in Halomonas TD strains. Thus, the stable and strong chromosomal expression method in Halomonas TD spp. was established. PMID:25070598

  10. A Fifth Gene (uncE) in the Operon Concerned with Oxidative Phosphorylation in Escherichia coli

    PubMed Central

    Downie, J. A.; Senior, A. E.; Gibson, F.; Cox, G. B.

    1979-01-01

    Three mutant unc alleles (unc-408, unc-410, and unc-429) affecting the coupling of electron transport to oxidative phosphorylation in Escherichia coli K-12 have been characterized. Genetic complementation analyses using previously defined mutant unc alleles indicated that the new mutant unc alleles affect a previously undescribed gene designated uncE. The phenotype of strains carrying the uncE408 or uncE429 allele is similar in that Mg2+-adenosine triphosphatase activity is only found in the cytoplasmic fraction, and membranes do not bind the F1 portion of adenosine triphosphatase purified from a normal strain. In contrast, adenosine triphosphatase activity is present both in the cytoplasm and on the membranes from a strain carrying the unc-410 allele, and normal F1 binds to F1-depleted membranes from this strain. The adenosine triphosphatase solubilized from membranes of a strain carrying the unc-410 allele reconstituted ATP-dependent membrane energization in F1-depleted membranes from a normal strain. Genetic complementation tests using various Mu-induced unc alleles in partial diploid strains show that the uncE gene is in the unc operon and that the order of genes is uncB E A D C. The unc-410 allele differs from the uncE408 and uncE429 alleles in that complementation tests with the Mu-induced unc alleles indicate that more than one gene is affected. It is concluded that this is due to a deletion which includes part of the uncE gene and another gene, or genes, between the uncE and uncA genes. PMID:154509

  11. Positive control of lac operon expression in vitro by guanosine 5'-diphosphate 3'-diphosphate.

    PubMed

    Primakoff, P; Artz, S W

    1979-04-01

    Maximal expression of the Escherichia coli lactose operon in a coupled in vitro transcription-translation system from a Salmonella typhimurium relA mutant was strongly dependent upon addition of guanosine 5'-diphosphate 3'-diphosphate (ppGpp). Without added ppGpp, at saturating 3',5'-cyclic AMP (cAMP) concentrations, synthesis of beta-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23) was reproducibly only 5-7% of that which can be obtained with 0.5-0.8 mM ppGpp. Experiments in which transcription was uncoupled from translation indicated that this 14- to 20-fold stimulation by ppGpp occurred at the level of transcription. When coupled beta-galactosidase synthesis was primed with a template containing a well-characterized mutant lac promoter (lacP(r)L8UV5), the dependence on ppGpp was greatly reduced. This result provides an important experimental control previously unavailable for verifying the significance of ppGpp effects on gene regulation in vitro; it indicates that activation of lacP(+) expression by ppGpp is specifically an effect of increased transcription initiations. Furthermore, the large ppGpp stimulation of lacP(+) DNA enabled the level of expression of this template to approach that of lacP(r)L8UV5 DNA, an observation expected from results in vivo but not obtained with other transcription-translation systems in vitro. The importance of these results is considered with respect to previous ideas on the physiological role of ppGpp as a supercontrol molecule in bacterial regulation. PMID:109832

  12. Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis.

    PubMed

    Lewis, L A; Gray, E; Wang, Y P; Roe, B A; Dyer, D W

    1997-02-01

    We previously identified HpuB, an 85 kDa Fe-repressible protein required for utilization of Fe from, and binding to, haemoglobin and the haemoglobin-haptoglobin complex. The gene for hpuB was cloned from Neisseria meningitidis strain DNM2 and the predicted amino acid sequence indicates that HpuB is an outer membrane receptor belonging to the TonB family of high-affinity transport proteins. A second open reading frame, predicted to encode a 34.8 kDa lipoprotein, was discovered 5' to hpuB, and was designated hpuA. HpuA was identified in a total-membrane-protein preparation by construction of a mutant lacking HpuA. Acylation of HpuA was confirmed by [3H]-palmitic acid labelling of meningococci. Consensus promoter sequences were not apparent 5' to hpuB. The hpuA insertion mutation exerted a polar effect, abolishing expression of hpuB, suggesting that hpuA and hpuB are co-transcribed. The 3.5 kb polycistronic hpuAB mRNA was identified and shown to be transcriptionally repressed by iron. The transcriptional start site was identified 33 nucleotides 5' to the hpuA translational start site, appropriately positioned around consensus promoter and ferric uptake regulator (Fur)-box sequences. The structure of this operon suggests that HpuA-HpuB is a two-component receptor analogous to the bipartite transferrin receptor TbpB-TbpA. PMID:9157245

  13. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    PubMed Central

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  14. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem.

    PubMed

    Valdivia-Anistro, Jorge A; Eguiarte-Fruns, Luis E; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2015-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6-15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  15. Pre-induced Lac Operon Effect on Non Specific Sugars: Pre-culture Effect is Dependent on Strength of Induction, Exponential Phase and Substrate Concentration.

    PubMed

    Malakar, Pushkar

    2015-01-01

    The source and history of the cell plays an important role in influencing the phenotypic properties of the organism in a particular environmental condition. Pre-induced lac operon provides benefit on lactose environment. During metabolism lactose is broken down into glucose and galactose. The fate of cells with pre-induced lac operon on glucose and galactose milieu is not known. The influence of nutritional status of the medium, level of pre-induction and growth phase on pre-culture effect is not investigated. Effect of pre-induced lac operon on non specific sugars along with the factors that influence this effect was enumerated in the present study. Results of this present study indicate that pre-induced lac operon provide benefit in terms of growth on galactose milieu. This study also suggests that Pre induced lac operon effect depends on the (i) strength of induction in the pre-culture, (ii) nutritional content of the environment and (iii) exponential growth phase of the organism. The above study will help in the better characterization of the pre culture effect. It will also help in the better understanding of the relation between gene expression and growth physiology. PMID:26161153

  16. Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of escherichia coli in halophilic archaea, halobacterium halobium.

    PubMed

    Sano, K; Taguchi, A; Furumoto, H; Uda, T; Itoh, T

    1999-10-14

    A determination was made of the nucleotide sequence of the 3215-bp region of a ribosomal protein gene cluster (HS13, HS4, HS11, and HeL18), RNA polymerase (RNA poly D), and tRNA genes (tRNAser and tRNAarg) of halophilic Archaea Halobacterium halobium, which is analogous to the alpha-operon of Escherichia coli (tRNAser-HS13-HS4-HS11-RNA poly D-tRNAarg-HeL18). The seven-gene string was preceded by a pseudoknot-like structure similar to the proposed S4 ribosomal protein binding site of the alpha-operon mRNA leader in E. coli. Using an inducible expression system H. halobium HS4 was produced in large amounts in E. coli, and immunoblot analysis showed the S4 to constitute a 21-kDa polypeptide component of the ribosome. Analysis of the deduced amino acids sequence revealed that the HS13, HS4, and HS11 sequences including the RNA polymerase subunit are more similar to their eukaryotic than to their bacterial counterparts. HeL18, located downstream of the gene cluster analogous to the E. coli alpha-operon (S13-S11-S4-RNA poly D-L17), was similar to both the eukaryotic (eL18) and eubacterial ribosomal protein L15 located in the spc-operon, but not to L17 positioned as the terminal gene of the bacterial alpha-operon. PMID:10527834

  17. In vitro transcriptional studies of the bkd operon of Pseudomonas putida: L-branched-chain amino acids and D-leucine are the inducers.

    PubMed

    Madhusudhan, K T; Luo, J; Sokatch, J R

    1999-05-01

    BkdR is the transcriptional activator of the bkd operon, which encodes the four proteins of the branched-chain keto acid dehydrogenase multienzyme complex of Pseudomonas putida. In this study, hydroxyl radical footprinting revealed that BkdR bound to only one face of DNA over the same region identified in DNase I protection assays. Deletions of even a few bases in the 5' region of the BkdR-binding site greatly reduced transcription, confirming that the entire protected region is necessary for transcription. In vitro transcription of the bkd operon was obtained by using a vector containing the bkdR-bkdA1 intergenic region plus the putative rho-independent terminator of the bkd operon. Substrate DNA, BkdR, and any of the L-branched-chain amino acids or D-leucine was required for transcription. Branched-chain keto acids, D-valine, and D-isoleucine did not promote transcription. Therefore, the L-branched-chain amino acids and D-leucine are the inducers of the bkd operon. The concentration of L-valine required for half-maximal transcription was 2.8 mM, which is similar to that needed to cause half-maximal proteolysis due to a conformational change in BkdR. A model for transcriptional activation of the bkd operon by BkdR during enzyme induction which incorporates these results is presented. PMID:10217783

  18. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid.

    PubMed

    Roy, Ajit; Ranjan, Akash

    2016-02-23

    Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family. PMID:26818787

  19. Pre-induced Lac Operon Effect on Non Specific Sugars: Pre-culture Effect is Dependent on Strength of Induction, Exponential Phase and Substrate Concentration

    PubMed Central

    Malakar, Pushkar

    2015-01-01

    The source and history of the cell plays an important role in influencing the phenotypic properties of the organism in a particular environmental condition. Pre-induced lac operon provides benefit on lactose environment. During metabolism lactose is broken down into glucose and galactose. The fate of cells with pre-induced lac operon on glucose and galactose milieu is not known. The influence of nutritional status of the medium, level of pre-induction and growth phase on pre-culture effect is not investigated. Effect of pre-induced lac operon on non specific sugars along with the factors that influence this effect was enumerated in the present study. Results of this present study indicate that pre-induced lac operon provide benefit in terms of growth on galactose milieu. This study also suggests that Pre induced lac operon effect depends on the (i) strength of induction in the pre-culture, (ii) nutritional content of the environment and (iii) exponential growth phase of the organism. The above study will help in the better characterization of the pre culture effect. It will also help in the better understanding of the relation between gene expression and growth physiology. PMID:26161153

  20. The use of a hands-on model in learning the regulation of an inducible operon and the development of a gene regulation concept inventory

    NASA Astrophysics Data System (ADS)

    Stefanski, Katherine M.

    A central concept in genetics is the regulation of gene expression. Inducible gene expression is often taught in undergraduate biology courses using the lac operon of Escherichia coli (E. coli ). With national calls for reform in undergraduate biology education and a body of literature that supports the use of active learning techniques including hands-on learning and analogies we were motivated to develop a hands-on analogous model of the lac operon. The model was developed over two iterations and was administered to genetics students. To determine the model's worth as a learning tool a concept inventory (CI) was developed using rigorous protocols. Concept inventories are valuable tools which can be used to assess students' understanding of a topic and pinpoint commonly held misconceptions as well as the value of educational tools. Through in-class testing (n =115) the lac operon concept inventory (LOCI) was demonstrated to be valid, predictive, and reliable (? coefficient = 0.994). LOCI scores for students who participated in the hands-on activity (n = 67) were 7.5% higher (t = -2.281, P < 0.05) than students who did not ( n = 62). Use of the model is also supported by student feedback from two surveys. This study provides an effective activity that aids students' understanding of the lac operon. We were able to determine the efficacy of the activity and identify misconceptions held by students about the lac operon because of the use of a valid and reliable CI.

  1. Transcriptional Regulation of the orf19 Gene and the tir-cesT-eae Operon of Enteropathogenic Escherichia coli

    PubMed Central

    Sánchez-SanMartín, Claudia; Bustamante, Víctor H.; Calva, Edmundo; Puente, José Luis

    2001-01-01

    To establish an intimate interaction with the host epithelial cell surface, enteropathogenic Escherichia coli (EPEC) produces Tir, a bacterial protein that upon translocation and insertion into the epithelial cell membrane constitutes the receptor for intimin. The tir gene is encoded by the locus for enterocyte effacement (LEE), where it is flanked upstream by orf19 and downstream by the cesT and eae genes. With the use of a series of cat transcriptional fusions and primer extension analysis, we confirmed that tir, cesT, and eae form the LEE5 operon, which is under the control of a promoter located upstream from tir, and found that the orf19 gene is transcribed as a monocistronic unit. We also demonstrated that the LEE-encoded regulator Ler was required for efficient activation of both the tir and the orf19 promoters and that a sequence motif located between positions −204 and −157 was needed for the Ler-dependent activation of the tir operon. Sequence elements located between positions −204 and −97 were determined to be required for the differential negative modulatory effects exerted by unknown regulatory factors under specific growth conditions. Upon deletion of the upstream sequences, the tir promoter was fully active even in the absence of Ler, indicating that tir expression is subject to a repression mechanism that is counteracted by this regulatory protein. However, its full activation was still repressed by growth in rich medium or at 25°C, suggesting that negative regulation also occurs at or downstream of the promoter. Expression of orf19, but not of the tir operon, became Ler independent in an hns mutant strain, suggesting that Ler overcomes the repression exerted by H-NS (histone-like nucleoid structuring protein) on this gene. PMID:11292802

  2. Anaerobic Toluene Catabolism of Thauera aromatica: the bbs Operon Codes for Enzymes of β Oxidation of the Intermediate Benzylsuccinate

    PubMed Central

    Leuthner, Birgitta; Heider, Johann

    2000-01-01

    The pathway of anaerobic toluene oxidation to benzoyl coenzyme A (benzoyl-CoA) consists of an initial reaction catalyzed by benzylsuccinate synthase, a glycyl radical enzyme adding the methyl group of toluene to the double bond of a fumarate cosubstrate, and a subsequent β-oxidation pathway of benzylsuccinate. Benzylsuccinate synthase has been studied in some detail, whereas the enzymes participating in β oxidation of benzylsuccinate are unknown. We have investigated these enzymes by analyzing substrate-induced proteins in toluene-grown cells. Toluene-induced proteins were identified and N-terminally sequenced. Nine of these proteins are encoded by an 8.5-kb operon consisting of bbs (beta-oxidation of benzylsuccinate) genes whose products are apparently involved in the β-oxidation pathway of benzylsuccinate. Two of the genes, bbsE and bbsF, code for the subunits of a succinyl-CoA:benzylsuccinate CoA-transferase whose activity was previously detected in toluene-grown Thauera aromatica. The bbsG gene codes for a specific benzylsuccinyl-CoA dehydrogenase, as confirmed by overexpression of the gene in Escherichia coli and detection of enzyme activity. The further enzymes of the pathway are probably encoded by bbsH (enoyl-CoA hydratase), bbsCD (3-hydroxyacyl-CoA dehydrogenase), and bbsB (3-oxoacyl-CoA thiolase). The operon contains two additional genes, bbsA and bbsI, for which no obvious function could be derived. The bbs operon is expressed only in toluene-grown cells and is regulated at the transcriptional level. Promoter mapping revealed a transcription start site upstream of the bbsA gene. This represents the first known promoter site in Thauera spp. PMID:10629170

  3. Population Heterogeneity of Salmonella enterica Serotype Typhimurium Resulting from Phase Variation of the lpf Operon In Vitro and In Vivo

    PubMed Central

    Kingsley, Robert A.; Weening, Eric H.; Keestra, A. Marijke; Bäumler, Andreas J.

    2002-01-01

    The lpf fimbrial operon oscillates between phase ON and phase OFF expression states, thereby generating heterogeneity within S. enterica serotype Typhimurium populations with regard to expression of long polar fimbrial antigens. To determine whether the proportion of lpf phase variants changes with growth conditions, the lpf phase ON content of cultures was determined after in vitro and in vivo passage. After passage in Luria-Bertani (LB) broth for 120 generations, 96% of cells in a serotype Typhimurium culture carried the lpf operon in the phase ON expression state, regardless of the phase ON/OFF ratio in the inoculum. In contrast, a culture passaged on LB agar plates for 500 generations contained approximately 2% lpf phase ON cells. Differences in the lpf phase ON content of cultures passaged in broth and on plates were not caused by an outgrowth of lpf phase ON or lpf phase OFF cells, since deletion of lpf biosynthesis genes did not alter the phase ON/OFF ratio attained after passage. Instead, growth in LB broth resulted in a eightfold increase in the phase OFF-to-ON transition frequency and a decrease of the lpf phase ON-to-OFF transition frequency by a factor of 150 compared to growth on LB agar plates. After infection of naïve CBA/J mice with an lpf phase ON culture of serotype Typhimurium, the proportion of lpf phase ON cells continuously decreased over time, regardless of whether the strain carried intact fimbrial biosynthesis genes. These data suggest that elaboration of fimbriae does not have a major influence on the population heterogeneity produced by phase variation of the lpf operon in naïve mice. PMID:11948147

  4. Population heterogeneity of Salmonella enterica serotype Typhimurium resulting from phase variation of the lpf operon in vitro and in vivo.

    PubMed

    Kingsley, Robert A; Weening, Eric H; Keestra, A Marijke; Bäumler, Andreas J

    2002-05-01

    The lpf fimbrial operon oscillates between phase ON and phase OFF expression states, thereby generating heterogeneity within S. enterica serotype Typhimurium populations with regard to expression of long polar fimbrial antigens. To determine whether the proportion of lpf phase variants changes with growth conditions, the lpf phase ON content of cultures was determined after in vitro and in vivo passage. After passage in Luria-Bertani (LB) broth for 120 generations, 96% of cells in a serotype Typhimurium culture carried the lpf operon in the phase ON expression state, regardless of the phase ON/OFF ratio in the inoculum. In contrast, a culture passaged on LB agar plates for 500 generations contained approximately 2% lpf phase ON cells. Differences in the lpf phase ON content of cultures passaged in broth and on plates were not caused by an outgrowth of lpf phase ON or lpf phase OFF cells, since deletion of lpf biosynthesis genes did not alter the phase ON/OFF ratio attained after passage. Instead, growth in LB broth resulted in a eightfold increase in the phase OFF-to-ON transition frequency and a decrease of the lpf phase ON-to-OFF transition frequency by a factor of 150 compared to growth on LB agar plates. After infection of naïve CBA/J mice with an lpf phase ON culture of serotype Typhimurium, the proportion of lpf phase ON cells continuously decreased over time, regardless of whether the strain carried intact fimbrial biosynthesis genes. These data suggest that elaboration of fimbriae does not have a major influence on the population heterogeneity produced by phase variation of the lpf operon in naïve mice. PMID:11948147

  5. Identification and Characterization of a Streptococcus pyogenes Operon Involved in Binding of Hemoproteins and Acquisition of Iron

    PubMed Central

    Bates, Christopher S.; Montañez, Griselle E.; Woods, Charles R.; Vincent, Rebecca M.; Eichenbaum, Zehava

    2003-01-01

    The hemolytic Streptococcus pyogenes can use a variety of heme compounds as an iron source. In this study, we investigate hemoprotein utilization by S. pyogenes. We demonstrate that surface proteins contribute to the binding of hemoproteins to S. pyogenes. We identify an ABC transporter from the iron complex family named sia for streptococcal iron acquisition, which consists of a lipoprotein (siaA), membrane permease (siaB), and ATPase (siaC). The sia transporter is part of a highly conserved, iron regulated, 10-gene operon. SiaA, which was localized to the cell membrane, could specifically bind hemoglobin. The operon's first gene encodes a novel bacterial protein that bound hemoglobin, myoglobin, heme-albumin, and hemoglobin-haptoglobin (but not apo-haptoglobin) and therefore was named Shr, for streptococcal hemoprotein receptor. PhoZ fusion and Western blot analysis showed that Shr has a leader peptide and is found in both membrane-bound and soluble forms. An M1 SF370 strain with a polar mutation in shr was more resistant to streptonigrin and hydrogen peroxide, suggesting decreased iron uptake. The addition of hemoglobin to the culture medium increased cell resistance to hydrogen peroxide in SF370 but not in the mutant, implying the sia operon may be involved in hemoglobin-dependent resistance to oxidative stress. The shr mutant demonstrated reduced hemoglobin binding, though cell growth in iron-depleted medium supplemented with hemoglobin, whole blood, or ferric citrate was not affected, suggesting additional systems are involved in hemoglobin utilization. SiaA and Shr are the first hemoprotein receptors identified in S. pyogenes; their possible role in iron capture is discussed. PMID:12595414

  6. Properties of the P-Type ATPases Encoded by the copAP Operons of Helicobacter pylori and Helicobacter felis

    PubMed Central

    Bayle, Denis; Wängler, Sabine; Weitzenegger, Thomas; Steinhilber, Wolfram; Volz, Jürgen; Przybylski, Michael; Schäfer, Klaus P.; Sachs, George; Melchers, Klaus

    1998-01-01

    The cop operons of Helicobacter pylori and Helicobacter felis were cloned by gene library screening. Both operons contain open reading frames for a P-type ion pump (CopA) with homology to Cd2+ and Cu2+ ATPases and a putative ion binding protein (CopP), the latter representing a CopZ homolog of the copYZAB operon of Enterococcus hirae. The predicted CopA ATPases contained an N-terminal GMXCXXC ion binding motif and a membrane-associated CPC sequence. A synthetic N-terminal peptide of the H. pylori CopA ATPase bound to Cu2+ specifically, and gene disruption mutagenesis of CopA resulted in an enhanced growth sensitivity of H. pylori to Cu2+ but not to other divalent cations. As determined experimentally, H. pylori CopA contains four pairs of transmembrane segments (H1 to H8), with the ATP binding and phosphorylation domains lying between H6 and H7, as found for another putative transition metal pump of H. pylori (K. Melchers, T. Weitzenegger, A. Buhmann, W. Steinhilber, G. Sachs, and K. P. Schäfer, J. Biol. Chem. 271:446–457, 1996). The corresponding transmembrane segments of the H. felis CopA pump were identified by hydrophobicity analysis and via sequence similarity. To define functional domains, similarly oriented regions of the two enzymes were examined for sequence identity. Regions with high degrees of identity included the N-terminal Cu2+ binding domain, the regions of ATP binding and phosphorylation in the energy transduction domain, and a transport domain consisting of the last six transmembrane segments with conserved cysteines in H4, H6, and H7. The data suggest that H. pylori and H. felis employ conserved mechanisms of ATPase-dependent copper resistance. PMID:9440521

  7. Combinatorial Regulation of the dev Operon by MrpC2 and FruA during Myxococcus xanthus Development

    PubMed Central

    Campbell, Ashleigh; Viswanathan, Poorna; Barrett, Terry; Son, Bongjun; Saha, Shreya

    2014-01-01

    Proper expression of the dev operon is important for normal development of Myxococcus xanthus. When starved, these bacteria coordinate their gliding movements to build mounds that become fruiting bodies as some cells differentiate into spores. Mutations in the devTRS genes impair sporulation. Expression of the operon occurs within nascent fruiting bodies and depends in part on C signaling. Here, we report that expression of the dev operon, like that of several other C-signal-dependent genes, is subject to combinatorial control by the transcription factors MrpC2 and FruA. A DNA fragment upstream of the dev promoter was bound by a protein in an extract containing MrpC2, protecting the region spanning positions −77 to −54. Mutations in this region impaired binding of purified MrpC2 and abolished developmental expression of reporter fusions. The association of MrpC2 and/or its longer form, MrpC, with the dev promoter region depended on FruA in vivo, based on chromatin immunoprecipitation analysis, and purified FruA appeared to bind cooperatively with MrpC2 to DNA just upstream of the dev promoter in vitro. We conclude that cooperative binding of the two proteins to this promoter-proximal site is crucial for dev expression. 5′ deletion analysis implied a second upstream positive regulatory site, which corresponded to a site of weak cooperative binding of MrpC2 and FruA and boosted dev expression 24 h into development. This site is unique among the C-signal-dependent genes studied so far. Deletion of this site in the M. xanthus chromosome did not impair sporulation under laboratory conditions. PMID:25349159

  8. Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression.

    PubMed Central

    Lu, Y; Turner, R J; Switzer, R L

    1995-01-01

    Expression of the Bacillus subtilis pyr operon is regulated by exogenous pyrimidines and the protein product of the first gene of the operon, PyrR. It has been proposed that PyrR mediates transcriptional attenuation at three untranslated segments of the operon (R.J. Turner, Y. Lu, and R.L. Switzer, J. Bacteriol., 176:3708-3722, 1994). In this study, transcriptional fusions of the pyr promoter followed by the pyr attenuation sequences, either individually or in tandem to a lacZ reporter gene, were used to examine the physiological functions of all three attenuators through their ability to affect beta-galactosidase expression. These fusions were studied as chromosomal integrants in various B. subtilis strains to examine the entire range of control by pyrimidines, PyrR dependence, amd developmental control of pyr gene expression. The nutritional regulation of each attenuator separately was roughly equivalent to that of the other two and was totally dependent upon PyrR, and that of tandem attenuators was cumulative. The regulation of a fusion of the spac promoter followed by the pyrP:pyrB intercistronic region to lacZ produced results similar to those obtained with the corresponding fusion containing the pyr promoter, demonstrating that attenuator-dependent regulation is independent of the promoter. Extreme pyrimidine starvation gave rise to two- to threefold-higher levels of expression of a pyr-lacZ fusion that lacked attenuators, independent of PyrR, than were obtained with cells that were not starved. Increased expression of a similar spac-lacZ fusion during pyrimidine starvation was also observed, however, indicating that attenuator-independent regulation is not a specific property of the pyr operon. Conversion of the initiator AUG codon in a small open reading frame in the pyrP:pyrB intercistronic region to UAG reduced expression by about half but did not alter regulation by pyrimidines, which excludes the possibility of a coupled transcription

  9. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans.

    PubMed Central

    Malki, S; Saimmaime, I; De Luca, G; Rousset, M; Dermoun, Z; Belaich, J P

    1995-01-01

    )-dependent NADP reductase activity disappeared completely in extracts from SM3. These results indicate that the hnd operon actually encodes an NAdP-reducing hydrogenase in D. fructosovorans. PMID:7751270

  10. Regulation of expression of the ilvB operon in Salmonella typhimurium.

    PubMed

    Weinberg, R A; Burns, R O

    1984-12-01

    The ilvB gene of Salmonella typhimurium encodes the valine-sensitive form of acetohydroxy acid synthase, acetohydroxy acid synthase I, which catalyzes the first step in the parallel biosynthesis of isoleucine and valine. Although nearly all of the other genes involved in this pathway are clustered at minute 83, ilvB was found to lie at minute 80.5. Expression of ilvB was shown to be nearly completely repressed by the end products leucine and valine. Studies in which we used strains with mutations in cya (adenylate cyclase) and crp (cAMP receptor protein) demonstrated that synthesis of acetohydroxy acid synthase I is enhanced by the cAMP-cAMP receptor protein complex. Although no stimulation was achieved by growth on poor carbon sources, introduction of crp on a multicopy plasmid led to markedly increased expression. Strains of S. typhimurium lacking valine-resistant acetohydroxy acid synthase II (ilvG) are like Escherichia coli K-12 in that they are not able to grow in the presence of L-valine owing to a conditional isoleucine auxotrophy. The valine toxicity of these ilvG mutants of S. typhimurium was overcome by increasing the level of acetohydroxy acid synthase I. Enzyme activity could be elevated either by maximally derepressing expression with severe leucine limitation, by introduction of either ilvB or crp on a multicopy plasmid, or by the presence of the ilv-513 mutation. This mutation, which is closely linked to genes encoding the phosphoenol pyruvate:sugar phosphotransferase system (pts), causes highly elevated expression of ilvB that is refractory to repression by leucine and valine, as is the major ilv operon. The response of ilvB to the cAMP-cAMP receptor protein complex was not affected by this lesion. Data obtained by using this mutant led us to propose that the two modes of regulation act independently. We also present some evidence which suggests that ilvB expression may be affected by the phosphoenol pyruvate:sugar phosphotransferase system. PMID

  11. Characterization of TRAP-mediated regulation of the B. subtilis trp operon using in vitro transcription and transcriptional reporter fusions in vivo.

    PubMed

    McAdams, Natalie M; Gollnick, Paul

    2015-01-01

    In Bacillus subtilis, transcription of the tryptophan biosynthetic operon is regulated by an attenuation mechanism involving two alternative RNA secondary structures in the 5' leader region upstream of the structural genes. Regulation is accomplished, at least in part, by controlling which RNA structure forms during transcription of the operon. When intracellular tryptophan levels are high, the trp RNA-binding attenuation protein (TRAP) binds to the nascent trp mRNA to promote formation of a transcription terminator structure so as to induce transcription termination prior to the structural genes. In limiting tryptophan, TRAP does not bind, the alternative antiterminator RNA structure forms, and the operon is transcribed. Several in vitro and in vivo assays have been utilized to study TRAP-mediated regulation of both transcription and translation. Here, we describe using in vitro transcription attenuation assays and in vivo trp-lacZ fusions to examine TRAP-mediated regulation of the trp genes. PMID:25579595

  12. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes.

    PubMed

    Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2008-12-31

    CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts. PMID:18824088

  13. Regulation of hexuronate system genes in Escherichia coli K-12: multiple regulation of the uxu operon by exuR and uxuR gene products.

    PubMed Central

    Robert-Baudouy, J; Portalier, R; Stoeber, F

    1981-01-01

    New regulatory mutants of Escherichia coli K-1 carrying alterations of the uxuR gene were isolated and characterized. In the presence of superrepressed or derepressed uxuR mutations, mannonic hydrolyase (uxuA) and oxidoreductase relationship analyses suggested that the uxuR gene product acted as a repressor in the control of uxuA-uxuB operon expression. uxuR mutations were localized near min 97, and the following gene order was established: (argH)-uxuR-uxuB-uxuA-(thr). Properties of exuR (point and deletion) mutants showed that both exuR and uxuR regulatory gene products were involved in the control of the uxuA uxuB operon. Analysis of exuR uxuR double-derepressed mutants suggested that exuR and uxuR repressors act cooperatively to repress the uxu operon. PMID:7007313

  14. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis.

    PubMed

    Quintard, Kévin; Dewitte, Amélie; Reboul, Angéline; Madec, Edwige; Bontemps-Gallo, Sébastien; Dondeyne, Jacqueline; Marceau, Michaël; Simonet, Michel; Lacroix, Jean-Marie; Sebbane, Florent

    2015-09-01

    The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥ 37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary. PMID:26150539

  15. Nitrate and nitrite-mediated transcription antitermination control of nasF (nitrate assimilation) operon expression in Klebsiella pheumoniae M5al.

    PubMed

    Lin, J T; Stewart, V

    1996-03-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Nitrate is converted through nitrite to ammonium by assimilatory nitrate and nitrite reductase, respectively. Enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon of K. pneumoniae; nasF operon expression is subject to both general nitrogen control and pathway-specific nitrate/nitrite induction, mediated by the NtrC and NasR proteins, respectively. Sequence inspection revealed a presumptive sigmaN (sigma54)-dependent promoter as well as two presumptive upstream NtrC protein binding sites. Site-specific mutational and primer extension analyses confirmed the identity of the sigmaN-dependent promoter. Deletions removing the apparent NtrC protein binding sites greatly reduced NtrC-dependent regulation, indicating that these sites are involved in general nitrogen control. However, deletions removing most of the sequence upstream of the promoter had little effect on nitrate/nitrite regulation, suggesting that the nasF leader region is involved in nitrate/nitrite regulation. The 119 nucleotide long transcribed leader region contains an apparent factor-independent transcription terminator. Promoter replacement experiments demonstrated that the leader region is involved in nitrate/nitrite regulation of nasF operon expression. Deletions removing the transcription terminator structure resulted in a nitrate-blind constitutive phenotype, indicating that the transcription terminator structure serves a negative function. Other deletions, removing proximal portions of the leader region, resulted in an uninducible phenotype, indicating that this region serves a positive function. These results indicate that nitrate/nitrite regulation of nasF operon expression is determined by a transcription attenuation mechanism. We hypothesize that in the absence of nitrate or nitrite, the terminator structure abrogates transcription readthrough into the nasF operon. In the

  16. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis

    PubMed Central

    Quintard, Kévin; Dewitte, Amélie; Reboul, Angéline; Madec, Edwige; Bontemps-Gallo, Sébastien; Dondeyne, Jacqueline; Marceau, Michaël; Simonet, Michel

    2015-01-01

    The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary. PMID:26150539

  17. Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin.

    PubMed Central

    Webb, R; Reddy, K J; Sherman, L A

    1990-01-01

    The molecular chaperonins such as GroEL are now widely regarded as essential components for the stabilization of integral membrane or secretory proteins before membrane insertion or translocation, as well as for the assembly of macromolecular complexes such as ribulose bisphosphate carboxylase-oxygenase. The groESL operon of Synechococcus sp. strain PCC 7942 was cloned as two independent lacZ-groEL translational fusions by immunoscreening a lambda ZAP genomic expression library and then sequenced. The derived amino acid sequences of the GroES and GroEL proteins demonstrated very high levels of amino acid identity with cognate chaperonins from bacteria and chloroplasts. The bicistronic 2.4-kilobase transcript from this operon, barely detectable in RNA preparations from cells grown at 30 degrees C, accumulated approximately 120-fold in preparations from cells grown for 20 min at 45 degrees C. Under these conditions, GroEL protein accumulated to 10-fold-higher levels. Primer extension analysis was used to identify a cyanobacterial heat shock promoter located at -81 base pairs from the groES initiation codon. The transcriptional -10 and -35 sequences differ slightly from Escherichia coli consensus heat shock promoter sequences. Images PMID:1975581

  18. The rate of TRAP binding to RNA is crucial for transcription attenuation control of the B. subtilis trp operon.

    PubMed

    Barbolina, Maria V; Kristoforov, Roman; Manfredo, Amanda; Chen, Yanling; Gollnick, Paul

    2007-07-27

    The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic and transport genes in Bacillus subtilis in response to changes in the levels of intracellular tryptophan. Transcription of the trpEDCFBA operon is controlled by an attenuation mechanism involving two overlapping RNA secondary structures in the 5' leader region of the trp transcript; TRAP binding promotes formation of a transcription terminator structure that halts transcription prior to the structural genes. TRAP consists of 11 identical subunits and is activated to bind RNA by binding up to 11 molecules of L-tryptophan. The TRAP binding site in the leader region of the trp operon mRNA consists of 11 (G/U)AG repeats. We examined the importance of the rate of TRAP binding to RNA for the transcription attenuation mechanism. We compared the properties of two types of TRAP 11-mers: homo-11-mers composed of 11 wild-type subunits, and hetero-11-mers with only one wild-type subunit and ten mutant subunits defective in binding either RNA or tryptophan. The hetero-11-mers bound RNA with only slightly diminished equilibrium binding affinity but with slower on-rates as compared to WT TRAP. The hetero-11-mers showed significantly decreased ability to induce transcription termination in the trp leader region when examined using an in vitro attenuation system. Together these results indicate that the rate of TRAP binding to RNA is a crucial factor in TRAP's ability to control attenuation. PMID:17555767

  19. Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon.

    PubMed

    Sharma, Shraddha; Gollnick, Paul

    2014-05-01

    An 11-subunit protein called trp RNA binding Attenuation Protein (TRAP) controls attenuation of the tryptophan biosynthetic (trpEDCFBA) operon in Bacillus subtilis. Tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the 5' leader region of trp mRNAs, and downregulates expression of the operon by promoting transcription termination prior to the structural genes. Anti-TRAP (AT) is an antagonist that binds to tryptophan-activated TRAP and prevents TRAP from binding to RNA, thereby upregulating expression of the trp genes. AT forms trimers, and multiple trimers bind to a TRAP 11mer. It is not known how many trimers must bind to TRAP in order to interfere with RNA binding. Studies of isolated TRAP and AT showed that AT can prevent TRAP from binding to the trp leader RNA but cannot dissociate a pre-formed TRAP-RNA complex. Here, we show that AT can prevent TRAP-mediated termination of transcription by inducing dissociation of TRAP from the nascent RNA when it has bound to fewer than all 11 (G/U)AG repeats. The 5'-most region of the TRAP binding site in the nascent transcript is most susceptible to dissociation from TRAP. We also show that one AT trimer bound to TRAP 11mer reduces the affinity of TRAP for RNA and eliminates TRAP-mediated transcription termination in vitro. PMID:24682818

  20. The operon for cytokinin biosynthesis of Erwinia herbicola pv. gypsophilae contains two promoters and is plant induced.

    PubMed

    Guo, M; Manulis, S; Barash, I; Lichter, A

    2001-12-01

    The operon for cytokinin biosynthesis in the gall-forming bacterium Erwinia herbicola pv. gypsophilae (Ehg) has been previously shown to reside on an indigenous plasmid (pPATH(Ehg)) that is mandatory for pathogenicity. This operon consists of two genes: the first open reading frame (pre-etz) is of unknown function, whereas the second one (etz) encodes for isopentenyl transferase. Northern hybridization performed with the wild-type strain Ehg824-1 grown in Luria-Bertani broth demonstrated two transcripts of which an etz-specific transcript (1.0 kb) was predominant. Fusion of upstream DNA fragments of both pre-etz and etz to the ice nucleation reporter gene inaZ in pVSP61 showed high ice nucleation activity in both cultures, confirming the presence of two independent promoters. An increase of 1-1.5 orders in transcriptional activity of these promoters was observed following inoculation of gypsophila cuttings. Mutants of Ehg824-1 were generated by insertion of inaZ into pre-etz and etz using the transposon reporter Tn3-Spice. An increase of about two orders in transcriptional activity was recorded with both mutants following inoculation of gypsophila or bean cuttings. A similar induction was also observed when the bacteria were applied to the leaf surface of these plants. Unlike other virulence genes present on the pPATH(Ehg), neither pre-etz nor etz was regulated by the adjacent hrp gene cluster. PMID:11822839

  1. LOV Histidine Kinase Modulates the General Stress Response System and Affects the virB Operon Expression in Brucella abortus

    PubMed Central

    Sycz, Gabriela; Carrica, Mariela Carmen; Tseng, Tong-Seung; Bogomolni, Roberto A.; Briggs, Winslow R.; Goldbaum, Fernando A.; Paris, Gastón

    2015-01-01

    Brucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach. From results of bacterial two-hybrid assays and phosphotransfer experiments we demonstrate that LOVHK functionally interacts with two response regulators: PhyR and LovR, constituting a functional two-component signal-transduction system. LOVHK contributes to the activation of the General Stress Response (GSR) system in Brucella via PhyR, while LovR is proposed to be a phosphate-sink for LOVHK, decreasing its phosphorylation state. We also show that in the absence of LOVHK the expression of the virB operon is down-regulated. In conclusion, our results suggest that LOVHK positively regulates the GSR system in vivo, and has an effect on the expression of the virB operon. The proposed regulatory network suggests a similar role for LOVHK in other microorganisms. PMID:25993430

  2. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes.

    PubMed Central

    Blomqvist, K; Nikkola, M; Lehtovaara, P; Suihko, M L; Airaksinen, U; Stråby, K B; Knowles, J K; Penttilä, M E

    1993-01-01

    The genes involved in the 2,3-butanediol pathway coding for alpha-acetolactate decarboxylase, alpha-acetolactate synthase (alpha-ALS), and acetoin (diacetyl) reductase were isolated from Klebsiella terrigena and shown to be located in one operon. This operon was also shown to exist in Enterobacter aerogenes. The budA gene, coding for alpha-acetolactate decarboxylase, gives in both organisms a protein of 259 amino acids. The amino acid similarity between these proteins is 87%. The K. terrigena genes budB and budC, coding for alpha-ALS and acetoin reductase, respectively, were sequenced. The 559-amino-acid-long alpha-ALS enzyme shows similarities to the large subunits of the Escherichia coli anabolic alpha-ALS enzymes encoded by the genes ilvB, ilvG, and ilvI. The K. terrigena alpha-ALS is also shown to complement an anabolic alpha-ALS-deficient E. coli strain for valine synthesis. The 243-amino-acid-long acetoin reductase has the consensus amino acid sequence for the insect-type alcohol dehydrogenase/ribitol dehydrogenase family and has extensive similarities with the N-terminal and internal regions of three known dehydrogenases and one oxidoreductase. Images PMID:8444801

  3. Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation.

    PubMed Central

    Beier, D; Spohn, G; Rappuoli, R; Scarlato, V

    1997-01-01

    We identified a novel stress-responsive operon (sro) of Helicobacter pylori that contains seven genes which are likely to be involved in cellular functions as diverse as chemotaxis, heat shock response, ion transport, and posttranslational protein modification. The products of three of these genes show amino acid homologies to known proteins, such as the flagellar motor switch protein CheY, a class of heat shock proteins, and the ribosomal protein L11 methyltransferase, and to a phosphatidyltransferase. In addition to containing an open reading frame of unknown function, the product of which is predicted to be membrane associated, the sro locus contains three open reading frames that have previously been described as constituting two separate loci, the ftsH gene and the copAP operon of H. pylori. Knockout mutants showed that CheY is essential for bacterial motility and that CopA, but not CopP, relieves copper toxicity. Transcriptional analyses indicated that this locus is regulated by a single promoter and that a positive effect on transcription is exerted by the addition of copper to the medium and by temperature upshift from 37 to 45 degrees C. The possible role of this locus in H. pylori virulence is discussed. PMID:9244252

  4. Genotypic and phenotypic diversity of Pediococcus pentosaceus strains isolated from food matrices and characterisation of the penocin operon.

    PubMed

    Martino, Maria Elena; Maifreni, Michela; Marino, Marilena; Bartolomeoli, Ingrid; Carraro, Lisa; Fasolato, Luca; Cardazzo, Barbara

    2013-05-01

    Lactic acid bacteria (LAB) are widely used in the food industry. Pediococcus spp. belong to the LAB group and include several species that are essential for the quality of fermented food. Pediococcus pentosaceus is the species that is most frequently isolated from fermented food and beverages but its uncontrolled growth during food fermentation processes can contribute to undesired flavours. Hence, the characterisation of these bacteria at the strain level is of great importance for the quality of fermented products. Despite their importance, misidentification at the species level is common for members of the genus Pediococcus. To clarify the taxonomic relationships among strains, a multilocus sequencing approach was developed for the characterisation of a collection of 29 field strains, 1 type strain and 1 reference strain of P. pentosaceus isolated from food. These strains were also tested for several phenotypic properties of technological interest and for the production of bacteriocins. The chromosomal operon involved in the synthesis of the bacteriocin penocin was also investigated. The present study enabled a good genomic characterisation, identifying 17 sequence types, with an overview of phenotypic characteristics related to different technological abilities, and also provides a thorough characterisation of the operon involved in penocin production. PMID:23444039

  5. Novel Twin Streptolysin S-Like Peptides Encoded in the sag Operon Homologue of Beta-Hemolytic Streptococcus anginosus

    PubMed Central

    Tabata, Atsushi; Nakano, Kota; Ohkura, Kazuto; Tomoyasu, Toshifumi; Kikuchi, Ken; Whiley, Robert A.

    2013-01-01

    Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci. PMID:23292771

  6. rpoD operon promoter used by sigma/sup H/-RNA polymerase in Bacillus subtilis

    SciTech Connect

    Carter, H.L. III; Wang, L.F.; Doi, R.H.; Moran, C.P. Jr.

    1988-04-01

    Three promoters direct transcription of the sigA (rpoD) operon in Bacillus subtilis. Promoters P1 and P2 are used during the exponential growth phase, whereas P3 is used only during the stationary phase. We examined the use of these promoters in promoter-probe plasmids and found that expression from P3 was prevented by a mutation in spoOH, which encodes the secondary RNA polymerase sigma factor sigma/sup H/. Moreover, we found that sigma/sup H/-containing RNA polymerase efficiently and accurately used the P3 promoter in vitro. Evidently, this operon, which is essential for exponential growth, is transcribed during the early phase of sporulation by this secondary form of RNA polymerase. Comparison of the nucleotide sequences of the P3 promoter and the spoVG promoter, which also is used by ..beta../sup H/-RNA polymerase, revealed sequences at the -10 and -35 regions of these promoters that may signal recognition of promoters by sigma/sup H/-RNA polymerase.

  7. The mitochondrial genome and ribosomal operon of Brachycladium goliath (Digenea: Brachycladiidae) recovered from a stranded minke whale.

    PubMed

    Briscoe, Andrew G; Bray, Rodney A; Brabec, Jan; Littlewood, D T J

    2016-06-01

    Members of the Brachycladiidae are known to cause pathologies implicated in cetacean strandings and it is important to develop accurate diagnostic markers to differentiate these and other helminths found in cetaceans. Brachycladium goliath (van Beneden, 1858) is a large trematode found, as adults, usually in the hepatic (bile) and pancreatic ducts of various cetaceans. Complete sequences were determined for the entire mitochondrial genome, and phylogenetically informative nuclear genes contained within the ribosomal operon, from a small piece of an individual worm taken from a common minke whale Balaenoptera acutorostrata Lacépède, 1804. Genomic DNA was sequenced using an Illumina MiSeq platform. The mtDNA is 15,229 bp in length consisting of 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 2 non-coding regions of which the larger is comprised of 4 tandemly repeated units (260 bp each). The ribosomal RNA operon is 9297 bp long. These data provide a rich resource of molecular markers for diagnostics, phylogenetics and population genetics in order to better understand the role, and associated pathology of helminth infections in cetaceans. PMID:26883466

  8. Glucose lowers CRP* levels resulting in repression of the lac operon in cells lacking cAMP.

    PubMed

    Tagami, H; Inada, T; Kunimura, T; Aiba, H

    1995-07-01

    CRP-cAMP-dependent operons of Escherichia coli can be expressed in cells lacking functional adenylate cyclase when they carry a second-site mutation in the crp gene (crp*). It is known that the expression of these operons is repressed by glucose, but the molecular mechanism underlying this cAMP-independent catabolite repression has been a long-standing mystery. Here we address the question of how glucose inhibits the expression of beta-galactosidase in the absence of cAMP. We have isolated several mutations in the crp gene that confer a CRP* phenotype. The expression of beta-galactosidase is reduced by glucose in cells carrying these mutations. Using Western blotting and/or SDS-PAGE analysis, we demonstrate that glucose lowers the cellular concentration of CRP* through a reduction in crp* mRNA levels. The level of CRP* protein correlates with beta-galactosidase activity. When the crp promoter is replaced with the bla promoter, the inhibitory effect of glucose on crp* expression is virtually abolished. These data strongly suggest that the lowered level of CRP* caused by glucose mediates catabolite repression in cya- crp* cells and that the autoregulatory circuit of the crp gene is involved in the down-regulation of CRP* expression by glucose. PMID:7494474

  9. Renibacterium salmoninarum isolates from different sources possess two highly conserved copies of the rRNA operon .

    PubMed

    Grayson, T H; Alexander, S M; Cooper, L F; Gilpin, M L

    2000-07-01

    The nucleotide sequences of the rRNA genes and the 5' flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5' leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S-23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S-5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries. PMID:11016696

  10. Glucitol-specific enzymes of the phosphotransferase system in Escherichia coli. Nucleotide sequence of the gut operon.

    PubMed

    Yamada, M; Saier, M H

    1987-04-25

    The complete nucleotide sequence of the glucitol (gut) operon in Escherichia coli has been determined. The glucitol-specific Enzyme II and Enzyme III of the phosphoenolpyruvate:sugar phosphotransferase system as well as glucitol-6-phosphate dehydrogenase which are encoded by the gutA, gutB, and gutD genes of the gut operon, respectively, are predicted to consist of 506 (Mr = 54,018), 123 (Mr = 13,306), and 259 (Mr = 27,866) amino acyl residues, respectively. The hydropathic profile of the Enzyme IIgut revealed 7 or 8 long hydrophobic segments which may traverse the cell membrane as alpha-helices as well as 2 or 4 short strongly hydrophobic stretches which may traverse the membrane as beta-structure. The number of amino acyl residues in the sum of the molecular weights of the glucitol Enzyme II-III pair are nearly the same as those of the mannitol Enzyme II. The ratio of hydrophobic to hydrophilic amino acyl residues and the numbers of the hydrophobic segments are also nearly the same for both transport systems. However, no significant homology was found in the nucleotide or amino acyl sequences of the two systems. Glucitol-6-phosphate dehydrogenase was found to exhibit sequence homology with ribitol dehydrogenase. A repetitive extragenic palindromic sequence was found in the 3'-flanking region of the gutD gene, suggesting the presence of a gene downstream from the gutD gene. PMID:3553176

  11. Effects of Mutations in the Pseudomonas putida miaA Gene: Regulation of the trpE and trpGDC Operons in P. putida by Attenuation

    PubMed Central

    Olekhnovich, Igor; Gussin, Gary N.

    2001-01-01

    Tn5 insertion mutants defective in regulation of the Pseudomonas putida trpE and trpGDC operons by tryptophan were found to contain insertions in the P. putida miaA gene, whose product (in Escherichia coli) modifies tRNATrp and is required for attenuation. Nucleotide sequences upstream of trpE and trpG encode putative leader peptides similar in sequence to leader peptides found in other bacterial species, and the phenotypes of the mutants strongly suggest that transcription of these operons is regulated solely by attenuation. PMID:11325956

  12. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    ABSTRACT In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans

  13. Structure, expression, and regulation of the kilC operon of promiscuous IncP alpha plasmids.

    PubMed Central

    Larsen, M H; Figurski, D H

    1994-01-01

    The kil-kor regulon was first identified on the broad-host-range IncP alpha plasmid RK2 by the presence of multiple kil loci (kilA, kilB, kilC, and recently kilE) that are lethal to Escherichia coli host cells in the absence of regulation by kor functions in various combinations. Whereas the kilB operon is required for mating-pair formation during conjugation, the functions encoded by the other kil loci are not known. They are not essential for replication or conjugal transfer, but their coregulation with replication and transfer genes indicates that they are likely to be important for RK2. In this report, we describe molecular and genetic studies on kilC. We determined the nucleotide sequence of the kilC region, which is located between the origin of vegetative replication (oriV) and transposon Tn1 on RK2. Primer extension analysis identified the transcriptional start site and showed that a sequence corresponding to a strong sigma 70 promoter is functional. The abundance of RNA initiated from the kilC promoter is reduced in the presence of korA and korC, as predicted from genetic analysis of kilC regulation. The first gene of the kilC operon (klcA) is sufficient to express the host-lethal phenotype of the kilC determinant in the absence of korA and korC. By comparing RK2 to the related IncP alpha plasmids pUZ8 and R995, we determined that the Tn1 transposon in RK2 interrupts a gene (klcB) immediately downstream of klcA. Thus, the kilC determinant is normally part of an autoregulated operon of three genes: klcA, klcB, and korC. klcA is predicted to encode a 15,856-Da polypeptide that is related to the ArdB antirestriction protein of the IncN plasmid pKM101, suggesting a role for klcA in the broad host ranges of IncP alpha plasmids. The predicted product of the uninterrupted klcB gene is a polypeptide of 51,133 Da that contains a segment with significant similarity to the RK2 regulatory proteins KorA and TrbA. Located 145 bp upstream of the kilC promoter is a 10th

  14. Genetic analysis of the virE operon of the Agrobacterium Ti plasmid pTiA6.

    PubMed

    McBride, K E; Knauf, V C

    1988-04-01

    The virE operon of the Agrobacterium tumefaciens Ti plasmid pTiA6 encodes at least one trans-acting protein involved in the expression of virulence. Two open reading frames designated virE1 and virE2 code for polypeptides of 7 and 60 kilodaltons (kDa), respectively, that can be visualized after expression in Escherichia coli minicells. To determine which virE sequences are required for virulence, a strain deleted for the entire locus [strain KE1(pTiA6 delta E)] was constructed and tested for the ability to be complemented by subclones with and without site-directed mutations in the virE operon. One subclone containing only virE1 and virE2 as well as upstream promoter sequences was sufficient to restore full virulence on the host plant Kalanchoe daigremontiana. However, some other virulence locus representing a host range determinant appeared to be deleted from strain KE1(pTiA6 delta E), since virE1 and virE2 were not sufficient to fully restore virulence on wounded tomato plants. virE operon constructs with specific lesions in either virE1 or virE2 were impaired for complementation of pTiA6 delta E. Several mutations specific for the promoter-proximal virE1 locus appeared to have a polar effect on expression of the virE2-encoded 60-kDa protein. However, virE2::lacZ fusion constructs suggest that this effect is not at the level of transcription or translation. Collectively, these data indicate that both the 7- and the 60-kDa polypeptides are virulence determinants for the Ti plasmid pTiA6 and suggest that the 60-kDa protein may be less stable in the absence of the 7-kDa protein. PMID:2832362

  15. Detection of pap, sfa, afa, foc, and fim Adhesin-Encoding Operons in Uropathogenic Escherichia coli Isolates Collected From Patients With Urinary Tract Infection

    PubMed Central

    Rahdar, Masoud; Rashki, Ahmad; Miri, Hamid Reza; Rashki Ghalehnoo, Mehdi

    2015-01-01

    Background: Uropathogenic Escherichia coli (UPEC) with its virulence factors is the most prevalent cause of urinary tract infection (UTI). Objectives; This study aimed to determine the occurrence of fim, pap, sfa, and afa genes among 100 UPEC isolates collected from patients diagnosed with UTI. Materials and Methods A total of 100 UPEC isolates were obtained from urine samples of patients with UTI. The prevalence of 5 virulence genes encoding type 1 fimbriae (fimH), pili associated with pyelonephritis (pap), S and F1C fimbriae (sfa and foc) and afimbrial adhesins (afa) were determined through PCR method. We also investigated the phylogenetic background of all isolates. In addition, the distribution of adhesin-encoding operons between the phylogroups was assessed. Results: The prevalence of genes encoding for fimbrial adhesive systems was 95% for fim, 57% for pap, 16% for foc, and 81% for sfa. The operons encoding for afa afimbrial adhesins were identified in 12% of isolates. The various combinations of detected genes were designated as virulence patterns. The fim gene, which occurred in strains from all phylogenetic groups (A, B1, B2, and D) was evaluated and no significant differences were found among these groups. Conversely, significant differences were observed in relation to pap, afa, foc, and sfa operons. Conclusions: These results indicate that the PCR method is a powerful genotypic assay for the detection of adhesin-encoding operons. Thus, this assay can be recommended for clinical use to detect virulent urinary E. coli strains, as well as epidemiological studies. PMID:26464770

  16. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.

    PubMed

    Solem, Christian; Koebmann, Brian; Jensen, Peter R

    2008-05-01

    The lactose transporter and beta-galactosidase from Streptococcus thermophilus, encoded by the lacSZ operon, were introduced into the lactose-negative strain Lactococcus lactis MG1363 and the expression of the lacSZ operon was modulated by substitution of the native promoter with randomized synthetic promoters. A series of strains with various expression levels of lacSZ were examined for their fermentation of lactose. Strains with a high expression level were found to metabolize lactose in a similar manner to S. thermophilus, i.e. the galactose moiety of lactose was excreted to the growth medium and only glucose was metabolized in glycolysis. Interestingly, strains with low expression of the operon showed a mixed acid metabolism and co-metabolism of galactose and glucose. The lactose flux increased gradually with increasing expression of the lacSZ operon until an optimum was observed at intermediate beta-galactosidase activities of 2000-3000 Miller units. At higher expression levels, the flux decreased. These strains had a glycolytic flux comparable with those of reference strains with the standard lactococcal PTS(lac) (lactose phosphotransferase transport system) lactose transporter, which indicates that lactose transport is not rate-limiting for glycolysis in Lactococcus. Finally, an additional ATP drain was introduced into the fastest growing strain, CS2004, to test whether the ATP demand controlled glycolysis under these conditions, but in fact no increase in glycolytic flux was observed. PMID:17822381

  17. Bistability and hysteresis in epigenetic regulation of the lactose operon. Since Delbrück, a long series of ignored models.

    PubMed

    Laurent, M; Charvin, G; Guespin-Michel, J

    2005-12-14

    Bistability is the capacity of a system to switch in an "all-or-none" manner between alternative steady states. This powerful concept originates from the analysis of non-linear equations driving open systems. It is one of the various patterns of regulation associated with a particular class of dynamic structures that Glansdorff and Prigogine baptised "dissipative structures". The idea of discontinuous transitions between alternative states was first formulated much earlier, by Delbrück, in 1949. Cohn and Horibata and Novick and Weiner confirmed that such transitions occur in experiments on the lactose operon carried out ten years later. Modelling with non-linear differential equations made it possible to simulate the dynamic behaviour of the lac operon, and modelling by asynchronous logical analysis elucidated the determinant role played by positive feedback circuits in the emergence of multistationarity. Nevertheless, these studies were largely ignored until the recent demonstration of the hysteretic nature of the bistable transition between alternative states of the lac operon. As originally suggested by Delbrück, the pattern of lactose consumption adopted by the bacterium is controlled epigenetically rather than genetically: the true key determinant is the direction of change of an environmental variable with respect to the structural components of the operon. PMID:16359608

  18. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon.

    PubMed

    Prokhorova, Irina V; Osterman, Ilya A; Burakovsky, Dmitry E; Serebryakova, Marina V; Galyamina, Maria A; Pobeguts, Olga V; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G; Govorun, Vadim M; Bogdanov, Alexey A; Sergiev, Petr V; Dontsova, Olga A

    2013-01-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show--using proteomic analysis and dual fluorescence reporter in vivo assays--that m(2)G966 and m(5)C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m(2)G966 and m(5)C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon. PMID:24241179

  19. nasST, two genes involved in the induction of the assimilatory nitrite-nitrate reductase operon (nasAB) of Azotobacter vinelandii.

    PubMed

    Gutierrez, J C; Ramos, F; Ortner, L; Tortolero, M

    1995-11-01

    An operon including two new genes (nasS and nasT) has been defined, cloned and sequenced. The deduced NASS protein is homologous to NRTA from Synechococcus sp. and to NASF from Klebsiella pneumoniae, two proteins involved in nitrate uptake. The predicted NAST polypeptide is homologous to the regulator proteins of the two-component regulatory systems. NASS plays a negative regulatory role in the synthesis of the nitrate and nitrite reductase. NAST is required for the expression of the nitrite-nitrate reductase operon (nasAB). Expression of the nasST operon is not under the control of the NTR system and is not regulated by the nitrogen source. A Phi(nasA-lacZ) fusion has been used to analyse expression of the nasAB operon in three different genetic backgrounds with altered nitrate reductase activity. Beta-galactosidase activity in two of them was independent of nitrate but in a mutant unable to reduce nitrate, nas-4, it was normally induced by nitrate. PMID:8748040

  20. Three of Four GlnR Binding Sites Are Essential for GlnR-Mediated Activation of Transcription of the Amycolatopsis mediterranei nas Operon

    PubMed Central

    Wang, Ying; Wang, Jing-Zhi; Shao, Zhi-Hui; Yuan, Hua; Lu, Yin-Hua; Jiang, Wei-Hong

    2013-01-01

    In Amycolatopsis mediterranei U32, genes responsible for nitrate assimilation formed one operon, nasACKBDEF, whose transcription is induced by the addition of nitrate. Here, we characterized GlnR as a direct transcriptional activator for the nas operon. The GlnR-protected DNA sequences in the promoter region of the nas operon were characterized by DNase I footprinting assay, the previously deduced Streptomyces coelicolor double 22-bp GlnR binding consensus sequences comprising a1, b1, a2, and b2 sites were identified, and the sites were then mutated individually to test their roles in both the binding of GlnR in vitro and the GlnR-mediated transcriptional activation in vivo. The results clearly showed that only three GlnR binding sites (a1, b1, and b2 sites) were required by GlnR for its specific binding to the nas promoter region and efficient activation of the transcription of the nas operon in U32, while the a2 site seemed unnecessary. PMID:23543714

  1. Newly Identified Cytochrome c Oxidase Operon in the Nitrogen-Fixing Cyanobacterium Anabaena sp. Strain PCC 7120 Specifically Induced in Heterocysts

    PubMed Central

    Jones, Kathryn M.; Haselkorn, Robert

    2002-01-01

    Two operons have been cloned from Anabaena sp. strain PCC 7120 DNA, each of which encodes the three core subunits of distinct mitochondrial-type cytochrome c oxidases. The two operons are only 72 to 85% similar to one another at the nucleotide level in the most conserved subunit. One of these, coxBACII, is induced >20-fold in the middle to late stages of heterocyst differentiation. Analysis of green fluorescent protein reporters indicates that this operon is expressed specifically in proheterocysts and heterocysts. The other operon, coxBACI, is induced only 2.5-fold following nitrogen step-down and is expressed in all cells. Surprisingly, a disruption mutant of coxAII, the gene encoding subunit I of the heterocyst-specific oxidase, grows normally in the absence of combined nitrogen. It is likely that coxBACI and/or two other putative terminal oxidases present in the Anabaena sp. strain PCC 7120 genome are able to compensate for the loss of the heterocyst-specific oxidase in providing ATP for nitrogen fixation and maintaining a low oxygen level in heterocysts. PMID:11948164

  2. An ArsR/SmtB Family Member Is Involved in the Regulation by Arsenic of the Arsenite Oxidase Operon in Thiomonas arsenitoxydans

    PubMed Central

    Moinier, Danielle; Slyemi, Djamila; Byrne, Deborah; Lignon, Sabrina; Lebrun, Régine; Talla, Emmanuel

    2014-01-01

    The genetic organization of the aioBA operon, encoding the arsenite oxidase of the moderately acidophilic and facultative chemoautotrophic bacterium Thiomonas arsenitoxydans, is different from that of the aioBA operon in the other arsenite oxidizers, in that it encodes AioF, a metalloprotein belonging to the ArsR/SmtB family. AioF is stabilized by arsenite, arsenate, or antimonite but not molybdate. Arsenic is tightly attached to AioF, likely by cysteine residues. When loaded with arsenite or arsenate, AioF is able to bind specifically to the regulatory region of the aio operon at two distinct positions. In Thiomonas arsenitoxydans, the promoters of aioX and aioB are convergent, suggesting that transcriptional interference occurs. These results indicate that the regulation of the aioBA operon is more complex in Thiomonas arsenitoxydans than in the other aioBA containing arsenite oxidizers and that the arsenic binding protein AioF is involved in this regulation. On the basis of these data, a model to explain the tight control of aioBA expression by arsenic in Thiomonas arsenitoxydans is proposed. PMID:25107975

  3. Decaffeination and measurement of caffeine content by addicted Escherichia coli with a refactored N-demethylation operon from Pseudomonas putida CBB5.

    PubMed

    Quandt, Erik M; Hammerling, Michael J; Summers, Ryan M; Otoupal, Peter B; Slater, Ben; Alnahhas, Razan N; Dasgupta, Aurko; Bachman, James L; Subramanian, Mani V; Barrick, Jeffrey E

    2013-06-21

    The widespread use of caffeine (1,3,7-trimethylxanthine) and other methylxanthines in beverages and pharmaceuticals has led to significant environmental pollution. We have developed a portable caffeine degradation operon by refactoring the alkylxanthine degradation (Alx) gene cluster from Pseudomonas putida CBB5 to function in Escherichia coli. In the process, we discovered that adding a glutathione S-transferase from Janthinobacterium sp. Marseille was necessary to achieve N 7 -demethylation activity. E. coli cells with the synthetic operon degrade caffeine to the guanine precursor, xanthine. Cells deficient in de novo guanine biosynthesis that contain the refactored operon are ″addicted″ to caffeine: their growth density is limited by the availability of caffeine or other xanthines. We show that the addicted strain can be used as a biosensor to measure the caffeine content of common beverages. The synthetic N-demethylation operon could be useful for reclaiming nutrient-rich byproducts of coffee bean processing and for the cost-effective bioproduction of methylxanthine drugs. PMID:23654268

  4. Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon

    NASA Astrophysics Data System (ADS)

    Prokhorova, Irina V.; Osterman, Ilya A.; Burakovsky, Dmitry E.; Serebryakova, Marina V.; Galyamina, Maria A.; Pobeguts, Olga V.; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G.; Govorun, Vadim M.; Bogdanov, Alexey A.; Sergiev, Petr V.; Dontsova, Olga A.

    2013-11-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show - using proteomic analysis and dual fluorescence reporter in vivo assays - that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  5. THE PRIMARY STARCH UTILIZATION OPERON IN THE OBLIGATE ANAEROBE BACTEROIDES FRAGILIS IS REGULATED BY CARBON SOURCE AND OXYGEN, AND EXPRESSION IS IMPORTANT FOR SURVIVAL DURING OXIDATIVE STRESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The obligate anaerobe Bacteroides fragilis is a commensal organism of the human large intestine where it utilizes both dietary and host-derived polysaccharides as a source of carbon and energy. This study describes the characterization of a novel operon, designated oxygen-induced starch utilization...

  6. Mutational analysis of regulatory cis-acting elements for the transcriptional activation of the dmsCBA operon in Rhodobacter sphaeroides f. sp. denitrificans.

    PubMed

    Yamamoto, I; Ujiiye, T; Ohshima, Y; Satoh, T

    2001-07-01

    Four direct repeats of a 10-nt sequence, called dms boxes, are located upstream of the dmsCBA operon encoding dimethyl sulfoxide (DMSO) reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. Two dms boxes 1 and 2 have been shown to be binding sites of DmsR protein, a response regulator of a two-component system involved in the anaerobic induction by DMSO of DMSO reductase synthesis. In this study, functions of four dms boxes in the transcriptional regulation of the dmsCBA operon were investigated. The transcription start site of the dmsCBA genes was identified at the distance of 23 nt downstream of the closest dms box 4. Expression of the dmsC-lacZ gene fusion which included the dmsCBA promoter region containing the dms boxes was examined and its anaerobic induction by DMSO and DmsR-dependency were demonstrated in the phototroph. The examination with nucleotide substitutions in the four respective dms boxes showed that the set of four dms boxes is required for the dmsCBA operon activation. Moreover, the importance of the nucleotide sequence of TTCAC in dms box 4 and of A at the center in dms box 1 was significantly shown. These facts suggest that the pentad nucleotides TTCAC and TTAAC in the dms boxes serve as cis-acting elements in the transcriptional activation of the dmsCBA operon. PMID:11479376

  7. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products.

    PubMed

    Stoebel, Daniel M; Dean, Antony M; Dykhuizen, Daniel E

    2008-03-01

    Transcriptional regulatory networks allow bacteria to express proteins only when they are needed. Adaptive hypotheses explaining the evolution of regulatory networks assume that unneeded expression is costly and therefore decreases fitness, but the proximate cause of this cost is not clear. We show that the cost in fitness to Escherichia coli strains constitutively expressing the lactose operon when lactose is absent is associated with the process of making the lac gene products, i.e., associated with the acts of transcription and/or translation. These results reject the hypotheses that regulation exists to prevent the waste of amino acids in useless protein or the detrimental activity of unnecessary proteins. While the cost of the process of protein expression occurs in all of the environments that we tested, the expression of the lactose permease could be costly or beneficial, depending on the environment. Our results identify the basis of a single selective pressure likely acting across the entire E. coli transcriptome. PMID:18245823

  8. Cloning of the cnr operon into a strain of Bacillaceae bacterium for the development of a suitable biosorbent.

    PubMed

    Fosso-Kankeu, Elvis; Mulaba-Bafubiandi, Antoine F; Piater, Lizelle A; Tlou, Matsobane G

    2016-07-01

    In this study, a potential microbial biosorbent was engineered to improve its capacity to remediate heavy metal contaminated water resources. A Bacillaceae bacterium isolated from a mining area was transformed with a plasmid carrying the (pECD312)-based cnr operon that encodes nickel and cobalt resistance. The bioadsorption ability of the transformed strain was evaluated for removal of nickel from metallurgical water relative to the wildtype strain. Results showed that transformation improved the adsorption capacity of the bacterium by 37 % at nickel concentrations equivalent to 150 mg/L. Furthermore it was possible to apply prediction modelling to study the bioadsorption behaviour of the transformed strain. As such, this work may be extended to the design of a nickel bioremediation plant utilising the newly developed Bacillaceae bacterium as a biosorbent. PMID:27263009

  9. [Biological and physico-chemical properties of Yersinia pseudotuberculosis bacterial culture having the fra-operon Yersinia pestis].

    PubMed

    Byvalov, A A; Gavrilov, K E; Krupin, V V; Chebotarev, E V; Zheludkova, E V; Drubkov, V I; Smirnov, A E; Mal'kov, V N; Dupiasheva, T Iu; Pechenkin, D V; Bondarev, V P

    2008-01-01

    The biological and physico-chemical properties of cultures of two isogenous recombinant variants of Yersinia pseudotuberculosis were studied. The cell genomes of the cultures are distinguished from one another only by the presence or by the absence of the fra-operon, which is a determined attribute of the plague microbe capsule-forming process. The expression of the attribute is amplified by rising the microbial biomass cultivation temperature and stimulates the decrease in the viability of the bacteria and adaptation potential in vitro. In the warm-blooded owner organism the microbes of the capsule-forming recombinant variant are characterized by the greater residual pathogenicity and immunogenic ability to the experimental plague of the laboratory animals as compared to the reference-variant cells. These specific features could be explained by more expressed colonizing ability of the capsule-forming microbes provided by owner cells' stability to the phagocyte process. PMID:18368776

  10. Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon.

    PubMed

    Lopes, J M; Lawther, R P

    1989-01-01

    It has been previously demonstrated that the ilvGMEDA operon is expressed in vivo from the promoters ilvGp2 and ilvEp. An additional internal promoter is identified and designated ilvAp. This internal promoter, which allows independent expression of ilvA, has been analyzed both in vivo and in vitro. Our results indicate that: (1) ilvAp exists in both Escherichia coli K-12 and Salmonella typhimurium, as demonstrated by fusion to the galK reporter gene; (2) ilvAp is located in the distal coding sequence of ilvD; (3) the ilvAp sequences are not identical for these two bacterial species; (4) transcription from ilvAp of E. coli K-12 was demonstrated; (5) expression from ilvAp responds to the availability of oxygen; (6) potential 3' 5'-cyclic AMP receptor protein binding sites exist adjacent to ilvAp. PMID:2473940

  11. Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog.

    PubMed

    Hardham, J M; Stamm, L V; Porcella, S F; Frye, J G; Barnes, N Y; Howell, J K; Mueller, S L; Radolf, J D; Weinstock, G M; Norris, S J

    1997-09-15

    We have characterized a 5.2-kilobase (kb) putative transport related operon (tro) locus of Treponema pallidum subsp. pallidum (Nichols strain) (Tp) encoding six proteins: TroA, TroB, TroC, TroD, TroR and Phosphoglycerate mutase (Pgm). Four of these gene products (TroA-TroD) are homologous to members of the ATP-Binding Cassette (ABC) superfamily of bacterial transport proteins. TroA (previously identified as Tromp1) has significant sequence similarity to a family of Gram-negative periplasmic substrate-binding proteins and to a family of streptococcal proteins that may have dual roles as substrate binding proteins and adhesins. TroB is homologous to the ATP-binding protein component, whereas TroC and TroD are related to the hydrophobic membrane protein components of ABC transport systems. TroR is similar to Gram-positive iron-activated repressor proteins (DesR, DtxR, IdeR, and SirR). The last open reading frame (ORF) of the tro operon encodes a protein that is highly homologous to the glycolytic pathway enzyme, Pgm. Primer extension results demonstrated that the tro operon is transcribed from a sigma 70-type promoter element. Northern analysis and reverse transcriptase-polymerase chain reactions provided evidence for the presence of a primary 1-kb troA transcript and a secondary, less abundant, troA-pgm transcript. The tro operon is flanked by a Holliday structure DNA helicase homolog (upstream) and two ORFs representing a purine nucleoside phosphorylase homolog and tpp15, a previously characterized gene encoding a membrane lipoprotein (downstream). The presence of a complex operon containing a putative ABC transport system and a DtxR homolog indicates a possible linkage between transport and gene regulation in Tp. PMID:9332349

  12. MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1

    PubMed Central

    2013-01-01

    Background Magnetotactic bacteria produce membrane-enveloped magnetite crystals (magnetosomes) whose formation is controlled primarily by a gene island termed the magnetosome island (MAI). Characterization of single gene and operon function in MAI has elucidated in part the genetic basis of magnetosome formation. The mamX gene, located in the mamXY operon, is highly conserved in the MAI of all Magnetospirillum strains studied to date. Little is known regarding the function of mamX in the process of biomineralization. Results A mamX deletion mutant (∆mamX) and its complemented strain (CmamX) by conjugation in M. gryphiswaldense strain MSR-1 were constructed. There were no striking differences in cell growth among ∆mamX, CmamX, and wild-type strain (WT). ∆mamX displayed a much weaker magnetic response than WT. Transmission electron microscopy revealed the presence of irregular, superparamagnetic magnetite particles in ∆mamX, in contrast to regular, single-domain particles in WT and CmamX. The phenotype of ∆mamX was similar to that of an ftsZ-like deleted mutant and mamXY operon deleted mutant reported previously. Quantitative real-time RT-PCR (qPCR) results indicated that the deletion of mamX had differential effects on the transcription levels of the other three genes in the operon. Conclusions The MamX protein plays an important role in controlling magnetosome size, maturation, and crystal form. The four MamXY proteins appear to have redundant functions involved in magnetosome formation. Our findings provide new insights into the coordinated function of MAI genes and operons in magnetosome formation. PMID:24020498

  13. The AbrB2 Autorepressor, Expressed from an Atypical Promoter, Represses the Hydrogenase Operon To Regulate Hydrogen Production in Synechocystis Strain PCC6803

    PubMed Central

    Dutheil, Jérémy; Saenkham, Panatda; Sakr, Samer; Leplat, Christophe; Ortega-Ramos, Marcia; Bottin, Hervé; Cournac, Laurent; Cassier-Chauvat, Corinne

    2012-01-01

    We have thoroughly investigated the abrB2 gene (sll0822) encoding an AbrB-like regulator in the wild-type strain of the model cyanobacterium Synechocystis strain PCC6803. We report that abrB2 is expressed from an active but atypical promoter that possesses an extended −10 element (TGTAATAT) that compensates for the absence of a −35 box. Strengthening the biological significance of these data, we found that the occurrence of an extended −10 promoter box and the absence of a −35 element are two well-conserved features in abrB2 genes from other cyanobacteria. We also show that AbrB2 is an autorepressor that is dispensable to cell growth under standard laboratory conditions. Furthermore, we demonstrate that AbrB2 also represses the hox operon, which encodes the Ni-Fe hydrogenase of biotechnological interest, and that the hox operon is weakly expressed even though it possesses the two sequences resembling canonical −10 and −35 promoter boxes. In both the AbrB2-repressed promoters of the abrB2 gene and the hox operon, we found a repeated DNA motif [TT-(N5)-AAC], which could be involved in AbrB2 repression. Supporting this hypothesis, we found that a TT-to-GG mutation of one of these elements increased the activity of the abrB2 promoter. We think that our abrB2-deleted mutant with increased expression of the hox operon and hydrogenase activity, together with the reporter plasmids we constructed to analyze the abrB2 gene and the hox operon, will serve as useful tools to decipher the function and the regulation of hydrogen production in Synechocystis. PMID:22865847

  14. Sensitivity and Specificity of an Operon Immunochromatographic Test in Serum and Whole-Blood Samples for the Diagnosis of Trypanosoma cruzi Infection in Spain, an Area of Nonendemicity

    PubMed Central

    Flores-Chavez, María; Cruz, Israel; Nieto, Javier; Gárate, Teresa; Navarro, Miriam; Pérez-Ayala, Ana; López-Vélez, Rogelio

    2012-01-01

    Trypanosoma cruzi infection is an imported parasitic disease in Spain, and the majority of infected individuals are in the chronic phase of the disease. This study evaluated the sensitivity and specificity of the Operon immunochromatographic test (ICT-Operon; Simple Stick Chagas and Simple Chagas WB [whole blood]; Operon S.A., Spain) for different biological samples. Well-characterized serum samples were obtained from chagasic patients (n = 63), nonchagasic individuals (n = 95), visceral leishmaniasis patients (n = 38), and malaria patients (n = 55). Noncharacterized specimens were obtained from Latin American immigrants and individuals at risk with a clinical and/or epidemiological background: these specimens were recovered serum or plasma samples (n = 450), whole peripheral blood (n = 94), and capillary blood (n = 282). The concordance of the results by enzyme-linked immunosorbent assay and indirect immunofluorescence test was considered to be the “gold standard” for diagnosis. Serum and plasma samples were analyzed by Stick Chagas, and whole blood was analyzed by Simple Chagas WB. The sensitivity and specificity of the ICT-Operon in well-characterized samples were 100% and 97.9%, respectively. No cross-reactivity was found with samples obtained from visceral leishmaniasis patients. In contrast, a false-positive result was obtained in 27.3% of samples from malaria patients. The sensitivities of the rapid test in noncharacterized serum or plasma, peripheral blood, and capillary blood samples were 100%, 92.1%, and 86.4%, respectively, while the specificities were 91.6%, 93.6%, and 95% in each case. ICT-Operon showed variable sensitivity, depending on the kind of sample, performing better when serum or plasma samples were used. It could therefore be used for serological screening combined with any other conventional test. PMID:22761296

  15. A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    NASA Astrophysics Data System (ADS)

    Tadmor, Arbel

    2009-03-01

    In this work a biophysical model of Escherichia coli is presented that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity.

  16. A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    PubMed Central

    Tadmor, Arbel D.; Tlusty, Tsvi

    2008-01-01

    We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity. PMID:18437222

  17. Mannitol-1-Phosphate Dehydrogenase (MtlD) Is Required for Mannitol and Glucitol Assimilation in Bacillus subtilis: Possible Cooperation of mtl and gut Operons

    PubMed Central

    Watanabe, Shouji; Hamano, Miyuki; Kakeshita, Hiroshi; Bunai, Keigo; Tojo, Shigeo; Yamaguchi, Hirotake; Fujita, Yasutaro; Wong, Sui-Lam; Yamane, Kunio

    2003-01-01

    We found that mannitol-1-phosphate dehydrogenase (MtlD), a component of the mannitol-specific phosphotransferase system, is required for glucitol assimilation in addition to GutR, GutB, and GutP in Bacillus subtilis. Northern hybridization of total RNA and microarray studies of RNA from cells cultured on glucose, mannitol, and glucitol indicated that mannitol as the sole carbon source induced hyperexpression of the mtl operon, whereas glucitol induced both mtl and gut operons. The B. subtilis mtl operon consists of mtlA (encoding enzyme IICBAmt1) and mtlD, and its transcriptional regulator gene, mtlR, is located 14.4 kb downstream from the mtl operon on the chromosome. The mtlA, mtlD, and mtlR mutants disrupted by the introduction of the pMUTin derivatives MTLAd, MTLDd, and MTLRd, respectively, could not grow normally on either mannitol or glucitol. However, the growth of MTLAd on glucitol was enhanced by IPTG (isopropyl-β-d-thiogalactopyranoside). This mutant has an IPTG-inducible promoter (Pspac promoter) located in mtlA, and this site corresponds to the upstream region of mtlD. Insertion mutants of mtlD harboring the chloramphenicol resistance gene also could not grow on either mannitol or glucitol. In contrast, an insertion mutant of mtlA could grow on glucitol but not on mannitol in the presence or absence of IPTG. MtlR bound to the promoter region of the mtl operon but not to a DNA fragment containing the gut promoter region. PMID:12897001

  18. Genetic Dissection of the mamAB and mms6 Operons Reveals a Gene Set Essential for Magnetosome Biogenesis in Magnetospirillum gryphiswaldense

    PubMed Central

    Lohße, Anna; Borg, Sarah; Raschdorf, Oliver; Kolinko, Isabel; Tompa, Éva; Pósfai, Mihály; Faivre, Damien; Baumgartner, Jens

    2014-01-01

    Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB, and mamXY operons. Here, we demonstrate that the five previously uncharacterized genes of the mms6 operon have crucial functions in the regulation of magnetosome biomineralization that partially overlap MamF and other proteins encoded by the adjacent mamGFDC operon. While all other deletions resulted in size reduction, elimination of either mms36 or mms48 caused the synthesis of magnetite crystals larger than those in the wild type (WT). Whereas the mms6 operon encodes accessory factors for crystal maturation, the large mamAB operon contains several essential and nonessential genes involved in various other steps of magnetosome biosynthesis, as shown by single deletions of all mamAB genes. While single deletions of mamL, -P, -Q, -R, -B, -S, -T, and -U showed phenotypes similar to those of their orthologs in a previous study in the related M. magneticum, we found mamI and mamN to be not required for at least rudimentary iron biomineralization in M. gryphiswaldense. Thus, only mamE, -L, -M, -O, -Q, and -B were essential for formation of magnetite, whereas a mamI mutant still biomineralized tiny particles which, however, consisted of the nonmagnetic iron oxide hematite, as shown by high-resolution transmission electron microscopy (HRTEM) and the X-ray absorption near-edge structure (XANES). Based on this and previous studies, we propose an extended model for magnetosome biosynthesis in M. gryphiswaldense. PMID:24816605

  19. A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile.

    PubMed

    Knight, Daniel R; Androga, Grace O; Ballard, Susan A; Howden, Benjamin P; Riley, Thomas V

    2016-01-01

    In the last decade, Clostridium difficile infection (CDI) has reached an epidemic state with increasing incidence and severity in both health care and community settings. Vancomycin is an important first-line therapy for CDI, and the emergence of resistance would have significant clinical consequences. In this study, we describe for the first time a vanB2 vancomycin resistance operon in C. difficile, isolated from an Australian veal calf at slaughter. The operon was carried on an ~42-kb element showing significant homology and synteny to Tn1549, a conjugative transposon linked with the emergence and global dissemination of vancomycin-resistant enterococci (VRE). Notably, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly as a result of an aberrant vanRB gene. As observed for other anaerobic species of the animal gut microbiota, C. difficile may be a reservoir of clinically important vancomycin resistance genes. IMPORTANCE In an era when the development of new antimicrobial drugs is slow, vancomycin remains the preferred antimicrobial therapy for Clostridium difficile infection (CDI), the most important health care-related infection in the world today. The emergence of resistance to vancomycin would have significant consequences in relation to treating patients with CDI. In this paper, we describe for the first time a complete set of vancomycin resistance genes in C. difficile. The genes were very similar to genes found in vancomycin-resistant enterococci (VRE) that were associated with the emergence and global dissemination of this organism. Fortunately, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly because of a small difference in one gene. However, this observation signals that we may be very close to seeing a fully vancomycin-resistant strain of C. difficile. PMID:27536735

  20. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes.

    PubMed

    Qaisar, Uzma; Luo, Liming; Haley, Cecily L; Brady, Sean F; Carty, Nancy L; Colmer-Hamood, Jane A; Hamood, Abdul N

    2013-01-01

    The Pseudomonas aeruginosa fimbrial structures encoded by the cup gene clusters (cupB and cupC) contribute to its attachment to abiotic surfaces and biofilm formation. The P. aeruginosa pvcABCD gene cluster encodes enzymes that synthesize a novel isonitrile functionalized cumarin, paerucumarin. Paerucumarin has already been characterized chemically, but this is the first report elucidating its role in bacterial biology. We examined the relationship between the pvc operon and the cup gene clusters in the P. aeruginosa strain MPAO1. Mutations within the pvc genes compromised biofilm development and significantly reduced the expression of cupB1-6 and cupC1-3, as well as different genes of the cupB/cupC two-component regulatory systems, roc1/roc2. Adjacent to pvc is the transcriptional regulator ptxR. A ptxR mutation in MPAO1 significantly reduced the expression of the pvc genes, the cupB/cupC genes, and the roc1/roc2 genes. Overexpression of the intact chromosomally-encoded pvc operon by a ptxR plasmid significantly enhanced cupB2, cupC2, rocS1, and rocS2 expression and biofilm development. Exogenously added paerucumarin significantly increased the expression of cupB2, cupC2, rocS1 and rocS2 in the pvcA mutant. Our results suggest that pvc influences P. aeruginosa biofilm development through the cup gene clusters in a pathway that involves paerucumarin, PtxR, and different cup regulators. PMID:23646138

  1. The pvc Operon Regulates the Expression of the Pseudomonas aeruginosa Fimbrial Chaperone/Usher Pathway (Cup) Genes

    PubMed Central

    Qaisar, Uzma; Luo, Liming; Haley, Cecily L.; Brady, Sean F.; Carty, Nancy L.; Colmer-Hamood, Jane A.; Hamood, Abdul N.

    2013-01-01

    The Pseudomonas aeruginosa fimbrial structures encoded by the cup gene clusters (cupB and cupC) contribute to its attachment to abiotic surfaces and biofilm formation. The P. aeruginosa pvcABCD gene cluster encodes enzymes that synthesize a novel isonitrile functionalized cumarin, paerucumarin. Paerucumarin has already been characterized chemically, but this is the first report elucidating its role in bacterial biology. We examined the relationship between the pvc operon and the cup gene clusters in the P. aeruginosa strain MPAO1. Mutations within the pvc genes compromised biofilm development and significantly reduced the expression of cupB1-6 and cupC1-3, as well as different genes of the cupB/cupC two-component regulatory systems, roc1/roc2. Adjacent to pvc is the transcriptional regulator ptxR. A ptxR mutation in MPAO1 significantly reduced the expression of the pvc genes, the cupB/cupC genes, and the roc1/roc2 genes. Overexpression of the intact chromosomally-encoded pvc operon by a ptxR plasmid significantly enhanced cupB2, cupC2, rocS1, and rocS2 expression and biofilm development. Exogenously added paerucumarin significantly increased the expression of cupB2, cupC2, rocS1 and rocS2 in the pvcA mutant. Our results suggest that pvc influences P. aeruginosa biofilm development through the cup gene clusters in a pathway that involves paerucumarin, PtxR, and different cup regulators. PMID:23646138

  2. Expression, crystallization and preliminary diffraction studies of the Pseudomonas putida cytochrome P450cam operon repressor CamR

    SciTech Connect

    Maenaka, Katsumi; Fukushi, Kouji; Aramaki, Hironori; Shirakihara, Yasuo

    2005-08-01

    The P. putida cytochrome P450cam operon repressor CamR has been expressed in E. coli and crystallized in space group P2{sub 1}2{sub 1}2. The Pseudomonas putida cam repressor (CamR) is a homodimeric protein that binds to the camO DNA operator to inhibit the transcription of the cytochrome P450cam operon camDCAB. CamR has two functional domains: a regulatory domain and a DNA-binding domain. The binding of the inducer d-camphor to the regulatory domain renders the DNA-binding domain unable to bind camO. Native CamR and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. Native CamR was crystallized under the following conditions: (i) 12–14% PEG 4000, 50 mM Na PIPES, 0.1 M KCl, 1% glycerol pH 7.3 at 288 K with and without camphor and (ii) 1.6 M P{sub i}, 50 mM Na PIPES, 2 mM camphor pH 6.7 at 278 K. The selenomethionyl derivative CamR did not crystallize under either of these conditions, but did crystallize using 12.5% PEG MME 550, 25 mM Na PIPES, 2.5 mM MgCl{sub 2} pH 7.3 at 298 K. Preliminary X-ray diffraction studies revealed the space group to be orthorhombic (P2{sub 1}2{sub 1}2), with unit-cell parameters a = 48.0, b = 73.3, c = 105.7 Å. Native and selenomethionyl derivative data sets were collected to 3 Å resolution at SPring-8 and the Photon Factory.

  3. The ompB Operon Partially Determines Differential Expression of OmpC in Salmonella typhi and Escherichia coli

    PubMed Central

    Martínez-Flores, Irma; Cano, Roxana; Bustamante, Víctor H.; Calva, Edmundo; Puente, José Luis

    1999-01-01

    Expression of the Escherichia coli OmpC and OmpF outer membrane proteins is regulated by the osmolarity of the culture media. In contrast, expression of OmpC in Salmonella typhi is not influenced by osmolarity, while OmpF is regulated as in E. coli. To better understand the lack of osmoregulation of OmpC expression in S. typhi, we compared the expression of the ompC gene in S. typhi and E. coli, using ompC-lacZ fusions and outer membrane protein (OMP) electrophoretic profiles. S. typhi ompC expression levels in S. typhi were similar at low and high osmolarity along the growth curve, whereas osmoregulation of E. coli ompC in E. coli was observed during the exponential phase. Both genes were highly expressed at high and low osmolarity when present in S. typhi, while expression of both was regulated by osmolarity in E. coli. Complementation experiments with either the S. typhi or E. coli ompB operon in an S. typhi ΔompB strain carrying the ompC-lacZ fusions showed that both S. typhi and E. coli ompC were not regulated by osmolarity when they were under the control of S. typhi ompB. Interestingly, in the same strain, both genes were osmoregulated under E. coli ompB. Surprisingly, in E. coli ΔompB, they were both osmoregulated under S. typhi or E. coli ompB. Thus, the lack of osmoregulation of OmpC expression in S. typhi is determined in part by the ompB operon, as well as by other unknown trans-acting elements present in S. typhi. PMID:9882670

  4. A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Androga, Grace O.; Ballard, Susan A.; Howden, Benjamin P.

    2016-01-01

    ABSTRACT In the last decade, Clostridium difficile infection (CDI) has reached an epidemic state with increasing incidence and severity in both health care and community settings. Vancomycin is an important first-line therapy for CDI, and the emergence of resistance would have significant clinical consequences. In this study, we describe for the first time a vanB2 vancomycin resistance operon in C. difficile, isolated from an Australian veal calf at slaughter. The operon was carried on an ~42-kb element showing significant homology and synteny to Tn1549, a conjugative transposon linked with the emergence and global dissemination of vancomycin-resistant enterococci (VRE). Notably, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly as a result of an aberrant vanRB gene. As observed for other anaerobic species of the animal gut microbiota, C. difficile may be a reservoir of clinically important vancomycin resistance genes. IMPORTANCE In an era when the development of new antimicrobial drugs is slow, vancomycin remains the preferred antimicrobial therapy for Clostridium difficile infection (CDI), the most important health care-related infection in the world today. The emergence of resistance to vancomycin would have significant consequences in relation to treating patients with CDI. In this paper, we describe for the first time a complete set of vancomycin resistance genes in C. difficile. The genes were very similar to genes found in vancomycin-resistant enterococci (VRE) that were associated with the emergence and global dissemination of this organism. Fortunately, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly because of a small difference in one gene. However, this observation signals that we may be very close to seeing a fully vancomycin-resistant strain of C. difficile. PMID:27536735

  5. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    PubMed

    Feinauer, Christoph; Szurmant, Hendrik; Weigt, Martin; Pagnani, Andrea

    2016-01-01

    Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data. PMID:26882169

  6. Molecular basis of TRAP-5'SL RNA interaction in the Bacillus subtilis trp operon transcription attenuation mechanism.

    PubMed

    McGraw, Adam P; Mokdad, Ali; Major, François; Bevilacqua, Philip C; Babitzke, Paul

    2009-01-01

    Expression of the Bacillus subtilis trpEDCFBA operon is regulated by the interaction of tryptophan-activated TRAP with 11 (G/U)AG trinucleotide repeats that lie in the leader region of the nascent trp transcript. Bound TRAP prevents folding of an antiterminator structure and favors formation of an overlapping intrinsic terminator hairpin upstream of the trp operon structural genes. A 5'-stem-loop (5'SL) structure that forms just upstream of the triplet repeat region increases the affinity of TRAP-trp RNA interaction, thereby increasing the efficiency of transcription termination. Single-stranded nucleotides in the internal loop and in the hairpin loop of the 5'SL are important for TRAP binding. We show here that altering the distance between these two loops suggests that G7, A8, and A9 from the internal loop and A19 and G20 from the hairpin loop constitute two structurally discrete TRAP-binding regions. Photochemical cross-linking experiments also show that the hairpin loop of the 5'SL is in close proximity to the flexible loop region of TRAP during TRAP-5'SL interaction. The dimensions of B. subtilis TRAP and of a three-dimensional model of the 5'SL generated using the MC-Sym and MC-Fold pipeline imply that the 5'SL binds the protein in an orientation where the helical axis of the 5'SL is perpendicular to the plane of TRAP. This interaction not only increases the affinity of TRAP-trp leader RNA interaction, but also orients the downstream triplet repeats for interaction with the 11 KKR motifs that lie on TRAP's perimeter, increasing the likelihood that TRAP will bind in time to promote termination. PMID:19033375

  7. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon

    PubMed Central

    Feinauer, Christoph; Szurmant, Hendrik; Weigt, Martin; Pagnani, Andrea

    2016-01-01

    Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data. PMID:26882169

  8. Protective Role of the PG1036-PG1037-PG1038 Operon in Oxidative Stress in Porphyromonas gingivalis W83

    PubMed Central

    Henry, Leroy G.; Aruni, Wilson; Sandberg, Lawrence; Fletcher, Hansel M.

    2013-01-01

    As an anaerobe, Porphyromonas gingivalis is significantly affected by the harsh inflammatory environment of the periodontal pocket during initial colonization and active periodontal disease. We reported previously that the repair of oxidative stress-induced DNA damage involving 8-oxo-7,8-dihydroguanine (8-oxoG) may occur by an undescribed mechanism in P. gingivalis. DNA affinity fractionation identified PG1037, a conserved hypothetical protein, among other proteins, that were bound to the 8-oxoG lesion. PG1037 is part of the uvrA-PG1037-pcrA operon in P. gingivalis which is known to be upregulated under H2O2 induced stress. A PCR-based linear transformation method was used to inactivate the uvrA and pcrA genes by allelic exchange mutagenesis. Several attempts to inactivate PG1037 were unsuccessful. Similar to the wild-type when plated on Brucella blood agar, the uvrA and pcrA-defective mutants were black-pigmented and beta-hemolytic. These isogenic mutants also had reduced gingipain activities and were more sensitive to H2O2 and UV irradiation compared to the parent strain. Additionally, glycosylase assays revealed that 8-oxoG repair activities were similar in both wild-type and mutant P. gingivalis strains. Several proteins, some of which are known to have oxidoreducatse activity, were shown to interact with PG1037. The purified recombinant PG1037 protein could protect DNA from H2O2-induced damage. Collectively, these findings suggest that the uvrA-PG1037-pcrA operon may play an important role in hydrogen peroxide stress-induced resistance in P. gingivalis. PMID:23990885

  9. Identification and functional analysis of a nitrate assimilation operon nasACKBDEF from Amycolatopsis mediterranei U32.

    PubMed

    Shao, Zhihui; Gao, Jin; Ding, Xiaoming; Wang, Jin; Chiao, Juishen; Zhao, Guoping

    2011-07-01

    Nitrate assimilation has been well studied for Gram-negative bacteria but not so much in the Gram-positive actinomycetes up to date. In a rifamycin SV-producing actinomycete, Amycolatopsis mediterranei strain U32, nitrate not only can be used as a sole nitrogen source but also remarkably stimulates the antibiotic production along with regulating the related metabolic enzymes. A gene cluster of nasACKBDEF was cloned from a U32 genomic library by in situ hybridization screening with a heterogeneous nasB probe and confirmed later by whole genome sequence, corresponding to the protein coding genes of AMED_1121 to AMED_1127. These genes were co-transcribed as an operon, concomitantly repressed by ammonium while activated with supplement of either nitrate or nitrite. Genetic and biochemical analyses identified the essential nitrate/nitrite assimilation functions of the encoded proteins, orderly, the assimilatory nitrate reductase catalytic subunit (NasA), nitrate reductase electron transfer subunit (NasC), nitrate/nitrite transporter (NasK), assimilatory nitrite reductase large subunit (NasB) and small subunit (NasD), bifunctional uroporphyrinogen-III synthase (NasE), and an unknown function protein (NasF). Comparing rifamycin SV production and the level of transcription of nasB and rifE from U32 and its individual nas mutants in Bennet medium with or without nitrate indicated that nitrate assimilation function encoded by the nas operon played an essential role in the "nitrate stimulated" rifamycin production but had no effect upon the transcription regulation of the primary and secondary metabolic genes related to rifamycin biosynthesis. PMID:21424691

  10. Transcriptional Activation of Multiple Operons Involved in para-Nitrophenol Degradation by Pseudomonas sp. Strain WBC-3

    PubMed Central

    Zhang, Wen-Mao; Zhang, Jun-Jie; Jiang, Xuan; Chao, Hongjun

    2014-01-01

    Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons: pnpA, pnpB, and pnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding gene pnpR was found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in all pnpA, pnpB, pnpC, and pnpR promoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately −55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation of pnpA, pnpB, and pnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter of pnpCDEFG and not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of the pnpA and pnpB promoters were observed after the addition of the inducer PNP in DNase I footprinting. PMID:25326309

  11. Transcription of the Streptococcus pyogenes hyaluronic acid capsule biosynthesis operon is regulated by previously unknown upstream elements.

    PubMed

    Falaleeva, Marina; Zurek, Oliwia W; Watkins, Robert L; Reed, Robert W; Ali, Hadeel; Sumby, Paul; Voyich, Jovanka M; Korotkova, Natalia

    2014-12-01

    The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence. PMID:25287924

  12. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon.

    PubMed Central

    Konan, K V; Yanofsky, C

    1997-01-01

    Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination at Rho-dependent termination sites in the leader region of the operon. Tryptophan induction is dependent on translation of a short leader peptide coding region, tnaC, that contains a single, crucial tryptophan codon. Recent studies suggest that during induction, the TnaC leader peptide acts in cis on the translating ribosome to inhibit its release at the tnaC stop codon. In the present study we use a tnaC-UGA-'lacZ construct lacking the tnaC-tnaA spacer region to analyze the effect of TnaC synthesis on the behavior of the ribosome that translates tnaC. The tnaC-UGA-'lacZ construct is not expressed significantly in the presence or absence of inducer. However, it is expressed in the presence of UGA suppressors, or when the structural gene for polypeptide release factor 3 is disrupted, or when wild-type tRNATrP is overproduced. In each situation, tnaC-UGA-'lacZ expression is reduced appreciably by the presence of inducing levels of tryptophan. Replacing the tnaC UGA stop codon with a sense codon allows considerable expression, which is also reduced, although to a lesser extent, by the addition of tryptophan. Inhibition by tryptophan is not observed when Trp codon 12 of tnaC is changed to a Leu codon. Overexpression of tnaC in trans from a multicopy plasmid prevents inhibition of expression by tryptophan. These results support the hypothesis that the TnaC leader peptide acts in cis to alter the behavior of the translating ribosome. PMID:9045840

  13. Amount of Colicin Release in Escherichia coli Is Regulated by Lysis Gene Expression of the Colicin E2 Operon

    PubMed Central

    Mader, Andreas; von Bronk, Benedikt; Ewald, Benedikt; Kesel, Sara; Schnetz, Karin; Frey, Erwin; Opitz, Madeleine

    2015-01-01

    The production of bacteriocins in response to worsening environmental conditions is one means of bacteria to outcompete other microorganisms. Colicins, one class of bacteriocins in Escherichia coli, are effective against closely related Enterobacteriaceae. Current research focuses on production, release and uptake of these toxins by bacteria. However, little is known about the quantitative aspects of these dynamic processes. Here, we quantitatively study expression dynamics of the Colicin E2 operon in E. coli on a single cell level using fluorescence time-lapse microscopy. DNA damage, triggering SOS response leads to the heterogeneous expression of this operon including the cea gene encoding the toxin, Colicin E2, and the cel gene coding for the induction of cell lysis and subsequent colicin release. Advancing previous whole population investigations, our time-lapse experiments reveal that at low exogenous stress levels all cells eventually respond after a given time (heterogeneous timing). This heterogeneous timing is lost at high stress levels, at which a synchronized stress response of all cells 60 min after induction via stress can be observed. We further demonstrate, that the amount of colicin released is dependent on cel (lysis) gene expression, independent of the applied exogenous stress level. A heterogeneous response in combination with heterogeneous timing can be biologically significant. It might enable a bacterial population to endure low stress levels, while at high stress levels an immediate and synchronized population wide response can give single surviving cells of the own species the chance to take over the bacterial community after the stress has ceased. PMID:25751274

  14. Differential levels of specific cytochrome c biogenesis proteins in response to oxygen: analysis of the ccl operon in Rhodobacter capsulatus.

    PubMed Central

    Gabbert, K K; Goldman, B S; Kranz, R G

    1997-01-01

    The photosynthetic bacterium Rhodobacter capsulatus synthesizes c-type cytochromes under a variety of growth conditions. For example, under aerobic growth, c-type cytochromes are synthesized as part of an electron transport pathway, using oxygen as the terminal electron acceptor. Anaerobically in the light, R. capsulatus requires cytochrome bc1 and other c-type cytochromes for the photosynthetic electron transport pathway. It is shown here that the ccl1 and ccl2 genes of R. capsulatus are required for the synthesis of all c-type cytochromes, including the cytochrome c' protein of unknown function but of structural similarity to cytochrome b562. Polar and nonpolar mutations constructed in each gene demonstrated that the ccl12 genes form an operon. Expression of the ccl12 genes was examined by using lacZ and phoA fusions as translational reporters. Primer extension analysis was used to determine transcriptional control and the start site of the ccl12 promoter. Finally, antiserum to the Ccl2 protein was used to quantitate levels of Ccl2 under six different growth conditions. The Ccl2 protein is present at 20-fold-higher levels under conditions where oxygen is present. In contrast, other cytochromes c biogenesis proteins, HelA and HelX, previously shown to be part of an helABCDX operon, are at relatively similar levels under these six growth conditions. This discovery is discussed in terms of the physiology and evolution of cytochromes c biogenesis, with particular attention to oxidative environments. PMID:9286996

  15. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

    PubMed

    Yang, Rui; Cruz-Vera, Luis R; Yanofsky, Charles

    2009-06-01

    Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are inhibited are hydrolysis of TnaC-tRNA(Pro) by release factor 2 and peptidyl transfer of TnaC of TnaC-tRNA(Pro) to puromycin. These events are normally performed in the ribosomal peptidyl transferase center. In the present study, changes of 23S rRNA nucleotides in the 2585 region of the peptidyl transferase center, G2583A and U2584C, were observed to reduce maximum induction of tna operon expression by tryptophan in vivo without affecting the concentration of tryptophan necessary to obtain 50% induction. The growth rate of strains with ribosomes with either of these changes was not altered appreciably. In vitro analyses with mutant ribosomes with these changes showed that tryptophan was not as efficient in protecting TnaC-tRNA(Pro) from puromycin action as wild-type ribosomes. However, added tryptophan did prevent sparsomycin action as it normally does with wild-type ribosomes. These findings suggest that these two mutational changes act by reducing the ability of ribosome-bound tryptophan to inhibit peptidyl transferase activity rather than by reducing the ability of the ribosome to bind tryptophan. Thus, the present study identifies specific nucleotides within the ribosomal peptidyl transferase center that appear to be essential for effective tryptophan induction of tna operon expression. PMID:19329641

  16. Identification and Characterization of MalA in the Maltose/Maltodextrin Operon of Sulfolobus acidocaldarius DSM639

    PubMed Central

    Choi, Kyoung-Hwa; Hwang, Sungmin

    2013-01-01

    A putative maltose/maltodextrin operon was found in the Sulfolobus acidocaldarius DSM639 genome. The gene cluster consisted of 7 genes (malA, trmB, amyA, malG, malF, malE, and malK). Here, we report the identification of MalA, which is responsible for the hydrolysis of maltose or maltodextrin to glucose in S. acidocaldarius. The transcription level of malA was increased 3-fold upon the addition of maltose or starch to the medium. Moreover, the α-glucosidase activity for maltose as a substrate in cell extracts of S. acidocaldarius DSM639 was also 11- and 10-fold higher during growth in YT medium (Brock's mineral salts, 0.1% [wt/vol] tryptone, and 0.005% [wt/vol] yeast extract) containing maltose or starch, respectively, than during growth on other sugars. The gene encoding MalA was cloned and expressed in S. acidocaldarius. The enzyme purified from the organism was a dodecamer in its active state and showed strong maltose-hydrolyzing activity at 100°C and pH 5.0. MalA was remarkably thermostable, with half-lives of 33.8 h, 10.6 h, and 1.8 h at 95°C, 100°C, and 105°C, respectively. Substrate specificity and kinetic studies of MalA with maltooligosaccharides indicated that MalA efficiently hydrolyzed maltose to maltopentaose, which is a typical characteristic of GH31-type α-glucosidases. However, glycogen or starch was not hydrolyzed. Reverse transcription-PCR, sugar uptake, and growth studies of the wild-type DSM639 and ΔmalEFG mutant on different sugars demonstrated that MalA located in the mal operon gene cluster is involved in maltose and starch metabolism in S. acidocaldarius. PMID:23396915

  17. Transcription of the Streptococcus pyogenes Hyaluronic Acid Capsule Biosynthesis Operon Is Regulated by Previously Unknown Upstream Elements

    PubMed Central

    Falaleeva, Marina; Zurek, Oliwia W.; Watkins, Robert L.; Reed, Robert W.; Ali, Hadeel; Sumby, Paul; Voyich, Jovanka M.

    2014-01-01

    The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence. PMID:25287924

  18. Cloning, Characterization, and Functional Expression of the Klebsiella oxytoca Xylodextrin Utilization Operon (xynTB) in Escherichia coli†

    PubMed Central

    Qian, Yilei; Yomano, L. P.; Preston, J. F.; Aldrich, H. C.; Ingram, L. O.

    2003-01-01

    Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na+/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of

  19. Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.

    PubMed

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Flechoso, Fabio; Martín, Juan F

    2006-01-01

    Corynebacterium glutamicum, a soil Gram-positive bacterium used for industrial amino acid production, was found to grow optimally at pH 7.0-9.0 when incubated in 5 litre fermenters under pH-controlled conditions. The highest biomass was accumulated at pH 9.0. Growth still occurred at pH 9.5 but at a reduced rate. The expression of the pH-regulated F0 F1 ATPase operon (containing the eight genes atpBEFHAGDC) was induced at alkaline pH. A 7.5 kb transcript, corresponding to the eight-gene operon, was optimally expressed at pH 9.0. The same occurred with a 1.2 kb transcript corresponding to the atpB gene. RT-PCR studies confirmed the alkaline pH induction of the F0 F1 operon and the existence of the atpI gene. The atpI gene, located upstream of the F0 F1 operon, was expressed at a lower level than the polycistronic 7.5 kb mRNA, from a separate promoter (P-atp1). Expression of the major promoter of the F0 F1 operon, designated P-atp2, and the P-atp1 promoter was quantified by coupling them to the pET2 promoter-probe vector. Both P-atp1 and P-atp2 were functional in C. glutamicum and Escherichia coli. Primer extension analysis identified one transcription start point inside each of the two promoter regions. The P-atp1 promoter fitted the consensus sequence of promoters recognized by the vegetative sigma factor of C. glutamicum, whereas the -35 and -10 boxes of P-atp2 fitted the consensus sequence for sigma(H)-recognized Mycobacterium tuberculosis promoters C(C)/(G)GG(A)/(G)AC 17-22 nt (C)/(G)GTT(C)/(G), known to be involved in expression of heat-shock and other stress-response genes. These results suggest that the F0 F1 operon is highly expressed at alkaline pH, probably using a sigma (H) RNA polymerase. PMID:16385111

  20. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    PubMed

    Rintahaka, Johanna; Yu, Xia; Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  1. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing.

    PubMed

    Balzer, M; Wagner, R

    1998-02-27

    The biogenesis of functional ribosomes is regulated in a very complex manner, involving different proteins and RNA molecules. RNAs are not only essential components of both ribosomal subunits but also transiently interacting factors during particle formation. In eukaryotes snoRNAs act as molecular chaperones to assist maturation, modification and assembly. In a very similar way highly conserved leader sequences of bacterial rRNA operons are involved in the correct formation of 30 S ribosomal subunits. Certain mutations in the rRNA leader region cause severe growth defects due to malfunction of ribosomes which are assembled from such transcription units. To understand how the leader sequences act to facilitate the formation of the correct 30 S subunits we performed in vivo chemical probing to assess structural differences between ribosomes assembled either from rRNA transcribed from wild-type operons or from operons which contain mutations in the rRNA leader region. Cells transformed with plasmids containing the respective rRNA operons were reacted with dimethylsulphate (DMS). Ribosomes were isolated by sucrose gradient centrifugation and modified nucleotides within the 16 S rRNA were identified by primer extension reaction. Structural differences between ribosomes from wild-type and mutant rRNA operons occur in several clusters within the 16 S rRNA secondary structure. The most prominent differences are located in the central domain including the universally conserved pseudoknot structure which connects the 5', the central and the 3' domain of 16 S rRNA. Two other clusters with structural differences fall in the 5' domain where the leader had been shown to interact with mature 16 S rRNA and within the ribosomal protein S4 binding site. The other differences in structure are located in sites which are also known as sites for the action of several antibiotics. The data explain the functional defects of ribosomes from rRNA operons with leader mutations and help to

  2. Phenotypical Analysis of the Lactobacillus rhamnosus GG Fimbrial spaFED Operon: Surface Expression and Functional Characterization of Recombinant SpaFED Pili in Lactococcus lactis

    PubMed Central

    Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  3. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al.

    PubMed Central

    Goldman, B S; Lin, J T; Stewart, V

    1994-01-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated. Images PMID:8051020

  4. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al.

    PubMed

    Goldman, B S; Lin, J T; Stewart, V

    1994-08-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated. PMID:8051020

  5. Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterized by a tandem rrn operon structure.

    PubMed

    Pfannes, Kristina R; Vogl, Kajetan; Overmann, Jörg

    2007-11-01

    Phototrophic consortia represent the most highly developed type of interspecific association of bacteria and consist of green sulfur bacterial epibionts attached around a central colourless rod-shaped bacterium. Based on 16S rRNA gene sequencing, the central bacterium of the consortium 'Chlorochromatium aggregatum' was recently shown to represent a novel and phylogenetically isolated lineage of the Comamonadaceae within the beta-subgroup of the Proteobacteria. To date, 19 types of phototrophic consortia are distinguished based on the different 16S rRNA gene sequences of their epibionts, but the diversity and phylogenetic relationships of the heterotrophic partner bacteria are still unknown. We developed an approach based on the specific rrn (ribosomal RNA) operon structure of the central bacterium of 'C. aggregatum' to recover 16S rRNA gene sequences of other central bacteria and their close relatives from natural consortia populations. Genomic DNA of the central bacterium of 'C. aggregatum' was first enriched several hundred-fold by employing a selective method for growth of consortia in a monolayer biofilm followed by a purification of the genome of the central bacterium by cesium chloride-bisbenzimidazole equilibrium density gradient centrifugation. A combination of inverse PCR, cloning and sequencing revealed that two rrn operons of the central bacterium are arranged in a tandem fashion and are separated by an unusually short intergenic region of 195 base pairs. This rare gene order was exploited to screen various natural microbial communities by PCR. We discovered a diverse and previously unknown subgroup of Betaproteobacteria in the chemoclines of freshwater lakes. This group was absent in other freshwater and soil samples. All the 16S rRNA gene sequences recovered are related to that of the central bacterium of 'C. aggregatum'. Fluorescence in situ hybridization indicated that two of these sequences originated from central bacteria of different phototrophic

  6. Coordination of the Arc Regulatory System and Pheromone-Mediated Positive Feedback in Controlling the Vibrio fischeri lux Operon

    PubMed Central

    Septer, Alecia N.; Stabb, Eric V.

    2012-01-01

    Bacterial pheromone signaling is often governed both by environmentally responsive regulators and by positive feedback. This regulatory combination has the potential to coordinate a group response among distinct subpopulations that perceive key environmental stimuli differently. We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium that colonizes the squid Euprymna scolopes. Bioluminescence in ES114 is controlled in part by N-(3-oxohexanoyl)-L-homoserine lactone (3OC6), a pheromone produced by LuxI that together with LuxR activates transcription of the luxICDABEG operon, initiating a positive feedback loop and inducing luminescence. The lux operon is also regulated by environmentally responsive regulators, including the redox-responsive ArcA/ArcB system, which directly represses lux in culture. Here we show that inactivating arcA leads to increased 3OC6 accumulation to initiate positive feedback. In the absence of positive feedback, arcA-mediated control of luminescence was only ∼2-fold, but luxI-dependent positive feedback contributed more than 100 fold to the net induction of luminescence in the arcA mutant. Consistent with this overriding importance of positive feedback, 3OC6 produced by the arcA mutant induced luminescence in nearby wild-type cells, overcoming their ArcA repression of lux. Similarly, we found that artificially inducing ArcA could effectively repress luminescence before, but not after, positive feedback was initiated. Finally, we show that 3OC6 produced by a subpopulation of symbiotic cells can induce luminescence in other cells co-colonizing the host. Our results suggest that even transient loss of ArcA-mediated regulation in a sub-population of cells can induce luminescence in a wider community. Moreover, they indicate that 3OC6 can communicate information about both cell density and the state of

  7. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Frías, José E.

    2015-01-01

    ABSTRACT Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. IMPORTANCE Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many

  8. Use of an ipb-lux Fusion To Study Regulation of the Isopropylbenzene Catabolism Operon of Pseudomonas putida RE204 and To Detect Hydrophobic Pollutants in the Environment

    PubMed Central

    Selifonova, O. V.; Eaton, R. W.

    1996-01-01

    A DNA segment involved in the regulation of the isopropylbenzene (cumene) catabolism operon (ipb) of plasmid pRE4 from Pseudomonas putida RE204 and the Vibrio fischeri luciferase genes, luxCDABE, were used to create an ipbRo/pA(prm1)-luxCDABE reporter fusion plasmid, pOS25. Escherichia coli HMS174(pOS25) produces light in the presence of inducers of the ipb operon. These inducers were shown to be hydrophobic compounds and to include monoalkylbenzenes, substituted benzenes and toluenes, some alkanes and cycloalkanes, chlorinated solvents, and naphthalenes. Complex hydrocarbon mixtures, such as gasoline, diesel fuel, jet fuels (JP-4 and JP-5), and creosote, were also inducers of ipb-lux. Bacteria carrying the ipb-lux reporter may be useful as bioindicators of hydrocarbon pollution in the environment and may be particularly valuable for examining the bioavailability of inducing pollutants. PMID:16535269

  9. Organization and nucleotide sequences of ten ribosomal protein genes from the region equivalent to the S10 operon in the archaebacterium, Halobacterium halobium.

    PubMed

    Miyokawa, T; Urayama, T; Shimooka, K; Itoh, T

    1996-08-01

    A determination was made of the nucleotide sequence of the 7340-bp region of a ribosomal protein gene cluster of Halobacterium halobium, which is equivalent to the S10 operon of Escherichia coli. The sequence was analyzed with the codonpreference program deduced from the halobacterial codon usage table that showed a very high GC content of the third codon position. The sequence was comprised of a string of 13 tightly linked ORFs. Most of the ORFs were homologous with ribosomal protein genes (ORF1-ORF2-rpl3-rpl4-rpl23--rpl2- rps19-rpl22-rps3-rpl29-ORF11-rps17-r pl14). The 13-gene string was preceded by three putative AT-rich promoter sequences. The order of the genes in H. halobium essentially agreed with that of the corresponding genes of E. coli (S10-operon), except for certain deletions or insertions of additional protein genes. PMID:8876975

  10. Expression of the melC Operon in Several Streptomyces Strains Is Positively Regulated by AdpA, an AraC Family Transcriptional Regulator Involved in Morphological Development in Streptomyces coelicolor

    PubMed Central

    Zhu, Dongqing; He, Xinyi; Zhou, Xiufen; Deng, Zixin

    2005-01-01

    Dark brown haloes of melanin around colonies are an easily visualized phenotype displayed by many Streptomyces strains harboring plasmid pIJ702 carrying the melC operon of Streptomyces antibioticus IMRU3270. Spontaneous melanin-negative mutants of pIJ702 occur with a frequency of ca. 1%, and often mutation occurs in the melC operon, which removes the BglII site as part of an inverted repeat. Other melanin-negative mutations seem to occur spontaneously in Streptomyces lividans, resulting in white colonies from which intact, melanin-producing pIJ702 can be isolated by introduction into a new host. S. lividans ZX66 was found to be such a mutant and to have a secondary mutation influencing expression of the melC operon on the chromosome. A 3.3-kb DNA fragment was isolated from its progenitor strain, JT46, and a gene able to restore melC operon expression was found to encode a member of an AraC family of transcriptional regulators, which was equivalent to AdpAc in Streptomyces coelicolor and therefore was designated AdpAl. Lack of melC operon expression was correlated with a single A-to-C transversion, which altered a single key amino acid residue from Thr to Pro. The transcription of the melC operon was found to be greatly reduced in the adpA mutant background. The counterpart gene (adpAa) in the S. antibioticus strain in which the melC operon carried on pIJ702 originated was also isolated and was found to have an identical regulatory role. Thus, we concluded that the melC operon is under general direct positive control by AdpA family proteins, perhaps at the transcriptional level and certainly at the translational level via bldA, in Streptomyces. PMID:15838045

  11. Expression of sialic acid and polysialic acid in serogroup B Neisseria meningitidis: divergent transcription of biosynthesis and transport operons through a common promoter region.

    PubMed Central

    Swartley, J S; Ahn, J H; Liu, L J; Kahler, C M; Stephens, D S

    1996-01-01

    We studied capsule-defective (Cap-) serogroup B meningococcal mutants created through Tn916 or omega-fragment mutagenesis. The Cap- phenotypes were the results of insertions in three of four linked genes (synX, synC, and synD) involved in CMP-N-acetylneuraminic acid and polysialic acid capsule biosynthesis, and in ctrA the first of four linked genes involved in capsule membrane transport. Mutations in the CMP-N-acetylneuraminic acid biosynthesis genes synX and synC caused defects in lipooligosaccharide sialylation but not mutations in the putative (alpha2 -> 8)-linked polysialyltransferase (synD) or in ctrA. Reverse transcriptase PCR studies indicated that the four biosynthesis genes (synX to -D) and the capsule transport genes (ctr to -D) were separately transcribed as operons. The operons were separated by a 134-bp intergenic region. Primer extension of synX and ctrA demonstrated that transcription of the operons was divergently initiated from adjacent start sites present in the intergenic region. Both transcriptional start sites were preceded by a perfect -10 Pribnow promoter binding region. The synX to -D, but not the ctrA to -D, transcriptional start site was preceded by a sequence bearing strong homology to the consensus sigma 70 -35 promoter binding sequence. Both promoters showed transcriptional activity when cloned behind a lacZ reporter gene in Escherichia coli. Our results confirm the intrinsic relationship between polysialic acid capsule biosynthesis and lipooligosaccharide sialylation pathways in group B Neisseria meningitidis. Our study also suggests that the intergenic region separating the synX to -D and ctrA to -D operons is an important control point for the regulation of group B capsule expression through coordinated transcriptional regulation of the synX to -D and drA to -D promoters. PMID:8763931

  12. An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICEclc in Pseudomonas knackmussii B13

    PubMed Central

    Pradervand, Nicolas; Sulser, Sandra; Delavat, François; Miyazaki, Ryo; Lamas, Iker; van der Meer, Jan Roelof

    2014-01-01

    The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria. PMID:24945944

  13. Genomic Subtractive Hybridization and Selective Capture of Transcribed Sequences Identify a Novel Salmonella typhimurium Fimbrial Operon and Putative Transcriptional Regulator That Are Absent from the Salmonella typhi Genome

    PubMed Central

    Morrow, Brian J.; Graham, James E.; Curtiss, Roy

    1999-01-01

    Salmonella typhi, the etiologic agent of typhoid fever, is adapted to the human host and unable to infect nonprimate species. The genetic basis for host specificity in S. typhi is unknown. The avirulence of S. typhi in animal hosts may result from a lack of genes present in the broad-host-range pathogen Salmonella typhimurium. Genomic subtractive hybridization was successfully employed to isolate S. typhimurium genomic sequences which are absent from the S. typhi genome. These genomic subtracted sequences mapped to 17 regions distributed throughout the S. typhimurium chromosome. A positive cDNA selection method was then used to identify subtracted sequences which were transcribed by S. typhimurium following macrophage phagocytosis. A novel putative transcriptional regulator of the LysR family was identified as transcribed by intramacrophage S. typhimurium. This putative transcriptional regulator was absent from the genomes of the human-adapted serovars S. typhi and Salmonella paratyphi A. Mutations within this gene did not alter the level of S. typhimurium survival within macrophages or virulence within mice. A subtracted genomic fragment derived from the ferrichrome operon also hybridized to the intramacrophage cDNA. Nucleotide sequence analysis of S. typhimurium and S. typhi chromosomal sequences flanking the ferrichrome operon identified a novel S. typhimurium fimbrial operon with a high level of similarity to sequences encoding Proteus mirabilis mannose-resistant fimbriae. The novel fimbrial operon was absent from the S. typhi genome. The absence of specific genes may have allowed S. typhi to evolve as a highly invasive, systemic human pathogen. PMID:10496884

  14. Staphylococcus caprae Strains Carry Determinants Known To Be Involved in Pathogenicity: a Gene Encoding an Autolysin-Binding Fibronectin and the ica Operon Involved in Biofilm Formation

    PubMed Central

    Allignet, Jeanine; Aubert, Sylvie; Dyke, Keith G. H.; El Solh, Nevine

    2001-01-01

    The atlC gene (1,485 bp), encoding an autolysin which binds fibronectin, and the ica operon, involved in biofilm formation, were isolated from the chromosome of an infectious isolate of Staphylococcus caprae and sequenced. AtlC (155 kDa) is similar to the staphylococcal autolysins Atl, AtlE, Aas (48 to 72% amino acid identity) and contains a putative signal peptide of 29 amino acids and two enzymatic centers (N-acetylmuramoyl-l-alanine amidase and endo-β-N-acetylglucosaminidase) interconnected by three imperfect fibronectin-binding repeats. The glycine-tryptophan (GW) motif found in the central and end part of each repeat may serve for cell surface anchoring of AtlC as they do in Listeria monocytogenes. The S. caprae ica operon contains four genes closely related to S. epidermidis and S. aureus icaA, icaB, icaC, and icaD genes (≥ 68% similarity) and is preceded by a gene similar to icaR (≥70% similarity). The polypeptides deduced from the S. caprae ica genes exhibit 67 to 88% amino acid identity to those of S. epidermidis and S. aureus ica genes. The ica operon and icaR gene were analyzed in 14 S. caprae strains from human specimens or goats' milk. Some of the strains produced biofilm, and others did not. All strains carry the ica operon and icaR of the same sizes and in the same relative positions, suggesting that the absence of biofilm formation is not related to the insertion of a mobile element such as an insertion sequence or a transposon. PMID:11159959

  15. The Essential yhcSR Two-Component Signal Transduction System Directly Regulates the lac and opuCABCD Operons of Staphylococcus aureus

    PubMed Central

    Yan, Meiying; Hall, Jeffrey W.; Yang, Junshu; Ji, Yinduo

    2012-01-01

    Our previous studies suggested that the essential two-component signal transduction system, YhcSR, regulates the opuCABCD operon at the transcriptional level, and the Pspac-driven opuCABCD partially complements the lethal effects of yhcS antisense RNA expression in Staphylococcus aureus. However, the reason why yhcSR regulon is required for growth is still unclear. In this report, we present that the lac and opuC operons are directly transcriptionally regulated by YhcSR. Using real-time RT-PCR we showed that the down-regulation of yhcSR expression affected the transcription of lacA encoding galactose-6-phosphotase isomerase subunit LacA, and opuCA encoding a subunit of a glycine betaine/carnitine/choline ABC transporter. Promoter-lux reporter fusion studies further confirmed the transcriptional regulation of lac by YhcSR. Gel shift assays revealed that YhcR binds to the promoter regions of the lac and opuC operons. Moreover, the Pspac-driven lacABC expression in trans was able to partially complement the lethal effect of induced yhcS antisense RNA. Likewise, the Pspac-driven opuCABCD expression in trans complemented the growth defect of S. aureus in a high osmotic strength medium during the depletion of YhcSR. Taken together, the above data indicate that the yhcSR system directly regulates the expression of lac and opuC operons, which, in turn, may be partially associated with the essentiality of yhcSR in S. aureus. These results provide a new insight into the biological functions of the yhcSR, a global regulator. PMID:23226327

  16. Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression.

    PubMed

    Cruz-Vera, Luis R; Yanofsky, Charles

    2008-07-01

    In Escherichia coli, interactions between the nascent TnaC-tRNA(Pro) peptidyl-tRNA and the translating ribosome create a tryptophan binding site in the ribosome where bound tryptophan inhibits TnaC-tRNA(Pro) cleavage. This inhibition delays ribosome release, thereby inhibiting Rho factor binding and action, resulting in increased tna operon transcription. Replacing Trp12 of TnaC with any other amino acid residue was previously shown to prevent tryptophan binding and induction of tna operon expression. Genome-wide comparisons of TnaC amino acid sequences identify Asp16 and Pro24, as well as Trp12, as highly conserved TnaC residues. Replacing these residues with other residues was previously shown to influence tryptophan induction of tna operon expression. In this study, in vitro analyses were performed to examine the potential roles of Asp16 and Pro24 in tna operon induction. Replacing Asp16 or Pro24 of TnaC of E. coli with other amino acids established that these residues are essential for free tryptophan binding and inhibition of TnaC-tRNA(Pro) cleavage at the peptidyl transferase center. Asp16 and Pro24 are in fact located in spatial positions corresponding to critical residues of AAP, another ribosome regulatory peptide. Sparsomycin-methylation protection studies further suggested that segments of 23S RNA were arranged differently in ribosomes bearing TnaCs with either the Asp16Ala or the Pro24Ala change. Thus, features of the amino acid sequence of TnaC of the nascent TnaC-tRNA(Pro) peptidyl-tRNA, in addition to the presence of Trp12, are necessary for the nascent peptide to create a tryptophan binding/inhibition site in the translating ribosome. PMID:18424524

  17. Mutations that render the promoter of the histidine operon of Salmonella typhimurium insensitive to nutrient-rich medium repression and amino acid downshift.

    PubMed Central

    Da Costa, X J; Artz, S W

    1997-01-01

    The effects of mutations in the promoter of the histidine operon of Salmonella typhimurium were examined in vivo. The wild-type chromosomal copy of the his promoter was replaced with mutations in the -10 hexamer sequence and in the region between the -10 hexamer and the transcriptional start point-termed the discriminator sequence. The substitutions were performed with a phage M13 allele replacement system. Expression of the his operon is known to correlate with levels of guanosine 5',3'-bispyrophosphate (ppGpp) in vivo. Strains containing either the wild-type his promoter or his promoter mutations were grown in both nutrient-rich and minimal media under steady-state conditions known to alter intracellular levels of ppGpp in a predictable way. The effect of the presence or absence of the his attenuator was assessed under these conditions as well. Expression of the his operon was studied by measuring the differential rate of beta-galactosidase synthesis with a his-lac transcriptional fusion. Regulation of the his operon in the promoter mutants was also studied under conditions of a transient amino acid downshift induced by the addition of serine hydroxamate to cultures growing in nutrient-rich medium. These growth conditions cause elevated levels of ppGpp. The results provide physiological confirmation of previous evidence obtained with a coupled transcription-translation system in vitro which indicated that ppGpp regulates interaction of RNA polymerase at the his promoter. More specifically, the in vivo evidence shows that the region of the his promoter that includes the -10 hexamer and discriminator sequences is the target at which ppGpp stimulates transcription. PMID:9260966

  18. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.

    PubMed Central

    Alpert, C A; Siebers, U

    1997-01-01

    The 5' region of the lac operon of Lactobacillus casei has been investigated. An open reading frame of 293 codons, designated lacT, was identified upstream of lacE. The gene product encoded by lacT is related to the family of transcriptional antiterminator proteins, which includes BglG from Escherichia coli, ArbG from Erwinia chrysanthemi, SacT, SacY, and LicT from Bacillus subtilis, and BglR from Lactococcus lactis. Amino acid sequence identities range from 35 to 24%, while similarities range from 56 to 47%. The transcriptional start site of the lac operon was identified upstream of lacT. The corresponding mRNA would contain in the 5' region a sequence with high similarity to the consensus RNA binding site of transcriptional antiterminators overlapping a sequence capable of folding into a structure that resembles a rho-independent terminator. LacT was shown to be active as an antiterminator in a B. subtilis test system using the sacB target sequence. lacT directly precedes lacEGF, the genes coding for enzyme IICB, phospho-beta-galactosidase, and enzyme IIA, and these genes are followed by a sequence that appears to encode a second rho-independent transcription terminator-like structure. Northern hybridizations with probes against lacT, lacE, and lacF revealed transcripts of similar sizes for the lac mRNAs of several L. casei strains. Since the length of the lac mRNA is just sufficient to contain lacTEGF, we conclude that the lac operon of L. casei does not contain the genes of the accessory tagatose-6-phosphate pathway as occurs in the lac operons of Lactococcus lactis, Streptococcus mutans, or Staphylococcus aureus. PMID:9045813

  19. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains

    PubMed Central

    Čejková, Darina; Zobaníková, Marie; Pospíšilová, Petra; Strouhal, Michal; Mikalová, Lenka; Weinstock, George M.

    2013-01-01

    This study examined the sequences of the two rRNA (rrn) operons of pathogenic non-cultivable treponemes, comprising 11 strains of T. pallidum ssp. pallidum (TPA), five strains of T. pallidum ssp. pertenue (TPE), two strains of T. pallidum ssp. endemicum (TEN), a simian Fribourg-Blanc strain and a rabbit T. paraluiscuniculi (TPc) strain. PCR was used to determine the type of 16S–23S ribosomal intergenic spacers in the rrn operons from 30 clinical samples belonging to five different genotypes. When compared with the TPA strains, TPc Cuniculi A strain had a 17 bp deletion, and the TPE, TEN and Fribourg-Blanc isolates had a deletion of 33 bp. Other than these deletions, only 17 heterogeneous sites were found within the entire region (excluding the 16S–23S intergenic spacer region encoding tRNA-Ile or tRNA-Ala). The pattern of nucleotide changes in the rrn operons corresponded to the classification of treponemal strains, whilst two different rrn spacer patterns (Ile/Ala and Ala/Ile) appeared to be distributed randomly across species/subspecies classification, time and geographical source of the treponemal strains. It is suggested that the random distribution of tRNA genes is caused by reciprocal translocation between repetitive sequences mediated by a recBCD-like system. PMID:23082031

  20. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis.

    PubMed Central

    Nakano, M M; Yang, F; Hardin, P; Zuber, P

    1995-01-01

    The divergently transcribed nasA gene and nasB operon are required for nitrate and nitrite assimilation in Bacillus subtilis. The beta-galactosidase activity of transcriptional lacZ fusions from the nasA and nasB promoters was high when cells were grown in minimal glucose medium containing poor nitrogen sources such as nitrate, proline, or glutamate. The expression was very low when ammonium or glutamine was used as the sole nitrogen source. The repression of the genes during growth on good sources of nitrogen required wild-type glutamine synthetase (GlnA), but not GlnR, the repressor of the glnRA operon. Primer extension analysis showed that the -10 region of each promoter resembles those of sigma A-recognized promoters. Between the divergently oriented nasA and nasB promoters is a region of dyad symmetry. Mutational analysis led to the conclusion that this sequence is required in cis for the activation of both nasA and nasB. The derepression of these genes in a glnA mutant also required this sequence. These results suggest that an unidentified transcriptional activator and glutamine synthetase function in the regulation of nasA and the nasB operon. PMID:7836289

  1. A Homologue of an Operon Required for DNA Transfer in Agrobacterium Is Required in Brucella abortus for Virulence and Intracellular Multiplication

    PubMed Central

    Sieira, Rodrigo; Comerci, Diego J.; Sánchez, Daniel O.; Ugalde, Rodolfo A.

    2000-01-01

    As part of a Brucella abortus 2308 genome project carried out in our laboratory, we identified, cloned, and sequenced a genomic DNA fragment containing a locus (virB) highly homologous to bacterial type IV secretion systems. The B. abortus virB locus is a collinear arrangement of 13 open reading frames (ORFs). Between virB1 and virB2 and downstream of ORF12, two degenerated, palindromic repeat sequences characteristic of Brucella intergenic regions were found. Gene reporter studies demonstrated that the B. abortus virB locus constitutes an operon transcribed from virB1 which is turned on during the stationary phase of growth. A B. abortus polar virB1 mutant failed to replicate in HeLa cells, indicating that the virB operon plays a critical role in intracellular multiplication. Mutants with polar and nonpolar mutations introduced in virB10 showed different behaviors in mice and in the HeLa cell infection assay, suggesting that virB10 per se is necessary for the correct function of this type IV secretion apparatus. Mouse infection assays demonstrated that the virB operon constitutes a major determinant of B. abortus virulence. It is suggested that putative effector molecules secreted by this type IV secretion system determine routing of B. abortus to an endoplasmic reticulum-related replication compartment. PMID:10940027

  2. The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon.

    PubMed

    Jahn, Courtney E; Selimi, Dija A; Barak, Jeri D; Charkowski, Amy O

    2011-10-01

    Dickeya dadantii is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air-liquid interface of liquid cultures. D. dadantii pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes. The D. dadantii cellulose synthesis operon is homologous to that of Gluconacetobacter xylinus, which is used for industrial cellulose production, and the cellulose nanofibres produced by D. dadantii were similar in diameter and branching pattern to those produced by G. xylinus. Salmonella enterica, an enterobacterium closely related to D. dadantii, encodes a second type of cellulose synthesis operon, and it produced biofilm strands that differed in width and branching pattern from those of D. dadantii and G. xylinus. Unlike any previously described cellulose fibre, the D. dadantii cellulose nanofibres were decorated with bead-like structures. Mutation of the cellulose synthesis operon genes resulted in loss of cellulose synthesis and production of a cellulase-resistant biofilm. Mutation of other genes required for pellicle formation, including those encoding FliA (a sigma factor that regulates flagella production), HrpL (a sigma factor that regulates the T3SS), and AdrA, a GGDEF protein, affected both biofilm and cell morphology. Mutation of the cellulose synthase bcsA or of bcsC resulted in decreased accumulation of the T3SS-secreted protein HrpN. PMID:21719543

  3. (S)-3-hydroxy-3-methylglutaryl coenzyme A reductase, a product of the mva operon of Pseudomonas mevalonii, is regulated at the transcriptional level.

    PubMed Central

    Wang, Y L; Beach, M J; Rodwell, V W

    1989-01-01

    We have cloned and sequenced a 505-base-pair (bp) segment of DNA situated upstream of mvaA, the structural gene for (S)-3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.88) of Pseudomonas mevalonii. The DNA segment that we characterized includes the promoter region for the mva operon. Nuclease S1 mapping and primer extension analysis showed that mvaA is the promoter-proximal gene of the mva operon. Transcription initiates at -56 bp relative to the first A (+1) of the translation start site. Transcription in vivo was induced by mevalonate. Structural features of the mva promoter region include an 80-bp A + T-rich region, and -12, -24 consensus sequences that resemble sequences of sigma 54 promoters in enteric organisms. The relative amplitudes of catalytic activity, enzyme protein, and mvaA mRNA are consistent with a model of regulation of this operon at the transcriptional level. Images PMID:2477360

  4. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon.

    PubMed Central

    Kline, E L; Bankaitis, V A; Brown, C S; Montefiori, D C

    1980-01-01

    Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23). Images PMID:6245056

  5. Analysis of the Rhodobacter capsulatus puc operon: the pucC gene plays a central role in the regulation of LHII (B800-850 complex) expression.

    PubMed Central

    Tichy, H V; Albien, K U; Gad'on, N; Drews, G

    1991-01-01

    Formation of the light harvesting complex B800-850 (LHII) of Rhodobacter capsulatus requires the expression of more than the three known genes specific for that complex (pucA, pucB and pucE) encoding the alpha, beta and gamma subunits of LHII, respectively. In this work evidence is presented that the product of the gene pucC, which is located downstream from pucA, is essential for high-level transcription of the pucBACDE operon and formation of LHII. Plasmids were constructed containing deletions in one or several puc genes and transferred to a pucC::Tn5 mutant in which the puc operon is not expressed. It was found that the LHII- phenotype of the mutant was due to the missing PucC protein and that all known puc genes are located in one operon. To dissect the pucC, pucD and pucE genes from pucB and pucA and independently regulate them, they were placed under control of the nifHDK promoter. Only under nitrogen-fixing growth conditions was the LHII- pucC::Tn5 mutant complemented by this construction. It is concluded that expression of pucC is essential for formation of the LHII complex in R.capsulatus. Analysis of the pucD and pucE genes led to the conclusion that the products of these genes stabilize the B800-850 complex. Images PMID:1717257

  6. Inactivation of the ampDE Operon Increases Transcription of algD and Affects Morphology and Encystment of Azotobacter vinelandii

    PubMed Central

    Núñez, Cinthia; Moreno, Soledad; Cárdenas, Luis; Soberón-Chávez, Gloria; Espín, Guadalupe

    2000-01-01

    Transcription of algD, encoding GDP-mannose dehydrogenase, the key enzyme in the alginate biosynthetic pathway, is highly regulated in Azotobacter vinelandii. We describe here the characterization of a Tn5 insertion mutant (AC28) which shows a higher level of expression of an algD::lacZ fusion. AC28 cells were morphologically abnormal and unable to encyst. The cloning and nucleotide sequencing of the Tn5-disrupted locus in AC28 revealed an operon homologous to the Escherichia coli ampDE operon. Tn5 was located within the ampD gene, encoding a cytosolic N-acetyl-anhydromuramyl-l-alanine amidase that participates in the intracellular recycling of peptidoglycan fragments. The ampE gene encodes a transmembrane protein, but the function of the protein is not known. We constructed strains carrying ampD or ampE mutations and one with an ampDE deletion. The strain with a deletion of the ampDE operon showed a phenotype similar to that of mutant AC28. The present work demonstrates that both alginate production and bacterial encystment are greatly influenced by the bacterial ability to recycle its cell wall. PMID:10940024

  7. The promoter of the tgt/sec operon in Escherichia coli is preceded by an upstream activation sequence that contains a high affinity FIS binding site.

    PubMed Central

    Slany, R K; Kersten, H

    1992-01-01

    The tgt/sec operon in E. coli consists of five genes: queA, tgt, ORF12, secD, and secF. QueA and Tgt participate in the biosynthesis of the hypermodified t-RNA nucleoside Queuosine, whereas SecD and SecF are involved in protein secretion. Examination of the promoter region of the operon showed structural similarity to promoter regions of the rrn-operons. An upstream activation sequence (UAS) containing a potential binding site for the factor of inversion stimulation (FIS) was found. Gel retardation assays and DNaseI footprinting indicated, that FIS binds specifically and with high affinity to a site centred at position -58. Binding of FIS caused bending of the DNA, as deduced from circular permutation analysis. Various 5' deletion mutants of the promoter region were constructed and fused to a lacZ reporter gene to determine the influence of the UAS element on the promoter strength. An approximately two-fold activation of the promoter by the UAS element was observed. Images PMID:1508713

  8. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon.

    PubMed

    Nissen, Lorenzo; Pérez-Martínez, Gaspar; Yebra, María J

    2005-08-01

    Sorbitol is claimed to have important health-promoting effects and Lactobacillus casei is a lactic acid bacterium relevant as probiotic and used as a cheese starter culture. A sorbitol-producing L. casei strain might therefore be of considerable interest in the food industry. A recombinant strain of L. casei was constructed by the integration of a d-sorbitol-6-phosphate dehydrogenase-encoding gene (gutF) in the chromosomal lactose operon (strain BL232). gutF expression in this strain followed the same regulation as that of the lac genes, that is, it was repressed by glucose and induced by lactose. (13)C-nuclear magnetic resonance analysis of supernatants of BL232 resting cells demonstrated that, when pre-grown on lactose, cells were able to synthesize sorbitol from glucose. Inactivation of the l-lactate dehydrogenase gene in BL232 led to an increase in sorbitol production, suggesting that the engineered route provides an alternative pathway for NAD(+) regeneration. PMID:16002237

  9. Disruption of the Operon Encoding Ehb Hydrogenase Limits Anabolic CO2 Assimilation in the Archaeon Methanococcus maripaludis

    PubMed Central

    Porat, Iris; Kim, Wonduck; Hendrickson, Erik L.; Xia, Qiangwei; Zhang, Yi; Wang, Tiansong; Taub, Fred; Moore, Brian C.; Anderson, Iain J.; Hackett, Murray; Leigh, John A.; Whitman, William B.

    2006-01-01

    Methanococcus maripaludis is a mesophilic archaeon that reduces CO2 to methane with H2 or formate as an energy source. It contains two membrane-bound energy-conserving hydrogenases, Eha and Ehb. To determine the role of Ehb, a deletion in the ehb operon was constructed to yield the mutant, strain S40. Growth of S40 was severely impaired in minimal medium. Both acetate and yeast extract were necessary to restore growth to nearly wild-type levels, suggesting that Ehb was involved in multiple steps in carbon assimilation. However, no differences in the total hydrogenase specific activities were found between the wild type and mutant in either cell extracts or membrane-purified fractions. Methanogenesis by resting cells with pyruvate as the electron donor was also reduced by 30% in S40, suggesting a defect in pyruvate oxidation. CO dehydrogenase/acetyl coenzyme A (CoA) synthase and pyruvate oxidoreductase had higher specific activities in the mutant, and genes encoding these enzymes, as well as AMP-forming acetyl-CoA synthetase, were expressed at increased levels. These observations support a role for Ehb in anabolic CO2 assimilation in methanococci. PMID:16452419

  10. Turn-on of Inactive Genes by Promoter Recruitment in ESCHERICHIA COLI: Inverted Repeats Resulting in Artificial Divergent Operons

    PubMed Central

    Charlier, Daniel; Severne, Yvonne; Zafarullah, Muhamad; Glansdorff, Nicolas

    1983-01-01

    We have characterized two rearrangements consisting of inverted repeats of the argE gene. The promoters (p) of argE and of argCBH face each other over an internal operator. The rearrangements were obained as reactivations of argE in a strain harboring an argEp deletion on a λdarg prophage. In both cases the repeat included argE and argCBHp on either side of a unique sequence; the result is a divergent operon in which each copy of argCBHp reads into the adjacent argE repeat. In one case, the pair of repeats adjoins the silent parental gene, forming a triplication (← → ←). The other rearrangement consists of a single argE palindrome, but the whole prophage is rearranged into an inverted repeat, analogous to certain λdv's. Both structures could be explained by breakage of a replication fork passing argE and by inaccurate rejoining of strands. The λdv-like rearrangement would result from breakage at both replication forks of a phage or prophage replicating during transient release of immunity. The triplication would imply breaking of a chromosomal replication fork, formation of a cyclic intermediate by recombination between the daughter duplex molecules and reinsertion into the parental argE gene. Formation of a triplication by replication errors involving appropriate strand switchings and branch migrations can not be excluded however. PMID:6227522

  11. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications

    PubMed Central

    Zampini, Massimiliano; Mur, Luis A. J.; Rees Stevens, Pauline; Pachebat, Justin A.; Newbold, C. James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-01-01

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology. PMID:27220405

  12. A Colanic Acid Operon Deletion Mutation Enhances Induction of Early Antibody Responses by Live Attenuated Salmonella Vaccine Strains

    PubMed Central

    Wang, Shifeng; Shi, Huoying; Li, Yuhua; Shi, Zhaoxing; Zhang, Xin; Baek, Chang-Ho; Mothershead, Tabor

    2013-01-01

    Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 108 and 109 CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens. PMID:23774599

  13. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis.

    PubMed

    Jeon, Tae-Il; Esquejo, Ryan M; Roqueta-Rivera, Manuel; Phelan, Peter E; Moon, Young-Ah; Govindarajan, Subramaniam S; Esau, Christine C; Osborne, Timothy F

    2013-07-01

    Sterol regulatory element-binding proteins (SREBPs) have evolved as a focal point for linking lipid synthesis with other pathways that regulate cell growth and survival. Here, we have uncovered a polycistrionic microRNA (miRNA) locus that is activated directly by SREBP-2. Two of the encoded miRNAs, miR-182 and miR-96, negatively regulate the expression of Fbxw7 and Insig-2, respectively, and both are known to negatively affect nuclear SREBP accumulation. Direct manipulation of this miRNA pathway alters nuclear SREBP levels and endogenous lipid synthesis. Thus, we have uncovered a mechanism for the regulation of intracellular lipid metabolism mediated by the concerted action of a pair of miRNAs that are expressed from the same SREBP-2-regulated miRNA locus, and each targets a different protein of the multistep pathway that regulates SREBP function. These studies reveal an miRNA "operon" analogous to the classic model for genetic control in bacterial regulatory systems. PMID:23823476

  14. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae.

    PubMed Central

    Hidalgo, E; Palacios, J M; Murillo, J; Ruiz-Argüeso, T

    1992-01-01

    The nucleotide sequence of a 2.5-kbp region following the hydrogenase structural genes (hupSL) in the H2 uptake gene cluster from Rhizobium leguminosarum bv. viciae UPM791 was determined. Four closely linked genes encoding peptides of 27.9 (hupC), 22.1 (hupD), 19.0 (hupE), and 10.4 (hupF) kDa were identified immediately downstream of hupL. Proteins with comparable apparent molecular weights were detected by heterologous expression of these genes in Escherichia coli. The six genes, hupS to hupF, are arranged as an operon, and by mutant complementation analysis, it was shown that genes hupSLCD are cotranscribed. A transcription start site preceded by the -12 to -24 consensus sequence characteristic of NtrA-dependent promoters was identified upstream of hupS. On the basis of the lack of oxygen-dependent H2 uptake activity of a hupC::Tn5 mutant and on structural characteristics of the protein, we postulate that HupC is a b-type cytochrome involved in electron transfer from hydrogenase to oxygen. The product from hupE, which is needed for full hydrogenase activity, exhibited characteristics typical of a membrane protein. The features of HupC and HupE suggest that they form, together with the hydrogenase itself, a membrane-bound protein complex involved in hydrogen oxidation. Images PMID:1597428

  15. Role of codon choice in the leader region of the ilvGMEDA operon of Serratia marcescens.

    PubMed Central

    Harms, E; Umbarger, H E

    1987-01-01

    Leucine participates in multivalent repression of the Serratia marcescens ilvGMEDA operon by attenuation (J.-H. Hsu, E. Harms, and H.E. Umbarger, J. Bacteriol. 164:217-222, 1985), although there is only one single leucine codon that could be involved in this type of control. This leucine codon is the rarely used CUA. The contribution of this leucine codon to the control of transcription by attenuation was examined by replacing it with the commonly used leucine codon CUG and with a nonregulatory proline codon, CCG. These changes left intact the proposed secondary structure of the leader. The effects of the codon changes were assessed by placing the mutant leader regions upstream of the ilvGME structural genes or the cat gene and measuring acetohydroxy acid synthase II, transaminase B, or chloramphenicol acetyltransferase activities in cells grown under limiting and repressing conditions. The presence of the common leucine codon in place of the rare leucine codon reduced derepression by about 70%. Eliminating the leucine codon by converting it to proline abolished leucine control. Furthermore, a possible context effect of the adjacent upstream serine codon on leucine control was examined by changing it into a glycine codon. PMID:2824442

  16. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed Central

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582

  17. A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains.

    PubMed

    Wang, Shifeng; Shi, Huoying; Li, Yuhua; Shi, Zhaoxing; Zhang, Xin; Baek, Chang-Ho; Mothershead, Tabor; Curtiss, Roy

    2013-09-01

    Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens. PMID:23774599

  18. On multiple regulatory mechanisms in the tryptophan operon system in Escherichia coli: in silico study of perturbation dynamics.

    PubMed

    Nguyen, Lan K; Kulasiri, Don

    2008-01-01

    Living organisms often exist in uncertain environments where changes are the norm. Cellular systems therefore require resilient regulatory mechanisms for timely and stable adaptation. Among various regulation motifs, multiple feedback control emerges as a common theme. The tryptophan operon system in Escherichia coli regulates the production ofintracellular tryptophan using an apparatus of three feedback mechanisms: repression, attenuation and enzyme inhibition; each provides essentially the same function but operates in distinctly different ways. Here we aim to understand the roles of each loop by studying transient dynamics of the system to perturbations of different types; to reveal the underlying relationships between individual control mechanisms and macroscopic behaviour. We develop an S-systems approximation of an existing model for the system and characterise transient dynamics by introducing two measurable quantities: maximum disturbance (MD) and recovery time (RT). Our simulation results showed that combined regulation using all three feedback mechanisms significantly increases system stability, broadening the range of kinetic parameters for stable behaviour. Enzyme inhibition was shown to directly control the disturbance level in system variables after perturbations. Attenuation, on the other hand, was found to speed up system recovery whereas repression lengthens recovery time. The method developed in this paper and the defined transient dynamics measurements can be applied to other cellular systems. PMID:19374133

  19. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    PubMed

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-01-01

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology. PMID:27220405

  20. Mycobacterium tuberculosis Co-operonic PE32/PPE65 Proteins Alter Host Immune Responses by Hampering Th1 Response

    PubMed Central

    Khubaib, Mohd; Sheikh, Javaid A.; Pandey, Saurabh; Srikanth, Battu; Bhuwan, Manish; Khan, Nooruddin; Hasnain, Seyed E.; Ehtesham, Nasreen Z.

    2016-01-01

    PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed, and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-γ and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favorable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response. PMID:27242739

  1. Aerobic mineralization of vinyl chlorides by a bacterium of the order Actinomycetales

    SciTech Connect

    Phelps, T.J.; Malachowsky, K.; Schram, R.M. ); White, D.C. Oak Ridge National Lab., TN )

    1991-04-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the (1,2-{sup 14}C)vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in {sup 14}C-aqueous-phase products.

  2. Characterization of an effective actinorhizal microsymbiont, Frankia sp. AvcI1 (Actinomycetales).

    PubMed

    Baker, D; Torrey, J G

    1980-09-01

    The actinomycete, Frankia sp. AvcI1, isolated from root nodules of Alnus viridis ssp. crispa was grown in axenic culture and used to inoculate host seedlings. This bacterium has been shown to be an infective and effective nitrogen-fixing microsymbiont which can be distinguished from other frankiae, in vitro, on the basis of size, distinctive morphology, and growth characteristics. Cross-inoculation studies indicated that the host range of this symbiont encompasses all of the members of the genera Alnus, Myrica, and Comptonia tested. In all cases, the symbioses developed were effective in fixing atmospheric dinitrogen. PMID:7459721

  3. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  4. Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm.

    PubMed

    Aviziotis, Ioannis G; Kavousanakis, Michail E; Boudouvis, Andreas G

    2015-01-01

    Heterogeneity in cell populations originates from two fundamentally different sources: the uneven distribution of intracellular content during cell division, and the stochastic fluctuations of regulatory molecules existing in small amounts. Discrete stochastic models can incorporate both sources of cell heterogeneity with sufficient accuracy in the description of an isogenic cell population; however, they lack efficiency when a systems level analysis is required, due to substantial computational requirements. In this work, we study the effect of cell heterogeneity in the behaviour of isogenic cell populations carrying the genetic network of lac operon, which exhibits solution multiplicity over a wide range of extracellular conditions. For such systems, the strategy of performing solely direct temporal solutions is a prohibitive task, since a large ensemble of initial states needs to be tested in order to drive the system--through long time simulations--to possible co-existing steady state solutions. We implement a multiscale computational framework, the so-called "equation-free" methodology, which enables the performance of numerical tasks, such as the computation of coarse steady state solutions and coarse bifurcation analysis. Dynamically stable and unstable solutions are computed and the effect of intrinsic noise on the range of bistability is efficiently investigated. The results are compared with the homogeneous model, which neglects all sources of heterogeneity, with the deterministic cell population balance model, as well as with a stochastic model neglecting the heterogeneity originating from intrinsic noise effects. We show that when the effect of intrinsic source of heterogeneity is intensified, the bistability range shifts towards higher extracellular inducer concentration values. PMID:26185999

  5. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons

    SciTech Connect

    Helmann, J.D.; Walsh, C.T. ); Wang, Ying; Mahler, I. )

    1989-01-01

    The authors report the overexpression, purification, and properties of the regulatory protein, MerR, for a chromosomally encoded mercury resistance determinant from Bacillus strain RC607. This protein is similar in sequence to the metalloregulatory proteins encoded by gram-negative resistance determinants found on transposons Tn21 and Tn501 and to a predicted gene product of a Staphylococcus aureus resistance determinant. In vitro DNA-binding and transcription experiments were used to demonstrate those purified Bacillus MerR protein controls transcription from a promoter-operator site similar in sequence to that found in the transposon resistance determinants. The Bacillus MerR protein bound in vitro to its promoter-operator region in both the presence and absence of mercuric ion and functioned as a negative and positive regulator of transcription. The MerR protein bound less tightly to its operator region (ca. 50- to 100-fold) in the presence of mercuric ion; this reduced affinity was largely accounted for by an increased rate of dissociation of the MerR protein from the DNA. Despite this reduced DNA-binding affinity, genetic and biochemical evidence support a model in which the MerR protein-mercuric ion complex is a positive regulator of operon transcription. Although the Bacillus MerR protein bound only weakly to the heterologous Tn501 operator region, the Tn501 and Tn21 MerR proteins bound with high affinity to the Bacillus promoter-operator region and exhibited negative, but not positive, transcriptional control.

  6. The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster.

    PubMed

    Maiti, Biplab K; Moura, Isabel; Moura, José J G; Pauleta, Sofia R

    2016-09-01

    A linear cluster formulated as [S2MoS2CuS2MoS2](3-), a unique heterometallic cluster found in biological systems, was identified in a small monomeric protein (named as Orange Protein). The gene coding for this protein is part of an operon mainly present in strict anaerobic bacteria, which is composed (in its core) by genes coding for the Orange Protein and two ATPase proposed to contain Fe-S clusters. In Desulfovibrio desulfuricans G20, there is an ORF, Dde_3197 that encodes a small protein containing several cysteine residues in its primary sequence. The heterologously produced Dde_3197 aggregates mostly in inclusion bodies and was isolated by unfolding with a chaotropic agent and refolding by dialysis. The refolded protein contained sub-stoichiometric amounts of iron atoms/protein (0.5±0.2), but after reconstitution with iron and sulfide, high iron load contents were detected (1.8±0.1 or 3.4±0.2) using 2- and 4-fold iron excess. The visible absorption spectral features of the iron-sulfur clusters in refolded and reconstituted Dde_3197 are similar and resemble the ones of [2Fe-2S] cluster containing proteins. The refolded and reconstituted [2Fe-2S] Dde_3197 are EPR silent, but after reduction with dithionite, a rhombic signal is observed with gmax=2.00, gmed=1.95 and gmin=1.92, consistent with a one-electron reduction of a [2Fe-2S](2+) cluster into a [2Fe-2S](1+) state, with an electron spin of S=½. The data suggests that Dde_3197 can harbor one or two [2Fe-2S] clusters, one being stable and the other labile, with quite identical spectroscopic properties, but stable to oxygen. PMID:27240719

  7. Phylogenetic conservation of RNA secondary and tertiary structure in the trpEDCFBA operon leader transcript in Bacillus.

    PubMed

    Schaak, Janell E; Babitzke, Paul; Bevilacqua, Philip C

    2003-12-01

    Expression of the trpEDCFBA operon of Bacillus subtilis is regulated by transcription attenuation and translation control mechanisms. We recently determined that the B. subtilis trp leader readthrough transcript can adopt a Mg(2+)-dependent tertiary structure that appears to interfere with TRAP-mediated translation control of trpE. In the present study, sequence comparisons to trp leaders from three other Bacillus sp. were made, suggesting that RNA secondary and tertiary structures are phylogenetically conserved. To test this hypothesis, experiments were carried out with the trp leader transcript from Bacillus stearothermophilus. Structure mapping experiments confirmed the predicted secondary structure. Native gel experiments identified a faster mobility species in the presence of Mg(2+), suggesting that a Mg(2+)-dependent tertiary structure forms. Mg(2+)-dependent protection of residues within the first five triplet repeats of the TRAP binding target and a pyrimidine-rich internal loop were observed, consistent with tertiary structure formation between these regions. Structure mapping in the presence of a competitor DNA oligonucleotide allowed the interacting partners to be identified as a single-stranded portion of the purine-rich TRAP binding target and the large downstream pyrimidine-rich internal loop. Thermal denaturation experiments revealed a Mg(2+)- and pH-dependent unfolding transition that was absent for a transcript missing the first five triplet repeats. The stability of several mutant transcripts allowed a large portion of the base-pairing register for the tertiary interaction to be determined. These data indicate that RNA secondary and tertiary structures involved in TRAP-mediated translation control are conserved in at least four Bacillus species. PMID:14624006

  8. Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon.

    PubMed

    Gudiminchi, Rama Krishna; Randall, Charlene; Opperman, Diederik J; Olaofe, Oluwafemi A; Harrison, Susan T L; Albertyn, Jacobus; Smit, Martha S

    2012-12-01

    CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85 μM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6-0.8 μM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5-1.0 μmol P450 g (DCW)⁻¹, for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7 g octanol L (BRM)⁻¹ was obtained within 24 h (0.34 g L (BRM)⁻¹  h⁻¹) with IPTG-induced cells containing only 0.20 μmol P450 g (DCW)⁻¹, when glucose (22 g L (BRM)⁻¹) was added for cofactor regeneration. PMID:22410745

  9. Autogenous regulation and kinetics of induction of Pseudomonas aeruginosa recA transcription as analyzed with operon fusions

    SciTech Connect

    Horn, J.M.; Ohman, D.E.

    1988-10-01

    A promoterless chloramphenicol acetyltransferase gene (cat) was used to construct recA-cat operon fusions to quantitatively examine the transcriptional regulation of the Pseudomonas aeruginosa recA gene in P. aeruginosa PAO. Wild-type P. aeruginosa containing the recA8-cat fusion was treated with methyl methanesulfonate (MMS) and showed immediate induction of chloramphenicol acetyltransferase (CAT) specific activity, whereas a recA::Tn501 mutant of P. aeruginosa containing recA8-cat showed no induction with MMS. This indicated that a functional copy of recA was required for derepression of recA transcription and that P. aeruginosa recA protein was a positive regulatory factor promoting its own expression. Compared with that in the wild type, the uninduced level of CAT in recA8-cat-containing cells was reduced by approximately one-half in the recA::Tn501 mutant, indicating that recA+-dependent spontaneous induction contributes to the uninduced levels of recA expression in P. aeruginosa. MMS (0.012%) caused recA-directed CAT synthesis to increase almost immediately, with maximum CAT activity, fourfold higher than uninduced levels, attained at 60 min postinduction. The kinetics of recA8-cat fusion activity were shown to be directly related to the MMS doses used. Another fusion called recAa1-cat, where cat was located between the two transcriptional terminators of the P. aeruginosa recA gene, also showed dose-dependent induction by MMS, but the CAT activity from recAa1-cat was only one-half of that obtained with recA8-cat under the same conditions. Treatment of recA+ P. aeruginosa containing recA8-cat with UV irradiation produced an immediate effect on recA8-cat transcription and showed little UV dose dependency at doses of 5 J/m2 or greater.

  10. Anaerobically controlled expression system derived from the arcDABC operon of Pseudomonas aeruginosa: application to lipase production.

    PubMed Central

    Winteler, H V; Schneidinger, B; Jaeger, K E; Haas, D

    1996-01-01

    The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase. PMID:8795231

  11. An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions.

    PubMed

    Becerra, Jimmy E; Yebra, María J; Monedero, Vicente

    2015-06-01

    L-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative L-fucose permease (fucP), L-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of L-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on L-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by L-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on L-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the L-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, L-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that L-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions. PMID:25819967

  12. An l-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions

    PubMed Central

    Becerra, Jimmy E.; Yebra, María J.

    2015-01-01

    l-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative l-fucose permease (fucP), l-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of l-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on l-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by l-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on l-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the l-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, l-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that l-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions. PMID:25819967

  13. Molecular Analysis of Promoter and Intergenic Region Attenuator of the Vibrio vulnificus prx1ahpF Operon.

    PubMed

    Lee, Hyun Sung; Lim, Jong Gyu; Han, Kook; Lee, Younghoon; Choi, Sang Ho

    2015-08-01

    Prx1, an AhpF-dependent 2-Cys peroxiredoxin (Prx), was previously identified in Vibrio vulnificus, a facultative aerobic pathogen. In the present study, transcription of the V. vulnificus prx1ahpF genes, which are adjacently located on the chromosome, was evaluated by analyzing the promoter and intergenic region of the two genes. Northern blot analyses revealed that transcription of prx1ahpF results in two transcripts, the prx1 and prx1ahpF transcripts. Primer extension analysis and a point mutational analysis of the promoter region showed that the two transcripts are generated from a single promoter. In addition, the 3' end of the prx1 transcript at the prx1ahpF intergenic region was determined by a 3'RACE assay. These results suggested that the prx1ahpF genes are transcribed as an operon, and the prx1 transcript was produced by transcriptional termination in the intergenic region. RNA secondary structure prediction of the prx1ahpF intergenic region singled out a stem-loop structure without poly(U) tract, and a deletion analysis of the intergenic region showed that the atypical stem-loop structure acts as the transcriptional attenuator to result in the prx1 and prx1ahpF transcripts. The combined results demonstrate that the differential expression of prx1 and ahpF is accomplished by the cis-acting transcriptional attenuator located between the two genes and thereby leads to the production of a high level of Prx1 and a low level of AhpF. PMID:25824432

  14. The core promoter of the capsule operon of Streptococcus pneumoniae is necessary for colonization and invasive disease.

    PubMed

    Shainheit, Mara G; Mulé, Matthew; Camilli, Andrew

    2014-02-01

    Streptococcus pneumoniae is a commensal of the human nasopharynx but can cause invasive diseases, including otitis media, pneumonia, sepsis, and meningitis. The capsular polysaccharide (capsule) is a critical virulence factor required for both asymptomatic colonization and invasive disease, yet the expression level is different in each anatomical site. During colonization, reduced levels of capsule promote binding to the host epithelium and biofilm formation, while during systemic infection, increased capsule is required to evade opsonophagocytosis. How this regulation of capsule expression occurs is incompletely understood. To investigate the contribution of transcriptional regulation on capsule level in the serotype 4 strain TIGR4, we constructed two mutants harboring a constitutive promoter that was either comparably weaker (Pcat) or stronger (PtRNAGlu) than the wild-type (WT) capsule promoter, Pcps. Mild reductions in cpsA and cpsE transcript levels in the Pcat promoter mutant resulted in a 2-fold reduction in total amounts of capsule and in avirulence in murine models of lung and blood infection. Additionally, the PtRNAGlu mutant revealed that, despite expressing enhanced levels of cpsA and cpsE and possessing levels of capsule comparable to those of WT TIGR4, it was still significantly attenuated in all tested in vivo niches. Further analysis using chimeric promoter mutants revealed that the WT -10 and -35 boxes are required for optimal nasopharyngeal colonization and virulence. These data support the hypothesis that dynamic transcriptional regulation of the capsule operon is required and that the core promoter region plays a central role in fine-tuning levels of capsule to promote colonization and invasive disease. PMID:24478084

  15. Leucine regulation of the ilvGEDA operon of Serratia marcescens by attenuation is modulated by a single leucine codon.

    PubMed Central

    Hsu, J H; Harms, E; Umbarger, H E

    1985-01-01

    The effect of leucine limitation and of restricted leucine tRNA charging on the expression of the ilvGEDA operon of Serratia marcescens was examined. In this organism, the ilv leader region specifies a putative peptide containing only a single leucine codon that could be involved in leucine-mediated control by attenuation (E. Harms, J.-H. Hsu, C. S. Subrahmanyam, and H. E. Umbarger, J. Bacteriol. 164:207-216, 1985). A plasmid (pPU134) containing the DNA of the S. marcescens ilv control region and three of the associated structural genes was studied as a single chromosomal copy in an Escherichia coli strain auxotrophic for all three branched-chain amino acids. The S. marcescens ilv genes responded to a multivalent control similar to that found in other enteric organisms. Furthermore, the S. marcescens ilv genes were derepressed when the charging of leucine tRNA was restricted in a leuS derivative of E. coli that had been transformed with pPU134. It was concluded that ribosome stalling leading to deattenuation is not dependent on either tandem or a consecutive series of codons for the regulatory amino acid. However, the fact that the single leucine codon is a less frequently used codon (CUA) may be important. The procedure for obtaining the cloned ilv genes in single chromosomal copy exploited the dependence of ColE1 replicons on the polA gene. The cloning experiments also revealed a branched-chain amino acid-glutamate transaminase in S. marcescens that is different from transaminase B. PMID:3900038

  16. Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm

    PubMed Central

    Aviziotis, Ioannis G.; Kavousanakis, Michail E.; Boudouvis, Andreas G.

    2015-01-01

    Heterogeneity in cell populations originates from two fundamentally different sources: the uneven distribution of intracellular content during cell division, and the stochastic fluctuations of regulatory molecules existing in small amounts. Discrete stochastic models can incorporate both sources of cell heterogeneity with sufficient accuracy in the description of an isogenic cell population; however, they lack efficiency when a systems level analysis is required, due to substantial computational requirements. In this work, we study the effect of cell heterogeneity in the behaviour of isogenic cell populations carrying the genetic network of lac operon, which exhibits solution multiplicity over a wide range of extracellular conditions. For such systems, the strategy of performing solely direct temporal solutions is a prohibitive task, since a large ensemble of initial states needs to be tested in order to drive the system—through long time simulations—to possible co-existing steady state solutions. We implement a multiscale computational framework, the so-called “equation-free” methodology, which enables the performance of numerical tasks, such as the computation of coarse steady state solutions and coarse bifurcation analysis. Dynamically stable and unstable solutions are computed and the effect of intrinsic noise on the range of bistability is efficiently investigated. The results are compared with the homogeneous model, which neglects all sources of heterogeneity, with the deterministic cell population balance model, as well as with a stochastic model neglecting the heterogeneity originating from intrinsic noise effects. We show that when the effect of intrinsic source of heterogeneity is intensified, the bistability range shifts towards higher extracellular inducer concentration values. PMID:26185999

  17. Genes of De Novo Pyrimidine Biosynthesis from the Hyperthermoacidophilic Crenarchaeote Sulfolobus acidocaldarius: Novel Organization in a Bipolar Operon

    PubMed Central

    Thia-Toong, Thia-Lin; Roovers, Martine; Durbecq, Virginie; Gigot, Daniel; Glansdorff, Nicolas; Charlier, Daniel

    2002-01-01

    Sequencing a 8,519-bp segment of the Sulfolobus acidocaldarius genome revealed the existence of a tightly packed bipolar pyrimidine gene cluster encoding the enzymes of de novo UMP synthesis. The G+C content of 35.3% is comparable to that of the entire genome, but intergenic regions exhibit a considerably lower percentage of strong base pairs. Coding regions harbor the classical excess of purines on the coding strand, whereas intergenic regions do not show this bias. Reverse transcription-PCR and primer extension experiments demonstrated the existence of two polycistronic messengers, pyrEF-orf8 and pyrBI-orf1-pyrCD-orf2-orf3-orf4, initiated from a pair of divergent and partially overlapping promoters. The gene order and the grouping in two wings of a bipolar operon constitute a novel organization of pyr genes that also occurs in the recently determined genome sequences of Sulfolobus solfataricus P2 and Sulfolobus tokodaii strain 7; the configuration appears therefore characteristic of Sulfolobus. The quasi-leaderless pyrE and pyrB genes do not bear a Shine-Dalgarno sequence, whereas the initiation codon of promoter-distal genes is preceded at an appropriate distance by a sequence complementary to the 3′ end of 16S rRNA. The polycistronic nature of the pyr messengers and the existence of numerous overlaps between contiguous open reading frames suggests the existence of translational coupling. pyrB transcription was shown to be approximately twofold repressed in the presence of uracil. The mechanism underlying this modulation is as yet unknown, but it appears to be of a type different from the various attenuation-like mechanisms that regulate pyrB transcription in bacteria. In contrast, the pyrE-pyrB promoter/control region harbors direct repeats and imperfect palindromes reminiscent of target sites for the binding of a hypothetical regulatory protein(s). PMID:12142413

  18. Detection of a putative hemolysin operon, hhdBA, of Haemophilus parasuis from pigs with Glässer disease.

    PubMed

    Assavacheep, Pornchalit; Assavacheep, Anongnart; Turni, Conny

    2012-03-01

    The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis-positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glässer disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis-positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates. PMID:22379049

  19. RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader.

    PubMed

    Chai, W; Stewart, V

    1999-09-17

    In Klebsiella oxytoca, enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism, in which the nasR gene product responds to nitrate or nitrite and overcomes transcription termination at the factor-independent terminator site located in the nasF upstream leader region. Previous studies led to the hypothesis that the NasR protein mediates transcription antitermination through interaction with nasF leader RNA. Here, we report a DNA sequence comparison that reveals conserved 1:2 and 3:4 RNA secondary structures in the nasF leader RNAs from two Klebsiella species. Additionally, we found that specific binding of the NasR protein to nasF leader RNA was stimulated by nitrate and nitrite. We combined mutational analysis, in vivo and in vitro antitermination assays, and an RNA electrophoretic mobility shift assay to define regions in the nasF leader that are essential for antitermination and for NasR-RNA interaction. Formation of the 1:2 stem structure and the specific sequence of the 1:2 hexanucleotide loop were required for both nitrate induction and for NasR-RNA interaction. Mutations in the 1:2 stem-loop region that abolished nitrate induction also interfered with NasR-leader RNA interaction. Finally, nucleotide alterations or additions in the linker region between the 1:2 and 3:4 stem-loops were deleterious to nasF operon induction but not to NasR-leader RNA interaction. We hypothesize that NasR protein recognizes the 1:2 stem-loop structure in the nasF leader RNA to mediate transcription antitermination in response to nitrate or nitrite. PMID:10493869

  20. Long-Chain Fatty Acid Sensor, PsrA, Modulates the Expression of rpoS and the Type III Secretion exsCEBA Operon in Pseudomonas aeruginosa

    SciTech Connect

    Kang, Y.; Lunin, V. V.; Skarina, T.; Savchenko, A.; Schurr, M. J.; Hoang, T. T.

    2009-01-01

    The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5{beta}-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.

  1. Integration Host Factor (IHF) binds to the promoter region of the phtD operon involved in phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121

    PubMed Central

    2011-01-01

    Background Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease in beans, produces a toxin known as phaseolotoxin, in whose synthesis participate a group of genes organized within the genome in a region known as the "Pht cluster". This region, which is thought to have been acquired by horizontal gene transfer, includes 5 transcriptional units, two monocistronic (argK, phtL) and three polycistronic (phtA, phtD, phtM), whose expression is temperature dependent. So far, the regulatory mechanisms involved in phaseolotoxin synthesis have not been elucidated and the only well-established fact is the requirement of low temperatures for its synthesis. In this work, we searched for regulatory proteins that could be involved in phaseolotoxin synthesis, focusing on the regulation of the phtD operon. Results In this study we identified the global regulator IHF (Integration Host Factor), which binds to the promoter region of the phtD operon, exerting a negative effect on the expression of this operon. This is the first regulatory protein identified as part of the phaseolotoxin synthesis system. Our findings suggest that the Pht cluster was similarly regulated in the ancestral cluster by IHF or similar protein, and integrated into the global regulatory mechanism of P. syringae pv. phaseolicola, after the horizontal gene transfer event by using the host IHF protein. Conclusion This study identifies the IHF protein as one element involved in the regulation of phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121 and provides new insights into the regulatory mechanisms involved in phaseolotoxin production. PMID:21542933

  2. The Co-Operonic PE25/PPE41 Protein Complex of Mycobacterium tuberculosis Elicits Increased Humoral and Cell Mediated Immune Response

    PubMed Central

    Tundup, Smanla; Pathak, Niteen; Ramanadham, M.; Mukhopadhyay, Sangita; Murthy, K. J. R.; Ehtesham, Nasreen Z.; Hasnain, Seyed E.

    2008-01-01

    Background Many of the PE/PPE proteins are either surface localized or secreted outside and are thought to be a source of antigenic variation in the host. The exact role of these proteins are still elusive. We previously reported that the PPE41 protein induces high B cell response in TB patients. The PE/PPE genes are not randomly distributed in the genome but are organized as operons and the operon containing PE25 and PPE41 genes co-transcribe and their products interact with each other. Methodology/Principal Finding We now describe the antigenic properties of the PE25, PPE41 and PE25/PPE41 protein complex coded by a single operon. The PPE41 and PE25/PPE41 protein complex induces significant (p<0.0001) B cell response in sera derived from TB patients and in mouse model as compared to the PE25 protein. Further, mice immunized with the PE25/PPE41 complex and PPE41 proteins showed significant (p<0.00001) proliferation of splenocyte as compared to the m