Sample records for activated carbon process

  1. Activated carbon from pecan shell: process description and economic analysis

    Microsoft Academic Search

    Chilton Ng; Wayne E Marshall; Ramu M Rao; Rishipal R Bansode; Jacques N Losso

    2003-01-01

    Granular activated carbons derived from pecan shells have been shown to adsorb a variety of metal and organic species in various processing wastewaters. Their effectiveness is equivalent to or exceeds comparable commercial carbons in this regard. The objectives of this study were to develop process flow diagrams for the large-scale production of pecan shell-based carbons derived from steam or phosphoric

  2. ACTIVATED CARBON PROCESS FOR TREATMENT OF WASTEWATERS CONTAINING HEXAVALENT CHROMIUM

    EPA Science Inventory

    The removal of hexavalent chromium, Cr(VI), from dilute aqueous solution by an activated carbon process has been investigated. Two removal mechanisms were observed; hexavalent chromium species were removed by adsorption onto the interior carbon surface and/or through reduction to...

  3. Carbonation process of alkali-activated slag mortars

    Microsoft Academic Search

    F. Puertas; M. Palacios; T. Vázquez

    2006-01-01

    This study analyzes the behaviour of waterglass- or NaOH-activated slag mortars after carbonation. The effect of a superplasticizer\\u000a based on vinyl copolymer and shrinkage reducing polypropylenglycol derivative admixtures on that process was also examined.\\u000a The same tests were run on cement mortars for reference purposes. The mortars were carbonated in a chamber ensuring CO2 saturation for four and eight months,

  4. APPRAISAL OF POWDERED ACTIVATED CARBON PROCESSES FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    Powdered activated carbon has been the subject of several developmental efforts directed towards producing improved methods for treating municipal wastewaters. Granular activated carbon has proven itself as an effective means of reducing dissolved organic contaminant levels, but ...

  5. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 ?m) volume and the increase of mesopore and macropore (0.1 ?mprocess. PMID:25203235

  6. ACTIVATED SLUDGE WITH POWDERED ACTIVATED CARBON TREATMENT OF A DYES AND PIGMENTS PROCESSING WASTEWATER

    EPA Science Inventory

    This paper discusses completed efforts in the treatment of dyes and pigments processing wastewater utilizing the activated sludge process (ASP) enhanced with powdered activated carbon (PAC). The independent variables of the study were solids retention time (SRT) and PAC dosage. T...

  7. Biofilm processes in biologically active carbon water purification

    Microsoft Academic Search

    David R. Simpson

    2008-01-01

    This review paper serves to describe the composition and activity of a biologically active carbon (BAC) biofilm used in water purification. An analysis of several physical–chemical, biochemical and microbiological methods (indicators) used to characterize the BAC biofilm's composition and activity is provided. As well, the ability of the biofilm to remove and biodegrade waterborne organic substances and pollutants will be

  8. Carbon activation process for increased surface accessibility in electrochemical capacitors

    DOEpatents

    Doughty, Daniel H. (Albuquerque, NM); Eisenmann, Erhard T. (Belpre, OH)

    2001-01-01

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  9. ACTIVATED CARBON PROCESS FOR THE TREATMENT OF CADMIUM(II)-CONTAINING WASTEWATERS

    EPA Science Inventory

    The removal of cadmium(II) from two synthetic cadmium plating wastewaters by an activated carbon adsorption process has been investigated. Among the 17 different types of activated carbon tested, it was found that the acidic activated carbons, namely Nuchar SA and Nuchar SN exhib...

  10. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  11. Feedforward control of the external carbon flow rate in an activated sludge process

    Microsoft Academic Search

    P. Samuelsson; B. Carlsson

    2000-01-01

    Biological nitrogen removal in an activated sludge process is obtained by two biological processes: nitrification and denitrification. Denitrifying bacteria need sufficient amounts of readily metabolized carbon. The objective of this paper is to develop an automatic control strategy for adjusting the external carbon flow rate so that the nitrate concentration in the last anoxic compartment is kept at a low

  12. DEVELOPMENT OF THE WESTVACO ACTIVATED CARBON PROCESS FOR SOX RECOVERY AS ELEMENTAL SULFUR. VOLUME II. APPENDIX

    EPA Science Inventory

    The report gives results of a demonstration (in a 20,000-cfh integral pilot plant) of an all-dry, fluidized-bed process, using activated carbon for recovering SO2 as elemental sulfur. Granular carbon was recycled continuously more than 20 times between contact with flue gas from ...

  13. DEVELOPMENT OF THE WESTVACO ACTIVATED CARBON PROCESS FOR SOX RECOVERY AS ELEMENTAL SULFUR. VOLUME I

    EPA Science Inventory

    The report gives results of a demonstration (in a 20,000-cfh integral pilot plant) of an all-dry, fluidized-bed process, using activated carbon for recovering SO2 as elemental sulfur. Granular carbon was recycled continuously more than 20 times between contact with flue gas from ...

  14. PROCESS DESCRIPTION AND PRODUCT COST TO MANUFACTURE SUGARCANE BAGASSE-BASED GRANULAR ACTIVATED CARBON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process flow diagrams and manufacturing costs were developed to convert sugarcane bagasse to granular activated carbon. Unit operations in the conversion process consisted of milling, pelletization, pyrolysis/activation, washing with acid and water, and drying/screening/collecting of the final prod...

  15. Increasing the sorption activity of carbon adsorbents by electron-beam processing and fullerene microadditives

    NASA Astrophysics Data System (ADS)

    Myakin, S. V.; Nikonova, V. Yu.; Korsakov, V. G.; Samonin, V. V.

    2011-09-01

    The sorption capacity of activated carbon with respect to Cu2+ cations was found to be enhanced considerably upon its chemical modification with fullerenes and during its electron-beam processing. It was discovered that introducing fullerenes (20 ?g/g) into activated carbon leads to a change in the chemical composition of its surface, due to changes in the system of conjugated bonds in activated carbon leading to an increase in the content of Brønsted acid (p K a 0-5) and weakly base (p K a 8-11) sites capable of cation exchange on the material surface. We conclude that electron-beam processing (optimal dose, 25-50 kGy) facilitates the rearrangement of bonds on the surface of activated carbon, thereby increasing the number of Lewis base and Brønsted acid sites capable of adsorbing metal ions in accordance with the donor-acceptor and cation-exchange mechanism, respectively.

  16. Study of Bromate Formation and Control by Ozonation-Biological Activated Carbon Process

    Microsoft Academic Search

    Zhu Qi; Liu Dongmei; Cui Fuyi; Zhao Zhiwei; Yu Mingxue; Fang Lei; Wang Huan; Liu Tongmian

    2009-01-01

    The formation of bromate by ozonation-biological activated carbon process is a problem of drinking water treatment. By pilot test, the influence of bromide ion concentration, contact time of ozone column, ozone dosage, Ct value, changes of water quality and adsorption time of activated carbon column on bromate formation and control were investigated. The results showed that when [Br-]=100~500¿g\\/L, t=3~15 min,

  17. Continuous process preparation of activated silica with low carbon dioxide content gas

    E-print Network

    Burdett, Joseph Walton

    1954-01-01

    ~sion and assistance in the performance of this research. Page XETRODUCTXOE ~ DEFX?XTION GF SYMBOLS AND ~ TRECrrr Or PROCESS DESCRIPTION GF EQUXPMERT GPERATIOE GF EQUXPNEET AEALYTXCAL PROCEDURE DIBCVBSXQW GF REBUIXFB 13 25 28 I. Carbon Dioxide and Air Feed.... Variation of' Percentage Neutralization With Carbon Dioxide Content. XI. Variatiou oi' Percentage Reutralization With Gas Rate . XII. Gel Time of Activated Bole. I. Activated Silica Pilot Plant Unit II. Typical Floe Formation. A continuous yrecess...

  18. Treatment of landfill leachate with the microorganism?attached activated carbon fluidized bed process

    Microsoft Academic Search

    Akio Imai; Norio Iwami; Yuhei Inamori; Ryuichi Sudo

    1993-01-01

    The microorganism?attached activated carbon fluidized bed (MAACFB) process was applied to treat a real landfill leachate containing refractory organics and a high concentration of ammonia nitrogen. The MAACFB process consisted of two fluidized bed reactors in a series: anaerobic and aerobic. The leachate was fed to the anaerobic reactor and then overflowed into the aerobic reactor. A portion of the

  19. Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes.

    PubMed

    Cabrera-Codony, Alba; Gonzalez-Olmos, Rafael; Martín, Maria J

    2015-03-21

    In the context of the biogas upgrading, siloxane exhausted activated carbons need to be regenerated in order to avoid them becoming a residue. In this work, two commercial activate carbons which were proved to be efficient in the removal of octamethylcyclotetrasiloxane (D4) from biogas, have been regenerated through advanced oxidation processes using both O3 and H2O2. After the treatment with O3, the activated carbon recovered up to 40% of the original adsorption capacity while by the oxidation with H2O2 the regeneration efficiency achieved was up to 45%. In order to enhance the H2O2 oxidation, activated carbon was amended with iron. In this case, the regeneration efficiency increased up to 92%. PMID:25553386

  20. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation.

    PubMed

    Chen, Yun; Zhai, Shang-Ru; Liu, Na; Song, Yu; An, Qing-Da; Song, Xiao-Wei

    2013-09-01

    A coupling of low-temperature sulfuric acid-assisted carbonization and H3PO4 activation was employed to convert NaOH-pretreated rice husks into activated carbons with extremely high surface area (2028 m(2) g(-1)) and integrated characteristics. The influences of the activation temperature and impregnation ratio on the surface area, pore volume of activated carbons were thoroughly investigated. The morphology and surface chemistry of activated carbons were characterized using N2 sorption, FTIR, XPS, SEM, TEM, etc. The adsorption capacity of resulting carbons obtained under optimum preparation conditions was systematically evaluated using methylene blue under various simulated conditions. The adsorption process can be well described by both Langmuir isotherm model and the pseudo-second order kinetics models; and the maximum monolayer capacity of methylene blue was ca. 578 mg g(-1). PMID:23892148

  1. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  2. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    PubMed

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution. PMID:25185390

  3. Removal of higher molecular weight organic compounds by the granular activated carbon adsorption unit process.

    PubMed

    Stevens, A A; Seeger, D R; DeMarco, J; Moore, L

    1987-01-01

    The granular activated carbon adsorption unit process in drinking water treatment typically removes purgeable organic compounds for time periods on the order of a few weeks. Experimental evidence indicates that less volatile compounds of generally higher molecular weight than the purgeable fraction, but still detectable by gas chromatography, are efficiently removed for longer periods. Field data substantiate this. Explanatory mechanisms may include stronger adsorption affinities or biodegradation. Non-gas chromatographable, higher molecular weight materials such as humic acids, as measured by Total Organic Carbon (TOC) or trihalomethane formation potential, revert to lower removal efficiencies. Biodegradation may be responsible for a continued long term removal of a fraction of these materials. PMID:3694484

  4. Powdered activated carbon augmented double react-settle sequencing batch reactor process for treatment of landfill leachate

    Microsoft Academic Search

    Shuokr Qarani Aziz; Hamidi Abdul Aziz; Mohd Suffian Yusoff

    2011-01-01

    Three types of sequencing batch reactors (SBRs) were used in the treatment of landfill leachate in Kulim, Malaysia. These SBRs were a non-powdered activated carbon SBR (NPAC-SBR), powdered activated carbon SBR (PAC-SBR), and double react-settle SBR (DRS-SBR). Powdered activated carbon was used to augment the SBR process in the PAC and DRS reactors. The first two reactors operate on five

  5. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  6. Powdered Activated Carbon Adsorption

    Microsoft Academic Search

    Yung-Tse Hung; Howard H. Lo; Lawrence K. Wang; Jerry R. Taricska; Kathleen Hung Li

    \\u000a Historically, the use of activated carbon has been limited to treatment applications for drinking water. In the past two decades,\\u000a more attention has been given to the potential use of activated carbons for wastewater treatment. The interest in such a process\\u000a has stemmed from the growing concern over the quality of rain water from which we get our potable water.

  7. Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon.

    PubMed

    Mezohegyi, Gergo; van der Zee, Frank P; Font, Josep; Fortuny, Agustí; Fabregat, Azael

    2012-07-15

    During the last decade, several physico-chemical and biological techniques have been developed to remove colour from textile wastewaters. Some of these techniques rely on and many will profit from activated carbon (AC). The role of AC is versatile: (1) it acts as a dye adsorbent, not only in straightforward adsorption processes but also in AC-enhanced coagulation and membrane filtration processes; (2) it generates strong oxidising agents (mostly, hydroxyl (OH) radicals) in electrochemical dye oxidation; (3) it catalyses OH production in advanced oxidation processes; (4) it catalyses anaerobic (azo) dye reduction and supports biofilm growth in microbial dye removal. This paper reviews the role of AC in dye decolourisation, evaluates the feasibility of each AC-amended decolourisation technique and discusses perspectives on future research. PMID:22459012

  8. Steam-regenerated activated carbon: An emission-free, cost-effective ground water treatment process

    Microsoft Academic Search

    Charles S. Parmele; R. D. Allan; Mohsen Mehran

    1986-01-01

    Air stripping is frequently selected over carbon adsorption with virgin carbon for the removal of halogenated and aromatic solvents from contaminated ground water because it is the cheaper process when the volatilized organics can be emitted. However, increasing concern over the impact of the organics vented from an air stripping process has created a situation where ground water treatment costs

  9. The effect of processing conditions on microstructure of Pd-containing activated carbon fibers

    SciTech Connect

    Wu, Xianxian [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL; Tekinalp, Halil [Clemson University; Bhat, Vinay V [ORNL; Baker, Frederick S [ORNL; Thies, Mark C [ORNL

    2008-01-01

    Palladium-doped activated carbon fibers are being evaluated as candidate materials for enhanced hydrogen storage at near ambient conditions. Pd-doped fibers were spun using a Pd salt mixed with an isotropic pitch precursor. Experimental techniques such as in-situ X-ray analysis, thermogravimetric studies, scanning transmission electron microscopy and gas adsorption were employed to understand how processing conditions for the production of Pd-doped activated carbon fibers affect the microstructure, pore development, and dispersion of metal particles throughout the fibers. The results showed that PdO phase is present in the stabilized fibers and that this oxide phase is stable up to about 250 aC. The oxide phase transforms into Pd metal with increasing heat treatment temperature, going through the formation of an intermediate carbide phase. Sintering of Pd particles was observed with heat treatment at temperatures over 750 aC. It was also found that pore development during physical activation with CO2 was not significantly affected by the presence of Pd particles within the fibers.

  10. Evaluation of Biological Activated Carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes

    Microsoft Academic Search

    Çigdem Kalkan; Kozet Yapsakli; Bulent Mertoglu; Deniz Tufan; Ahmet Saatci

    2011-01-01

    The effects of two different granular activated carbon (GAC) types (steam activated, PK1–3 and chemically activated, CAgran) on dissolved organic carbon (DOC) removal, nitrification and denitrification were evaluated in BAC columns for wastewater reclamation\\/reuse purposes. Continuous-flow laboratory-scale BAC columns were operated for 320days using the secondary effluent water of Pasakoy Advanced Wastewater Treatment Plant. During the first 83days of column

  11. GRANULAR ACTIVATED CARBON INSTALLATIONS

    EPA Science Inventory

    This paper presents a compilation and summary of design criteria, performance, and cost data from 22 operating municipal and industrial granular activated carbon (GAC) installations that treat water and wastewater or process food and beverage products. Guidance for using this inf...

  12. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  13. Optimum Process Parameters for the Treatment of Landfill Leachate Using Powdered Activated Carbon Augmented Sequencing Batch Reactor (SBR) Technology

    Microsoft Academic Search

    Shuokr Qarani Aziz; Hamidi Abdul Aziz; Mohd Suffian Yusoff

    2011-01-01

    The sequencing batch reactor (SBR) process was used for the treatment of raw landfill leachate. Optimum preliminary parameters of leachate\\/activated sludge ratio, powdered activated carbon (PAC) dosage, and settling time were studied. Optimum obtained parameters (mixing ratio of 10%, PAC dosage of 10 g\\/L, and settling time of 1.5 h) were applied on two types of SBRs, namely, non-powdered and powdered activated

  14. Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes.

    PubMed

    Oh, Wen-Da; Lua, Shun-Kuang; Dong, Zhili; Lim, Teik-Thye

    2015-03-01

    Magnetic activated carbon composite (CuFe2O4/AC, MACC) was prepared by a co-precipitation-calcination method. The MACC consisted of porous micro-particle morphology with homogeneously distributed CuFe2O4 and possessed high magnetic saturation moment (8.1 emu g(-1)). The performance of MACC was evaluated as catalyst and regenerable adsorbent via peroxymonosulfate (PMS, Oxone(®)) activation for methylene blue (MB) removal. Optimum CuFe2O4/AC w/w ratio was 1:1.5 giving excellent performance and can be reused for at least 3 cycles. The presence of common inorganic ions, namely Cl(-) and NO3(-) did not exert significant influence on MB degradation but humic acid decreased the MB degradation rate. As a regenerable adsorbent, negligible difference in regeneration efficiency was observed when a higher Oxone(®) dosage was employed but a better efficiency was obtained at a lower MACC loading. The factors hindering complete MACC regeneration are MB adsorption irreversibility and AC surface modification by PMS making it less favorable for subsequent MB adsorption. With an additional mild heat treatment (150 °C) after regeneration, 82% of the active sites were successfully regenerated. A kinetic model incorporating simultaneous first-order desorption, second-order adsorption and pseudo-first order degradation processes was numerically-solved to describe the rate of regeneration. The regeneration rate increased linearly with increasing Oxone(®):MACC ratio. The MACC could potentially serve as a catalyst for PMS activation and regenerable adsorbent. PMID:25463211

  15. ACTIVATED CARBON FROM BROILER LITTER: PROCESS DESCRIPTION AND COST OF PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure continues to represent a significantly large and problematic portion of the U.S. agricultural waste generated yearly. Granular activated carbons made from pelletized poultry litter have been shown to adsorb various positively charged metal ions from laboratory prepared solutions. Bas...

  16. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  17. Total organic carbon-calibrated mathematical model for a completely mixed activated sludge waste-water treatment process

    Microsoft Academic Search

    C. U. Rao; Daniel Tyteca; Edmond-Jacques Nyns

    1978-01-01

    A mathematical model for a total organic carbon-monitored, completely mixed activated sludge process for the treatment of a mixed domestic and laboratory waste water is discussed and experimentally calibrated. The first-order kinetic model was better suited to fit the experimental data than the Monod model. Values obtained for the sludge yield, Y, and the first-order kinetic constant, kL, agree with

  18. Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution

    Microsoft Academic Search

    Guntae Son; Seunghwan Lee

    2011-01-01

    Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes were used to investigate the removal\\u000a condition of lead ions and surfactant sodium dodecyl sulfate (SDS) from an aqueous solution. Lead removal efficiency increased\\u000a with the increase of initial surfactant concentration. Molar ratio of lead to SDS up to 1: 5 has shown over 90% removal efficiency\\u000a of lead,

  19. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  20. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    PubMed

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  1. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    PubMed Central

    Wang, Yuefei; Ying, Le; Sun, Da; Zhang, Shikang; Zhu, Yuejin; Xu, Ping

    2011-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34), and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and ferrous ion chelating (FIC) assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v), and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v). Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems. PMID:22072923

  2. Two kinds of composite films: Graphene oxide/carbon nanotube film and graphene oxide/activated carbon film via a self-assemble preparation process

    NASA Astrophysics Data System (ADS)

    Zou, Li-feng; Ma, Nan; Sun, Mei; Ji, Tian-hao

    2014-11-01

    Two kinds of free-standing composite films, including graphene oxide and activated carbon film as well as graphene oxide and carbon nanotube film, were fabricated through a simple suspension mixing and then natural deposition process. The films were characterized by various measurement techniques in detail. The results show that the composite films without any treatment almost still remain the original properties of the corresponding precursors, and exhibit loose structure, which can be easily broken in water; whereas after treated at 200 °C in air, the films become relatively more dense, and even if immersed into concentrated strong alkali or acid for five days, they still keep the film-morphologies, but regretfully, they show obvious brittleness and slight hydrophilicity. As soon as the treated films are performed in high concentrated strong alkali for about one day, their brittleness and wettability can be improved and became good flexibility and complete hydrophilicity.

  3. Organic solvent regeneration of granular activated carbon

    Microsoft Academic Search

    W. H. Cross; M. T. Suidan; M. A. Roller; B. R. Kim; J. P. Gould

    1982-01-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to

  4. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  5. Solvent-regenerated activated carbon

    SciTech Connect

    McLaughlin, H. (Fluids Design Corp., Troy, NY (USA))

    1988-07-01

    This report summarizes the results of a University/Industry research project, sponsored by the New York State Energy Research and Development Authority and Fluids Design Corporation. The research project studied the solvent regeneration of activated carbon. Activate carbon was used to remove trace organics from aqueous streams, then regenerated by desorbing the adsorbates with organic solvents. The project included a survey of the potential applications in New York State industries, fundamental research on the adsorption/desorption phenomena, and design of a full-scale process. The economics of the full-scale process were evaluated and compared to alternate available technologies. The result of this work is a versatile process with attractive economics. A wide range of adsorbates and solvents were found to be acceptable for this process. The design methodologies are developed and the techniques for evaluating a new application are delineated. 13 refs., 12 figs., 4 tabs.

  6. Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed.

    PubMed

    Bo, Longli; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi

    2006-09-01

    A microwave (MW) assisted oxidation process was investigated for degradation of p-nitrophenol (PNP) from aqueous solution. The process consisted of a granular activated carbon (GAC) fixed bed reactor, a MW source, solution and air supply system, and a heat exchanger. The process was operated in continuous flow mode. Air was applied for oxygen supply. GAC acted as a MW energy absorption material as well as the catalyst for PNP degradation. MW power, air flow, GAC dose, and influent flow proved to be major factors which influenced PNP degradation. The results showed that PNP was degraded effectively by this new process. Under a given condition (PNP concentration 1330mg/L, MW power 500 W, influent flow 6.4 mL/min, air flow 100 mL/min), PNP removed 90%, corresponding to 80% of TOC removal. The pathway of PNP degradation was deduced based on GC-MS identification of course products. PNP experienced sequential oxidation steps and mineralized ultimately. Nitro-group of PNP converted to nitrite and nitrate. Biodegradability of the solution was improved apparently after treatment by MW assisted oxidation process, which benefit to further treatment of the solution using biochemical method. PMID:16904722

  7. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. PMID:25617868

  8. Experience in design and commissioning of activated carbon adsorbers - STEAG/a/c/t{sup {trademark}} process in European waste incineration plants

    SciTech Connect

    Brueggendick, H. [Steag Aktiengesellschaft, Essen (Germany)

    1996-10-01

    STEAG has many experience with designing, engineering, commissioning and operating activated carbon processes for the removal of heavy metals, dioxins and furans from the flue gas of medical, hazardous and municipal waste incinerators and with cleaning industrial flue gases from an HCl production plant. The first medical waste incinerator with an activated carbon adsorber commenced commercial operation in 1991, with excellent results. In March 1992, the hazardous waste incineration plant for a flue gas volume of 77,000 m{sup 3}/h SC started operation. The 6 STEAG activated carbon units for volumes of 155,000 m{sup 3}/h SC each have been in operation at a municipal solid waste incinerator since 1993. Line 7 at the same location is now in the startup phase. Municipal solid waste incinerator with an hourly flue gas flow rate of 292,000 m{sup 3}/h SC and 4 x 168,000 m{sup 3}/h SC are currently under start operation. An NCl production plant equipped with a STEAG /a/c/t{trademark}. Process for dioxins and furans removal from flue gas has been in operation since June 1995. The process and the design data of these plants will be introduced in this paper and the most important design details will be discussed. Additionally to the activated carbon process fixed-bed technology - the activated carbon injection process and their efficiencies for the removal of dioxins, furans and heavy metals will be briefly described in this paper.

  9. SIMULTANEOUS MECHANICAL AND HEAT ACTIVATION: A NEW ROUTE TO ENHANCE SERPENTINE CARBONATION REACTIVITY AND LOWER CO2 MINERAL SEQUESTRATION PROCESS COST

    SciTech Connect

    M.J. McKelvy; J. Diefenbacher; R. Nunez; R.W. Carpenter; A.V.G. Chizmeshya

    2005-01-01

    Coal can support a large fraction of global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other candidate technologies, which propose long-term storage (e.g., ocean and geological sequestration), mineral sequestration permanently disposes of CO{sub 2} as geologically stable mineral carbonates. Only benign, naturally occurring materials are formed, eliminating long-term storage and liability issues. Serpentine carbonation is a leading mineral sequestration process candidate, which offers large scale, permanent sequestration. Deposits exceed those needed to carbonate all the CO{sub 2} that could be generated from global coal reserves, and mining and milling costs are reasonable ({approx}$4 to $5/ton). Carbonation is exothermic, providing exciting low-cost process potential. The remaining goal is to develop an economically viable process. An essential step in this development is increasing the carbonation reaction rate and degree of completion, without substantially impacting other process costs. Recently, the Albany Research Center (ARC) has accelerated serpentine carbonation, which occurs naturally over geological time, to near completion in less than an hour. While reaction rates for natural serpentine have been found to be too slow for practical application, both heat and mechanical (attrition grinding) pretreatment were found to substantially enhance carbonation reactivity. Unfortunately, these processes are too energy intensive to be cost-effective in their present form. In this project we explored the potential that utilizing power plant waste heat (e.g., available up to {approx}200-250 C) during mechanical activation (i.e., thermomechanical activation) offers to enhance serpentine mineral carbonation, while reducing pretreatment energy consumption and process cost. This project was carried out in collaboration with the Albany Research Center (ARC) to maximize the insight into the potential thermomechanical activation offers. Lizardite was selected as the model serpentine material for investigation, due to the relative structural simplicity of its lamellar structure when compared with the corrugated and spiral structures of antigorite and chrysotile, respectively. Hot-ground materials were prepared as a function of grinding temperature, time, and intensity. Carbonation reactivity was explored using the standard ARC serpentine carbonation test (155 C, 150 atm CO{sub 2}, and 1 hr). The product feedstock and carbonation materials were investigated via a battery of techniques, including X-ray powder diffraction, electron microscopy, thermogravimetric and differential thermal, BET, elemental, and infrared analysis. The incorporation of low-level heat with moderate mechanical activation (i.e., thermomechanical activation) was found to be able to substantially enhance serpentine carbonation reactivity in comparison with moderate mechanical activation alone. Increases in the extent of carbonation of over 70% have been observed in this feasibility study, indicating thermomechanical activation offers substantial potential to lower process cost. Investigations of the thermomechanically activated materials that formed indicate adding low-level heat during moderately intense lizardite mechanical activation promotes (1) energy absorption during activation, (2) structural disorder, and (3) dehydroxylation, as well as carbonation reactivity, with the level of energy absorption, structural disorder and dehydroxylation generally increasing with increasing activation temperature. Increasing activation temperatures were also associated with decreasing surface areas and water absorptive capacities for the activated product materials. The above decreases in surface area and water absorption capacity can be directly correlated with enhanced particle sintering during thermomechanical activation, as evidenced by electron microscopy observation. The level of induced structural disorder appears to be a key parameter in enhancing carbonation reactivity. However, p

  10. Treatment of coal-conversion wastewater with the powdered activated carbon-contact stabilization activated-sludge process. First semiannual technical progress report, August 1, 1980January 31, 1981

    Microsoft Academic Search

    M. T. Suidan; M. Pirbazari; C. S. Gee; M. A. Deady

    1981-01-01

    The treatment of coal conversion wastewaters has traditionally been accomplished through the use of the activated sludge process and its various modifications. General observations have been that phenol was degraded efficiently; however, very poor removal efficiencies of thiocyanate, cyanide, and ammonia were obtained. The addition of powdered activated carbon (PAC) to the activated sludge process has been reported to result

  11. Carbon Nanotubes for Data Processing

    E-print Network

    Joselevich, Ernesto

    Carbon Nanotubes for Data Processing Joerg Appenzeller, T. J. Watson Research Center, IBM Research.2 Electronic Structure of Graphene 4 2.3 Electronic Structure of Carbon Nanotubes 4 2.4 Transport Properties 6 2.5 Contacts 9 3 Synthesis of Carbon Nanotubes 10 3.1 Synthetic Methods 10 3.2 Growth Mechanisms 12

  12. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process.

    PubMed

    Rahman, I A; Saad, B; Shaidan, S; Sya Rizal, E S

    2005-09-01

    Phosphoric acid (H(3)PO(4)) and sodium hydroxide (NaOH) treated rice husks, followed by carbonization in a flowing nitrogen were used to study the adsorption of malachite green (MG) in aqueous solution. The effect of adsorption on contact time, concentration of MG and adsorbent dosage of the samples treated or carbonized at different temperatures were investigated. The results reveal that the optimum carbonization temperature is 500 degrees C in order to obtain adsorption capacity that is comparable to the commercial activated carbon for the husks treated by H(3)PO(4). It is interesting to note that MG adsorbed preferably on carbon-rich than on silica rich-sites. It is found that the behaviour of H(3)PO(4) treated absorbent followed both the Langmuir and Freundlich models while NaOH treated best fitted to only the Langmuir model. PMID:15978990

  13. Heating activated carbon by electromagnetic induction

    Microsoft Academic Search

    P. Mocho; J. Ch. Bourhis; P. Le Cloirec

    1996-01-01

    The purpose of this study is the use of electromagnetic induction to heat activated carbon. The ultimate goal is to get an original process to regenerate adsorbants loaded with the volatile organic compounds present in air or water.The first step was to explore the possibilities of heating granular activated carbon with this technology. In order to get the best operating

  14. Nanostructural activated carbons for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ? 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ? 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen adsorption in activated carbons synthesized from PEEK and poly(ether imide) blends, poly(phenylene oxide), polybenzimidazole and lignin show similar trends. In addition, W( H2) progressively increases as surface area increases for the carbons with similar average pore diameters. Keywords. carbon, activated carbon, poly(ether ether ketone), poly(ether imide), poly(phenylene oxide), polybenzimidazole, lignin, gas adsorption, hydrogen storage

  15. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    PubMed

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied. PMID:22053461

  16. Studies relevant to the catalytic activation of carbon monoxide: the water gas shift reaction and related processes. Technical progress report, December 1, 1983November 30, 1984

    Microsoft Academic Search

    Ford

    1984-01-01

    Proposed are investigations related to the catalytic activation of carbon monoxide. These studies will be concerned with the design of catalysts for the water gas shift reaction and related processes such as the hydroformylation of olefins by homogeneous solution phase systems as well as by selected metal catalysts heterogenized by complexation to functionalized polymers. Also under investigation will be quantitative

  17. Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water

    Microsoft Academic Search

    M. A. Fontecha-Cámara; M. A. Álvarez-Merino; F. Carrasco-Marín; M. V. López-Ramón; C. Moreno-Castilla

    2011-01-01

    The study objective was to investigate the removal of amitrole (AMT) by oxidation using the decomposition of hydrogen peroxide in heterogeneous and homogeneous Fenton reactions. For this purpose, an activated carbon cloth was used to prepare supported iron catalysts with different iron salts (sulfate, acetate and nitrate) and iron metal loadings. Homogeneous Fenton reactions were carried out by using iron

  18. Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis

    Microsoft Academic Search

    Hai Sheng Zeng; Koji Inazu; Ken-ichi Aika

    2001-01-01

    The effects of temperature and time of reductive dechlorination of RuCl3 to remove negative-effected chlorine and then form metallic Ru on hydrogen-treated active carbon (HTAC) support on catalytic activity for ammonia synthesis were investigated in detail. The purpose was to try to prepare Ru catalyst by using the low-cost RuCl3 as a precursor to replace other high-priced chlorine-free Ru compounds

  19. A novel process for CO2/CH4 gas separation on activated carbon fibers--electric swing adsorption.

    PubMed

    Moon, Seung-Hyun; Shim, Jae-Woon

    2006-06-15

    Equilibrium and breakthrough adsorptions on activated carbon fibers (ACF) were conducted for CO2 and CH4 gas mixtures and the selective separation of CO2 was demonstrated. An electric swing adsorption process (ESA) was exploited to effect the rapid desorption of adsorbed gas at atmospheric pressure. Also, the relationship between the electrical behavior and desorption characteristics of ACF is discussed. In a single component adsorption experiment, the amount of adsorbed CO2 reached up to 40 mg/g-ACF, twice as much as that of adsorbed CH4. Therefore, the separation factor, defined as the ratio of adsorbed CO2 to adsorbed CH4, was 2.0. Multicomponent experiments showed a higher separation factor of 5.2, owing to a roll-up phenomenon. The temperature increase is not linearly proportionate to the power input, while the passage of higher electrical voltage (30 V) caused the ACF temperature to exceed 200 degrees C within 30 s. CO2 desorption at low voltage was well accomplished by heating the ACF to temperatures <60 degrees C. An ACF adsorption bed regenerated with ESA showed a constant regeneration efficiency of over 85% with a regular breakthrough curve. The ESA method increased desorption efficiency by over 20%, compared with the vacuum method. PMID:16488426

  20. Conceptual comparison of pink water treatment technologies: granular activated carbon, anaerobic fluidized bed, and zero-valent iron-Fenton process

    Microsoft Academic Search

    S.-Y. Oh; D. K. Cha; P. C. Chiu; B. J. Kim

    Pink water, explosive-laden wastewater produced in army ammunition plants is often treated using expensive and non-destructive granular activated carbon (GAC) adsorption. This paper compares GAC adsorption and two alternative treatment technologies, anaerobic GAC fluidized bed reactor and zero- valent iron-Fenton process. The bench-scale demonstration of the zero-valent iron-Fenton process with real pink water is reported. The features of three technologies

  1. REGIONAL REACTIVATION OF GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    A major portion of the cost of using Granular Activated Carbon (GAC) as a water treatment unit process is associated with spent carbon replacement or reactivation. Regional reactivation or sharing a reactivation furnace among several users, has been proposed as a means of minimiz...

  2. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag

    SciTech Connect

    Gupta, V.K.; Srivastava, S.K.; Mohan, D. [Univ. of Roorkee (India). Chemistry Dept.] [Univ. of Roorkee (India). Chemistry Dept.

    1997-06-01

    The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies have been performed to have an idea of the mechanistic aspects and to obtain the thermodynamic parameters of the process. The uptake of the dye is greater on carbonaceous material than on activated slag. Sorption data have been correlated with both Langmuir and Freundlich adsorption models. The presence of anionic surfactants does not affect the uptake of dye significantly. The mass transfer kinetic approach has been applied for the determination of various parameters necessary for the designing of fixed-bed contactors. Chemical regeneration has been achieved with acetone in order to recover the loaded dye and restore the column to its original capacity without dismantling the same.

  3. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag

    Microsoft Academic Search

    Vinod K. Gupta; Suresh K. Srivastava; Dinesh Mohan

    1997-01-01

    The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies

  4. The preparation of active carbons from coal by chemical and physical activation

    Microsoft Academic Search

    A. Ahmadpour; D. D. Do

    1996-01-01

    A series of activated carbons was prepared from bituminous coal by chemical activation with potassium hydroxide and zinc chloride and also by physical activation with carbon dioxide. The effect of process variables such as carbonization time, temperature, particle size, chemical agents, method of mixing and impregnation ratio in the chemical activation process was studied in order to optimize those preparation

  5. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon.

    PubMed

    Bashkova, Svetlana; Bandosz, Teresa J

    2009-05-01

    The removal of NO(2) on urea-modified and heat-treated wood-based activated carbons was studied. From the obtained results it was found that these modifications, especially when done at 950 degrees C, have a positive effect on NO(2) adsorption and on the retention of NO (the product of NO(2) reduction by carbon). The presence of moisture in the system enhances the removal of NO(2) but negatively affects the retention of NO. It is possible that the formation of active centers on the carbon surface and some increase in the volume of supermicropores during the high temperature treatment play a significant role in these removal processes. The surface of the carbons was analyzed in terms of the pK(a) distributions. The qualitative and quantitative analyses of the NO(2) adsorption products were carried out by means of FTIR and TA techniques, respectively. The main products found on the carbon surface were the NO(3) and NO(2) species. PMID:19217629

  6. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  7. Activated Boron Nitride Derived from Activated Carbon

    E-print Network

    Zettl, Alex

    for catalytic processes. A wide variety of porous solids exist, including zeolites, pillared clays, porousCyNz intermediate product was collected from the bed of porous carbon. To determine appropriate experimental

  8. Carbon Strategy for the Food Industry FAPC Food Process Engineer

    E-print Network

    Balasundaram, Balabhaskar "Baski"

    172-1 Carbon Strategy for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-172 Robert M and Natural Resources Introduction Carbon strategy is a term that refers to a systematic plan of action for managing carbon consumption and emissions related to food manufacturing and distribution activities

  9. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  10. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    PubMed

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%. PMID:23131623

  11. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  12. Antimicrobial activity of carbon-based nanoparticles.

    PubMed

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-03-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  13. Treatment of coal-conversion wastewater with the powdered activated carbon-contact stabilization activated-sludge process. First semiannual technical progress report, August 1, 1980-January 31, 1981

    SciTech Connect

    Suidan, M.T.; Pirbazari, M.; Gee, C.S.; Deady, M.A.

    1981-01-01

    The treatment of coal conversion wastewaters has traditionally been accomplished through the use of the activated sludge process and its various modifications. General observations have been that phenol was degraded efficiently; however, very poor removal efficiencies of thiocyanate, cyanide, and ammonia were obtained. The addition of powdered activated carbon (PAC) to the activated sludge process has been reported to result in a number of distinct advantages. Generally, however, improving the effluent water quality beyond the capabilities of conventional biological treatment and enhancing the treatability of wastewaters that inhibit or toxify biological treatment systems are the primary objectives of utilizing PAC in secondary biological treatment. The focus of the present research project is to assess the effectiveness of the powdered activated carbon-contact stabilization activated sludge process in the treatment of a coking wastewater. The purpose of the contact tank in such a process will be to provide sufficient time for the adsorbable constituents of the coking wastewater to adsorb onto the PAC. The liquor leaving the contact tank is then clarified with the concentratrated underflow receiving treatment in the stabilization tank. After stabilization the sludge is returned to the contact tank. The clarifier supernatant is then nitrified in an activated sludge-type nitrification process and the nitrified effluent is subsequently denitrified in an anoxic filter.

  14. Carbon Isotope Ratios in Belowground Carbon Cycle Processes

    Microsoft Academic Search

    James R. Ehleringer; Nina Buchmann; Lawrence B. Flanagan

    2000-01-01

    Abstract Analyses of carbon isotope ratios (?,C values of CO2effluxing from soils, but asof,yet a global,database,is lacking,with which,to test this prediction. Such a global,database,would be a useful input for global carbon cycle models,which,rely on ?values,to constrain source and sink relations. Keywords: global change, ecosystem processes, soil organic carbon, carbon isotope ratio, carbon cycle,

  15. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 ?M, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 ?M, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  16. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.

    PubMed

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-25

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 ?M, T=50°C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 ?M, T=50°C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model. PMID:25305604

  17. Drinking Water Treatment: Activated Carbon Filtration

    NSDL National Science Digital Library

    Divorak, Bruce I.

    This site, presented by the University of Nebraska - Lincoln Extension, discusses the principles, processes and requirements of activated carbon filtration systems for the domestic (household) user. The site addresses contaminants removed, those not removed, water testing, principals of treatment and the equipment used in this treatment.

  18. Electrochemical processing of carbon dioxide.

    PubMed

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day. PMID:18702129

  19. Process of making carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor); Kowbel, Witold (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor)

    2000-01-01

    A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.

  20. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process

    Microsoft Academic Search

    I. A. Rahman; B. Saad; S. Shaidan; E. S. Sya Rizal

    2005-01-01

    Phosphoric acid (H3PO4) and sodium hydroxide (NaOH) treated rice husks, followed by carbonization in a flowing nitrogen were used to study the adsorption of malachite green (MG) in aqueous solution. The effect of adsorption on contact time, concentration of MG and adsorbent dosage of the samples treated or carbonized at different temperatures were investigated. The results reveal that the optimum

  1. Studies relevant to the catalytic activation of carbon monoxide: the water gas shift reaction and related processes. Technical progress report, December 1, 1983-November 30, 1984

    SciTech Connect

    Ford, P.C.

    1984-01-01

    Proposed are investigations related to the catalytic activation of carbon monoxide. These studies will be concerned with the design of catalysts for the water gas shift reaction and related processes such as the hydroformylation of olefins by homogeneous solution phase systems as well as by selected metal catalysts heterogenized by complexation to functionalized polymers. Also under investigation will be quantitative mechanistic aspects of reactions considered key to probable catalyst cycles. These are principally concerned with the fundamental chemistry of metal carbonyl and metal carbonyl hydride complexes including acid/base properties, reductive elimination, substitution and cluster fragmentation reactions and the nucleophilic activation of metal coordinated carbonyls toward reaction with water or dihydrogen. The goal of these studies is to provide chemical guidelines for the molecular design of new and more efficient catalysts for the utilization of carbonaceous materials such as coal for the production of fuels and other organic chemicals. 70 references.

  2. Effects of process parameters on hydrothermal carbonization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  3. Thermal activation of copper carbonate

    E-print Network

    Z. Ding; R. L. Frost; J. T. Kloprogge

    Much interest focuses on the use of nano-scale copper and copper oxide for catalyst use [1]. The copper oxide may be used as a solid solution or as a mixture of mixed oxides [2-6]. The application of these mixed oxides is in environmental applications such as the catalytic oxidation of carbon monoxide and the wet oxidation of organics in aqueous systems [5,6]. These nano-scale chemicals are produced through the thermal decomposition of copper salts such as copper carbonate, copper hydroxy-carbonate either synthetic or natural (malachite) [7-9]. Many studies of the thermal treatment of these copper carbonates have been undertaken [9-16]. The use of thermogravimetry to assess the effect of mechanochemical activation by dry grinding of malachite determined the mass loss of water and carbon dioxide separately and/or together for Cu2(OH)2CO3 samples untreated and ground for different times [17,18]. Often the thermal analysis is used to determine the effectiveness of catalyst precursors [19]. Indeed copper carbonates and nitrates can form part of the basic synthesis of superconductors. Thus there is a need to understand the thermal decomposition and surface reactions during thermal

  4. Competitive Carbon-Sulfur vs Carbon-Carbon Bond Activation of 2-Cyanothiophene with [Ni(dippe)H]2

    E-print Network

    Jones, William D.

    Competitive Carbon-Sulfur vs Carbon-Carbon Bond Activation of 2-Cyanothiophene with [Ni(dippe)H]2: The processes of C-C and C-S bond cleavage have been studied with the homogeneous organometallic compound [Ni(dippe)H]2 (1). When 1 is reacted with 2-cyanothiophene at room temperature, cleavage of the nitrile

  5. Production and characterization of granular activated carbon from activated sludge

    Microsoft Academic Search

    Z. Al-Qodah; R. Shawabkah

    2009-01-01

    In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m 2

  6. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells.

    PubMed

    Ramuz, Marc P; Vosgueritchian, Michael; Wei, Peng; Wang, Chenggong; Gao, Yongli; Wu, Yingpeng; Chen, Yongsheng; Bao, Zhenan

    2012-11-27

    Carbon allotropes possess unique and interesting physical, chemical, and electronic properties that make them attractive for next-generation electronic devices and solar cells. In this report, we describe our efforts into the fabrication of the first reported all-carbon solar cell in which all components (the anode, active layer, and cathode) are carbon based. First, we evaluate the active layer, on standard electrodes, which is composed of a bilayer of polymer sorted semiconducting single-walled carbon nanotubes and C(60). This carbon-based active layer with a standard indium tin oxide anode and metallic cathode has a maximum power conversion efficiency of 0.46% under AM1.5 Sun illumination. Next, we describe our efforts in replacing the electrodes with carbon-based electrodes, to demonstrate the first all-carbon solar cell, and discuss the remaining challenges associated with this process. PMID:23113673

  7. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The process of manufacturing a carbonized and activated nonwoven made by cotton fiber was investigated in this paper. The study was focused on the acoustic application and nonwoven composites with cotton nonwoven as a base layer and glass fiber nonwoven, cotton nonwoven, and carbonized and activated...

  8. Activated carbon fibre materials for VOC removal

    Microsoft Academic Search

    P Navarri; D Marchal; A Ginestet

    2001-01-01

    Activated carbon material has been used for many years in air cleaning applications. Powder form activated carbon has been gradually replaced by activate carbon fibre, which allows much smaller pores - specific area of such material may reach up to 2000 m2\\/g. An experimental dynamic volatile organic compound (VOC) generation system has been developed in order to test new types

  9. Gold complexes and activated carbon

    Microsoft Academic Search

    Gloria J. McDougall; Robert D. Hancock

    1981-01-01

    Exciting new developments are taking place in the extractive metallurgy of gold, which are based upon the adsorption of the\\u000a metal or its complexes on carbon and subsequent elution. Despite the efforts of investigators over a period of almost 70 years,\\u000a however, the mechanisms of the adsorption and elution processes have not yet been established unequivocally. The literature\\u000a relating to

  10. Making Activated Carbon for Storing Gas

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.

    2005-01-01

    Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.

  11. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  12. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be inferred from their physical and chemical properties. The developed porosity of the activated carbon was a function of the oxygen content, porosity and H/C ratio of the parent unburned carbon feedstock. It was observed that extended activation times and high activation temperatures increased the porosity of the produced activated carbon at the expense of the solid yield. The development of activated carbon from unburned carbon in fly ash has been proven to be a success by this study in terms of the higher surface areas of the resultant activated carbons, which are comparable with commercial activated carbons. However, unburned carbon samples obtained from coal-fired power plants as by-product have high ash content, which is unwanted for the production of activated carbons. Therefore, the separation of unburned carbon from the fly ash is expected to be beneficial for the utilization of unburned carbon to produce activated carbons with low ash content.

  13. Activated carbon catalyzing the formation of carbon nanotubes

    Microsoft Academic Search

    Jinling Song; Shouai Feng; Jianghong Zhao; Jianfeng Zheng; Zhenping Zhu

    2010-01-01

    Activated carbon (AC), a common carbon material, is employed as catalyst to synthesize carbon nanotubes (CNTs) through chemical vapor deposition (CVD) and detonation-assisted CVD methods. The results show AC can effectively catalyze CNT formation. From the microscopic observations on morphologies and structures of the formed intermediates, it is found that carbon-catalyzed CNT formation follows particle-wire-tube stepwise evolution mechanism, in which

  14. Investigation of microbial safety of a full-scale ozonation and biological activated carbon process under high humidity and temperature conditions.

    PubMed

    Qiao, Tiejun; Zhang, Xihui; Wu, Guangxue; Au, Doris W T

    2011-01-01

    Microbial safety of a full-scale ozonation and biological activated carbon (BAC) process was investigated by examining pathogens, microbial community and particle counts, with emphasis on the BAC effluent. The process is located at South China, where the average humidity and air temperature were 70-80% and 22-24 °C, respectively. A high diversity of microbial community existed on the BAC media. Three types of dominant bacteria were identified, including Chryseobacterium indologenes, Bacillus brevis and Pseudomonas stutzeri, accounting for 90-95% of total bacteria number. As to pathogenic bacteria and viruses, an opportunistic pathogen, Bacillus cereus, was detected on the BAC. Six types of invertebrates were also observed on the medium, including rotifer, cyclops, nematode, clodecera, nauplius and blood worm. Diversity and number of invertebrates in the BAC effluent were higher than those in the BAC influent. Particle counts were generally less than 50 CNT/mL, with the maximum of 500 CNT/mL during the initial filtration stage after backwashing. PMID:22156135

  15. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  16. Combustion processes for carbon capture

    Microsoft Academic Search

    Terry F. Wall

    2007-01-01

    A review of the technologies for coal-based power generation closest to commercial application involving carbon capture is presented. Carbon capture and storage (CCS) developments are primarily adaptations of conventional combustion systems, with additional unit operations such as bulk oxygen supply, CO2 capture by sorbents, CO2 compression, and storage. They use pulverized coal combustion in entrained flow—the dominant current technology for

  17. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States)

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  18. Conceptual design of carbon nanotube processes

    Microsoft Academic Search

    Adedeji E. Agboola; Ralph W. Pike; T. A. Hertwig; Helen H. Lou

    2007-01-01

    Carbon nanotubes, discovered in 1991, are a new form of pure carbon that is perfectly straight tubules with diameter in nanometers,\\u000a length in microns. The conceptual designs of two processes are described for the industrial-scale production of carbon nanotubes\\u000a that are based on available laboratory synthesis techniques and purification methods. Two laboratory-scale catalytic chemical\\u000a vapor deposition reactors were selected for

  19. Carbon sources and biogeochemical processes in Monticchio maar lakes, Mt Vulture volcano (southern Italy): New geochemical constrains of active degassing of mantle derived fluids

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Nuccio, P. M.; Favara, R.; Grassa, F.

    2012-04-01

    Since the catastrophic releases of carbon dioxide from the African volcanic lakes Nyos and Monoun in the 1980s, the scientific community draw attention towards all those crater lakes able to accumulate massive amount of CO2, which could be catastrophically released following overturn of their deep waters. This implies a quantification of the gas accumulation rate into the lakes and the knowledge of recharge processes and their evolution in time. In fact the gaseous recharge in a lake occurs at alarming rates, when an active degassing of hazardous nature volatiles occurs into the lakes and the structure and dynamic of the lake permit the accumulation of gases into the water. The Monticchio lakes, LPM and LGM, occupies two maar craters formed during the last volcanic activity of Mt. Vulture occurred ˜ 140 000 years ago. LPM is a permanently stratified lake, with a thick deep volume of stagnant water and a shallower layer affected by seasonal overturn. On the contrary LGM is a monomittic lake with a complete overturn of the water during winter time. The major dissolved volatiles are methane and CO2. Dissolved helium is in trace amounts and its isotopic signature ranges between 6.1 and 5.3 Ra (Ra is the atmospheric 3He/4He isotopic ratio). These values are within the range of those measured in the olivine fluid inclusions (both of mantle xenoliths and dispersed in the pyroclastics) of LPM maar ejecta. During three years of investigations we observed that dissolved methane in the deep waters of LGM drastically decreases in wintertime as consequence of the complete overturn of the water. The isotopic signature of methane in the deepest portions of LGM (both sediment and water) is quite stable with time and highlights a biogenic origin, being produced both by acetate fermentation and by CO2-reduction in variable proportions. In contrast, a higher contribution of methane produced via CO2 reduction characterizes sediments at shallower depths. At LPM, there is a great difference in methane contents between shallower (< 14m) and deep water, being CH4 concentrations higher in the stagnant volume of waters. Nonetheless the large gradient in methane contents (CH4 increases with depth) observed in the deep waters both C and H isotopes of methane remain constant with depth. In contrast, in the shallow waters the changes in dissolved CH4 contents are accompanied with modifications in the isotope signature of methane thus indicating that oxidation processes seem to be relevant only at a depth lower than 14 m. It is striking that in this lake, CO2-reduction is thought to be the main methanogenesis pathway for methane dissolved in the waters, while in the sediments methane is mainly produced by acetate fermentation. As methanogenesis processes leads to both bacterial consumption and production of CO2, the quantification of these becomes fundamental in inferring the nature and the quantitative releasing of carbon dioxide of magmatic origin and estimation of its isotopic signature. The re-calculated isotopic compositions (-7 ‰< ^13C<-1 ‰) fall within typically magmatic values, furthermore they fall also in the range of Mt. Vulture carbonatites. The computed values of C/3He (2-8 x 109) are in the range of sub-continental mantle. As the Monticchio lakes can be view as natural geological reservoirs subjected to injection of bio and a-biogenic gases, this study shows that amounts and isotopic signature of methane coupled to total dissolved inorganic carbon is a sensitive tool to evaluate the amount of mantle-derived fluids carried into groundwater feeding the lakes.

  20. Engineering carbon materials from the hydrothermal carbonization process of biomass.

    PubMed

    Hu, Bo; Wang, Kan; Wu, Liheng; Yu, Shu-Hong; Antonietti, Markus; Titirici, Maria-Magdalena

    2010-02-16

    Energy shortage, environmental crisis, and developing customer demands have driven people to find facile, low-cost, environmentally friendly, and nontoxic routes to produce novel functional materials that can be commercialized in the near future. Amongst various techniques, the hydrothermal carbonization (HTC) process of biomass (either of isolated carbohydrates or crude plants) is a promising candidate for the synthesis of novel carbon-based materials with a wide variety of potential applications. In this Review, we will discuss various synthetic routes towards such novel carbon-based materials or composites via the HTC process of biomass. Furthermore, factors that influence the carbonization process will be analyzed and the special chemical/physical properties of the final products will be discussed. Despite the lack of a clear mechanism, these novel carbonaceous materials have already shown promising applications in many fields such as carbon fixation, water purification, fuel cell catalysis, energy storage, CO(2) sequestration, bioimaging, drug delivery, and gas sensors. Some of the most promising examples will also be discussed here, demonstrating that the HTC process can rationally design a rich family of carbonaceous and hybrid functional carbon materials with important applications in a sustainable fashion. PMID:20217791

  1. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  2. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  3. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus far, we have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. During the first project year we developed a new sonication exfoliation apparatus with a novel sealing system to carry out the sonication studies. We also initiated investigations to explore the potential that sonication may offer to enhance carbonation reactivity. During the second project year, we extended our investigations of the effects of sonication on the extent of carbonation as a function of the following parameters: particle size distribution, the mass of solid reactant, volume fraction of aqueous solution present, sonication power, time, temperature, and CO{sub 2} pressure. To date, none of the conditions investigated have significantly enhanced carbonation. Mechanistic investigations of the stirred ({approx}1,500 rpm) aqueous olivine carbonation process indicate the carbonation process involves both incongruent magnesium dissolution and silica precipitation, which results in robust silica-rich passivating layer formation. Secondary ion mass spectrometry observation of H within the passivating layer that forms during static carbonation suggests 2H{sup +}/Mg{sup 2+} ion exchange is associated with incongruent dissolution. Apparently, H{sub 2}O forms at or near the olivine/passivating-layer interface during the process and diffuses out through the passivating layers during the carbonation reaction. This is

  4. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  5. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  6. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  7. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Microsoft Academic Search

    Edwin S. Olson; Daniel J. Stepan

    2000-01-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from

  8. Process for making carbon foam

    DOEpatents

    Klett, James W. (Knoxville, TN)

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  9. Characterization of activated carbon prepared from chicken waste and coal

    Microsoft Academic Search

    Yan Zhang; Hong Cui; Riko Ozao; Yan Cao; Bobby I.-T. Chen; Chia-Wei Wang; Wei-Ping Pan

    2007-01-01

    Activated carbons (ACs) were prepared from chicken waste (CW) and coal (E-coal) blended at the ratios of 100:0, 80:20, 50:50, 20:80, and 0:100. The process included carbonization in flowing gaseous nitrogen (300 mL min¹) at ca. 430{sup o}C for 60 min and successive steam activation (0.1 mL min¹ water injection with a flow of N at 100 mL min¹) at

  10. Caustic-impregnated activated carbons for removal of hydrogen sulfide

    SciTech Connect

    Truk, A.

    1991-06-18

    This paper describes improvement in a process for removing hydrogen sulfide from an oxygen-containing gas stream by passing the gas stream through caustic-impregnated activated carbon, the stream containing from about 5 ppm to about 10,000 ppm by volume of hydrogen sulfide. The improvement comprises: the breakthrough capacity of the caustic-impregnated activated carbon for hydrogen sulfide is extended by the addition of ammonia to the gas stream about the time of breakthrough.

  11. Caustic-impregnated activated carbons for removal of hydrogen sulfide

    Microsoft Academic Search

    Truk

    1991-01-01

    This paper describes improvement in a process for removing hydrogen sulfide from an oxygen-containing gas stream by passing the gas stream through caustic-impregnated activated carbon, the stream containing from about 5 ppm to about 10,000 ppm by volume of hydrogen sulfide. The improvement comprises: the breakthrough capacity of the caustic-impregnated activated carbon for hydrogen sulfide is extended by the addition

  12. Adsorption of dissolved natural organic matter by modified activated carbons

    Microsoft Academic Search

    Wei Cheng; Seyed A. Dastgheib; Tanju Karanfil

    2005-01-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation\\/flocculation\\/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment.

  13. A NOVEL APPROACH TO MINERAL CARBONATION: ENHANCING CARBONATION WHILE AVOIDING MINERAL PRETREATMENT PROCESS COST

    SciTech Connect

    Michael J. McKelvy; Andrew V.G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamadallah Bearat

    2005-10-01

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our first year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus far, we have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. Synergistic control of these parameters offers the potential for further improvements in carbonation reactivity. A new sonication exfoliation system incorporating a novel sealing system was developed to carry out the sonication studies. Our initial studies that incorporate controlled sonication have not yet lead to a significant improvement in the extent of carbonation observed. Year 2 studies will emphasize those approaches that offer the greatest potential to cost effectively enhance carbonation, as well as combined approaches that may further enhance carbonation. Mechanistic investigations indicate incongruent dissolution results in the observed silica-rich passivating layer formation. Observations of magnesite nanocrystals within the passivating layers that form indicate the layers can exhibit significant permeability to the key reactants present (e.g., Mg{sup 2+}, H{sup +}, H{sub 2}O, CO{sub 2}, and HCO{sub 3} -). Atomistic modeling supports the observation of robust passivating layers that retain significant permeability to the key reaction species involved. Studies in Year 2 will emphasize the impact that controlled aqueous speciation and activity and slurry-flow dynamics have on the mechanisms that control carbonation reactivity and the potential they offer to substantially reduce olivine mineral sequestration process cost.

  14. Innovative polymer processing in carbon dioxide

    Microsoft Academic Search

    R. E. Farncomb; G. W. Nauflett

    1998-01-01

    Carbon dioxide was used as the solvent in two innovative polymer processes, the preparation of energetic polymers and a Viton based pyrotechnic. The energetic polymer prepared was poly-3-nitratomethyl-3-methyl oxetane and the pyrotechnic was a magnesium, Teflon and Viton (MTV) crumb. Liquid carbon dioxide (LCO2) at 140 atm and 0°C replaces methylene chloride as the solvent in the two step energetic

  15. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd. [NANOCEN, Block A, Level 3, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rinaldi, A. [NANOCEN, Block A, Level 3, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur (Malaysia); Inorganic Chemistry Department, Fritz-Haber Institute der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Su, D. S.; Schlogl, R. [Inorganic Chemistry Department, Fritz-Haber Institute der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  16. Purification process for vertically aligned carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  17. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOEpatents

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  18. Synthesis of optimal adsorptive carbon capture processes.

    SciTech Connect

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  19. The Use of Activated Carbon Prepared from Jackfruit (Artocarpus heterophyllus) Peel Waste for Methylene Blue Removal

    Microsoft Academic Search

    Devarly PRAHAS; Yoga KARTIKA; Nani INDRASWATI; Suryadi ISMADJI

    Jackfruit peel waste which has no economic value has been utilized for activated carbon preparation. The preparation of the activated carbon was carried out using chemical activation with phosphoric acid as activating agent. The impregnation ratio was 4:1 (g H3PO4\\/g raw material) and semi carbonization process was conducted at 200oC and followed with carbonization at 550oC. The applicability of this

  20. 78 FR 13894 - Certain Activated Carbon From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ...731-TA-1103 (Review)] Certain Activated Carbon From China Determination On...antidumping duty order on certain activated carbon from China would be likely to...February 2013), entitled Certain Activated Carbon from China: Investigation...

  1. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types of sorption sites. The effect of pH on adsorption was investigated using buffered solutions. The sorption capacity decreased with increasing pH. A study of the effect of activation conditions on the adsorption capacity of the resulting carbon showed that steam activation at 750 C provides the optimum activity with the high-sodium char. An attempt to scale up the carbon production to the 2-kg scale failed to produce the same high activity that was obtained in the 100-g batch unit. Although this research demonstrated that a highly active carbon for water treatment can be produced from high-sodium lignites, much further work is needed to understand what methods and equipment will be needed for large-scale production of this carbon.

  2. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (i) modeling/controlling the slurry fluid-flow conditions, (ii) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (iii) incorporating select sonication offer to enhance exfoliation and carbonation. We have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. Synergistic control of the slurry-flow and aqueous chemistry parameters offers further potential to improve carbonation reactivity, which is being investigated during the no-cost extension period. During the first project year we developed a new sonication exfoliation system with a novel sealing system to carry out the sonication studies. We also initiated(Abstract truncated).

  3. Processing carbon nanotubes with holographic optical tweezers

    E-print Network

    Grier, David

    , and perhaps even individual nanotubes, can be transported at high speeds, deposited onto substrates, untangled processing with light. © 2012 Optical Society of America OCIS codes: (140.7010) Trapping; (090.1760) Computer of aligned carbon nanotubes via laser trimming,'' Nanotechnology 14, 433--437 (2003). 16. L. A. Nagahara, I

  4. DEVELOPMENT AND INTEGRATION OF NEW PROCESSES CONSUMING CARBON DIOXIDE IN

    E-print Network

    Pike, Ralph W.

    DEVELOPMENT AND INTEGRATION OF NEW PROCESSES CONSUMING CARBON DIOXIDE IN MULTI-PLANT CHEMICAL........................................................ 8 C. Carbon Dioxide ­ A Greenhouse Gas................................................ 9 1. Sources

  5. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyen, M.; Lafferty, C.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    This paper describes the results of research in which novel activated carbons have been examined for their efficacy in water treatment and, specifically, for the adsorption of a common herbicide and wood preservative, sodium pentachlorophenolate. To place this work in context, the introduction will discuss first some of the considerations of using activated carbons for water treatment, and then certain aspects of the authors research that has led to this particular topic.

  6. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  7. Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-biofilm configured packed column system.

    PubMed

    Ong, SoonAn; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2008-01-01

    The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the decolorization of azo dye Acid Orange 7-containing wastewater. The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent granular activated carbon (GAC) through attachment. The GAC-biofilm configured packed column system showed the ability to decolorize 100% of the azo dye when working at high loading rate of Acid Orange 7 at 2.1 g/(L x d) with treatment time of 24 h. It was observed that the decolorization rate increased along with the increasing of initial Acid Orange 7 concentrations, until it reached an optimum point at about 0.38 g/h with initial Acid Orange 7 concentrations of 1,150 mg/L and the decolorization rate tend to be declined beyond this concentration. PMID:18817074

  8. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    NASA Astrophysics Data System (ADS)

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  9. Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes

    E-print Network

    Follows, Mick

    Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes), Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes, Global Biogeochem. Cycles, 22, GB3030, doi:10.1029/2008GB003184. 1. Introduction [2] Atmospheric carbon dioxide

  10. Effect of activated carbon on fouling of activated sludge filtration

    Microsoft Academic Search

    Herbert H. P. Fang; Xinlong Shi; Tong Zhang

    2006-01-01

    The effect of adding activated carbon on the fouling of activated sludge filtration was investigated using a complete-mix cell with a flat-sheet cellulosic membrane at a constant pressure gradient of 70 kN\\/m2. Four sludge samples were tested in parallel: a sludge without additive served as control, plus three sludge samples dosed with individual additives, including inert diatomaceous earth, activated carbon

  11. Activated Carbon and Carbon Black Catalyzed Transformation of Aqueous Ozone into OH-Radicals

    Microsoft Academic Search

    Urs Jans; Jürg Hoigné

    1998-01-01

    In an ozone-containing water a suspension of a few milligrams per liter of activated carbon (AQ or carbon black (CB) initiates a radical-type chain reaction that then proceeds in the aqueous phase and accelerates the transformation of O3 into secondary radicals, such as hydroxyl radicals (°OH). This results in an Advanced Oxidation Process (AOP) that is similar to an O3-based

  12. s-Process in Shell Carbon Burning

    NASA Astrophysics Data System (ADS)

    The, L.-S.; Meyer, B. S.; El Eid, M. F.

    2001-12-01

    We present a study of carbon-shell s-process nucleosynthesis in a 25 Msun model having solar-like initial composition as a follow-up of our previous s-process study of core helium burning. The source of free neutrons, as in the core helium burning, is the 22Ne(? ,n)25Mg reaction with the initial 22Ne is what left from the core helium burning. We show the temperature, density, neutron density, and 12C, 22Ne, 80Kr, 86Sr, 87Rb mass fractions evolution during the carbon-shell burning. The model produces a neutron exposure of ~1 mbarn-1 and a peak neutron density of ~1x1011 cm-3 at the inner edge of carbon shell (mass radius ~2 Msun) with the duration of s-process of ~1 year. We find all isotopes except 64Zn with proton number between 30 and 40 have an overproduction factor larger than unity in the carbon-shell s-process. These overlay the core helium overproduction factors. The isotopes that are strongly produced are 180Ta, 23Na, 70,72,73,74Ge, 80,82,83Kr, 69,71Ga, 76,77,78,80Se, 66,67,68Zn, 64Ni, 75,79Br, 87Rb, 79,81Br. The isotopes that are strongly destroyed during carbon-shell burning are 58Fe, 64Zn, 63,65Cu, 152Gd, 158Dy, 37Cl, 113In. This work is supported by NSF grant AST-9819877.

  13. Processing, characterization and modeling of carbon nanofiber modified carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Samalot Rivera, Francis J.

    Carbon/Carbon (C/C) composites are used in high temperature applications because they exhibit excellent thermomechanical properties. There are several challenges associated with the processing of C/C composites that include long cycle times, formation of closed porosity within fabric woven architecture and carbonization induced cracks that can lead to reduction of mechanical properties. This work addresses various innovative approaches to reduce processing uncertainties and thereby improve thermomechanical properties of C/C by using vapor grown carbon nanofibers (VGCNFs) in conjunction with carbon fabric and precursor phenolic matrix. The different aspects of the proposed research contribute to understanding of the translation of VGCNFs properties in a C/C composite. The specific objectives of the research are; (a) To understand the mechanical properties and microstructural features of phenolic resin precursor with and without modification with VGCNFs; (b) To develop innovative processing concepts that incorporate VGCNFs by spraying them on carbon fabric and/or adding VGCNFs to the phenolic resin precursor; and characterizing the process induced thermal and mechanical properties; and (c) To develop a finite element model to evaluate the thermal stresses developed in the carbonization of carbon/phenolic with and without VGCNFs. Addition of VGCNFs to phenolic resin enhanced the thermal and physical properties in terms of flexure and interlaminar properties, storage modulus and glass transition temperature and lowered the coefficient of thermal expansion. The approaches of spraying VGCNFs on the fabric surface and mixing VGCNFs with the phenolic resin was found to be effective in enhancing mechanical and thermal properties of the resulting C/C composites. Fiber bridging, improved carbon yield and minimization of carbonization-induced damage were the benefits of incorporating VGCNFs in C/C composites. Carbonization induced matrix cracking predicted by the finite element model is consistent with that observed experimentally. The finite element model is supported by a modification of a shear-lag model that describes the load transfer of a crack at the fiber/matrix interface.

  14. Converting Poultry Litter into Activated Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal of animal manure is one of the biggest problems facing agriculture today. Now new technology has been designed to covert manure into environmentally friendly and highly valued activated carbon. When pelletized and activated under specific conditions, the litter becomes a highly porous mat...

  15. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H?O?, O?/H?O? and O?/activated carbon).

    PubMed

    Medellin-Castillo, Nahum A; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H(2)O(2), O(3)/AC, O(3)/H(2)O(2)) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1,080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between ? electrons of its aromatic ring with ? electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O(3)/H(2)O(2) and O(3)/AC systems is faster than that with only O(3). The technologies based on AOPs (UV/H(2)O(2), O(3)/H(2)O(2), O(3)/AC) significantly improve the degradation of DEP compared to conventional technologies (O(3), UV). AC adsorption, UV/H(2)O(2), O(3)/H(2)O(2), and O(3)/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O(3)/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. PMID:23178761

  16. Comparison of Toluene Adsorption Among Granular Activated Carbon and Different Types of Activated Carbon Fibers (ACFs)

    Microsoft Academic Search

    Jo Anne G. Balanay; Shaun A. Crawford; Claudiu T. Lungu

    2011-01-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling,

  17. Activity Graphs and Processes

    Microsoft Academic Search

    Christie Bolton; Jim Davies

    2000-01-01

    The widespread adoption of graphical notations for software design has created a demand for formally-based methods to support and extend their use. A principal focus for this demand is the Unified Mod- eling Language (UML), and, within UML, the diagrammatic notations for describing dynamic properties. This paper shows how one such notation, that of Activity Graphs, can be given a

  18. Carbon nanotube synthesis, processing and spintronics

    NASA Astrophysics Data System (ADS)

    Niyogi, Sandip

    Covalent molecules can be designed to be the ultimate electronic circuits. Carbon nanotubes (CNT) have a curved, aromatic structure, with electronic properties of metals to semiconductors of varying band gaps as a function of chirality, as well as extreme mechanical, thermal and chemical stability. Due to the covalently bonded structure, metallic CNTs are ballistic conductors over 1mum lengths and can carry current densities of 109A/cm 2. Thus, single-walled carbon nanotubes (SWNT) have been regarded as the most promising electronic material as silicon devices reach their fundamental scaling limitations. More than a decade since their discovery, synthesizing useful quantities of analytically pure carbon nanotubes as well as characterizing and processing into forms suitable for specific applications are largely unsolved problems. In this dissertation, a rational route towards developing single-walled carbon nanotubes for applications based on their electronic structure is demonstrated. We study SWNTs grown using the dc-arc technique. By systematic characterization of chemically processed SWNTs, we aim at differentiating between the reactivity of SWNTs and the impurities. Spectroscopic methods were developed, to study the electronic structure of SWNTs close to the Fermi level as well as in the near-IR region where it shows prominent electronic transitions and correlated with the effect of impurities and different processing conditions. This allows us to rationally design processing methods for SWNTs with reproducible characteristics. Chemical modifications of the electronic structure are then pursued towards isolating analytically pure SWNTs. To realize the potential advantages of carbon nanotubes in electronic circuits, besides controlling the materials characteristics, methods to assemble a large density of functional devices need to be developed. Due to low spin-orbit coupling and long spin diffusion lengths (>100nm), CNTs are very promising spintronics materials. In a CNT spin-valve device, spin-polarized electrons are generated at the FM/CNT interface and the CNT provides a coherent path for the polarized electron, which can be detected at the other FM electrode. A versatile method for assembling carbon nanotubes on ferromagnetic (FM) metal contacts from solution was developed. A route to form transparent FM/CNT interfaces as demonstrated. The devices assembled using this technique predominantly exhibit inverse magnetoresistance effect due to spin-polarized transport.

  19. Removal of Carbonyl Sulfide Using Activated Carbon Adsorption

    Microsoft Academic Search

    Melanie L. Sattler; Ranjith Samuel Rosenberk

    2006-01-01

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a

  20. Decolorization / deodorization of zein via activated carbons and molecular sieves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective is to evaluate a series of granular media consisting of activated carbons and molecular sieves in a batch process for the purpose of clarifying and removal of color and odor components from yellow zein dispersed in an aqueous alcohol medium. The major contributors of yellow zein is du...

  1. System and method for coproduction of activated carbon and steam/electricity

    DOEpatents

    Srinivasachar, Srivats (Sturbridge, MA); Benson, Steven (Grand Forks, ND); Crocker, Charlene (Newfolden, MN); Mackenzie, Jill (Carmel, IN)

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  2. Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-01-01

    The activation of carbon–carbon (C–C) bonds is an effective strategy in building functional molecules. The C–C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C–C bond activation. Here we describe an organocatalytic activation of C–C bonds through the addition of an NHC to a ketone moiety that initiates a C–C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C–C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process. PMID:25652912

  3. Prebiotic activation processes.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Orgel, L. E.

    1973-01-01

    Questions regarding the combination of amino acids and ribonucleotides to polypeptides and polynucleotides are investigated. Each of the reactions considered occurs in the solid state in plausible prebiotic conditions. Together they provide the basis for a unified scheme of amino acid and nucleotide activation. Urea, imidazole and Mg(++) are essential catalytic components of the reaction mixtures. However, these compounds could probably be replaced by other organic molecules.

  4. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  5. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling.

    PubMed

    Zoschke, Kristin; Engel, Christina; Börnick, Hilmar; Worch, Eckhard

    2011-10-01

    The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption. Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions. The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration. PMID:21752419

  6. A novel activated carbon for supercapacitors

    SciTech Connect

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)] [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)] [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)] [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  7. Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying

    E-print Network

    Liu, Jie

    Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical August 2003) Activated carbon fiber/carbon aerogel (ACF/CA) composites were fabricated by gelling. The ACFs can reinforce the related carbon aerogels when they originally have low mass density and are weak

  8. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures

    Microsoft Academic Search

    M. Jordá-Beneyto; F. Suárez-García; D. Lozano-Castelló; D. Cazorla-Amorós; A. Linares-Solano

    2007-01-01

    Hydrogen adsorption measurements have been carried out at different temperatures (298K and 77K) and high pressure on a series of chemically activated carbons with a wide range of porosities and also on other types of carbon materials, such as activated carbon fibers, carbon nanotubes and carbon nanofibers. This paper provides a useful interpretation of hydrogen adsorption data according to the

  9. Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide

    E-print Network

    Wu, Jianzhong

    the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls

  10. Identifying and Developing New, Carbon Dioxide Consuming Processes , Sudheer Indalaa

    E-print Network

    Pike, Ralph W.

    408b Identifying and Developing New, Carbon Dioxide Consuming Processes Aimin Xua , Sudheer Indalaa@hal.lamar.edu, yawscl@hal.lamar.edu Key words; Carbon Dioxide Processes, Greenhouse Gases, Chemical Complex, Sustainable acceptable, catalytic processes have been identified that can use excess high purity carbon dioxide as a raw

  11. Optimum manufacturing conditions of activated carbon fiber absorbents. II. Effect of carbonization and activation conditions

    Microsoft Academic Search

    Ching-Iuan Su; Ching-Luh Wang

    2007-01-01

    In this paper, viscose rayon-based knitted fabrics were utilized as the precursor to produce activated carbon fiber absorbents\\u000a (ACFA). The effects of carbonization and activation conditions on characteristics (ACFA) were examined. Experimental results\\u000a revealed that increasing the flow rate of environmental gas N2 and steam activator used in conjunction and decreasing the production rate of ACFA can obtain better pore

  12. Activated carbon from grass -a green alternative catalyst support for water electrolysis Kalyani Palanichamy1,

    E-print Network

    Paris-Sud XI, Université de

    1 Activated carbon from grass - a green alternative catalyst support for water electrolysis Kalyani electrolysis of water. Activation is done using ZnCl2 followed by thermal processing at 250o C. 1% Pt. Keywords: grass; activated carbon; catalyst support; electrochemical studies; hydrogen, water electrolysis

  13. Effect of microwave heating on the regeneration of modified activated carbons saturated with phenol

    NASA Astrophysics Data System (ADS)

    Ondon, B. S.; Sun, B.; Yan, Z. Y.; Zhu, X. M.; liu, H.

    2014-12-01

    The purpose of this work was to investigate the effect of microwave irradiation on the regeneration of modified activated carbons (GAC/MW, GAC/Ni, and GAC/Cu). The untreated activated carbon (GAC pure) was used for blank experiment. Microwave heating was used for preparation and regeneration of the modified activated carbons. The effect of loading Ni2+ and Cu2+ ions on the activated carbon adsorption capacity was investigated. The results showed that the activated carbon loaded with Ni2+ has no significant effect on phenol adsorption, while the adsorption capacity of activated carbon loaded with Cu2+ significantly decreased. Microwave irradiation showed a positive effect on activated carbon adsorption capacity. Under optimal conditions, the results showed that there was no effect when changing temperature and pH. The effect of ions Ni2+ and Cu2+ loaded into activated carbon were also investigated. During the regeneration process, the activated carbon loaded with Ni2+ showed a strong microwave energy adsorption than the activated carbon loaded with Cu2+. The effect increasing Ni2+ quantity decreases the activated carbon regeneration efficiency. During the regeneration of activated carbons, the highest temperature was observed in the cases of GAC/Ni. During regeneration, the temperature increases when the quantity Ni2+ loaded increases. The regeneration efficiency of activated carbons reaches 98 % even after 10 times of regeneration cycles. After several regenerations, MW/GAC and GAC/Ni regeneration efficiency was high, while regeneration efficiency of GAC/Cu decreased considerably. GAC regeneration efficiency also decreased several cycles. During regeneration process, phenol was simply desorbed from activated carbons under microwave irradiation.

  14. Cyclic process for producing methane from carbon monoxide with heat removal

    DOEpatents

    Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  15. Pore structure of the activated coconut shell charcoal carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  16. APPLICATION OF ACTIVATED CARBON IN REACTOR CONTAINMENT

    Microsoft Academic Search

    Prigge

    1962-01-01

    An activated-carbon bed, or filter, was designed to remove 99.9+% of the ; radioactive halogen vapor that could be released as the result of a containable ; accident of a watermoderated-and-cooled reactor. The filter was intended for ; installation in the exhaust of the ventilation system of the reactor building and ; was designed on the basis of results from

  17. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported and to analyze means of employing PAC more efficiently. The extent of adsor...

  18. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  19. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  20. ACTIVATED CARBON TREATMENT OF KRAFT BLEACHING EFFLUENTS

    EPA Science Inventory

    The removal of color and organic contaminants by adsorption on activated carbon from the effluent of a kraft pulp bleaching plant was investigated in a pilot plant. The caustic bleach effluent, which contains 80% of the color from pulp bleaching, was decolorized successfully when...

  1. Process for making hollow carbon spheres

    DOEpatents

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  2. Preparation of High Surface Area Mesoporous Activated Carbon: Kinetics and Equilibrium Isotherm

    Microsoft Academic Search

    W. C. Lim; C. Srinivasakannan; V. Doshi

    2012-01-01

    Activated carbon prepared from palm shell by phosphoric acid impregnation, at significantly favorable experimental conditions is characterized for the porous nature and adsorption of methylene blue dye molecules. The activation is carried out using a 2-stage activation process with the activation in a self generated atmosphere. An activation temperature of 500 °C, with an activation time of 75 minutes using

  3. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene

    SciTech Connect

    Ania, C.O.; Bandosz, T.J. [CUNY City College, New York, NY (United States). Dept. of Chemistry

    2005-08-16

    The performance of various activated carbons obtained from different carbon precursors (i.e., plastic waste, coal, and wood) as adsorbents for the desulfurization of liquid hydrocarbon fuels was evaluated. To increase surface heterogeneity, the carbon surface was modified by oxidation with ammonium persulfate. The results showed the importance of activated carbon pore sizes and surface chemistry for the adsorption of dibenzothiophene (DBT) from liquid phase. Adsorption of DBT on activated carbons is governed by two types of contributions: physical and chemical interactions. The former include dispersive interactions in the microporous network of the carbons. While the volume of micropores governs the amount physisorbed, mesopores control the kinetics of the process. On the other hand, introduction of surface functional groups enhances the performance of the activated carbons as a result of specific interactions between the acidic centers of the carbon and the basic structure of DBT molecule as well as sulfur-sulfur interactions.

  4. Photochemical processing of aqueous atmospheric brown carbon

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J. P. D.

    2015-01-01

    Atmospheric Brown Carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate atmospheric relevance of this work, we also performed direct photolysis experiments on water soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  5. The biomass derived activated carbon for supercapacitor

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Selvan, R. Kalai; Melo, J. S.

    2013-06-01

    In this work, the activated carbon was prepared from biowaste of Eichhornia crassipes by chemical activation method using KOH as the activating agent at various carbonization temperatures (600 °C, 700 °C and 800 °C). The disordered nature, morphology and surface functional groups of ACs were examined by XRD, SEM and FT-IR. The electrochemical properties of AC electrodes were studied in 1M H2SO4 in the potential range of -0.2 to 0.8 V using cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques in a three electrode system. Subsequently, the fabricated supercapacitor using AC electrode delivered the higher specific capacitance and energy density of 509 F/g at current density of 1 mA/cm2 and 17 Wh/kg at power density of 0.416 W/g.

  6. Thermal regeneration of activated carbon saturated with p-nitrophenol

    Microsoft Academic Search

    E Sabio; E González; J. F González; C. M González-Garc??a; A Ramiro; J Gañan

    2004-01-01

    Water contamination by organic compounds is an important environmental problem. Activated carbon filters are widely used to eliminate these contaminants. After exhaustion, activated carbon must be regenerated or replaced by fresh carbon. In this study thermal regeneration of saturated carbon with p-nitrophenol has been analysed. Three thermal regeneration methods have been tested: (1) pyrolysis, (2) pyrolyis-gasification and (3) direct gasification,

  7. Experimental investigation of factors controlling the calcium carbonate ion activity product of shallow water carbonate-rich sediments

    E-print Network

    Bernstein, Lawrence Douglas

    1983-01-01

    sediment samples with sea- water to gain an equilibrium solubility product for calcium carbonate. He failed to recognize that this would represent a metastable equilibrium due to the complex nature of the sediments. Dynamic processes...EXPERIMENTAL INVESTIGATION OF FACTORS CONTROLLING THE CALCIUM CARBONATE ION ACTIVITY PRODUCT OF SHALLOW WATER CARBONATE-RICH SEDIMENTS A Thesis by LAWRENCE DOUGLAS BERNSTEIN Submitted to the Graduate College of Texas A&M University...

  8. Fabrication of novel micro-nano carbonous composites based on self-made hollow activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Kong, Yuxia; Qiu, Tingting; Qiu, Jun

    2013-01-01

    The hollow activated carbon fibers (HACF) were prepared by using commercial polypropylene hollow fiber (PPHF) as the template, and phenol-formaldehyde resin (PF) as carbon precursors. Final HACF was formed through the thermal decomposition and carbonization of PF at 700 °C under the nitrogen atmosphere, and activation at 800 °C with carbon dioxide as the activating agent, consecutively. Then, carbon nanotubes (CNTs) were grown by chemical vapor deposition (CVD) techniques using the as-grown porous HACF as substrate. The growth process was achieved by pyrolyzing ethanol steam at 700 °C using nickel as catalyst. Finally, CNTs was grown successfully on the substrate, and a novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. The as-grown HACF and micro-nano CNTs/HACF were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Moreover, the formation mechanisms were also discussed.

  9. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-print Network

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide of a coal gasification power plant. The separated carbon dioxide can be compressed and transported dioxide separation and sequestration because the lower cost of carbon dioxide separation from

  10. A new antacid drug from activated carbon modified with calcium carbonate

    Microsoft Academic Search

    Carlos F. Linares; José Quintero; Lesbia Martínez; Gema González

    2007-01-01

    Activated carbons were previously modified with different sodium carbonate solutions and then, they were soaked in a calcium nitrate solution. This procedure allowed to precipitate calcium carbonate on the microporous carbons. Then, these solids were washed with abundant distillated water. These modified carbons were characterized by means of XRD, SEM, HRTEM and BET surface area measurements. XRD confirmed the presence

  11. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review.

    PubMed

    Saleh, Tawfik A; Gupta, Vinod Kumar

    2014-09-01

    The remarkable increase in the number of vehicles worldwide; and the lack of both technical and economical mechanisms of disposal make waste tires to be a serious source of pollution. One potential recycling process is pyrolysis followed by chemical activation process to produce porous activated carbons. Many researchers have recently proved the capability of such carbons as adsorbents to remove various types of pollutants including organic and inorganic species. This review attempts to compile relevant knowledge about the production methods of carbon from waste rubber tires. The effects of various process parameters including temperature and heating rate, on the pyrolysis stage; activation temperature and time, activation agent and activating gas are reviewed. This review highlights the use of waste-tires derived carbon to remove various types of pollutants like heavy metals, dye, pesticides and others from aqueous media. PMID:25001042

  12. Fundamental optical processes in armchair carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hároz, Erik H.; Duque, Juan G.; Tu, Xiaomin; Zheng, Ming; Hight Walker, Angela R.; Hauge, Robert H.; Doorn, Stephen K.; Kono, Junichiro

    2013-01-01

    Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been revealed via photoluminescence, Raman scattering, and ultrafast optical spectroscopy of semiconducting carbon nanotubes. On the other hand, dynamical properties of metallic nanotubes have been poorly explored, although they are expected to provide a novel setting for the study of electron-hole pairs in the presence of degenerate 1-D electrons. In particular, (n,n)-chirality, or armchair, metallic nanotubes are truly gapless with massless carriers, ideally suited for dynamical studies of Tomonaga-Luttinger liquids. Unfortunately, progress towards such studies has been slowed by the inherent problem of nanotube synthesis whereby both semiconducting and metallic nanotubes are produced. Here, we use post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich ensemble samples in armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the near-infrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G-) feature is a result of resonance with non-armchair ``metallic'' nanotubes. These findings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes lay the foundation for further spectroscopic studies to probe many-body physical phenomena in one dimension.

  13. Adsorption of Nonylphenol onto Granular Activated Carbon

    Microsoft Academic Search

    Tom Tanghe; Willy Verstraete

    2001-01-01

    The applicability of granular activated carbon (GAC)filtration for the removal of the xeno-estrogenicmicropollutant nonylphenol (NP) is evaluated using batchadsorption data. From the obtained adsorption data, it wasapparent that with contact times of 4 d and 24 hr and GACdosages of 1 and 0.1 g L-1 no saturationof the GAC could be obtained with NP total contaminantloadings up to 10 000

  14. Preparation and characterization of activated carbon from demineralized tyre char

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  15. Sorption of boric acid and borax by activated carbon impregnated with various compounds

    Microsoft Academic Search

    Lj. V. Rajakovi?; M. Dj. Risti?

    1996-01-01

    The separation of boron compounds, boric acid and borax from aqueous solution by activated carbon before and after impregnation with various compounds was studied. A series of activated carbons was prepared from coconut shell impregnated with calcium and barium chlorides, citric and tartaric acids. The examined processes were performed in batch and continuous systems under equilibrium and dynamic conditions. Impregnation

  16. 76 FR 67142 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...high temperature steam (or CO 2 gas) activated process is a direct result of oxidation of a portion of the solid carbon atoms in the raw material, converting them into a gaseous form of carbon. The scope of the order covers all forms of activated...

  17. 75 FR 70208 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ...high temperature steam (or CO 2 gas) activated process is a direct result of oxidation of a portion of the solid carbon atoms in the raw material, converting them into a gaseous form of carbon. The scope of the order covers all forms of activated...

  18. REMOVAL OF DYE BY IMMOBILISED PHOTOCATALYST LOADED ACTIVATED CARBON

    Microsoft Academic Search

    Zulkarnain Zainal; Chang Sook Keng; Abdul Halim Abdullah

    The ability of activated carbon to adsorb and titanium dioxide to photodegrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of

  19. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  20. Influence of process water quality on hydrothermal carbonization of cellulose.

    PubMed

    Lu, Xiaowei; Flora, Joseph R V; Berge, Nicole D

    2014-02-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that has been shown to be environmentally and energetically advantageous for the conversion of wet feedstocks. Supplemental moisture, usually in the form of pure water, is added during carbonization to achieve feedstock submersion. To improve process sustainability, it is important to consider alternative supplemental moisture sources. Liquid waste streams may be ideal alternative liquid source candidates. Experiments were conducted to systematically evaluate how changes in pH, ionic strength, and organic carbon content of the initial process water influences cellulose carbonization. Results from the experiments conducted evaluating the influence of process water quality on carbonization indicate that changes in initial water quality do influence time-dependent carbonization product composition and yields. These results also suggest that using municipal and industrial wastewaters, with the exception of streams with high CaCl2 concentrations, may impart little influence on final carbonization products/yields. PMID:24398151

  1. 40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Applicability: description of the carbon black thermal process subcategory. 458...CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory §...

  2. 40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Applicability; description of the carbon black channel process subcategory. 458...CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory §...

  3. 40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Applicability; description of the carbon black furnace process subcategory. 458...CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace Process Subcategory §...

  4. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  5. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide

    Microsoft Academic Search

    Narges Bagheri; Jalal Abedi

    2009-01-01

    Activated carbons were prepared through chemical activation of corn cob precursor, using potassium hydroxide as the chemical agent. The effect of different parameters, such as particle size, method of mixing, chemical\\/corn ratio, activation time and activation temperature, on weight loss and BET surface area of the produced activated carbons were discussed. The porosity of the activated carbons was evaluated through

  6. ORIGINAL PAPER Conceptual design of carbon nanotube processes

    E-print Network

    Pike, Ralph W.

    conductivity similar to copper. The biggest challenge in developing potential applications for carbon nanotubesORIGINAL PAPER Conceptual design of carbon nanotube processes Adedeji E. Agboola Ã? Ralph W. Pike Ã? online: 10 January 2007 Ã? Springer-Verlag 2007 Abstract Carbon nanotubes, discovered in 1991, are a new

  7. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  8. Heat and mass transfer in steam desorption of an activated carbon adsorber

    Microsoft Academic Search

    Junjie Gu; Hans-Jörg Bart

    2005-01-01

    Activated carbon columns are often used for purification of indoor air which is contaminated with solvent vapours. The regeneration of the used activated carbon is practically conducted with steam, which is followed with a drying\\/cooling process to dry and to cool down the column, as cold and dry carbon is essential for the followed adsorption cycle. A Double-Two-Mechanism-Model was proposed

  9. Inhibitory effect of sorbitol on acetaminophen adsorption by activated carbon.

    PubMed

    Nakamura, Takeo; Oida, Yoshihito; Matsumoto, Kazuoki; Kawasaki, Naohito; Tanada, Seiki

    2002-01-01

    The effective use of activated carbon as oral adsorbent in the primary treatment of acute acetaminophen poisoning was studied. The adsorption characteristics of acetaminophen onto activated carbons in presence of sorbitol were investigated in vitro. Both the equilibrium amount adsorbed and the removal rate of acetaminophen onto activated carbon were decreased with the increase of sorbitol concentration in solutions. The sorbitol concentration independency of the inhibition to the acetaminophen adsorption was recognized. It was concluded that the addition of sorbitol to the suspension of activated carbon inhibited the acetaminophen adsorption by activated carbon. PMID:12049124

  10. Formation of continuous activated carbon fibers for barrier fabrics

    NASA Astrophysics Data System (ADS)

    Liang, Ying

    1997-08-01

    Commercial protective suits made of active carbon granules or nonwoven fabrics are heavy, have low moisture vapor transport rate, and are uncomfortable. Inherent problems due to construction of barrier fabrics lead to severe heat stress when worn for even short time in warm environments. One proposed method to eliminate these problems is to facilitate the construction of a fabric made of continuous activated carbon fibers (CACF). This study is directed toward investigating the possibility of developing CAFC from two precursors: aramid and fibrillated PAN fiber. It was shown in this study that Kevlar-29 fibers could be quickly carbonized and activated to CACF with high adsorptivity and relatively low weight loss. CACF with high surface area (>500 msp2/g) and reasonable tenacity (?1g/denier) were successfully prepared from Kevlar fibers through a three-step process: pretreatment, carbonization, and activation. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis were conducted to understand the evolution of physical and chemical properties during pretreatment. The influence of temperature, heating rate, and pyrolysis environment on the thermal behavior was determined by DSC and TGA/DTA and used as an indicator for optimizing the pyrolysis conditions. Surface analysis by nitrogen isotherms indicated that the resultant fibers had micropores and mesopores on the surface of CACF. This was also inferred by studies on the surface morphology through Scanning Electron Microscopy (SEM) and Scanning Tunneling Microscopy (STM). An investigation of the surface chemical structure by X-ray photoelectron spectroscopy (XPS) before and after activation and elemental analysis confirmed that adsorption of Kevlar based CACF mainly arises due to the physisorption instead of chemisorption. A multistep stabilization along with carbonization and activation was used to prepare active carbon fiber from fibrillated PAN fiber. The resultant fiber retained its fibrillar structure and provided a very high surface area, up to 1400 msp2/g, but was brittle. The characterization of the thermal behavior, mechanical properties, and surface structure of the pyrolyzed fiber at each processing step was also carried out by using various techniques, such as DSC and TGA, Instron, and SEM. These studies provide directions for preparation of CACF from novel precursors.

  11. Characteristics and humidity control capacity of activated carbon from bamboo

    Microsoft Academic Search

    Toshihide Horikawa; Yoshiyuki Kitakaze; Tomoki Sekida; Jun’ichi Hayashi; Masahiro Katoh

    2010-01-01

    Activated carbons were prepared from bamboo by chemical activation with K2CO3 or physical activation with CO2. The structural and surface chemical characteristics of the activated carbons were determined by N2 adsorption–desorption and Boehm titration, respectively. The water vapor adsorption properties of the activated carbons with various pore structures (preparation conditions) were examined. The relationship between water vapor adsorption capacity and

  12. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon

    Microsoft Academic Search

    Y. Önal; C. Akmil-Ba?ar; Ç. Sar?c?-Özdemir

    2007-01-01

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000m2\\/g. Adsorption capacity of malachite green (MG) onto T3K618 activated

  13. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    NASA Astrophysics Data System (ADS)

    Pinto, Susana; D'Ornelas, Lindora; Betancourt, Paulino

    2008-06-01

    Vanadium nanoparticles (˜7 nm) stabilized on activated carbon were synthesized by the reduction of VCl 3·3THF with K[BEt 3H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 °C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.

  14. Authigenic carbonates from active methane seeps offshore southwest Africa

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 < ?13C ‰ V-PDB < -40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4 < ?18O ‰ V-PDB < +6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive ?18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby providing enough Ca2+ ions for pore solutions to reach gypsum saturation; this is thought to be promoted by the bio-irrigation and burrowing activity of benthic fauna. The ?18O-?13C patterns identified in the authigenic carbonates are interpreted to reflect variations in the rate of AOM during the last glacial-interglacial cycle, in turn controlled by variably strong methane fluxes through the pockmarks. These results complement the conclusions of Kasten et al. in this special issue, based on authigenic barite trends at the Hydrate Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation-decomposition.

  15. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  16. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  17. BACTERIA ASSOCIATED WITH GRANULAR ACTIVATED CARBON PARTICLES IN DRINKING WATER

    EPA Science Inventory

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogen...

  18. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  19. The Carbon Cycle and its Role in Climate Change: Activity 1

    NSDL National Science Digital Library

    2014-05-29

    In this activity (on page 1), learners role play as atoms to explore how atoms can be rearranged to make different materials. Learners group together and link arms or hold hands to form chemical bonds and act out the processes of photosynthesis and respiration. Use this activity to introduce the carbon cycle and follow this activity with two associated activities from the same resource.

  20. Ultrasound-assisted synthesis and processing of carbon materials

    NASA Astrophysics Data System (ADS)

    Fortunato, Maria E.

    2011-12-01

    Part I: Porous carbons are of interest in many applications because of their high surface areas and other physicochemical properties, and much effort has been directed towards developing new methods for controlling the porosity of carbons. Ultrasonic spray pyrolysis (USP) is an aerosol method suitable for large-scale, continuous synthesis of materials. Ultrasound is used to create aerosol droplets of a precursor solution which serve as micron-sized spherical reactors for materials synthesis. This work presents a precursor system for the template-free USP synthesis of porous carbons using low-cost precursors that do not evolve or require hazardous chemicals: sucrose was used as the carbon source, and sodium carbonate, sodium bicarbonate, or sodium nitrate was added as a decomposition catalyst and porogen. The USP carbons had macroporous interiors and microporous shells with surface areas as high as 800 m2/g and a narrow pore size distribution. It was determined that the interior porosity was a result of the gas evolution from salt decomposition and not from the presence of a salt template. Porous carbon is frequently used as a catalyst support because it provides high surface area and it is chemically and physically stable under many anoxic reaction conditions. Typically, the preparation of supported catalysts requires multiple steps for carbonization and metal impregnation. In this work, iron-impregnated porous carbon microspheres (Fe-C) were prepared by a one-step USP process by incorporating both the carbon and metal sources into the precursor solution. Carbonization, pore formation, metal impregnation, and metal activation occurred simultaneously to produce Fe-C materials with surface areas as high as 800 m2/g and up to 10 wt% Fe incorporated as nanoparticles < 20 nm in diameter. Fe-C was used as a catalyst to reduce aqueous hexavalent chromium, which demonstrated the accessibility of the iron nanoparticles despite the fact that they are likely encapsulated in the porous carbon support. Part II: The effects of high intensity ultrasound arise from acoustic cavitation: the formation, growth, and collapse of bubbles in a liquid. Bubble collapse produces intense localized heating (˜5000 K), high pressures (˜300 atm), and enormous heating and cooling rates (>109 K/sec). In solid-liquid slurries, surface erosion and particle fracture occur due to the shockwaves and microjets formed from asymmetric bubble collapse at extended surfaces. The chemical and physical effects of ultrasound have been studied as an adjunct to the traditional chemical pretreatment of lignocellulosic biomass for ethanol production. Lignocellulosic biomass consists of cellulose, hemicellulose, and lignin. The surface effects of ultrasound were used in this work to increase the accessibility of the cellulose, which can be converted to glucose and then fermented into ethanol. The lignocellulosic biomass used in this work was Miscanthus x giganteus (Mxg) which was grown at the University of Illinois at Urbana-Champaign. The chemical effects of NaOH pretreatment on Mxg were enhanced by ultrasound: greater delignification and a significant increase in the amount of pores >5 nm were observed. ˜ 70% of the theoretical glucose yield was obtained by enzymatic saccharification of the ultrasound-assisted NaOH-pretreated Mxg; this is comparable to the yields that can be obtained by traditional alkaline pretreatments, but it was achieved in a shorter time and at a lower temperature. Because the apparatus used for laboratory studies is not a likely device for scale-up, the economics of ultrasound with regards to energy balance are not yet resolved.

  1. Carbon Cycle in the Lab: Carbon Products and the Processes That Link Them

    NSDL National Science Digital Library

    This lab teaches students about the nature of carbon, the different types of compounds it exists in (e.g. charcoal, glucose, carbon dioxide), the biochemical reactions it takes part in (photosynthesis and respiration), the range of processes that carbon and carbon compounds are involved in on Earth, and how these link together form the carbon cycle. They will get a feel for how the whole carbon cycle works by turning the laboratory into a model of the carbon cycle and seeing how the different things that are produced in the cycle (the products) fit together with the way those products are made (the processes). The site contains teacher notes, a list of required materials, student instructions and questions, and a diagram of the carbon cycle.

  2. Career management: an active process.

    PubMed

    Mackowiak, J; Eckel, F M

    1985-03-01

    The self-assessment, goal-setting, and career-planning techniques of career management are discussed, and the organization's role in career management is discussed. Career management is a planned process, initiated and carried out by an individual with the assistance of others. Because work and nonwork activities are so interrelated, career and life management planning can maximize a pharmacist's personal success. The career- and life-management process begins with the development of a personal definition of success. A self-assessment must be made of one's values, needs, interests, and activities. The next step of the process involves setting goals and establishing a plan or strategy to achieve them. Establishing a career path requires researching alternate career goals. Career competencies are identified that can increase an employee's chances of success. The employer shares the responsibility for career development through coaching, job structuring, and keeping the employee aware of constraints. Through the integration of the roles of the individual and the organization in the career-management process, employees can optimize their contribution to an organization. Pharmacists can successfully manage their careers by applying the techniques of self-assessment, goal setting, and career planning. PMID:3985018

  3. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  4. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal

    Microsoft Academic Search

    Begoña Rubio; M. Teresa Izquierdo; M. Carmen Mayoral; M. Teresa Bona; Jose M. Andres

    2007-01-01

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900°C

  5. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F. (Durham, CT); Kawatsura, Motoi (Chatham, NJ); Loeber, Oliver (New Haven, CT)

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  6. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-01-01

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

  7. Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.

    2006-06-01

    Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonisation temperature and the ZnCl 2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N 2 at -196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m 2 g -1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.

  8. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics.

    PubMed

    Prakash Kumar, B G; Shivakamy, K; Miranda, Lima Rose; Velan, M

    2006-08-25

    Activated carbon was produced from a biowaste product, rubberwood sawdust (RWSD) using steam in a high temperature fluidized bed reactor. Experiments were carried out to investigate the influence of various process parameters such as activation time, activation temperature, particle size and fluidising velocity on the quality of the activated carbon. The activated carbon was characterized based on its iodine number, methylene blue number, Brauner Emmet Teller (BET) surface area and surface area obtained using the ethylene glycol mono ethyl ether (EGME) retention method. The best quality activated carbon was obtained at an activation time and temperature of 1h and 750 degrees C for an average particle size of 0.46 mm. The adsorption kinetics shows that pseudo-second-order rate fitted the adsorption kinetics better than pseudo-first-order rate equation. The adsorption capacity of carbon produced from RWSD was found to be 1250 mg g(-1) for the Bismark Brown dye. The rate constant and diffusion coefficient for intraparticle transport were determined for steam activated carbon. The characteristic of the prepared activated carbon was found comparable to the commercial activated carbon. PMID:16510239

  9. Dark Carbon Fixation: An Important Process in Lake Sediments

    PubMed Central

    Santoro, Ana Lúcia; Bastviken, David; Gudasz, Cristian; Tranvik, Lars; Enrich-Prast, Alex

    2013-01-01

    Close to redox boundaries, dark carbon fixation by chemoautotrophic bacteria may be a large contributor to overall carbon fixation. Still, little is known about the relative importance of this process in lake systems, in spite the potentially high chemoautotrophic potential of lake sediments. We compared rates of dark carbon fixation, bacterial production and oxygen consumption in sediments from four Swedish boreal and seven tropical Brazilian lakes. Rates were highly variable and dark carbon fixation amounted up to 80% of the total heterotrophic bacterial production. The results indicate that non-photosynthetic carbon fixation can represent a substantial contribution to bacterial biomass production, especially in sediments with low organic matter content. PMID:23776549

  10. New indicator for the evaluation of the wood carbonization process

    SciTech Connect

    Schenkel, Y.; Temmerman, M.; Belle, J.F. van; Vankerkove, R.

    1999-12-01

    Evaluation of the results of a carbonization process is usually carried out by means of indicators such as mass yield, energy yield, or balanced mass yield. However, these indicators have some limits or drawbacks. A new indicator, the reference mass yield, is defined, based on the results of a well-controlled laboratory experimentation. This reference mass yield combines the mass yield and the fixed carbon content of the charcoal. It is a constant independent of the fixed carbon content, hence of the carbonization temperature. Some carbonization results from the literature are evaluated by means of the reference mass yield.

  11. REACTIONS OF CHLORITE WITH ACTIVATED CARBON AND WITH VANILLIC ACID AND INDAN ADSORBED ON ACTIVATED CARBON

    EPA Science Inventory

    The reaction between chlorite (CO2(-1)) and vanillic acid, at pH 6.0 in the presence of granular activated carbon (GAC), yielded several reaction products identifiable by GC/MS; no products were found in the absence of GAC. Indan and ClO2 or ClO2(-1) reacted in aqueous solution a...

  12. Lacustrine carbonates of Iberian Karst Lakes: Sources, processes and depositional environments

    NASA Astrophysics Data System (ADS)

    Valero-Garcés, Blas; Morellón, Mario; Moreno, Ana; Corella, Juan Pablo; Martín-Puertas, Celia; Barreiro, Fernando; Pérez, Ana; Giralt, Santiago; Mata-Campo, María Pilar

    2014-01-01

    Carbonates are the main components of Iberian Quaternary lake sediments. In this review we summarize the main processes controlling carbonate deposition in extant Iberian lakes located in Mesozoic and Tertiary carbonate-dominated regions and formed through karstic activity during the Late Quaternary. The lakes, relatively small (1 ha to 118 ha) and relatively shallow (Zmax = 11 to 40 m) provide examples of the large variability of sedimentary facies, depositional environments, and carbonate sources. Hydrology is dominated by groundwater inflow except those directly connected to the fluvial drainage. Nine lakes have been selected for this review and the main facies in palustrine, littoral and profundal environments described and interpreted.

  13. Characterization of activated carbon prepared from chlorella-based algal residue.

    PubMed

    Chang, Yuan-Ming; Tsai, Wen-Tien; Li, Ming-Hsuan

    2015-05-01

    The chlorella-based microalgal residue (AR) was tested as a novel precursor for preparing activated carbons. A combined carbonization-activation process with flowing N2 and CO2 gases was used to prepare the carbon materials at the activation temperatures of 800-1000°C and the residence times of 0-30min in this work. The elemental contents, pore properties and scanning electron microscopy (SEM) observations of the resulting activated carbons have been performed. The results showed that activation temperature may be the most important parameter for determining their pore properties. The maximal Brunauer-Emmett-Teller (BET) surface area and total pore volume of the resulting activated carbon, which was produced at the activation temperature of 950°C with the residence time of 30min, were 840m(2)/g and 0.46cm(3)/g, respectively. More interestingly, the resulting activated carbons have significant nitrogen contents of 3.6-9.6wt%, which make them lower carbon contents (i.e., 54.6-68.4wt%) than those of commercial activated carbons. PMID:25451779

  14. Nitrogen doping of activated carbon loading Fe 2 O 3 and activity in carbon-nitric oxide reaction

    Microsoft Academic Search

    Xian-kai Wan; Xue-quan Zou; Hui-xiang Shi; Da-hui Wang

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence\\u000a of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form\\u000a of pyridinic nitrogen. The modified carbon shows excellent

  15. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, R.I.; Jung, S.; Mindock, C.A.

    1998-12-22

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures. 8 figs.

  16. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, Rawle I. (Haslett, MI); Jung, Seunho (Kuyngkido, KR); Mindock, Carol A. (Lansing, MI)

    1998-01-01

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures.

  17. Numerical simulation of flows in air treatment devices using activated carbon cloths filters

    Microsoft Academic Search

    Jean-Noël Baléo

    2000-01-01

    The determination of pressure drops is of major interest in the design of most air treatment processes, which often use activated carbon granules, beads in packing columns, or carbon cloths, for the removal of volatile organic compounds or odorous molecules charged in the air. In this paper, numerical simulations of flows occurring in air treatment devices are performed using computational

  18. Continuous supercritical carbon dioxide processing of palm oil

    Microsoft Academic Search

    C. K. Ooi; A. Bhaskar; M. S. Yener; D. Q. Tuan; J. Hsu; S. S. H. Rizvi

    1996-01-01

    Crude palm oil was processed by continuous supercritical carbon dioxide. The process reduces the contents of free fatty acids,\\u000a monoglycerides and diglycerides, certain triglycerides, and some carotenes. The refined palm oil from the process has less\\u000a than 0.1% free fatty acids, higher carotene content, and low diglycerides. Solubility of palm oil in supercritical carbon\\u000a dioxide increased with pressure. A co-solvent

  19. CYANIDE REMOVAL FROM REFINERY WASTEWATER USING POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The objective of this project was to evaluate the removal of low level cyanide in petroleum refinery wastewater by the addition of powdered activated carbon and cupric chloride to an activated sludge unit. The activated carbon and cupric chloride act as a catalyst in the oxidatio...

  20. Role of activated carbon pellets in carbon dioxide removal

    Microsoft Academic Search

    S. C Sarkar; A Bose

    1997-01-01

    The removal of carbon dioxide from gas\\/air streams is more often becoming necessary in many industries for different purposes. In cryogenic air separation plant, air has to be free from carbon dioxide before its liquefaction otherwise blockage due to freezing of heat exchange equipment would result. Enrichment of methane in biogas to have fuel of higher calorific value can be

  1. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  2. Active Carbon and Oxygen Shell Burning Hydrodynamics

    E-print Network

    Casey Meakin; David Arnett

    2006-01-16

    We have simulated 2.5$\\times10^3$ s of the late evolution of a $23 \\rm M_\\odot$ star with full hydrodynamic behavior. We present the first simulations of a multiple-shell burning epoch, including the concurrent evolution and interaction of an oxygen and carbon burning shell. In addition, we have evolved a 3D model of the oxygen burning shell to sufficiently long times (300 s) to begin to assess the adequacy of the 2D approximation. We summarize striking new results: (1) strong interactions occur between active carbon and oxygen burning shells, (2) hydrodynamic wave motions in nonconvective regions, generated at the convective-radiative boundaries, are energetically important in both 2D and 3D with important consequences for compositional mixing, and (3) a spectrum of mixed p- and g-modes are unambiguously identified with corresponding adiabatic waves in these computational domains. We find that 2D convective motions are exaggerated relative to 3D because of vortex instability in 3D. We discuss the implications for supernova progenitor evolution and symmetry breaking in core collapse.

  3. 75 FR 48644 - Certain Activated Carbon From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ...Huaiyushan Activated Carbon Group; Huatai Activated Carbon; Huaxin Active Carbon Plant; Huzhou Zhonglin Activated Carbon; Inner Mongolia Taixi Coal Chemical Industry Limited Company; Itigi Corp. Ltd.; J&D Activated Carbon Filter Co., Ltd.; Jiangle...

  4. Removal of mercury from stack gases by activated carbon

    SciTech Connect

    Vidic, R.D. [Univ. of Pittsburgh, PA (United States)

    1995-10-01

    On combustion, the trace elements in the incinerator feed stream are partitioned between the bottom ash (slag) stream, and a flue gas stream containing suspended fly ash and vapors of volatile elements or compounds. A further partitioning of the flue gas stream takes place in the particulate emission control devices that efficiently remove larger fly ash particles but are less efficient for vapors and finer particles. Environmental control agencies, researchers, and general public have become increasingly concerned with the mobilization of trace elements to the environment from solid and hazardous waste incinerators. Mercury is the trace element of particular concern since, during combustion, most of the mercury present in the influent stream is transferred into the vapor phase due to its high volatility. There is a considerable evidence in the literature that currently used pollution abatement technologies (flue gas clean-up and particulate control devices) are not capable of controlling gas phase mercury emissions. Activated carbon adsorption is a unit process that offers great promise for achieving high quality air emissions with respect to mercury and other trace elements that might be present in gases emitted from solid and hazardous waste incinerators. This study is designed to evaluate the rate of vapor-phase mercury removal by virgin and sulfur impregnated activated carbons under various process conditions. The specific process conditions that will be evaluated for their effect on the rate and mechanism of mercury uptake include temperature, moisture content, oxygen partial pressure, and presence of other compounds and trace elements in the vapor-phase. Accurate description of the kinetics of mercury removal by activated carbon is an essential component in establishing design procedures that would ensure successful application of this efficient technology for mercury control.

  5. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (?-hemolysin (?-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  6. Properties of activated carbon controlling 2-Methylisoborneol adsorption

    Microsoft Academic Search

    P. Pendleton; S. H. Wong; R. Schumann; G. Levay; R. Denoyel; J. Rouquero

    1997-01-01

    2-Methylisoborneol (MIB) is one of the most common taste and odour molecules found in water supplies. The use of activated carbons is known to be effective in removing MIB from water. In this work, it was found that the selection of an appropriate carbon for removing MIB from water depends on the carbon surface hydrophilicity, which can be determined via

  7. Optically active single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro

    2007-06-01

    The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.

  8. Parallel Activation in Bilingual Phonological Processing

    ERIC Educational Resources Information Center

    Lee, Su-Yeon

    2011-01-01

    In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…

  9. Pilot studies on enhancement of the refinery activated sludge process

    Microsoft Academic Search

    W. J. Clark; L. W. Crame

    1977-01-01

    Pilot studies on enhancement of the refinery activated sludge process designed to meet 1977 effluent limitations were conducted for the American Petroleum Institute to determine if effluent quality obtained by such enhancement would be equivalent to that obtained from granular carbon adsorption originally proposed for 1983. The modifications investigated were: chemicals addition to optimize pretreatment by air flotation or media

  10. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste.

    PubMed

    Huang, Yaji; Jin, Baosheng; Zhong, Zhaoping; Zhong, Wenqi; Xiao, Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal. A three-stage activation process (drying at 200 degrees C, pyrolysis in N2 atmosphere, followed by CO2 activation) was used for the production of activated samples. The effects of carbonization temperature (400-600 degrees C), activation temperature (700-900 degrees C), and activation time (1-2.5 h) on the physicochemical properties (weight-loss and BET surface) of the prepared carbon were investigated. Adsorptive removal of mercury from real flue gas onto activated carbon has been studied. The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (Hg(v): 38.7% vs. 53.5%, Hg(0): 50.5% vs. 68.8%), although its surface area is around 10 times smaller, 89.5 m2/g vs. 862 m2/g. The low cost activated carbon can be produced from chicken waste, and the procedure is suitable. PMID:18595395

  11. Growth process of vertically aligned single-walled carbon nanotubes Erik EINARSSON, Tadao EDAMURA, Yoichi MURAKAMI,

    E-print Network

    Maruyama, Shigeo

    Growth process of vertically aligned single-walled carbon nanotubes * Erik., The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan The growth process of vertically aligned activity must be developed in order to realize large-scale production of vertically aligned SWNT films. Key

  12. Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  13. Process for producing stabilized molten carbonate fuel cell porous anodes

    Microsoft Academic Search

    Donado

    1988-01-01

    A process is described for treatment of molten carbonate fuel cell porous metallic anodes to produce stabilized molten carbonate fuel cell porous metallic anodes comprising the steps of: impregnating a porous metallic anode comprising principally metal particles selected from the group consisting of: copper, cobalt, nickel and alloys and mixtures thereof, in an aqueous solution having dissolved therein a water

  14. Direct Observation of Completely Processed Calcium Carbonate Dust Particles

    Microsoft Academic Search

    Alexander Laskin; Martin J. Iedema; Aviad Ichkovich; Ellen R. Graber; Ilya Taraniuk; Yinon Rudich

    2005-01-01

    This study presents, for the first time, field evidence of complete, irreversible processing of solid calcium carbonate (calcite)-containing particles and quantitative formation of liquid calcium nitrate particles apparently as a result of heterogeneous reaction of calcium carbonate-containing mineral dust particles with gaseous nitric acid. Formation of nitrates from individual calcite and sea salt particles was followed as a function of

  15. Surfactant-assisted processing of carbon nanotube\\/polymer composites

    Microsoft Academic Search

    Xiaoyi Gong; Jun Liu; Suresh Baskaran; Roger D. Voise; James S. Young

    2000-01-01

    Interfacial interaction is one of the most critical issues in carbon nanotube\\/polymer composites. In this paper the role of nonionic surfactant is investigated. With the surfactant as the processing aid, the addition of only 1 wt % carbon nanotubes in the composite increases the glass transition temperature from 63 C to 88 C. The elastic modulus is also increased by

  16. Void forming pyrolytic carbon coating process

    SciTech Connect

    Beatty, R.L.; Cook, J.L.

    2000-06-27

    A pyrolytic carbon coated nuclear fuel particle and method of making it are disclosed. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm{sup 3} and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2,000 C of greater than 1.7 grams/cm{sup 3} and an anisotropy factor greater than 5.

  17. Void forming pyrolytic carbon coating process

    DOEpatents

    Beatty, Ronald L. (Oak Ridge, TN); Cook, Jackie L. (Oak Ridge, TN)

    2000-01-01

    A pyrolytic carbon coated nuclear fuel particle and method of making it. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm.sup.3 and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2000.degree. C. of greater than 1.7 grams/cm.sup.3 and an anisotropy factor greater than 5.

  18. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Rush, G.E.; Dahlin, Cheryl L.; Collins, W. Keith

    2001-01-01

    Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable final form. The process utilizes a slurry of water, with bicarbonate and salt additions, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, resulting in dissolution of the mineral and precipitation of magnesium carbonate (MgCO3). Optimum results have been achieved using heat pretreated serpentine feed material and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Process mineralogy has been utilized to characterize the feed and process products, and interpret the mineral dissolution and carbonate precipitation reaction paths.

  19. Active carbon filter health condition detection with piezoelectric wafer active sensors

    Microsoft Academic Search

    Jingjing Bao; Victor Giurgiutiu; Glenn O. Rubel; Gregory W. Peterson; Thomas M. Ball

    2011-01-01

    The impregnated active carbon used in air purification systems degrades over time due to exposure to contamination and mechanical effects (packing, settling, flow channeling, etc.). A novel approach is proposed to detect contamination in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS) and electrochemical impedance spectroscopy (ECIS). ECIS is currently being used to evaluate active carbon filtration material;

  20. Processing carbon nanotubes with holographic optical tweezers

    E-print Network

    Grier, David

    nanotubes, can be transported at high speeds, deposited onto substrates, untangled, and selectively ablated. © 2012 Optical Society of America OCIS codes: (140.7010) Trapping; (090.1760) Computer holography; (120, "Large area patterned arrays of aligned carbon nanotubes via laser trimming," Nanotechnology 14, 433

  1. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  2. Effect of Carbonation on Alkali-Activated Slag Paste

    Microsoft Academic Search

    M. Palaciosw; F. Puertas

    2006-01-01

    Carbonation on waterglass- and NaOH-activated slag pastes was analyzed and compared with carbonation in Portland ce- ment pastes to determine possible differences. Thermogravime- try-differential thermal analysis (TG\\/DTA), Fourier-transform infrared spectrometry, and nuclear magnetic resonance were used to determine the effects on the main reaction products. According to the TG\\/DTA results, carbonate precipitation fol- lowing carbonation is much more intense in

  3. Characteristics of activated carbon produced from biosludge and its use in wastewater post-treatment.

    PubMed

    Pikkov, L; Kallas, J; Rüütmann, T; Rikmann, E

    2001-02-01

    Experimental research into the bench-scale production of activated carbon from waste-activated sludge from water purification, sawdust, peat, and their mixtures, by carbonisation and activation was undertaken. The research work was carried out to determine possible methods of production of cheap activated carbon from local raw materials and to use it in water purification technology. Along with the samples produced, several commercial activated carbons (namely RB-1, F 100, CA (adsorbent from military gas masks), BAY (product of the USSR)) were tested to compare adsorption properties in the adsorption of phenols, xylidines, amines, methylene blue and molasses. It has been found that the activated carbon produced from waste biosludge was of higher quality than that produced from either sawdust or peat, and performed similarly to RB-1 and F100 in adsorption tests. It was also determined that the activated carbon produced from biosludge could possibly be used in the post-treatment of wastewater. Residual sludge from the biological treatment of the wastewater from the purification of oil-shale in the chemical processing industry could cover up to 80% of the need for activated carbon. Some of this activated carbon could be used in the post-treatment of the same water, adsorbing polyalcaline phenols from the initial content of 4 mg l-1 to the demanded level of 1 mg l-1. PMID:11349382

  4. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon content and the effective control of its key components. PMID:23487951

  5. Kinetics of phenanthrene desorption from activated carbons to water.

    PubMed

    Morelis, Simone; van Noort, Paul C M

    2008-05-01

    We determined the kinetics of phenanthrene desorption from three activated carbons to water using Tenax beads as an infinite sink for organic compounds in water. Desorption kinetic data very well fitted a biphasic kinetic model based on the presence of two different adsorption sites, viz. low-energy sites and high-energy sites. Rate constants for desorption to water from these two types of sites in the three activated carbons did not reveal a relation with activated carbon grain size. These rate constants were comparable to those for desorption of various organic compounds from hard carbon in various sediments. PMID:18321560

  6. Micro-scale investigation of carbonation process in partially serpentinized peridotites

    NASA Astrophysics Data System (ADS)

    Andreani, M.; Menez, B.; Delacour, A.; Pasini, V.; Auzende, A. L.; Brunelli, D.

    2012-04-01

    The carbonation of ultramafic rocks is, theoretically, the most efficient reaction to trap CO2 irreversibly in the form of solid carbonates, as predicted by equilibrium thermodynamic calculations. However, the success of industrial or natural carbonation in large ultramafic aquifers or oceanic ultramafic exposures does not only rely on the thermodynamic conditions of chemical reactions, but also on their feedback effects on the reactive surface area and on the local porosity and permeability. In addition, side processes like serpentinization, redox reactions, abiotic catalytic effects, and biological activity, can be expected in such complex natural system. Their occurrence and implications on carbon speciation and carbon transfers during hydrothermal alteration of oceanic peridotites have not been explored yet and requires detailed study of natural and/or experimental carbonation zones. We have combined petrographic and electron microscopy with SIMS, Raman and FTIR microspectroscopy on partially serpentinized peridotites drilled during the IODP leg 304 (30°N, MAR) in order to characterize the mechanisms of peridotite carbonation at the fluid-mineral interface and identify the associated speciation of carbon (inorganic and organic carbon occurrences). We present first results on zones located close to talc-tremolite sheared veins in holes 1309B and D. Associations of carbonates, porous phyllosilicates and oxides are observed in close vicinity of relict olivines that underwent a previous stage of serpentinization. The olivine-carbonate interface is nanoporous which facilitates mass transfer between fluid and mineral. The phyllosilicate identified as saponite results from the metasomatic replacement, during the carbonation stage, of previously formed serpentine. These observations do not favour reaction-induced cracking but rather a transfer-controlled process in an open system. Among the submicrometric dark clusters widely-distributed in saponite and in serpentine, vibrational microspectroscopy reveals the presence of various types of organic compounds that tend to be located close to micrometric sulphides grains. Those results underline the microscale variability of carbon speciation within hydrothermally altered peridotites. The association of reduced carbon phases with the carbonation texture suggests that CO2 conversion may not be limited to solid carbonate formation in natural systems and that biological activity and/or abiotic CO2 reduction, possibly catalyzed by Ni-rich sulphides, can occur contemporaneously. This complex association of reactions has to be unravelled further to determine the respective contribution of abiotic versus biological processes and integrate them in carbon transfers modelling through the oceanic lithosphere.

  7. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential. PMID:17363154

  8. Independently Controlled Carbon and Nitrogen Potential: A New Approach to Carbonitriding Process

    NASA Astrophysics Data System (ADS)

    Winter, Karl-Michael

    2013-07-01

    Recent research projects show that retained austenite, if stabilized by nitrogen, has a positive influence on the fatigue strength of work pieces. The combined diffusion profile of carbon and nitrogen applied in a carbonitriding process plays a major role, besides the process temperature. Yet today, only the carbon potential is somehow controlled and even this is not easy to achieve. This paper will present a new system able to measure and control both the carbon potential and the nitrogen potential independently. The knowledge of the activities of nitrogen and carbon in iron and the effect of alloying elements on such activities as well as the solubilities offers a way to apply the potentials on real steels.

  9. Heterogeneous mercury reaction chemistry on activated carbon.

    PubMed

    Wilcox, Jennifer; Sasmaz, Erdem; Kirchofer, Abby; Lee, Sang-Sup

    2011-04-01

    Experimental and theory-based investigations have been carried out on the oxidation and adsorption mechanism of mercury (Hg) on brominated activated carbon (AC). Air containing parts per billion concentrations of Hg was passed over a packed-bed reactor with varying sorbent materials at 140 and 30 degrees C. Through X-ray photoelectron spectroscopy surface characterization studies it was found that Hg adsorption is primarily associated with bromine (Br) on the surface, but that it may be possible for surface-bound oxygen (O) to play a role in determining the stability of adsorbed Hg. In addition to surface characterization experiments, the interaction of Hg with brominated AC was studied using plane-wave density functional theory. Various configurations of hydrogen, O, Br, and Hg on the zigzag edge sites of graphene were investigated, and although Hg-Br complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The Hg-carbon (C) bond length ranged from 2.26 to 2.34 A and is approximately 0.1 A shorter when O is a nearest-neighbor atom rather than a next-nearest neighbor, resulting in increased stability of the given configuration and overall tighter Hg-C binding. Through a density of states analysis, Hg was found to gain electron density in the six p-states after adsorption and was found to donate electron density from the five s-states, thereby leading to an oxidized surface-bound Hg complex. PMID:21516937

  10. Analysis of pressure drops in pleated activated carbon cloth filters

    Microsoft Academic Search

    Albert Subrenat; J. N. Baleo; Pierre Le Cloirec

    2000-01-01

    Activated carbon cloths show interesting properties for the treatment of air that is loaded with volatile organic compounds. The industrial implementation of these new adsorbent materials requires the design of new reactors. Cylindrical pleated filters made from activated carbon cloths and polypropylene layers are studied using a laboratory pilot unit. Experimental pressure drops are measured as a function of the

  11. The adsorption of sympathomimetic agents by activated carbon hemoperfusion.

    PubMed

    Horres, C R; Hill, J B; Ellis, F W

    1976-01-01

    Sympathomimetic agents with mixed and pure alpha and beta adrenergic activity are adsorbed by coconut shell activated carbon from blood, sufficiently rapidly to markedly reduce the activity of these agents. The results of this study suggest that the site of injection of sympathomimetic agents being considered for correcting hypotension during activated carbon hemoperfusion be selected to permit systemic mixing before circulation into the adsorption device. PMID:951861

  12. The effect of carbonization heating rate on charcoal and active carbon yields

    SciTech Connect

    Martin, C.E.; Purdy, K.R.; Dubayeh, S.A.; Kerr, C.P.; Garr, T.D. [Tennessee Technological Univ., Cookville, TN (United States)

    1991-12-31

    The thermal decomposition of white oak chips was investigated by pyrolyzing 1-k samples at atmospheric pressure in an electrically-heated batch reactor using five carbonization heating rates from 0.98 to 9.44{degrees}C/min, and a maximum temperature of 490{degrees}C. The resulting charcoals were then activated with steam in a second batch reactor. Iodine number was used as a measure of the sorptive capacity of the active carbon. Charcoal yields decreased as the carbonization heating rate increased, particularly for rates less than about VC/min. Active carbon yields decreased and iodine numbers increased as the severity of gasification increased. For carbonization heating rates greater than about 4{degrees}C/min, the active carbon yield for a given iodine number was essentially independent of the heating rate.

  13. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  14. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey. PMID:25704972

  15. What Carbon Sources Support Groundwater Microbial Activity in Riparian Forests?

    NASA Astrophysics Data System (ADS)

    Gurwick, N. P.; Groffman, P. M.; McCorkle, D. C.; Stolt, M. H.; Kellogg, D. Q.; Gold, A. J.

    2004-05-01

    A major question in riparian research is the source of energy to support subsurface microbial denitrification activity. The supply of microbially-available carbon frequently limits microbial activity in the subsurface. Therefore, identifying the relative importance of carbon sources in the riparian subsurface helps explain the sustainability and spatial heterogeneity of denitrification rates. We have investigated the importance of buried, carbon-rich soil horizons, deep roots and dissolved organic carbon as potential carbon sources to support groundwater denitrification in riparian forests in Rhode Island. We used field observations, laboratory incubations and in-situ experiments to evaluate these sources at four sites in different geomorphic settings. In particular, we measured the 14C-DIC signature and DIC concentration of ambient groundwater and groundwater that had been degassed, re-introduced into the well, and incubated in-situ. Buried horizons appear to be an important source of carbon in the subsurface, as shown by active respiration in laboratory incubations; greater microbial biomass in buried carbon-rich soils compared to surrounding carbon-poor soils; and the presence of very old carbon (>1,000 ybp) in DIC 225 cm beneath the surface. DIC collected from shallower wells showed no clear evidence of ancient carbon. Roots also appear to be important, creating hotspots of carbon availability and denitrification in the generally carbon poor subsurface matrix. Dissolved organic carbon did not stimulate denitrification in aquifer microcosms in the laboratory, suggesting that this was not an important carbon source for denitrification in our sites. Determining which carbon source is fueling denitrification has practical implications. Where buried horizons are the key source, surface management of the riparian zone will likely have little direct influence on groundwater denitrification. Where roots are the key source, changes in the plant community are likely to influence denitrification capacity in the subsurface.

  16. Studies relevant to the catalytic activation of carbon monoxide

    SciTech Connect

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  17. [Adsorption kinetics of reactive dyes on activated carbon fiber].

    PubMed

    Li, Ying; Yue, Qin-Yan; Gao, Bao-Yu; Yang, Jing; Zheng, Yan

    2007-11-01

    The adsorption capability of activated carbon fiber (ACF) to four reactive dyes (reactive brilliant red K-2BP, reactive turquoise blue KN-G, reactive golden yellow K-3RP, reactive black KN-B) in aqueous solution was studied, and adsorption mechanism was focused on from kinetics point of view. The results show that the equilibrium adsorbing capacity (q(e)) of each dye increases with the addition of initial concentration or temperature. On the same condition, the order of q(e) is: reactive brilliant red > reactive golden yellow > reactive black > reactive turquoise blue. The adsorption processes follow a pseudo second-order kinetic rate equation, and the steric structure, size and polarity of dyes are important influence factors to initial adsorption rate. The adsorption activation energy of each dye is low (16.42, 3.56, 5.21, 26.38 kJ x mol(-1) respectively), which indicates that it belongs to physics adsorption. PMID:18290496

  18. Optically active single-walled carbon nanotubes.

    PubMed

    Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro

    2007-06-01

    The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral 'gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs. PMID:18654308

  19. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, Steven D. (Idaho Falls, ID)

    1997-01-01

    A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.

  20. Carbon - the first frontier of information processing.

    PubMed

    Patel, Apoorva

    2002-06-01

    Information is often encoded as an aperiodic chain of building blocks. Modern digital computers use bits as the building blocks, but in general the choice of building blocks depends on the nature of the information to be encoded. What are the optimal building blocks to encode structural information? This can be analysed by substituting the operations of addition and multiplication of conventional arithmetic with translation and rotation. It is argued that at the molecular level, the best component for encoding discretized structural information is carbon. Living organisms discovered this billions of years ago, and used carbon as the back-bone for constructing proteins that function according to their structure. Structural analysis of polypeptide chains shows that an efficient and versatile structural language of 20 building blocks is needed to implement all the tasks carried out by proteins. Properties of amino acids indicate that the present triplet genetic code was preceded by a more primitive one, coding for 10 amino acids using two nucleotide bases. PMID:12089470

  1. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, S.D.

    1997-10-14

    A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.

  2. Processing and Characterization of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Can, Roberto J.; Grimsley, Brian W.; Czabaj, Michael W.; Siochi, Emilie J.; Hull, Brandon

    2014-01-01

    Recent advances in the synthesis of large-scale quantities of carbon nanotubes (CNT) have provided the opportunity to study the mechanical properties of polymer matrix composites using these novel materials as reinforcement. Nanocomp Technologies, Inc. currently supplies large sheets with dimensions up to 122 cm x 244 cm containing both single-wall and few-wall CNTs. The tubes are approximately 1 mm in length with diameters ranging from 8 to 12 nm. In the present study being conducted at NASA Langley Research Center (LaRC), single and multiple layers of CNT sheets were infused or coated with various polymer solutions that included commercial toughened-epoxies and bismaleimides, as well as a LaRC developed polyimide. The resulting CNT composites were tested in tension using a modified version of ASTM D882-12 to determine their strength and modulus values. The effects of solvent treatment and mechanical elongation/alignment of the CNT sheets on the tensile performance of the composite were determined. Thin composites (around 50 wt% CNT) fabricated from acetone condensed and elongated CNT sheets with either a BMI or polyimide resin solution exhibited specific tensile moduli approaching that of toughened epoxy/ IM7 carbon fiber unidirectional composites.

  3. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents.

    PubMed

    Rivera-Utrilla, José; Gómez-Pacheco, Carla V; Sánchez-Polo, Manuel; López-Peñalver, Jesús J; Ocampo-Pérez, Raúl

    2013-12-15

    The objective of this study was to analyze the behavior of activated carbons with different chemical and textural natures in the adsorption of three tetracyclines (TCs) (tetracycline, oxytetracycline, and chlortetracycline). We also assessed the influence of the solution pH and ionic strength on the adsorption of these compounds and studied their removal by the combined use of microorganisms and activated carbon (bioadsorption). Sludge-derived materials were also used to remove TC from water. The capacity of these materials to adsorb TC was very high and was much greater than that of commercial activated carbon. This elevated adsorption capacity (512.1-672.0 mg/g) is explained by the high tendency of TC to form complex ions with some of the metal ions present in these materials. The medium pH and presence of electrolytes considerably affected TCs adsorption on commercial activated carbon. These results indicate that electrostatic adsorbent-adsorbate interactions play an important role in TC adsorption processes when conducted at pH values that produce TC deprotonation. The presence of bacteria during the TCs adsorption process decreases their adsorption/bioadsorption on the commercial activated carbon, weakening interactions between the adsorbate and the microfilm formed on the carbon surface. The adsorptive capacity was considerably lower in dynamic versus static regime, attributable to problems of TC diffusion into carbon pores and the shorter contact time between adsorbate and adsorbent. PMID:24140483

  4. Clinical and radiographic study of activated carbon workers.

    PubMed Central

    Uragoda, C G

    1989-01-01

    Activated carbon is made in Sri Lanka by passing steam through charcoal made from coconut shells. The carbon does not contain free silica. Sixty six men who had worked in a factory making activated carbon for an average of 7.2 years had no more respiratory symptoms than a control group, and none showed radiological evidence of pneumoconiosis. There was no evidence that people exposed to charcoal and pure carbon for up to 11 years are at risk of developing pneumoconiosis. PMID:2763231

  5. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of ?-electron energy to investigate the role of ?-? electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects appear to be more pronounced with activated carbon materials, perhaps due to smaller pore sizes or larger adsorption surface areas in small pores.

  6. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  7. Chromium in amorphous hydrogenated carbon based thin films prepared in a PACVD process

    Microsoft Academic Search

    P. Gantenbein; S. Brunold; U. Frei; J. Geng; A. Schüler; P. Oelhafen

    1999-01-01

    The deposition of Cr-containing amorphous hydrogenated carbon (a-C:H) thin films on Si and Cu substrates in a radio frequency (rf) and middle frequency (mf) plasma activated chemical vapour deposition (PACVD) process is described. Negative DC bias voltage at the substrate and the composition of the process gas are two significant parameters in the deposition process. By applying a higher bias

  8. Preparation of activated carbon monolith by application of phenolic resins as carbon precursors

    NASA Astrophysics Data System (ADS)

    Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht

    2014-04-01

    In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.

  9. Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

  10. Application of biosorption for penicillin G removal: comparison with activated carbon

    Microsoft Academic Search

    Zümriye Aksu; Özlem Tunç

    2005-01-01

    Antibiotics are potential pollutants being responsible for disturbing the wastewater treatment processes and the microbial ecology of surface waters. The potential use of dried Rhizopus arrhizus and activated sludge as a substitute for powdered activated carbon for removal of penicillin G, one of the most widely used antibiotics, from aqueous solution was examined. The biosorption\\/adsorption of penicillin G on the

  11. Exploration of the Role of Heat Activation in Enhancing Serpentine Carbon Sequestration Reactions

    SciTech Connect

    McKelvy, M.J.; Chizmeshya, A.V.G.; Diefenbacher, J.; Bearat, H.; Wolf, G. (ASU)

    2005-03-29

    As compared with other candidate carbon sequestration technologies, mineral carbonation offers the unique advantage of permanent disposal via geologically stable and environmentally benign carbonates. The primary challenge is the development of an economically viable process. Enhancing feedstock carbonation reactivity is key. Heat activation dramatically enhances aqueous serpentine carbonation reactivity. Although the present process is too expensive to implement, the materials characteristics and mechanisms that enhance carbonation are of keen interest for further reducing cost. Simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) of the serpentine mineral lizardite was used to isolate a series of heat-activated materials as a function of residual hydroxide content at progressively higher temperatures. Their structure and composition are evaluated via TGA/DTA, X-ray powder diffraction (including phase analysis), and infrared analysis. The meta-serpentine materials that were observed to form ranged from those with longer range ordering, consistent with diffuse stage-2 like interlamellar order, to an amorphous component that preferentially forms at higher temperatures. The aqueous carbonation reaction process was investigated for representative materials via in situ synchrotron X-ray diffraction. Magnesite was observed to form directly at 15 MPa CO{sub 2} and at temperatures ranging from 100 to 125 C. Carbonation reactivity is generally correlated with the extent of meta-serpentine formation and structural disorder.

  12. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Applicability; description of the carbon black lamp process subcategory. 458.40 Section... EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.40...

  13. 40 CFR 458.20 - Applicability: description of the carbon black thermal process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Applicability: description of the carbon black thermal process subcategory. 458.20 ...EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.20...

  14. 40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Applicability; description of the carbon black furnace process subcategory. 458.10 ...EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Furnace Process Subcategory § 458.10...

  15. 40 CFR 458.30 - Applicability; description of the carbon black channel process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Applicability; description of the carbon black channel process subcategory. 458.30 ...EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.30...

  16. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Applicability; description of the carbon black lamp process subcategory. 458.40...CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory §...

  17. EVALUATION OF POWDERED ACTIVATED CARBON FOR REMOVAL OF TRACE ORGANICS AT NEW ORLEANS, LOUISIANA

    EPA Science Inventory

    This research effort studied the effect of powdered activated carbon on the removal of trace organics in the water treatment process at New Orleans, LA. The water treatment processes were modeled in bench scale reactors that allowed control of treatment variables. A series of exp...

  18. Pharmaceutical wastewater treatment by internal micro?electrolysis–coagulation, biological treatment and activated carbon adsorption

    Microsoft Academic Search

    Kangle Wang; Suiqing Liu; Qiang Zhang; Yiliang He

    2009-01-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro?electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro?electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was

  19. Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water

    Microsoft Academic Search

    Yusaku Miyake; Akiyoshi Sakoda; Hiroaki Yamanashi; Hirotaka Kaneda; Motoyuki Suzuki

    2003-01-01

    Ground water contaminated with trichloroethylene (TCE) used in electronic, electric, dry cleaning and the like industries is often treated by air-stripping. In this treatment process, TCE in its vapor form is stripped from ground water by air stream and sometimes emitted into the atmosphere without any additional treatments. Activated carbon adsorption is one of the practical and useful processes for

  20. Numerical simulation of isothermal chemical vapor infiltration process in fabrication of carbon-carbon composites by finite element method

    Microsoft Academic Search

    Kezhi Li; Hejun Li; Kaiyu Jiang; Xianghui Hou

    2000-01-01

    The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long\\u000a processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material.\\u000a Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict\\u000a the process parameters, density, porosity, etc. According

  1. Mesopore control of high surface area NaOH-activated carbon.

    PubMed

    Tseng, Ru-Ling

    2006-11-15

    Activated carbon with BET surface areas in a narrow range from 2318 to 2474 m2/g was made by soaking the char made from corncob in a concentrated NaOH solution at NaOH/char ratios from 3 to 6; the mesopore volumes of the activated carbon were significantly changed from 21 to 58%. The relationships between pore properties (Sp, Vpore, Vmicro/Vpore, Dp) and NaOH dosage were investigated. Comparisons between the methods of NaOH and KOH activation revealed that NaOH activation can suitably control the mesopore specific volume of the activated carbon. Elemental analysis revealed that the H/C and O/C values of the activated carbons of NaOH/char ratios from 3 to 6 were significantly lower. SEM observation of surface hole variation of the activated carbon ascertained that the reaction process was inner pore etching. Based on the above three measurements and experimental investigations, the assumption made by previous researchers, namely that NaOH and KOH produce similar results, was challenged. Furthermore, the adsorption kinetics was used to investigate the adsorption rate of an Elovich equation to determine the relationships between the adsorption behavior on larger molecules (dyes) and smaller molecules (phenols) and the pore structure of the activated carbon. PMID:16997316

  2. Resistance of alkali-activated slag concrete to carbonation

    Microsoft Academic Search

    T Bakharev; J. G Sanjayan; Y.-B Cheng

    2001-01-01

    This paper presents an investigation into durability of alkali-activated slag (AAS) concrete exposed to carbonation. Two tests were used which simulated exposure of AAS concrete to carbonated solution and to atmosphere high in carbon dioxide. These tests involved immersion of the concrete in 0.352 M sodium bicarbonate solution, and exposure to atmosphere with 10–20% of CO2 at 70% relative humidity.

  3. 77 FR 33420 - Certain Activated Carbon From the People's Republic of China: Final Results of Expedited Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ...high temperature steam (or CO 2 gas) activated process is a direct result of oxidation of a portion of the solid carbon atoms in the raw material, converting them into a gaseous form of carbon. The scope of the order covers all forms of activated...

  4. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  5. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...monitor the injection rate of activated carbon? 62.15275 Section 62.15275 ...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  6. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  7. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...monitor the injection rate of activated carbon? 62.15275 Section 62.15275 ...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  8. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...monitor the injection rate of activated carbon? 62.15275 Section 62.15275 ...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  9. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  10. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  11. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  12. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  13. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  14. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  15. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...monitor the injection rate of activated carbon? 62.15275 Section 62.15275 ...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  16. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection...monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or...

  17. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  18. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  19. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Microsoft Academic Search

    K. Leitner; A. Lerf; M. Winter; J. O. Besenhard; S. Villar-Rodil; F. Suárez-García; A. Martínez-Alonso; J. M. D. Tascón

    2006-01-01

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300–2800m2g?1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated

  20. Characterization of activated carbon prepared from chicken waste and coal

    SciTech Connect

    Yan Zhang; Hong Cui; Riko Ozao; Yan Cao; Bobby I.-T. Chen; Chia-Wei Wang; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2007-12-15

    Activated carbons (ACs) were prepared from chicken waste (CW) and coal (E-coal) blended at the ratios of 100:0, 80:20, 50:50, 20:80, and 0:100. The process included carbonization in flowing gaseous nitrogen (300 mL min{sup -1}) at ca. 430{sup o}C for 60 min and successive steam activation (0.1 mL min{sup -1} water injection with a flow of N{sub 2} at 100 mL min{sup -1}) at 650{sup o}C for 30 min. Chicken waste is low in sulfur content but is high in volatile matter (about 55 wt %), and ACs with higher specific surface area were more successfully obtained by mixing with coal. The specific surface area of the CW/Coal blend AC can be estimated by SSA{sub BET} = -65.8x{sup 2} + 158x + 168, where SSA{sub BET} is the specific surface area in m{sup 2} g{sup -1} as determined by the BET method using CO{sub 2} as the adsorbent, where x is the coal fraction by weight in the CW/coal blend ranging from 0.0 to 1.0 (e.g., x = 0.0 signifies the blend contains no coal and x = 1.0 signifies the blend consists of 100% coal). 26 refs., 7 figs., 3 tabs.

  1. Influence of the precursor metamorphism degree on preparation of nitrogen-enriched activated carbons by ammoxidation and chemical activation of coals

    SciTech Connect

    Piotr Nowicki; Robert Pietrzak; Helena Wachowska [Adam Mickiewicz University, Pozna (Poland). Laboratory of Coal Chemistry and Technology

    2009-04-15

    The paper presents results of a study on obtaining N-enriched active carbons from four hard coals with different degree of metamorphism. The starting materials were carbonized, activated with KOH, and ammoxidized by a mixture of ammonia and air at the ratio 1:3 at 300 and 350{sup o}C, at each stage of the active carbon production. The efficiency of ammoxidation was found to depend on the degree of metamorphism of the precursor, the stage of processing at which ammoxidation is performed, and the temperature of this process. Ammoxidation of the active carbon led to a decrease in their surface area and pore volume, whereas that performed both at the stage of the precursor and the carbonizate brought improvement of textural parameters of the active carbons obtained. The sequence of the carbonization, activation, and ammoxidation processes had a significant effect on the acid-base character of the active carbon samples obtained. The majority of the active carbons modified at the stage of precursor and carbonizate showed considerable prevalence of surface acidic groups, whereas the samples ammoxidized after activation showed an intermediate acidic-basic character of the surface. 25 refs., 4 figs., 9 tabs.

  2. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 4. CARBON BLACK INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States Entries for each industry are in consistent format and form separate chapters of the study. The carbon black ...

  3. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon.

    PubMed

    Li, Laisheng; Ye, Weiying; Zhang, Qiuyun; Sun, Fengqiang; Lu, Ping; Li, Xukai

    2009-10-15

    Cerium supported on activated carbon (Ce/AC), which was prepared by dipping method, was employed to degrade dimethyl phthalate (DMP) in water. The mineral matter present in the activated carbon positively contributes to its activity to enhance DMP ozonation process. A higher dipping Ce(NO(3))(3) concentration and calcination process increase its microporous volume and surface area, and decreases its exterior surface area. The catalytic activity reaches optimal when 0.2% (w/w) cerium is deposited on activated carbon. Ce/AC catalyst was characterized by XRD, SEM and BET. The presence of either activated carbon or Ce/AC catalyst considerably improves their degradation and mineralization in the ozonation of DMP. During the ozonation (50mg/h ozone flow rate) of a 30 mg/L DMP (initial pH 5.0) with the presence of Ce/AC catalyst, TOC removal rate reaches 68% at 60 min oxidation time, 48% using activated carbon as catalyst, only 22% with ozonation alone. The presence of tert-butanol (a well known OH radical scavenger) strongly inhibits DMP degradation by activated carbon or Ce/AC catalytic ozonation. TOC removal rate follows the second-order kinetics model well. In the ozonation of DMP with 50mg/h ozone flow rate, its mineralization rate constant with the presence of Ce/AC catalyst is 2.5 times higher than that of activated carbon, 7.5 times higher than that of O(3) alone. Ce/AC catalyst shows the better catalytic activity and stability based on 780 min sequential reaction in the ozonation of DMP. Ce/AC was a promising catalyst for ozonizing organic pollutants in the aqueous solution. PMID:19467775

  4. Production of energy and activated carbon from agri-residue: sunflower seed example.

    PubMed

    Donaldson, Adam A; Kadakia, Parag; Gupta, Murlidhar; Zhang, Zisheng

    2012-09-01

    In this work, a biomass processing facility is designed and simulated for the annual conversion of 77 ktons of sunflower residue into electricity and activated carbon. The residue is initially pyrolized to produce low hydrocarbon gases (35 wt%), bio-oils (30 wt%), and char (35 wt%). The gases and bio-oils are separated and combusted to generate high pressure steam, electricity, and steam for conversion of char into activated carbon. Assuming 35% of the char's mass is lost during activation, the proposed process produces 15.6 ktons activated carbon and 5.5 ktons ash annually, while generating 10.2 MW of electricity. Economic analysis of the proposed facility yielded capital costs of $31.64 million, annual operating costs of $31.58 million, and a yearly gross revenue of $38.9 million. A discounted payback period of 6.1 years was determined for the current design, extending to 10 years if the facility were operated at 75% capacity. While the proposed process appears to be economically viable, profitability is highly sensitive to the selling price of electricity and activated carbon, highlighting the need for additional research into the pyrolysis reactor design, char/ash separation techniques, and the quality of activated carbon obtained using char from sunflower residue pyrolysis. PMID:21938425

  5. DESIGN AND CONSTRUCTION OF A MOBILE ACTIVATED CARBON REGENERATOR SYSTEM

    EPA Science Inventory

    Activated carbon adsorption has become a standard procedure for the cleanup of contaminated water streams. To facilitate such cleanup at hazardous waste and spill sites, mobile carbon adsorption units have been constructed and are now in use. Their primary drawback is the logisti...

  6. HARDWOOD-BASED GRANULAR ACTIVATED CARBON FOR METALS REMEDIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Granular activated carbon is usually the adsorbent of choice for removing organic pollutants from air and water waste streams. Its ability to remove metal ions from aqueous media is considered secondary to its ability to remove organics. Only recently was a coal-based, commercial carbon (Minotaur, C...

  7. HARDWOOD-BASED GRANULAR ACTIVATED CARBON FOR METALS REMEDIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Granular activated carbon is usually the adsorbent of choice for removing organic pollutants from air and water waste streams. Its ability to remove metal ions from aqueous media is considered secondary to its ability to remove organics. Only recently was a coal-based, commercial carbon (Minotaur) m...

  8. Carbon Nanotubes and Semiconductor Nanowires for Active Matrix Backplanes.

    E-print Network

    Paris-Sud XI, Université de

    Carbon Nanotubes and Semiconductor Nanowires for Active Matrix Backplanes. D. Pribat, C. S and P. Legagneux Thales Research & Technology, 91767 Palaiseau, France ABSTRACT Carbon nanotubes (CNTs nanotubes (CNTs) and semiconductor nanowires (essentially Si and Ge). We will also emphasise the possible

  9. HARDWOOD-BASED GRANULAR ACTIVATED CARBON FOR METALS REMEDIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Granular activated carbon is usually the adsorbent of choice for removing organic pollutants from air and water waste streams. Its ability to remove metal ions from aqueous media is considered secondary to its ability to remove organics. Only recently was a coal-based, commerical carbon (Minotaur,...

  10. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory

    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  11. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOEpatents

    Hooper, R.W.; Pekala, R.W.

    1987-04-30

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  12. Adsorption of carbon monoxide on activated carbon impregnated with metal halide

    Microsoft Academic Search

    Hajime Tamon; Kenji Kitamura; Morio Okazaki

    1996-01-01

    Carbon monoxide (CO) removal is important in the purification of ammonia-synthesis gas produced by the partial oxidation of hydrocarbons, the water-gas reaction, or the steam reforming of hydrocarbons. A coke-oven gas, a blast-furnace gas, and a converter gas also contain 8--89% CO. Activated carbon was impregnated with a metal halide, and adsorption and desorption characteristics of CO on the carbon

  13. Process, structure and electrochemical properties of carbon nanotube containing films and fibers

    NASA Astrophysics Data System (ADS)

    Jagannathan, Sudhakar

    The objective of this thesis is to study the effect of process conditions on structure and electrochemical properties of polyacrylonitrile (PAN)/carbon nanotube (CNT) composite film based electrodes developed for electrochemical capacitors. The process parameters like activation temperature, CNT loading in the composite films are varied to determine optimum process conditions for physical (CO2) and chemical (KOH) activation methods. Films prepared by solution casting, fibers spun by solution spinning, and gel spinning and buckypapers made from SWNT and MWNT were used in this study. The PAN/CNT precursors are stabilized in air, carbonized in inert atmosphere (argon), and activated by physical (CO2) and chemical (KOH) methods. The physical activation process is carried out by heat treating the carbon precursors in CO2 atmosphere at activation temperatures. In the chemical activation process, stabilized carbon precursors are immersed in aqueous solutions of activating media (KOH), dried, and subsequently heat treated in an inert atmosphere at the activation temperature. The structure and morphology are probed using scanning electron microscopy, x-ray diffraction, and fourier transform infrared spectroscopy. The specific capacitance, power and energy density of the activated electrodes are evaluated with aqueous electrolytes (KOH) as well as organic electrolyte (ionic liquid in acetonitrile) in Cell Test. The surface area and pore size distribution of the activated composite electrodes are evaluated using nitrogen absorption. Specific capacitance dependence on factors such as surface area and pore size distribution are studied. Carbon nanotube containing electrode is developed with high specific capacitance, energy density and power density. The process conditions for physical and chemical activation processes were varied and conditions for achieving superior electrochemical properties, surface area and controlled pore size were determined. A maximum specific capacitance of 300 F/g in KOH electrolyte and maximum energy density of 22 wh/kg in ionic liquid has been achieved. BET surface areas in excess of 2500 m2/g with controlled pore sizes in 1--5 nm range has been attained in this work. The specific capacitances of physically and chemically activated samples have direct positive correlation to micropore volume.

  14. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  15. Iron-carbon compacts and process for making them

    DOEpatents

    Sheinberg, Haskell (Santa Fe, NM)

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  16. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    PubMed

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget. PMID:25146289

  17. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

  18. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Rush, G.E.; Dahlin, Cheryl L.; Collins, W. Keith

    2002-05-01

    Direct mineral carbonation was investigated as a process to convert gaseous CO[2] into a geologically stable final form. The process utilizes a slurry of water, with bicarbonate and salt additions, mixed with a mineral reactant, such as olivine (Mg[2]SiO[4]) or serpentine [Mg[3]Si[2]O[5](OH)[4

  19. Quality of poultry litter-derived granular activated carbon.

    PubMed

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment. PMID:19703765

  20. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, J.; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  1. Analysis of structure and properties of active carbons and their copolymeric precursors

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Gawdzik, B.; Puziy, A. M.; Poddubnaya, O. I.

    2010-06-01

    The relations between chemical structures of BM-DVB copolymers obtained with various monomer molar ratios and their carbonization products were studied. Three porous copolymers 1:4, 1:1, and 4:1 of BM to DVB were the starting materials for preparation of active carbons. Two activation agents were employed: air and phosphoric acid. The carbonization process was performed in the same way in these two cases. To characterize the obtained materials FTIR spectroscopy, thermal and elemental analyses were applied. Porous structure parameters were obtained by means of nitrogen sorption. The results proved that differences in the molar ratio of monomers used in the syntheses of polymeric precursor play a key role for structure and properties of copolymers but have rather small influence on properties of the obtained carbons. Preliminary treatment is more effective during the activation process. The carbons obtained by activation with phosphoric acid are microporous and have well developed porous structures. The air activated carbons are mesoporous with specific surface areas similar to those of polymeric precursors.

  2. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  3. GRANULAR ACTIVATED CARBON ADSORPTION AND INFRARED REACTIVATION: A CASE STUDY

    EPA Science Inventory

    A study evaluated the effectiveness and cost of removing trace organic contaminants and surrogates from drinking water by granular activated carbon (GAC) adsorption. The effect of multiple reactivations of spent GAC was also evaluated. Results indicated that reactivated GAC eff...

  4. A sustainable route for the preparation of activated carbon and silica from rice husk ash.

    PubMed

    Liu, Yan; Guo, Yupeng; Zhu, Yanchao; An, Dongmin; Gao, Wei; Wang, Zhuo; Ma, Yuejia; Wang, Zichen

    2011-02-28

    An environmentally friendly and economically effective process to produce silica and activated carbon form rice husk ask simultaneously has been developed in this study. An extraction yield of silica of 72-98% was obtained and the particle size was 40-50 nm. The microstructures of the as-obtained silica powders were characterized by X-ray diffraction (XRD) and infrared spectra (IR). The surface area, iodine number and capacitance value of activated carbon could achieve 570 m(2)/g, 1708 mg/g, 180 F/g, respectively. In the whole synthetic procedure, the wastewater and the carbon dioxide were collected and reutilized. The recovery rate of sodium carbonate was achieved 92.25%. The process is inexpensive, sustainable, environmentally friendly and suitable for large-scale production. PMID:21194835

  5. Mechanistic Investigation of Catalytic Carbon-Carbon Bond Activation and Formation by Platinum and Palladium Phosphine

    E-print Network

    Jones, William D.

    )3 or 1 converts biphenylene to tetraphenylene. The intermediates in the catalytic cycle have beenMechanistic Investigation of Catalytic Carbon-Carbon Bond Activation and Formation by Platinum(IV) intermediate. 2 reductively eliminates tetraphenylene at 115 °C. At 120 °C the reaction is catalytic; Pt(PEt3

  6. Preparation and characterisation of demineralised tyre derived activated carbon

    Microsoft Academic Search

    O. S. Chan; W. H. Cheung; G. McKay

    2011-01-01

    The effect of demineralisation and activation conditions on the physical and chemical properties of activated carbon adsorbents produced from waste tyre char has been investigated. Experimental data showed that hydrochloric acid treatment prior to the activation is able to remove certain mineral contents such as zinc, calcium, sodium and others from the tyre char. The removal of some of the

  7. Active Processes in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; McEwen, A.; Dundas, C.; Hamilton, C.; Mattson, S.

    2014-07-01

    The enigmatic Valles Marineris (VM) trough system shows abundant evidence for mass wasting and aeolian phenomena. Herein, we describe the diverse near-surface and atmospheric processes that indicate VM to be one of the most dynamic regions on Mars.

  8. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

  9. More About Arc-Welding Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  10. Characterization of activated carbons using liquid phase adsorption

    Microsoft Academic Search

    S. Ismadji; S. K. Bhatia

    2001-01-01

    A modification of the Dubinin–Radushkevich pore filling model by incorporation of the repulsive contribution to the pore potential, and of bulk non-ideality, is proposed in this paper for characterization of activated carbon using liquid phase adsorption. For this purpose experiments have been performed using ethyl propionate, ethyl butyrate, and ethyl isovalerate as adsorbates and the microporous–mesoporous activated carbons Filtrasorb 400,

  11. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  12. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Microsoft Academic Search

    H. Kucha; J. Raith

    2009-01-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted

  13. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon

    Microsoft Academic Search

    Phillip Pendleton; Sophie Hua Wu

    2003-01-01

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective

  14. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  15. Hydrothermal carbonization: process water characterization and effects of water recirculation.

    PubMed

    Stemann, Jan; Putschew, Anke; Ziegler, Felix

    2013-09-01

    Poplar wood chips were treated hydrothermally and the increase of process efficiency by water recirculation was examined. About 15% of the carbon in the biomass was dissolved in the liquid phase when biomass was treated in de-ionized water at 220 °C for 4 h. The dissolved organic matter contained oxygen and was partly aerobically biodegradable. About 30-50% of the total organic carbon originated from organic acids. A polar and aromatic fraction was extracted and a major portion of the organic load was of higher molecular weight. By process water recirculation organic acids in the liquid phase concentrated and catalyzed dehydration reactions. As a consequence, functional groups in hydrothermally synthesized coal declined and dewaterability was enhanced. Recirculated reactive substances polymerized and formed additional solid substance. As a result, carbon and energetic yields of the produced coal rose to 84% and 82%, respectively. PMID:23792664

  16. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  17. DETERMINATION OF DIOXIN LEVELS IN CARBON REACTIVATION PROCESS EFFLUENT STREAMS

    EPA Science Inventory

    A preliminary study was performed to evaluate the potential formation and persistence of tetrachlorodibenzo-p-dioxins (TCDDs) and tetrachlorodibenzo furans (TCDFs) in the effluent streams of a fluidized bed system used for thermal reactivation of granular activated carbon (GAC) t...

  18. DISCOVERY AND ELIMINATION OF DIOXINS FROM A CARBON REACTIVATION PROCESS

    EPA Science Inventory

    In a project done to ensure an environmentally acceptable granular activated carbon (GAC) adsorption and reactivation system--to be sure that chlorinated dibenzo-p-dioxins (CDD's) and chlorinated dibenzo furans (CDF's) and combustion would not present problems--results from a GAC...

  19. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke.

    PubMed

    Li, Xukai; Zhang, Qiuyun; Tang, Lili; Lu, Ping; Sun, Fengqiang; Li, Laisheng

    2009-04-15

    The aim of this research was to investigate catalytic activity of petroleum coke, activated carbon (AC) prepared from this material, Ni supported catalyst on activated carbon (Ni/AC) in the ozonation of aqueous phase p-chlorobenzoic acid (p-CBA). Activated carbon and Ni/AC catalyst were characterized by XRD and SEM. The presence of petroleum coke did not improve the degradation of p-CBA compared to ozonation alone, but it was advantageous for p-CBA mineralization (total organic carbon, TOC, reduction), indicating the generation of highly oxidant species (*OH) in the medium. The presence of either activated carbon or Ni/AC considerably improves TOC removal during p-CBA ozonation. Ni/AC catalyst shows the better catalytic activity and stability based on five repeated tests during p-CBA ozonation. During the ozonation (50 mg/h ozone flow rate) of a 10 mg/L p-CBA (pH 4.31), it can be more mineralized in the presence of Ni/AC catalyst (5.0 g/L), TOC removal rate is over 60% in 60 min, 43% using activated carbon as catalyst, only 30% with ozonation alone. PMID:18667273

  20. Micromechanism of sulfurizing activated carbon and its ability to adsorb mercury

    NASA Astrophysics Data System (ADS)

    Wu, Guofang; Xu, Minren; Liu, Qingcai; Yang, Jian; Ma, Dongran; Lu, Cunfang; Lan, Yuanpei

    2013-11-01

    To eliminate mercury from coal-fired flue gas, sulfurization of carbons has been found to be the most inexpensive approach to solve the problem of environment contamination by mercury. This study focuses on improving the adsorption capacity of activate carbon loaded with elemental sulfur as an active phase and further use in the removal of mercury vapors from fuel gas. In this paper, equipment such as the scanning electron microscope, specific surface area test machine and fluorescence spectrophotometer are employed to study the ability of the S-loaded activated carbon. The results show that unmodified activate carbon has smooth hole surface and uneven distributed hole size. Pore walls of activate carbon modified became rougher and the hole size distribution is asymmetrical. Sulfur is uniformly distributed and is mainly bonded on the surface of the skeleton of activate carbon. In addition, a small amount of granular sulfur was loaded on the surface of the pore walls. Higher temperature creates smaller pore size and larger microporous volume. Improving the process temperature is conducive to the development of micropore and the distribution of sulfur, and a larger amount of small molecular weight sulfur are created, which is helpful in the removal of HgO through chemical adsorption. The optimum modification temperature and holding time is 550 °C and 60 min, which creates the adsorbents of the max absorption capability of 1227.5 ?g Hg/g.

  1. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.

    PubMed

    Wu, Feng-Chin; Tseng, Ru-Ling

    2008-04-15

    In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance. PMID:17826897

  2. Detection of low concentration oxygen containing functional groups on activated carbon fiber surfaces through fluorescent labeling

    E-print Network

    Borguet, Eric

    carbon, activated carbon fibers and carbon nano- tubes, are based on the presence of oxygen containingDetection of low concentration oxygen containing functional groups on activated carbon fiber of surface functional groups (OH, COOH and CHO) on activated carbon fiber surfaces. The chromophores were

  3. 76 FR 58246 - Certain Activated Carbon From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...Chemical Co., Ltd.; Huaiyushan Activated Carbon Group; Huatai Activated Carbon; Huzhou Zhonglin Activated Carbon; Inner Mongolia Taixi Coal Chemical Industry Limited Company; Itigi Corp. Ltd.; J&D Activated Carbon Filter Co. Ltd.; Jiangle...

  4. ORGANIC CARBON REMOVAL BY ADVANCED WASTE WATER TREATMENT PROCESSES

    EPA Science Inventory

    Fourteen physical-chemical processes singularly or in combination were evaluated for their ability to remove dissolved organic carbon in the effluent of a wastewater reclamation facility treating secondary effluent. The objective of the study was to produce a product water with o...

  5. Inner-tubular physicochemical processes of carbon nanotubes

    Microsoft Academic Search

    YANG Quanhong; L I Lixiang; CHENG Huiming

    2003-01-01

    Nanosized inner cavities of carbon nanotubes (CNTs) afford quasi-one-dimensional (1D) confined space, in which materials adsorbed or filled are of reactivity greatly different from the materials adsorbed on a planar surface and quite a number of curious physicochemical processes will possibly occur. In other words, 1D CNT nanochannels may serve as \\

  6. Regression analysis study on the carbon dioxide capture process

    Microsoft Academic Search

    Q. Zhou; Christine W. Chan; P. Tontiwachiwuthikul

    2008-01-01

    Research on amine-based carbon dioxide (CO) capture has mainly focused on improving the effectiveness and efficiency of the CO capture process. The objective of our work is to explore relationships among key parameters that affect the CO production rate. From a survey of relevant literature, we observed that the significant parameters influencing the CO production rate include the reboiler heat

  7. Process for reducing Ramsbottom Carbon Test of long residues

    SciTech Connect

    Eilers, J.; Stork, W.H.J.

    1984-07-17

    Process for the preparation of a heavy oil with a low Ramsbottom Carbon Test (RCT) from a long residue by (a) catalytic hydrotreatment for RCT reduction at such severity that the C/sub 4/- gas production per percentage RCT reduction is kept between defined limits, followed by (b) solvent deasphalting of the (vacuum or atmospheric) distillation residue of the hydrotreated product.

  8. Air Pollution Control in the Carbon Baking Process

    Microsoft Academic Search

    Klaus H. Hemsath; Arvind C. Thekdi

    1974-01-01

    Carbon baking process involves evolution of fumes containing hydrocarbons and soot particles which cannot be discharged directly into the atmosphere. An incinerator can be used to clean these fumes. However, length of the baking cycle, nature of the fumes and variations in fume volume and temperature may result in excessive auxiliary fuel usage and inefficient incineration, if the incinerator is

  9. The activated sludge process: Fundamentals of operation

    Microsoft Academic Search

    R. Junkins; K. J. Deeny; T. H. Eckhoff

    1983-01-01

    The procedures given here - based on extensive and intensive experience. Background information on process mechanics is followed by detailed consideration of control and troubleshooting practices. Contents: PREFACE AND INTRODUCTION; PROCESS MECHANICS; Basic Mechanism of Activated Sludge Systems; Formation of Activated Sludge; Growth of Microorganisms; Classifications of Microorganisms: Type, Environment, Age; Solids Separation and Return; FACTORS AFFECTING OPERATION; Raw Wastewater

  10. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (?-hemolysin (?-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  11. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (?-hemolysin (?-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  12. Semisolid processing of ultrahigh-carbon steel castings

    Microsoft Academic Search

    Mohamed Ramadan; Mitsuharu Takita; Hiroyuki Nomura; Nader El-Bagoury

    2006-01-01

    Semi-solid processing using cooling plate technique was developed to produce a high quality ultrahigh-carbon steel (UHCS) components. Microstructure and mechanical properties were investigated as a function of fraction of solid. The microstructure of UHCS was improved using semi-solid processing. A unique homogenized microstructure comprised of fine particles grain size (200–100?m) was obtained which totally differs from that obtained by ordinary

  13. Electroadsorption of Arsenic from natural water in granular activated carbon

    NASA Astrophysics Data System (ADS)

    Beralus, Jean-Mackson; Ruiz Rosas, Ramiro; Cazorla-Amoros, Diego; Morallon, Emilia

    2014-11-01

    The adsorption and electroadsorption of arsenic from a natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as adsorbent and Pt/Ti and graphite as electrodes. A significant reduction of the arsenic concentration is achieved when current is imposed between the electrodes, especially when the activated carbon was located in the vicinity of the anode. This enhancement can be explained in terms of the presence of electrostatic interactions between the polarized carbon surface and the arsenic ions, and changes in the distribution of most stable species of arsenic in solution due to As(III) to As(V) oxidation. In summary, electrochemical adsorption on a filter press cell can be used for enhancement the arsenic remediation with activated carbon in the treatment of a real groundwater.

  14. carbon cycle

    NSDL National Science Digital Library

    Maryland Virtual High School

    Life on earth is based on carbon. Living things acquire carbon from their environment - from air, water, soil, and rock and from other living things - through processes such as photosynthesis, respiration and decomposition. The carbon cycle model is a representation of the movement of carbon from sources to sinks through chemical and physical transfers. The carbon cycle activity allows students to see the effect of fossil fuel burning on the carbon cycle.

  15. Annealing effect on the particle size and chemical composition of activated carbon obtained from vacuum furnace of teak sawdust

    NASA Astrophysics Data System (ADS)

    Armynah, B.; Tahir, D.; Jaya, N.

    2014-09-01

    Activated carbon was produced from sawdust by using physical method in a high temperature vacuum furnace without additional chemical. Fast pyrolysis process was carried out prior in fluidized a bed furnace to produce char before activation process. Experiments were conducted to investigate the influence of various process parameters such as particle size, activation temperature and activation time on the quality of the activated carbon. In addition, the chemical composition studies were done by using x-ray fluorescence (XRF) spectroscopy. The crystallite sizes were calculated by using Scherer equation based on x-ray diffraction (XRD) spectroscopy data. The pyrolysis temperature and time were varied from 600°C to 900°C and from 3 hours to 6 hours, respectively. The particle size of activated carbon was increase with increasing temperature. The composition and crystallite size of the prepared activated carbon was compared with the non-activated carbon. The results indicated that the teak sawdust carbon could be employed as a low cost alternative to produce commercial activated carbon.

  16. Annealing effect on the particle size and chemical composition of activated carbon obtained from vacuum furnace of teak sawdust

    SciTech Connect

    Armynah, B., E-mail: dtahir@fmipa.unhas.ac.id; Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Jaya, N., E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    Activated carbon was produced from sawdust by using physical method in a high temperature vacuum furnace without additional chemical. Fast pyrolysis process was carried out prior in fluidized a bed furnace to produce char before activation process. Experiments were conducted to investigate the influence of various process parameters such as particle size, activation temperature and activation time on the quality of the activated carbon. In addition, the chemical composition studies were done by using x-ray fluorescence (XRF) spectroscopy. The crystallite sizes were calculated by using Scherer equation based on x-ray diffraction (XRD) spectroscopy data. The pyrolysis temperature and time were varied from 600°C to 900°C and from 3 hours to 6 hours, respectively. The particle size of activated carbon was increase with increasing temperature. The composition and crystallite size of the prepared activated carbon was compared with the non-activated carbon. The results indicated that the teak sawdust carbon could be employed as a low cost alternative to produce commercial activated carbon.

  17. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area. PMID:21936696

  18. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration. PMID:25176302

  19. Carbon Monoxide Activates Autophagy via Mitochondrial Reactive Oxygen Species Formation

    PubMed Central

    Lee, Seon-Jin; Ryter, Stefan W.; Xu, Jin-Fu; Nakahira, Kiichi; Kim, Hong Pyo; Kim, Young Sam

    2011-01-01

    Autophagy, an autodigestive process that degrades cellular organelles and protein, plays an important role in maintaining cellular homeostasis during environmental stress. Carbon monoxide (CO), a toxic gas and candidate therapeutic molecule, confers cytoprotection in animal models of acute lung injury. The mechanisms underlying CO-dependent lung cell protection and the role of autophagy in this process remain unclear. Here, we demonstrate that CO exposure time-dependently increased the expression and activation of the autophagic protein, microtubule-associated protein–1 light chain-3B (LC3B) in mouse lung, and in cultured human alveolar (A549) or human bronchial epithelial cells. Furthermore, CO increased autophagosome formation in epithelial cells by electron microscopy and green fluorescent protein (GFP)-LC3 puncta assays. Recent studies indicate that reactive oxygen species (ROS) play an important role in the activation of autophagy. CO up-regulated mitochondria-dependent generation of ROS in epithelial cells, as assayed by MitoSOX fluorescence. Furthermore, CO-dependent induction of LC3B expression was inhibited by N-acetyl-L-cysteine and the mitochondria-targeting antioxidant, Mito-TEMPO. These data suggest that CO promotes the autophagic process through mitochondrial ROS generation. We investigated the relationships between autophagic proteins and CO-dependent cytoprotection using a model of hyperoxic stress. CO protected against hyperoxia-induced cell death, and inhibited hyperoxia-associated ROS production. The ability of CO to protect against hyperoxia-induced cell death and caspase-3 activation was compromised in epithelial cells infected with LC3B-small interfering (si)RNA, indicating a role for autophagic proteins. These studies uncover a new mechanism for the protective action of CO, in support of potential therapeutic application of this gas. PMID:21441382

  20. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  1. Moisture processes accompanying convective activity

    NASA Technical Reports Server (NTRS)

    Sienkiewicz, M. E.; Scoggins, J. R.

    1982-01-01

    A moisture budget analysis was performed on data collected during the AVE 7 (May 2 to 3, 1978) and AVE-SESAME1 (April 10 to 11, 1979) experiments. Local rates-of-change of moisture were compared with average moisture divergence in the same time period. Results were presented as contoured plots in the horizontal and as vertical cross sections. These results were used to develop models of the distribution of moisture processes in the vicinity of convective areas in two layers representing lower and middle tropospheric conditions. Good correspondence was found between the residual term of the moisture budget and actual precipitation.

  2. Brazilian natural fiber (jute) as raw material for activated carbon production.

    PubMed

    Rombaldo, Carla F S; Lisboa, Antonio C L; Mendez, Manoel O A; Coutinho, Aparecido R

    2014-12-01

    Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss. PMID:25590747

  3. TOXIC SUBSTANCE REMOVAL IN ACTIVATED SLUDGE AND PAC (POWDERED ACTIVATED CARBON) TREATMENT SYSTEMS

    EPA Science Inventory

    The effectiveness of adding powdered activated carbon to activated sludge systems was evaluated for enhanced removal of specific toxic organic compounds. Nine organic compounds encompassing a range of solubility, volatility, biodegradability, and adsorptive properties were studie...

  4. Activated Carbon Composites for Air Separation

    Microsoft Academic Search

    Cristian I Contescu; Frederick S Baker; Costas Tsouris; Joanna McFarlane

    2008-01-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed

  5. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks.

    PubMed

    Lin, Long; Zhai, Shang-Ru; Xiao, Zuo-Yi; Song, Yu; An, Qing-Da; Song, Xiao-Wei

    2013-05-01

    In continuation of previous work on utilizing rice husks, this study aimed to prepare mesoporous activated carbons using residues of sodium hydroxide-pretreated RHs, and then examine their dye adsorption performance. The influences of the activation temperature and activation time on the surface area, pore volume, and pore radius of the activated carbon were investigated based on nitrogen adsorption/desorption isotherms and transmission electron microscopy. The adsorptive behavior of the mesoporous activated carbons obtained under optimum preparation conditions was evaluated using methyleneblue as the model adsorbate. The adsorption kinetics was studied by pseudo-first-and pseudo-second-order models, and the adsorption isotherms were studied by Langmuir and Freundlich models. The pseudo-second-order model and Langmuir isotherm were found to fit well the adsorption characteristics of the as-prepared mesoporous activated carbons. Thermodynamic data of the adsorption process were also obtained to elucidate the adsorption thermo-chemistry between the activated carbons produced from NaOH-pretreated RHs and MB molecules. PMID:23567714

  6. Modeling of chemical vapor infiltration process for fabrication of carbon–carbon composites by finite difference methods

    Microsoft Academic Search

    Xianghui Hou; Hejun Li; Yixi Chen; Kezhi Li

    1999-01-01

    A finite difference (FD)-based method is proposed to describe the chemical vapor infiltration (CVI) processes for fabrication of carbon–carbon composites. The continuous, unsteady-state CVI processing can be divided into many discrete steady-state depositions by this model. Long cylindroid unidirectional carbon–carbon composites are prepared using the isothermal CVI technique to verify the accuracy of the FD methods. Experimental research shows that

  7. Porous texture evolution in Nomex-derived activated carbon fibers.

    PubMed

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  8. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  9. Oxidation of activated carbon: application to vinegar decolorization.

    PubMed

    López, Francisco; Medina, Francisco; Prodanov, Marin; Güell, Carme

    2003-01-15

    This article reports studies on the feasibility of increasing the decoloring capacity of a granular activated carbon (GAC) by using oxidation with air at 350 degrees C to modify its surface activity and porosity. The GAC, obtained from olive stones, had a maximum decolorization capacity of 92% for doses of 20 g/l, while the maximum decolorization capacity of the modified granular activated carbon (MGAC) was about 96% at a dose of 10 g/l. The increase in decoloring capacity is thought to be due to an increase in mesopore area (from 129 to 340 m2/g) in the MGAC. The maximum decoloring values and the doses needed to attain them are very close to values obtained in previous studies using coconut shell powder-activated carbon (94 and 98% for red and white vinegar for a dose of 10 g/l, respectively). PMID:16256469

  10. Adsorption Capacity of Activated Carbon for n-Alkane VOCs

    Microsoft Academic Search

    Zhibin Zhang; Gang Nong; C. Y. Shaw; Ling Gao

    The volatile organic compounds (VOCs) in the indoor air come from many sources including building materials, furnishings, occupant activities and in some cases, the ventilation air. Granular activated carbons (GAC) have been increasingly used to remove these contaminants, particularly for small commercial buildings and those located in urban centers or near industrial plants where the quality of outdoor air may

  11. Bioindication Potential of Carbonic Anhydrase Activity in Anemones

    E-print Network

    Bermingham, Eldredge

    Bioindication Potential of Carbonic Anhydrase Activity in Anemones and Corals AUBREY L. GILBERT describing coral CA activity for potential application in bioindication. Published by Elsevier Sci- ence Ltd bioindication. While oysters and many other bivalves are predisposed to accumulate heavy metal pollutants

  12. Porous Texture Evolution in Nomex-Derived Activated Carbon Fibers

    Microsoft Academic Search

    S. Villar-Rodil; R. Denoyel; J. Rouquerol; A. Mart??nez-Alonso; J. M. D. Tascón

    2002-01-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N2 (77 K) and CO2 (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in

  13. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  14. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase.

    PubMed

    Méndez-Díaz, J D; Prados-Joya, G; Rivera-Utrilla, J; Leyva-Ramos, R; Sánchez-Polo, M; Ferro-García, M A; Medellín-Castillo, N A

    2010-05-15

    The adsorption kinetics of four nitroimidazoles, Dimetridazole (DMZ), Metronidazole (MNZ), Ronidazole (RNZ) and Tinidazole (TNZ), were studied on three activated carbons: two commercial carbons from Sorbo-Norit (S) and Merck (M) and a third prepared by chemical activation of petroleum coke (C). Experimental data of the corresponding adsorption kinetics were analyzed by applying pseudo-first and pseudo-second-order models and a general diffusion model. Application of pseudo-first and pseudo-second-order kinetic models verified the following: (i) The kinetic model used that better predicts the adsorption rates depends of both the adsorbent and adsorbate studied. (ii) Nitroimidazole adsorption rate decreases in the order MNZ>DMZ>RNZ>TNZ; therefore, in the case of MNZ, molecular size does not appear to be a determining factor in the process. (iii) Nitroimidazole adsorption rate on carbons increases in the order Ccarbon hydrophobicity. Hence, in general, hydrophobic interactions appear to govern the kinetics of the adsorption process. Finally, a general diffusion model was applied that combines external mass transport and intraparticle diffusion, achieving an adequate fit to the experimental data. There are notable differences among the diffusivity values for the different nitroimidazoles that do not appear to be exclusively related to carbon textural parameters or adsorbate size. Therefore, adsorbent and adsorbate chemical characteristics are highly important to establish the adsorption mechanism of nitroimidazoles on activated carbons. PMID:20193953

  15. Helical graphitic carbon nitrides with photocatalytic and optical activities.

    PubMed

    Zheng, Yun; Lin, Lihua; Ye, Xiangju; Guo, Fangsong; Wang, Xinchen

    2014-10-27

    Graphitic carbon nitride can be imprinted with a twisted hexagonal rod-like morphology by a nanocasting technique using chiral silicon dioxides as templates. The helical nanoarchitectures promote charge separation and mass transfer of carbon nitride semiconductors, enabling it to act as a more efficient photocatalyst for water splitting and CO2 reduction than the pristine carbon nitride polymer. This is to our knowledge a unique example of chiral graphitic carbon nitride that features both left- and right-handed helical nanostructures and exhibits unique optical activity to circularly polarized light at the semiconductor absorption edge as well as photoredox activity for solar-to-chemical conversion. Such helical nanostructured polymeric semiconductors are envisaged to hold great promise for a range of applications that rely on such semiconductor properties as well as chirality for photocatalysis, asymmetric catalysis, chiral recognition, nanotechnology, and chemical sensing. PMID:25220601

  16. Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process

    NASA Astrophysics Data System (ADS)

    Quigley, John P.; Herrington, Kevin; Bortner, Michael; Baird, Donald G.

    2014-09-01

    A method was developed to deagglomerate commercially available multi-walled carbon nanotube (MWCNT) bundles while maintaining the carbon nanotube aspect ratio. The process utilizes the rapid expansion of a supercritical carbon dioxide/MWCNT mixture to separate large primary carbon nanotube agglomerates. High levels of deagglomeration of Baytubes® C 150 P and Nanocyl™ NC-7000 MWCNT bundles were observed on the macroscale and nanoscale, resulting in 30-fold and 50-fold decreases in bulk density, respectively, with median agglomerate sizes <8 ?m in diameter. These results were obtained while retaining the aspect ratio of the as-received nanomaterial, irrespective of the MWCNT agglomerate morphology. It was found that a temperature and pressure of 40 °C and 7.86 MP resulted in maximum deagglomeration without damage to the MWCNTs. Thermodynamic principles were applied to describe the effect of processing variables on the efficiency of the deagglomeration. These results suggest that combining this process with a composite processing step, such as melt compounding, will result in nanocomposites with enhanced electrical properties.

  17. [Biogeochemical processes of the major ions and dissolved inorganic carbon in the Guijiang River].

    PubMed

    Tang, Wen-Kui; Tao, Zhen; Gao, Quan-Zhou; Mao, Hai-Ruo; Jiang, Guang-Hui; Jiao, Shu-Lin; Zheng, Xiong-Bo; Zhang, Qian-Zhu; Ma, Zan-Wen

    2014-06-01

    Within the drainage basin, information about natural processes and human activities can be recorded in the chemical composition of riverine water. The analysis of the Guijiang River, the first level tributary of the Xijiang River, demonstrated that the chemical composition of water in the Guijiang River was mainly influenced by the chemical weathering of carbonate rocks within the drainage basin, in which CO2 was the main erosion medium, and that the weathering of carbonate rock by H2SO4 had a remarkable impact on the water chemical composition in the Guijiang River. Precipitation, human activities, the weathering of carbonate rocks and silicate rocks accounted for 2.7%, 6.3%, 72.8% and 18.2% of the total dissolved load, respectively. The stable isotopic compositions of dissolved inorganic carbon (delta13C(DIC)) indicated that DIC in the Guijiang River had been assimilated by the phytoplankton in photosynthesis. The primary production of phytoplankton contributed to 22.3%-30.9% of particulate organic carbon (POC) in the Guijiang River, which implies that phytoplankton can transform DIC into POC by photosynthesis, and parts of POC will sink into the bottom of the river in transit, which leads into the formation of burial organic carbon. PMID:25158483

  18. Production of activated carbon and its catalytic application for oxidation of hydrogen sulphide

    NASA Astrophysics Data System (ADS)

    Azargohar, Ramin

    Hydrogen sulphide is an environmentally hazardous gas which is present in many gas streams associated with oil and gas industry. Oxidation of H 2S to sulphur in air produces no bulky or waste material and requires no further purification. Activated carbon is known as a catalyst for this reaction. In this research, a coal-based precursor (luscar char) and a biomass-based precursor (biochar) were used for production of activated carbons by two common methods of activation: physical and chemical activation in which steam and potassium hydroxide (KOH), respectively, were used. Experiments were designed by the statistical central composite design method. Two models were developed for the BET surface area and reaction yield of each activation process. These models showed the effects of operating conditions, such as activation temperature, mass ratio of activating agent to precursor, activation time, and nitrogen flowrate on the BET surface area and reaction yield for each activation method for each precursor. The optimum operating conditions were calculated using these models to produce activated carbons with relatively large BET surface area (> 500 m2/g) and high reaction yield (> 50 wt %). The BET surface area and reaction yield for activated carbons produced at optimum operating conditions showed maximum 7 and 7.4% difference, respectively, comparing to the values predicted by models. The activated carbons produced at optimum operating conditions were used as the base catalysts for the direct oxidation of 1 mol % hydrogen sulphide in nitrogen to sulphur at the temperature range of 160-205°C and pressure of 700 kPa. Originally activated carbons showed a good potential for oxidation of hydrogen sulphide by their selectivity for sulphur product and low amount of sulphur dioxide production. To improve the performance of steam-activated carbons, the catalysts were modified by acid-treatment followed by thermal desorption. This method increased the break-through times for coal-based and biomass-based catalysts to 115 and 141 minutes, respectively. The average amounts of sulphur dioxide produced during the reaction time were 0.14 and 0.03% (as % of hydrogen sulphide fed to the reactor) for modified activated carbons prepared from biochar and luscar char, respectively. The effects of porous structure, surface chemistry, and ash content on the performances of these activated carbon catalysts were investigated for the direct oxidation reaction of hydrogen sulphide. The acid-treatment followed by thermal desorption of activated carbons developed the porosity which produced more surface area for active sites and in addition, provided more space for sulphur product storage resulting in higher life time for catalyst. Boehm titration and temperature program desorption showed that the modification method increased basic character of carbon surface after thermal desorption in comparison to acid-treated sample. In addition, the effects of impregnating agents (potassium iodide and manganese nitrate) and two solvents for impregnation process were studied on the performance of the activated carbon catalysts for the direct oxidation of H2S to sulphur. Sulphur L-edge X-ray near edge structure (XANES) showed that the elemental sulphur was the dominant sulphur species in the product. The kinetic study for oxidation reaction of H2S over LusAC-O-D(650) was performed for temperature range of 160-190°C, oxygen to hydrogen sulphide molar ratio of 1-3, and H2S concentration of 6000-10000 ppm at 200 kPa. The values of activation energy were 26.6 and 29.3 kJ.gmol-1 for Eley-Rideal and Langmuir-Hinshelwood mechanisms, respectively.

  19. Processes determining the marine alkalinity and carbonate saturation distributions

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Toggweiler, J. R.; Key, R. M.; Sarmiento, J. L.

    2014-07-01

    We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation lowers basin mean Indian and Atlantic Alk*, while upwelling of dissolved CaCO3 rich deep waters elevates Northern Pacific and Southern Ocean Alk*. We use the Alk* distribution to estimate the carbonate saturation variability resulting from CaCO3 cycling and other processes. We show regional variations in surface carbonate saturation are due to temperature changes driving CO2 fluxes and, to a lesser extent, freshwater cycling. Calcium carbonate cycling plays a tertiary role. Monitoring the Alk* distribution would allow us to isolate the impact of acidification on biological calcification and remineralization.

  20. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion. PMID:21936376

  1. Carbon dioxide-activated carbons from almond tree pruning: Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gañán, J.; González, J. F.; González-García, C. M.; Ramiro, A.; Sabio, E.; Román, S.

    2006-06-01

    Activated carbons were prepared from almond tree pruning by non-catalytic and catalytic gasification with carbon dioxide and their surface characteristics were investigated. In both series a two-stage activation procedure (pyrolysis at 800 °C in nitrogen atmosphere, followed by carbon dioxide activation) was used for the production of activated samples. In non-catalytic gasification, the effect of the temperature (650-800 °C for 1 h) and the reaction time (1-12 h at 650 °C) on the surface characteristics of the prepared samples was investigated. Carbons were characterized by means of nitrogen adsorption isotherms at 77 K. The textural parameters of the carbons present a linear relation with the conversion degree until a value of approximately 40%, when they come independent from both parameters studied. The highest surface area obtained for this series was 840 m 2 g -1. In the catalytic gasification the effect of the addition of one catalyst (K and Co) and the gasification time (2-4 h) on the surface and porosity development of the carbons was also studied. At the same conditions, Co leads to higher conversion values than K but this last gives a better porosity development.

  2. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  3. Breakthrough behavior of diethyl sulphide vapor on active carbon systems

    Microsoft Academic Search

    Beer Singh; G. K. Prasad; T. H. Mahato; K. Sekhar

    2007-01-01

    Breakthrough behavior of diethyl sulphide vapors on carbon systems such as active carbon, NaOH\\/CrO3\\/C, NaOH\\/CrO3\\/EDA\\/C and RuCl3\\/C has been studied by using modified Wheeler equation and the same was used to calculate the pseudo-first-order rate constant (kv) and kinetic saturation of capacity (We) values. Effects of various parameters such as bed height, air flow rate, concentration and temperature on the

  4. Analysis of carbon soil content by using tagged neutron activation

    NASA Astrophysics Data System (ADS)

    Obhodas, Jasmina; Sudac, Davorin; Matjacic, Lidija; Valkovic, Vladivoj

    2012-06-01

    Here we describe a prototype for non-destructive, in-situ, accurate and cost-effectively measurement procedure of carbon in soil based on neutron activation analysis using 14 MeV tagged neutron beam. This technology can be used for carbon baseline assessment on regional scale and for monitoring of its surface and depth storage due to the changes in agricultural practices undertaken in order to mitigate global climate change.

  5. Processing and thermal properties of filament wound carbon-carbon composites for impact shell application

    NASA Astrophysics Data System (ADS)

    Zee, Ralph; Romanoski, Glenn; Gale, H. Shyam; Wang, Hsin

    2001-02-01

    The performance and safety of the radioisotope power source depend in part on the thermal and impact properties of the materials used in the general purpose heat source (GPHS) through the use of an impact shell, thermal insulation and an aeroshell. Results from an earlier study indicate the importance of circumferential fibers to the mechanical properties of cylindrical filament wound carbon-carbon composites for the impact shell application. Based on this study, an investigation was initiated to determine the processing characteristics and the mechanical and thermal response of three filament wound configurations with different percentages of circumferential fibers: 50%, 66% and 80%. The performs were fabricated using a 3-D filament winding machine followed by five cycles of resin impregnation and carbonization. In this paper, the processing sequence and the resulting microstructures of the composites will be described. The thermal conductivity values of the composites as a function of fiber configuration and density will be discussed. These results will be compared with the fine-weave pierced-fabric (FWPF) material and carbon-bonded carbon-fiber insulation. Finally, the relevance of the new configurations for applications in the general purpose heat source (GPHS) will also be inferred. .

  6. EFFECTIVENESS OF ACTIVATED CARBON FOR REMOVAL OF TOXIC AND/OR CARCINOGENIC COMPOUNDS FROM WATER SUPPLIES

    EPA Science Inventory

    This research addressed quantification of the performance of fixed-bed granular activated carbon processes for treatment of public water supplies. It included evaluation of the adsorption of selected toxic and/or carcinogenic trace compounds of man-related origin, including carbo...

  7. ELABORATION OF CHITOSAN\\/ACTIVATED CARBON COMPOSITES FOR THE REMOVAL OF ORGANIC MICROPOLLUTANTS FROM WATERS

    Microsoft Academic Search

    A. Venault; L. Vachoud; C. Pochat; D. Bouyer; C. Faur

    2008-01-01

    Composite hydrogels were prepared by a wet?casting process by blending a biopolymer, chitosan, with activated carbon (AC) for use in water treatment. Adsorption properties of the composite gels for an organic micro?pollutant (phenol) which may be encountered in wastewaters was studied with an experimental design approach as a function of: -the concentration of raw materials and thus the AC weight

  8. Tailoring activated carbons for the development of specific adsorbents of gasoline vapors.

    PubMed

    Vivo-Vilches, J F; Bailón-García, E; Pérez-Cadenas, A F; Carrasco-Marín, F; Maldonado-Hódar, F J

    2013-12-15

    The specific adsorption of oxygenated and aliphatic gasoline components onto activated carbons (ACs) was studied under static and dynamic conditions. Ethanol and n-octane were selected as target molecules. A highly porous activated carbon (CA) was prepared by means of two processes: carbonization and chemical activation of olive stone residues. Different types of oxygenated groups, identified and quantified by TPD and XPS, were generated on the CA surface using an oxidation treatment with ammonium peroxydisulfate and then selectively removed by thermal treatments, as confirmed by TPD results. Chemical and porous transformations were carefully analyzed throughout these processes and related to their VOC removal performance. The analysis of the adsorption process under static conditions and the thermal desorption of VOCs enabled us to determine the total adsorption capacity and regeneration possibilities. Breakthrough curves obtained for the adsorption process carried out under dynamic conditions provided information about the mass transfer zone in each adsorption bed. While n-octane adsorption is mainly determined by the porosity of activated carbons, ethanol adsorption is related to their surface chemistry, and in particular is enhanced by the presence of carboxylic acid groups. PMID:24239258

  9. Bacteriological Changes Associated with Granular Activated Carbon in a Pilot Water Treatment Plant

    Microsoft Academic Search

    Helmy Tawfik El-Zanfaly; Donald J. Reasoner; Edwin E. Geldreich

    1998-01-01

    Bacteriological analysis were performed on collected water samples from a conventional water treatment pilot plant in Cincinnati, Ohio in which granular activated carbon (GAC) has been used as the final process to assess the impact of GAC on the bacteriological quality and incidence of antibiotic resistant bacteria in water produced. Heterotrophic bacterial counts (HPC) at 20 °C was stabilized at

  10. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system

    Microsoft Academic Search

    Yun Hui Lim; Khanh Quoc Ngo; Young Koo Park; Young Min Jo

    2012-01-01

    Capturing of odorous compounds such as toluene vapor by a particulate activated carbon adsorbent was investigated in a gas-solid cyclone, which is one of mobile beds. The test cyclone was early modified with the PoC and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially

  11. Degradation of dye solution by an activated carbon fiber electrode electrolysis system

    Microsoft Academic Search

    Zhemin Shen; Wenhua Wang; Jinping Jia; Jianchang Ye; Xue Feng; An Peng

    2001-01-01

    Degradation of 29 dyes by means of an activated carbon fiber (ACF) electrode electrolysis system was performed successfully. Almost all dye solutions tested were decolorized effectively in this ACF electrolysis process. Internal relationships between treatment mechanisms and chemical composition of the dye have been discussed in this paper. Generally, it is shown that higher solubility leads to greater degradation in

  12. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon

    Microsoft Academic Search

    Patrícia C. C. Faria; José J. M. Órfão; Manuel Fernando R. Pereira

    2005-01-01

    The degradation of organic matter in coloured solutions of different classes of dyes by ozonation in the presence of activated carbon is investigated. The kinetics of the decolourisation and mineralisation of three different dyes solutions (CI Acid Blue 113, CI Reactive Red 241 and CI Basic Red 14) were studied in a laboratory scale reactor by three different processes: adsorption

  13. IRON OPTIMIZATION FOR FENTON-DRIVEN OXIDATION OF MTBE-SPENT GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton-driven chemical regeneration of granular activated carbon (GAC) is accomplished through the addition of H2O2 and iron (Fe) to spent GAC. The overall objective of this treatment process is to transform target contaminants into less toxic byproducts, re-establish the sorpti...

  14. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon

    Microsoft Academic Search

    Amany El-Sikaily; Ahmed El Nemr; Azza Khaled; Ola Abdelwehab

    2007-01-01

    Biosorption of heavy metals can be an effective process for the removal of toxic chromium ions from wastewater. In this study, the batch removal of toxic hexavalent chromium ions from aqueous solution, saline water and wastewater using marine dried green alga Ulva lactuca was investigated. Activated carbon prepared from U. lactuca by acid decomposition was also used for the removal

  15. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary

    Microsoft Academic Search

    R. L. Sinsabaugh; S. Findlay

    1995-01-01

    The detrital food web is a major nexus of energy flow in nearly all aquatic ecosystems. Energy enters this nexus by microbial assimilation of detrital carbon. To link microbiological variables with ecosystem process, it is necessary to understand the regulatory hierarchy that controls the distribution of microbial biomass and activity. Toward that goal, we investigated variability in microbial abundance and

  16. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment

    Microsoft Academic Search

    Anneli Andersson; Patrick Laurent; Anne Kihn; Michèle Prévost; Pierre Servais

    2001-01-01

    The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2°C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall.

  17. Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

  18. Process for preparing tapes from thermoplastic polymers and carbon fibers

    NASA Technical Reports Server (NTRS)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  19. A comparison of the electrochemical behavior of carbon aerogels and activated carbon fiber cloths

    SciTech Connect

    Tran, T.D.; Alviso, C.T.; Hulsey, S.S.; Nielsen, J.K.; Pekala, R.W.

    1996-05-10

    Electrochemical capacitative behavior of carbon aerogels and commercial carbon fiber cloths was studied in 5M KOH, 3M sulfuric acid, and 0.5M tetrethylammonium tetrafluoroborate/propylene carbonate electrolytes. The resorcinol-formaldehyde based carbon aerogels with a range of denisty (0.2-0.85 g/cc) have open-cell structures with ultrafine pore sizes (5-50 nm), high surface area (400-700 m{sup 2}/g), and a solid matrix composed of interconnected particles or fibers with characteristic diameters of 10 nm. The commercial fiber cloths in the density range 0.2-04g/cc have high surface areas (1000-2500 m{sup 2}/g). The volumetric capacitances of high-density aerogels are shown to be comparable to or exceeding those from activated carbon fibers. Electrochemical behavior of these materials in various electrolytes is compared and related to their physical properties.

  20. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    NASA Astrophysics Data System (ADS)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction will increase carbonate alkalinity and the potential of precipitation, whereas aerobic respiration and sulfide oxidation will promote carbonate dissolution. The EOM is composed of two main carbon pools: the high molecular weight extracellular polymeric substances (EPS) and the low molecular weight organic carbon compounds (LMW-OC). Both pools play a critical role in carbonate precipitation by providing Ca2+ and CO32- as well as a nucleation template for mineral growth. EOM contains several negatively charged functional groups, which, depending on the pH, can be deprotonated (each group has unique pK value(s)) and, thus, bind cations. This binding capacity can deplete the surrounding environment of cations (e.g., Ca2+, Mg2+) and, thus, inhibits carbonate precipitation. Therefore, organomineralization is only possible if the inhibition potential is reduced through (1) oversaturation of the EOM binding capacity or (2) EOM degradation.

  1. Coagulation/sedimentation and activated carbon treatment of a true in situ oil shale retort water

    SciTech Connect

    Kocornik, D.J.; Mcternan, W.F.

    1984-08-01

    The wastewater studied in this paper is from a Geokinetics true in situ oil shale retort, which produced approximately equal volumes of wastewater and oil. This retort water is characterized by high levels of organic and inorganic carbon, alkalinity, ammonia and inorganic salts. Since no single water treatment process has proved effective on this complex waste, the authors' purpose in this paper is to present data on two different processes used both singly and in sequence. Inorganic metallic coagulants, both alone and in combination with organic polymers, were considered for use in coagulation-flocculationsedimentation systems. The most promising of these treatments were then experimented with as pretreatments for batch powdered activated carbon adsorption studies. Adsorption studies consisted of standard isotherm and equilibrium uptake tests conducted with two types of activated carbon on both pretreated and previously untreated retort water. The treatment effectiveness and physics of a flow-through granular activated carbon column system were also investigated. Results for each of the above sequences and for each step in each sequence are presented. The data collected indicate that coagulation will not be effective as a stand alone treatment process. Results of the flow-through carbon column study indicate that pretreatment of the influent may be beneficial to the performance of that system.

  2. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Tsouris, Costas [ORNL; McFarlane, Joanna [ORNL

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  3. The potential application of activated carbon from sewage sludge to organic dyes removal.

    PubMed

    Graham, N; Chen, X G; Jayaseelan, S

    2001-01-01

    The objective of this research work was to study the potential application of activated carbon from sewage sludge to organic dye removal. Methylene blue and crystal violet were the two dyes investigated in the present study. Three activated carbons were produced from the exclusive sewage sludge (referred to as DS), the sludge with the additive of coconut husk (DC) and sludge with the additive of peanut shell (DP) respectively. They were characterized by their surface area and porosity and their surface chemistry structure. Adsorption studies were performed by the batch technique to obtain kinetic and equilibrium data. The results show that the three sludge-derived activated carbons had a developed porosity and marked content of surface functional groups. They exhibited a rapid three-stage adsorption process for both methylene blue and crystal violet. Their adsorption capacities for the two dyes were high, the carbon DP performed best in the adsorption whereas the carbon DC performed worst. It is therefore concluded that the activated carbons made from sewage sludge and its mixtures are promising for dye removal from aqueous streams. PMID:11380186

  4. Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes

    Microsoft Academic Search

    Shweta Shah; Kusum Solanki; Munishwar N Gupta

    2007-01-01

    BACKGROUND: Immobilization of biologically active proteins on nanosized surfaces is a key process in bionanofabrication. Carbon nanotubes with their high surface areas, as well as useful electronic, thermal and mechanical properties, constitute important building blocks in the fabrication of novel functional materials. RESULTS: Lipases from Candida rugosa (CRL) were found to be adsorbed on the multiwalled carbon nanotubes with very

  5. 75 FR 981 - Certain Activated Carbon From the People's Republic of China: Notice of Rescission of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ...high temperature steam (or CO 2 gas) activated process is a direct result of oxidation of a portion of the solid carbon atoms in the raw material, converting them into a gaseous form of carbon. The scope of this order covers all forms of...

  6. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A., E-mail: susana.bernal@gmail.co [Materials Engineering Department, Composite Materials Group, CENM, Universidad del Valle, Cali (Colombia); Mejia de Gutierrez, Ruby [Materials Engineering Department, Composite Materials Group, CENM, Universidad del Valle, Cali (Colombia); Provis, John L., E-mail: jprovis@unimelb.edu.a [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Rose, Volker [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  7. Mechanochemical activation of high-carbon fly ash for enhanced carbon reburning

    Microsoft Academic Search

    Osvalda Senneca; Piero Salatino; Riccardo Chirone; Luciano Cortese; Roberto Solimene

    2011-01-01

    The focus of the present study is the reduction of the residual unburnt carbon contained in fly ash from PC-fired boilers by reburning and\\/or beneficiation. More specifically, the study addresses the potential of enhancing oxyreactivity of the residual carbon contained in fly ash by mechanochemical activation in order to improve the effectiveness of ash reburning.The concept is tested with reference

  8. Hydrophobisation of activated carbon fiber and the influence on the adsorption selectivity towards carbon disulfide

    Microsoft Academic Search

    Zunyuan Xie; Feng Wang; Ning Zhao; Wei Wei; Yuhan Sun

    2011-01-01

    The hydrophobisation of commercial viscose-based activated carbon fiber (ACF) was obtained by grafting vinyltrimethoxysilane (vtmos) on the ACF surface, to improve ACF's adsorption selectivity towards carbon disulfide (CS2) under highly humid condition. The characterizations, including FTIR, 29Si NMR, adsorption\\/desorption of nitrogen, thermal analysis and elemental analysis, revealed that the vtmos was successfully grafted onto the ACF surface, even though the

  9. Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers

    Microsoft Academic Search

    Yankun Zhan; Chunyang Nie; Haibo Li; Likun Pan; Zhuo Sun

    2011-01-01

    The composite films of activated carbon fibers (ACFs) and carbon nanofibers (CNFs) are prepared via chemical vapor deposition of CNFs onto ACFs in different times from 0.5 to 2h and their electrosorption behaviors in NaCl solution are investigated. The morphology, structure, porous and electrochemical properties are characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, N2 adsorption at 77K,

  10. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    SciTech Connect

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  11. Modified Activated Carbon to be Used in Clinical Applications

    NASA Astrophysics Data System (ADS)

    Fernando, M. S.; de Silva, W. R. M.; de Silva, K. M. N.

    2014-11-01

    In this study a novel nano composite of hydroxyapatite nano particles impregnated activated carbon (C-HAp), which was synthesized in our own method, was used in iron adsorption studies. The study was conducted in order to investigate the potential of using C-HAp nanocomposite to be used in clinical detoxifications such as acute iron toxicity where the use of Activated carbon (GAC) is not very effective. Adsorption studies were conducted for synthetic solutions of Fe2+, Fe3+ and iron syrup using GAC, C-HAp and neat HAp as adsorbents. According to the results C-HAp nano composite showed improved properties than GAC in adsorbing Fe2+, Fe3+ and also Fe ions in iron syrup solutions. Thus the results of the in-vitro studies of iron adsorption studies indicated the potential of using C-HAp as an alternative to activated carbon in such clinical applications.

  12. Chars pyrolyzed from oil palm wastes for activated carbon preparation

    SciTech Connect

    Lua, A.C.; Guo, J. [Nanyang Technological Univ., Singapore (Singapore)] [Nanyang Technological Univ., Singapore (Singapore)

    1999-01-01

    Chars pyrolyzed from extracted oil palm fibers for the preparation of activated carbons were studied. The effects of pyrolysis temperature and hold time on density, porosity, yield, BET and micropore surface areas, total pore volume, and pore size distributions of chars were investigated. The optimum conditions for pyrolysis were found to be at a pyrolysis temperature of 850 C for a hold time of 3.5 h. Scanning electron micrographs of the char surfaces verified the presence of porosities. The experimental results showed that it was feasible to produce chars with high BET and micropore surface areas from extracted oil palm fibers. The resulting chars will be subjected to steam or carbon dioxide activation to prepare activated carbons for use as gas adsorbents for air pollution control.

  13. Process for reducing Ramsbottom Carbon Test of short residues

    SciTech Connect

    Eilers, J.; Stork, H.J.

    1984-07-24

    In the preparation of a heavy oil with a low Ramsbottom Carbon Test (RCT) from a long residue by a two-stage process comprising catalytic hydrotreatment followed by solvent deasphalting and recycle of the asphalt to the first stage the catalytic hydrotreatment for RCT reduction in the first stage is carried out at such a severity that the C/sub 4/ - gas production per percent RCT reduction is kept between defined limits.

  14. Computational Tools for Accelerating Carbon Capture Process Development

    SciTech Connect

    Miller, David

    2013-01-01

    The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

  15. Modeling and preparation of activated carbon for methane storage II. Neural network modeling and experimental studies of the activated carbon preparation

    Microsoft Academic Search

    Mahnaz Namvar-Asl; Mohammad Soltanieh; Alimorad Rashidi

    2008-01-01

    This study describes the activated carbon (AC) preparation for methane storage. Due to the need for the introduction of a model, correlating the effective preparation parameters with the characteristic parameters of the activated carbon, a model was developed by neural networks. In a previous study [Namvar-Asl M, Soltanieh M, Rashidi A, Irandoukht A. Modeling and preparation of activated carbon for

  16. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    PubMed

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment. PMID:23313232

  17. Pedogenetic processes and carbon budgets in soils of Queretaro, Mexico

    NASA Astrophysics Data System (ADS)

    García Calderón, Norma Eugenia; Fuentes Romero, Elizabeth; Hernandez Silva, Gilberto

    2014-05-01

    Pedogenetic processes have been investigated in two different physiographic regions of the state of Querétaro in order to assess the carbon budget of soils, looking into the gains and losses of organic and inorganic carbon: In the mountain region of the natural reserve Sierra Gorda (SG) with soils developed on cretaceous argillites and shales under sub-humid temperate to semi-arid conditions, and in the Transmexican Volcanic Belt (TMVB) with soils developed on acid and intermediate igneous rocks under humid temperate climate in the highlands and semi-arid and subhumid subtropical conditions in the lowlands. The analyses of soil organic carbon (SOC) and soil inorganic carbon (SIC) of the SG region, including additional physical, chemical and mineralogical investigations were based on 103 topsoils in an area of 170 km2. The analyses in the TMVB region were based on the profiles of a soil toposequence from high mountainous positions down to the plains of the lowlands. The results show a SOC accumulation from temperate to semi-arid forest environments, based on processes of humification and clay formation including the influence of exchangeable Ca and the quantity and quality of clay minerals. The turnover rates of SOC and SIC depended largely on the rock parent materials, especially the presence of carbonate rocks. Moreover, we found that the SOC content and distribution was clearly depending on land use, decreasing from forests to agricultural land, such as pasture and cropping areas and were lowest under mining sites. The highest SIC pools were found in accumulation horizons of soils under semi-arid conditions. On all investigated sites SOC decreased the mobility of cations and especially that of heavy metals, such as As, Hg, Sb, Pb, and Cd.

  18. Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons

    Microsoft Academic Search

    Feng-Chin Wu; Ru-Ling Tseng; Chi-Chang Hu

    2005-01-01

    Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the

  19. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review. PMID:21061234

  20. Equation calculates activated carbon's capacity for adsorbing pollutants

    SciTech Connect

    Yaws, C.L.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))

    1995-02-13

    Adsorption on activated carbon is an effective method for removing volatile organic compound (VOC) contaminants from gases. A new, simple equation has been developed for calculating activated carbon's adsorption capacity as a function of the VOC concentration in the gas. The correlation shows good agreement with experimental results. Results from the equation are applicable for conditions commonly encountered in air pollution control techniques (25 C, 1 atm). The only input parameters needed are VOC concentrations and a table of correlation coefficients for 292 C[sub 8]-C[sub 14] compounds. The table is suitable for rapid engineering usage with a personal computer or hand calculator.

  1. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.

    2014-12-01

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for "direct-write" processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple "beams" of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.

  2. Adsorption and desorption of phenol on anion-exchange resin and activated carbon

    SciTech Connect

    Goto, M.; Hayashi, N.; Goto, S.

    1986-05-01

    Adsorption and desorption of phenol on activated carbon and strong base anion-exchange resin were investigated in a fixed-bed column. Phenol was effectively adsorbed on both adsorbents. Experimental breakthrough curves were compared with values calculated on the assumption of surface diffusion controlling. Two methods of regeneration of adsorbents were carried out, that is, caustic desorption and acid desorption. Regeneration by sodium hydroxide or hydrochloric acid was effectively performed for the resin. On the other hand, regeneration of the activated carbon by sodium hydroxide was not performed completely. The adsorption capacity for activated carbon decreased gradually during the repetition process of adsorption and desorption, while the capacity for anion-exchange resin remained constant. 14 references, 9 figures, 1 table.

  3. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  4. Carbon Sequestration and Peat Accretion Processes in Peatland Systems: A North-South Comparison

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Wang, H.; Bridgham, S. D.

    2012-12-01

    Millions of hectares of peatlands exist in the U.S. and Canada but few comparisons have been made on the process controlling peat accretion, carbon sequestration and GHG losses across latitudinal gradients. Historic threats to carbon sequestration for these areas have been drainage and conversion to agriculture and forestry, which promotes the decomposition of the organic matter in the soil, leading to accelerated soil subsidence, severe carbon losses, and accelerated transport of C and nutrients to adjoining ecosystems. A more recent and insidious threat to the survival of peatlands worldwide is the increased temperature and drought conditions projected for many areas of global peatlands (IPCC 2007). A comparison of carbon sequestration rates and controlling processes for southeastern shrub bogs, the Florida Everglades and selected peatlands of the northern US and Canada under current climatic conditions reveals several major differences in controlling factors and rates of sequestration and carbon flux. Numerous studies have shown that drought or drainage can unlock historically stored carbon, thus releasing more CO2 ¬ and dissolved organic carbon (Blodau et al. 2004; Furukawa et al. 2005; Von Arnold et al. 2005; Hirano et al. 2007), and such effects might last for decades (Fenner & Freeman 2011). The main driver of this process is the O2 introduced by drought or drainage, which will increase the activity of phenol oxidase, then accelerate the decomposition of phenol compounds, which is generally considered the "enzymatic latch" for carbon storage in peatlands (Freeman et al. 2001). However, our recent studies in southeastern peatlands along the coast of North Carolina have found that drought or drainage does not affect CO2 emission in some southern peatlands where the initial water level is below the ground surface (unsaturated peats), as polyphenol increases rather than decreases. Our results suggest that additional controlling factors, rather than anoxia exist in unsaturated peats, allowing them to accumulate carbon, and resist decomposition and CO2 losses. The importance of native phenolic producing plant species and substrate quality are key controlling factors. Our study offers new evidence that frequently occurring summer drought or climate-induced moderate drought will not increase the loss of stored carbon in unsaturated peatlands. These findings have important ramifications concerning carbon storage and losses in peatlands under future climate change predictions.

  5. Dynamic adsorption on activated carbons of SO 2 traces in air

    Microsoft Academic Search

    C. Martin; A. Perrard; J. P. Joly; F. Gaillard; V. Delecroix

    2002-01-01

    Sulphur dioxide is an atmospheric pollutant which, among numerous others, has to be eliminated by habitacle filters. Breakthrough curves of low concentration SO2 streams through beds of activated carbons have been obtained. Two carbons were studied, an activated PAN fiber (CF) and a granulated activated carbon (CN) under SO2 concentrations lower than 100 ppm. Carbon CN used ‘as received’ is

  6. Characteristics of activated carbon for controlling gasoline vapor emissions: laboratory evaluation

    Microsoft Academic Search

    M. J. Manos; W. C. Kelly; M. Samfield

    1977-01-01

    The application of activated carbon for control of gasoline vapor emissions resulting from service station operations was investigated under laboratory conditions. Cyclic tests were conducted on five activated carbon materials at various combinations of temperature, humidity, fuel volatility and container shape to determine working capacity characteristics. Regeneration of the carbon was effected by air purging and vacuum stripping. Activated carbon

  7. Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts

    Microsoft Academic Search

    Shengli Cao; Guohua Chen; Xijun Hu; Po Lock Yue

    2003-01-01

    Noble metal catalysts on activated carbon (AC) (Pt\\/AC and Ru\\/AC) and base metal catalysts (Cu\\/AC, CoMo\\/AC, Mo\\/AC, Mn\\/AC, Ru\\/Al2O3) were developed and examined for the simultaneous removal of organic pollutants and ammonia from wastewater using the wet air oxidation (WAO) process in the liquid phase. The noble metal catalysts were much more active than were the base metal catalysts. Ammonia

  8. Characterisation and applications of activated carbon produced from Moringa oleifera seed husks by single-step steam pyrolysis

    Microsoft Academic Search

    A. Michael Warhurst; Gordon L. McConnachie; Simon J. T. Pollard

    1997-01-01

    The seed husks of the multipurpose tree Moringa oleifera are potentially a waste product that may be available in large quantities, and previous work has demonstrated that a microporous activated carbon can be produced from them by carbonisation under nitrogen followed by activation in steam. This research examines the efficacy of a simpler and cheaper activation process, single-step steam pyrolysis

  9. Microscopic theory of ultrafast processes in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Malic, Ermin; Bobkin, Evgeny; Winzer, Torben; Köhler, Christopher; Watermann, Tobias; Hirtschulz, Matthias; Knorr, Andreas

    2011-02-01

    We evaluate a density matrix theory for the description of ultrafast relaxation processes in low-dimensional carbon nanostructures. The theory is based on Bloch equations describing the temporal dynamics of charge carrier population and transition probabilities. In combination with tight-binding wavefunctions, the approach allows the microscopic calculation of linear and nonlinear optical properties of graphene and carbon nanotubes with arbitrary chirality. This way, we have access to time- and momentum-resolved relaxation dynamics of non-equilibrium charge carriers. We study absorption spectra in graphene and carbon nanotubes illustrating the importance of excitonic effects in these structures including the formation of exciton-phonon induced side-bands in carbon nanotubes. Furthermore, we illustrate the relaxation of optically excited charge carriers toward equilibrium via electron-phonon and electron-electron scattering. We observe an ultrafast thermalization of excited carriers within the first hundred femtoseconds followed by a cooling of the electronic system on the picosecond time scale. Moreover, we investigate phonon-induced intersubband relaxation between the two energetically lowest transitions in nanotubes leading to a better understanding of photoluminescence excitation (PLE) experiments.

  10. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  11. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes.

    PubMed

    Yeom, Chiseon; Chen, Kevin; Kiriya, Daisuke; Yu, Zhibin; Cho, Gyoujin; Javey, Ali

    2015-03-01

    A 20 × 20 pixel pressure sensor array based on a printed active-matrix single-wall carbon-nanotube thin-film transistor backplane is presented. Using a gravure printing process that is compatible with fully printed large-area roll-to-roll processing, a 97% device yield is obtained on the 400-transistor backplane. As a proof of concept, pressure sensors are integrated to map the applied tactile pressure across the array. PMID:25640804

  12. Carbon-carbon composites prepared by a rapid densification process I: Synthesis and physico-chemical data

    Microsoft Academic Search

    E. Bruneton; B. Narcy; A. Oberlin

    1997-01-01

    A new process for the rapid densification (1.5–2 mm h?1 at 1000 °C for a carbon felt) of carbon porous preforms is described and physico-chemical data are given: density, porosity, and kinetics. The reinforcements chosen in this study are a Le Carbone Lorraine® rayon based felt (RVC 2000) and two types of PAN based carbon fibers (T 300 type and

  13. Optimizing a Laser Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William

    2010-01-01

    A systematic experimental study has been performed to determine the effects of each of the operating conditions in a double-pulse laser ablation process that is used to produce single-wall carbon nanotubes (SWCNTs). The comprehensive data compiled in this study have been analyzed to recommend conditions for optimizing the process and scaling up the process for mass production. The double-pulse laser ablation process for making SWCNTs was developed by Rice University researchers. Of all currently known nanotube-synthesizing processes (arc and chemical vapor deposition), this process yields the greatest proportion of SWCNTs in the product material. The aforementioned process conditions are important for optimizing the production of SWCNTs and scaling up production. Reports of previous research (mostly at Rice University) toward optimization of process conditions mention effects of oven temperature and briefly mention effects of flow conditions, but no systematic, comprehensive study of the effects of process conditions was done prior to the study described here. This was a parametric study, in which several production runs were carried out, changing one operating condition for each run. The study involved variation of a total of nine parameters: the sequence of the laser pulses, pulse-separation time, laser pulse energy density, buffer gas (helium or nitrogen instead of argon), oven temperature, pressure, flow speed, inner diameter of the flow tube, and flow-tube material.

  14. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-02-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose ?13C difference between meadow C4-Csoil and C3-Clitter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6 to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  15. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect

    Nick Soelberg; Joe Enneking

    2011-05-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  16. Sulfurized activated carbon for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  17. Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids: Implications for Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Miller, Q. R.; Schaef, T.; Thompson, C.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.; Arey, B. W.; McGrail, P.

    2012-12-01

    Global climate change is viewed by many as an anthropogenic phenomenon that could be mitigated through a combination of conservation efforts, alternative energy sources, and the development of technologies capable of reducing carbon dioxide (CO2) emissions. Continued increases of atmospheric CO2 concentrations are projected over the next decade, due to developing nations and growing populations. One economically favorable option for managing CO2 involves subsurface storage in deep basalt formations. The silicate minerals and glassy mesostasis basalt components act as metal cation sources, reacting with the CO2 to form carbonate minerals. Most prior work on mineral reactivity in geologic carbon sequestration settings involves only aqueous dominated reactions. However, in most sequestration scenarios, injected CO2 will reside as a buoyant fluid in contact with the sealing formation (caprock) and slowly become water bearing. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet scCO2. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably wet supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) in order to gain insight into reaction processes. Mineral transformation reactions were followed by two novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the scCO2 resulted in increased carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared (IR) spectroscopy and indirectly with 18O isotopic labeling techniques (Raman spectroscopy). The thin water films were determined to be critical for facilitating carbonation processes in wet scCO2. Even in extreme low water conditions, the IR technique detected the formation of amorphous silica. Unlike the thick (<10 ?m) passivating silica layers observed in the reacted samples from fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water-bearing scCO2 fluids.

  18. Active carbon filter health condition detection with piezoelectric wafer active sensors

    E-print Network

    Giurgiutiu, Victor

    due to mechanical changes. EMIS can detect impedance changes due to mechanical changes method. Some remarkable new phenomena were unveiled in the detection of carbon filter status. 1. PWAS the filtration performance. Hence, methods are sought to detect the degradation of impregnated active carbon

  19. Carbonate Beaches: A Balance Between Biological and Physical Processes

    NASA Astrophysics Data System (ADS)

    Nairn, R.; Risk, M.

    2004-12-01

    Carbonate beaches are a unique example of the interaction between biological processes, creating the sediments, and physical processes, moving and often removing the sediments. On the sediment supply side, carbonate sediments are born, not made. They exist in dynamic equilibrium between production and destruction. Following the creation of carbonate sediment in coral reef and lagoon environments, the sediments are moved shoreward to the beach, transport along the shore and sometimes, eventually lost offshore, often as the result of tropical storms. Comprehensive studies of the balance between the supply and loss of carbonate sediments and beach dynamics have been completed for the islands of Mauritius and Barbados. Field studies and remote sensing (Compact Airborne Spectrometry Imaging) have been applied to develop carbonate sediment production rates for a range of reef and lagoon conditions. Using GIS, these production rates have been integrated to determine sediment supply rates for different segments of the coastline. 1-D and 2-D models of waves, hydrodynamics, sediment transport and morphodynamics were set-up and tested against observed beach response to storm events or a sequence of storm events. These complex deterministic models are not suitable for application over periods of decades. However, it was possible to characterize storm events by the extent of sand loss, and relate this to key descriptive factors for groups of storm events, thereby encapsulating the erosion response. A long-term predictive tool for evaluating beach erosion and accretion response, over a period of several decades, was developed by combining the supply rates for carbonate sediment and the encapsulated representation of the loss rates through physical processes. The ability of this predictive tool was successfully tested against observed long term beach evolution along sections of the coast in Barbados and Mauritius using air photo analysis in GIS for shoreline change over periods of 40 years. The long-term predictive tool for carbonate beach evolution provided valuable support to developing coastal zone management policy and actions to preserve the beaches in their natural form, minimizing the need for artificial nourishment of the beaches. Many models of sediment movement on shorelines are derived from clastic examples, and fit carbonate coastlines only with difficulty. We have combined field surveys of benthic biota, estimates of sediment production from skeletal growth and bioerosion, and sediment destruction by comminution and dissolution with dynamic models of sediment movement in the littoral zone, achieving improved understanding of coastal processes of erosion and deposition. Mauritius is fringed by shallow lagoons, often with luxuriant stands of Acropora. The offshore region is exhumed Pleistocene-all the sediment on the beaches comes from the lagoons. From surveys of coral cover, and estimates of sediment production from reef, sand and hardground areas, we produced dynamic models that faithfully hindcast shoreline dynamics for decades, and allowed identification of regions especially vulnerable to erosion. On the south coast of Barbados, one of the main issues in stabilising and rehabilitation the coastline is the balance between sediment from longshore drift and local sources. By identifying localised areas of characteristic sediment-producers (e.g., the foraminiferan Homotrema rubrum, the green alga Halimeda), we were able to determine the balance between proximal and distal sediment sources. The resulting model hindcasts the coastline through all the major hurricanes of the past 30 years.

  20. Analysis of a Thin Activated Carbon Loaded Adsorption Medium

    Microsoft Academic Search

    Wayne T. Davis; Christopher C. Hood; Maureen Dever

    1995-01-01

    Thin adsorption media are being investigated for use in a variety of applications including protective clothing for military use and hazardous waste cleanup, as well as in indoor air quality within a variety of filtration media. The objective of this study was to evaluate the dynamics of adsorption of a chlorinated organic gas on activated carbon impregnated meltblown laminates. The

  1. ACTIVATED CARBON TREATMENT OF INDUSTRIAL WASTEWATERS: SELECTED TECHNICAL PAPERS

    EPA Science Inventory

    Because of the tremendous interest in the organic constituent removal by activated carbon, the two industrial categories displaying the most interest are the petroleum refining and petrochemical industries. EPA's Office of Research and Development has co-sponsored two technical s...

  2. EVALUATION OF PROCEDURES TO DESORB BACTERIA FROM GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Physical, chemical, and enzymatic means for the desorption of micro-organisms from granular activated carbon (GAC) were assessed. Data indicate that homogenization at 16,000 rpm for 3 min at 4 C with a mixture of peptone (0.01%), Zwittergent 3-12 ( times 10 to the minus 6 power M...

  3. POWDERED ACTIVATED CARBON ADSORPTION ISOTHERMS FOR SELECTED TANNERY EFFLUENTS

    EPA Science Inventory

    Two raw untreated tanning effluents were initially tested for the removal of COD, BOD, TOC, total and specific phenols, oil and grease, and total chromium, using the following six individual powdered activated carbons (PAC): ICI-HDC, ICI-HDH, Nuchar SA-15, Amoco PX-21, Norit FQA,...

  4. MICROBIOLOGICAL ALTERATIONS IN DISTRIBUTED WATER TREATED WITH GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The goal of this project was to examine the effect of granular activated carbon (GAC) treatment on the microbiological characteristics of potable water in distribution systems. Data was collected from both field and pilot plant studies. Field monitoring studies from two water tre...

  5. GAC (GRANULAR ACTIVATED CARBON) TREATMENT COSTS: A SENSITIVITY ANALYSIS

    EPA Science Inventory

    Although admittedly effective for removing organic compounds, concerns have been raised about the cost of using GAC for treating drinking water. This paper is devoted to the discussion of the cost of granular activated carbon for removing organic compounds from drinking water. Ac...

  6. TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS

    E-print Network

    Jones, William D.

    TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS William D. Jones, New York 14627 FOR #12;DOE Report, 1998-2001 2 William D. Jones Overview of Research Accomplishments will extend this work to #12;DOE Report, 1998-2001 3 William D. Jones other early metal compounds during

  7. POULTRY MANURE-BASED ACTIVATED CARBONS AS MERCURY ADSORBENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  8. Short communication Improvement of activated carbons as oxygen reduction catalysts

    E-print Network

    , peat, and hardwood ACs. Cathode performance improved with all but one ammonia treated AC. a r t i c l available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities

  9. BACTERIA ATTACHED TO GRANULAR ACTIVATED CARBON IN DRINKING WATER

    EPA Science Inventory

    Laboratory and field studies were undertaken to answer basic questions about the influence of granular activated carbon (GAC) on the bacteriological quality of drinking water. A sampling apparatus consisting of a 47-mm Swinnex/and a 16-layer filter was developed to trap filter fi...

  10. Biodegradation of BTEX by bacteria on powdered activated carbon

    Microsoft Academic Search

    C. A. Mason; G. Ward; K. Abu-Salah; O. Keren; C. G. Dosoretz

    2000-01-01

    Aerobic degradation of a mixture of benzene, toluene, ethylbenzene and the mixed xylenes (BTEX) by a mixed bacterial population was studied in a continuously fed, completely mixed bioreactor in the presence of powdered activated carbon (PAC). Adsorption was characterized in the presence and in the absence of bacteria on PAC, and the affinity of virgin PAC to individual BTEX components

  11. REMOVAL OF MOLYBDENUM FROM ACID LEACH LIQUORS BY ACTIVATED CARBON

    Microsoft Academic Search

    E. T. Hollis; H. E. Dixon

    1958-01-01

    Data are presented on the absorption of molybdenum on activated carbon. ;\\u000a The effect of retention time and linear flow on absorption, the use of sodium ;\\u000a hydroxide as an eluant, and the possibility of recovering molybdenum from the ;\\u000a caustic eluate are discussed. (auth)

  12. Ammonia removal of activated carbon fibers produced by oxyfluorination

    Microsoft Academic Search

    Soo-Jin Park; Byung-Joo Kim

    2005-01-01

    In this study, activated carbon fibers (ACFs) were produced by an oxyfluorination treatment to enhance the capacity of ammonia gas removal. The introduction of polar groups, such as CF, CO, and COOH, on the ACFs was confirmed by a XPS analysis, and N2\\/77 K adsorption isotherm characteristics including specific surface area and total and micropore volumes were studied by the

  13. Nitric acid vapor removal by activated, impregnated carbons

    Microsoft Academic Search

    Wood

    1996-01-01

    Laboratory and industrial workers can be exposed to vapors of nitric acid, especially in accidents, such as spills. Nitric acid can also be a product of incineration for energy production or waste (e.g., CW agent) disposal. Activated carbons containing impregnants for enhancing vapor and gas removal have been tested for effectiveness in removing vapors of nitric acid from air. The

  14. CONSIDERATIONS IN GRANULAR ACTIVATED CARBON TREATMENT OF COMBINED INDUSTRIAL WASTEWATERS

    EPA Science Inventory

    The objective of this project was to examine the use of activated carbon in reducing the content of biologically resistant organic compounds in a combined industrial wastewater treatment system. The invvestigation was conducted in two stages: (1) characterize organic priority pol...

  15. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...

  16. A novel carbon-based process for flue-gas cleanup. Final report

    SciTech Connect

    Gangwal, S.K.; Howe, G.B.; McMichael, W.J.; Spivey, J.J.

    1993-10-01

    A low-temperature process employing activated carbon-based catalysts and operating downstream of the electrostatic precipitator (ESP) was evaluated jointly by Research Triangle Institute (RTI) and the University of Waterloo (Waterloo). The RTI-Waterloo process was projected to be capable of removing more than 95% SO{sub 2} and 75% NO{sub x }from coal combustion flue gas. In the process, the flue gas leaving the ESP is first cooled to approximately 100{degree}C. The SO{sub 2} is then catalytically oxidized to SO{sub 3} which is removed as medium-strength sulfuric acid in a series of periodically flushed trickle-bed reactors containing an activated carbon-based catalyst. The SO{sub 2}-free gas is then reheated to approximately 150{degree}C and NH{sub 3} is injected into the gas stream. It is then passed over a fixed bed of another activated carbon-based catalyst to reduce the NO{sub x} to N{sub 2} and H{sub 2}O. The clean flue gas is then vented to the stack. The feasibility of the process has been demonstrated in laboratory-scale experiments using simulated flue gas. Catalysts have been identified that gave the required performance for SO{sub 2} and NO{sub x} removal with <25 ppM NH{sub 3} slip. Potential for producing up to 10 N sulfuric acid by periodically flushing the SO{sub 2} removal reactor and further concentration to industrial strength 93.17% sulfuric acid was also demonstrated. Using the results of the experimental work, an engineering evaluation was conducted. Cost for the RTI-Waterloo process was competitive with conventional selective catalytic reduction (SCR) -- flue gas desulfurization (FGD) process and other emerging combined SO{sub 2}/NO{sub x} removal processes.

  17. Carbonic anhydrase activity in acetate grown Methanosarcina barkeri

    Microsoft Academic Search

    Marion Karrasch; Michael Bott; Rudolf K. Thauer

    1989-01-01

    Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U\\/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent Ki=0.5 mM), by azide (apparent Ki=1 mM), and by cyanide (apparent Ki=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme

  18. Evaluation of the genetic activity of industrially produced carbon black

    SciTech Connect

    Kirwin, C.J. (Phillips Petroleum Co., Bartlesville, OK); LeBlanc, J.V.; Thomas, W.C.; Haworth, S.R.; Kirby, P.E.; Thilagar, A.; Bowman, J.T.; Brusick, D.J.

    1981-06-01

    Commercially produced oil furnace carbon black has been evaluated by five different assays for genetic activity. These were the Ames Salmonella typhimurium reverse mutation test, sister chromatid exchange test in CHO cells, mouse lymphoma test, cell transformation assay in C3H/10T 1/2 cells, and assay for genetic effects in Drosophila melanogaster. Limited cellular toxicity was exhibited but no significant genetic activity was noted.

  19. Development and characterization of a rechargeable carbon foam electrode containing nickel oxyhydroxide active mass

    NASA Astrophysics Data System (ADS)

    Chye, Matthew B.

    2011-12-01

    Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.

  20. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    PubMed

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. PMID:22370231

  1. Chemical and biological systems for regenerating activated carbon contaminated with high explosives

    SciTech Connect

    Knezovich, J.P.; Daniels, J.I. [Lawrence Livermore National Lab., CA (United States); Stenstrom, M.K.; Heilmann, H.M. [Univ. of California, Los Angeles, CA (United States). Civil and Engineering Dept.

    1994-12-01

    Activated carbon has been used as a substrate for efficiently removing high explosives (HEs) from aqueous and gaseous waste streams. Carbon that is saturated with HEs, however, constitutes a solid waste and is currently being stored because appropriate technologies for its treatment are not available. Because conventional treatment strategies (i.e., incineration, open burning) are not safe or will not be in compliance with future regulations, new and cost-effective methods are required for the elimination of this solid waste. Furthermore, because the purchase of activated carbon and its disposal after loading with HEs will be expensive, an ideal treatment method would result in the regeneration of the carbon thereby permitting its reuse. Coupling chemical and biological treatment systems, such as those described below, will effectively meet these technical requirements. The successful completion of this project will result in the creation of engineered commercial systems that will present safe and efficient methods for reducing the quantities of HE-laden activated carbon wastes that are currently in storage or are generated as a result of demilitarization activities. Biological treatment of hazardous wastes is desirable because the biodegradation process ultimately leads to the mineralization (e.g., conversion to carbon dioxide, nitrogen gas, and water) of parent compounds and has favorable public acceptance. These methods will also be cost- effective because they will not require large expenditures of energy and will permit the reuse of the activated carbon. Accordingly, this technology will have broad applications in the private sector and will be a prime candidate for technology transfer.

  2. Recent advances in palladium-catalyzed carbon-carbon and carbon-boron bond forming processes

    E-print Network

    Billingsley, Kelvin L

    2008-01-01

    Chapter 1. Highly active and efficient catalyst systems derived from palladium precatalysts and monophosphine ligands for the Suzuki-Miyaura cross-coupling reaction of heteroaryl boronic acids and esters has been developed. ...

  3. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Back-end process provisions-carbon disulfide limitations for styrene butadiene...500 Back-end process provisions—carbon disulfide limitations for styrene butadiene...shall operate the process such that the carbon disulfide concentration in each...

  4. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    PubMed

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  5. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: Lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether

    PubMed Central

    Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF ? 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  6. [Removal of fluorescent whitening agent by hydrogen peroxide oxidation catalyzed by activated carbon].

    PubMed

    Liu, Hai-Long; Zhang, Zhong-Min; Zhao, Xia; Jiao, Ru-Yuan

    2014-06-01

    Degradation of fluorescent whitening agent VBL in the processes of activated carbon (AC) and activated carbon modified (ACM) adsorptions, hydrogen peroxide (H2O2) oxidation, and hydrogen peroxide oxidation catalyzed by activated carbon were studied. Mechanism of the above catalytic oxidation was also investigated by adding tert-Butyl alcohol (TBA), the free radical scavenger, and detecting the released gases. The results showed that: the activated carbon modified by Fe (NO3)3 (ACM)exhibited better adsorption removal than AC. Catalytic oxidation showed efficient removal of VBL, and the catalytic removal of AC (up to 95%) was significantly higher than that of ACM (58% only). Catalytic oxidation was inhibited by TBA, which indicates that the above reaction involved *OH radicals and atom oxygen generated by hydrogen peroxide with the presence of AC. The results of H2O2 decomposition and released gases detection involved in the process showed that activated carbon enhanced the decomposition of H2O2 which released oxygen and heat. More O2 was produced and higher temperature of the reactor was achieved, which indicated that H2O2 decomposition catalyzed by ACM was significantly faster than that of AC. Combining the results of VBL removal, it could be concluded that the rate of active intermediates (*OH radicals and atom oxygen) production by ACM catalytic reaction was faster than that of AC. These intermediates consumed themselves and produced O2 instead of degrading VBL. It seemed that the improper mutual matching of the forming rate of activating intermediates and the supply rate of reactants was an important reason for the lower efficiency of ACM catalytic reaction comparing with AC. PMID:25158496

  7. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    PubMed

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents. PMID:23978061

  8. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in this report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjuntion with wet air regeneration (WAR) at municipal wastewater treatment plants. xcessive ash concentrations accumulated in the mixed l...

  9. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  10. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    PubMed

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH. PMID:23798121

  11. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short-term disturbance-type responses.

  12. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short-term disturbance-type responses.

  13. Adsorption of Volatile Organic Compounds on Activated Carbon Fiber Preparedby Carbon Dioxide

    Microsoft Academic Search

    Zheng-Hong Huang; Feiyu Kang; Jun-Bing Yang; Kai-Ming Liang; Aiping Huang

    2002-01-01

    Viscose rayon fabric impregnated with (NH 4 ) 2 HPO 4 were carbonized in 200 cm 3 \\/min N 2 at 5°C\\/min with a residence time of 1 h at 850°C and then activated with 200 cm 3 \\/min CO 2 at 850°C for different burnoffs. The pore structure of all samples was characterized by N 2 adsorption at 77

  14. Laser Processing of Carbon Nanotube Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction, the relatively weak functional molecules are thermally decomposed. This restores the pristine CNT structure and allows carbon to carbon bonds to form; thereby significantly improving the junction and sheet conductivity. Laser processing is performed without damaging the TCF substrate (usually glass or PET) because laser light is not absorbed by the substrate and conduction from the CNTs is limited. In addition to removing the functional coating, laser light improves the electrical conductivity by purifying the CNT array. The purity is improved through the ablation of defective tubes and amorphous carbon in the CNT film.[1] Using higher laser power, it is possible to locally remove the CNTs. Selective laser removal of the CNTs is a dry process that can be used to pattern the electrode. This is a much simpler and less expensive patterning technique than wet acid etching used for ITO. In summary, laser processing of CNT TCFs is shown to improve the electrical conductivity by defunctionalizing the CNTs. In addition, laser exposure increases purity by removing defects and can be used to pattern the electrode. These advances make CNTs more competitive as an alternative for ITO which has both cost and performance limitations. [1] T. Ueda, S. K. (2008). Effect of laser irradiation on carbon nanotube films for NOx gas sensor. Surface & Coatings Technology, 202, 5325--5328.

  15. Lactose oxidation over palladium catalysts supported on active carbons and on carbon nanofibres

    Microsoft Academic Search

    Anton V. Tokarev; Elena V. Murzina; Kari Eränen; Heidi Markus; Arie J. Plomp; Johannes H. Bitter; Päivi Mäki-Arvela; Dmitry Yu. Murzin

    2009-01-01

    Liquid-phase lactose oxidation was investigated over supported Pd\\/C and Pd-carbon nanofibre catalysts, which were characterized\\u000a by several methods. A complex relationship between catalyst activity and catalyst acidity was established, i.e. optimum catalyst\\u000a acidity resulted in the highest activity in lactose oxidation. In-situ catalyst potential measurements during lactose oxidation\\u000a gave information about the extent of accumulation of oxygen on the metal

  16. Soil carbon sequestration and land-use change: processes and potential

    E-print Network

    , are insuf®cient to account for a signi®cant fraction of the missing C in the global carbon cycle as accu as its role in terrestrial ecosystem carbon balance and the global carbon cycle. The loss of soil organicSoil carbon sequestration and land-use change: processes and potential W . M . P O S T * and K . C

  17. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed

    E-print Network

    Hong, Soon Hyung

    Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites The microstructure of carbon nanotube reinforced copper matrix (CNT/Cu) nanocomposites, processed by molecular: Metal matrix composites; Nanocomposite; Carbon and graphite; Thermal conductivity Carbon nanotubes (CNTs

  18. Process Support for Evolving Active Architectures

    Microsoft Academic Search

    R. Mark Greenwood; Dharini Balasubramaniam; Sorana Cîmpan; Graham N. C. Kirby; Kath Mickan; Ronald Morrison; Flávio Oquendo; Ian Robertson; Wykeen Seet; Bob Snowdon; Brian C. Warboys; Evangelos Zirintsis

    2003-01-01

    Long-lived, architecture-based software systems are increasingly important. Effective process support for these systems depends upon recognising their compositional nature and the active role of their architecture in guiding evolutionary development. Current process approaches have difficulty with run-time architecture changes that are not known a priori, and dealing with extant data during system evolution. This paper describes an approach that deals

  19. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-01

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions. PMID:22663136

  20. The production of activated silica with carbon dioxide gas

    E-print Network

    Hayes, William Bell

    1956-01-01

    LIBRARY A A M COLLEGE OF TEXAS THE PRODIICTION OF ACTIVAT!D SILICA )TITH CARBON DIOXIDE GAS A Thesis Killi, am Bell Hayes III Submitted to the Graduate School of the Agricultural and Mechani cal ColleSe of Texas in parti. al fulfillment... of the reciuire . ents for the dedree of iliASTER OF SCIENCE Janus', 1956 Major Subject: Chemi. cal Engineering TH PRODUCTION OP ACTIVATED SILICA 7iIITH CARBON DIOXIDE GAS A Thesis William Bell Hayes III Approved as to style and content by: Chairmen...

  1. Mechanisms of Carbon Nanotube Production by Laser Ablation Process

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Arepalli, Sivaram; Nikolaev, Pavel; Smalley, Richard E.; Nocholson, Leonard S. (Technical Monitor)

    2000-01-01

    We will present possible mechanisms for nanotube production by laser oven process. Spectral emission of excited species during laser ablation of a composite graphite target is compared with that of laser irradiated C60 vapor. The similarities in the transient and spectral data suggest that fullerenes are intermediate precursors for nanotube formation. The confinement of the ablation products by means of a 25-mm diameter tube placed upstream of the target seems to improve the production and purity of nanotubes. Repeated laser pulses vaporize the amorphous/graphitic carbon and possibly catalyst particles, and dissociate fullerenes yielding additional feedstock for SWNT growth.

  2. Effect of activated carbon on the properties of carboxymethylcellulose\\/activated carbon hybrid hydrogels synthesized by ?-radiation technique

    Microsoft Academic Search

    Jingyi Qiu; Ling Xu; Jing Peng; Maolin Zhai; Long Zhao; Jiuqiang Li; Genshuan Wei

    2007-01-01

    Activated carbon (AC) was incorporated into carboxymethylcellulose (CMC) to form CMC\\/AC hybrid hydrogels with excellent elasticity and flexibility by radiation crosslinking. The effect of AC on the formation, properties and structure of CMC\\/AC hybrid hydrogels was discussed in terms of gel fraction, gel strength, gel swelling, TGA, FTIR spectra and SEM image. Compared with pure CMC hydrogel, the gel fraction,

  3. Modeling trapping mechanism for PCB adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Jensen, Bjørnar; Kvamme, Bjørn; Kuznetsova, Tatyana; Oterhals, A.?ge

    2012-12-01

    The levels of polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran (PCDD/F) and dioxin-like polychlorinated biphenyl (DL-PCB) in fishmeal and fish oil produced for use in feed for salmon is above present European legislation levels in some regions of the world and different decontamination approaches have been proposed [1]. One of these is adsorption on activated carbon. This approach appears to be efficient for adsorption of PCDD/F but less efficient for DL-PCB [2]. Activated carbon consists of slit pores with average sizes of 20 - 50 Ångstroms. One hypothesis [2] for the mechanism of trapping DL-PCB is reduced ability for intramolecular movements of the PCB molecules inside the slit pores. In order to investigate this hypothesis we have used quantum mechanics [3] to characterize two DL-PCB congeners, respectively congener 77 (3,3',4,4'-Tetrachlorobiphenyl) and congener 118 (2,3',4,4',5-Pentachlorobiphenyl) and Triolein (18:1) [4] as a major constituent of the solvent fish oil. A model for activated carbon was constructed using a crystal structure of graphite from the American Mineralogist Crystal Structure Database [5]. The crystal structure used was originally from Wyckoff [6]. A small program had to be written to generate the desired graphite structure as it contains no less than 31232 Carbon atoms. Partial atomic charges were estimated using QM with DFT/B3LYP/6-311+g** and SM6 [7].

  4. Self-organisation Processes In The Carbon ARC For Nanosynthis

    SciTech Connect

    Ng, Jonathan; Raitses, Yevgeny

    2014-02-26

    The atmospheric pressure carbon arc in inert gases such as helium is an important method for the production of nanomaterials. It has recently been shown that the formation of the carbon deposit on the cathode from gaseous carbon plays a crucial role in the operation of the arc, reaching the high temperatures necessary for thermionic emission to take place even with low melting point cathodes. Based on observed ablation and deposition rates, we explore the implications of deposit formation on the energy balance at the cathode surface, and show how the operation of the arc is self-organised process. Our results suggest that the can arc operate in two di erent regimes, one of which has an important contribution from latent heat to the cathode energy balance. This regime is characterised by the enhanced ablation rate, which may be favourable for high yield synthesis of nanomaterials. The second regime has a small and approximately constant ablation rate with a negligible contribution from latent heat.

  5. Self-organisation Processes In The Carbon ARC For Nanosynthis

    SciTech Connect

    Ng, J.; Raitses, Yefgeny [Princeton Plasma Physics Lab., Princeton, NJ (United States)

    2014-02-02

    The atmospheric pressure carbon arc in inert gases such as helium is an important method for the production of nanomaterials. It has recently been shown that the formation of the carbon deposit on the cathode from gaseous carbon plays a crucial role in the operation of the arc, reaching the high temperatures necessary for thermionic emission to take place even with low melting point cathodes. Based on observed ablation and deposition rates, we explore the implications of deposit formation on the energy balance at the cathode surface, and show how the operation of the arc is self-organised process. Our results suggest that the can arc operate in two di erent regimes, one of which has an important contribution from latent heat to the cathode energy balance. This regime is characterised by the enhanced ablation rate, which may be favourable for high yield synthesis of nanomaterials. The second regime has a small and approximately constant ablation rate with a negligible contribution from latent heat.

  6. Self-organisation processes in the carbon arc for nanosynthesis

    NASA Astrophysics Data System (ADS)

    Ng, J.; Raitses, Y.

    2015-02-01

    The atmospheric pressure carbon arc in inert gases such as helium is an important method for the production of nanomaterials. It has recently been shown that the formation of the carbon deposit on the cathode from gaseous carbon plays a crucial role in the operation of the arc, reaching the high temperatures necessary for thermionic emission to take place even with low melting point cathodes. Based on observed ablation and deposition rates, we explore the implications of deposit formation on the energy balance at the cathode surface and show how the operation of the arc is self-organised process. Our results suggest that the arc can operate in two different ablation-deposition regimes, one of which has an important contribution from latent heat to the cathode energy balance. This regime is characterised by the enhanced ablation rate, which may be favourable for high yield synthesis of nanomaterials. The second regime has a small and approximately constant ablation rate with a negligible contribution from latent heat.

  7. Material processing with hydrogen and carbon monoxide on Mars

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Landis, Geoffrey A.; Linne, Diane L.

    1991-01-01

    Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.

  8. Measurements of Increased Enthalpies of Adsorption for Boron-Doped Activated Carbons

    NASA Astrophysics Data System (ADS)

    Gillespie, Andrew; Beckner, Matthew; Chada, Nagaraju; Schaeperkoetter, Joseph; Singh, Anupam; Lee, Mark; Wexler, Carlos; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Boron-doping of activated carbons has been shown to increase the enthalpies of adsorption for hydrogen as compared to their respective undoped precursors (>10kJ/mol compared to ca. 5kJ/mol). This has brought significant interest to boron-doped carbons for their potential to improve hydrogen storage. Boron-doped activated carbons have been produced using a process involving the deposition of decaborane (B10H14) and high-temperature annealing resulting in boron contents up to 15%. In this talk, we will present a systematic study of the effect that boron content has on the samples' structure, hydrogen sorption, and surface chemistry. Measurements have shown a significant increase in the areal hydrogen excess adsorption and binding energy. Experimental enthalpies of adsorption will be presented for comparison to theoretical predictions. Additionally, samples have been characterized by thermal gravimetric analysis, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. TGA and GC-MS results investigated the decomposition of the decaborane in the carbon. Boron-carbon bonds are shown in the FTIR and XPS spectra, indicating that boron has been incorporated into the carbon matrix.

  9. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion. PMID:14527446

  10. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon.

    PubMed

    El-Sikaily, Amany; El Nemr, Ahmed; Khaled, Azza; Abdelwehab, Ola

    2007-09-01

    Biosorption of heavy metals can be an effective process for the removal of toxic chromium ions from wastewater. In this study, the batch removal of toxic hexavalent chromium ions from aqueous solution, saline water and wastewater using marine dried green alga Ulva lactuca was investigated. Activated carbon prepared from U. lactuca by acid decomposition was also used for the removal of chromium from aqueous solution, saline water and wastewater. The chromium uptake was dependent on the initial pH and the initial chromium concentration, with pH approximately 1.0, being the optimum pH value. Langmuir, Freundlich, Redlich-Peterson and Koble-Corrigan isotherm models were fitted well the equilibrium data for both sorbents. The maximum efficiencies of chromium removal were 92 and 98% for U. lactuca and its activated carbon, respectively. The maximum adsorption capacity was found to be 10.61 and 112.36 mg g(-1) for dried green alga and activated carbon developed from it, respectively. The adsorption capacities of U. lactuca and its activated carbon were independent on the type of solution containing toxic chromium and the efficiency of removal was not affected by the replacing of aqueous solution by saline water or wastewater containing the same chromium concentration. Two hours were necessary to reach the sorption equilibrium. The chromium uptake by U. lactuca and its activated carbon form were best described by pseudo second-order rate model. This study verifies the possibility of using inactivated marine green alga U. lactuca and its activated carbon as valuable material for the removal of chromium from aqueous solutions, saline water or wastewater. PMID:17360109

  11. Self-organization processes at active interfaces

    NASA Astrophysics Data System (ADS)

    Alonso, S.; Chen, H.-Y.; Bär, M.; Mikhailov, A. S.

    2010-12-01

    Four examples for active processes at interfaces are studied and reveal complex pattern formation phenomena including complex defect dynamics, standing waves and turbulence, bistability and domain formation and Turing patterns. The examples studied range from active Langmuir monolayers to thin films with floating molecular machines and biomembranes with active proteins. It is shown that linear stability analysis and numerical simulations of the resulting continuum model equations allow to qualitatively reproduce previous experimental observation in some cases and offer intriguing predictions for future investigations in the laboratory.

  12. Active Sites and Mechanisms for Direct Oxidation of Benzene to Phenol over Carbon Catalysts.

    PubMed

    Wen, Guodong; Wu, Shuchang; Li, Bo; Dai, Chunli; Su, Dang Sheng

    2015-03-23

    The direct oxidation of benzene to phenol with H2 O2 as the oxidizer, which is regarded as an environmentally friendly process, can be efficiently catalyzed by carbon catalysts. However, the detailed roles of carbon catalysts, especially what is the active site, are still a topic of debate controversy. Herein, we present a fundamental consideration of possible mechanisms for this oxidation reaction by using small molecular model catalysts, Raman spectra, static secondary ion mass spectroscopy (SIMS), DFT calculations, quasi in?situ ATR-IR and UV spectra. Our study indicates that the defects, being favorable for the formation of active oxygen species, are the active sites for this oxidation reaction. Furthermore, one type of active defect, namely the armchair configuration defect was successfully identified. PMID:25649914

  13. The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution

    Microsoft Academic Search

    Robert Considine; Renaud Denoyel; Phillip Pendleton; Russell Schumann; Shiaw-Hui Wong

    2001-01-01

    An activated carbon with a relatively high oxygen content was heated at various temperatures in an argon atmosphere to produce a series of carbons with decreasing oxygen content. A second activated carbon with a relatively low oxygen content was treated with an ozone–oxygen mixture to produce a series of carbons with increasing oxygen content. In both cases, the pore size

  14. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. PMID:20382474

  15. Application of Diffusion Data in Carbonates to Estimate Timescales and Conditions of Texture Forming Processes

    NASA Astrophysics Data System (ADS)

    Muller, T.; Watson, E. B.; Cherniak, D. J.

    2010-12-01

    Diffusive exchange of elements between minerals is undoubtedly one of the major processes controlling mass transport in the Earth’s interior, and contributes to a wide range of phenomena, including inter-mineral reactions, crystal growth and texture formation. Chemical zoning within minerals is a commonly observed feature indicating that a crystal was not able to homogenize its composition as a function of external conditions such as pressure and temperature as dictated by thermodynamics. Detailed knowledge of the rates and mechanism of diffusive processes can be used to determine timescales and P-T conditions of geological events, even if compositional equilibrium was not reached at the scale of interest. Carbonates are very promising candidates to study these kinetically controlled processes as they are major constituents of terrestrial and planetary bodies. Recently presented data for diffusion of divalent cations in carbonates (Mueller et al., 2010) revealed surprisingly low activation energies for temperatures below 500°C (< 100 kJ/mol) and suggest low temperatures for diffusive closure of carbonates. For example, calculated closure temperatures for a grain with a radius of 100µm and a monotonic cooling rate of 10°C/Ma can be as low as 230°C for Fe-Mg exchange and about 200°C for the exchange of Mn-Mg. Hence, the combination of low activation energies together with slow diffusivities potentially makes Fe and Mn profiles suitable tracer of texture formation processes and allows constraining timescales of metamorphic events even at relatively low temperatures. Our data may also bear on retention of heavy stable isotope biosignatures and indicators of paleo-redox conditions. We present examples of natural compositional zoning and numerical modeling to show that compositional zoning in carbonates can be used to decipher information of kinetically controlled processes such as mineral growth, time-temperature-paths or estimates on the duration of texture-forming processes and isotope retention in carbonate crystals on terrestrial and planetary bodies. Mueller, T.; Cherniak, D.; Watson, E.B. (2010): Experimentally determined interdiffusion data of divalent cations in carbonates. Supplement to Geochimica Cosmochimica Acta, v.74, p.733.

  16. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    PubMed

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics. PMID:21179969

  17. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  18. Waste management activities and carbon emissions in Africa.

    PubMed

    Couth, R; Trois, C

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries. PMID:20832276

  19. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  20. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…