Sample records for activated carbon zeolite

  1. Purification of metal finishing waste waters with zeolites and activated carbons.

    PubMed

    Leinonen, H; Lehto, J

    2001-02-01

    Sixteen zeolites and 5 activated carbons were tested for the removal of nickel, zinc, cadmium, copper, chromium, and cobalt from waste simulants mimicking effluents produced in metal plating plants. The best performances were obtained from 4 zeolites: A, X, L, and ferrierite types and from 2 carbon types made from lignite and peat. The distribution coefficients for these sorbents were in the range of 10,000-440,000 ml/g. Column experiments showed that the most effective zeolites for Zn, Ni, Cu, and Cd were A and X type zeolites. The activated carbons, Hydrodarco 3000 and Norit Row Supra, exhibited good sorption properties for metals in aqueous solutions containing complexing agents.

  2. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  3. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    PubMed

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  4. Enhanced selectivity of zeolites by controlled carbon deposition

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  5. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  6. Adsorption of basic dyes on granular activated carbon and natural zeolite.

    PubMed

    Meshko, V; Markovska, L; Mincheva, M; Rodrigues, A E

    2001-10-01

    The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass transfer resistance is proposed for the kinetic investigation. The dependence of solid diffusion coefficient on initial concentration and mass adsorbent is represented by the simple empirical equations.

  7. Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon.

    PubMed

    Xue, Runmiao; Donovan, Ariel; Zhang, Haiting; Ma, Yinfa; Adams, Craig; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd; Shi, Honglan

    2018-02-01

    When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. Copyright © 2017. Published by Elsevier B.V.

  8. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes

    PubMed Central

    Liu, Jiancong; Wang, Ning; Yu, Yue; Yan, Yan; Zhang, Hongyue; Li, Jiyang; Yu, Jihong

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperature and atmosphere. This intriguing TADF phenomenon is due to the fact that nanoconfined space of zeolites can efficiently stabilize the triplet states of CDs, thus enabling the reverse intersystem crossing process for TADF. Meanwhile, zeolite frameworks can also hinder oxygen quenching to present TADF behavior at air atmosphere. This design concept introduces a new perspective to develop materials with unique TADF performance and various novel delayed fluorescence–based applications. PMID:28560347

  9. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    NASA Astrophysics Data System (ADS)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  10. Dioctahedral Phyllosilicates Versus Zeolites and Carbonates Versus Zeolites Competitions as Constraints to Understanding Early Mars Alteration Conditions

    NASA Astrophysics Data System (ADS)

    Viennet, Jean-Christophe; Bultel, Benjamin; Riu, Lucie; Werner, Stephanie C.

    2017-11-01

    Widespread occurrence of Fe,Mg-phyllosilicates has been observed on Noachian Martian terrains. Therefore, the study of Fe,Mg-phyllosilicate formation, in order to characterize early Martian environmental conditions, is of particular interest to the Martian community. Previous studies have shown that the investigation of Fe,Mg-smectite formation alone helps to describe early Mars environmental conditions, but there are still large uncertainties in terms of pH range, oxic/anoxic conditions, etc. Interestingly, carbonates and/or zeolites have also been observed on Noachian surfaces in association with the Fe,Mg-phyllosilicates. Consequently, the present study focuses on the dioctahedral/trioctahedral phyllosilicate/carbonate/zeolite formation as a function of various CO2 contents (100% N2, 10% CO2/90% N2, and 100% CO2), from a combined approach including closed system laboratory experiments for 3 weeks at 120°C and geochemical simulations. The experimental results show that as the CO2 content decreases, the amount of dioctahedral clay minerals decreases in favor of trioctahedral minerals. Carbonates and dioctahedral clay minerals are formed during the experiments with CO2. When Ca-zeolites are formed, no carbonates and dioctahedral minerals are observed. Geochemical simulation aided in establishing pH as a key parameter in determining mineral formation patterns. Indeed, under acidic conditions dioctahedral clay minerals and carbonate minerals are formed, while trioctahedral clay minerals are formed in basic conditions with a neutral pH value of 5.98 at 120°C. Zeolites are favored from pH ≳ 7.2. The results obtained shed new light on the importance of dioctahedral clay minerals versus zeolites and carbonates versus zeolites competitions to better define the aqueous alteration processes throughout early Mars history.

  11. Oily wastewater treatment by adsorption-membrane filtration hybrid process using powdered activated carbon, natural zeolite powder and low cost ceramic membranes.

    PubMed

    Rasouli, Yaser; Abbasi, Mohsen; Hashemifard, Seyed Abdollatif

    2017-08-01

    In this research, four types of low cost and high performance ceramic microfiltration (MF) membranes have been employed in an in-line adsorption-MF process for oily wastewater treatment. Mullite, mullite-alumina, mullite-alumina-zeolite and mullite-zeolite membranes were fabricated as ceramic MF membranes by low cost kaolin clay, natural zeolite and α-alumina powder. Powdered activated carbon (PAC) and natural zeolite powder in concentrations of 100-800 mg L -1 were used as adsorbent agent in the in-line adsorption-MF process. Performance of the hybrid adsorption-MF process for each concentration of PAC and natural zeolite powder was investigated by comparing quantity of permeation flux (PF) and total organic carbon (TOC) rejection during oily wastewater treatment. Results showed that by application of 400 mg L -1 PAC in the adsorption-MF process with mullite and mullite-alumina membranes, TOC rejection was enhanced up to 99.5% in comparison to the MF only process. An increasing trend was observed in PF by application of 100-800 mg L -1 PAC. Also, results demonstrated that the adsorption-MF process with natural zeolite powder has higher performance in comparison to the MF process for all membranes except mullite-alumina membranes in terms of PF. In fact, significant enhancement of PF and TOC rejection up to 99.9% were achieved by employing natural zeolite powder in the in-line adsorption-MF hybrid process.

  12. Modification of Natural Zeolite with Fe(III) and Its Application as Adsorbent Chloride and Carbonate ions

    NASA Astrophysics Data System (ADS)

    Suhartana; Sukmasari, Emmanuella; Azmiyawati, Choiril

    2018-04-01

    The aim of the research is to natural zeolite with Fe(III) using anion exchange process to improve the anion exchange capacity. Natural zeolite was activated using HNO3 1 N and then mixed with FeCl3 solution and refluxed followed by oven and calcination at a temperature of 550°C. The influence of Fe(III) to zeolite was characterized by FTIR while presence of Fe in zeolite characterized by AAS. Zeolite and Zeolite-Fe adsorption capacity of chloride and carbonate anions were determined through adsorption test by variation of pH and contact time. In advanced, and then to determining the Fe adsorbed concentration at Zeolite using UV-Vis spectrophotometer. FTIR analysis result showed that the addition of Fe does not affect the zeolite’s structure but change the intensity of the zeolite spectra. The Fe concentration in Zeolite-Fe of 714 mg L-1, indicate that Fe was present in the zeolite. Both Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Chloride anion is 2, with adsorption capacity 2,33 x 10-3 gg-1 and optimum contact time is 8 minutes. While Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Carbonate anion is 5, with adsorption capacity 5,31 x 10-3 gg-1 and optimum contact time is 8 minutes.

  13. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    PubMed

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Zeolite-templated carbons - three-dimensional microporous graphene frameworks.

    PubMed

    Nishihara, H; Kyotani, T

    2018-05-31

    Zeolite-templated carbons (ZTCs) are ordered microporous carbons synthesized by using zeolite as a sacrificial template. Unlike well-known ordered mesoporous carbons obtained by using mesoporous silica templates, ZTCs consist of curved and single-layer graphene frameworks, thereby affording uniform micropore size (ca. 1.2 nm), developed microporosity (∼1.7 cm3 g-1), very high surface area (∼4000 m2 g-1), good compatibility with chemical modification, and remarkable softness/elasticity. Thus, ZTCs have been used in many applications such as hydrogen storage, methane storage, CO2 capture, liquid-phase adsorption, catalysts, electrochemical capacitors, batteries, and fuel cells. Herein, the relevant research studies are summarized, and the properties as well as the performances of ZTCs are compared with those of other materials including metal-organic frameworks, to elucidate the intrinsic advantages of ZTCs and their future development.

  15. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water.

    PubMed

    Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng

    2015-09-01

    Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    EPA Science Inventory

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  17. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene.

    PubMed

    Chan, Bun; Radom, Leo

    2008-07-30

    Ab initio molecular orbital theory and density functional theory calculations have been used to study the three-stage zeolite-catalyzed hydrogenation of CO2 to methanol and the hydrogenation of C2H 4 to ethane, with the aim of designing an effective zeolite catalyst for these reactions. Both Brønsted acid (XH) and alkali metal (XM) sites in model zeolites (-X-Al-XH- or -X-Al-XM-) have been examined. It is found that appropriately designed zeolites can provide excellent catalysis for these reactions, particularly for the hydrogenation of CO2, HCO2H and CH2O, with uncatalyzed barriers of more than 300 kJ mol(-1) being reduced to as little as 17 kJ mol(-1) (in the case of CH2O). The reaction barrier depends on the acidity of the XH moiety or the nature of the metal cation M in the XM moiety, and the basicity of the adjacent X group in the catalyst. For a catalyst based on alkali metal zeolites (XM), the catalytic activity is relatively insensitive to the nature of X in the XM group. As a result, the catalytic activity for these types of zeolites increases as X becomes more basic. We propose that alkali metal zeolites with Ge and N incorporated into the framework could be very effective catalysts for hydrogenation processes.

  18. CuY zeolite catalysts prepared by ultrasonication-assisted ion-exchange for oxidative carbonylation of methanol to dimethyl carbonate.

    PubMed

    Woo, Je-Min; Seo, Jung Yoon; Kim, Hyunuk; Lee, Dong-Ho; Park, Young Cheol; Yi, Chang-Keun; Park, Yeong Seong; Moon, Jong-Ho

    2018-06-01

    The influence of ultrasonication treatment on the catalytic performance of CuY zeolite catalysts was investigated for the liquid-phase oxidative carbonylation of methanol to dimethyl carbonate (DMC). The deammoniation method of NH 4 Y into HY zeolites was optimized and characterized by elemental analyzer, derivative thermogravimetry, Brunauer-Emmett-Teller (BET) analyzer, and powder X-ray diffractometry, revealing that the HY zeolite deammoniated at 400 °C presented the highest surface area, complete ammonium/proton ion exchange, and no structure collapse, rendering it the best support from all the prepared zeolites. CuY zeolites were prepared via aqueous phase ion exchange with the aid of ultrasonication. Upon ultrasonication, the Cu + active centers were uniformly dispersed in the Y zeolites, penetrating the core of the zeolite particles in a very short time. In addition to enhancing the Cu dispersity, the ultrasonication treatment influenced the BET surface area, acid amount, Cu + /Cu 2+ ratio, and also had a relatively small impact on the Cu loading. Consequently, adequate exposure to ultrasonication was able to increase the conversion rate of methanol into dimethyl carbonate up to 11.4% with a comparable DMC selectivity of 23.7%. This methanol conversion is 2.65 times higher than that obtained without the ultrasonication treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  20. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    PubMed

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  1. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGES

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; ...

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  3. Immobilizing of catalyst using Bayah's natural zeolite to reduce the chemical oxygen demand (COD) and total organic carbon (TOC)

    NASA Astrophysics Data System (ADS)

    Jayanudin, Kustiningsih, Indar; Sari, Denni Kartika

    2017-05-01

    Indonesia is rich of natural minerals, many of which had not been widely used. One potential natural mineral is zeolite from Bayah Banten that can be used to support catalyst in the process of waste degradation. The purpose of this research is to characterize the Bayah's zeolite and to figure out the effectiveness of the zeolite as supporting agent to the Fe catalyst in the process of phenol degradation, with the main purposes are to reduce the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). This research consists of three steps, activation of natural zeolite using 1M, 2M, and 3M NaOH solution, impregnation process with 0.025M, 0.05 M and 0.075M Fe(NO3)3.9H2O solution, and calcination at 500°C. Bayah's natural zeolite was characterize using Brauner-Emmet-Teller (BET) for its pore area, X-ray Fluorescence (XRF) for analyzing zeolite's component before and after activation process and after impregnation process, and Scanning Electron Microscope (SEM) for analyzing zeolite's morphology. The result showed that the highest pore area was 9Å, Fe metal from Fe(NO3)3.9H2O 0,075 M solution remained in zeolite pore was 7,73%, the reduction of COD and TOC was yielded at H2O2: phenol ratio of 1 : 6.

  4. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation.

    PubMed

    An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn

    2016-01-01

    To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix.

  5. Carbonic anhydrase inspired poly(N-vinylimidazole)/zeolite Zn-β hybrid membranes for CO2 capture.

    PubMed

    Liu, Yanni; Wang, Zhi; Shi, Mengqi; Li, Nan; Zhao, Song; Wang, Jixiao

    2018-06-14

    A carbonic anhydrase inspired material was developed by incorporating Zn(ii) ion exchanged zeolite β into poly(N-vinylimidazole) solution. The hydrophobic zeolite channels were designed to imitate the function of the hydrophobic pocket in carbonic anhydrase. The composite membrane prepared by casting the material on a polysulfone ultrafiltration membrane showed a high CO2 permeance of 4620 GPU with a high CO2/N2 selectivity of 224.

  6. Activity of titania and zeolite samples dosed with triethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Caitlin; Gole, James L.; Brauer, Jonathan

    2016-01-01

    Certain properties of titania and the ammonium- and proton-form of Y zeolites (silica/alumina ratio of 5.2) were explored before and after treatment by triethylamine (TEA). The effect of the triethylamine upon the physical and chemical properties of both titania and the zeolite were characterized by physical and chemical adsorption methods. BET surface area data showed enhanced surface area of the TEA-treated nanotitania over the untreated nanotitania whereas the TEA-treated zeolite showed a considerable decrease in surface area compared to the untreated zeolite. TPD of the TEA-treated Y zeolite showed that weakly adsorbed TEA left the surface between 150 and 300more » oC; strongly adsorbed TEA decomposed to ethylene and ammonia at higher temperatures. XPS, IR, and Raman spectroscopies, powder XRD, and 27Al MAS-NMR spectroscopy were used to further characterize the changes introduced by in-situ nitridation. Pre-adsorbed triethylamine decorated acid sites so as to neutralize these sites for the reaction of methanol to dimethylether. Carbon monoxide and ormaldehyde, products of the methanol probe reaction, were observed-- suggesting that basic sites are present in this treated zeolite and titania.« less

  7. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  8. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    NASA Astrophysics Data System (ADS)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  9. Removal of carbon monoxide. Physical adsorption on natural and synthetic zeolites

    NASA Technical Reports Server (NTRS)

    Alfani, F.; Greco, G., Jr.; Iroio, G.

    1982-01-01

    The utilization of natural zeolite materials in the elimination of polluting gases is investigated. Carbon monoxide pollution is emphasized because its concentration may reach dangerous levels in places such as vehicle tunnels, underground parking lots, etc. The elimination of carbon monoxide is also of interest in some industrial processes relating to the production of pure gases.

  10. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  11. Biofiltration of ammonia gas with sponge cubes coated with mixtures of activated carbon and zeolite.

    PubMed

    Kim, H; Xi, Q; Kim, Y J; Chung, S

    2002-08-01

    Removal of ammonia gas was investigated using a biofilter system packed with small cubes of polyurethane sponge that were coated with a powder mixture of activated carbon and natural zeolite. Experimental tests and measurements include removal efficiency, pH, metabolic products of ammonia and kinetic analysis. A removal efficiency over 90% can be obtained with ammonia concentrations below 150 ppm and at contact times above 23 sec.The ammonia adsorbing power of the present biocarrier can protect the biofilter system from a high ammonia shock loading in the feed. The maximum removal rate, Vm, obtained from the kinetic analysis is 8.47 g N (kg carrier)(-1) day(-1) and the saturation constant Ks is 50.36 ppm. Nitrite is produced dominantly during the entire experiments. The cell number of nitrifying bacteria is 1.58 x 10( cell (g carrier)(-1). The present synthetic bio-carrier is considered to be one of the best among bio-carriers that have been used for the biofiltration of ammonia.

  12. Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane

    NASA Astrophysics Data System (ADS)

    Kaengsilalai, Athiya; Luengnaruemitchai, Apanee; Jitkarnka, Sirirat; Wongkasemjit, Sujitra

    The catalytic activity of Ni on a series of catalysts supported on the synthesized KH zeolite for the CO 2 reforming of methane has been investigated. The KH zeolite supports were previously synthesized via silatrane and alumatrane precursors using the sol-gel process and hydrothermal microwave treatment. Eight percent Ni was impregnated onto the synthesized KH zeolites, which have different morphologies: called dog-bone, flower, and disordered shapes. The prepared Ni/KH zeolites were tested for their catalytic activity at 700 °C, at atmospheric pressure, and at a CH 4/CO 2 ratio of 1. The results showed that Ni supported on dog-bone and flower-shaped KH zeolites provided better activity than that of disordered KH zeolite due to higher CH 4 and CO 2 conversions, a higher H 2 production, and a smaller amount of coke formation on the catalyst surface. Furthermore, the stability of the Ni/KH zeolite was greatly superior to that of Ni supported on alumina and clinoptiolite catalysts after 65 h on stream.

  13. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst

    PubMed Central

    Wang, Liang; Wang, Guoxiong; Zhang, Jian; Bian, Chaoqun; Meng, Xiangju; Xiao, Feng-Shou

    2017-01-01

    The synthesis of organic nitriles without using toxic cyanides is in great demand but challenging to make. Here we report an environmentally benign and cost-efficient synthesis of nitriles from the direct oxidative cyanation of primary carbon-hydrogen bonds with easily available molecular oxygen and urea. The key to this success is to design and synthesize manganese oxide catalysts fixed inside zeolite crystals, forming a manganese oxide catalyst with zeolite sheath (MnOx@S-1), which exhibits high selectivity for producing nitriles by efficiently facilitating the oxidative cyanation reaction and hindering the side hydration reaction. The work delineates a sustainable strategy for synthesizing nitriles while avoiding conventional toxic cyanide, which might open a new avenue for selective transformation of carbon-hydrogen bonds. PMID:28504259

  14. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

    PubMed

    Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M

    2014-04-01

    Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

  15. CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors.

    PubMed

    Kim, Jeonghun; Young, Christine; Lee, Jaewoo; Park, Min-Sik; Shahabuddin, Mohammed; Yamauchi, Yusuke; Kim, Jung Ho

    2016-10-27

    Carbon nanotubes (CNT) grown on nanoporous carbon (NPC), which yields coexisting amorphous and graphitic nanoarchitectures, have been prepared on a large scale from zeolitic imidazolate framework (ZIF) by introducing bimetallic ions (Co 2+ and Zn 2+ ). Interestingly, the hybrid Co/Zn-ZIF-derived NPC showed rich graphitic CNTs on the surface. This NPC was utilized for a coin-type supercapacitor cell with an aqueous electrolyte, which showed enhanced retention at high current density and good stability over 10 000 cycles.

  16. Zeolite A imidazolate frameworks

    NASA Astrophysics Data System (ADS)

    Hayashi, Hideki; Côté, Adrien P.; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M.

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and β-cages for FAU, α- and β-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  17. Zeolite A imidazolate frameworks.

    PubMed

    Hayashi, Hideki; Côté, Adrien P; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and beta-cages for FAU, alpha- and beta-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  18. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.

    PubMed

    Chang, Haiqing; Liu, Teng; He, Qiping; Li, Duo; Crittenden, John; Liu, Baicang

    2017-07-01

    Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca 2+ and Mg 2+ from shale gas flowback water. Results showed that low removal of Ca 2+ and Mg 2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca 2+ and Mg 2+ , respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.

  19. Characterization and Activation of Indonesian Natural Zeolite from Southwest Aceh District-Aceh Province

    NASA Astrophysics Data System (ADS)

    Yulianis, Y.; Muhammad, S.; Pontas, K.; Mariana, M.; Mahidin, M.

    2018-05-01

    This study aims to identify the effect of activation processes of Indonesian zeolite from Southwest Aceh District, Aceh Province on the physical characteristics and chemical contents changes. The work was conducted by downsizing of natural zeolite into nano particle size, treating it physically (heated up to 105˚C) and chemically (soaked with 0.5 M HCl for 1 hour), and finally calcining it at the temperature of 350° C for 2 hours. The natural and activated nano zeolites were then characterized by using SEM, BET, XRD, XRF and FTIR in order to examine their characters and chemical contents. The characterization results showed that the activated nano zeolite has better appearances than the natural one. The XRD analysis showed that the main minerals of zeolite are quartz and calcite clinochlore. Further, the XRF analysis showed that there are elements of magnesium, calcium and potassium which can be as a cation exchange with other metal elements. Based on the identified properties, this zeolite showed a good performance to be used as an adsorbent in waste water treatment process, especially after activated.

  20. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.

  1. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    PubMed

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  3. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments.

    PubMed

    Ivarsson, M; Lindblom, S; Broman, C; Holm, N G

    2008-03-01

    In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust

  4. Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture.

    PubMed

    Nguyen, Tien Hoa; Kim, Sungjune; Yoon, Minyoung; Bae, Tae-Hyun

    2016-03-08

    To prepare materials with high CO2 adsorption, a series of hierarchical LTA zeolites possessing various mesopore spaces that are decorated with alkylamines was designed and synthesized. The highest CO2 uptake capacity was achieved when (3-aminopropyl)trimethoxysilane (APTMS) was grafted onto the hierarchical LTA zeolite having the largest mesopores. Owing to the contributions of both alkylamine groups grafted onto the mesopore surfaces and active sites in the LTA zeolites, the amount of CO2 that can be taken up on these materials is much higher than for conventional aminosilicas such SBA-15 and MCM-41. Furthermore, the adsorbent shows good CO2 uptake capacity and recyclability in dynamic flow conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    PubMed

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  7. Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes?

    PubMed

    Weiß, S; Lebuhn, M; Andrade, D; Zankel, A; Cardinale, M; Birner-Gruenberger, R; Somitsch, W; Ueberbacher, B J; Guebitz, G M

    2013-04-01

    Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.

  8. Decolorization/Deodorization of Zein via Activated Carbons and Molecular Sieves

    USDA-ARS?s Scientific Manuscript database

    A series of commercial activated carbons generated from different media and selective microporous zeolites with different pore sizes were used in a batch system to sequester the low molecular weight odor and color contaminants in commercial zein products. Because the adsorbents can also adsorb prot...

  9. Reversible emission evolution from Ag activated zeolite Na-A upon dehydration/hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui, E-mail: linh8112@163.com, E-mail: fujii@eedept.kobe-u.ac.jp; Imakita, Kenji; Fujii, Minoru, E-mail: linh8112@163.com, E-mail: fujii@eedept.kobe-u.ac.jp

    2014-11-24

    Reversible emission evolution of thermally treated Ag activated zeolite Na-A upon dehydration/hydration in vacuum/water vapor was observed. The phenomenon was observed even for the sample with low Ag{sup +}-Na{sup +} exchanging (8.3%), indicating that the emission from Ag activated zeolites may not come from Ag clusters while from the surrounding coordinated Ag{sup +} ions or Ag{sup 0} atoms. It was disclosed that the characteristic yellow-green emission at ∼560 ± 15 nm is strongly associated with the coordinating water molecules to the Ag{sup +} ions or Ag{sup 0} atoms, which is clear evidence for that the efficient emission from Ag activated zeolites may notmore » originate from the quantum confinement effect.« less

  10. Activated and Micronized Zeolite in the Modulation of Cellular Oxidative Stress in Mexican Smokers: A Randomized Clinical Trial.

    PubMed

    Atitlán-Gil, Alfonso; Bretón-de la Loza, Martín M; Jiménez-Ortega, José C; Belefant-Miller, Helen; Betanzos-Cabrera, Gabriel

    2017-01-01

    Activated and micronized zeolites are used as detoxifying agents in humans. Detoxification is attributed to their ability to reduce lipid peroxidation by scavenging free radicals. To evaluate activated and micronized zeolites as modulators of cellular oxidative stress in Mexican smokers without lung diseases. Randomized clinical trial. Subjects were randomly divided into three groups: activated and micronized zeolites, n = 29; vitamin E, an accepted antioxidant, n = 29; and maltodextrin as control, n = 27. Each group received the corresponding supplementation, dissolved in water, once a day for 30 days as follows: activated and micronized zeolites, 5.4 g activated and micronized zeolite; vitamin E, 400 mg D-alpha tocopheryl acetate; and maltodextrin, 250 mg of maltodextrin. The thiobarbituric acid reactive substances assay was used to screen for lipid peroxidation. Catalase activity, plasma antioxidant capacity, and hydrogen peroxide levels were also measured. Results were analyzed by a one-way ANOVA and post hoc test of Bonferroni. Subjects administered activated and micronized zeolites had equivalent antioxidant activities as subjects administered vitamin E. Activated and micronized zeolites may be useful as a modulator of oxidative stress in smokers. However, inclusion of a comparison group of non-smokers would be useful in future studies to assess the degree to which zeolites reverse the oxidant stress.

  11. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  12. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  13. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  14. Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites.

    PubMed

    Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio

    2018-03-04

    Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.

  15. Biodiesel synthesis via transesterification of lipid Chlorophyta cultivated in walne rich carbon medium using KOH/Zeolite catalyst

    NASA Astrophysics Data System (ADS)

    Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa

    2017-11-01

    Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.

  16. HYDROGENATION OF POLYCYCLIC AROMATIC COMPOUNDS USING NI SUPPORT ON H-BETA ZEOLITE IN SUPERCRITICAL CARBON DIOXIDE

    EPA Science Inventory

    The primary rationale for use of supercritical carbon dioxide as a solvent in hydrogenation is the elimination of mass transfer limitations, through enhancement of the solubility of hydrogen at the reaction locus. Hydrogenation of anthracene was performed using NiHB-zeolite catal...

  17. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    PubMed

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  18. Scaling Relations for Acidity and Reactivity of Zeolites

    PubMed Central

    2017-01-01

    Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology. PMID:29142616

  19. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite.

    PubMed

    Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa

    2016-11-01

    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [Cu IIOH] + species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [Cu IIOH] + active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu] 2+ and Cu 3O 3 motifs.« less

  1. Adsorption of Free Fatty Acid (FFA) in Low-Grade Cooking Oil Used Activated Natural Zeolite as Adsorbent

    NASA Astrophysics Data System (ADS)

    Larasati Tres Ayu Putranti, Monika; Kompiang Wirawan, Sang; Made Bendiyasa, I.

    2018-01-01

    Adsorption of free fatty acid (FFA) in low-grade cooking oil using active natural zeolite adsorbent was done as an effort to improve the quality of low-grade cooking oil so that it can fulfill the standard of fried oil which has been set on SNI 01-3741-2013. Adsorption was carried out with natural zeolite which activated with HCl and NaOH solution followed by the calcination process. The results showed that the NaOH activated zeolite decreased FFA content in low-grade cooking oil more than the HCl activated natural zeolite, with optimum NaOH concentration was 0.75 M. In the adsorption equilibrium analysis with temperature variation (25 °C, 40 °C, 80 °C ), obtained that adsorption of FFA with NaOH activated natural zeolite follows Adsorption Isotherm Freundlich Model with equilibrium constant value was 20,5873; 0,9629 dan 0,8053.

  2. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    PubMed

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of

  3. Transition Metal Ions in Zeolites: Coordination and activation of O2

    PubMed Central

    Smeets, Pieter J.; Woertink, Julia S.; Sels, Bert F.; Solomon, Edward I.; Schoonheydt, Robert A.

    2010-01-01

    Zeolites containing transition metal ions (TMI) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMI Cu, Co and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMI preferably occupy exchange sites in six-membered oxygen rings (6MR) where the TMI preferentially coordinate with the oxygen atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extra-lattice oxygens during high temperature pretreatments can result in auto-reduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species, called α-oxygen, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive α-oxygen can only be formed with N2O, not with O2. O2 activated Co intermediates in Faujasite (FAU) zeolites can selectively oxidize α-pinene and epoxidize styrene. In Co-FAU, CoIII superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5 various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu]2+ core (Proc. Natl. Acad. Sci. USA 2009, 106, 18908-18913). Overall, O2 activation depends on the interplay of structural factors such as type of zeolite, size of the channels and cages and chemical factors such as Si/Al ratio and the nature, charge and distribution of the charge balancing cations. The presence of several different TMI sites

  4. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass.

    PubMed

    Espejel-Ayala, F; Corella, R Chora; Pérez, A Morales; Pérez-Hernández, R; Ramírez-Zamora, R M

    2014-12-01

    The present work introduces the study of the CO2 capture process by zeolites synthesized from paper sludge and scrap glass. Zeolites ZSM-5, analcime and wairakite were produced by means of two types of Structure Directing Agents (SDA): tetrapropilamonium (TPA) and ethanol. On the one hand, zeolite ZSM-5 was synthesized using TPA; on the other hand, analcime and wairakite were produced with ethanol. The temperature programmed desorption (TPD) technique was performed for determining the CO2 sorption capacity of these zeolites at two sorption temperatures: 50 and 100 °C. CO2 sorption capacity of zeolite ZSM-5 synthesized at 50 °C was 0.683 mmol/g representing 38.2% of the value measured for a zeolite ZSM-5 commercial. Zeolite analcime showed a higher CO2 sorption capacity (1.698 mmol/g) at 50 °C and its regeneration temperature was relatively low. Zeolites synthesized in this study can be used in the purification of biogas and this will produce energy without increasing the atmospheric CO2 concentrations. © The Author(s) 2014.

  5. Unusual Entropy of Adsorbed Methane on Zeolite-Templated Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadie, Nicholas P.; Murialdo, Maxwell; Ahn, Channing C.

    2015-11-25

    Methane adsorption at high pressures and across a wide range of temperatures was investigated on the surface of three porous carbon adsorbents with complementary structural properties. The measured adsorption equilibria were analyzed using a method that can accurately account for nonideal fluid properties and distinguish between absolute and excess quantities of adsorption, and that also allows the direct calculation of the thermodynamic potentials relevant to adsorption. On zeolite-templated carbon (ZTC), a material that exhibits extremely high surface area with optimal pore size and homogeneous structure, methane adsorption occurs with unusual thermodynamic properties that are greatly beneficial for deliverable gas storage:more » an enthalpy of adsorption that increases with site occupancy, and an unusually low entropy of the adsorbed phase. The origin of these properties is elucidated by comparison of the experimental results with a statistical mechanical model. The results indicate that temperature-dependent clustering (i.e., reduced configurations) of the adsorbed phase due to enhanced lateral interactions can account for the peculiarities of methane adsorbed on ZTC.« less

  6. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate.

    PubMed

    Drake, Ian J; Zhang, Yihua; Briggs, Daniel; Lim, Bomyi; Chau, Tanguy; Bell, Alexis T

    2006-06-22

    Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were determined using Al K-edge and Cu K-edge X-ray absorption spectroscopy (XAS). Complimentary information was obtained by H2 temperature-programmed reduction and by in-situ infrared spectroscopy. Cu-Y has a Cu/Al ratio of unity and very little occluded CuCl. The average Al-O and Al-Cu bond distances are 1.67 angstroms and 2.79 angstroms, respectively, and the average Cu-O and Cu-Si(Al) bond distances are 1.99 angstroms and 3.13 angstroms, respectively. All of the Cu exchanged is present as Cu+ in sites I', II, and III'. Cu-Y is active for the oxidative carbonylation of methanol, and at low reactant contact time produces DMC as the primary product. With increasing reactant contact time, DMC formation decreases in preference to the formation of dimethoxy methane (DMM) and methylformate (MF). The formation of DMM and MF is attributed to the hydrogenation of DMC and the hydrogenolysis of DMM, respectively. Observation of the catalyst under reaction conditions reveals that most of the copper cations remain as Cu+, but some oxidation of Cu+ to Cu2+ does occur. It is also concluded that only those copper cations present in site II and III' positions are accessible to the reactants, and hence are catalytically active. The dominant adsorbed species on the surface are methoxy groups, and adsorbed CO is present as a minority species. The relationship of these observations to the kinetics of DMC synthesis is discussed.

  7. Design of Zeolitic Imidazolate Framework Derived Nitrogen-Doped Nanoporous Carbons Containing Metal Species for Carbon Dioxide Fixation Reactions.

    PubMed

    Toyao, Takashi; Fujiwaki, Mika; Miyahara, Kenta; Kim, Tae-Ho; Horiuchi, Yu; Matsuoka, Masaya

    2015-11-01

    Various N-doped nanoporous carbons containing metal species were prepared by direct thermal conversion of zeolitic imidazolate frameworks (ZIFs; ZIF-7, -8, -9, and -67) at different temperatures (600, 800, and 1000 °C). These materials were utilized as bifunctional acid-base catalysts to promote the reaction of CO2 with epoxides to form cyclic carbonates under 0.6 MPa of CO2 at 80 °C. The catalyst generated by thermal conversion of ZIF-9 at 600 °C (C600-ZIF-9) was found to exhibit a higher catalytic activity than the other ZIFs, other conventional catalysts, and other metal-organic framework catalysts. The results of various characterization techniques including elemental analysis, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and transmission electron microscopy show that C600-ZIF-9 contains partly oxidized Co nanoparticles and N species. Temperature-programmed desorption measurements by using CO2 and NH3 as probe molecules revealed that C600-ZIF-9 has both Lewis acid and Lewis base catalytic sites. Finally, the substrate scope was extended to seven other kinds of epoxides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    PubMed Central

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  9. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE PAGES

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.; ...

    2018-04-02

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  10. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  11. SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO2 Capture Needs

    NASA Astrophysics Data System (ADS)

    Wdowin, Magdalena; Panek, Rafal; Franus, Wojciech

    Carbon dioxide is the main greenhouse gas and its amount still increase in the atmosphere. Air pollution and greenhouse effect caused by CO2 emission have become a major threat to the environment on a global scale. Carbon dioxide sequestration (i.e. capture and consequently geological storage) is the key strategy within the portfolio of actions to reduce CO2 emission to the atmosphere. The most costly stage is capture of CO2, therefore there is a need to search new solutions of this technology. For this purpose it was examined Na-X synthetic zeolites, that were silver and PEI (polyethyleneimine) activated. SEM-EDS investigation enable to find a changes in structure of this materials after treatment. Where, as a result of silver activation from EDS analysis it is seen that Ag occur in Na-X structure, what indicate a substitution of Ag2+ for Na+ ions in crystal lattice. Analysing wt% the EDS analysis has shown that zeolite Na-X after silver impregnation becomes Ag-X zeolite. For Na-X-PEI activated it is observed a distinct organic compound in the form of coatings on Na-X crystals causing a sealing of pores in tested zeolite. Further examination of these materials concern determination of surface properties and experiments of CO2 sorption. But SEM-EDS analysis enable to determine the extent of activation, what is very important in determination of optimal conditions for such treatment in order to obtain better sorbent of CO2.

  12. Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO]2+- and [MnO]+-Exchanged Zeolites Activated by N2O.

    PubMed

    Mahyuddin, M Haris; Shiota, Yoshihito; Staykov, Aleksandar; Yoshizawa, Kazunari

    2017-09-05

    While the most likely structure of the active site in iron-containing zeolites has been recently identified as [FeO] 2+ (Snyder et al. Nature 2016, 536, 317-321), the mechanism for the direct conversion of methane to methanol over this active species is still debatable between the direct-radical-rebound or nonradical (concerted) mechanism. Using density functional theory on periodic systems, we calculated the two reaction mechanisms over two d 4 isoelectronic systems, [FeO] 2+ and [MnO] + zeolites. We found that [FeO] 2+ zeolites favor the direct-radical-rebound mechanism with low CH 4 activation energies, while [MnO] + zeolites prefer the nonradical mechanism with higher CH 4 activation energies. These contrasts, despite their isoelectronic structures, are mainly due to the differences in the metal coordination number and O α (oxo) spin density. Moreover, molecular orbital analyses suggest that the zeolite steric hindrance further degrades the reactivity of [MnO] + zeolites toward methane. Two types of zeolite frameworks, i.e., medium-pore ZSM-5 (MFI framework) and small-pore SSZ-39 (AEI framework) zeolites, were evaluated, but no significant differences in the reactivity were found. The rate-determining reaction step is found to be methanol desorption instead of methane activation. Careful examination of the most stable sites hosting the active species and calculation for N 2 O decomposition over [Fe] 2+ -MFI and -AEI zeolites were also performed.

  13. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  14. Fixation of carbon dioxide into dimethyl carbonate over ...

    EPA Pesticide Factsheets

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.

  15. Highly selective uptake of carbon dioxide on the zeolite |Na10.2KCs0.8|-LTA- a possible sorbent for biogas upgrading.

    PubMed

    Cheung, Ocean; Wardecki, Dariusz; Bacsik, Zoltán; Vasiliev, Petr; McCusker, Lynne B; Hedin, Niklas

    2016-06-28

    The|Na10.2KCs0.8|8[Al12Si12O48]8(Fm3[combining macron]c)-LTA zeolite adsorbs CO2-over-CH4 with a high selectivity (over 1500). The uptake of carbon dioxide is also high (3.31 mmol g(-1), 293 K, 101 kPa). This form of zeolite A is a very promising adsorbent for applications such as biogas upgrading, where keeping the adsorption of methane to a minimum is crucial.

  16. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems.

    PubMed

    Jha, Vinay Kumar; Nagae, Masahiro; Matsuda, Motohide; Miyake, Michihiro

    2009-06-01

    Zeolitic materials have been prepared from coal fly ash as well as from a SiO(2)-Al(2)O(3) system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin-Kaganer-Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.

  17. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities.

    PubMed

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-10-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20-55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation-gelation-hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca(2+)-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag(+)-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca(2+)-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag(+)-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9×10(6) CFU mL(-1)E. coli concentration to zero within 4h of incubation time with the Ag(+)-exchanged hybrid composite amount of 0.4 g L(-1). The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca(2+) and then with Ag(+). These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.

    PubMed

    Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia

    2018-06-20

    Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.

  19. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  20. Comparative study of activated carbon, natural zeolite, and green sand supports for CuOX and ZnO sites as ozone decomposition catalyst

    NASA Astrophysics Data System (ADS)

    Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.

    2018-03-01

    This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.

  1. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  2. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.

    PubMed

    Gümüş, Dilek; Akbal, Feryal

    2017-05-01

    This study compares ozonation (O 3 ), iron coated zeolite catalyzed ozonation (ICZ-O 3 ) and granular activated carbon catalyzed ozonation (GAC-O 3 ) for removal of humic acid from an aqueous solution. The results were evaluated by the removal of DOC that specifies organic matter, UV 254 absorbance, SUVA (Specific Ultraviolet Absorbance at 254 nm) and absorbance at 436 nm. When ozonation was used alone, DOC removal was 21.4% at an ozone concentration of 10 mg/L, pH 6.50 and oxidation time of 60 min. The results showed that the use of ICZ or GAC as a catalyst increased the decomposition of humic acid compared to ozonation alone. DOC removal efficiencies were 62% and 48.1% at pH 6.5, at a catalyst loading of 0.75 g/L, and oxidation time of 60 min for ICZ and GAC, respectively. The oxidation experiments were also carried out using <100 kDa and <50 kDa molecular size fractions of humic acid in the presence of ICZ or GAC. Catalytic ozonation also yielded better DOC and UV 254 reduction in both <50 kDa and <100 kDa fractions of HA compared to ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  4. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    PubMed

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    PubMed Central

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro‐(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X‐ray diffraction, and show Al3+ framework incorporation and illustrate the differences between misoriented and b‐oriented films. The methanol‐to‐hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro‐spectroscopy with on‐line mass spectrometry, showing that the b‐oriented zeolite ZSM‐5 films are active and stable under realistic process conditions. PMID:28675590

  6. Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry.

    PubMed

    Yang, Ji; Chen, Yufeng; Cao, Limei; Guo, Yuling; Jia, Jinping

    2012-01-03

    The combined concentrator/oxidizer system has been proposed as an effective physical-chemical option and proven to be a viable solution that enables Volatile Organic Carbons (VOCs) emitters to comply with the regulations. In this work, a field scale honeycomb zeolite rotor concentrator combined with a recuperative oxidizer was developed and applied for the treatment of the VOC waste gas. The research shows the following: (1) for the adsorption rotor, zeolite is a more appropriate material than Granular Activated Carbon (GAC). The designing and operation parameters of the concentrator were discussed in detail including the size and the optimal rotation speed of rotor. Also the developed rotor performance's was evaluated in the field; (2) Direct Fired Thermal Oxidizer (DFTO), Recuperative Oxidizer (RO), Regenerative Thermal Oxidizer (RTO) and Regenerative Catalytic oxidizer (RCO) are the available incinerators and the RO was selected as the oxidizer in this work; (3) The overall performance of the developed rotor/oxidizer was explored in a field scale under varying conditions; (4) The energy saving strategy was fulfilled by reducing heat loss from the oxidizer and recovering heat from the exhaust gas. Data shows that the developed rotor/oxidizer could remove over 95% VOCs with reasonable cost and this could be helpful for similar plants when considering VOC abatement.

  7. Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium

    PubMed Central

    Zou, Bin; Ren, Shoujie

    2016-01-01

    Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088

  8. Zeolite scaffolds for cultures of human breast cancer cells. Part II: Effect of pure and hybrid zeolite membranes on neoplastic and metastatic activity control.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-11-01

    This work is focused on the response of two invasive phenotypes of human breast cancer cells, MCF-7 and MDA-MB-231, grown on synthesized zeolite scaffolds in order to study the influence of those biomaterials in controlled conditions with and without anti-tumoral drug treatments. Our research was directed to the use of doxorubicin (DOX) and bergapten (5-MOP). The former is broadly considered the most active single agent available for the treatment of breast cancer, the second is a natural psoralen with an apoptotic effect. The results indicate that both drugs inhibit the cell viability of all cell lines grown on all zeolite scaffolds and that all Pure Zeolite Membranes are more responsive with respect to all Mixed Matrix Membranes. Moreover, the results after treatment with DOX at a concentration of 7.4μM for 24h, show that the expression of the matrix metalloproteinases (MMP-2 and MMP-9) is greatly reduced in both cell lines, especially in those adherent on Pure Zeolite Scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Natural zeolite reactivity towards ozone: the role of compensating cations.

    PubMed

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials.

    PubMed

    Masoumifard, Nima; Guillet-Nicolas, Rémy; Kleitz, Freddy

    2018-04-01

    The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies.

    PubMed

    Lim, Chi Kim; Bay, Hui Han; Neoh, Chin Hong; Aris, Azmi; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-10-01

    In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer-Emmett-Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet-visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.

  12. Synthesis and characterization of zeolite from coal fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  13. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  14. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    PubMed

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni 2+ , as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  15. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent

    PubMed Central

    Georgakopoulos, Evangelos; Santos, Rafael M.; Chiang, Yi Wai; Manovic, Vasilije

    2017-01-01

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni2+, as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications. PMID:28287605

  16. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.

    PubMed

    Zou, Bin; Ren, Shoujie; Ye, X Philip

    2016-12-08

    Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  18. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.

  19. Evaluation of heavy crude oil from a water-oil model system as starting material for the preparation of adsorbents type NaY zeolite-templated carbon.

    PubMed

    Elles-Pérez, Cindy J; Muñoz-Acevedo, Amner; Guzmán, Andrés; Camargo, Hernando; Henao, José

    2017-07-01

    In this work, NaY zeolite is explored as a possible "template" to obtain porous materials type ZTC from the adsorption of heavy crude oil in a water-oil model system (emulsion). In order to produce the adsorbents, a cationic surfactant is selected to facilitate the adsorption of the crude oil into the pores of the zeolite and to get the composite, which was activated with controlled thermal treatments (T: 700-800 °C and t: 0.5-1 h) in inert conditions (N 2 gaseous). The starting materials, composite and porous carbons were characterized using structural/surface analysis techniques (API Gravity, SARA, IR, XRD, XRF, TGA, Langmuir isotherms, BET and SEM). The results showed that four types of mesoporous carbons were produced with specific surface areas between 70 ± 1 m 2 /g and 220 ± 3 m 2 /g, average pore volumes between 0.144 cm 3 /g and 0.40 cm 3 /g and average pore widths between 4.9 nm and 8.3 nm. The activation conditions of 800 °C and 1 h allowed to make the carbonaceous material with the best surface characteristics (220 ± 3 m 2 /g, 0.27 cm 3 /g, and 4.9 nm). Therefore, it is concluded that under assay conditions employed, the heavy crude oil, as a mixed model (water-oil), from an aqueous environment is a starting material suitable for preparation of "mesoporous" carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Controllable Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis.

    PubMed

    Zhao, Yingxuan; Lai, Qingxue; Zhu, Junjie; Zhong, Jia; Tang, Zeming; Luo, Yan; Liang, Yanyu

    2018-05-01

    Designing rational nanostructures of metal-organic frameworks based carbon materials to promote the bifunctional catalytic activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desired but still remains a great challenge. Herein, an in situ growth method to achieve 1D structure-controllable zeolitic imidazolate frameworks (ZIFs)/polyacrylonitrile (PAN) core/shell fiber (PAN@ZIFs) is developed. Subsequent pyrolysis of this precursor can obtain a heteroatom-doped carbon nanofiber network as an efficient bifunctional oxygen electrocatalyst. The electrocatalytic performance of derived carbon nanofiber is dominated by the structures of PAN@ZIFs fiber, which is facilely regulated by efficiently controlling the nucleation and growth process of ZIFs on the surface of polymer fiber as well as optimizing the components of ZIFs. Benefiting from the core-shell structures with appropriate dopants and porosity, as-prepared catalysts show brilliant bifunctional ORR/OER catalytic activity and durability. Finally, the rechargeable Zn-air battery assembled from the optimized catalyst (CNF@Zn/CoNC) displays a peak power density of 140.1 mW cm -2 , energy density of 878.9 Wh kg Zn -1 , and excellent cyclic stability over 150 h, giving a promising performance in realistic application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  2. Highly nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 for CO2 capture.

    PubMed

    Ma, Xiancheng; Li, Liqing; Chen, Ruofei; Wang, Chunhao; Li, Haoyang; Li, Hailong

    2018-05-18

    CO2 adsorption capacity of nitrogen-doped porous carbon depends to a large nitrogen doping levels and high surface area in previous studies. However, it seems difficult to incorporate large amounts of nitrogen while maintaining a high surface area and pore structure. Here we have reported porous carbon having a nitrogen content of up to 25.52% and specific surface area of 948 m2 g-1, which is prepared by pyrolyzing the nitrogen-containing zeolite imidazole framework-8 and urea composite at 650 °C under a nitrogen atmosphere. ZNC650 exhibits a superior CO2 uptake of 3.7 mmol g-1 at 25 ℃ and 1 bar. Experimental and theoretical results indicate that the nitrogen-containing functional groups can enhance CO2 uptake electrostatic interactions, Lewis acid-base interactions and hydrogen-bonding interactions, which are elucidated by density functional theory calculations. As CO2 adsorbent materials, these carbons have excellent adsorption capacity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method

    NASA Astrophysics Data System (ADS)

    Wiyantoko, Bayu; Rahmah, Nafisa

    2017-12-01

    The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.

  4. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur; ...

    2018-01-01

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  5. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  6. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K., E-mail: anup_t@sify.com

    2015-06-15

    activities of the synthesized samples were investigated with respect to hydroxylation of phenol, in which catechol and hydroquinone were found to be the major products. It is observed that under all reaction conditions catechol selectivity was higher than the hydroquinone selectivity. In-MFI zeolites were successfully synthesized and were used as an effective catalyst for the hydroxylation of phenol to synthesize catechol and hydroquinone as the major product.« less

  7. Discovery of optimal zeolites for challenging separations and chemical conversions through predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Siepmann, J. Ilja; Bai, Peng; Tsapatsis, Michael; Knight, Chris; Deem, Michael W.

    2015-03-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure and the type or location of active sites. To date, 213 framework types have been synthesized and >330000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol beyond the ethanol/water azeotropic concentration in a single separation step from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modeling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds. Financial support from the Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362 is gratefully acknowledged.

  8. Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.

    PubMed

    Vjunov, Aleksei; Derewinski, Miroslaw A; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A

    2015-08-19

    The location and stability of Brønsted acid sites catalytically active in zeolites during aqueous phase dehydration of alcohols were studied on the example of cyclohexanol. The catalytically active hydronium ions originate from Brønsted acid sites (BAS) of the zeolite that are formed by framework tetrahedral Si atom substitution by Al. Al K-edge extended X-ray absorption fine structure (EXAFS) and (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopies in combination with density functional theory (DFT) calculations are used to determine the distribution of tetrahedral Al sites (Al T-sites) both qualitatively and quantitatively for both parent and HBEA catalysts aged in water prior to catalytic testing. The aging procedure leads to partial degradation of the zeolite framework evidenced from the decrease of material crystallinity (XRD) as well as sorption capacity (BET). With the exception of one commercial zeolite sample, which had the highest concentration of framework silanol-defects, there is no evidence of Al coordination modification after aging in water. The catalyst weight-normalized dehydration rate correlated best with the sum of strong and weak Brønsted acidic protons both able to generate the hydrated hydronium ions. All hydronium ions were equally active for the acid-catalyzed reactions in water. Zeolite aging in hot water prior to catalysis decreased the weight normalized dehydration reaction rate compared to that of the parent HBEA, which is attributed to the reduced concentration of accessible Brønsted acid sites. Sites are hypothesized to be blocked due to reprecipitation of silica dissolved during framework hydrolysis in the aging procedure.

  9. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    PubMed Central

    Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji

    2013-01-01

    Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials. PMID:28809241

  10. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  12. Utilization of Natural Zeolite from Ponorogo and Purworejo for Naphthol Substance Adsorption

    NASA Astrophysics Data System (ADS)

    Imandiani, Sundus; Indira, Christine; Johan, Anthony; Budiyono

    2018-02-01

    Indonesia has many zeolite producing areas yet untapped. Researchers developed the utilization of natural zeolites useful for the adsorption of naphthol dyes commonly found in batik waste. In this study researchers used natural zeolites from Purworejo and Ponorogo that are activated using hydrochloric acid that is used for adsorption. The purpose of this research is to know the effect of natural zeolite activation from Ponorogo and Purworejo on the effectiveness of adsorption of naphthol dyes widely used in batik industry. Natural zeolite was activated using HCl concentration of 1.3N; 1.8N; 3.2N; and 3.9N for 60 minutes. The methods are preparation of natural zeolite from Purworejo and Ponorogo, dealumination using hydrochloric acid, adsorption process of naphthol dyes using activated zeolite, and test of adsorption result with uv-vis spectrophotometry. The test results showed that the higher HCl concentration will increase adsorption capacity. This can be known from the concentration of naphthol dye which decreased both using natural zeolite Ponorogo and Purworejo. While the effectiveness of adsorption shows natural zeolite Purworejo has a greater adsorption capacity than Ponorogo with optimum conditions of dealumination using concentration HCl 3,9N.

  13. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor.

    PubMed

    Villaseñor, J; Rodríguez, L; Fernández, F J

    2011-01-01

    This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Activated Carbon Preparation and Modification for Adsorption

    NASA Astrophysics Data System (ADS)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  15. Method for encapsulating nanoparticles in a zeolite matrix

    DOEpatents

    Coker, Eric N.

    2007-12-11

    A method for preparing a metal nanocluster composite material. A porous zeolitic material is treated with an aqueous metal compound solution to form a metal ion-exchanged zeolitic material, heated at a temperature ramp rate of less than 2.degree. C./min to an elevated temperature, cooled, contacted with an organic monomer and heating to induce polymerization, and heating the composite material to greater than 350.degree. C. under non-oxidizing conditions to form a metal nanocluster-carbon composite material with nanocluster sizes between approximately 0.6 nm and 10 nm.

  16. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift

    PubMed Central

    Gunther, William R.; Wang, Yuran; Ji, Yuewei; Michaelis, Vladimir K.; Hunt, Sean T.; Griffin, Robert G.; Román-Leshkov, Yuriy

    2012-01-01

    Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes. PMID:23047667

  17. I. Synthesis, characterization, and base catalysis of novel zeolite supported super-basic materials II. Oxidative dehydrogenation of ethane over reduced heteropolyanion catalysts

    NASA Astrophysics Data System (ADS)

    Galownia, Jonathan M.

    This thesis is composed of two separate and unrelated projects. The first part of this thesis outlines an investigation into the synthesis and characterization of a novel zeolite supported super-base capable of carbon-carbon olefin addition to alkyl aromatics. A zeolite supported basic material capable of such reactions would benefit many fine chemical syntheses, as well as vastly improve the economics associated with production of the high performance thermoplastic polyester polyethylene naphthalate. The thermal decomposition of alkali---metal azides impregnated in zeolite X is investigated as a novel route to the synthesis of a zeolite supported super-base. Impregnation of the alkali---metal azide precursor is shown to result in azide species occluded within the pores of the zeolite support by using high speed, solid-state 23Na MAS and 2D MQMAS NMR, FTIR, and TGA characterization methods. Addition of alkali---metal azides to the zeolite results in redistribution of the extra-lattice cations in the zeolite framework. Thermal decomposition of impregnated azide species produces further cation redistribution, but no neutral metallic clusters are detected by high speed, solid-state 23Na MAS NMR following thermal activation of the materials. Instead, it is possible that inactive ionic clusters are formed. The thermally activated materials do not promote base catalysis for the isomerization of 1-butene, the ethylation of toluene and o-xylene, and the alkenylation of o-xylene with 1,3-butadiene to produce 5-ortho-tolyl-pent-2-ene (5-OTP). The lack of catalytic activity in the materials is attributed to failure of the materials to form neutral metallic clusters during thermal treatment, possibly due to preferential formation of NMR silent ionic clusters. The formation of neutral metallic clusters is found to be insensitive to synthesis technique and activation procedure. It is concluded that the impregnation of alkali---metal azides in zeolite X does not provide a

  18. Rapid screening of the antimicrobial efficacy of Ag zeolites.

    PubMed

    Tosheva, L; Belkhair, S; Gackowski, M; Malic, S; Al-Shanti, N; Verran, J

    2017-09-01

    A semi-quantitative screening method was used to compare the killing efficacy of Ag zeolites against bacteria and yeast as a function of the zeolite type, crystal size and concentration. The method, which substantially reduced labor, consumables and waste and provided an excellent preliminary screen, was further validated by quantitative plate count experiments. Two pairs of zeolite X and zeolite beta with different sizes (ca. 200nm and 2μm for zeolite X and ca. 250 and 500nm for zeolite beta) were tested against Escherichia coli (E. coli) and Candida albicans (C. albicans) at concentrations in the range 0.05-0.5mgml -1 . Reduction of the zeolite crystal size resulted in a decrease in the killing efficacy against both microorganisms. The semi-quantitative tests allowed convenient optimization of the zeolite concentrations to achieve targeted killing times. Zeolite beta samples showed higher activity compared to zeolite X despite their lower Ag content, which was attributed to the higher concentration of silver released from zeolite beta samples. Cytotoxicity measurements using peripheral blood mononuclear cells (PBMCs) indicated that Ag zeolite X was more toxic than Ag zeolite beta. However, the trends for the dependence of cytotoxicity on zeolite crystal size at different zeolite concentrations were different for the two zeolites and no general conclusions about zeolite cytotoxicity could be drawn from these experiments. This result indicates a complex relationship, requiring the necessity for individual cytotoxicity measurements for all antimicrobial applications based on the use of zeolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  20. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  1. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  2. Development of a sorption rate technique for single zeolite crystals using an electrodynamic balance

    NASA Astrophysics Data System (ADS)

    Welegala, Mark Joseph

    Conventional means for evaluating intracrystalline diffusion in zeolites are complicated by extracrystalline mass transport resistances, crystallite size distribution, sorption heat effects, and finite instrument response times. A potentially direct means of overcoming these problems is to study sorption uptake on a single crystal suspended within a flowing gas stream in an electrodynamic balance (EDB). The objectives of this research were to design, build and investigate the viability of using such a device for obtaining diffusion coefficients from simple sorbate/zeolite systems, by computing the sorption uptake curve from the levitation voltage as a function of time. The initial electronic cell design was strongly influenced by flow mixing considerations. Accordingly, the conventional bihyperboloid electrode configuration was discarded in favor of novel four-ring (4R), and later two-ring/two-screen (2R/2S) designs with cylindrical interior geometries. A detailed numerical model based on the Method of Discrete Charges (MDC) was developed and used to aid in the design and operational understanding of these cells. Several 2R/2S designs were built and tested, including teflon/mica composite and ceramic cells capable of withstanding up to 750oF, for in situ activation of the zeolites. The diffusion of carbon dioxide in zeolite A was selected for testing due to the large differential weight change (10-20%) which occurs at ambient conditions and the availability of reliable experimental diffusion results (Yucel and Ruthven, 1980a). In addition to the carbon dioxide sorbate, water on zeolite 4A and a system relatively immune to atmospheric contamination, CO2 on activated carbon were also studied. Laboratory 4A crystals of up to 45 μm were grown using Charnell's method. These large solid particles were captured using a dry charging technique, and held during elevated temperature dehydration. Preliminary experimentation introduced externally dried crystals to the cell

  3. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    PubMed

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  4. Synthesis of Porous Carbon Monoliths Using Hard Templates

    PubMed Central

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-01-01

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m2·g−1. The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions. PMID:28773338

  5. Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application.

    PubMed

    Li, Zehui; Yang, Lan; Cao, Hongbin; Chang, Yu; Tang, Kexin; Cao, Zhiqin; Chang, Junjun; Cao, Youpeng; Wang, Wenbo; Gao, Meng; Liu, Chenming; Liu, Dagang; Zhao, He; Zhang, Yi; Li, Mingjie

    2017-11-01

    In order to promote sustainable development, green and renewable clean energy technologies continue to be developed to meet the growing demand for energy, such as supercapacitor, fuel cells and lithium-ion battery. It is urgent to develop appropriate nanomaterials for these energy technologies to reduce the volume of the device, improve the efficiency of energy conversion and enlarge the energy storage capacity. Here, chitosan/cellulose carbon cryogel (CCS/CCL) were designed and synthesized. Through the introduction of zeolite imidazole frameworks (ZIFs) into the chitosan/cellulose cryogels, the obtained materials showed a microstructure of ZIF-7 (a kind of ZIFs) coated chitosan/cellulose fibers (CS/CL). After carbonizing, the as-prepared carbonized ZIF-7@cellulose cryogel (NC@CCL, NC is carbonized ZIF-7) and carbonized ZIF-7@chitosan cryogel (NC@CCS) exhibited suitable microspore contents of 34.37% and 30%, respectively, and they both showed an internal resistance lower than 2Ω. Thereby, NC@CCL and NC@CCS exhibited a high specific capacitance of 150.4Fg -1 and 173.1Fg -1 , respectively, which were much higher than those of the original materials. This approach offers a facile method for improving the strength and electronic conductivity of carbon cryogel derived from nature polymers, and also efficiently inhibits the agglomeration of cryogel during carbonization in high temperature, which opens a novel avenue for the development of carbon cryogel materials for application in energy conversion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite.

    PubMed

    He, Yinhai; Lin, Hai; Dong, Yingbo; Liu, Quanli; Wang, Liang

    2016-12-01

    Simultaneous ammonium and phosphate removal characteristics and mechanism, as well as the major influencing factors, such as pH, temperature and co-existing ions, onto NaOH-activated and lanthanum-impregnated zeolite (NLZ) were investigated. The phosphate adsorption increases from 0.2 mg g -1 for natural zeolite up to 8.96 mg g -1 for NLZ, while only a slight decrease on the ammonium adsorption capacity from 23.9 mg g -1 for NaOH-activated zeolite to 21.2 mg g -1 for NLZ was observed. The ammonium and phosphate adsorption showed little pH dependence in the range from pH 3 to 7, while it decreased sharply with the pH increased above pH 7. Adsorption of ammonium and phosphate could be well described by the pseudo-second-order model and the process was mainly governed by intra-particle diffusion. The Langmuir and Freundlich model can be acceptably applied to fit the experimental data, which suggested that adsorption was caused by both the monolayer and homogeneous coverage at specific and equal affinity sites available NLZ. The underlying mechanism for the specific adsorption of phosphate by NLZ was revealed with the aid of SEM-EDS, XPS, and FTIR analysis, and the formation of (LaO)(OH)PO 2 was verified to be the dominant pathway for selective phosphate adsorption by lanthanum-impregnated zeolite. While the removal mechanism of ammonium could be well interpreted by SEM-EDS, FTIR and ICP analysis, and ion-exchange was expected to be the main removal process for ammonium. The results indicate that NLZ could efficiently and simultaneously remove low concentration of ammonium and phosphate from contaminated waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    PubMed

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  8. Photocatalytic activity of undoped and Ag-doped TiO{sub 2}-supported zeolite for humic acid degradation and mineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazau, C.; Ratiu, C.; National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Street, 077190 Bucharest

    2011-11-15

    Highlights: {yields} Hybrid materials based on natural zeolite and TiO{sub 2} obtained by solid-state reaction. {yields} XRD proved the presence of anatase form of undoped and Ag-doped TiO{sub 2} onto zeolite. {yields} FT-IR spectra evidenced the presence on TiO{sub 2} bounded at the zeolite network. {yields} Ag-doped TiO{sub 2} onto zeolitic matrix exhibited an enhanced photocatalytic activity. -- Abstract: The hybrid materials based on natural zeolite and undoped and Ag-doped TiO{sub 2}, i.e., Z-Na-TiO{sub 2} and Z-Na-TiO{sub 2}-Ag, were successfully synthesized by solid-state reaction in microwave-assisted hydrothermal conditions. Undoped TiO{sub 2} and Ag-doped TiO{sub 2} nanocrystals were previously synthesized bymore » sol-gel method. The surface characterization of undoped TiO{sub 2}/Ag-doped TiO{sub 2} and natural zeolite hybrid materials has been investigated by X-ray diffraction, DRUV-VIS spectroscopy, FT-IR spectroscopy, BET analysis, SEM microscopy and EDX analysis. The results indicated that anatase TiO{sub 2} is the dominant crystalline type as spherical form onto zeolitic matrix. The presence of Ag into Z-Na-TiO{sub 2}-Ag was confirmed by EDX analysis. The DRUV-VIS spectra showed that Z-Na-TiO{sub 2}-Ag exhibited absorption within the range of 400-500 nm in comparison with Z-Na-TiO{sub 2} catalyst. The enhanced photocatalytic activity of Z-Na-TiO{sub 2}-Ag catalyst is proved through the degradation and mineralization of humic acid under ultraviolet and visible irradiation.« less

  9. Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste.

    PubMed

    Zarrabi, Mansur; Mohammadi, Ali Akbar; Al-Musawi, Tariq J; Najafi Saleh, Hossein

    2018-06-02

    The effect of adding different proportions of natural clinoptilolite zeolite (5 and 10%) to food waste vermicomposting was investigated by assessing the physicochemical characteristics, worms' growth, and maturation time of finished vermicompost in comparison with the vermicompost prepared with no amendment (control). Vermicomposting was performed in 18 plastic containers for 70 days. The experimental results showed that the carbon-to-nitrogen (C/N) ratios were 15.85, 10.75, and 8.94 for 5 and 10% zeolite concentration and control after 70 days, respectively. The addition of zeolite could facilitate organic matter degradation and increase the total nitrogen content by adsorption of ammonium ions. Increasing the proportion of zeolite from 0% (control) to 10% decreased the ammonia escape by 25% in the final vermicompost. The natural zeolite significantly reduced the electrical conductivity (EC). At the end of the process, salinity uptake efficiency was 39.23% for 5% zeolite treatment and 45.23% for 10% zeolite treatment. The pH values at 5 and 10% zeolite-amended treatments were 7.31 and 7.57, respectively, in comparison to 7.10 in the control. The maturation time at the end of vermicomposting decreased with increasing zeolite concentration. The vermicompost containing 5 and 10% zeolite matured in 49 and 42 days, respectively, in comparison to 56 days for the control. With the use of an initial ten immature Eisenia fetida worms, the number of mature worms in the 10% zeolite treatment was 26 more than that in the 5% zeolite treatment (21 worms) and 9 more than that in the control treatment (17 worms). Significantly, natural zeolite showed a beneficial effect on the characteristics of the end-product when used in the vermicomposting of food waste.

  10. Building zeolites from pre-crystallized units: nanoscale architecture.

    PubMed

    Corma, Avelino; Li, Chengeng; Moliner, Manuel

    2018-01-24

    Since the earlier descriptions by Barrer in the 40's on converting natural minerals into synthetic zeolites, the use of pre-crystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physico-chemical properties, has become a very intense and relevant research field, allowing the design, particularly in the last years, of new industrial catalysts. In the present review, we will highlight how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites presenting similar SBUs or layers, but also permits mostly controlling important parameters affecting to their catalytic activity (i.e. chemical composition, crystal size, or porosity, among others). In this sense, the recent advances on the preparation of 3-D and 2-D related zeolites through seeding and zeolite-to-zeolite transformation processes will be extensively revised, including their preparation in presence or absence of organic structure directing agents (OSDAs), with the aim of introducing general guidelines for designing more efficient future synthesis approaches for target zeolites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine.

    PubMed

    Amiripour, Fatemeh; Azizi, Seyed Naser; Ghasemi, Shahram

    2018-06-01

    In this report, a facile, efficient and low cost electrochemical sensor based on bimetallic Au-Cu nanoparticles supported on P nanozeolite modified carbon paste electrode (Au-Cu/NPZ/CPE) was constructed and its efficiency for determination of hydrazine in trace level was studied. For this purpose, agro waste material, stem sweep ash (SSA) was employed as the starting material (silica source) for the synthesis of nano P zeolite (NPZ). After characterization of the synthesized NPZ by analytical instruments (scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy), construction of Au-Cu/NPZ/CPE was performed by three steps procedure involving preparation of nano P zeolite modified carbon paste electrode (NPZ/CPE), introducing Cu +2 ions into nano zeolite structure by ion exchange and electrochemical reduction of Cu +2 ions upon applying constant potential. This procedure is followed by partial replacement of Cu by Au due to galvanic replacement reaction (GRR). The electrochemical properties of hydrazine at the surface of Au-Cu/NPZ/CPE was evaluated using cyclic voltammetry (CV), amperometry, and chronoamperometry methods in 0.1 M phosphate buffer solution (PBS). It was found that the prepared sensor has higher electrocatalytic activity at a relatively lower potential compared to other modified electrodes including Au/NPZ/CPE, Cu/NPZ/CPE, Au-Cu/CPE and etc. Moreover, the proposed electrochemical sensor presented the favorable analytical properties for determination of hydrazine such as low detection limit (0.04 µM), rapid response time (3 s), wide linear range (0.01-150 mM), and high sensitivity (99.53 µA mM -1 ) that are related to the synergic effect of bimetallic of Au-Cu, porous structure and enough surface area of NPZ. In addition, capability of Au-Cu/NPZ/CPE sensor was successfully tested in real samples with good accuracy and precision. Copyright

  12. Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions.

    PubMed

    Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra

    2017-05-01

    Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH 4 OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N 2 -adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO 2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles. Copyright © 2017. Published by Elsevier Inc.

  13. Hydrothermal synthesis of free-template zeolite T from kaolin

    NASA Astrophysics Data System (ADS)

    Arshad, Sazmal E.; Yusslee, Eddy F.; Rahman, Md. Lutfor; Sarkar, Shaheen M.; Patuwan, Siti Z.

    2017-12-01

    Free-template zeolite T crystals were synthesized via hydrothermal synthesis by utilizing the activated kaolin as silica and alumina source, with the molar composition of 1 SiO2: 0.04 Al2O3: 0.26 Na2O: 0.09 K2O: 14 H2O. Observation of the formation of free-template zeolite crystals were done at temperature 90°C, 100 °C and 110 °C respectively. It was therefore determined that during the 120 h of the synthesis at 90 °C, zeolite T nucleated and formed a first competitive phase with zeolite L. As temperature increases to 100 °C, zeolite T presented itself as a major phase in the system at time 168 h. Subsequently, development of Zeolite T with second competitive phase of zeolite W was observed at temperature 110 °C. In this study, XRD and SEM instruments were used to monitor the behavior of zeolite T crystals with respect of temperature and time. By using natural resource of kaolin clay as a starting material, this paper hence aims to provide new findings in synthesis of zeolite T using low energy consumption and low production cost.

  14. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I

    2017-03-23

    Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50 ) of the materials, which speculated high degradability of biomass (R 50  < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50  < 0.7) and high recalcitrant nature of silica composited biochars (R 50  > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.

  15. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoub, Muhammad, E-mail: muhammad.ayoub@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Inayat, Abrar, E-mail: abrar.inayat@petronas.com.my

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure ofmore » zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.« less

  16. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  17. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites.

    PubMed

    Figueiredo, Hugo; Quintelas, Cristina

    2014-06-15

    This review aims to present a global view of the efforts conducted to convert zeolites into efficient supports for the removal of heavy metal oxyanions. Despite lacking affinity for these species, due to inherent charge repulsion between zeolite framework and anionic species, zeolites have still received considerable attention from the scientific community, since their versatility allowed tailoring them to answer specific requirements. Different processes for the removal and recovery of toxic metals based on zeolites have been presented. These processes resort to modification of the zeolite surface to allow direct adsorption of oxyanions, or by combination with reducing agents for oxyanions that allow ion-exchange with the converted species by the zeolite itself. In order to testify zeolite versatility, as well as covering the wide array of physicochemical constraints that oxyanions offer, chromium and arsenic oxyanions were selected as model compounds for a review of treatment/remediation strategies, based on zeolite modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Novel Synthesis Method of Micronized Ti-Zeolite Na-A and Cytotoxic Activity of Its Silver Exchanged Form

    PubMed Central

    Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.

    2015-01-01

    The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142

  19. Biodegradation of spilled diesel fuel in agricultural soil: effect of humates, zeolite, and bioaugmentation.

    PubMed

    Kuráň, Pavel; Trögl, Josef; Nováková, Jana; Pilařová, Věra; Dáňová, Petra; Pavlorková, Jana; Kozler, Josef; Novák, František; Popelka, Jan

    2014-01-01

    Possible enhancement of biodegradation of petroleum hydrocarbons in agricultural soil after tank truck accident (~5000 mg/kg dry soil initial concentration) by bioaugmentation of diesel degrading Pseudomonas fluorescens strain and addition of abiotic additives (humates, zeolite) was studied in a 9-month pot experiment. The biodegradation process was followed by means of analytical parameters (hydrocarbon index expressed as content of C10-C40 aliphatic hydrocarbons, ratio pristane/C17, and total organic carbon content) and characterization of soil microbial community (content of phospholipid fatty acids (PLFA) as an indicator of living microbial biomass, respiration, and dehydrogenase activity). The concentration of petroleum hydrocarbons (C10-C40) was successfully reduced by ~60% in all 15 experiment variants. The bioaugmentation resulted in faster hydrocarbon elimination. On the contrary, the addition of humates and zeolite caused only a negligible increase in the degradation rate. These factors, however, affected significantly the amount of PLFA. The humates caused significantly faster increase of the total PLFA suggesting improvement of the soil microenvironment. Zeolite caused significantly slower increase of the total PLFA; nevertheless it aided in homogenization of the soil. Comparison of microbial activities and total PLFA revealed that only a small fraction of autochthonous microbes took part in the biodegradation which confirms that bioaugmentation was the most important treatment.

  20. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  1. Solvent-Free Synthesis of Zeolites: Mechanism and Utility.

    PubMed

    Wu, Qinming; Meng, Xiangju; Gao, Xionghou; Xiao, Feng-Shou

    2018-05-08

    zeolites have been proposed and verified. In addition to a significant reduction in liquid wastes and a remarkable increase in zeolite yields, the solvent-free synthesis of zeolites exhibits more unprecedented benefits, including (i) the formation of hierarchical micro-, meso-, and macrostructures, which benefit the mass transfer in the reactions, (ii) rapid synthesis at higher temperatures, which greatly improve the space-time yields of zeolites, and (iii) construction of a novel catalytic system for encapsulation of metal nanoparticles and metal oxide particles within zeolite crystals synergistically combining the advantages of catalytic metal nanoparticles and metal oxide particles (high activity) and zeolites (shape selectivity). We believe that the concept of "solvent-free synthesis of zeolites" would open a door for deep understanding of zeolite crystallization and the design of efficient zeolitic catalysts.

  2. Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation.

    PubMed

    Arruebo, Manuel; Fernández-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M Ricardo; Santamaría, Jesús

    2006-08-28

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g(-1) and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure, (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications.

  3. Sustained release of doxorubicin from zeolite magnetite nanocomposites prepared by mechanical activation

    NASA Astrophysics Data System (ADS)

    Arruebo, Manuel; Fernández-Pacheco, Rodrigo; Irusta, Silvia; Arbiol, Jordi; Ibarra, M. Ricardo; Santamaría, Jesús

    2006-08-01

    Nanocomposites consisting of magnetite and FAU zeolite with a high surface area and adsorption capacity have been prepared by mechanical activation using high-energy milling at room temperature. FTIR results, as well as HRTEM, EFTEM, and XPS measurements, show that the resulting magnetic nanoparticles are covered by a thin aluminosilicate coating. A saturation magnetization as high as 16 emu g-1 and 94.2 Oe of coercivity were observed for the obtained composites. The main advantages of this synthesis procedure are (i) simplicity of the preparation procedure, (ii) prevention of agglomeration of the magnetite nanoparticles to a large extent, and (iii) absence of free magnetite outside the zeolitic matrix. In addition, in vitro experiments revealed that the nanoparticles prepared were able to store and release substantial amounts of doxorubicin. In view of these advantages, these magnetic nanoparticles can be considered as potential candidates for drug-delivery applications.

  4. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    PubMed

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  5. Simulation of Water Gas Shift Zeolite Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  6. Recovery of oxygenated ignitable liquids by zeolites, Part I: Novel extraction methodology in fire debris analysis.

    PubMed

    St Pierre, Kathryne A; Desiderio, Vincent J; Hall, Adam B

    2014-07-01

    The recovery of low molecular weight oxygenates in fire debris samples is severely compromised by the use of heated passive headspace concentration with an activated charcoal strip, as outlined in ASTM E-1412. The term "oxygenate" is defined herein as a small, polar, organic molecule, such as acetone, methanol, ethanol, or isopropanol, which can be employed as an ignitable liquid and referred to in the ASTM classification scheme as the "oxygenated solvents" class. Although a well accepted technique, the higher affinity of activated carbon strips for heavy molecular weight products over low molecular weight products and hydrocarbons over oxygenated products, it does not allow for efficient recovery of oxygenates such as low molecular weight alcohols and acetone. The objective of this study was to develop and evaluate a novel method for the enhanced recovery of oxygenates from fire debris samples. By optimizing conditions of the heated passive headspace technique, the utilization of zeolites allowed for the successful collection and concentration of oxygenates. The results demonstrated that zeolites increased the recovery of oxygenates by at least 1.5-fold compared to the activated carbon strip and may complement the currently used extraction technique. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter.

    PubMed

    Nuernberg, Giselle B; Moreira, Marcelo A; Ernani, Paulo R; Almeida, Jaime A; Maciel, Tais M

    2016-12-01

    Confined poultry production is an important livestock activity, which generates large amounts of waste associated with the potential for environmental pollution and ammonia (NH 3 ) emissions. The release of ammonia negatively affects poultry production and decreases the N content of wastes that could be used as soil fertilizers. The objective of this study was to evaluate a low-cost, simple and rapid method to simulate ammonia emissions from poultry litter as well as to quantify the reduction in the ammonia emissions to the environment employing two adsorbent zeolites, a commercial Cuban zeolite (CZ) and a ground basalt Brazilian rock containing zeolite (BZ). The experiments were conducted in a laboratory, in 2012-2013. The zeolites were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), physical adsorption of N 2 (BET) and scanning electron microscopy (SEM). Ammonia released from poultry litter and its simulation from NH 4 OH solution presented similar capture rates of 7.99 × 10 -5 and 7.35 × 10 -5  mg/h, respectively. Both zeolites contain SiO 2 and Al 2 O 3 as major constituents, with contents of 84% and 12% in the CZ, and 51% and 12% in the BZ, respectively, besides heulandite groups. Their BET surface areas were 89.4 and 11.3 m 2  g -1 , respectively, and the two zeolites had similar surface morphologies. The zeolites successfully adsorbed the ammonia released, but CZ was more efficient than BZ, since to capture all of the ammonia 5 g of CZ and 20 g of BZ were required. This difference is due to higher values for the superficial area, porosity, CEC and acid site strength of CZ relatively to BZ. The proposed methodology was shown to be an efficient method to simulate and quantify the ammonia released from poultry litter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  9. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-12-01

    TiO2/MoS2@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl4 as Ti source, MoS2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM-EDS, TEM, XPS, UV-vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO2/MoS2@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir-Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (kapp) (2.304 h-1) is higher than that of Degussa P25 (0.768 h-1); (3) the heterostructure consisted of zeolite, MoS2 and TiO2 nanostructure could provide synergistic effect for degradation of MO due to the efficient electron transfer process and better absorption property of TiO2/MoS2@zeolite composite photocatalyst.

  10. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    NASA Astrophysics Data System (ADS)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  11. Isomerization of glucose into fructose by environmentally friendly Fe/β zeolite catalysts.

    PubMed

    Xu, Siquan; Zhang, Lei; Xiao, Kehao; Xia, Haian

    2017-06-29

    Herein, the environmentally friendly Fe/β zeolite for glucose isomerization to fructose in aqueous media was reported for the first time. The effects of various reaction conditions including reaction temperature, reaction time, catalyst dosage, etc. on the isomerization reaction over Fe/β zeolite were studied in detail. Under the optimized conditions, yield of fructose higher than 20% were obtained. Moreover, the Fe/β zeolite catalysts were stable and remained constant catalytic activity after five consecutive runs. The possible active Fe species for isomerization of glucose in Fe/β zeolite is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potential of sustainable hierarchical zeolites in the valorization of α-pinene.

    PubMed

    Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

    2015-04-13

    In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  14. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water.

    PubMed

    Moliner, Manuel; Román-Leshkov, Yuriy; Davis, Mark E

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (150 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  15. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moliner, Manuel; Roman-Leshkov, Yuriy; Davis, Mark E.

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (1:50 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannosemore » after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].« less

  16. Characterization of modified zeolite as microbial immobilization media on POME anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Cahyono, Rochim B.; Ismiyati, Sri; Ginting, Simparmin Br; Mellyanawaty, Melly; Budhijanto, Wiratni

    2018-03-01

    As the world’s biggest palm oil producer, Indonesia generates also huge amount of Palm Oil Mill Effluent (POME) wastewater and causes serious problem in environment. In conventional method, POME was converted into biogas using lagoon system which required extensive land area. Anaerobic Fluidized Bed Reactor (AFBR) proposes more effective biogas producing with smaller land area. In the proposed system, a immobilization media would be main factor for enhancing productivity. This research studied on characterization of Lampung natural zeolite as immobilization media in the AFBR system for POME treatment. Various activation method such as physical and chemical were attempted to create more suitable material which has larger surface area, pore size distribution as well as excellent surface structures. The physical method was applied by heating up the material till 400°C while HCl was used on the chemical activation. Based on the result, the chemical activation increased the surface area significantly into 71 m2/g compared to physical as well as original zeolite. The strong acid material was quite effective to enforce the impurities within zeolite pore structure compared to heating up the material. According to distribution data, the Lampung zeolite owned the pore size with the range of 3 – 5 μm which was mesopore material. The pore size was appropriate for immobilization media as it was smaller than size of biogas microbial. The XRD patterns verified that chemical activation could maintain the zeolite structure as the original. Obviously, the SEM photograph showed apparent structure and pore size on the modified zeolite using chemical method. The testing of modified zeolite on the batch system was done to evaluate the characterization process. The modified zeolite using chemical process resulted fast reduction of COD and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion, especially in the beginning of the process. Therefore, the

  17. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  18. Synthesis of mesoporous zeolite single crystals with cheap porogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  19. Platinum particle size and support effects in NO(x) mediated carbon oxidation over platinum catalysts.

    PubMed

    Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A

    2006-04-15

    Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.

  20. Technical Note: A new zeolite PET phantom to test segmentation algorithms on heterogeneous activity distributions featured with ground-truth contours.

    PubMed

    Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia

    2017-01-01

    Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.

  1. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  2. Biodegradation of Spilled Diesel Fuel in Agricultural Soil: Effect of Humates, Zeolite, and Bioaugmentation

    PubMed Central

    Kuráň, Pavel; Nováková, Jana; Pilařová, Věra; Dáňová, Petra; Pavlorková, Jana; Kozler, Josef; Novák, František

    2014-01-01

    Possible enhancement of biodegradation of petroleum hydrocarbons in agricultural soil after tank truck accident (~5000 mg/kg dry soil initial concentration) by bioaugmentation of diesel degrading Pseudomonas fluorescens strain and addition of abiotic additives (humates, zeolite) was studied in a 9-month pot experiment. The biodegradation process was followed by means of analytical parameters (hydrocarbon index expressed as content of C10–C40 aliphatic hydrocarbons, ratio pristane/C17, and total organic carbon content) and characterization of soil microbial community (content of phospholipid fatty acids (PLFA) as an indicator of living microbial biomass, respiration, and dehydrogenase activity). The concentration of petroleum hydrocarbons (C10–C40) was successfully reduced by ~60% in all 15 experiment variants. The bioaugmentation resulted in faster hydrocarbon elimination. On the contrary, the addition of humates and zeolite caused only a negligible increase in the degradation rate. These factors, however, affected significantly the amount of PLFA. The humates caused significantly faster increase of the total PLFA suggesting improvement of the soil microenvironment. Zeolite caused significantly slower increase of the total PLFA; nevertheless it aided in homogenization of the soil. Comparison of microbial activities and total PLFA revealed that only a small fraction of autochthonous microbes took part in the biodegradation which confirms that bioaugmentation was the most important treatment. PMID:24672346

  3. Zeolitic catalytic conversion of alochols to hydrocarbons

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  4. Zeolitic catalytic conversion of alcohols to hydrocarbons

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2018-04-10

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  5. Application of mixed based membrane technology from component materials bintaro, zeolite and bentonite to reduction of songket waste liquid cloth

    NASA Astrophysics Data System (ADS)

    Dahlan, Muhammad Hatta; Saleh, Abdullah; Asip, Faisol; Makmun, Akbar; Defi

    2017-11-01

    Application of membrane technology based on clay mixture, Activated Carbon from Bintaro, Zeolite and Bentonit to process the waste water of Songket cloth is Palembang traditionally cloth. The applied research is into the superior field of industrial and household waste processing with membrane ceramic technology. The objective of this research is to design the liquid waste separation tool of jumputan cloth using better and simpler ceramic membrane so that it can help the artisans of Palembang songket or songket in processing the waste in accordance with the standard of environmental quality standard (BML) and Pergub Sumsel no. 16 in 2005. The specific target to be achieved can decrease the waste of cloth jumputan in accordance with applicable environmental quality standards the method used in achieving the objectives of this study using 2 processes namely the adsorption process using activated carbon and the separation process using a ceramic membrane based on the composition of the mixture. The activated carbon from bintaro seeds is expected to decrease the concentration of liquid waste of Songket cloth. Bintaro seeds are non-edible fruits where the composition contains organic ingredients that can absorb because contains dyes and filler metals. The process of membranization in the processing is expected to decrease the concentration of waste better and clear water that can be used as recycled water for household use. With the composition of a mixture of clay-based materials: zeolite, bentonit, activated carbon from bintaro seeds are expected Find the solution and get the novelty value in the form of patent in this research

  6. Removal of paraquat solution onto zeolite material

    NASA Astrophysics Data System (ADS)

    Sirival, Rujikarn; Patdhanagul, Nopbhasinthu; Preecharram, Sutthidech; Photharin, Somkuan

    2018-04-01

    The purpose of this research was to study the adsorption of paraquat herbicides onto zeolite Y materials by the batch method. Three adsorbents material: Zeolite-3, Zeolite-10, and Zeolite-100 were Si/Al ratio at 3.58, 8.57 and 154.37, respectively. The factors for adsorption of paraquat as follows, adsorption time, initial concentrations of paraquat, pH and adsorption isotherm were investigated. The results showed that zeolite-10 had higher adsorption capacity than zeolite-3 and zeolite-100. The appropriate conditions for adsorption were 24 h., Zeolite 0.1 g., Initial paraquat concentration 100 ppm at pH 6. The adsorption isotherm was found to correspond with Langmuir Isotherm and the maximum paraquat adsorption is 26.38 mg/g for zeolite-10, 21.41 mg/g and 9.60 mg/g for zeolite-3 and zeolite-100, respectively. The characterization of zeolite material with XRD, XRF and BET. Furthermore, the zeolite materials applied to remove other organic and inorganic wastewater.

  7. N-C isotopic investigation of a zeolite-amended agricultural field

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Natali, Claudio; Faccini, Barbara; Di Giuseppe, Dario; Bianchini, Gianluca; Coltorti, Massimo

    2016-04-01

    In this study, a C and N isotopic investigation in the soil-plant system of the ZeoLIFE project experimental field have been carried out. Since many years, natural and NH4-enriched zeolites have been used as soil amendant in agricultural context in order to reduce N losses, increase NUE (Nitrogen Use Efficiency) and crop yield. Nevertheless up to now there are no studies that, using the stable isotopes approach, highlighted the interaction between zeolites and plants in agricultural systems. The main aims of this study is to verify if natural zeolites amendment can enhance chemical fertilization efficiency and if N transfer from NH4-enriched zeolites to plants really occurs. Plants grown following traditional cultivation methods (with no zeolite addition) and plants grown on soils amended with natural and NH4-enriched zeolites (the latter obtained after mixing with pig-slurry with a very high 15N) were compared for two cultivation cycles (maize and wheat). As widely known, plants grown under conventional farming systems (use of chemical fertilizers as urea) and plants grown under organic farming can be discriminated by the isotopic signatures of plant tissues. For both years the main results of the study reveals that plants grown on plots amended with natural zeolites generally have their nitrogen isotopic signature more similar to that of the chemical fertilizers employed during the cultivation with respect to the plants cultivated in the non-amended plot. This suggests an enhanced N uptake by the plant from this specific N source with respect to the non-amended plot. On the other hand, plants grown on NH4-enriched zeolites registered a higher 15N, approaching the pig-slurry isotopic signature, confirming that this material can constitute an N pool for plants at least for two cultivation cycles. The distinct agricultural practices seem to be reflected in the plant physiology as recorded by the carbon discrimination factor (13C) which generally increases

  8. Enhancing the antibacterial activity of the gold standard intracanal medicament with incorporation of silver zeolite: An in vitro study.

    PubMed

    Ghatole, Kiran; Gowdra, Ramesh Halebathi Giriyappa; Azher, Samer; Sabharwal, Sumit; Singh, Veerandar T; Sundararajan, Bharath Vardhana

    2016-01-01

    Enterococcus faecalis is a persistent organism that plays a major role in the etiology of persistent periradicular lesions after root canal treatment has been associated with different forms of periradicular disease including primary endodontic infections and persistent infections. The present study compares the antibacterial activities of calcium hydroxide, calcium hydroxide mixed with silver zeolite, and calcium hydroxide mixed with 2% chlorhexidine against E. faecalis using direct contact test. The test materials of the in vitro experimental study were grouped as group 1-calcium hydroxide mixed with sterile water, group 2-2% silver zeolite added in calcium hydroxide mixed with sterile water, and group 3-calcium hydroxide mixed with 2% chlorhexidine. The bottom of microtiter plate were coated with freshly mixed tested material and a 10 μL of bacterial suspension was placed. After 1 h of incubation at 37°C, brain-heart infusion (BHI) broth (245 μL) was added and mixed for 2 min. These were designated as "subgroup 1" wells. A volume of 15 μL of broth then transferred from subgroup 1 wells to an adjacent set of four wells containing fresh BHI medium (215 μL); these wells were designated as "subgroup 2"' wells. The optical density was measured by a spectrophotometer after the first day, third day, and seventh day. One-way analysis of variance (ANOVA) and Tukey tests were performed for the analysis. Calcium hydroxide mixed with silver zeolite showed maximum antibacterial activity. Silver zeolite can be added in calcium hydroxide to enhance the latter's antibacterial activity against E. faecalis.

  9. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Milina, Maria; Mitchell, Sharon; Crivelli, Paolo; Cooke, David; Pérez-Ramírez, Javier

    2014-05-01

    Deactivation due to coking limits the lifetime of zeolite catalysts in the production of chemicals and fuels. Superior performance can be achieved through hierarchically structuring the zeolite porosity, yet no relation has been established between the mesopore architecture and the catalyst lifetime. Here we introduce a top-down demetallation strategy to locate mesopores in different regions of MFI-type crystals with identical bulk porous and acidic properties. In contrast, well-established bottom-up strategies as carbon templating and seed silanization fail to yield materials with matching characteristics. Advanced characterization tools capable of accurately discriminating the mesopore size, distribution and connectivity are applied to corroborate the concept of mesopore quality. Positron annihilation lifetime spectroscopy proves powerful to quantify the global connectivity of the intracrystalline pore network, which, as demonstrated in the conversions of methanol or of propanal to hydrocarbons, is closely linked to the lifetime of zeolite catalysts. The findings emphasize the need to aptly tailor hierarchical materials for maximal catalytic advantage.

  10. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2018-04-17

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  11. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  12. Positron spectroscopy studies of zeolites

    NASA Astrophysics Data System (ADS)

    Hung, Ku-Jung

    The lineshapes of two-dimensional angular correlation of electron-positron annihilation radiation (2D-ACAR) in alumina and several zeolites were measured as a function of internal surface areas. In all cases, the lineshape parameter S from 2D-ACAR spectra were found to vary proportionally with internal surface area. In order to investigate the Bronsted acidity in NaHY zeolite, the lineshape parameter evaluation from 2D-ACAR measurements for varied acidity in NaHY zeolites by ion-exchange and thermal desorption were presented. The result from this investigation has demonstrated that the Bronsted acidity in NaHY zeolite was found to vary linearly with the lineshape parameter of the angular correlation spectrum of the sample. The lineshapes of 2D-ACAR spectra were determined for different base adsorbed HY-zeolite samples under a temperature controlled heating system in order to investigate, in-situ, the acid strength and number of Bronsted acid sites in the sample. Results have shown that the lineshape parameter of the angular correlation spectrum of the sample increases with the strength of adsorbed base and decreases with the number of Bronsted acid sites in the sample. This indicated that the lineshape parameter is sensitive to all of the strengths and concentrations of Bronsted acid sites in the HY-zeolite samples. The result from this study has also demonstrated that the large size base, pyridine, would reduce the possibility of positronium formation in the sample by filling the cage to eliminate the internal surface areas where the positroniums are likely to form. However, the small size base, ammonia, did not show any effect on the internal surface areas. Owing to the fact that this technique monitors only the Bronsted acid sites that situate on the surface which relates to the catalytic activity, there is little ambiguity about the location of the source of information obtained. The findings presented in this dissertation point out the fact that such lineshape

  13. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  14. Synthesis and characterization of Sn/zeolite and catalytic activity test in the esterification reaction of sludge oil

    NASA Astrophysics Data System (ADS)

    Alimuddin, Andi Hairil; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Prawatya, Yopa Eka; Astar, Ismail; Yustira, Yudi

    2017-03-01

    Synthesis of Sn-Zeolite has been made to use for esterification reaction of free fatty acids in sludge oil. Catalyst characterization was accomplished using X-Ray Diffraction (XRD), X-Ray Flourecence (XRF), and Fourier Transform Infra Red (FTIR). Catalyst Sn/zeolite was synthesized by impregnated Sn of SnCl2 into the zeolite. The amount of Sn impregnated base on the value of cation exchange capacity (CEC) of zeolites. Esterification reaction of fatty acids from sludge oil using Sn/Zeolite catalyst was did by variated the reaction time. XRD analysis results showed that the catalyst Sn/zeolite was dominated by modernit and quartz. XRF analysis results was increasing amount of Sn metal and the Si/Al ratio on Sn/zeolite catalyst along with addition of Sn metal. FTIR analysis results showed that the catalyst synthesized had Bronsted acid side (the spectrum 1639.4; 1656.7; 1654.8 cm-1) and the Lewis acid (spectrum 1400.2 and 1402.2 cm-1). The results showed that the optimum conditions of esterification reaction in 4 hours reaction time, 5% concentration of the catalyst, and molar ratio was about 1:10 with a conversion percentage of products reached 96.00%, which can be achieved with a ratio was about 4:1 between Sn and zeolite on Sn/zeolite catalyst.

  15. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality.

    PubMed

    Krajisnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snezana; Dondur, Vera; Matijasević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

    2010-10-01

    In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.

  16. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.

    PubMed

    Engeldinger, Jana; Richter, Manfred; Bentrup, Ursula

    2012-02-21

    The simultaneous combination of steady state isotopic transient kinetic analysis (SSITKA) with diffuse reflectance Fourier transform spectroscopy (DRIFTS) and mass spectrometric (MS) analysis was applied to study the oxidative carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) on a CuY zeolite catalyst prepared by incipient-wetness impregnation of commercial zeolite NH(4)-Y. The interaction of the catalyst with different reactants and reactant mixtures (O(2), CO, CO/O(2), MeOH/O(2), MeOH/CO, and MeOH/CO/O(2)) was studied in detail using (16)O(2)/(18)O(2) as well as (12)CO/(13)CO containing gas mixtures. DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate which is formed by the concerted action of adsorbed methoxide and CO with gas phase MeOH. Adsorbed bidentate MMC species were found to be inactive. Lattice oxygen supplied by CuO(x) species is involved in the formation of MMC. Gas phase oxygen is needed to re-oxidize the catalyst but favours also the oxidation of CO to CO(2) and unselective oxidation reactions of MeOH to methyl formate, dimethoxymethane, and CO(2). The appropriate choice of reaction temperature and of the oxygen content in the reactant gas mixture was found to be indispensable for reaching high DMC selectivities.

  17. Preparation, Processing, and Characterization of Oriented Polycrystalline Zeolite and Aluminophosphate Membranes

    NASA Astrophysics Data System (ADS)

    Stoeger, Jared Andrew

    Since the advent of zeolite membranes, speculation on their industrial applicability has been closely monitored, although widespread commercialization has been hampered by limitations in fabrication and post-synthesis processing. Economical, energy-efficient technology breakthroughs require an evaluation of a range of material candidates which show robustness and reliability. Straightforward manufacturing techniques should be devised to generate thousands of square meters of membrane area; however, this demands control of structural characteristics on the scale of nanometers. As described in this dissertation, the path forward will be forged by exploiting the intrinsic crystalline properties of zeolites or aluminophosphates for the next advancement in membrane technology. A facile method is described for the preparation of silicalite-1 (MFI zeolite type) membranes using the secondary growth technique on symmetric porous stainless steel tubes. Activation through rapid thermal processing (RTP), a lamp-based heat-treatment process used as a critical fabrication step in silicon integrated circuit manufacturing, is proven to reduce the density of non-zeolitic transport pathways which are detrimental to high-resolution molecular sieving. RTP-treated membranes are shown to have enhanced performance in the binary separation of vapor-phase isomers (p-/o-xylene), gas-phase isomers (n-/i-butane), and alcohol/water when compared to membranes activated at a much slower heating rate but otherwise similarly-prepared. The performance is discussed in the context of the market potential for industrially-attractive separations: the recovery of p-xylene from an isomeric mixture or alcohol biofuels from aqueous post-fermentation streams. Hydrothermal growth techniques for the preparation and characterization of continuous aluminophosphate (AFI zeolite type) membranes with a preferential crystallographic alignment on porous alpha-Al2O3 disc supports are demonstrated. A mechanism is

  18. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  19. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  20. Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Wang, Yisong; Du, Tao; Song, Yanli; Che, Shuai; Fang, Xin; Zhou, Lifeng

    2017-11-01

    ZSM-5 type zeolite with mesoporous structure was prepared and then amine-functionalized with tetraethylenepentamine (TEPA) by wet impregnation method to form a series of CO2 adsorbents (ZTx). The structural properties of ZSM-5 and ZTx were characterized by XRD, FTIR, TGA/DTG, nitrogen adsorption/desorption, SEM and EDX techniques. The adsorption capacity of the adsorbents with different amine loading was measured at a temperature from 40 to 100 °C and the adsorption capacity of ZT7 was 1.80 mmol/g at 100 °C. The adsorption process and mechanism were studied by fitting the experimental data used the three adsorption kinetic models, and a complex physical and chemical mixing process was produced as the amine entered the surface and pore size of the zeolite. The high adsorption selectivity at 10% CO2 concentration and the stability of the five adsorption desorption cycles indicated that ZT7 is a suitable and promising CO2 adsorbent for the purification of industrial flue gas.

  1. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  2. A DFT Study of Tungsten-Methylidene Formation on a W/ZSM-5 Zeolite: The Metathesis Active Site.

    PubMed

    Maihom, Thana; Probst, Michael; Limtrakul, Jumras

    2015-10-26

    Tungsten-methylidene formation from ethene on either the W(IV) , W(V) , or W(VI) active sites of a W/ZSM-5 zeolite is investigated by using the M06-L functional. The reaction is assumed to proceed in two steps; the first step is the [2+2] cycloaddition between ethene and the W-O active site to form an oxametallacycle intermediate. The intermediate is then decomposed to produce the W-methylidene active site from the metathesis reaction. The overall activation barrier of the reaction on W(VI) (27.3 kcal mol(-1) ) is considerably lower than the ones for W(IV) and W(V) (69.4 and 37.1 kcal mol(-1) , respectively). Moreover, the reaction involving the W(VI) site also stabilizes intermediates and products to a larger extent than the ones on the W(IV) and W(V) sites. As a result, we have demonstrated that the reaction of the W-methylidene metathesis active site is both kinetically and thermodynamically favored to occur on the W(VI) active site of the zeolite. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite).

    PubMed

    Nakane, T; Gomyo, H; Sasaki, I; Kimoto, Y; Hanzawa, N; Teshima, Y; Namba, T

    2006-08-01

    The causative substances for axillary osmidrosis, which are often found in apocrine sweat, are the decomposed/denatured products of short-chain fatty acid and other biological metabolite compounds produced by axillary-resident bacteria. Conventional underarm deodorants suppress the process of odour production mostly by the following mechanism: (1) suppression of perspiration, (2) reduction in numbers of resident bacteria, (3) deodorization and (4) masking. The most important and effective method to reduce odour is to suppress the growth of resident bacteria with antimicrobials, which have several drawbacks, especially in their safety aspect. To solve these problems, we focused on Ag-zeolite (silver-exchanged zeolite) that hold stable Ag, an inorganic bactericidal agent, in its structure, and therefore, poses less risk in safety. Its bactericidal effect on skin-resident bacteria was found to be excellent and comparable with that of triclosan, a most frequently used organic antimicrobial in this product category. The dose-response study of Ag-zeolite powder spray (0-40 w/w%) using 39 volunteers revealed that 5-40 w/w% Ag-zeolite could show a sufficient antimicrobial effect against skin-resident bacteria. The comparison study using 0.2 w/w% triclosan as the control and 10 w/w% Ag-zeolite indicated that: (1) one application of the powder spray containing 10 w/w% Ag-zeolite could show a sufficient antimicrobial effect against the resident bacteria and its effect continued for 24 h, (2) a powder spray containing 0.2 w/w% triclosan was unable to show a sufficient antimicrobial effect, and (3) no adverse event was observed. These studies show that Ag-zeolite has a superior antimicrobial ability that is rarely found in conventional antimicrobials used in deodorant products and a strong antiaxillary odour deodorant ability because of its long-lasting effect. During clinical study, patch tests with humans and other clinical studies of this product showed no adverse events

  4. Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite

    DOE PAGES

    Bu, Lintao; Nimlos, Mark R.; Robichaud, David J.; ...

    2018-02-08

    Hierarchical mesoporous zeolites exhibit higher catalytic activities and longer lifetime compared to the traditional microporous zeolites due to improved diffusivity of substrate molecules and their enhanced access to the zeolite active sites. Understanding diffusion of biomass pyrolysis vapors and their upgraded products in such materials is fundamentally important during catalytic fast pyrolysis (CFP) of lignocellulosic biomass, since diffusion makes major contribution to determine shape selectivity and product distribution. However, diffusivities of biomass relevant species in hierarchical mesoporous zeolites are poorly characterized, primarily due to the limitations of the available experimental technology. In this work, molecular dynamics (MD) simulations are utilizedmore » to investigate the diffusivities of several selected coke precursor molecules, benzene, naphthalene, and anthracene, in hierarchical mesoporous H-ZSM-5 zeolite. The effects of temperature and size of mesopores on the diffusivity of the chosen model compounds are examined. The simulation results demonstrate that diffusion within the microspores as well as on the external surface of mesoporous H-ZSM-5 dominates only at low temperature. At pyrolysis relevant temperatures, mass transfer is essentially conducted via diffusion along the mesopores. Additionally, the results illustrate the heuristic diffusion model, such as the extensively used Knudsen diffusion, overestimates the diffusion of bulky molecules in the mesopores, thus making MD simulation a powerful and compulsory approach to explore diffusion in zeolites.« less

  5. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Prabir K.

    2001-09-30

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  6. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts

    NASA Astrophysics Data System (ADS)

    Anis, Shaheen Fatima; Hashaikeh, Raed

    2018-02-01

    Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.

  7. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.

  8. The stability of copper oxo species in zeolite frameworks

    DOE PAGES

    Vilella, Laia; Studt, Felix

    2016-03-07

    Cu-exchanged zeolites are promising heterogeneous catalysts, as they provide a confined environment to carry out highly selective reactions. Furthermore, the knowledge of how the zeolite framework and the location of Al atoms therein affect the adsorption of copper species is still not well understood. In this work, DFT was used to investigate the adsorption of potential Cu oxo active species suggested in the literature [Cu(η 2-O 2), Cu(µ-O)Cu, and Cu 2O 2] into zeolites with different pore sizes and shapes (AFI, CHA, TON, MOR, and MFI). The calculations revealed that both monomeric and dimeric Cu oxo species bind strongly tomore » the O atoms of the lattice. For the monometallic species similar adsorption energies are obtained with the different zeolite frameworks, whereas an optimum Al–Al distance is required for the dimeric species.« less

  9. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  10. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-07

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  11. Design and fabrication of zeolite macro- and micromembranes

    NASA Astrophysics Data System (ADS)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  12. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  13. Zeolites: Exploring Molecular Channels

    ScienceCinema

    Arslan, Ilke; Derewinski, Mirek

    2018-05-16

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  14. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  15. Zeolites: Exploring Molecular Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  16. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage

    NASA Astrophysics Data System (ADS)

    Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui

    2018-04-01

    We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.

  17. In situ Fourier transform infrared (FTIR) investigation of CO{sub 2} adsorption onto zeolite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert W. Stevens Jr.; Ranjani V. Siriwardane; Jennifer Logan

    2008-09-15

    The adsorption of CO{sub 2} onto five zeolite materials (13X, WEG, AGP, 4A, and 5A) was studied by in situ infrared spectroscopy at 1 atm as a function of the pretreatment temperature (120 and 350{sup o}C) and adsorption temperature (30 and 120{sup o}C). Adsorbed CO{sub 2} surface species identified in the current work include physisorbed CO{sub 2}, bidentate carbonate, bridged bidentate carbonate, monodentate carbonate, and carboxylate. Both pretreatment temperature and CO{sub 2} adsorption temperature affected the type and amount of adsorbed CO{sub 2} species formed. Materials pretreated at 350{sup o}C, as opposed to 120{sup o}C, had more surface adsorption sitesmore » available as evidenced from the resulting more intense IR bands. Physisorbed CO{sub 2} was the most abundant species observed. Bridged bidentate carbonate was found to be more stable than bidentate carbonate. Tests involving both CO{sub 2} and H{sub 2}O showed that the two species competed for the same adsorption sites on the zeolite surface. 18 refs., 15 figs., 1 tab.« less

  18. Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite

    NASA Astrophysics Data System (ADS)

    Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis

    2017-07-01

    We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.

  19. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  20. Optimization of sodium loading on zeolite support for catalyzed transesterification of triolein with methanol.

    PubMed

    Wang, Yu-Yuan; Chou, Hsin-Yu; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Optimization of sodium loading on zeolite HY for catalyzed transesterification of triolein in excess methanol to biodiesel was studied. Zeolite HY catalyst was activated by loading sodium ions to their surface via an ion-exchange method. The effects of ion-exchange process parameters, including the temperature, the process time, the pH value, as well as concentrations and sources of Na(+) cations (NaOH, NaCl and Na2SO4), on the conversion yield of triolein to biodiesel were investigated. Most of these Na(+)-activated zeolite HY catalysts could really facilitate the catalyzed transesterification reaction of triolein to biodiesel at a lower temperature near 65°C. Consequently, a high conversion yield of triglycerides to biodiesel at 97.3% was obtained at 65°C. Moreover, the durability of zeolite catalysts was examined as well. Catalytic performance tests of these zeolite catalysts in transesterification did not show a significant decrease in catalysis at least for three batch cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research

    DOE PAGES

    Knott, Brandon C.; Nimlos, Claire T.; Robichaud, David J.; ...

    2017-12-11

    Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less

  2. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knott, Brandon C.; Nimlos, Claire T.; Robichaud, David J.

    Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less

  3. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. © 2016 John Wiley & Sons A/S.

  4. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  5. The use of zeolites to generate PET phantoms for the validation of quantification strategies in oncology.

    PubMed

    Zito, Felicia; De Bernardi, Elisabetta; Soffientini, Chiara; Canzi, Cristina; Casati, Rosangela; Gerundini, Paolo; Baselli, Giuseppe

    2012-09-01

    In recent years, segmentation algorithms and activity quantification methods have been proposed for oncological (18)F-fluorodeoxyglucose (FDG) PET. A full assessment of these algorithms, necessary for a clinical transfer, requires a validation on data sets provided with a reliable ground truth as to the imaged activity distribution, which must be as realistic as possible. The aim of this work is to propose a strategy to simulate lesions of uniform uptake and irregular shape in an anthropomorphic phantom, with the possibility to easily obtain a ground truth as to lesion activity and borders. Lesions were simulated with samples of clinoptilolite, a family of natural zeolites of irregular shape, able to absorb aqueous solutions of (18)F-FDG, available in a wide size range, and nontoxic. Zeolites were soaked in solutions of (18)F-FDG for increasing times up to 120 min and their absorptive properties were characterized as function of soaking duration, solution concentration, and zeolite dry weight. Saturated zeolites were wrapped in Parafilm, positioned inside an Alderson thorax-abdomen phantom and imaged with a PET-CT scanner. The ground truth for the activity distribution of each zeolite was obtained by segmenting high-resolution finely aligned CT images, on the basis of independently obtained volume measurements. The fine alignment between CT and PET was validated by comparing the CT-derived ground truth to a set of zeolites' PET threshold segmentations in terms of Dice index and volume error. The soaking time necessary to achieve saturation increases with zeolite dry weight, with a maximum of about 90 min for the largest sample. At saturation, a linear dependence of the uptake normalized to the solution concentration on zeolite dry weight (R(2) = 0.988), as well as a uniform distribution of the activity over the entire zeolite volume from PET imaging were demonstrated. These findings indicate that the (18)F-FDG solution is able to saturate the zeolite pores and that

  6. The energetics of mesopore formation in zeolites with surfactants.

    PubMed

    Linares, Noemi; Jardim, Erika de Oliveira; Sachse, Alexander; Serrano, Elena; Garcia-Martinez, Javier

    2018-05-02

    Mesoporosity can be conveniently introduced in zeolites by treating them in basic surfactant solutions. The apparent activation energy involved in the formation of mesopores in USY via surfactant-templating was obtained through the combination of in situ synchrotron XRD and ex situ gas adsorption. Additionally, techniques such as pH measurements and TG/DTA were employed to determine the OH- evolution and the CTA+ uptake during the development of mesoporosity, providing information about the different steps involved. By combining both in situ and ex situ techniques, we have been able, for the first time, to determine the apparent activation energies of the different processes involved in the mesostructuring of USY zeolites, which are in the same order of magnitude (30 - 65 kJ mol-1) of those involved in the crystallization of zeolites. Hence, important mechanistic insights on the surfactant-templating method were obtained. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reactivity of propene, n-butene, and isobutene in the hydrogen transfer steps of n-hexane cracking over zeolites of different structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukyanov, D.B.

    The reaction of n-hexane cracking over HZSM-5, HY zeolite and mordenite (HM) was studied in accordance with the procedure of the [beta]-test recently proposed for quantitative characterization of zeolite hydrogen transfer activity. It is shown that this procedure allows one to obtain quantitative data on propene, n-butene, and isobutene reactivities in the hydrogen transfer steps of the reaction. The results demonstrate that in the absence of steric constraints (large pore HY and HM zeolites) isobutene is approximately 5 times more reactive in hydrogen transfer than n-butene. The latter, in turn, is about 1.3 times more reactive than propene. With mediummore » pore HZSM-5, steric inhibition of the hydrogen transfer between n-hexane and isobutene is observed. This results in a sharp decrease in the isobutene reactivity: over HZSM-5 zeolites isobutene is only 1.2 times more reactive in hydrogen transfer than n-butene. On the basis of these data it is concluded that the [beta]-test measures the [open quotes]real[close quotes] hydrogen transfer activity of zeolites, i.e., the activity that summarizes the effects of the acidic and structural properties of zeolites. An attempt is made to estimate the [open quotes]ideal[close quotes] zeolite hydrogen transfer activity, i.e., the activity determined by the zeolite acidic properties only. The estimations obtained show that this activity is approximately 1.8 and 1.6 times higher for HM zeolite in comparison with HZSM-5 and HY zeolites, respectively. 16 refs., 4 figs., 2 tabs.« less

  8. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol

    PubMed Central

    2017-01-01

    Fe/ZSM-5 nanosheet zeolites of varying thickness were synthesized with di- and tetraquaternary ammonium structure directing agents and extensively characterized for their textural, structural, and catalytic properties. Introduction of Fe3+ ions in the framework of nanosheet zeolites was slightly less effective than in bulk ZSM-5 zeolite. Steaming was necessary to activate all catalysts for N2O decomposition and benzene oxidation. The higher the Fe content, the higher the degree of Fe aggregation was after catalyst activation. The degree of Fe aggregation was lower when the crystal domain size of the zeolite or the Fe content was decreased. These two parameters had a substantial influence on the catalytic performance. Decreasing the number of Fe sites along the b-direction strongly suppressed secondary reactions of phenol and, accordingly, catalyst deactivation. This together with the absence of diffusional limitations in nanosheet zeolites explains the much higher phenol productivity obtainable with nanostructured Fe/ZSM-5. Steamed Fe/ZSM-5 zeolite nanosheet synthesized using C22-6-3·Br2 (domain size in b-direction ∼3 nm) and containing 0.24 wt % Fe exhibited the highest catalytic performance. During the first 24 h on stream, this catalyst produced 185 mmolphenol g–1. Calcination to remove the coke deposits completely restored the initial activity. PMID:28413693

  9. Antibacterial properties of Ag-exchanged Philippine natural zeolite-chitosan composites

    NASA Astrophysics Data System (ADS)

    Taaca, Kathrina Lois M.; Olegario, Eleanor M.; Vasquez, Magdaleno R.

    2017-12-01

    Zeolites are microporous minerals composed of silicon, aluminum and oxygen. These aluminosilicates consist of tetrahedral units which produce open framework structures to generate a system of pores and cavities of molecular dimensions. Zeolites are naturally abundant and can be mined in most parts of the world. In this study, natural zeolites (NaZ) which are locally-sourced here in the Philippines were investigated to determine its properties. An ion-exchange process was utilized, using the zeolite to silver (Ag) solution ratio of 1:20 (w/v), to incorporate Ag into the zeolite framework. Characterizations such as XRD, AAS, and Agar diffusion assay were used to evaluate the properties of the synthesized Ag-exchanged zeolites (AgZ). X-ray diffraction revealed that both NaZ and AgZ have peaks mostly corresponding to the clinoptilolite structure, with some trace peaks of the mordenite and quartz. Absorption spectroscopy revealed that the ion exchange process added about 0.61188g of silver into the zeolite structure. This Ag content was seen to be enough to make the AgZ sample exhibit an antibacterial effect where clearing zones against E. coli and S. aureus were observed in the agar diffusion assay, respectively. The AgZ sample was also tested as ceramic filler to a polymer matrix-chitosan. The diffusion assay revealed presence of antibacterial activity to the polymer composite with AgZ fillers. These results indicate that the Philippine natural zeolite, incorporated with metals such as Ag, can be used as an antibacterial agent and can be developed as a ceramic filler to improve the antibacterial property of composite materials for biomedical application.

  10. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite

  12. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    NASA Astrophysics Data System (ADS)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2

  13. Fabrication of 6FDA-durene membrane incorporated with zeolite T and aminosilane grafted zeolite T for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Jusoh, Norwahyu; Fong Yeong, Yin; Keong Lau, Kok; Shariff, Azmi Mohd

    2017-08-01

    In the present work, zeolite T and aminosilane grafted zeolite T are embedded into 6FDA-durene polyimide phase for the fabrication of mixed matrix membranes (MMMs). FESEM images demonstrated that the improvement of interfacial adhesion between zeolite and polymer phases in MMM loaded with aminosilane grafted zeolite T was not significant as compared to zeolite T/6FDA-durene MMM. From the gas permeation test, CO2/CH4 selectivity up to 26.4 was achieved using MMM containing aminosilane grafted zeolite T, while MMM loaded with ungrafted zeolite T showed CO2/CH4 selectivity of 19.1. In addition, MMM incorporated with aminosilane grafted zeolite T particles successfully lies on Robeson upper bound 2008, which makes it an attractive candidate for CO2/CH4 separation.

  14. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  15. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  16. [What a physician should know about zeolites].

    PubMed

    Boranić, M

    2000-01-01

    Zeolites are natural and synthetic hydrated crystalline aluminosilicates endowed with absorptive and ion exchange properties. They have found numerous and multifarous applications--in industry as catalysts and absorbents, in water sanitation for the removal of ammonia and heavy metals, in agriculture as fertilizers, and in animal husbandry as the absorbents of excreted material and as food additives. Medical applications have included the use in filtration systems for anesthesia or dialysis and as the contrast materials in NMR imaging. Recently, zeolite powders for external use have found application as deodorants, antimycotic agents and wound dressings. Peroral use of encapsulated zeolite powders enriched with vitamins, oligoelements or other ingredients has been claimed to exert beneficial medical effects. Ingestion of zeolites may be considered analogous to the clay eating (geophagia), considered in traditional medicine as a remedy for various illnesses. Being amphoteric, zeolites are partly soluble in acid or alkaline media, but within the physiological pH range the solubility is generally low. Minimal amounts of free aluminium or silicium from the ingested zeolites are resorbed from the gut. The bulk of ingested zeolite probably remains undissolved in the gut. In view of the ion exchange properties, zeolites may be expected to change the ionic content, pH and buffering capacity of the gastrointestinal secretions and to affect the transport through the intestinal epithelium. In addition, zeolites could affect the bacterial flora and the resorption of bacterial products, vitamins and oligoelements. The contact of zeolite particles with gastrointestinal mucosa may elicit the secretion of cytokines with local and systemic actions. Reactive silicium ions might react with biomolecules of the intestinal epithelium, and if resorbed, do so in other cells. Mutagenic and carcinogenic effects of zeolite particles have been described, resembling such effects of asbestos

  17. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  18. Platinum/zeolite catalyst for reforming n-hexane: Kinetic and mechanistic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, G.S.; Modica, F.S.; Miller, J.T.

    A platinum/L-zeolite-reforming catalyst exhibits activity and selectivity for converting n-hexane into benzene than other Pt catalyst. The reaction pathways indicate that for all catalysts, e.g., Pt/K L or Pt/K Y, benzene is formed as a primary product by one-six-ring closure and methylcyclopentane is formed as a primary product via one-five-ring closure. The ratio for one-six to one-five-ring closure, however, is about two times greater for the Pt/K L than for the Pt/K Y, or other platinum catalysts. The preference for the one-six-ring closure in L zeolite appears to be related to the optimum pore size of the L zeolite. Inmore » addition to an increased selectivity for one-six-ring closure, the Pt/K L-zeolite catalyst also displays increased reactivity. For example, the turnover frequency of the Pt/K L-zeolite catalyst is 10 times higher for formation of benzene and 3.3 times higher for formation of methylcyclopentane compared with the Pt/K Y-zeolite catalyst. Although the Pt/K L is more reactive than Pt/K Y, the apparent activation energies, 54 kcal/mol for one-six-ring closure and 39 kcal/mol for one-five-ring closure, are the same for both catalysts. Differences in reactivity are associated with an increase in the preexponential term for the Pt/K L catalyst. The increased aromatics selectivity for Pt/K L is consistent with the confinement model which proposes that n-hexane is adsorbed as a six-ring pseudo-cycle resembling the transition state for one-six-ring closure.« less

  19. Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.

    PubMed

    Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo

    2007-05-14

    Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells.

  20. ZIF-8 derived nitrogen-doped porous carbon as metal-free catalyst of peroxymonosulfate activation.

    PubMed

    Ma, Wenjie; Du, Yunchen; Wang, Na; Miao, Peng

    2017-07-01

    Nitrogen-doped porous carbon (NPC) is synthesized through a direct pyrolysis of zeolitic imidazolate framework (ZIF)-8 under N 2 flow followed by acid washing process. It is found that NPC-800 pyrolyzed at 800 °C can inherit the perfect rhombic dodecahedron morphology of ZIF-8 crystals and achieve the considerable nitrogen-doping content of 15.20%. When NPC-800 is applied as the heterogeneous catalyst in peroxymonosulfate (PMS) activation for the degradation of Rhodamine B (RhB) and phenol, NPC-800 will exhibit its better performance than some conventional transition metal-based oxides and common carbon materials. The active sites can be primarily ascribed to nitrogen modification and sp 2 -hybridized carbon frameworks. Besides, the influence of several parameters such as the dosage of catalyst, the concentration of oxidant, and reaction temperature is conducted systematically. More importantly, NPC-800 can maintain its considerable degradation in the presence of some anions and natural organic matters, even under some actual water background conditions. Although NPC-800 displays mild deactivation in repeated experiments, its catalytic performance can be easily recovered through heat treatment at 350 °C in air. Radical quenching tests reveal that both sulfate and hydroxyl radicals are responsible for the removal of organic pollutants. This research may provide a new way for the application of novel metal-free carbocatalysts in terms of PMS activation.

  1. Zeolites on Mars: Prospects for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

    1985-01-01

    The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

  2. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid.

    PubMed

    He, Ping; Wang, Wei; Du, Licheng; Dong, Faqin; Deng, Yuequan; Zhang, Tinghong

    2012-08-20

    A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu(2+) functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0×10(-7)-1.9×10(-5)M for DA and 2.0×10(-5)-2.0×10(-4)M for AA. Detection limits (S/N=3) were estimated to be 4.1×10(-8)M for DA and 1.1×10(-5)M for AA, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust

    PubMed Central

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Lazor, Peter; Broman, Curt; Belivanova, Veneta; Marone, Federica

    2015-01-01

    We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites—remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust. PMID:26488482

  4. Cation-exchanged zeolites for the selective oxidation of methane to methanol

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira; ...

    2017-10-19

    Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less

  5. Cation-exchanged zeolites for the selective oxidation of methane to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira

    Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less

  6. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  7. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  8. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  9. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  10. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  11. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  12. Zeolites: Can they be synthesized by design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.E.

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high levelmore » of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''« less

  13. Antimicrobial efficacy and longevity of silver+zeolite incorporating preinsulated ducts installed in real healthcare settings.

    PubMed

    Tinteri, C; Potenza, M; Rizzetto, R

    2012-12-01

    The values of microbial growth in the air exiting from the heating, ventilation and air conditioning (HVAC) ducts treated with silver/zeolite have been shown to be lower than those in the air coming out the traditional metal ones. This study aims to verify how long this antimicrobial activity lasts. All the tests were performed according to US ASTM E2180-01 and ISO-JIZ 22196 standards. Samples of aluminum cladding panels of different thickness and incorporating silver-zeolite were tested in order to verify their thickness depending antibacterial activity. The same kind of linings samples were analyzed after a simulated and accelerated ageing process. Ag-zeolite incorporating HVAC duct panels linings were tested after years from their installation, in order to verify the maintenance of their bactericidal power during time. For laminates containing different amounts of silver+Zeolite it was shown that also in panels with minimum thickness tested, the lowest germicidal effect (GE) found was still very good (GE of 5,76 ULog10). After their wearing and tearing the antimicrobial activity tended to increase passing from 7.2081 to 8.29922 LogUnits in panels 80 microns thick. For still hospital working aluminium foils incorporating Silver/Zeolite on panels installed through 2006 and 2008, the antimicrobial action of zeolite was still firmly present even after two years and three years.The germicidal effect standards were maintained even during time on constant values between 7.477 and 7.086 LogUnits. The persistence of bactericidal efficacy of Ag+zeolite treatment in all the materials used for the construction of HVAC ductworks can be confirmed.

  14. [Effect of Nano Zeolite on Chemical Fractions of Cd in Soil and Its Uptake by Cabbage].

    PubMed

    Xiong, Shi-juan; Xu, Wei-hong; Xie, Wen-wen; Chen, Rong; Chen, Yong-qin; Chi, Sun-lin; Chen, Xu- gen; Zhang, Jin-zhong; Xiong, Zhi-ting; Wang, Zheng-yin; Xie, De-ti

    2015-12-01

    Incubation experiments were carried out to investigate the influence of different nano zeolite (NZ) and ordinary zeolite (OZ) levels(0, 5, 10 and 20 g · kg⁻¹) on the change trends in fraction distribution coefficient (FDC) of Cd when exposed to different Cadmium (Cd) levels (1, 5, 10 and 15 mg · kg⁻¹), and pot experiments were carried out to investigate their influence on soil Cd fraction and Cd uptake by cabbage. The results in incubation experiments showed that the application of nano zeolite as well as ordinary zeolite effectively decreased the FDC of exchangeable Cd and increased the FDC of Fe-Mn oxide fraction. The FDC of soil Cd from 0 d to 28 d was deceased at first, then increased and tended to be stable, and finally increased. At the end of incubation, the FDC of soil exchangeable Cd decreased from 72.0%-88.0% to 30.0%-66.4%. Exchangeable fraction Cd was the most dominant Cd fraction in soil during the whole incubation. The results in pot experiment indicated that the application of nano zeolite and ordinary zeolite decreased the concentration and FDC of soil exchangeable Cd, and concurrently the concentration and FDC of Cd in carbonate, Fe-Mn oxide, organic matter and residual fraction were increased. The lowest EX-Cd was observed in the treatment with high dose of nano zeolite (20 g · kg⁻¹). The FDC of exchangeable Cd showed significant negative relationship with the soil pH (P < 0.05), and was concurrently extremely positively correlated with Cd concentration in shoot and root of cabbage (P < 0.01). Soil pH increased by 1.8%-45.5% and 6.1%-54.3% in the presence of zeolite when exposed to 5 mg · kg⁻¹ 1 and Cd, respectively; FDC of exchangeable Cd decreased by 16.3%-47.7% and 16.2%-46.7%; Cd concentration in each tissues of cabbage decreased by 1.0%-75.0% and 3.8%-53.2%, respectively. Moreover, the reduction effect of nano zeolite on soil and plant Cd was better than that of ordinary zeolite. The growth of cabbage was stimulated by low and

  15. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    NASA Astrophysics Data System (ADS)

    Mazar, Mark Nickolaus

    is responsible for the largest activation energy of the catalytic cycle. This assessment is similar to the findings of alkane metathesis studies on alumina/silica supports and indicates that the entire AM cycle can be performed in zeolites by isolated single-atom transition metal hydrides. Performed over acid form zeolites, MTH is used in the conversion of methanol into a broad range of hydrocarbons, including alkenes, alkanes, and aromatics. For reasons that are not yet rigorously quantified, product selectivities vary dramatically based on the choice of catalyst and reaction conditions. The methylation of species containing double bonds (i.e., co-catalysts) is central to the overall process. Distinct structure-function relationships were found with respect to the elementary steps in the methylation and beta-scission of olefins. In Chapter 4, the role of zeolite topology in the step-wise methylation of ethene by surface methoxides is investigated. Elementary steps are studied across multiple frameworks (i.e., BEA, CHA, FER, MFI, and MOR) constituting a wide variety of confinement environments. The reaction of surface methoxides with ethene is found to require a transition state containing a primary carbocation. The barrier height is found to decrease nearly monotonically with respect to the degree of dispersion interactions stabilizing the primary carbocationic species in the transition state. In addition, quantification of the ``local'' dispersion energy indicates that confinement effects can not be simply correlated to pore size. The beta-scission of olefins plays an important role in the product selectivities of many important chemical processes, including MTH. In Chapter 5, beta-scission modes involving C6 and C8 isomers are investigated at a single, isolated Bronsted acid site within H-ZSM-5. We find that the relative enthalpic barriers of beta-scission elementary steps can be rationalized by the substitution order of the two different carbocationic carbon

  16. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    PubMed

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  17. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    NASA Astrophysics Data System (ADS)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  18. Ethylene formation by dehydration of ethanol over medium pore zeolites

    NASA Astrophysics Data System (ADS)

    Gołąbek, Kinga; Tarach, Karolina A.; Filek, Urszula; Góra-Marek, Kinga

    2018-03-01

    In this work, the role of pore arrangement of 10-ring zeolites ZSM-5, TNU-9 and IM-5 on their catalytic properties in ethanol transformation were investigated. Among all the studied catalysts, the zeolite IM-5, characterized by limited 3-dimensionality, presented the highest conversion of ethanol and the highest yields of diethyl ether (DEE) and ethylene. The least active and selective to ethylene and C3 + products was zeolite TNU-9 with the largest cavities formed on the intersection of 10-ring channels. The catalysts varied, however, in lifetime, and their deactivation followed the order: IM-5 > TNU-9 > ZSM-5. The processes taking place in the microporous zeolite environment were tracked by IR spectroscopy and analysed by the 2D correlation analysis (2D COS) allowing for an insight into the nature of chemisorbed adducts and transition products of the reaction. The cage dimension was found as a decisive factor influencing the tendency for coke deposition, herein identified as polymethylated benzenes, mainly 1,2,4-trimethyl-benzene.

  19. Ethylene formation by dehydration of ethanol over medium pore zeolites.

    PubMed

    Gołąbek, Kinga; Tarach, Karolina A; Filek, Urszula; Góra-Marek, Kinga

    2018-03-05

    In this work, the role of pore arrangement of 10-ring zeolites ZSM-5, TNU-9 and IM-5 on their catalytic properties in ethanol transformation were investigated. Among all the studied catalysts, the zeolite IM-5, characterized by limited 3-dimensionality, presented the highest conversion of ethanol and the highest yields of diethyl ether (DEE) and ethylene. The least active and selective to ethylene and C 3+ products was zeolite TNU-9 with the largest cavities formed on the intersection of 10-ring channels. The catalysts varied, however, in lifetime, and their deactivation followed the order: IM-5>TNU-9>ZSM-5. The processes taking place in the microporous zeolite environment were tracked by IR spectroscopy and analysed by the 2D correlation analysis (2D COS) allowing for an insight into the nature of chemisorbed adducts and transition products of the reaction. The cage dimension was found as a decisive factor influencing the tendency for coke deposition, herein identified as polymethylated benzenes, mainly 1,2,4-trimethyl-benzene. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preparation and performance of manganese-oxide-coated zeolite for the removal of manganese-contamination in groundwater.

    PubMed

    Lyu, Cong; Yang, Xuejiao; Zhang, Shengyu; Zhang, Qihui; Su, Xiaosi

    2017-12-29

    A promising and easily prepared catalytic filler media, manganese-oxide-coated zeolite (MOCZ), for the removal of Mn (II) contamination in groundwater was studied. The optimal condition for MOCZ preparation was given as follows: acid activation of zeolite with 5% HCl mass percent for 12 h, then soaking of acid-activated zeolite with 7% KMnO 4 mass percent for 8 h, and finally calcination at 300°C for 5 h. Acid activation significantly enlarged the specific surface area of the zeolite (>79 m 2  g -1 ), subsequently enhancing the coating of manganese oxides onto the surface of the zeolite. This was further supported by the manganese-to-zeolite ratio (γ Mn ) and Energy dispersive analysis-mapping. The γ Mn was over 12.26 mg Mn g -1 zeolite, representing more active sites for the adsorption and catalytic-oxidation of Mn (II). As such, great performance of Mn (II) removal by MOCZ was obtained in the filter experiment. An estimated 98-100% removal efficiency of Mn (II) was achieved in a greatly short startup time (only 2 h). During the filtration process, newborn flocculent manganese oxides with a mixed-valence of manganese (Mn (II) and Mn (IV)) were generated on the MOCZ surface, further facilitating the adsorption and catalytic-oxidation of Mn (II). The filter with MOCZ as adsorbent had a great performance on the Mn (II) removal in a wide range of hydraulic retention time (HRT) (4-40 min), particularly in a short HRT. Besides, the filter prolonged the filtration period (60 days), which would significantly reduce the frequency of backwash. Thus, it could be concluded that MOCZ prepared in this study showed a good performance in terms of Mn (II) removal in waterworks, especially small waterworks in the villages/towns.

  1. Nanocomposites of zeolite-titanium(IV) oxides: Preparation, characterization, adsorption, photocatalytic and bactericidal properties

    NASA Astrophysics Data System (ADS)

    Domoroshchina, Elena; Kravchenko, Galina; Kuz'micheva, Galina

    2017-06-01

    NT/zeolite nanocomposites (NT - nanosized titanium(IV) oxides: η-phase and Hombifine N with anatase; zeolite: Beta(25), ZSM-5 with different modules Si/Al, MOR, or Y) have been obtained by two methods: modified cold-impregnation method (method 1) and in situ method of introduction of zeolites into the reaction mixture during the synthesis of NT by hydrolysis of TiOSO4×xH2SO4×yH2O or TiOSO4×2H2O aqueous solutions (method 2), performed for the first time. According to the X-ray data, the following differences in the NT:zeolite systems under investigation have been revealed: the mixture of zeolites and NT in nanocrystalline (Hombifine N/zeolite) or amorphous states (η-phase/zeolite, except for η-phase/MOR, where NT peaks are absent) (method 1), and the mixture of Y-zeolite and amorphous NT or only Y-zeolite without NT (method 2), which indicates the different levels of interaction between NT and zeolites in the systems studied. The best characteristics of properties (photocatalytic, adsorption, and antibacterial) have been revealed in the nanocomposites synthesized by the method 2. The correlation between the photoreaction rate constant (the k value) under UV irradiation in the presence of nanocomposites (kmax for NT/ZSM-5(12)) and the type of precursor, its pH, synthesis duration, NT:zeolite ratio, organic dye composition (methyl orange or Rhodamine G) has been established. The highest degree of extraction of P(V) ions from model aqueous systems has been observed in the presence of nanocomposites with the largest total surface area of all particles (Rmax = 99.48% for NT/MOR). The correlation between the sorption degree of P(V) ions and the modulus of zeolite is possible. Antibacterial activity in the dark towards Escherichia coli has been found for Y and Beta(25) zeolites and nanocomposites on their basis (methods 1 and 2) with the maximum diameter of bacterial growth inhibition (18 mm) obtained for NT/Beta(25) (method 2) synthesized only from TiOSO4×xH2SO4

  2. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  3. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  4. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  5. Progress on Zeolite-membrane-aided Organic Acid Esterification

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  6. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.

    PubMed

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.

  7. Platinum clusters supported in zeolite LTL: Influence of catalyst morphology on performance in n-hexane reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jentoft, R.E.; Gates, B.C.; Tsapatsis, M.

    KLTL zeolite-supported platinum catalysts were synthesized from aqueous tetraammineplatinum(II) nitrate solutions and nonacidic KLTL zeolite crystallites, including some with dimensions as little as 300 x 500 {angstrom}. The zeolite crystallites had various morphologies, some being predominantly disk-shaped particles and some predominantly mosaics of rod-like domains with a range of c-dimension lengths. The activity and selectivity of each catalyst were evaluated for dehydrocyclization of n-hexane in the presence of H{sub 2} to form predominantly benzene at conversions of typically 45--90%. The data presented here provide a detailed characterization of the deactivation of such catalysts in the absence of sulfur. EXAFS datamore » show that the platinum in each catalyst was present in clusters of about 20 atoms each, on average. Electron micrographs show that the platinum clusters were nearly evenly dispersed on the surfaces of the zeolite crystallites, including the intracrystalline and extracrystalline surfaces. The catalytic performance was virtually independent of the zeolite channel length, but activity, selectivity, and resistance to deactivation were found to be correlated with the ratio of the surface area external to the crystallite domains to that within the intracrystalline pores. The catalyst performance is dependent on this ratio (which is related to the zeolite morphology) as follows: in comparison with the others, the catalysts with the relatively low fractions of platinum outside the intracrystalline pores are more active, more selective for benzene formation, and more resistant to deactivation.« less

  8. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  9. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  10. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  11. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  12. Zeolite food supplementation reduces abundance of enterobacteria.

    PubMed

    Prasai, Tanka P; Walsh, Kerry B; Bhattarai, Surya P; Midmore, David J; Van, Thi T H; Moore, Robert J; Stanley, Dragana

    2017-01-01

    According to the World Health Organisation, antibiotics are rapidly losing potency in every country of the world. Poultry are currently perceived as a major source of pathogens and antimicrobial resistance. There is an urgent need for new and natural ways to control pathogens in poultry and humans alike. Porous, cation rich, aluminosilicate minerals, zeolites can be used as a feed additive in poultry rations, demonstrating multiple productivity benefits. Next generation sequencing of the 16S rRNA marker gene was used to phylogenetically characterize the fecal microbiota and thus investigate the ability and dose dependency of zeolite in terms of anti-pathogenic effects. A natural zeolite was used as a feed additive in laying hens at 1, 2, and 4% w/w for a 23 week period. At the end of this period cloacal swabs were collected to sample faecal microbial communities. A significant reduction in carriage of bacteria within the phylum Proteobacteria, especially in members of the pathogen-rich family Enterobacteriaceae, was noted across all three concentrations of zeolite. Zeolite supplementation of feed resulted in a reduction in the carriage of a number of poultry pathogens without disturbing beneficial bacteria. This effect was, in some phylotypes, correlated with the zeolite concentration. This result is relevant to zeolite feeding in other animal production systems, and for human pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  14. Effect of SrO content on Zeolite Structure

    NASA Astrophysics Data System (ADS)

    Widiarti, N.; Sari, U. S.; Mahatmanti, F. W.; Harjito; Kurniawan, C.; Prasetyoko, D.; Suprapto

    2018-04-01

    The aims of current studies is to investigate the effect of strontium oxide content (SrO) on synthesized zeolite. Zeolite was synthesized from Tetraethyl orthosilicate (TEOS) as precursors of SiO2 and aluminum isopropoxide (AIP) precursors. The mixture was aged for 3 days and hydrothermally treated for 6 days. The SrO content was added by impregnation method. The products were then characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Surface Area Analyzer (SAA). The diffractogram confirmed the formation of Faujasite-like zeolite. However, after the addition of SrO, the crystallinity of zeolite was deformed. The diffractograms shows the amorphous phase of zeolite were decrease as the SrO content is increase. The structural changes was also observed from FTIR spectra which shows the shifting and peak formation. The surface area analysis showed that the increasing loading of SrO/Zeolites reduced the catalyst surface area.

  15. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  16. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  17. Final Report: Air Purification: Nanostructured Media for Individual Protection

    DTIC Science & Technology

    2016-06-27

    conventional adsorbents such as zeolites and activated carbon. Since that first article in 2012, we published a series of papers on water adsorption in a...of conventional adsorbents such as zeolites and activated carbons. This work will be extremely valuable for both the MOF community and the broader...adsorbents such as activated carbons and zeolites . The objective of this portion of work in this area has been to develop an engineered material that is

  18. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  19. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  20. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of

  1. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  2. Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol

    NASA Astrophysics Data System (ADS)

    Phillips, Cory Bernard

    1999-11-01

    containing Pd are the most efficient catalysts for the dimerization reaction. Characterization results from x-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and CTPAD suggest a stable, Pd species with a low oxidation state as part of the active site in Pd-exchanged zeolites. Isobutylene was present in the C4 fraction at reasonable quantities for most of the catalyst candidates, especially those containing an alkali metal co-cation.

  3. Molecular Simulation of Adsorption in Zeolites

    NASA Astrophysics Data System (ADS)

    Bai, Peng

    Zeolites are a class of crystalline nanoporous materials that are widely used as catalysts, sorbents, and ion-exchangers. Zeolites have revolutionized the petroleum industry and have fueled the 20th-century automobile culture, by enabling numerous highly-efficient transformations and separations in oil refineries. They are also posed to play an important role in many processes of biomass conversion. One of the fundamental principles in the field of zeolites involves the understanding and tuning of the selectivity for different guest molecules that results from the wide variety of pore architectures. The primary goal of my dissertation research is to gain such understanding via computer simulations and eventually to reach the level of predictive modeling. The dissertation starts with a brief introduction of the applications of zeolites and computer modeling techniques useful for the study of zeolitic systems. Chapter 2 then describes an effort to improve simulation efficiency, which is essential for many challenging adsorption systems. Chapter 3 studies a model system to demonstrate the applicability and capability of the method used for the majority of this work, configurational-bias Monte Carlo simulations in the Gibbs ensemble (CBMC-GE). After these methodological developments, Chapter 4 and 5 report a systematic parametrization of a new transferable force field for all-silica zeolites, TraPPE-zeo, and a subsequent, relatively ad-hoc extension to cation-exchanged aluminosilicates. The CBMC-GE method and the TraPPE-zeo force field are then combined to investigate some complex adsorption systems, such as linear and branched C6-C 9 alkanes in a hierarchical microporous/mesoporous material (Chapter 6), the multi-component adsorption of aqueous alcohol solutions (Chapter 7) and glucose solutions (Chapter 8). Finally, Chapter 9 describes an endeavor to screen a large number of zeolites with the purpose of finding better materials for two energy-related applications

  4. Structure modification of natural zeolite for waste removal application

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  5. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  6. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  7. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  8. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  9. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    NASA Astrophysics Data System (ADS)

    Toommee, S.; Pratumpong, P.

    2018-06-01

    Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.

  10. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of

  11. Zeolites with Continuously Tuneable Porosity**

    PubMed Central

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  12. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.

    PubMed

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-02-02

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zeolites in the Pine Ridge Indian Reservation, South Dakota

    USGS Publications Warehouse

    Raymond, William H.; Bush, Alfred L.; Gude, Arthur J.

    1982-01-01

    Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

  14. 'water splitting' by titanium exchanged zeolite A. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznicki, S.M.; Eyring, E.M.

    1978-09-01

    Visually detectable and chromatographically and mass spectrally identified hydrogen gas evolves from titanium (III) exchanged zeolite A immersed in water and illuminated with visible light. Titanium(III) exchanged zeolite X and zeolite Y do not produce this reaction. A photochemically produced, oxygenated titanium free radical (detected by electron spin resonance) not previously described is the species in the zeolite that reduces protons to molecular hydrogen. The other product of this reduction step is a nonradical, oxygenated titanium species of probable empirical formula TiO4. Heating the spent oxygenated titanium containing zeolite A under vacuum at 375 C restores over fifty percent ofmore » the free radical. Unlike previously reported systems, heating does not restore the original aquotitanium(III) species in the zeolite. Thus a means other than heating must be found to achieve a closed photochemical cycle that harnesses visible solar energy in the production of molecular hydrogen. The titanium exchanged zeolite A does, however, lend itself to a thermolysis of water previously described by Kasai and Bishop. (Author)« less

  15. Catalytic Oxidation by Transition Metal Ions in Zeolites.

    DTIC Science & Technology

    1984-09-28

    exotic schemes were developed. It was previously demonstrated that MoCI5 may be reacted with a HYu (here Yu denotes a steam-stabilized or...34ultrastable" zeolite) to form a MoYu zeolite and HC1 which is removed from the system.1 In this study, MoYu zeolites have been prepared by reacting HYu with Mo

  16. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  17. Hydrophobic surface functionalization of Philippine natural zeolite for a targeted oil remediation application

    NASA Astrophysics Data System (ADS)

    Osonio, Airah P.; Olegario-Sanchez, Eleanor M.

    2017-12-01

    The objective of this study is to modify and compare the oil sorption capacity on the surface of natural zeolite (NZ) and functionalized natural zeolite (FNZ) and to compare with activated charcoal samples. The NZ samples were surface modified via esterification process and characterized using XRD, SEM, and IR spectroscopy. The NZ, FNZ and activated charcoal were then tested using ASTM method F726-12 to validate the oil sorption capacity and TGA was used for the oil selectivity of the adsorbents. The results indicate that FNZ has an improved oil/water adsorption capacity than NZ when functionalized with ester and has a comparable capacity with activated charcoal.

  18. Advances in nanosized zeolites

    NASA Astrophysics Data System (ADS)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  19. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  20. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  1. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  2. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  3. Silver-Zeolite Combined to Polyphenol-Rich Extracts of Ascophyllum nodosum: Potential Active Role in Prevention of Periodontal Diseases

    PubMed Central

    Tamanai-Shacoori, Zohreh; Chandad, Fatiha; Rébillard, Amélie; Cillard, Josiane; Bonnaure-Mallet, Martine

    2014-01-01

    The purpose of this study was to evaluate various biological effects of silver-zeolite and a polyphenol-rich extract of A. nodosum (ASCOP) to prevent and/or treat biofilm-related oral diseases. Porphyromonas gingivalis and Streptococcus gordonii contribute to the biofilm formation associated with chronic periodontitis. In this study, we evaluated in vitro antibacterial and anti-biofilm effects of silver-zeolite (Ag-zeolite) combined to ASCOP on P. gingivalis and S. gordonii growth and biofilm formation capacity. We also studied the anti-inflammatory and antioxidant capacities of ASCOP in cell culture models. While Ag-zeolite combined with ASCOP was ineffective against the growth of S. gordonii, it showed a strong bactericidal effect on P. gingivalis growth. Ag-zeolite combined with ASCOP was able to completely inhibit S. gordonii monospecies biofilm formation as well as to reduce the formation of a bi-species S. gordonii/P. gingivalis biofilm. ASCOP alone was ineffective towards the growth and/or biofilm formation of S. gordonii and P. gingivalis while it significantly reduced the secretion of inflammatory cytokines (TNFα and IL-6) by LPS-stimulated human like-macrophages. It also exhibited antioxidant properties and decreased LPS induced lipid peroxidation in gingival epithelial cells. These findings support promising use of these products in future preventive or therapeutic strategies against periodontal diseases. PMID:25272151

  4. Effect of natural Bayah zeolite particle size reduction to physico-chemical properties and absortion against potassium permanganate (KMnO4)

    NASA Astrophysics Data System (ADS)

    Widayanti, Siti Mariana; Syamsu, Khaswar; Warsiki, Endang; Yuliani, Sri

    2016-02-01

    Recently, researches on nanotechnology have been developed very rapid, as well as the utilization of nano-zeolites. Nano-sized material has several advantages which are expanding absorptive surfaces so it will enhance the material absorption and shorten the absorption time. Zeolite as a KMnO4 binder, has been widely recognized for its ability to extend the shelf life of vegetables and fruits. This study was conducted to determine zeolites physico-chemical characters from different particle size and the effect on KMnO4 absorption. Potassium permanganate (KMnO4) is a strong oxidizer for reducing the quantity of ethylene in storage process of fresh horticultural products. The treatment consisted of (1) different length of milling time (10, 20, 30, 40, and 60 minutes) and (2) the duration of chemical activation with 1 N KOH solution. Physical and chemical characters of zeolite were analyzed using BET, PSA, XRD and SEM. The research design was randomized design. The result implied that milling time was significantly affecting the zeolite particle size, material surface area, and the size of pore diameter and volume. Milling treatment for 40 minutes produced higher zeolite surface area and pore volume than other treatments. While the duration of chemical activation using 1 N KOH solution gives different effect on zeolite absorption to KMnO4 solution. Milling time for 60 minutes and activated for 48 hours has higher initial adsorption than other treatments.

  5. Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro

    PubMed Central

    Li, Jing; Cao, Wei; Lv, Xiao-xing; Jiang, Li; Li, Yue-jun; Li, Wang-zhou; Chen, Shao-zong; Li, Xue-yong

    2013-01-01

    Aim: To examine the changes in electrolyte concentrations after addition of zeolite-based hemostat QuikClot in blood and the effects of zeolite on blood coagulation in vitro. Methods: Fresh blood was taken from healthy adult volunteers and sheep, and the electrolyte concentrations in blood were measured using a blood electrolyte analyzer. Zeolite Saline Solution (ZSS) was prepared by addition of 2 g zeolite to 0.9% NaCl solution (4, 8, or 16 mL). The electrolytes in ZSS were measured using inductively coupled plasma atomic emission spectroscopy. The prothrombin time (PT) and activated partial thromboplastin time (APTT) of blood were measured using the test tube method. The activated clotting time (ACT) and clotting rate (CR) of blood were measured with Sonoclot Coagulation and Platelet Function Analyzer. Results: Addition of zeolite (50 and 100 mg) in 2 mL human blood significantly increased Ca2+ concentration, while Na+ and K+ concentrations were significantly decreased. Addition of zeolite (50 and 100 mg) in 0.9% NaCl solution (2 mL) caused similar changes in Ca2+ and Na+ concentrations. Si4+ (0.2434 g/L) and Al3+ (0.2575 g/L) were detected in ZSS (2 g/8 mL). Addition of ZSS in sheep blood shortened APTT in a concentration dependent manner, without changing PT. ZSS or aqueous solution of CaCl2 that contained Ca2+ concentration identical to that of ZSS significantly shortened ACT in human blood without significantly changing CR, and the effect of ZSS on ACT was not significantly different from that of CaCl2. Conclusion: Zeolite releases Ca2+ into blood, thus accelerating the intrinsic pathway of blood coagulation and shortening the clot formation time. PMID:23334236

  6. Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro.

    PubMed

    Li, Jing; Cao, Wei; Lv, Xiao-xing; Jiang, Li; Li, Yue-jun; Li, Wang-zhou; Chen, Shao-zong; Li, Xue-yong

    2013-03-01

    To examine the changes in electrolyte concentrations after addition of zeolite-based hemostat QuikClot in blood and the effects of zeolite on blood coagulation in vitro. Fresh blood was taken from healthy adult volunteers and sheep, and the electrolyte concentrations in blood were measured using a blood electrolyte analyzer. Zeolite Saline Solution (ZSS) was prepared by addition of 2 g zeolite to 0.9% NaCl solution (4, 8, or 16 mL). The electrolytes in ZSS were measured using inductively coupled plasma atomic emission spectroscopy. The prothrombin time (PT) and activated partial thromboplastin time (APTT) of blood were measured using the test tube method. The activated clotting time (ACT) and clotting rate (CR) of blood were measured with Sonoclot Coagulation and Platelet Function Analyzer. Addition of zeolite (50 and 100 mg) in 2 mL human blood significantly increased Ca(2+) concentration, while Na(+) and K(+) concentrations were significantly decreased. Addition of zeolite (50 and 100 mg) in 0.9% NaCl solution (2 mL) caused similar changes in Ca(2+) and Na(+) concentrations. Si(4+) (0.2434 g/L) and Al(3+) (0.2575 g/L) were detected in ZSS (2 g/8 mL). Addition of ZSS in sheep blood shortened APTT in a concentration dependent manner, without changing PT. ZSS or aqueous solution of CaCl2 that contained Ca(2+) concentration identical to that of ZSS significantly shortened ACT in human blood without significantly changing CR, and the effect of ZSS on ACT was not significantly different from that of CaCl2. Zeolite releases Ca(2+) into blood, thus accelerating the intrinsic pathway of blood coagulation and shortening the clot formation time.

  7. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  8. Applications of zeolites in biotechnology and medicine - a review.

    PubMed

    Bacakova, Lucie; Vandrovcova, Marta; Kopova, Ivana; Jirka, Ivan

    2018-05-01

    Zeolites are microporous tectosilicates of natural or synthetic origin, which have been extensively used in various technological applications, e.g. as catalysts and as molecular sieves, for separating and sorting various molecules, for water and air purification, including removal of radioactive contaminants, for harvesting waste heat and solar heat energy, for adsorption refrigeration, as detergents, etc. These applications of zeolites were typically related with their porous character, their high adsorption capacity, and their ion exchange properties. This review is focused on potential or already practically implemented applications of zeolites in biotechnology and medicine. Zeolites are promising for environment protection, detoxication of animal and human organisms, improvement of the nutrition status and immunity of farm animals, separation of various biomolecules and cells, construction of biosensors and detection of biomarkers of various diseases, controlled drug and gene delivery, radical scavenging, and particularly tissue engineering and biomaterial coating. As components of scaffolds for bone tissue engineering, zeolites can deliver oxygen to cells, can stimulate osteogenic cell differentiation, and can inhibit bone resorption. Zeolites can also act as oxygen reservoirs, and can improve cell performance in vascular and skin tissue engineering and wound healing. When deposited on metallic materials for bone implantation, zeolite films showed anticorrosion effects, and improved the osseointegration of these implants. In our studies, silicalite-1 films deposited on silicon or stainless steel substrates improved the adhesion, growth, viability and osteogenic differentiation of human osteoblast-like Saos-2 cells. Zeolites have been clinically used as components of haemostatics, e.g. in the Advanced Clotting Sponge, as gastroprotective drugs, e.g. Absorbatox® 2.4D, or as antioxidative agents (Klinobind®). Some zeolites are highly cytotoxic and carcinogenic

  9. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO₂/Zeolite Sensor.

    PubMed

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan; Wang, Xiaofeng

    2018-01-29

    In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO₂/Al₂O₃ ratio, different particle size of MFI type zeolites (ZSM-5) were coated on the SnO₂ to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO₂/Al₂O₃ = 70, grain size 300 nm) coated SnO₂ gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO₂ gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO₂/Al₂O₃ 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO₂ sensors did not show much difference with SnO₂ sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  10. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  11. Reducing adverse effects from UV sunscreens by zeolite encapsulation: comparison of oxybenzone in solution and in zeolites.

    PubMed

    Chrétien, Michelle N; Heafey, Eve; Scaiano, Juan C

    2010-01-01

    Oxybenzone (OXB) is one of the most widely employed sunscreen ingredients, yet its allowed load is limited to a maximum of 6% reflecting the frequency with which adverse effects are reported. From a spectroscopic point of view, OXB has excellent absorption properties in both the UVB and UVA regions. We propose that zeolite encapsulation can lead to a sunscreen composite ingredient, that we describe as a supramolecular sunscreen, that will retain the excellent spectroscopic properties of OXB, while preventing contact between the skin and the active ingredient. OXB is very photostable, with the only photodegradative pathway observed being the monophotonic photoejection of electrons that leads to trace yields of phenoxyl radicals; this trace reaction is so minor that it cannot be detected from the recovery of unreacted OXB following UV exposure. Solution, as well as powder and in vitro studies of the supramolecular sunscreen, demonstrate that the protective properties of OXB are totally preserved when encapsulated in zeolite NaY.

  12. Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.

    PubMed

    Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

    2012-01-01

    Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.

  13. Microcalorimetric, {sup 13}C NMR spectroscopic, and reaction kinetic studies of silica- and L-zeolite-supported platinum catalysts for n-hexane conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.B.; Ouraipryvan, P.; Nair, H.A.

    Reaction kinetics measurement of n-hexane conversion over 4% Pt/SiO{sub 2} and 1% Pt/SiO{sub 2} and 1% Pt/K(Ba)-L catalysts were made at a pressure of 3 atm and temperatures from 698 to 750 K. The rates of benzene and methylcyclopentane formation decrease with time during reaction over Pt/SiO{sub 2}, while 1% Pt/K(Ba)-L does not deactivate significantly. Microcalorimetric measurements at 353 K show that the heat of carbon monoxide adsorption is the same on freshly reduced Pt/SiO{sub 2} and Pt/K(Ba)-L catalysts; however, carbonaceous species that accumulate on Pt/SiO{sub 2} during n-hexane conversion decrease the total number of adsorption sites and the numbermore » of sites that adsorb carbon monoxide strongly. The 1% Pt/K(Ba)-L catalyst retains the adsorptive properties of the freshly reduced catalyst. Nuclear magnetic resonance studies of {sup 13}CO adsorption show that cluster-sized platinum particles are more resistant to deactivation by self-poisoning reactions than larger platinum particles. The greater catalyst stability and higher steady-state activity of L-zeolite-supported platinum catalysts may be attributed to the ability of L-zeolite to stabilize cluster-sized particles under reaction conditions. Differences in dehydrocyclization activity between catalysts may be related to differences in the number of strong adsorption sites that are present under reaction conditions. 31 refs., 7 figs., 4 tabs.« less

  14. Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and the study on their catalytic activity in NO{sub x} reduction and 1-pentanol dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Is

    Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NO{sub x} reduction by NH{sub 3} and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  15. Removal of ammonium ions by laboratory-synthesized zeolite linde type A adsorption from water samples affected by mining activities in Ghana.

    PubMed

    Kwakye-Awuah, Bright; Labik, Linus Kweku; Nkrumah, Isaac; Williams, Craig

    2014-03-01

    Ammonium ion adsorption by laboratory-synthesized zeolite (linde type A; LTA) was investigated in batch kinetics experiments. Synthesized zeolite LTA was characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy and particle size analysis. Water samples were taken from the Nyam and Tano rivers in Ghana, and 0.8 g of zeolite was added to 100 ml portions of each sample. Portions of the samples were withdrawn every 30 min for 150 min and the concentration of ammonia in each sample was determined. The removal efficiency of zeolite LTA was evaluated by retrieving the zeolite from the water samples and adding to a fresh sample to repeat the process. Equilibrium data were fitted by Langmuir and Freundlich isotherms. Maximum adsorption capacities were 72.99 mg g(-1) for samples from the River Nyam and 72.87 mg g(-1) for samples from the River Tano. The equilibrium kinetic data were analysed using adsorption kinetic models: pseudo-first order and pseudo-second order kinetic models. Linear regression was used to estimate the adsorption and kinetic parameters. The results showed that the adsorption followed pseudo-second order kinetics and suggest that zeolite LTA is a good adsorbent for the removal of nitrogen ammonia from water.

  16. Dietary supplementation of Zeolite on growth performance, immunological role, and disease resistance in Channa striatus against Aphanomyces invadans.

    PubMed

    Jawahar, Suntharam; Nafar, Adil; Vasanth, Krishnan; Musthafa, Mohamed Saiyad; Arockiaraj, Jesu; Balasundaram, Chellam; Harikrishnan, Ramasamy

    2016-04-01

    Epizootic Ulcerative Syndrome (EUS) caused by Aphanomyces invadans which is a primary fungal parasitic pathogen, inflicts serious economic loss in tropical freshwater fish including snakehead murrel, Channa striatus. In the present study with an aim to circumvent the adverse effects of the traditional measures in graded levels (2%, 4%, and 6%) of Zeolite enriched diet on growth performance, hematology, immunological response, and disease resistance in C. striatus against A. invadans is reported. The final weight (FW), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), and average daily gain (ADG) were significantly high in infected fish fed with 4% or 6% Zeolite incorporated diets on 4th week. The maximum survival rates (SR) of 96% and 98% were observed when fed with 2% or 4% diets on 4th week. Similarly, the white blood cell (WBC), red blood cell (RBC), hematocrit (Hct), mean corpuscular volume (MCV), and mean corpuscular haemoglobin concentration (MCHC) were significantly high when fed with any Zeolite enriched diet. However, the haemoglobin (Hb) and mean corpuscular haemoglobin (MCH) were significantly high with 4% and 6% Zeolite diets. The total protein and globulin were significantly high with 4% and 6% diets; the albumin, glucose, cholesterol, and triglyceride were significantly elevated with any enriched diet. The 4% and 6% Zeolite diets significantly enhanced the phagocytic activity on 2nd week but the 2% diet could increase it on 4th week. The respiratory burst (RB) activity, complement activity, and lymphocyte proliferation level were significantly enhanced with 4% and 6% Zeolite diets on weeks 1 and 2 while with 2% diet on 4th week. All enriched diets significantly increased the lysozyme activity during the experimental period. Superoxide anion (SOA) production significantly enhanced with 6% diet on weeks 1 and 2 whereas with 2% diet on week 4. Lower cumulative mortality of 10% and 15% was found with 4% and 6

  17. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides.

    PubMed

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-12-19

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu⁺ and Cu 2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β -hydroxysulfides compounds.

  18. Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides

    PubMed Central

    Hu, Jun; Zhu, Chaojie; Xia, Feifei; Fang, Zhongxue; Yang, Fengli; Weng, Jushi; Yao, Pengfei; Zheng, Chunzhi; Dong, Hai; Fu, Wenqian

    2017-01-01

    Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu+ and Cu2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β-hydroxysulfides compounds. PMID:29257075

  19. Use of zeolite to neutralise nickel in a soil environment.

    PubMed

    Boros-Lajszner, Edyta; Wyszkowska, Jadwiga; Kucharski, Jan

    2017-12-30

    Nickel is a heavy metal which is a stable soil pollutant which is difficult to remediate. An attempt to reduce its impact on the environment can be made by changing its solubility. The right level of hydrogen ions and the content of mineral and organic colloids are crucial in this regard. Therefore, methods to neutralise heavy metals in soil are sought. There are no reports in the literature on the possibility of using minerals in the detoxication of a soil environment contaminated with metals. It is important to fill the gap in research on the effect of zeolites on the microbiological, biochemical and physicochemical properties of soils under pressure from heavy metals. Therefore, a pot experiment was conducted on two soils which examined the effect of various levels of contamination of soil with nickel on the activity of soil enzymes, physical and chemical properties and growth and development of plants. An alleviating effect of zeolite Bio.Zeo.S.01 on the negative impact of nickel on the soil and a plant (oats) was examined. The enzyme activity and the oat yield were found to be significantly and negatively affected by an excess of nickel in the soil, regardless of the soil type. The metal was accumulated more in the oat roots than in the above-ground parts. An addition of zeolite decreased the level of accumulation of nickel in oats grown only on sandy-silty loam. Zeolite Bio.Zeo.S.01 used in the study only slightly alleviated the negative effect of nickel on the biochemical properties of soil. Therefore, its usability in the remediation of soil contaminated with nickel is small.

  20. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  1. A Laboratory Study of Natural Zeolite for Treatment of Fluorinated Water

    NASA Astrophysics Data System (ADS)

    Pandey, A.

    2015-12-01

    Fluoride contamination is mainly induced in ground water by chemical interaction between water and fluoride bearing rocks and natural fluoridation is further catalyzed by anthropogenic activities. Elevated fluoride concentrations in the water bodies above the permissible limits are not only degrading water for drinking purposes but also to the agricultural, industrial as well as daily household needs. Fluoride content in water has been constantly a subject of serious concern to the concerned authorities. It is significantly contributing in increasing tolls of arthritis, brain and kidney diseases, cancer, male fertility issues and cases of thyroid diseases. Hence, the present study has been conducted to investigate the possibility of treating fluorinated water using zeolites. The capabilities of natural zeolites are attributed to their catalytic, molecular sieve, adsorption and ion-exchange properties which have been utilized in our laboratory experiment. The experiment was carried out in two phases. In the first phase of the experiment, the properties of zeolites were tested in solid and liquid phases using ICP-OES, SEM, EDX and IC tests. Physio-chemical alterations induced by zeolites in the fluid chemistry were monitored by analyzing fluid sample regularly for pH, redox potential, electrical conductivity and total dissolved solids, and by conducting metal and anion tests. In second phase, zeolite was used for treatment of fluorinated water with known concentration of fluoride, and the geochemical processes associated with fluoride remediation were monitored by conducting non-invasive, invasive geochemical and physical measurements at regular time periods on the water samples collected from both control column and the experiment column. Results thus obtained in this study showed decrease in fluoride concentration over time, indicating the possibility of use of zeolites in treatment of fluorinated water.

  2. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization.

    PubMed

    Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong

    2016-02-25

    Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.

  3. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    PubMed

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  5. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  6. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent.

    PubMed

    Huang, Haiming; Xiao, Xianming; Yan, Bo; Yang, Liping

    2010-03-15

    This paper presents a study of the removal of ammonium ion from aqueous solutions using natural Chinese (Chende) zeolite. A series of experiments was conducted to examine the effects of solution pH, particle size, contact time, adsorbent dosage, and the presence of other cation- and anion species on ammonium removal. The findings indicated that these parameters named had a significant effect on the removal of ammonium by the zeolite. The effect of other cations on the removal of ammonium followed the order of preference Na(+)>K(+)>Ca(2+)>Mg(2+) at identical mass concentrations, and the effect of the presence of individual anions followed the order of preference carbonate>chloride>sulfate>phosphate at identical mass concentrations of ammonium ions. Kinetic analysis showed that the adsorption of ammonium on zeolite at different ranges of particle size well followed the pseudo-second-order model and followed the intra-particle diffusion model only during the initial 60 min of the adsorption process. Equilibrium isotherm data was fitted to the linear Langmuir- and Freundlich models with the latter model providing the better description of the process (R(2)=0.991-0.997) compared to the former (R(2)=0.902-0.989). (c) 2009 Elsevier B.V. All rights reserved.

  7. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  8. Synthesis and Characterization of Zeolite Na-Y and Its Conversion to the Solid Acid Zeolite H-Y

    ERIC Educational Resources Information Center

    Warner, Terence E.; Klokker, Mads Galsgaard; Nielsen, Ulla Gro

    2017-01-01

    Zeolite Y has an iconic crystal structure, but more importantly, the hydrogen modification zeolite H-Y is the classic example of a solid acid which is used extensively as a catalyst in the oil industry. This metastable compound cannot be synthesized directly, which creates an opportunity to discuss various preparative strategies with the students,…

  9. Generation of basic centers in high-silica zeolites and their application in gas-phase upgrading of bio-oil.

    PubMed

    Keller, Tobias C; Rodrigues, Elodie G; Pérez-Ramírez, Javier

    2014-06-01

    High-silica zeolites have been reported recently as efficient catalysts for liquid- and gas-phase condensation reactions because of the presence of a complementary source of basicity compared to Al-rich basic zeolites. Herein, we describe the controlled generation of these active sites on silica-rich FAU, BEA, and MFI zeolites. Through the application of a mild base treatment in aqueous Na2CO3, alkali-metal-coordinating defects are generated within the zeolite whereas the porous properties are fully preserved. The resulting catalysts were applied in the gas-phase condensation of propanal at 673 K as a model reaction for the catalytic upgrading of pyrolysis oil, for which an up to 20-fold increased activity compared to the unmodified zeolites was attained. The moderate basicity of these new sites leads to a coke resistance superior to traditional base catalysts such as CsX and MgO, and comparable activity and excellent selectivity is achieved for the condensation pathways. Through strategic acid and base treatments and the use of magic-angle spinning NMR spectroscopy, the nature of the active sites was investigated, which supports the theory of siloxy sites as basic centers. This contribution represents a key step in the understanding and design of high-silica base catalysts for the intermediate deoxygenation of crude bio-oil prior to the hydrotreating step for the production of second-generation biofuels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multi-component lanthanide hybrids based on zeolite A/L and zeolite A/L-polymers for tunable luminescence.

    PubMed

    Chen, Lei; Yan, Bing

    2015-02-01

    Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.

  11. A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure.

    PubMed

    Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Xu, Dongdong; Wu, Peng; Terasaki, Osamu; Han, Lu; Che, Shunai

    2018-01-15

    A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one-dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet-assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two-dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three-dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the a-c planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors.

    PubMed

    Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Dieu, Bjorn; Roeffaers, Maarten B J; Hofkens, Johan

    2016-11-15

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film.

  13. Applications of natural zeolites on agriculture and food production.

    PubMed

    Eroglu, Nazife; Emekci, Mevlut; Athanassiou, Christos G

    2017-08-01

    Zeolites are crystalline hydrated aluminosilicates with remarkable physical and chemical properties, which include losing and receiving water in a reverse way, adsorbing molecules that act as molecular sieves, and replacing their constituent cations without structural change. The commercial production of natural zeolites has accelerated during the last 50 years. The Structure Commission of the International Zeolite Association recorded more than 200 zeolites, which currently include more than 40 naturally occurring zeolites. Recent findings have supported their role in stored-pest management as inert dust applications, pesticide and fertilizer carriers, soil amendments, animal feed additives, mycotoxin binders and food packaging materials. There are many advantages of inert dust application, including low cost, non-neurotoxic action, low mammalian toxicity and safety for human consumption. The latest consumer trends and government protocols have shifted toward organic origin materials to replace synthetic chemical products. In the present review, we summarize most of the main uses of zeolites in food and agruculture, along with the with specific paradigms that illustrate their important role. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    PubMed Central

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  15. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  16. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions.

    PubMed

    Ates, Ayten

    2018-08-01

    A series of natural zeolites with different compositions were modified by post-synthesis modification with sodium hydroxide (NaOH) solution. Natural and modified zeolites were characterized by XRD, SEM, nitrogen adsorption, FTIR, zeta potential and temperature programmed desorption of ammonia (NH 3 -TPD). The adsorption capacities of these samples were evaluated by the adsorption of manganese from aqueous solution. The treatment with NaOH led to a decrease in the surface area and microporosity of all natural zeolites as well as partly damage of the zeolite structure depending on zeolite composition. In addition, the amount of weak, medium and strong acid sites in the zeolites was changed significantly by NaOH treatment depending on zeolite composition. The NaOH treatment resulted in a four-fold improvement in adsorption capacity of natural zeolite originated from Bigadic and a twofold decrease in that of the natural zeolite originated from Manisa-Gordes. Although the improved adsorption capacity might be mainly due to modification of porosity in the zeolites and formation of hydroxysodalite, the reduced adsorption capacity of the zeolite might be mainly due to a significant deformation of the zeolite structure. The pseudo-second-order kinetic model for the adsorption of manganese on all natural and modified zeolites fits well. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Framework Guidance Manual for In Situ Wetland Restoration Demonstration

    DTIC Science & Technology

    2013-08-26

    within the laboratory include activated carbon, apatite, coke, organoclay, zeolites , and zero valent iron (Barth, 2008; Reible, 2004). Three of...apatite, coke, organoclay, zeolites , and zero-valent iron (Barth, 2008; Reible, 2004, Patmont et al., 2013). Activated carbon, apatite and organoclay

  18. A database of new zeolite-like materials.

    PubMed

    Pophale, Ramdas; Cheeseman, Phillip A; Deem, Michael W

    2011-07-21

    We here describe a database of computationally predicted zeolite-like materials. These crystals were discovered by a Monte Carlo search for zeolite-like materials. Positions of Si atoms as well as unit cell, space group, density, and number of crystallographically unique atoms were explored in the construction of this database. The database contains over 2.6 M unique structures. Roughly 15% of these are within +30 kJ mol(-1) Si of α-quartz, the band in which most of the known zeolites lie. These structures have topological, geometrical, and diffraction characteristics that are similar to those of known zeolites. The database is the result of refinement by two interatomic potentials that both satisfy the Pauli exclusion principle. The database has been deposited in the publicly available PCOD database and in www.hypotheticalzeolites.net/database/deem/. This journal is © the Owner Societies 2011

  19. In Situ Wetland Restoration Demonstration

    DTIC Science & Technology

    2014-07-28

    products, charcoal, zero-valent iron, sulfur-infused AC, and/or zeolite (USEPA, 1994; USEPA, 1997; Renholds, 1998; Reible, 2004; Barth and Reible, 2008...activated carbon, zeolites , or other sequestration agents can be effectively delivered to the hydric soils, then toxicity, mobility, and...Organoclays, zeolites , and activated carbon have been used extensively for the treatment of water and soil contamination (McDonald et al., 2004

  20. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization

    NASA Astrophysics Data System (ADS)

    Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E. J. C.; Nikolski, A.; Mogiliansky, D.; Katz, A.

    2017-09-01

    Alkali-activated aluminisilicate materials, also known as geopolymers, have been considered as attractive candidates for nuclear waste immobilization, due to their ability to incorporate cations, combined with high chemical resistance and suitable mechanical and thermal properties. The goal of the present research was to study the incorporation and immobilization of Cs in low-Si geopolymers (SiO2:Al2O3 molar ratio ≤ 2) which are known to have a relatively high crystalline phase content. A series of low-Si geopolymers was prepared from metakaolin using activating solutions containing CsOH and NaOH at different proportions. The structural evolution of the resulting products was followed using X-ray diffraction, the incorporation of Cs in the geopolymer was followed by pore water analysis, and its immobilization efficiency was determined from leaching tests following the ANSI/ANS-16.1 standard procedure. Like low-Si NaOH-based geopolymers, the mixed CsOH-NaOH geopolymers contain a significant amount of crystalline material which is imbedded within an amorphous matrix. Formulations with 1%Cs yielded the crystalline phases zeolite A and zeolite X. At 50%Cs the Cs-bearing zeolite F was formed. All three phases were observed at an intermediate Cs content (7%Cs). Pore water analysis indicated a preference for Cs uptake from the activating solution, while leaching experiments indicated selectivity for Cs immobilization in the mixed CsOH-NaOH geopolymers. Correlation of the apparent diffusion constants for both Na and Cs, as obtained from the leaching experiments, with the structural data lead to the conclusion that Cs is more efficiently bound by zeolite F, whereas Na binding is preferred by zeolites A and X. Nevertheless, the leachability indices for both Cs and Na were well above 6, indicating that such matrices may be considered as waste forms for 137Cs.

  1. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.

    2018-01-01

    Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

  2. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  3. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  4. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  5. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    PubMed

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  7. High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.

    PubMed

    Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G

    2017-08-07

    The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.

  8. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Gao, Wenyan; Liu, Xin; Zhang, Yifu; Meng, Changgong

    2017-10-01

    Zeolites Na-A and Na-X are important synthetic zeolites widely used for separation and adsorption in industry. It is of great significance to develop energy-efficient routines that can synthesize zeolites Na-A and Na-X from low-cost raw materials. Coal fly ash (CFA) is the major residue from the combustion of coal and biomass containing more than 85% SiO2 and Al2O3, which can readily replace the conventionally used sodium silicate and aluminate for zeolite synthesis. We used Na2CO3 to replace the expensive NaOH used for the calcination of CFA and showed that tablet compression can enhance the contact with Na2CO3 for the activation of CFA through calcination for the synthesis of zeolites Na-A and Na-X under mild conditions. We optimized the control variables for zeolite synthesis and showed that phase-pure zeolite Na-A can be synthesized with CFA at reactant molar ratio, hydrothermal reaction temperature and reaction time of 1.3Na2O: 0.6Al2O3: 1SiO2: 38H2O at 80°C for 6 h, respectively, while phase-pure zeolite Na-X can be synthesized at 2.2Na2O: 0.2Al2O3: 1SiO2: 88H2O at 100°C for 8 h, respectively. The composition, morphology, specific surface area, vibration spectrum and thermogravimetry of synthesized Na-A and Na-X were further characterized.

  9. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    PubMed

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2017-04-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A-the control, B-natural zeolite addition, and C-3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites andDMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH 3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  10. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    PubMed

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  11. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy.

    PubMed

    Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M

    2017-06-02

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

  12. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV–vis Spectroscopy

    PubMed Central

    2017-01-01

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV–vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV–vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature. PMID:28603658

  13. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.

    PubMed

    Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe

    2016-06-22

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  15. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  16. Adsorption of chromium ions from aqueous solution by using activated carbo-aluminosilicate material from oil shale.

    PubMed

    Shawabkeh, Reyad Awwad

    2006-07-15

    A novel activated carbo-aluminosilicate material was prepared from oil shale by chemical activation. The chemicals used in the activation process were 95 wt% sulfuric and 5 wt% nitric acids. The produced material combines the sorption properties and the mechanical strength of both activated carbon and zeolite. An X-ray diffraction analysis shows the formation of zeolite Y, Na-X, and A-types, sodalite, sodium silicate, mullite, and cancrinite. FT-IR spectrum shows the presence of carboxylic, phenolic, and lactonic groups on the surface of this material. The zero point of charge estimated at different mass to solution ratio ranged from 7.9 to 8.3. Chromium removal by this material showed sorption capacity of 92 mg/g.

  17. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman

    2011-10-06

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integritymore » of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.« less

  18. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  19. DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions

    PubMed Central

    Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej

    2018-01-01

    Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370

  20. Iridium clusters in KLTL zeolite: Synthesis, structural characterization, and catalysis of toluene hydrogenation and n-hexane dehydrocyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, A.; Jentoft, R.E.; Gates, B.C.

    Iridium clusters incorporating about six atoms each, on average, were prepared in KLTL zeolite by decarbonylation (in H{sub 2} at 400{degrees}C) of iridium carbonyl clusters formed by treatment of adsorbed [Ir(CO){sub 2}(acac)] in CO at 1 atm and 175{degrees}C. The supported species were characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies. The iridium carbonyls formed from [Ir(CO){sub 2}(acac)] were predominantly [HIr{sub 4}(CO){sub 11}]{sup -} with a small amount of [Ir(CO){sub 4}]{sup -}. The synthesis chemistry of iridium carbonyls in the basic KLTL zeolite parallels that in basic solutions. Shifts of the {nu}{sub CO} bands of the iridiummore » carbonyl clusters relative to those of the same clusters in solution indicate strong interactions between the clusters and zeolite cations. The decarbonylated sample, approximated as Ir{sub 6}/KLTL zeolite, is catalytically active for toluene hydrogenation at 60-100{degrees}C, with the activity being approximately the same as those of Ir{sub 4} and Ir{sub 6} clusters supported on metal oxides, but an order of magnitude less than that of a conventional supported iridium catalyst consisting of aggregates of about 50 atoms each, on average. The catalyst is also active for conversion of n-hexane + H{sub 2} at 340-420{degrees}C, but the selectivity for aromatization is low and that for hydrogenolysis is high, consistent with earlier results for conventionally prepared (salt-derived) iridium clusters of about the same size supported in KLTL zeolite. The zeolite-supported iridium clusters are the first prepared from both salt and organometallic precursors; the results indicate that the organometallic and conventional preparation routes lead to supported iridium clusters having similar structures and catalytic properties. 59 refs., 6 figs., 7 tabs.« less

  1. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste.

    PubMed

    Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr 2+ ions from an aqueous phase. The encapsulation of the Sr 2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Engineering of Transition Metal Catalysts Confined in Zeolites

    PubMed Central

    2018-01-01

    Transition metal–zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal–zeolite catalysts. PMID:29861546

  3. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  4. A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB

    PubMed Central

    Zhang, Weimin; Hu, Sufang; Qin, Bo; Li, Ruifeng

    2018-01-01

    A hierarchical zeolite Beta has been prepared by a feasible one-pot and one-step method, which is suitable for application in industrial production. The synthesis is a simple hydrothermal process with low-cost raw materials, without adding alcohol or adding seeds, and without aging, recrystallization, and other complex steps. The hierarchical zeolite Beta is a uniform nanocrystal (20–50 nm) aggregation with high external surface area (300 m2/g) and mesoporous volume (0.50 cm3/g), with the mesoporous structure composed of intercrystal and intracrystal pores. As an acid catalyst in benzylation of naphthalene with benzyl chloride, the hierarchical zeolite Beta has shown high activity in the bulky molecule reaction due to its introduction of mesostructure. PMID:29695044

  5. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  6. Improving the Durability of Methanol Oxidation Reaction Electro-Catalysts Through the Modification of Carbon Architectures

    DTIC Science & Technology

    2014-01-01

    zeolite template was used in conjunction with liquid cyanamide to form a carbon nitride structure with a better 2D mesoporous hexagonal framework, resulting...the core. Both hybrid inorganic–organic polymer networks and 139 zeolitic inorganic–organic polymer electrolyte materials were used to impregnate an

  7. Studies of the water adsorption on Lampung’s natural zeolite of Indonesia for cooling application

    NASA Astrophysics Data System (ADS)

    Wulandari, D. A.; Nasruddin; Lemington

    2018-03-01

    Part of minerals that originally formed from volcanic rock and ash layers reacting further with alkaline groundwater is called natural zeolite, where its sources are not always available in all countries. Indonesia is located in the ring of fire which have a huge sources of zeolite, one of the area is Lampung, South Sumatra. Natural zeolite has been considered as one of potential heat adsorbent medium which can contribute to the energy consumption and reduce air pollution in the using of cooling application. The characteristic of this Lampung natural zeolite such as adsorption kinetics, adsorption water uptake, and adsorption capacity were test with ASAP 2020 system. Sorption kinetics by this experiment of zeolite samples were carried out in a constant temperature and humidity chamber. The chamber can supply constant air condition with deviations of ±0.5 °C for temperature and ±3% for relative humidity. The data based on rate of adsorption and the defined working condition was set as 20°C and 70% RH. Pore volume is a significant parameter for determining the limitation of water uptake, which can describe the saturated condition of zeolite. Sorption isotherm models used to describe sorption phenomena are commonly deduced from the Polanyi potential theory were investigated. The water adsorption quantity increased with the increase of relative pressure. To sum up, this pure zeolite has a less heat and mass transfer performance so its need to be activated before using in cooling application to get their great potential and by being coated in a desiccant heat exchanger systems.

  8. Mineral resource of the month: natural and synthetic zeolites

    USGS Publications Warehouse

    Virta, Robert L.

    2008-01-01

    Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.

  9. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  10. An investigation of the effect of migratory type corrosion inhibitor on mechanical properties of zeolite-based novel geopolymers

    NASA Astrophysics Data System (ADS)

    Auqui, Nestor Ulloa; Baykara, Haci; Rigail, Andres; Cornejo, Mauricio H.; Villalba, Jose Luis

    2017-10-01

    The effects of migratory type corrosion inhibitor and curing time on the thermal stability and mechanical properties of Ecuadorian natural zeolite-based geopolymers were evaluated. Geopolymer samples were prepared by alkali activation of the natural zeolite by 8 M NaOH solution and calcium hydroxide Ca(OH)2 1-3 wt%, with an activator/binder ratio of 0.6. The geopolymer samples cured for 24 h at 40 °C and then for 6 days more at room temperature showed the compressive strength values in a range of 3-5,5 MPa. Mineralogical analysis of natural zeolite obtained by XRD is as follows: Mordenite (∼67%), quartz (∼27%) and amorphous (∼6%). SEM-EDS micrographs analysis of geopolymers revealed the presence of Na and Ca which proves the incorporation of the activators, NaOH and Ca(OH)2. The compressive strength values obtained indicate that the use of alkali activation of natural zeolites is an effective method for the synthesis of geopolymers. The mechanical properties of geopolymers were slightly but not adversely affected by the addition of the migratory corrosion inhibitor, MCI-2005 NS. These results will be used in future research on geopolymer concrete with embedded reinforcing steel.

  11. Direct carbon-carbon coupling of furanics with acetic acid over Bronsted zeolites

    DOE PAGES

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-09-16

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO 2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. Here, we report the direct acylation of methylfuran with acetic acid in the presence ofwater, all ofwhich can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implyingmore » that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected.We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass.« less

  12. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  13. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  14. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  15. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  16. Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions

    PubMed Central

    Shamzhy, Mariya; Opanasenko, Maksym; Shvets, Oleksiy; Čejka, Jiří

    2013-01-01

    Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate. PMID:24790940

  17. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NOx by NH3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kispersky, Vincent F.; Kropf, A. Jeremy; Ribeiro, Fabio H.

    2012-01-01

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO x by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states.more » XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.« less

  18. Planar Solid-Oxide Fuel Cell System Demonstration at UT SimCenter

    DTIC Science & Technology

    2015-12-09

    including metals, carbon, and zeolites , have been proposed for sulfur adsorption performances [9-13]. Nickel and copper supported on activated carbon and... zeolite exhibited effective desulfurization effects for jet fuels [14,15]. Muzic et al. [16] examined the adsorptive desulfurization of three...sulfur by using a nanoporous Ni loaded, Y-type zeolite at ambient conditions. The adsorption capacity of Ni-Y zeolite was 0.84 and 2.31 mg S/g

  19. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  20. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can

  1. Effects of zeolites on cultures of marine micro-algae: A brief review.

    PubMed

    Fachini, Adriano; Vasconcelos, Maria Teresa S D

    2006-10-01

    The cation-exchange capacity of zeolites is well known and has been increasingly explored in different fields with both economic and environmental successes. In aquatic medium with low salinity, zeolites have found multiple applications. However, a review of the literature on the applications of zeolites in salt waters found relatively few articles, including some recently published papers. The purpose of this review is to present the state-of-the-art on applications of using zeolites for amending the trace elemental contents of salt water as well as the implications of this property for promoting marine micro-algal growth. This paper deals with the following features: Sorption capacity of zeolites including 1. application of zeolites in saltwater, 2. the role of silicon and zeolites on cultures of micro-algae, and 3. the role of organically chelated trace metals. The following competing factors have been identified as effects of zeolites on algal growth in salt water: (i) ammonia decrease: growth inhibition reduced; (ii) macro-nutrients increase, mainly silicon: stimulation of silicon-dependent algae; (iii) trace metals increase (desorption from zeolites) or decrease (adsorption): inhibition or stimulation, depending on the nature of the element and its concentration; and, (iv) changes in the chelating organics exudation: inhibition or stimulation of growth, depending on the (a) nature of the complexed element; (b) bioavailability of the complex; and (c) concentration of the elements simultaneously present in inorganic forms. Zeolites have been capable of stimulating the growth of the silicon-demanding marine micro-algae, like diatoms, mainly because they can act as a silicon buffer in seawater. Zeolites can also influence the yield of non-silicon-demanding algae, because the changes they can cause (liberation and adsorption of trace elements) in the composition of the medium. Zeolites have been capable of stimulating the growth of the marine micro-algae. However

  2. Ir/KLTL zeolites: Structural characterization and catalysis on n-hexane reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafillou, N.D.; Gates, B.C.

    Ir/KLTL zeolite catalysts were prepared by incipient wetness impregnation of LTL zeolites with [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2}. The catalysts were characterized by extended X-ray absorption fine structure (EX-AFS) spectroscopy, infrared spectroscopy, and H{sub 2} chemisorption. EXAFS data show that the average Ir cluster size (after treatment at 300{degrees}C in H{sub 2}) increased from about 7 to 20 {Angstrom} as the zeolite K:Al atomic ratio increased from 0.34 to 1.56. Infrared spectra of adsorbed CO show that the electron donation to the Ir increased as the K:Al ratio increased. In contrast to the performance reported for Pt/KLTL zeolites with metal clustersmore » as small as those observed in the present experiments, the Ir/KLTL catalyst has a low selectivity for dehydrocyclization of n-hexane at 440-480{degrees}C and 1 atm with a H{sub 2}: n-hexane feed molar ratio of 6. Instead, the catalysts are selective for hydrogenolysis. The selectivity is insensitive to the K:Al ratio, but the activity for dehydrocyclization is a maximum at a K:Al atomic ratio of about 1. The results show that even the smallest Ir clusters to which electron donation is significant still behave essentially like metallic Ir in the catalytic reactions. 49 refs., 4 figs., 7 tabs.« less

  3. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    EPA Science Inventory

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  4. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    PubMed

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission of New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and

  6. Nanosized zeolites as a perspective material for conductometric biosensors creation

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  7. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles.

  8. Xylenes transformation over zeolites ZSM-5 ruled by acidic properties

    NASA Astrophysics Data System (ADS)

    Gołąbek, Kinga; Tarach, Karolina A.; Góra-Marek, Kinga

    2018-03-01

    The studies presented in this work offer an insight into xylene isomerization process, followed by 2D COS analysis, in the terms of different acidity of microporous zeolites ZSM-5. The isomerisation reaction proceeded effectively over zeolites ZSM-5 of Si/Al equal of 12 and 32. Among them, the Al-poorer zeolite (Si/Al = 32) was found to offer the highest conversion and selectivity to p-xylene with the lowest number of disproportionation products, both in ortho- and meta-xylene transformation. Further reduction of Brønsted acidity facilitated the disproportionation path (zeolites of Si/Al = 48 and 750). The formation of intermediate species induced by the diffusion constraints for m-xylene in 10-ring channels was rationalized in the terms of the methylbenzenium ions formation inside the rigid micropore environment. Finally, both microporous character of zeolite and the optimised acidity were found to be crucial for high selectivity to the most desired product i.e. p-xylene. The analysis of asynchronous maps allowed for concluding on the order of the appearance of the respective products on the zeolite surface.

  9. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  10. Selective synthesis of FAU-type zeolites

    NASA Astrophysics Data System (ADS)

    Garcia, Gustavo; Cabrera, Saúl; Hedlund, Jonas; Mouzon, Johanne

    2018-05-01

    In the present work, parameters influencing the selectivity of the synthesis of FAU-zeolites from diatomite were studied. The final products after varying synthesis time were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and gas adsorption. It was found that high concentrations of NaCl could completely inhibit the formation of zeolite P, which otherwise usually forms as soon as maximum FAU crystallinity is reached. In the presence of NaCl, the FAU crystals were stable for extended time after completed crystallization of FAU before formation of sodalite. It was also found that addition of NaCl barely changed the crystallization kinetics of FAU zeolite and only reduced the final FAU particle size and SiO2/Al2O3 ratio slightly. Other salts containing either Na or Cl were also investigated. Our results suggest that there is a synergistic effect between Na+ and Cl-. This is attributed to the formation of (Na4Cl)3+ clusters that stabilize the sodalite cages. This new finding may be used to increase the selectivity of syntheses leading to FAU-zeolites and avoid the formation of undesirable by-products, especially if impure natural sources of aluminosilica are used.

  11. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium

  12. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production.

    PubMed

    Volli, Vikranth; Purkait, M K

    2015-10-30

    This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Understanding the Reactive Adsorption of H 2S and CO 2 in Sodium-Exchanged Zeolites

    DOE PAGES

    Fetisov, Evgenii O.; Shah, Mansi S; Knight, Christopher; ...

    2018-02-19

    Purifying sour natural gas streams containing hydrogen sulfide and carbon dioxide has been a long-standing environmental and economic challenge. In the presence of cation-exchanged zeolites, these two acid gases can react to form carbonyl sulfide and water (H 2S+CO 2H 2O+COS), but this reaction is rarely accounted for. In this work, we carry out reactive first-principles Monte Carlo (RxFPMC) simulations for mixtures of H 2S and CO 2 in all-silica and Na-exchanged forms of zeolite beta to understand the governing principles driving the enhanced conversion. The RxFPMC simulations show that the presence of Na + cations can change the equilibriummore » constant by several orders of magnitude compared to the gas phase or in all-silica beta. The shift in the reaction equilibrium is caused by very strong interactions of H 2O with Na + that reduce the reaction enthalpy by about 20 kJmol -1. The simulations also demonstrate that the siting of Al atoms in the framework plays an important role. Lastly, the RxFPMC method presented here is applicable to any chemical conversion in any confined environment, where strong interactions of guest molecules with the host framework and high activation energies limit the use of other computational approaches to study reaction equilibria.« less

  14. Incredible antibacterial activity of noble metal functionalized magnetic core-zeolitic shell nanostructures.

    PubMed

    Padervand, M; Janatrostami, S; Karanji, A Kiani; Gholami, M R

    2014-02-01

    Functionalized magnetic core-zeolitic shell nanostructures were prepared by hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, nitrogen adsorption-desorption isotherms, and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles in the presence of organic templates was also confirmed. Antibacterial activity of the prepared nanostructures was investigated by the inactivation of Escherichia coli as a gram negative bacterium. A new mechanism was proposed for inactivation of E. coli over the prepared samples. In addition, the Minimum Inhibitory Concentration (MIC) and reuse ability were studied. TEM images of the destroyed cell wall after the treatment time were performed to illustrate the inactivation mechanism. According to the experimental results, the core-shell nanostructures which were modified by organic agents and then functionalized with noble metal nanoparticles were the most active. The interaction of the noble metals with the organic components on the surface of nanostructures was studied theoretically and the obtained results were used to interpret the experimental results. © 2013. Published by Elsevier B.V. All rights reserved.

  15. Deposition of zeolite nanoparticles onto porous silica monolith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gackowski, Mariusz; Bielanska, Elzbieta; Szczepanowicz, Krzysztof

    2016-06-01

    A facile and effective method of deposition of MFl zeolite nanoparticles (nanocrystals) onto macro-/mesoporous silica monolith was proposed. The electrostatic interaction between those two materials was induces by adsorption of cationic polyelectrolytes. That can be realized either by adsorption of polyelectrolyte onto silica monolith or on zeolite nanocrystals. The effect of time, concentration of zeolite nanocrystals, type of polyelectrolyte, and ultrasound treatment is scrutinized. Adsorption of polyelectrolyte onto silica monolith with subsequent deposition of nanocrystals resulted in a monolayer coverage assessed with SEM images. Infrared spectroscopy was applied as a useful method to determine the deposition effectiveness of zeolite nanocrystalsmore » onto silica. Modification of nanocrystals with polyelectrolyte resulted in a multilayer coverage due to agglomeration of particles. On the other hand, the excess of polyelectrolyte in the system resulted in a low coverage due to competition between polyelectrolyte and modified nanocrystals.« less

  16. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  17. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    NASA Astrophysics Data System (ADS)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  18. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite.

    PubMed

    Venglovsky, J; Sasakova, N; Vargova, M; Pacajova, Z; Placha, I; Petrovsky, M; Harichova, D

    2005-01-01

    A 3-month experiment was conducted at a 300 kg scale to observe decomposition processes in pig slurry solids amended with two different doses of natural Slovak zeolite-clinoptilolite (substrates S1 and S2, 1% and 2% of zeolite by weight, respectively) in comparison with the control (unamended solids). The experimental and control substrates were stored outdoors in sheltered static piles at ambient temperatures ranging from 8.0 to 34.7 degrees C. The solid fraction (SF) of pig slurry was obtained by separation on vibration sieves prior to slurry treatment with activated sludge. The initial water content of the SF was 77.1% and no water was added to the piles during the storage. The temperature in the core of the piles was recorded throughout the experiment. By day 3 and 5 of storage (1% and 2% zeolite, resp.), the temperature in the substrates S1 and S2 exceeded 55 degrees C and remained above this level for 15 days while the highest temperature recorded in the control during the experiment was 29.8 degrees C. Samples from the core of the piles were taken periodically to determine pH, dry matter at 105 degrees C (DM), ash (550 degrees C/4 h), ammonia nitrogen (N-NH(4)(+)), nitrate nitrogen (N-NO(3)(-)), total nitrogen (N(t)), total phosphorus (P(t)); total organic carbon (TOC) was computed. The results showed that pH levels in S1 and S2 remained below that in the control for most of the thermophilic stage. This may be related to water-soluble ammonia and the affinity of zeolites to ammonium ions. A significant decrease in the level of ammonia nitrogen in water extracts from S1 and S2 was observed between days 5 and 35 in comparison with the control. The values of ash also differed and corresponded to the intensity of the decomposition processes in the respective substrates.

  19. Large zeolites - Why and how to grow in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.

    1991-01-01

    The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.

  20. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  1. Enhancing Activity and Stability of Uricase from Lactobacillus plantarum by Zeolite immobilization

    NASA Astrophysics Data System (ADS)

    Iswantini, D.; Nurhidayat, N.; Sarah

    2017-03-01

    Lactobacillus plantarum has been known be able to produce uricase for uric acid biosensor. Durability and stability of L. plantarum in generating uricase enzyme was low. Hence, we tried to enhance its durability and stability by immobilizing it onto activated 250 mg zeolite at room temperature using 100 μL L.plantarum suspension and 2.87 mM uric acid, while Michaelis-Menten constant (KM) and Vmax were obtained at 6.7431 mM and 0.9171 µA consecutively, and the linearity range was 0.1-3.3 mM (R2 = 0.9667). Limit of detection (LOD) and limit of quantification (LOQ) value of the measurement were 0.4827 mM and 1.6092 mM respectively. Biosensor stability treatment was carried out in two different treatments, using the same electrode and using disposable electrode. The disposable electrode stability showed better result based on repeated measurements, but stability was still need improvement.

  2. Conversion of Methanol, Ethanol and Propanol over Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-04

    Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcoholsmore » over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.« less

  3. Theoretical study on the nitration of methane by acyl nitrate catalyzed by H-ZSM5 zeolite.

    PubMed

    Silva, Alexander Martins; Nascimento, Marco Antonio Chaer

    2008-09-25

    A theoretical study on the nitration of methane by acyl nitrate catalyzed by HZSM-5 zeolite is reported. The zeolite was represented by a "double ring" 20T cluster. The calculations were performed at the DFT/X3LYP/6-31G** and MP2/6-31G** levels. The first step of the mechanism involves the protonation of the acyl nitrate by the zeolite and the formation of a nitronium-like ion. The reaction proceeds through a concerted step with the attack of the methane molecule by the nitronium-like ion and the simultaneous transfer of a proton from the methane molecule to the zeolite, thus reconstructing the acidic site. The activation energies for the first and second steps of this reaction are, respectively, 14.09 and 10.14 kcal/mol at X3LYP/6-31G** level and 16.68 and 13.85 kcal/mol at the MP2/6-31G**.

  4. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit

    USGS Publications Warehouse

    Levy, S.S.; O'Neil, J.R.

    1989-01-01

    The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

  5. Catalytically active Au-O(OH) x- species stabilized by alkali ions on zeolites and mesoporous oxides

    DOE PAGES

    Yang, Ming; Li, Sha; Wang, Yuan; ...

    2014-11-27

    Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH) x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold activemore » site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.« less

  6. Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether.

    PubMed

    Zhou, Xiaoxia; Chen, Hangrong; Zhu, Yan; Song, Yudian; Chen, Yu; Wang, Yongxia; Gong, Yun; Zhang, Guobin; Shu, Zhu; Cui, Xiangzhi; Zhao, Jinjin; Shi, Jianlin

    2013-07-22

    Dual-mesoporous ZSM-5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co-templates. The product contains two types of mesopores--smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30-50 nm in diameter along the b axis--and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual-mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fly ash based zeolitic pigments for application in anticorrosive paints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Ruchi, E-mail: shawruchi1@gmail.com; Tiwari, Sangeeta, E-mail: stiwari2@amity.edu

    2016-04-13

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na{sup +} with Mg{sup 2+} and Ca{sup 2+} ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxymore » resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).« less

  8. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    PubMed

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  9. Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature.

    PubMed

    Herawan, S G; Hadi, M S; Ayob, Md R; Putra, A

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  10. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  11. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water.

    PubMed

    Zavareh, Siamak; Farrokhzad, Zahra; Darvishi, Farshad

    2018-07-15

    The aim of this work was to design a low cost adsorbent for efficient and selective removal of glyphosate from water at neutral pH conditions. For this purpose, zeolite 4A, a locally abundant and cheap mineral material, was ion-exchanged with Cu 2+ to produce Cu-zeolite 4A. The FTIR results revealed that the modification has no important effect on chemical structure of zeolite 4A. After modification, highly crystalline zeolite 4A was converted to amorphous Cu-zeolite 4A according to XRD studies. The SEM images showed spherical-like particles with porous surfaces for Cu-zeolite 4A compared to cubic particles with smooth surfaces for zeolite 4A. Adsorption equilibrium data were well fitted with non-linear forms of Langmuir, Freundlich and Temkin isotherms. The maximum adsorption capacity for Cu-zeolite 4A was calculated to be 112.7 mg g -1 based on the Langmuir model. The adsorption of glyphosate by the modified adsorbent had fast kinetics fitted both pseudo-first-order and pseudo-second-order models. A mechanism based on chemical adsorption was proposed for the removal process. The modified adsorbent had a good selectivity to glyphosate over natural waters common cations and anions. It also showed desired regeneration ability as an important feature for practical uses. The potential use of the developed material as antibacterial agent for water disinfection filters was also investigated by MIC method. Relatively strong antibacterial activity was observed for Cu-zeolite 4A against Gram-positive and Gram-negative model bacteria while zeolite 4A had no antibacterial properties. No release of Cu 2+ to aqueous solutions was detected as unique feature of the developed material. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    DOT National Transportation Integrated Search

    1997-04-01

    An experimental study of sulfur tolerant zeolite platinum catalysts for aormatics hydrogenation. Platinum catalysts supported on Y-zeolite have been prepared and characterized in various ways, including the hydrogenation of toluene in a high pressure...

  13. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is alloowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely in Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dechiardite-Ca, -Na; erionite-Na, -K, -Ca,; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral

  14. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1997-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si:Al except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, erionite-Na, -K, -Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levyne-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species

  15. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  16. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

    PubMed Central

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil–5 (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir–Hinshelwood or Eley–Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH3 catalyst are suggested. PMID:29600136

  17. Method of preparing sodalite from chloride salt occluded zeolite

    DOEpatents

    Lewis, Michele A.; Pereira, Candido

    1997-01-01

    A method for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000.degree. K. to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  18. Advances in theory and their application within the field of zeolite chemistry.

    PubMed

    Van Speybroeck, Veronique; Hemelsoet, Karen; Joos, Lennart; Waroquier, Michel; Bell, Robert G; Catlow, C Richard A

    2015-10-21

    Zeolites are versatile and fascinating materials which are vital for a wide range of industries, due to their unique structural and chemical properties, which are the basis of applications in gas separation, ion exchange and catalysis. Given their economic impact, there is a powerful incentive for smart design of new materials with enhanced functionalities to obtain the best material for a given application. Over the last decades, theoretical modeling has matured to a level that model guided design has become within reach. Major hurdles have been overcome to reach this point and almost all contemporary methods in computational materials chemistry are actively used in the field of modeling zeolite chemistry and applications. Integration of complementary modeling approaches is necessary to obtain reliable predictions and rationalizations from theory. A close synergy between experimentalists and theoreticians has led to a deep understanding of the complexity of the system at hand, but also allowed the identification of shortcomings in current theoretical approaches. Inspired by the importance of zeolite characterization which can now be performed at the single atom and single molecule level from experiment, computational spectroscopy has grown in importance in the last decade. In this review most of the currently available modeling tools are introduced and illustrated on the most challenging problems in zeolite science. Directions for future model developments will be given.

  19. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance.

    PubMed

    Du, Shuting; Chen, Xiaoxin; Sun, Qiming; Wang, Ning; Jia, Mingjun; Valtchev, Valentin; Yu, Jihong

    2016-02-28

    Hierarchical TS-1 zeolites with secondary macropores have been successfully prepared by using two different fluoride-containing chemical etching post-treated routes. Hierarchical TS-1 zeolites exhibited a chemical composition similar to that of the parent material and showed remarkably enhanced catalytic activity in oxidative desulfurization reaction.

  20. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon.

    PubMed

    Zhang, Shuo; Chang, Jiali; Lin, Chao; Pan, Yiran; Cui, Kangping; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia

    2017-12-01

    To understand how granular activated carbon (GAC) promotes methanogenesis, batch tests of CH 4 production potential in anaerobic serum bottles with addition of GAC or not were conducted. Tests showed that GAC promoted methanogenesis remarkably, but the non-conductive zeolite did not. The qPCR demonstrated that the biomass on GAC contributed little to the promotion. High-throughput sequencing data implied that promotion was related with direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae. According to the c-type cytochromes (c-Cyts) response to the supplement of GAC, it was speculated that GAC may play the role of c-Cyts' substitution. In the undefined cultures, the phenomenon that c-Cyts were repressed by GAC was first observed. This research provided new evidence to microbial mechanism of promoting methanogenesis via GAC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67

    NASA Astrophysics Data System (ADS)

    Yan, Xinlong; Hu, Xiaoyan; Chen, Tao; Zhang, Shiyu; Zhou, Min

    2017-08-01

    1-Naphthol is widely used as an intermediate in the plastics, dyes, fibers and rubbers production areas, leading to the increasing detection of 1-naphthol in the soil and water environment, which is of particular concern due to its acute toxicity and negative environmental impacts. Considering the high surface area and good stability of ZIFs (zeolitic imidazole frameworks) material, ZIF-67 (a representative cobalt-based ZIFs material) was synthesized and applied as an adsorbent for removal of 1-naphthol from aqueous solution. The obtained ZIF-67 was characterized by XRD, TEM, XPS, N2 physisorption and TG, and the adsorption isotherm, kinetics, and regeneration of the adsorbent were studied in detail. The adsorption of 1-naphthol on ZIF-67 followed a pseudo-second-order equation kinetics and fitted Langmuir adsorption model with a maximum adsorption capacity of 339 mg/g at 313 K, which is much higher than that of the common adsorbents reported such as activated carbon and carbon nanotubes et al. The solution pH was found to be an important factor influencing the adsorption process, which could be explained by the predominant mechanism controlling the process, i.e. electrostatic attraction. In addition, the ZIF-67 showed desirable reusability toward 1-naphthol removal from alkaline aqueous solution.

  2. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    PubMed

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  3. Nano-sized zeolites as modulators of thiacloprid toxicity on Chironomus riparius

    PubMed Central

    Wicht, Anna-Jorina; Guluzada, Leyla; Crone, Barbara; Karst, Uwe; Lee, Hwa Jun; Triebskorn, Rita; Haderlein, Stefan B.; Huhn, Carolin; Köhler, Heinz-R.

    2017-01-01

    This study investigated whether zeolites of different size (Y30 (nano-sized) and H-Beta(OH)-III (forming large aggregates/agglomerates composed of 50 nm small primary particles)) exerted acute toxicity on larvae of the non-biting midge, Chironomus riparius, and whether such zeolites are able to modulate the toxicity of a common insecticide, thiacloprid, by means of adsorption of a dissolved toxicant. We conducted acute toxicity tests with fourth instar larvae of C. riparius. In these tests, larvae were exposed to zeolites or thiacloprid solely, or to mixtures of both compounds. The mixtures comprised 1.0 µg/L thiacloprid in addition to low (5.2 mg/L), medium (18.2 mg/L), and high (391.7 mg/L) zeolite concentrations, resulting in different adsorption rates of thiacloprid. As biological endpoints, changes in mortality rates and in behavior were monitored every 24 h over a total investigation period of 96 h. Furthermore, we conducted chemical analyses of thiacloprid in the medium and the larvae and located the zeolite particles within the larvae by LA-ICP-MS imaging techniques. Our results demonstrate that both types of zeolites did not exert acute toxicity when applied as single-substances, but led to reduced acute toxicity of thiacloprid when applied together with thiacloprid. These results are in line with the sorption properties of zeolites indicating reduced bioavailability of thiacloprid, although our data indicate that thiacloprid can desorb from zeolites to some extent. While freely dissolved (i.e., non-sorbed) fraction of thiacloprid was a good parameter to roughly estimate toxic effects, it did not correlate with measured internal thiacloprid concentrations. Moreover, it was shown that both zeolite types were ingested by the larvae, but no indication for cellular uptake of them was found. PMID:28729952

  4. Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography.

    PubMed

    Weckhuysen, Bert Marc; Schmidt, Joel; Peng, Linqing; Poplawsky, Jonathan

    2018-05-02

    Understanding structure-composition-property relationships in zeolite-based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for e.g. reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom Probe Tomography (APT) is the only technique so far capable of producing 3-D compositional reconstructions with sub-nm-scale resolution, and has only recently been applied to zeolite-based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  6. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.

    PubMed

    Bährle, Christian; Custodis, Victoria; Jeschke, Gunnar; van Bokhoven, Jeroen A; Vogel, Frédéric

    2016-09-08

    Lignin from lignocellulosic biomass is a promising source of energy, fuels, and chemicals. The conversion of the polymeric lignin to fuels and chemicals can be achieved by catalytic and noncatalytic pyrolysis. The influence of nonporous silica and zeolite catalysts, such as silicalite, HZSM5, and HUSY, on the radical and volatile product formation during lignin pyrolysis was studied by in situ high-temperature electron paramagnetic resonance spectroscopy (HTEPR) as well as GC-MS. Higher radical concentrations were observed in the samples containing zeolite compared to the sample containing only lignin, which suggests that there is a stabilizing effect by the inorganic surfaces on the formed radical fragments. This effect was observed for nonporous silica as well as for HUSY, HZSM5, and silicalite zeolite catalysts. However, the effect is far larger for the zeolites owing to their higher specific surface area. The zeolites also showed an effect on the volatile product yield and the product distribution within the volatile phase. Although silicalite showed no effect on the product selectivity, the acidic zeolites such as HZSM5 or HUSY increased the formation of deoxygenated products such as benzene, toluene, xylene (BTX), and naphthalene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of Annealing Temperature on Broad Luminescence of Silver-Exchanged Zeolites Y and A

    NASA Astrophysics Data System (ADS)

    Gui, Sa Chu Rong; Lin, H.; Bao, W.; Wang, W.

    2018-05-01

    The annealing temperature dependence of luminescence properties of silver (Ag)-exchanged zeolites Y and A was studied. It was found that the absorbance and excitation/emission bands are strongly affected by the thermal treatments. With increase in annealing temperature, the absorbance of Ag in zeolite Y increases at first and then decreases. However, the position of the excitation/emission band in zeolite Y was found to be insensitive to the annealing temperature. In contrast, the excitation/emission bands in zeolite A are particularly sensitive to the annealing temperature. The difference of such temperature dependence in zeolites Y and A may be due to the different microporous structure of the two minerals. Moreover, the fact that this dependence is not observed in Ag-exchanged zeolite Y is likely to be due to the difficulty in dehydration of zeolite Y in air or due to the weak Ag+-Ag+ interaction in zeolite Y.

  8. Method of preparing sodalite from chloride salt occluded zeolite

    DOEpatents

    Lewis, M.A.; Pereira, C.

    1997-03-18

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  9. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.

    PubMed

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M

    2018-03-02

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  10. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    PubMed Central

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  11. European Microgravity Facilities for ZEOLITE Experiments on the International Space Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Minster, O.; Kremer, S.; Kirschhock, C.; Martens, J.; Jacobs, P.

    2002-01-01

    Synthetic zeolites are complex porous silicates. Zeolites are applied as catalysts, adsorbents and sensors. Whereas the traditional applications are situated in the petrochemical area, zeolite catalysis and related zeolite-based technologies have a growing impact on the economics and sustainability of products and processes in a growing number of industrial sectors, including environmental protection and nanotechnology. A Sounding Rocket microgravity experiment led to significant insight in the physical aggregation patterns of zeolitic nanoscopic particles and the occurrence of self-organisation phenomena when undisturbed by convection. The opportunity of performing longer microgravity duration experiments on zeolite structures was recently offered in the frame of a Taxi-Flight to the ISS in November 2002 organized by Belgium and ESA. Two facilities are currently under development for this flight. One of them will use the Microgravity Science Glovebox (MSG) in the US Lab. Destiny to achieve thermal induced self-organization of different types of Zeosil nanoslabs by heating and cooling. The other facility will be flown on the ISS Russian segment and will allow to form Zeogrids at ambient temperature. On the other hand, the European Space Agency (ESA) is studying the possibility of developing a dedicated insert for zeolite experiments to be used with the optical and diagnostic platform of the Protein Crystallisation Diagnostic Facility (PCDF), that will fly integrated in the European Drawer Rack on the Columbus Laboratory starting in 2004. This paper will present the approach followed by ESA to prepare and support zeolite investigations in microgravity and will present the design concept of these three facilities.

  12. Molecular interactions of alcohols with zeolite BEA and MOR frameworks.

    PubMed

    Stückenschneider, Kai; Merz, Juliane; Schembecker, Gerhard

    2013-12-01

    Zeolites can adsorb small organic molecules such as alcohols from a fermentation broth. Also in the zeolite-catalyzed conversion of alcohols to biofuels, biochemicals, or gasoline, adsorption is the first step. Several studies have investigated the adsorption of alcohols in different zeolites experimentally, but computational investigations in this field have mostly been restricted to zeolite MFI. In this study, the adsorption of C1-C4 alcohols in BEA and MOR was investigated using density functional theory (DFT). Calculated adsorption geometries and the corresponding energies of the designed cluster models were comparable to periodic calculations, and the adsorption energies were in the same range as the corresponding computational and experimental values reported in the literature for zeolite MFI. Thus, BEA and MOR may be good adsorption materials for alcohols in the field of downstream processing and catalysis. Aside from the DFT calculations, adsorption isotherms were determined experimentally in this study from aqueous solutions. For BEA, the adsorption of significant amounts of alcohol from aqueous solution was observed experimentally. In contrast, MOR was loaded with only a very small amount of alcohol. Although differences were found between the affinities obtained from gas-phase DFT calculations and those observed experimentally in aqueous solution, the computational data presented here represent molecular level information on the geometries and energies of C1-C4 alcohols adsorbed in zeolites BEA and MOR. This knowledge should prove very useful in the design of zeolite materials intended for use in adsorption and catalytic processes, as it allows adsorption behavior to be predicted via judiciously designed computational models.

  13. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous

  15. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui

    2013-04-15

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollowmore » zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.« less

  16. Changing of Sumatra backswamp peat properties by seawater and zeolite application

    NASA Astrophysics Data System (ADS)

    Sarifuddin; Nasution, Z.; Rauf, A.; Mulyanto, B.

    2018-02-01

    This research attempts to improve the properties of backswamp peatsoil originated from Asahan District, North Sumatra Indonesia by adding sea water and zeolite using factorial randomized block design with volume of sea water as first factor, consisting of without seawater, 500 ml, 1000 ml and 1500 ml and second factor are dosages of zeolite consisting of without zeolite, 100 g, 200 g each 10 kgs of wet peat soil. at green house in faculty of agriculture University of Sumatra Utara (USU) Medan, Indonesia. The result showed that the application of seawater decreased pH, C/N and Cation Exchange Capacity and increased of base saturation of peat soil. Adding of zeolite minerals can buffered the increasing of acidity and Electric Conductivity caused by sea water application. Interaction seawater + zeolite decreased of C/N and increased of percent of base saturation.

  17. ZEOLITE: "THE MAGIC STONE"; MAIN NUTRITIONAL, ENVIRONMENTAL, EXPERIMENTAL AND CLINICAL FIELDS OF APPLICATION.

    PubMed

    Laurino, Carmen; Palmieri, Beniamino

    2015-08-01

    zeolites (clinoptilolites) are a family of alluminosilicates and cations clustered to form macro aggregates by small individual cavities. In the medical area they are involved in detoxification mechanisms capturing ions and molecules into their holes. Actually, we classify about 140 types of natural and 150 synthetic zeolites, for specific and selective use. Clinoptilolite is a natural zeolite and it is the most widespread compound in the medical market. this review analyzes the main fields of zeolite utilization. we searched Pubmed/Medline using the terms "zeolite" and "clinoptilolite". in zoothechnology and veterinary medicine zeolite improves the pets' fitness, removes radioactive elements, aflatoxines and poisons. Zeolite displays also antioxidant, whitening, hemostatic and anti-diarrhoic properties, projected in human care. However very scanty clinical studies have been run up to now in immunodeficiency, oncology after chemotherapy and radiotherapy as adjuvants. further clinical investigations are urgently required after this review article publication which updates the state of the art. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Thermal expansion of ceramic samples containing natural zeolite

    NASA Astrophysics Data System (ADS)

    Sunitrová, Ivana; Trník, Anton

    2017-07-01

    In this study the thermal expansion of ceramic samples made from natural zeolite is investigated. Samples are prepared from the two most commonly used materials in ceramic industry (kaolin and illite). The first material is Sedlec kaolin from Czech Republic, which contains more than 90 mass% of mineral kaolinite. The second one is an illitic clay from Tokaj area in Hungary, which contains about 80 mass% of mineral illite. Varying amount of the clay (0 % - 50 %) by a natural zeolite from Nižný Hrabovec (Slovak Republic), containing clinoptilolite as major mineral phase is replaced. The measurements are performed on cylindrical samples with a diameter 14 mm and a length about 35 mm by a horizontal push - rod dilatometer. Samples made from pure kaolin, illite and zeolite are also subjected to this analysis. The temperature regime consists from linear heating rate of 5 °C/min from 30 °C to 1100 °C. The results show that the relative shrinkage of ceramic samples increases with amount of zeolite in samples.

  19. Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.

    PubMed

    Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D

    2018-06-19

    The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  1. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  2. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    PubMed

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Scales, Peter; Sommer, Sven G; Chen, Deli

    2018-03-21

    The objective of this study was to investigate the feasibility of using natural and NaCl-treated Australian zeolites to simultaneously remove excess nutrients from anaerobically digested swine manure. Ion adsorption and desorption properties of Australian zeolite during the anaerobic digestion of swine manure were investigated. Two experiments were conducted: the first was an adsorption experiment with multi-component solutions that corresponded with the ionic composition of swine manure digestates. The second experiment determined the effects of zeolite dose rates during anaerobic digestion of swine manure on the removal of N, P and K from solution. Adsorption isotherms confirmed selectivity for K + over NH 4 + by Australian natural and sodium zeolites. Therefore, NH 4 + removal was considerably reduced when there was simultaneous K + uptake. Natural zeolite desorbed more Ca 2+ during K + and NH 4 + adsorption than sodium zeolite. The ion exchange reaction was independent of the presence of P. P removal was very dependent on the pH of the medium. Natural Australian zeolite was shown to be a potential sorbent for the removal of NH 4 + , K + and P during the anaerobic digestion of swine manure. However, the application of high concentrations of zeolite at higher pH values (> 7.5) might not be appropriate for anaerobic digestion, because zeolite desorbed more Ca 2+ ions into the solution at the higher doses of zeolite and then availability of P for microbial growth might be reduced as a result of PO 4 3- precipitation with Ca 2+ at the higher pH.

  4. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Smoot, Alison L.; Lindquist, David A.

    1997-01-01

    Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

  5. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.

  6. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium.

    PubMed

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto

    2005-05-15

    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)(Na) for both the organic sulfur compounds. The adsorption isotherms for TP and 1-BTP followed the Langmuir's relationship and the saturation capacities by CeY-zeolite(Na) were calculated as 0.022 and 0.033 mmol/g, respectively. The mole ratios of TP/Ce and 1-BTP/Ce were 0.031 and 0.047, respectively. CeY-zeolite(NH4) which was prepared from NH4Y-zeolite showed less uptake of TP and 1-BTP than CeY-zeolite(Na), probably due to its lower cerium content.

  7. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D

    X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defectmore » sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.« less

  8. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  9. The remediation of the lead-polluted garden soil by natural zeolite.

    PubMed

    Li, Hua; Shi, Wei-yu; Shao, Hong-bo; Shao, Ming-an

    2009-09-30

    The current study investigated the remediation effect of lead-polluted garden soil by natural zeolite in terms of soil properties, Pb fraction of sequential extraction in soil and distribution of Pb in different parts of rape. Natural zeolite was added to artificially polluted garden soil to immobilize and limit the uptake of lead by rape through changing soil physical and chemical properties in the pot experiment under greenhouse conditions. Results indicated that the addition of natural zeolite could increase soil pH, CEC, content of soil organic matter and promote formation of soil aggregate. The application of zeolite decreased the available fraction of Pb in the garden soil by adjusting soil pH rather than CEC, and restrained the Pb uptake by rape. Data obtained suggested that the application of a dose of zeolite was adequate (>or=10 g kg(-1)) to reduce soluble lead significantly, even if lead pollution is severe in garden soil (>or=1000 mg kg(-1)). An appropriate dose of zeolite (20 g kg(-1)) could reduce the Pb concentration in the edible part (shoots) of rape up to 30% of Pb in the seriously polluted soil (2000 mg kg(-1)).

  10. 3D Study of the Morphology and Dynamics of Zeolite Nucleation.

    PubMed

    Melinte, Georgian; Georgieva, Veselina; Springuel-Huet, Marie-Anne; Nossov, Andreï; Ersen, Ovidiu; Guenneau, Flavien; Gedeon, Antoine; Palčić, Ana; Bozhilov, Krassimir N; Pham-Huu, Cuong; Qiu, Shilun; Mintova, Svetlana; Valtchev, Valentin

    2015-12-07

    The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na-rich aluminosilicate system. A detailed time-series EMT-type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core-shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  12. Effect of zeolite catalyst on sugar dehydration for 5-Hydroxymethylfurfural synthesis

    NASA Astrophysics Data System (ADS)

    Mostapha, Marhaini; Jahar, Noorhasmiera Abu; Chin, Siew Xian; Jaafar, Sharifah Nabihah Syed; Zakaria, Sarani; Aizat, Wan M.; Azizan, Kamalrul Azlan

    2016-11-01

    The effectiveness in the dehydration of sugars into 5-Hydroxymethylfurfural is related to the catalyst existence. A comprehensive synthesis of 5-Hydroxymethylfurfural from fructose, glucose and sucrose (3.73 mmol) with and without addition zeolite catalyst was performed in this study. The reactions were carried out in water-methanol solvent system for 3 hours reaction time at 180°C temperature. The catalytic results from HPLC showed that the reaction with zeolite increases the yield of 5-Hydroxymethylfurfural with 51.72 %, 34.01% and 50.10% for fructose, glucose and sucrose respectively. The study suggests that zeolites promote the isomerization of glucose into fructose to occur and simultaneously catalyze the dehydration of fructose into 5-Hydroxymethylfurfural. Only slight changes on FT-IR spectra of use zeolite after the reaction was observed. Thus suggest that zeolite was a potential catalyst for catalytic reaction for the conversion of sugar into 5-Hydroxymethylfurfural.

  13. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Takayama, S.; Sano, S.

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process ofmore » zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)« less

  14. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP.

    PubMed

    Yusof, Alias Mohd; Malek, Nik Ahmad Nizam Nik; Kamaruzaman, Nurul Asyikin; Adil, Muhammad

    2010-01-01

    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).

  15. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Fazhou; Hakki, Amer; Macphee, Donald E.; Liu, Peng; Hu, Shuguang

    2017-01-01

    A low cost zeolite fly ash bead/TiO2 (ZFABT) composite materials with various surface structure features were prepared for describing those structures importance on TiO2 coating, adsorbability and photocatalytic performances. The results indicated that fly ash bead (FAB) surface was significantly altered by the precipitation/growth of secondary zeolite phases after alkali activation, which generates abundant open pores and stacked petal-liked spherical beads (∼2 μm, Sodalite zeolites). More importantly, this porosity increases as activation time was increased from 2 h to 12 h, through the precipitation of sodalite and then Na-P1 (lamellar crystals) and Na-X (octahedral crystals) zeolite structures. Compared to those of unsupported TiO2 or inactivated support/TiO2 samples, all of ZFABT samples exhibited a higher adsorption capacity and photocatalytic efficiency for RhB removal. However, adsorption is not only one factor to influence TiO2 surface reaction, the intraparticle diffusion rate of rhodamine B (RhB) molecules, and light penetration are also important parameters. Alkali activated 4 h ZFABT sample exhibited the highest photocatalytic activity, indicating its pore structure provided a better balance for those parameters to achieve a synergistic adsorption/photocatalytic process. The kinetics model suggested its high intraparticle diffusion rate allowed for more RhB molecules to easily reach the reaction surface, which is more important for high efficiency photocatalysis.

  16. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY.

    PubMed

    Borah, Bhaskar J; Jobic, H; Yashonath, S

    2010-04-14

    We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order E(a)(n-pentane)>E(a)(isopentane)>E(a)(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and E(a)(n-pentane)

  17. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY

    NASA Astrophysics Data System (ADS)

    Borah, Bhaskar J.; Jobic, H.; Yashonath, S.

    2010-04-01

    We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order Ea(n-pentane)>Ea(isopentane)>Ea(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and Ea(n-pentane)

  18. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  19. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier

    2017-03-03

    Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. NaA zeolite derived from blast furnace slag: its application for ammonium removal.

    PubMed

    Guo, Hongwei; Tang, Lizhen; Yan, Bingji; Wan, Kang; Li, Peng

    2017-09-01

    In this paper, high value added NaA zeolite material was prepared from blast furnace (BF) slag by hydrothermal method and its adsorption behavior on the removal of ammonium ion was investigated. It was found out that the synthetic NaA cubic zeolite with smaller crystal size obtained at nSiO 2 /nAl 2 O 3 = 2 and nH 2 O/nNaOH = 20 showed better adsorption performance. The kinetics of the adsorption of ammonium ion by synthesized NaA zeolite was fitted by the pseudo-second-order kinetic model. The intra-particle diffusion modeling reveals that two mixed rate-controlling mechanisms were involved in the adsorption process. The relatively high value of activation energy of 92.3 kJ·mol -1 indicates a high impact of temperature on the adsorption rate, and the nature of ammonium adsorption is chemical reaction rather than physisorption. Based on the thermodynamics calculations, the adsorption of ammonium was found to be an endothermic, spontaneous process. The adsorption isothermal analysis showed that the Langmuir model could be well fitted and a maximum adsorption capacity of 83.3 mg·g -1 of NH 4 + was obtained. Thus, it was demonstrated that by forming low cost NaA zeolite and using it for environmental remediation, the synchronous minimization of BF slag and ammonia nitrogen contamination could be achieved.

  1. Iridium clusters in KLTL zeolite: Structure and catalytic selectivity for n-hexane aromatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triantafillou, N.D.; Miller, J.T.; Gates, B.C.

    Catalysts consisting of Ir clusters in zeolite KLTL were prepared by reduction of [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2} in the zeolite with H{sub 2} at temperatures 300 or 500{degrees}C. The catalysts were tested for reactions of n-hexane and H{sub 2} at 400, 440 and 480{degrees}C and were characterized by temperature-programmed reduction, hydrogen chemisorption, transmission electron microscopy, infrared spectroscopy of adsorbed CO, and extended X-ray absorption fine structure spectroscopy. The clusters consist of 4 to 6 Ir atoms on average and are sufficiently small to reside within the pores of the zeolite. The infrared spectra characteristic of terminal CO suggest that themore » support environment is slightly basic and that the Ir clusters are electron rich relative to the bulk metal. Notwithstanding the small cluster size, the support basicity, and the confining geometry of the LTL zeolite pore structure, the catalytic performance is similar to those of other Ir catalysts, with a poor selectivity for aromatization and a high selectivity for hydrogenolysis. These results are consistent with the inference that the principal requirements for selective naphtha aromatization catalysts are both a nonacidic support and a metal with a low hydrogenolsis activity, i.e., Pt. 47 refs., 6 figs., 3 tabs.« less

  2. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    PubMed Central

    Khodaverdi, Elham; Honarmandi, Reza; Alibolandi, Mona; Baygi, Roxana Rafatpanah; Hadizadeh, Farzin; Zohuri, Gholamhossein

    2014-01-01

    Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs. PMID:24967062

  3. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Long; Alamillo, Ricardo; Elliott, William A.

    Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less

  4. Mechanistic studies on the transformation of ethanol into ethene over Fe-ZSM-5 zeolite.

    PubMed

    Maihom, Thana; Khongpracha, Pipat; Sirijaraensre, Jakkapan; Limtrakul, Jumras

    2013-01-14

    Ethanol, through the utilization of bioethanol as a chemical resource, has received considerable industrial attention as it provides an alternative route to produce more valuable hydrocarbons. Using a density functional theory approach incorporating the M06-L functional, which includes dispersion interactions, a large 34T nanocluster model of Fe-ZSM-5 zeolite in which T is a Si or Al atom is employed to examine both the stepwise and concerted mechanisms of the transformation of ethanol into ethene. For the stepwise mechanism, ethanol dehydration commences from the first hydrogen abstraction of the ethanol OH group to form the ethoxide-hydroxide intermediate with a low activation energy of 17.7 kcal mol(-1). Consequently, the ethoxide-hydroxide intermediate is decomposed into ethene through hydrogen abstraction from the ethoxide methyl carbon to either the OH group of hydroxide or the oxygen of the ethoxide group with high activation energies of 64.8 and 63.5 kcal mol(-1), respectively. For the concerted mechanism, ethanol transformation into the ethene product occurs in a single step without intermediate formation, with an activation energy of 32.9 kcal mol(-1). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular simulation of water removal from simple gases with zeolite NaA.

    PubMed

    Csányi, Eva; Ható, Zoltán; Kristóf, Tamás

    2012-06-01

    Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H(2)O, CO, H(2), CH(4) and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.

  6. Synthesis of zeolite NaA membrane from fused fly ash extract.

    PubMed

    Ameh, Alechine E; Musyoka, Nicholas M; Fatoba, Ojo O; Syrtsova, Daria A; Teplyakov, Vladimir V; Petrik, Leslie F

    2016-01-01

    Zeolite-NaA membranes were synthesized from an extract of fused South African fly ash on a porous titanium support by a secondary growth method. The influence of the synthesis molar regime on the formation of zeolite NaA membrane layer was investigated. Two synthesis mixtures were generated by adding either aluminium hydroxide or sodium aluminate to the fused fly ash extract. The feedstock material and the synthesized membranes were characterized by X-diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). It was found by XRD and SEM that the cubic crystals of a typical zeolite NaA with a dense intergrown layer was formed on the porous Ti support. The study shows that the source of Al used had an effect on the membrane integrity as sodium aluminate provided the appropriate amount of Na(+) to form a coherent membrane of zeolite NaA, whereas aluminium hydroxide did not. Morphological, the single hydrothermal stage seeded support formed an interlocked array of zeolite NaA particles with neighbouring crystals. Also, a robust, continuous and well-intergrown zeolite NaA membrane was formed with neighbouring crystals of zeolite fused to each other after the multiple stage synthesis. The synthesized membrane was permeable to He (6.0 × 10(6) L m(-2)h(-1) atm(-1)) and CO2 (5.6 × 10(6) L m(-2)h(-1) atm(-1)), which indicate that the layer of the membrane was firmly attached to the porous Ti support. Membrane selectivity was maintained showing membrane integrity with permselectivity of 1.1, showing that a waste feedstock, fly ash, could be utilized for preparing robust zeolite NaA membranes on Ti support.

  7. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  8. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers.

    PubMed

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A Umran; Ottaviani, Maria Francesca

    2016-04-05

    Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  10. Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method.

    PubMed

    Jusoh, Norwahyu; Yeong, Yin Fong; Mohamad, Maisarah; Lau, Kok Keong; M Shariff, Azmi

    2017-01-01

    Sonochemical-assisted method has been identified as one of the potential pre-treatment methods which could reduce the formation duration of zeolite as well as other microporous and mesoporous materials. In the present work, zeolite T was synthesized via sonochemical-assisted pre-treatment prior to hydrothermal growth. The durations for sonochemical-assisted pre-treatment were varied from 30min to 90min. Meanwhile, the hydrothermal growth durations were ranged from 0.5 to 3days. The physicochemical properties of the resulting samples were characterized using XRD, FESEM, FTIR and BET. As verified by XRD, the samples synthesized via hydrothermal growth durations of 1, 2 and 3days and sonochemical-assisted pre-treatment durations of 60min and 90min demonstrated zeolite T structure. The samples which underwent sonochemical-assisted pre-treatment duration of 60min yielded higher crystallinity with negligible change of zeolite T morphology. Overall, the lengthy synthesis duration of zeolite T has been successfully reduced from 7days to 1day by applying sonochemical-assisted pre-treatment of 60min, while synthesis duration of 0.5days via sonochemical-assisted pre-treatment of 60min was not sufficient to produce zeolite T structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  12. Polymethylated [4.1.1] Octanes Leading to Zeolite SSZ-50

    NASA Astrophysics Data System (ADS)

    Lee, Greg S.; Zones, Stacey I.

    2002-09-01

    In this communication, we report on the discovery of novel zeolite compositions, SSZ-50. The zeolite has the RTH topology but can be made over a large silica-to-alumina range including no aluminum at all. The surprising capability to produce a broad compositional range comes from the use of a single organo-cation guest molecule in the zeolite synthesis. The molecule is a specific derivative from within a family of 2-aza [4.1.1] bicyclo octanes that were prepared employing a sequence of organic synthesis steps from a starting ketone. Other cage-based zeolites like SSZ-35,-36,-39 and MTN arose from the use of the other derivatives in this series. We also comment on the tendency of a variety of polymethylated organo-cations to produce RTH, the closely related ITE, or the intergrowth structure, SSZ-36.

  13. A family of zeolites with controlled pore size prepared using a top-down method

    NASA Astrophysics Data System (ADS)

    Roth, Wieslaw J.; Nachtigall, Petr; Morris, Russell E.; Wheatley, Paul S.; Seymour, Valerie R.; Ashbrook, Sharon E.; Chlubná, Pavla; Grajciar, Lukáš; Položij, Miroslav; Zukal, Arnošt; Shvets, Oleksiy; Čejka, Jiří

    2013-07-01

    The properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.

  14. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    NASA Astrophysics Data System (ADS)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  15. Ion exchangers in radioactive waste management: natural Iranian zeolites.

    PubMed

    Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K

    2006-01-01

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.

  16. Performance Evaluations of Ion Exchanged Zeolite Membranes on Alumina Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.

    2017-08-27

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. In the first phase of this effort, several monovalent and divalent cation-exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. In the second phase, Linde Type A (LTA) zeolite membranes were synthesized in disk and tubular supports. The pervaporation process performance was evaluated for the separation and concentration of tritiated water.

  17. NO2 disproportionation for the IR characterisation of basic zeolites.

    PubMed

    Marie, Olivier; Malicki, Nicolas; Pommier, Catherine; Massiani, Pascale; Vos, Ann; Schoonheydt, Robert; Geerlings, Paul; Henriques, Carlos; Thibault-Starzyk, Fréderic

    2005-02-28

    NO2 disproportionation on alkaline zeolites is used to generate nitrosonium (NO+) and nitrate ions on the surface, and the infrared vibrations observed are very sensitive to the cation chemical hardness and to the basicity of zeolitic oxygen atoms.

  18. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.

  19. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.

    PubMed

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir; Tuck Whye, Wong; Ibrahim Akos, Noel; Heidar Pour, Raheleh; Ali Yussuf, Abdirahman

    2014-06-15

    Bionanocomposite films based on regenerated cellulose (RC) and incorporated with zeolite at different concentrations were fabricated by dissolving cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid using a simple green method. The interactions between the zeolite and the cellulose matrix were confirmed by Fourier transform infrared spectra. Mechanical properties of the nanocomposite films significantly improved as compared with the pure regenerated cellulose film, without the loss of extensibility. Zeolite incorporation enhanced the thermal stability and char yield of the nanocomposites. The scanning electron microscopy and transmission electron microscopy showed that zeolite was uniformly dispersed in the regenerated cellulose matrix. In vitro cytotoxicity test demonstrated that both RC and RC/zeolite nanocomposite films are cytocompatible. These results indicate that the prepared nanocomposites have potential applications in biodegradable packaging, membranes and biomedical areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste.

    PubMed

    Milán, Z; Sánchez, E; Weiland, P; Borja, R; Martín, A; Ilangovan, K

    2001-10-01

    The effect of different natural zeolite concentrations on the anaerobic digestion of piggery waste was studied. Natural zeolite doses in the range 0.2-10 g/l of wastewater were used in batch experiments, which were carried out at temperatures between 27 degrees C and 30 degrees C. Total chemical oxygen demand (COD), total and volatile solids, ammonia and organic nitrogen, pH, total volatile fatty acids (TVFA), alkalinity (Alk) and accumulative methane production were determined during 30 days of digestion. The anaerobic digestion process was favored by the addition of natural zeolite at doses between 2 and 4 g/l and increasingly inhibited at doses beyond 6 g/l. A first-order kinetic model of COD removal was used to determine the apparent kinetic constants of the process. The kinetic constant values increased with the zeolite amount up to a concentration of 4 g/l. The values of the maximum accumulative methane production (Gm) increased until zeolite concentrations of 2-4 g/l. The addition of zeolite reduced the values of the TVFA/ Alk ratio while increasing the pH values, and these facts could contribute to the process failure at zeolite doses of 10 g/l.

  1. A Fiber Optic Interferometric Sensor Platform for Determining Gas Diffusivity in Zeolite Films.

    PubMed

    Yang, Ruidong; Xu, Zhi; Zeng, Shixuan; Jing, Wenheng; Trontz, Adam; Dong, Junhang

    2018-04-04

    Fiber optic interferometer (FOI) sensors have been fabricated by directly growing pure-silica MFI-type zeolite (i.e., silicalite) films on straight-cut endfaces of single-mode communication optical fibers. The FOI sensor has been demonstrated for determining molecular diffusivity in the zeolite by monitoring the temporal response of light interference from the zeolite film during the dynamic process of gas adsorption. The optical thickness of the zeolite film depends on the amount of gas adsorption that causes the light interference to shift upon loading molecules into the zeolitic channels. Thus, the time-dependence of the optical signal reflected from the coated zeolite film can represent the adsorption uptake curve, which allows computation of the diffusivity using models derived from the Fick’s Law equations. In this study, the diffusivity of isobutane in silicalite has been determined by the new FOI sensing method, and the results are in good agreement with literature values obtained by various conventional macroscopic techniques. The FOI sensor platform, because of its robustness and small size, could be useful for studying molecular diffusion in zeolitic materials under conditions that are inaccessible to the existing techniques.

  2. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    PubMed

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  3. Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions.

    PubMed

    Karapinar, Nuray

    2009-10-30

    Removal of both nutrients ammonium and phosphorus by natural zeolite has been studied in lab scale by using a mechanically stirred batch system (1000 ml). Zeolite, a mean particle size of 13 microm, was used as an adsorbent for the removal of ammonium and then as a seed material for the precipitation of calcium phosphate. A relationship was established between the uptake of ammonium by zeolite and the ratio of initial ammonium concentration to zeolite dosage. Ammonium uptake of zeolite was almost completed within initial 5 min of adsorption period. There is no pronounced effect of zeolite and ammonium, neither positive nor negative on the amount of calcium phosphate precipitation. The extent of the precipitation of phosphate increased with rising pH. It was also observed that when the system was allowed to relax at constant pH (i.e. under relatively low super saturations), a certain lag time was noted to elapse at the onset of the precipitation. At the pH 7.2, the amount of initial fast precipitation within 5 min and total precipitation within 120 min were around 34% and 93%, respectively. Precipitation of calcium phosphate on to ammonium-loaded zeolite was achieved at low super saturations (< pH 7.5) through secondary nucleation and crystal growth, leading to an increase in particle size.

  4. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites

    PubMed Central

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-01-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass. PMID:27652345

  5. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    PubMed Central

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  6. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  7. Experiment 3: Zeolite Crystal Growth in Microgravity- The USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bac, Nurcan; Warzywoda, Juliusz; Sacco, Albert, Jr.

    1998-01-01

    The extensive use of zeolites and their impact on the world's economy leads to many efforts to characterize their structure, and to improve the knowledge base for nucleation and growth of these crystals. The Zeolite Crystal Growth (ZCG) experiment on USML-2 aims to enhance the understanding of nucleation and growth of zeolite crystals while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16-day USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. Space-grown Beta crystals were free of line defects while terrestrial/controls had substantial defects.

  8. Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67.

    PubMed

    Lin, Kun-Yi Andrew; Chen, Bo-Chau

    2016-02-28

    To eliminate caffeine, one of the most common pharmaceuticals and personal care products, from water, Oxone (peroxymonosulfate salt) was proposed to degrade it. To accelerate the generation of sulfate radicals from Oxone, a magnetic cobalt/carbon nanocomposite (CCN) was prepared from a one-step carbonization of a cobalt-based Zeolitic Imidazolate Framework (ZIF-67). The resultant CCN exhibits immobilized cobalt and increased porosity, and can be magnetically manipulated. These characteristics make CCN a promising heterogeneous catalyst to activate Oxone for caffeine degradation. Factors affecting the caffeine degradation were investigated, including CCN loading, Oxone dosage, temperature, pH, surfactants, salts and inhibitors. A higher CCN loading, Oxone dosage and temperature greatly improved the caffeine degradation by CCN-activated Oxone. Acidic conditions were also preferable over basic conditions for caffeine degradation. The addition of cetyltrimethylammonium bromide (CTAB) and NaCl both significantly hindered caffeine degradation because bromide from CTAB and chloride from NaCl scavenged sulfate radicals. Based on the effects of inhibitors (i.e., methanol and tert-butyl alcohol), the caffeine degradation by CCN-activated Oxone was considered to primarily involve sulfate radicals and, less commonly, hydroxyl radicals. The intermediates generated during the caffeine degradation were analyzed using GC-MS and a possible degradation pathway was proposed. CCN was also able to activate Oxone for caffeine degradation for multiple cycles without changing its catalytic activity. These features reveal that CCN is an effective and promising catalyst for the activation of Oxone for the degradation of caffeine.

  9. Crewmember working on the mid deck Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

  10. The combination of activated natural zeolite-bentonite to reduce Fe and Cu in refined bleached palm oil (RBPO) by using atomic absorption spectrophotometer method

    NASA Astrophysics Data System (ADS)

    Zakwan; Raja, PM; Giyanto

    2018-02-01

    Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.

  11. Catalytic Fast Pyrolysis of Cellulose by Integrating Dispersed Nickel Catalyst with HZSM-5 Zeolite

    NASA Astrophysics Data System (ADS)

    Lei, Xiaojuan; Bi, Yadong; Zhou, Wei; Chen, Hui; Hu, Jianli

    2018-01-01

    The effect of integrating dispersed nickel catalyst with HZSM-5 zeolite on upgrading of vapors produced from pyrolysis of lignocellulosic biomass was investigated. The active component nickel nitrate was introduced onto the cellulose substrate by impregnation technique. Based on TGA experimental results, we discovered that nickel nitrate first released crystallization water, and then successively decomposed into nickel oxide which was reduced in-situ to metallic nickel through carbothermal reduction reaction. In-situ generated nickel nanoparticles were found highly dispersed over carbon substrate, which were responsible for catalyzing reforming and cracking of tars. In catalytic fast pyrolysis of cellulose, the addition of nickel nitrate caused more char formation at the expense of the yield of the condensable liquid products. In addition, the selectivity of linear oxygenates was increased whereas the yield of laevoglucose was reduced. Oxygen-containing compounds in pyrolysis vapors were deoxygenated into aromatics using HZSM-5. Moreover, the amount of condensable liquid products was decreased with the addition of HZSM-5.

  12. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations.

    PubMed

    Oleksiak, Matthew D; Ghorbanpour, Arian; Conato, Marlon T; McGrail, B Peter; Grabow, Lars C; Motkuri, Radha Kishan; Rimer, Jeffrey D

    2016-11-02

    Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H 2 O relative to other light gases (e.g., H 2 , N 2 , CO 2 ). Our findings refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO 2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS-type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermal Properties of Zeolite-Containing Composites

    PubMed Central

    Shimonosono, Taro; Hirata, Yoshihiro; Nishikawa, Kyohei; Sameshima, Soichiro; Sodeyama, Kenichi; Masunaga, Takuro; Yoshimura, Yukio

    2018-01-01

    A zeolite (mordenite)–pore–phenol resin composite and a zeolite–pore–shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity <20%, the thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70–2.07 W/mK at room temperature for the zeolite–pore–phenol resin composite and the zeolite–pore–shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C. PMID:29534034

  14. Applicability of Zeolite Based Systems for Ammonia Removal and Recovery From Wastewater.

    PubMed

    Das, Pallabi; Prasad, Bably; Singh, Krishna Kant Kumar

    2017-09-01

      Ammonia discharged in industrial effluents bears deleterious effects and necessitates remediation. Integrated systems devoted to recovery of ammonia in a useful form and remediation of the same addresses the challenges of waste management and its utilization. A comparative performance evaluation study was undertaken to access the suitability of different zeolite based systems (commercial zeolites and zeolites synthesized from fly ash) for removal of ammonia followed by its subsequent release. Four main parameters which were studied to evaluate the applicability of such systems for large scale usage are cost-effectiveness, ammonia removal efficiency, performance on regeneration, and ammonia release percentage. The results indicated that synthetic zeolites outperformed zeolites synthesized from fly ash, although the later proved to be more efficient in terms of total cost incurred. Process technology development in this direction will be a trade-of between cost and ammonia removal and release efficiencies.

  15. Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment.

    PubMed

    Choi, Jungsu; Chan, Sophia; Yip, Garriott; Joo, Hyunjong; Yang, Heejae; Ko, Frank K

    2016-09-15

    Zeolite is an exciting natural material due to its unique capability of ammonium nitrogen (NH3N) adsorption in water. In this study, multifunctional hybrid composites of zeolite/palladium (Ze/Pd) on polymer nanofiber membranes were fabricated and explored for sustainable contaminant removal. SEM and XRD demonstrated that zeolite and palladium nanoparticles were uniformly distributed and deposited on the nanofibers. NH3N recovery rate was increased from 23 to 92% when palladium coated zeolite was embedded on the nanofiber. Multifunctional nanofibers of Ze/Pd membranes were able to adsorb NH3N on the zeolites placed on the surface of fibers and palladium catalysts were capable of selective oxidation of NH3N to N2 gas. The cycling of NH3N adsorption-oxidation, high flux, hydrophilicity, and flexibility of the membrane makes it a strong candidate for water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids.

    PubMed

    Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng

    2009-08-15

    The current study reported the co-remediation effect on the lead-polluted garden soil by zeolite and humic acids (HA), which was from comparing with the remediation of single zeolite in term of the lead fraction of sequential extraction in the soil and the distribution of lead in different parts of rape. Mixed treatment (zeolite and HA) and single treatment (zeolite) were, respectively, applied to the artificially polluted garden soil to examine the difference of their remediation effects in pot experiment. Results indicated that the co-remediation led to significantly greater (p<0.01) reduction in the lead concentration in plants than by singly adding to zeolite. The co-application of zeolite and HA reduced the available fraction of lead compounds, but slightly increased (p<0.01) the water-soluble fraction of lead compounds in the garden soil, compared with the application of single zeolite, especially in the severe lead-polluted soil (> or =1000 mg kg(-1)). This method might be an efficient way to remediate the lead-polluted soils on a large scale, although zeolite is a kind of hazardous material.

  17. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    NASA Astrophysics Data System (ADS)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  18. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    PubMed

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  20. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  1. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  2. Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst

    DOE PAGES

    Wang, Aiguo; Austin, Danielle; Karmakar, Abhoy; ...

    2017-04-19

    The technical feasibility of coaromatization of acetic acid derived from biomass and methane was investigated under mild reaction conditions (400 °C and 30 bar) over silver-, zinc-, and/or gallium-modified zeolite catalysts. On the basis of GC-MS, Micro-GC, and TGA analysis, more light aromatic hydrocarbons, less phenol formation, lower coke production, and higher methane conversion are observed over 5%Zn-1%Ga/ZSM-5 catalyst in comparison with catalytic performance over the other catalysts. Direct evidence of methane incorporation into aromatics over 5%Zn-1%Ga/ZSM-5 catalyst is witnessed in 1H, 2H, and 13C NMR spectra, revealing that the carbon from methane prefers to occupy the phenyl carbon sitesmore » and the benzylic carbon sites, and the hydrogen of methane favors the aromatic and benzylic substitutions of product molecules. In combination with the 13C NMR results for isotopically labeled acetic acid ( 13CH 3COOH and CH 3 13COOH), it can be seen that the methyl and carbonyl carbons of acetic acid are equally involved in the formation of ortho, meta and para carbons of the aromatics, whereas the phenyl carbons directly bonded with alkyl substituent groups and benzylic carbons are derived mainly from the carboxyl carbon of acetic acid. After various catalyst characterizations by using TEM, XRD, DRIFT, NH 3-TPD, and XPS, the excellent catalytic performance might be closely related to the highly dispersed zinc and gallium species on the zeolite support, moderate surface acidity, and an appropriate ratio of weak acidic sites to strong acidic sites as well as the fairly stable oxidation state during acetic acid conversion under a methane environment. Two mechanisms of the coaromatization of acetic acid and methane have also been proposed after consulting all the collected data in this study. In conclusion, the results reported in this paper could potentially lead to more cost-effective utilization of abundant natural gas and biomass.« less

  3. Mobil/Badger to market zeolite-based cumene technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotman, D.

    1993-02-24

    Badger (Cambridge, MA) and Mobil (Fairfax, VA) are ready to jointly license a new cumene technology that they say achieves higher yields and product purity than existing processes. The zeolite-based technology is scheduled to be introduced at next month's DeWitt Petrochemical Review in Houston. The Mobil/Badger technology aims to challenge the dominant position of UOP's (Des Plaines, IL) solid phosphoric acid (SPA) catalyst process - which accounts for 80%-90% of the world's cumene production. In addition, Monsanto/Kellogg's aluminum chloride-based technology has gained significant momentum since its introduction in the 1980s. And late last year, ABB Lummus Crest (Bloomfield, NJ) alsomore » began marketing a zeolite-based cumene technology. While all the technologies make cumene via the alkylation of benzene with propylene, the Mobil/Badger process uses a zeolite-containing catalyst designed by Mobil to selectively catalyze the benzene/propylene reaction, avoiding unwanted propylene oligomerization. Because the olefin reactions are so fast, says Frank A. Demers, Badger's v.p./technology development and marketing, other zeolite technologies are forced to use complex reactor arrangements to stop the propylene-propylene reactions. However, he says, Mobil has designed a catalyst that wants to react benzene with propylene to make cumene.'« less

  4. High-pressure alchemy on a small-pore zeolite

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    2011-12-01

    While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.

  5. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; ...

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential ( Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO 2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A)more » to –48.02 ± 1.85 kJ/mol per TO 2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO 2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  6. Hydrothermal fabrication of ZSM-5 zeolites: biocompatibility, drug delivery property, and bactericidal property.

    PubMed

    Guo, Ya-Ping; Long, Teng; Song, Zhen-Fu; Zhu, Zhen-An

    2014-04-01

    The bone graft-associated infection is widely considered in orthopedic surgery, which may lead to implant failure, extensive bone debridement, and increased patient morbidity. In this study, we fabricated ZSM-5 zeolites for drug delivery systems by hydrothermal method. The structure, morphology, biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites were investigated. The ZSM-5 zeolites have mordenite framework inverted-type structure and exhibit the disk-like shape with the diameter of ∼350 nm and thickness of ∼165 nm. The biocompatibility tests indicate that human bone marrow stromal cells spread out well on the surfaces of the ZSM-5 zeolites and proliferate significantly with increasing culture time. As compared with the conventional hydroxyapatite particles, the ZSM-5 zeolites possess greater drug loading efficiency and drug sustained release property because of the ordered micropores, large Brunauer-Emmett-Teller (BET) surface areas, and functional groups. For the gentamicin-loaded ZSM-5 zeolites, the sustained release of gentamicin minimizes significantly bacterial adhesion and prevents biofilm formation against Staphylococcus epidermidis. The excellent biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites suggest that they have great application potentials for treating implant-associated infections. Copyright © 2013 Wiley Periodicals, Inc.

  7. Production of carbon molecular sieves from illinois coals. An assessment

    USGS Publications Warehouse

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  8. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  9. Zeolite Degradation: An Investigation of CO2 Capacity Loss of 13x Sorbent

    NASA Technical Reports Server (NTRS)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Hogan, John; Knox, James C.

    2017-01-01

    System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loading/unloading procedures, and operations. This paper details the experiments that were performed and their results.

  10. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiriolo, Raffaele; Rangnekar, Neel; Zhang, Han

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservationmore » of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.« less

  11. Evaluation of the Natural Zeolite Lethal Effects on Adults of the Bean Weevil Under Different Temperatures and Relative Humidity Regimes.

    PubMed

    Floros, George D; Kokkari, Anastasia I; Kouloussis, Nikolaos A; Kantiranis, Nikolaos A; Damos, Petros; Filippidis, Anestis A; Koveos, Dimitris S

    2018-02-09

    We studied the insecticidal activity of different concentrations of very high quality natural zeolites (zeolitic rock containing 92 wt% clinoptilolite) applied on dry beans. The test species was adult bean weevils Acanthoscelides obtectus (Say; Coleoptera: Bruchidae), and the variables included different temperatures and humidity regimes. At certain natural zeolite concentrations the adult mortality approached 100% within the first day of exposure. The lethal natural zeolite concentration for 50% adult mortality (LD50) was 1.1 g/kg dry beans 1 d after exposure. The temperature had no significant effects on the insecticidal potential of the tested natural zeolite formulations. The lethal time (LT) for 50% adult mortality (LT50), at a concentration of 0.5 g/kg dry beans was 106.429, 101.951, and 90.084 min at 15, 20, and 25°C, respectively. It did not differ significantly. In contrast, relative humidity (RH) and exposure time as well as their interactions had a significant effect on natural zeolite formulation and insecticidal potential. At a constant concentration of 0.5 g/kg dry beans and 25°C at 23%, 34%, 53%, and 88% RH the LT50 ranged from 61.6 to 75.9 min; at 72% RH the LT50 was 110.6 min. The results indicate that natural zeolite at low concentrations is promising for the control of the bean weevil under different temperatures and RH regimes. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite.

    PubMed

    Teixeira, Ivo F; Lo, Benedict T W; Kostetskyy, Pavlo; Stamatakis, Michail; Ye, Lin; Tang, Chiu C; Mpourmpakis, Giannis; Tsang, Shik Chi Edman

    2016-10-10

    We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [The mutagenic action of the dust of natural zeolites and chrysotile asbestos].

    PubMed

    Durnev, A D; Suslova, T B; Cheremisina, Z P; Dubovskaia, O Iu; Nigarova, E A; Korkina, L G; Seredenin, S B; Velichkovskiĭ, B T

    1990-01-01

    The cell chemiluminescence method was used to demonstrate the ability of asbest and zeolite dusts from 8 deposits of the USSR to induce generation of free oxygen radicals in the phagocytosing cells suspension. It has been found that asbest and zeolite (0.01 and 0.05 mg/ml) increase levels of cells with chromosome aberrations in human cell cultures. The cytogenetic effect of asbest was inhibited by superoxide dismutase (50 mg/ml). The damaging effect of zeolite was decreased by the pharmacological drug bemithyl (0.007-0.07 mM) and completely eliminated by catalase (20 mg/ml). The results obtained indicate that mutagenic effect of dust particles of asbest and zeolite is mediated by oxygen radicals.

  14. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins.

    PubMed

    Leboda, R; Skubiszewska-Zieba, J; Tomaszewski, W; Gun'ko, V M

    2003-07-15

    Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.

  15. Removal of phenol from synthetic wastewater using carbon-mineral composite: Batch mechanisms and composition study

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian

    2017-09-01

    This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.

  16. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols.

    PubMed

    Sharma, Mukesh; Das, Biraj; Sharma, Mitu; Deka, Biplab K; Park, Young-Bin; Bhargava, Suresh K; Bania, Kusum K

    2017-10-11

    Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N 2 -adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.

  17. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  18. Metal Oxide/Zeolite Combination Absorbs H2S

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1989-01-01

    Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

  19. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    NASA Astrophysics Data System (ADS)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  20. CIT-9: A Fault-Free Gmelinite Zeolite.

    PubMed

    Dusselier, Michiel; Kang, Jong Hun; Xie, Dan; Davis, Mark E

    2017-10-16

    A synthetic, fault-free gmelinite (GME) zeolite is prepared using a specific organic structure-directing agent (OSDA), cis-3,5-dimethylpiperidinium. The cis-isomers align in the main 12-membered ring (MR) channel of GME. Trans-isomer OSDA leads to the small-pore zeolite SSZ-39 with the OSDA in its cages. Data from N 2 -physisorption and rotation electron diffraction provide evidence for the openness of the 12 MR channel in the GME 12×8×8 pore architecture and the absence of stacking faults, respectively. CIT-9 is hydrothermally stable when K + -exchanged, while in the absence of exchange, the material transforms into an aluminous AFI-zeolite. The process of this phase-change was followed by in situ variable temperature powder X-ray diffraction. CIT-9 has the highest Si/Al ratio reported for GME, and along with its good porosity, opens the possibility of using GME in a variety of applications including catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.