Science.gov

Sample records for activated combustion synthesis

  1. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  2. Combustion synthesis of fullerenes

    SciTech Connect

    Mckinnon, J.T.; Bell, W.L. ); Barkley, R.M. )

    1992-01-01

    This paper reports the isolation of C{sub 60} and C{sub 70} from combustion soot that is produced in high-temperature, low-pressure premixed flat flames. A critical parameter for high fullerene yields in combustion appears to be a very high flame temperature. Equilibrium calculations indicate that low pressures are important, but the experimental evidence is not clear at this time. Combustion synthesis yields fullerenes with a C{sub 70}/C{sub 60} ratio of about 40%, as compared with the 12% reported for electric-arc-generated fullerenes. The overall yields from carbon are very low (ca. 0.03%) but the soot studied had been produced in flames that were in no way optimized for fullerene production.

  3. Combustion synthesis of borate phosphors

    NASA Astrophysics Data System (ADS)

    Thakare, D. S.; Omanwar, S. K.; Moharil, S. V.; Dhopte, S. M.; Muthal, P. L.; Kondawar, V. K.

    2007-08-01

    A fast and simple method of preparation, based on the combustion synthesis, is described for the synthesis of borate based PL phosphors which can be used for commercial lamp applications. Phosphors with various structures, incorporating different activators could be successfully prepared. PL intensities of (Gd0.6Ce0.2Tb0.2)MgB5O10, SrB4O7:Eu2+ and La0.88Gd0.1Bi0.02B3O6 were found to be comparable with those of the corresponding commercial phosphors.

  4. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    SciTech Connect

    Shafirovich, Evgeny

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of

  5. Combustion synthesized TiO{sub 2} for enhanced photocatalytic activity under the direct sunlight-optimization of titanylnitrate synthesis

    SciTech Connect

    Daya Mani, A.; Laporte, V.; Ghosal, P.; Subrahmanyam, Ch.

    2012-09-15

    Graphical abstract: Effect of oxidant on the combustion synthesis of TiO{sub 2} has been studied by preparing titanylnitrate in four different ways from Ti(IV) iso-propoxide. It is observed that oxidant preparation method has a significant effect on physico-chemical as well as photocatalytic properties of TiO{sub 2}. All the catalysts showed excellent photocatalytic activity than Degussa P-25 under direct sunlight for the degradation of a textile dye (methylene blue), without the need of external light sources, oxygen supply and reactor systems. Highlights: ► Optimized synthesis of titanylnitrate. ► Influence of titanylnitrate synthesis on the physico-chemical properties of TiO{sub 2} prepared by combustion synthesis. ► Development of highly efficient TiO{sub 2} photocatalysts those are active under the direct sunlight in open atmosphere. ► Degradation of the textile dye (methylene blue) under direct sunlight. -- Abstract: Optimized synthesis of Ti-precursor ‘titanylnitrate’ for one step combustion synthesis of N- and C-doped TiO{sub 2} catalysts were reported and characterized by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), diffused reflectance UV–vis spectroscopy, N{sub 2} adsorption and X-ray photoelectron spectroscopy (XPS). XRD confirmed the formation of TiO{sub 2} anatase and nano-crystallite size which was further confirmed by TEM. UV-DRS confirmed the decrease in the band gap to less than 3.0 eV, which was assigned due to the presence of C and N in the framework of TiO{sub 2} as confirmed by X-ray photoelectron spectroscopy. Degradation of methylene blue in aqueous solution under the direct sunlight was carried out and typical results indicated the better performance of the synthesized catalysts than Degussa P-25.

  6. Synthesis of Highly Active Mg-BASED Hydrides Using Hydriding Combustion Synthesis and NbF5 Additives

    NASA Astrophysics Data System (ADS)

    Chourashiya, M. G.; Park, C. N.; Park, C. J.

    2012-09-01

    Superiority of the hydriding combustion (HC) technique over conventional metallurgical approach to the synthesis of cost-effective Mg based hydrides, which show promise as hydrogen storage materials, is well known. In the present research, we report further improvements in HC prepared Mg-based materials, achieved by optimizing the preparative parameters of HC and by catalytic addition. Mg90-Ni60-C40 composites prepared using optimized processing parameters were ball-milled with NbF5 (10 h) and characterized for their micro-structural and hydriding properties. The ball-milled/catalyzed powder showed decreased crystallinity with CNTs on its surfaces. Surface area of the ball-milled powder decreased to almost half of the as-HC powder, while TG analysis revealed a four-fold decrease in the desorption temperature of the milled powder compared to that of the as-HC prepared powder. Activated samples achieved the maximum absorption/desorption limits (5.3 wt.%) at as low as 100°C, underlining the possibility of the use of these materials in portable hydrogen storage devices.

  7. Combustion synthesis method and products

    DOEpatents

    Holt, J. Birch; Kelly, Michael

    1993-01-01

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  8. Combustion synthesis method and products

    DOEpatents

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  9. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    PubMed

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation. PMID:26018624

  10. Combustion synthesis of porous biomaterials.

    PubMed

    Ayers, Reed A; Burkes, Douglas E; Gottoli, Guglielmo; Yi, Hu-Chun; Zhim, Fouad; Yahia, L'hocine; Moore, John J

    2007-06-01

    This article discusses the unique material manufacturing process of self-propagating high temperature synthesis (SHS) as applied to the making of porous biomaterials. Porous materials have long been considered as the first step toward in-vivo bone tissue engineering and the creation of patient life-time implants. The authors have approached this challenge by utilizing combustion synthesis, to create novel materials such as NiTi + TiC as well as porous forms of materials that are commonly accepted for biomedical applications such as tricalcium phosphate and hydroxyapatite. In the SHS product, physico-chemical properties are controlled by, but not limited to, reactant stoichiometry; green density; particle size of the reactant mix; use or presence of a gasifying agent; heating rate of the reactants and gravity. By balancing these parameters, the energy of the reaction is controlled to create the desired product stoichiometry, porosity, and mechanical properties. SHS provides a means to rapidly manufacture materials, saving time and production costs as well as enabling the synthesis of custom devices through the use of individual molds. Mold materials can range from graphite to paper or paper machete. Combustion synthesis offers a method for the rapid manufacture of affordable, individual biomedical devices that will reduce patient recovery time. PMID:17187390

  11. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  12. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  13. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  14. [Characterization and photocatalytic activity of Ni-doped tiO2 nano photocatalysts prepared by low temperature combustion synthesis].

    PubMed

    Liu, Chao; Tang, Xin-Hu; Mo, Ce-Hui; Wang, Jun

    2006-11-01

    Ni-doped TiO2 photocatalysts were prepared by low temperature combustion synthesis and some properties, such as optical absorption, crystal type, grain size distribution and chemistry transformation during temperature rising were characterized by UV-Vis DRS, X-ray diffraction (XRD), laser light dispersion grain size measurement machine and TG-DSC respectively. The photocatalytic activities of the prepared photocatalysts under visible light irradiation were evaluated by monitoring the degradation of methylene blue dye, a probe pollutant. The results indicate that the Ni-doped TiO2 photocatalysts prepared by low temperature combustion synthesis shift the optical absorption threshold to visible light, the band gap of 0.4 Ni-TiO2 (atomic ratio) is 2.3 eV, which corresponds to a 564 nm threshold in the visible light range. The crystal type of photocatalyst is anatase TiO2 and the content of NiTiO3 rise with the increase of Ni dopant. The grain size of photocatalyst distributes from 50 to 150nm, which account for 96.9% of entire quantity. During temperature rising, the TiO2 phase in photocatalyst transforms from amorphous structure to anatase and NiTiO3 crystallites appear at 445.2 degrees C. After 150 min visible light irradiation, 93.9% of methylene blue dye are degraded over 0.4 Ni-TiO2 photocatalyst. The photocatalytic activity of Ni doped TiO2 is higher than that of P25 under identical conditions. PMID:17326417

  15. Combustion Synthesis of Magnesium Aluminate

    SciTech Connect

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-20

    In the system MgO-Al{sub 2}O{sub 3}, three compounds MgAl{sub 2}O{sub 4}, MgAl{sub 6}O{sub 10}(also expressed as-Mg{sub 0.4}Al{sub 2.4}O{sub 4}) and MgAl{sub 26}O{sub 40} are well known. Importance of the first two is well established. Magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel is a technologically important material due to its interesting thermal properties. The MgAl{sub 2}O{sub 4} ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl{sub 2}O{sub 4} is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl{sub 6}O{sub 10} has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl{sub 2}O{sub 4} and MgAl{sub 6}O{sub 10} were formed in a single step, while MgAl{sub 26}O{sub 40} was not formed by this procedure. Activation of MgAl{sub 6}O{sub 10} by rare earth ions like Ce{sup 3+}, Eu{sup 3+} and Tb{sup 3+} and ns{sup 2} ion Pb{sup 2+} could be achieved. Excitation bands for MgAl{sub 6}O{sub 10} are at slightly shorter wavelengths compared to those reported for MgAl{sub 2}O{sub 4}.

  16. Combustion Synthesis of Magnesium Aluminate

    NASA Astrophysics Data System (ADS)

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    In the system MgO-Al2O3, three compounds MgAl2O4, MgAl6O10 (also expressed as- Mg0.4Al2.4O4) and MgAl26O40 are well known. Importance of the first two is well established. Magnesium aluminate (MgAl2O4) spinel is a technologically important material due to its interesting thermal properties. The MgAl2O4 ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl2O4 is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl6O10 has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl2O4 and MgAl6O10 were formed in a single step, while MgAl26O40 was not formed by this procedure. Activation of MgAl6O10 by rare earth ions like Ce3+, Eu3+ and Tb3+ and ns2 ion Pb2+ could be achieved. Excitation bands for MgAl6O10 are at slightly shorter wavelengths compared to those reported for MgAl2O4.

  17. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  18. Combustion synthesis of complex oxides

    NASA Astrophysics Data System (ADS)

    Ming, Qimin

    Advanced ceramic materials have numerous applications in electronic engineering, chemical engineering, and semiconductor industry. The synthesis of these materials at an economical cost is the bottleneck in the application of these materials. Self-propagating High-temperature Synthesis (SHS) is a new technique for producing these materials for exothermic systems by a combustion wave that propagates and produces high purity products. The full potential of SHS to produce advanced materials has not yet been utilized. In this study, we used SHS to prepare two types of complex oxides: La 1-xSrxCrO3, La0.89Sr0.1 MnO3, powders, used to make interconnect and cathode of solid oxide fuel cells; and chromium- and gallium-doped La1-xSr xFeO3-delta, mixed ionic and electronic conductive powders used to manufacture ceramic membranes for oxygen separation. A thermodynamic feasibility analysis shows that the oxidation of Cr is the main source of heat generation of La1-xSrxCrO 3, which maintains a stable reaction front. Replacing part of the metallic Cr in the reaction mixture by its oxides decreases the combustion temperature and front propagating velocity and modifies the product morphology. The oxygen needed for the Cr oxidation is provided by the decomposition of CrO3 , SrO2, or NaClO4. The predicted and observed combustion temperatures are in reasonable agreement. TG/DTA analyses of La1-xSrxCrO3 indicated that SHS stability was strongly affected by the transport of oxygen between the two regions, in which oxygen was generated by the decomposition of either NaClO4 or CrO3 and that in which it was consumed by the oxidation of Cr. Partial melting at the high combustion temperature during SHS of La 1-xSrxMnO3 increased product homogeneity. The electrical conductivity at 1000°C in air of SHS-produced cathode material (of 180 O-1·cm-1) matches that of the commercial product made by other processes. However, the SHS process provides much higher productivity and decreases processing

  19. Gravity Effects on Combustion Synthesis of Glasses

    NASA Technical Reports Server (NTRS)

    Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Robinson, L. A.; Manerbino, A. R.; Schowengerdt, F. D.; Gokoglu, S. (Technical Monitor)

    2000-01-01

    The Combustion Synthesis technique has been used to produce glasses based on B2O3-Al2O3-MgO and CaO-Al2O3. The combustion characteristics of these combustion synthesis reactions using both small cylindrical pellets (SCP) and large spherical pellets (LSP) are presented. Low density pellets (approx. 35% of their theoretical density) were used, which made synthesis of low exothermic combustion reactions possible. Microstructural analysis of reacted samples was carried out to identify the glass-forming compositions. The effects of gravity on the glass formation were studied aboard the KC-135 using SCP samples. Gravity seemed to have such obvious effects on the combustion characteristics that the wave velocity was lower and the Width of the combustion wave was larger under reduced gravity conditions. Samples produced under low gravity also had more enhanced vitrification than those on ground, while some systems also exhibited lower combustion temperatures. It was also found that the container significantly affects both the combustion characteristics and microstructure. Substantially more divitrification occurred at the area which was in contact with the support (container).

  20. Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation.

    PubMed

    Eswar, Neerugatti KrishnaRao; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2015-07-01

    This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification. PMID:26056065

  1. Combustion and Plasma Synthesis of High-Temperature Materials

    NASA Astrophysics Data System (ADS)

    Munir, Z. A.; Holt, J. B.

    1997-04-01

    , et al.). Combustion Synthesis in the Ti-C-Ni-Al System (S. Dunmead, et al.). Combustion Synthesis Dynamics Modeling (T. Kottke, et al.). Elementary Processes in SiO2-Al Thermite-Type Reactions Activated or Induced by Mechanochemical Treatment (G. Hida & I. Lin). Combustion Synthesis of Ceramic Preforms for Molten-Metal Infiltration (D. Halverson, et al.). Combustion Characteristics of Solid-Solid Systems: Experiments and Modeling (S. Kumar, et al.). Microstructure of TiB2 Sintered by the Self-Combustion Method (K. Urabe, et al..). A Laser-Ignition Study of Gasless Reactions Using Thermography (C. Chow & J. Mohler). Shock-Induced Reaction Synthesis-Assisted Processing of Ceramics (R. Ward, et al.). Summary Assessment of the Application of SPS and Related Reaction Processing to Produce Dense Ceramics (R. Rice). Shock Consolidation of Combustion-Synthesized Ceramics (A. Niiler, et al.). High-Pressure Burning Rate of Silicon in Nitrogen (M. Costantino & J. Holt). Preparation of a TiC Single Crystal by the Floating-Zone Method from a Self-Combustion Rod (S. Otani, et al.). PLASMA AND GAS-PHASE SYNTHESIS. Thermal Plasma Synthesis of Ceramic Powders and Coatings (T. Yoshida). A Theoretical Comparison of Conventional and Hybrid RF-Plasma Reactors (J. McKelliget & N. El-Kaddah). Homogeneous Nucleation and Particle Growth in Thermal Plasma Synthesis (S. Girshick & C.-P. Chiu). Formation of Refractory Aerosol Particles (R. Flagan, et al.). Ceramic-Powder Synthesis in an Aerosol Reactor (M. Alam, et al.). Silica-Particle Formation Using the Counter-Flow Diffusion Flame Burner (J. Katz, et al.). Synthesis and Properties of Low-Carbon Boron Carbides (C. Adkins, et al.). Synthesis of Si, SiC, and Si3N4 Powders Under High Number Density Conditions (J. Haggerty & J. Flint). Rapid Preparation of Titanium and Other Transition-Metal Nitride- and Carbide Powders by a Carbo-Reduction Method Using Arc-Image Heating (M. Yoshimura, et al.). Microwave Plasma Densification of Aluminum Nitride

  2. Candle filter fabrication using combustion synthesis method

    SciTech Connect

    Hanus, G.J.; Uznanski, K.T.; DeCoursin, D.G.; Hickel, S.D.; Shtessel, E.

    1996-12-31

    Using self-propagating, high-temperature synthesis fabrication techniques, unique combinations of materials were studied for use in candle filter development. Materials suitable for corrosive atmospheres with improved filtration and mechanical properties were identified within the context of manufacturing simplicity, versatility and cost-effectiveness. Material combinations suitable for combustion synthesis were identified which match the temperature, strength and corrosion resistance requirements of operation in pressurized, fluidized-bed combustion environments. Tests on porosity, permeability and strength indicated the ability of the method to process porous filter material which matches or surpasses the performance levels of current, production candle filter material samples.

  3. Combustion synthesis and characterization of nanocrystalline WO3.

    PubMed

    Morales, Walter; Cason, Michael; Aina, Olawunmi; de Tacconi, Norma R; Rajeshwar, Krishnan

    2008-05-21

    The energy payback time associated with the semiconductor active material is an important parameter in a photovoltaic solar cell device. Thus lowering the energy requirements for the semiconductor synthesis step or making it more energy-efficient is critical toward making the overall device economics more competitive relative to other nonpolluting energy options. In this communication, combustion synthesis is demonstrated to be a versatile and energy-efficient method for preparing inorganic oxide semiconductors such as tungsten trioxide (WO3) for photovoltaic or photocatalytic solar energy conversion. The energy efficiency of combustion synthesis accrues from the fact that high process temperatures are self-sustained by the exothermicity of the combustion process, and the only external thermal energy input needed is for dehydration of the fuel/oxidizer precursor mixture and bringing it to ignition. Importantly, we show that, in this approach, it is also possible to tune the optical characteristics of the oxide semiconductor (i.e., shift its response toward the visible range of the electromagnetic spectrum) in situ by doping the host semiconductor during the formative stage itself. As a bonus, the resultant material shows enhanced surface properties such as markedly improved organic dye uptake relative to benchmark samples obtained from commercial sources. Finally, this synthesis approach requires only very simple equipment, a feature that it shares with other "mild" inorganic semiconductor synthesis routes such as sol-gel chemistry, chemical bath deposition, and electrodeposition. The present study constitutes the first use of combustion synthesis for preparing WO3 powder comprising nanosized particles. PMID:18439012

  4. Combustion Synthesis in a Mechanically Activated Mg-C-TiO2-H3BO3 System

    NASA Astrophysics Data System (ADS)

    Aminikia, B.; Tayebifard, S. A.; Youzbashi, A. A.

    2012-06-01

    TiC-TiB2 nanocomposite was fabricated by self-propagating high-temperature synthesis (SHS) of mechanically milled powders. H3BO3, TiO2, Mg, and C as starting materials were milled for 0.5, 1, and 3 h then pressed to form pellets. Green compacts were placed in a tube furnace which had been preheated to three different temperatures of 900, 1000, and 1100 °C with argon atmosphere, for the synthesis. The prepared samples were studied by XRD, SEM, and TEM analytical technique. TiC and TiB2 were not formed during milling process. According to the XRD patterns of synthesized samples, ball milling for 0.5 h is the optimum time for mechanical activation of the mixed powders. Further investigation indicated that 900 °C is the best temperature for the synthesis of this mixture. By using Williamson-Hall method, the average crystallite sizes of TiB2 and TiC were calculated 40.7 and 75.6 nm, respectively, which were confirmed by TEM images.

  5. Soft-combustion synthesis of a new cathode-active material, LiVWO 6, for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Prabaharan, S. R. S.; Yong, Tou T.; Fauzi, Ahmad; Michael, M. S.

    Brannerite-LiVWO 6, has been synthesized by employing a wet-chemical soft-combustion (low temperature) technique and its battery-active character as candidate cathode material in lithium-containing batteries is reported in the light of electrochemical means. Structural and thermal properties have also been studied by means of classical techniques such as XRD and thermal analysis. The structural features are found to be similar to its analogous counterpart, brannerite-LiVMoO 6 previously reported. Quasi-layered type LiVWO 6 crystallizes in brannerite structure of AB 2O 6 type, having a general formula LiM 2'O 6 (M'=transition metal) with lattice parameters a=9.347 Å, b=3.670 Å, c=6.593 Å and β=111°50'. The thermochemical reactions that occur during the soft-combustion of the precursor mass facilitate the formation of the above compound at 434°C as deduced from TG-DTA scan. The product (LiVWO 6) thus prepared (calcined at 700°C) exhibits the submicrometer grains (<1 μm) whose specific surface area is found to be 4.97 m 2/g as deduced from BET analysis. The redox behavior of the above compound has been examined for LiVWO 6/Li +/Li under the wet electrolyte (1 M LiPF 6: EC+DMC) environment in the voltage regime 4.0 and 1.5 V using constant current technique at a current density of 0.8 mA/cm 2. It has been found that the test cell containing LiVWO 6/Li couple demonstrates excellent charge-discharge behavior in the voltage regime 3.0-1.5 V and the specific capacity of ˜240 mAh/g has been deduced from the first charge-discharge cycle in the voltage regime ˜4.0-1.5 V.

  6. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  7. Synthesis of functional materials in combustion reactions

    SciTech Connect

    Zhuravlev, V. D. Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-15

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  8. Synthesis of functional materials in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  9. Combustion synthesis of porous glasses and ceramics for bone repair.

    PubMed

    Castillo, M; Ayers, R A; Zhang, X; Schowengerdt, F; Moore, J J

    2001-01-01

    Porous bioactive materials with constituents such as CaO, P2O5, SiO2, MgO, K2O, Na2O implanted in bone can activate a biologic response to enhance bone healing. These biomaterials are currently formed utilizing wet chemistry, plasma spray, D-gun, sintering, and diffusion bond techniques. This work investigates the use of self propagating high temperature combustion synthesis (SHS) in the creation of porous bioactive glasses for bone repair. The use of combustion synthesis has many advantages over the methods mentioned previously. The primary advantages are the ability to control the process to provide specified porosity (% porosity, pore size distribution, interconnected pores, functionally grading of porosity), structural mechanical properties, together with rapid production of the material. The focus of this project is the investigation of combustion synthesis reactions based on the reaction system 3CaO + P2O5==>Ca3(PO4)2 and incorporating other known biocompatible constituents into the reaction. PMID:11347436

  10. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  11. The Effects of Gravity on Combustion and Structure Formation During Combustion Synthesis in Gasless Systems

    NASA Technical Reports Server (NTRS)

    Varma, Arvind; Mukasyan, Alexander; Pelekh, Aleksey

    1997-01-01

    There have been relatively few publications examining the role of gravity during combustion synthesis (CS), mostly involving thermite systems. The main goal of this research was to study the influence of gravity on the combustion characteristics of heterogeneous gasless systems. In addition, some aspects of microstructure formation processes which occur during gasless CS were also studied. Four directions for experimental investigation have been explored: (1) the influence of gravity force on the characteristic features of heterogeneous combustion wave propagation (average velocity, instantaneous velocities, shape of combustion front); (2) the combustion of highly porous mixtures (with porosity greater than that for loose powders), which cannot be obtained in normal gravity; (3) the effect of gravity on sample expansion during combustion, in order to produce highly porous materials under microgravity conditions; and (4) the effect of gravity on the structure formation mechanism during the combustion synthesis of poreless composite materials.

  12. Combustion synthesis of boride and other composites

    DOEpatents

    Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.

    1989-01-01

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight B.sub.4 C/TiB.sub.2 composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B.sub.4 C and TiB.sub.2 reactants. For lightweight products the composition must be relatively rich in the B.sub.4 C component. B.sub.4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

  13. Combustion synthesis of boride and other composites

    DOEpatents

    Halverson, D.C.; Lum, B.Y.; Munir, Z.A.

    1988-07-28

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight B/sub 4/C/TiB/sub 2/ composites is described. It is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B/sub 4/C and TiB/sub 2/ reactants. For lightweight products the composition must be relatively rich in the B/sub 4/C component. B/sub 4/C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component. 9 figs., 4 tabs.

  14. Combustion synthesis of LaFeO3 sensing nanomaterial

    NASA Astrophysics Data System (ADS)

    Zaza, F.; Pallozzi, V.; Serra, E.; Pasquali, M.

    2015-06-01

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO3.

  15. Activated combustion features in the Mo-Si-C-promoter system and synthesis of MoSi{sub 2}-SiC composite powders

    SciTech Connect

    Hambartsumyan, A.A. Harutyunyan, A.B.

    2007-12-04

    Opportunities on combustion synthesizing the MoSi{sub 2}-SiC ceramic composites in a wide range of compositions under the chemical activated mode were studied. Molybdenum, silicon powders and carbon black were used as initial reagents, and Teflon was used as an activating additive. It was established that Teflon displays a dual (kinetic and thermal) impact on the interaction between reagents. The phasic character of the combustion process evolution, being characterized by low- and high-temperature regimes, was revealed. The end-products were subjected to SEM, XRD and chemical analyses.

  16. The solution combustion synthesis of nanophosphors

    SciTech Connect

    Tornga, Stephanie C

    2009-01-01

    Nanophosphors are defined as nano-sized (1-100mn), insulating, inorganic materials that emit light under particle or electromagnetic excitation. Their unique luminescence properties provide an excellent potential for applications in radiation detection and imaging. Herein, solution combustion synthesis (SCS) is presented as a method to prepare nanophosphor powders, while X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), photoluminescence excitation (PLE), and other techniques were used to characterize their structural and optical properties. The goal of this work is to synthesize bright, high-quality powders of nanophosphors, consolidate them into bulk materials and study their structural and optical properties using XRD, TEM, PL, and PLE. SCS is of interest because it is a robust, inexpensive, and facile technique, which yields a significant amount of a wide variety of oxide materials, in a short amount of time. Several practical nanophosphors were synthesized and investigated in this work, including simple oxides such as Y{sub 2}O{sub 3}:Bi, Y{sub 2}O{sub 3}:Tb, Y{sub 2}O{sub 3}:Eu and Gd{sub 2}O{sub 3}:Eu, complex oxides such as Gd{sub 2}SiO{sub 5}:Ce, Y{sub 2}SiO{sub 5}:Ce, Lu{sub 2}SiO{sub 5}:Ce, Zn{sub 2}SiO{sub 4}:Mn, and Y{sub 3}Al{sub 5}O{sub 12}:Ce. Results demonstrate that altering the processing parameters such as water content of the precursor solution, ignition temperature, fuel type and amount, and post-synthesis annealing can significantly improve light output, and that it is possible to optimize the luminescence output of oxyorthosilicates by reducing the amount of silica in the precursor mixture.

  17. The combustion synthesis of Ni-Ti shape memory alloys

    SciTech Connect

    Moore, J.J.; Yi, H.C. )

    1990-08-01

    Combustion synthesis of Ni-Ti-series shape-memory alloys yields both time and energy savings over conventional production methods. The solidified combustion synthesis process products have been cold-rolled into plates which exhibit the shape-memory effect, and it was noted that shape-memory transition temperatures may be tailored over a -78 to 460 C temperature range through the substitution of a third element for Ni; this element may be Pd or Fe. Accounts are given of the experimental combustion syntheses of Ni-Ti-Fe and Ti-Ni-Pd. 24 refs.

  18. Combustion synthesis of novel boron carbide

    NASA Astrophysics Data System (ADS)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  19. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  20. Combustion synthesis of ceramic-metal composite materials in microgravity

    NASA Technical Reports Server (NTRS)

    Moore, John

    1995-01-01

    Combustion synthesis, self-propagating high temperature synthesis (SHS) or reactive synthesis provides an attractive alternative to conventional methods of producing advanced materials since this technology is based on the ability of highly exothermic reactions to be self sustaining and, therefore, energetically efficient. The exothermic SHS reaction is initiated at the ignition temperature, T(sub ig), and generates heat which is manifested in a maximum or combustion temperature, T(sub c), which can exceed 3000 K . Such high combustion temperatures are capable of melting and/or volatilizing reactant and product species and, therefore, present an opportunity for producing structure and property modification and control through liquid-solid, vapor-liquid-solid, and vapor-solid transformations.

  1. Microwave assisted combustion synthesis of non-equilibrium intermetallic compounds.

    PubMed

    Veronesi, Paolo; Rosa, Roberto; Colombini, Elena; Leonelli, Cristina; Poli, Giorgio; Casagrande, Angelo

    2010-01-01

    A simplified model of the microwave-assisted combustion synthesis of Ni and Al metal powders to form the NiAl intermetallic on titanium and steel substrates is presented. The simulation couples an electro-thermal model with a chemical model, accounting for local heat generation due to the highly exothermic nature of the reactions between the powders. Numerical results, validated by experimental values, show that the capability of microwaves to convey energy, and not heat, can be used to alter the temperature profiles during and after the combustion synthesis, leading to unique intermetallic microstructures. This phenomenon is ascribed to the extended existence of high temperature liquid intermetallic phases, which react with the metallic substrates at the interface. Moreover, microwave heating selectivity allows to maintain the bulk of the substrate metallic materials to a much lower temperature, compared to combustion synthesis in conventionally heated furnaces, thus reducing possible unwanted transformations like phase change or oxidation. PMID:21721328

  2. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  3. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  4. Combustion Synthesis Of Ultralow-density Nanoporous Gold Foams

    SciTech Connect

    Tappan, Bruce C; Mueller, Alex H; Steiner, Stephen A; Luther, Erik P

    2008-01-01

    A new synthetic pathway for producing nanoporous gold monoliths through combustion synthesis from Au bistetrazoJeamine complexes has been demonstrated. Applications of interest for Au nanofoams include new substrates for nanoparticle-mediated catalysis, embedded antennas, and spectroscopy. Integrated support-and-catalystin-one nanocomposites prepared through combustion synthesis of mixed AuBTA/metal oxide pellets would also be an interesting technology approach for low-cost in-line catalytic conversion media. Furthermore, we envision preparation of ultrahigh surface area gold electrodes for application in electrochemical devices through this method.

  5. Microwave-assisted combustion synthesis of Ag/ZnO nanocomposites and their photocatalytic activities under ultraviolet and visible-light irradiation

    SciTech Connect

    Zhang, Dafeng; Pu, Xipeng; Li, Huaiyong; Yu, Young Moon; Shim, Jae Jeong; Cai, Peiqing; Kim, Sun Il; Seo, Hyo Jin

    2015-01-15

    Highlights: • Ag/ZnO nanocomposites were synthesized by a microwave-assisted combustion method. • Ag/ZnO nanocomposites exhibited improved photocatalytic activities under UV irradiation. • Poorer photocatalytic performances were obtained under visible-light irradiation. - Abstract: Ag/ZnO nanocomposites were synthesized by a rapid one-step microwave-assisted combustion method. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. XRD results showed that hexagonal ZnO and cubic Ag were obtained. Ag nanoparticles were chemically attached on the surface of ZnO. The decrease in the energy band gap of Ag/ZnO nanocomposites and the photoluminescence quenching were observed while the Ag content was increased. Furthermore, the introduction of Ag nanoparticles leads to significantly improved photocatalytic activities in the case of ultraviolet irradiation, but in the case of visible-light irradiation opposite results were obtained. The corresponding mechanism was discussed in detail.

  6. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  7. Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis

    PubMed Central

    Vollmer, N.; King, K.B.; Ayers, R.

    2015-01-01

    The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials PMID:26034341

  8. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    SciTech Connect

    Ramasami, Alamelu K.; Raja Naika, H.; Nagabhushana, H.; Ramakrishnappa, T.; Balakrishna, Geetha R.; Nagaraju, G.

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  9. Combustion synthesis of ceramic and metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Moore, John J.; Feng, Heng J.; Hunter, Kevin J.; Wirth, David G.

    1993-01-01

    Combustion synthesis or self-propagating high temperature synthesis (SHS) is effected by heating a reactant mixture, to above the ignition temperature (Tig) whereupon an exothermic reaction is initiated which produces a maximum or combustion temperature, Tc. These SHS reactions are being used to produce ceramics, intermetallics, and composite materials. One of the major limitations of this process is that relatively high levels of porosity, e.g., 50 percent, remain in the product. Conducting these SHS reactions under adiabatic conditions, the maximum temperature is the adiabatic temperature, Tad, and delta H (Tad) = 0, Tad = Tc. If the reactants or products go through a phase change, the latent heat of transformation needs to be taken into account.

  10. Cermet materials prepared by combustion synthesis and metal infiltration

    DOEpatents

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  11. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  12. Cermet materials prepared by combustion synthesis and metal infiltration

    DOEpatents

    Holt, J.B.; Dunmead, S.D.; Halverson, D.C.; Landingham, R.L.

    1991-01-29

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced. 6 figures.

  13. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  14. Active control of combustion for optimal performance

    SciTech Connect

    Jackson, M.D.; Agrawal, A.K.

    1999-07-01

    Combustion-zone stoichiometry and fuel-air premixing were actively controlled to optimize the combustor performance over a range of operating conditions. The objective was to maximize the combustion temperature, while maintaining NO{sub x} within a specified limit. The combustion system consisted of a premixer located coaxially near the inlet of a water-cooled shroud. The equivalence ratio was controlled by a variable-speed suction fan located downstream. The split between the premixing air and diffusion air was governed by the distance between the premixer and shroud. The combustor performance was characterized by a cost function evaluated from time-averaged measurements of NO{sub x} and oxygen concentrations in products. The cost function was minimized by downhill simplex algorithm employing closed-loop feedback. Experiments were conducted at different fuel flow rates to demonstrate that the controller optimized the performance without prior knowledge of the combustor behavior.

  15. Combustion Synthesis of Doped Thermoelectric Oxides

    SciTech Connect

    Selig, Jiri; Lin, Sidney; Lin, Hua-Tay; Johnson, D Ray

    2012-01-01

    Self-propagating high-temperature synthesis (SHS) was used to prepare silver doped calcium cobaltates (Ca1.24- xAgxCo1.62O3.86, x = 0.03 - 0.12) powders. SHS is a simple and economic process to synthesize ceramic materials with minimum energy requirements. The heat generated by the SHS reaction can sustain the propagation of the reaction front and convert reactants to desired products. The effect of doping level on thermoelectric properties was investigated in this study. Results show the substitution of calcium by silver decreases the thermal conductivity significantly. XRD and surface area measurements show synthesized powders are phase pure and have large specific surface areas.

  16. Combustion synthesis of silicon carbide assisted by a magnesium plus polytetrafluoroethylene mixture

    SciTech Connect

    Ayral, R.M.; Rouessac, F.; Massoni, N.

    2009-11-15

    In this study, the use of SiC combustion synthesis for immobilization of {sup 14}C was considered. Due to the low exothermicity of the reaction between silicon and graphite, a highly exothermic mixture (magnesium and polytetrafluoroethylene) was used both as a chemical oven and activate additive in the mixture. With this configuration the reaction between graphite and silicon was initiated and propagated on the whole sample. The self-propagating high temperature synthesis samples were characterized by using scanning electron microscopy and X-ray diffraction.

  17. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    SciTech Connect

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith; Priyanka, K.P; Varghese, Thomas; Naika, H.Raja; Nagabhushana, H.; Sharma, S.C.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G.

    2014-09-15

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.

  18. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.; Zhang, X.; Umakoshi, M.; Yi, H. C.; Guigne, J. Y.

    2003-07-01

    Combustion synthesis, or self-propagating, high temperature synthesis is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr 3C 2, MOSi 2-SiC, NiAl-TiB 2, to engineered porous composites, e.g., B 4C-Al 2O 3, Ti-TiB x, Ni-Ti, Ca 3(P0 4) 2 and glass-ceramic composites, e.g., CaO-SiO 2-BaO-Al 2O 3-TiB 2. The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3(PO 4) 2. Recent experiments on the NASA parabolic flight (KC-135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMS TM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  19. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Moore, J.; Schowengerdt, F.; Ayers, R.; Castillo, M.; Zhang, X.; Umakoshi, U.; Yi, C.; Guigne, J.

    Combustion synthesis, or self-propagating, high temperature synthesis (SHS) is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr3 C2 , MoSi2 - SiC, NiAl-TiB2 , to engineered porous composites, e.g., B4 C-A l2 O3 , Ti-TiBx , Ni-Ti, Ca 3 (PO4 )2 and glass- ceramic composites, e.g., CaO-SiO2 - B a O-A l2 O3 -T i B2 . The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3 (PO4 )2 . Recent experiments on the NASA parabolic flight (KC- 135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMSTM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  20. Combustion synthesis of oxide-carbide composites

    SciTech Connect

    Wang, L.L.; Munir, Z.A. . Div. of Materials Science and Engineering)

    1990-02-01

    Synthesis of an oxide-carbide composite material through a self- propagating reaction process can be achieved by coupling a highly exothermic thermite reaction and a weakly exothermic carbide reaction. Two systems, one with Al and the other with Mg as the reducing agent in the presence of B{sub 2}O{sub 3} and carbon, are used as the reaction models for this investigation. Based on the experimental results, the formation Al{sub 2}O{sub 3}-B{sub 4}C and MgO-N{sub 4}C composites is proposed to involve a two-step sequential reaction mechanism. The highly exothermic thermite reaction between the reducing agent and B{sub 2}O{sub 3} occurs first, and the heat generated subsequently brings about the formation of B{sub 4}C between the liberated boron and the carbon. The exothermic reaction between Al and B{sub 2}O{sub 3} is initiated at about 850{degrees}C. In the reaction between Mg and B{sub 2}O{sub 3}, however, the interaction between Mg and B{sub 2}O{sub 3} depends on the surrounding inert gas pressure due to the high volatility of Mg. The interaction changes from one involving gaseous Mg and liquid B{sub 2}O{sub 3} to one involving liquid Mg and liquid B{sub 2}O{sub 3} as the pressure increases. In both systems, reactions between the metallic oxides (i.e. Al{sub 2}O{sub 3} or MgO) and B{sub 2}O{sub 3} compete with the thermite reaction. Although it is possible to synthesize B{sub 4}C from carbon fibers in the 6Mg+B{sub 2+}O{sub 3}+C system, the carbon fiber is only partially converted, and the carbide formed is loosely attached to the unreacted carbon core. 17 refs., 23 figs., 3 tabs.

  1. Formation of nanostructured fluorapatite via microwave assisted solution combustion synthesis.

    PubMed

    Nabiyouni, Maryam; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2014-04-01

    Fluorapatite (FA) has potential applications in dentistry and orthopedics, but its synthesis procedures are time consuming. The goal of the present study is to develop a quick microwave assisted solution combustion synthesis method (MASCS) for the production of FA particles. With this new processing, FA particles were successfully synthesized in minutes. Additionally, unique structures including nanotubes, hexagonal crystals, nanowhiskers, and plate agglomerates were prepared by controlling the solution composition and reaction time. In particular, the as-synthesized FA nanotubes presented a "Y" shape inner channel along the crystal axis. It is supposed that the channel formation is caused by the crystal growth and removal of water soluble salts during processing. The as-synthesized FA nanotubes showed good cytocompatibility, the cells cultured with a higher FA concentration demonstrated greater growth rate. With this new and easily applied MASCS processing application, FA nanoparticles have increased potential in dental and orthopedic applications. PMID:24582261

  2. Synthesis and characterization of pure Cu and CuO nano particles by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Patil, Sarika P.; Patil, Shital P.; Puri, V. R.; Jadhav, L. D.

    2013-06-01

    The Cu and CuO nano particles were prepared by using solution combustion technique with copper nitrate as an oxidizer and citric acid as the fuel. The solution combustion synthesis (SCS) method provides the advanced ceramics, nano-composites and catalyst materials and also produces homogeneous, crystalline and un-agglomerated multi-component oxides. The pure CuO nano particles were prepared for rich oxidant to fuel ratio. As prepared powder were further calcined at 600 °C for 2 hrs. The powder was characterized by different techniques such as XRD, TG-DTA, and SEM etc.

  3. Combustion synthesis of low exothermic component rich composites

    DOEpatents

    Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.

    1991-01-01

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight, low exothermic potential product (LEPP)/high exothermic potential product (HEPP) composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the LEPP and HEPP reactants. For lightweight products the composition must be relatively rich in the LEPP component. LEPP rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

  4. Combustion synthesis of low exothermic component rich composites

    SciTech Connect

    Halverson, D.C.; Lum, B.Y.; Munir, Z.A.

    1991-02-05

    This patent describes a self-sustaining combustion synthesis process for producing hard, tough, lightweight, low exothermic potential product (LEPP)/high exothermic potential product (HEPP) composites based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the LEPP and HEPP reactants. For lightweight products the composition must be relatively rich in the LEPP component. LEPP rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

  5. Mechanism of nanoparticle agglomeration during the combustion synthesis

    NASA Astrophysics Data System (ADS)

    Altman, Igor S.; Agranovski, Igor E.; Choi, Mansoo

    2005-08-01

    The mechanism of agglomeration of nanoparticles generated during combustion synthesis is discussed. This is based on the analysis of the transmission electron microscope images of probes collected at different heights. Although direct temperature measurements were not available, the qualitative temperature dependence of the particle formation streamlines is taken into account. It is demonstrated that agglomeration of the MgO nanoparticles, which are formed during a Mg particle combustion, occurs as the result of bonding the mature nanoparticles by the supercritical clusters existing in the system. Accumulation of these supercritical clusters in the flame has been revealed and their nature has been explained in our recent paper [I.S. Altman, I.E. Agranovski, and M. Choi, Phys. Rev E 70, 062603 (2004)]. Also, some inspection of the previously published experimental data on the nanoparticle generation shows that the similar supercritical clusters may exist in another flame reactor generating titania nanopaprticles. If this is the case, the cluster-based process of nanoparticle bonding we suggest can be considered to be general.

  6. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  7. Characteristics of fluid flow in the combustion synthesis of TiC from the elements

    NASA Technical Reports Server (NTRS)

    Valone, S. M.; Behrens, R. G.

    1987-01-01

    The results of a numerical investigation of finite reservoir effects on capillary spreading at small reservoir dimensions are presently related to wave propagation phenomena in the combustion synthesis of TiC from its two elemental constituents. It is noted that gravitational forces can affect bubble coalescence by nonbuoyant means under the suitable conditions, although these conditions are expected to be rare in combustion synthesis. Finite-curved reservoirs can drive capillary flow due to surface tension and wall contact forces; these cause the wall and the metal to be completely reconfigured during combustion synthesis.

  8. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  9. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  10. Combustion synthesis of LaFeO{sub 3} sensing nanomaterial

    SciTech Connect

    Zaza, F. Serra, E.; Pallozzi, V.; Pasquali, M.

    2015-06-23

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO{sub 3}.

  11. Combustion based technique for synthesis and joining of refractory materials

    NASA Astrophysics Data System (ADS)

    White, Jeremiah David Edward

    Gasless combustion systems offer features that make them attractive tools for a variety of potential applications. Among them are rapid heating rates, high exothermicity, and high maximum temperatures. These characteristics were exploited to accomplish three separate concepts including the joining of refractory materials, synthesis of a pore-free composite, and the study of thermal explosion in mechanically activated powders. Honeywell Aerospace is a leading producer of carbon brakes for commercial aircraft. The manufacturing process involves chemical vapor infiltration (CVI) to form a carbon matrix around a carbon fiber preform. A major disadvantage of this approach is the time required to form a fully dense preform, which is on the order of 140 days. In addition, after the brakes are in service, they have to be discarded while there is a relatively thick amount of friction material still available. There is a profit motive for reusing these discs which are out of spec. One such example would be to perform a refurbishment by bonding a new thin C/C element onto a used "core" to produce a brake that meets performance specifications. Unfortunately, joining C/C composites is not a simple task, as carbon does not lend itself to welding, and other means (e.g. mechanical or adhesives) would not hold up to the harsh operational conditions. A novel apparatus was designed, built, and proven to join C/C using so-called reactive resistance welding (RRW). It is shown that a joint stronger than the original material can be achieved using moderate electrical current and mechanical force. Additionally, joining layers of similar thickness and microstructure were obtained with different reactive media, ranging from pellets of pressed powders (˜1-2 mm) to thin metal foils (˜25 micron). By modifying the schematic of the RRW apparatus, porous C/C was infiltrated with liquid silicon in order to form a new pore-free C/C-SiC composite. It is shown that using such a process, the silicon

  12. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    PubMed

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating. PMID:26252873

  13. Combustion Synthesis of Glass-Ceramic Composites Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Manerbino, Anthony; Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Gokoglu, S. (Technical Monitor)

    2001-01-01

    Glasses based on B2O3-Al2O3-BaO-and B2O3-Al2O3-MgO have been produced by the combustion synthesis technique. The combustion temperature, wave velocity for selected compositions are presented. Combustion reactions of these materials were typically low exothermic, resulting in unstable combustion waves. Microstructural characterization of these materials indicated that the glass formation region was similar to those that were produced by the traditional technique. Results of the effect of gravity on the glass formation (or divitrification) studied onboard of KC-135 is also presented.

  14. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1997-01-01

    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  15. Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures

    NASA Technical Reports Server (NTRS)

    Rodriquez, Gary

    2013-01-01

    The Moonraker Excavator and other tools under development for use on the Moon, Mars, and asteroids will be employed to construct a number of civil engineering projects and to mine the soil. Mounds of loose soil will be subject to the local transport mechanisms plus artificial mechanisms such as blast effects from landers and erosion from surface vehicles. Some of these structures will require some permanence, with a minimum of maintenance and upkeep. Combustion Synthesis (CS) is a family of processes and techniques whereby chemistry is used to transform materials, often creating flame in a hard vacuum. CS can be used to stabilize civil engineering works such as berms, habitat shielding, ramps, pads, roadways, and the like. The method is to unroll thin sheets of CS fabric between layers of regolith and then fire the fabric, creating a continuous sheet of crusty material to be interposed among layers of loose regolith. The combination of low-energy processes, ISRU (in situ resource utilization) excavator, and CS fabrics, seems compelling as a general method for establishing structures of some permanence and utility, especially in the role of robotic missions as precursors to manned exploration and settlement. In robotic precursory missions, excavator/ mobility ensembles mine the Lunar surface, erect constructions of soil, and dispense sheets of CS fabrics that are covered with layers of soil, fired, and then again covered with layers of soil, iterating until the desired dimensions and forms are achieved. At the base of each berm, for example, is a shallow trench lined with CS fabric, fired and filled, mounded, and then covered and fired, iteratively to provide a footing against lateral shear. A larger trench is host to a habitat module, backfilled, covered with fabric, covered with soil, and fired. Covering the applied CS fabric with layers of soil before firing allows the resulting matrix to incorporate soil both above and below the fabric ply into the fused layer

  16. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  17. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  18. SLUDGE COMBUSTOR USING SWIRL AND ACTIVE COMBUSTION CONTROL

    EPA Science Inventory

    A research program directed at developing technology for compact shipboard incinerators for sludges is described. The concept utilizes previously developed Vortex Containment Combustor (VCC) as a primary unit with an active combustion control afterburner (AB). The overall power s...

  19. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  20. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    SciTech Connect

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  1. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  2. Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Astuti, Y.; Fauziyah, A.; Nurhayati, S.; Wulansari, A. D.; Andianingrum, R.; Hakim, A. R.; Bhaduri, G.

    2016-02-01

    The monoclinic bismuth oxide was prepared by the solution combustion method using bismuthyl nitrate as the raw material and citric acid as fuel. The synthesis process consisted of the formation of a clear transparent solution and the formation of white powder after heating the mixture at 250 °C for 2 hours. The yellow pale crystalline materials were obtained after calcination of the white powder at 600 °C for 80 minutes. Furthermore, the photocatalytic activity of the product was also studied using methyl orange as a model pollutant. The result showed that the coral reef-like bismuth oxide was able to degrade 50 mL methyl orange (5 ppm) by 37.8% within 12 hours irradiation using 75-watt tungsten lamp.

  3. Solid-state combustion synthesis of ceramics and alloys in reduced gravity

    NASA Technical Reports Server (NTRS)

    Valone, S. M.; Behrens, R. G.

    1988-01-01

    Possible microgravity effects are explored in the combustion synthesis of ceramics and alloys from their constituent elements. Molten intermediates are typically present during the combustion process, thereby offering the chance for natural convection to take place. Numerical simulations suggest that the combustion front in concert with gravity may act as a partial zone-refinement mechanism which is attempting to sweep out porosity in the sample. Contrary to suggestions by dimensional analysis, no effects on the combustion rate are seen. An analytical model of the combustion velocity as a function of the gravitational field and the spreading rate of molten material gives the correct order of magnitude of the gravity effect as measured by centrifuge experiments.

  4. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  5. Lean Premixed Combustion/Active Control

    SciTech Connect

    D. J. Seery

    2000-02-01

    An experimental comparison between two contrasting fuel-air swirlers for industrial gas turbine applications was undertaken at the United Technologies Research Center. The first, termed an Aerodynamic nozzle, relied on the prevailing aerodynamic forces to stabilize the downstream combustion zone. The second configuration relied on a conventional bluff plate for combustion stability and was hence named a Bluff-Body nozzle. Performance mapping over the power curve revealed the acoustic superiority of the Bluff-Body nozzle. Two dimensional Rayleigh indices calculated from CCD images identified larger acoustic driving zones associated with the Aerodynamic nozzle relative to its bluff counterpart. The Bluff-Body's success is due to increased flame stabilization (superior anchoring ability) which reduced flame motion and thermal/acoustic coupling.

  6. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  7. One step combustion synthesis and thermoluminescence in Y3Al5O12:Ce3+

    NASA Astrophysics Data System (ADS)

    Dhadade, I. H.; Moharil, S. V.; Dhoble, S. J.; Rahangdale, S. R.

    2016-05-01

    In the present paper one step combustion synthesis of compound Y3Al5O12:Ce3+ is reported using a modified procedure and employing mixed (Urea + Glycine) as fuel. Powder X-ray diffraction confirms the formation of said compound. Thermoluminescence study over the wide gamma exposure (1KGy - 13 KGy) Suggests the possible use of the phosphor in dosimetric application.

  8. Combustion synthesis of SiO2 on the aluminum plate

    NASA Astrophysics Data System (ADS)

    Yeh, C. L.; Zhao, E.; Ma, H. K.

    2001-03-01

    The approach of utilizing combustion synthesis to make fine particles of SiO2, Al2O3 and TiO2 is a quite modern technology. Through the chemical reaction in post-flame region, fine SiO2 particles can be formed with high purity on plate surface. Therefore, the combustion synthesis of SiO2 powders is an important area for further research and development, especially for the application of SiO2 in the semiconductor industry. This investigation proposes an experimental approach (i.e., a gas-phase combustion synthesis) using two different kinds of organic compounds, Hexamethyldisilazane (HMDSA) and Hexamethyldisioxane (HMDSO), as the silicon precursors. A premixed gas burner is chosen with C3H8 as fuel, air as oxidant and part of the air was used as the carrying gas to entrain HMDSA/HMDSO vapor into the combustible mixture. Observations show that the C3H8/air flame changed color from a pale-blue flame to light yellow and then orange when different amounts of precursors were introduced. Through the chemical reaction in the post-flame region, fine SiO2 particles were formed in the gas phase and then quenched and collected on an aluminum flat plate. The objective of this paper is to study the effects of HMDSO and HMDSA concentrations and flame temperatures on the synthesis of SiO2 particles.

  9. DEXTROSE-TEMPLATED MICROWAVE-ASSISTED COMBUSTION SYNTHESIS OF SPONGY METAL OXIDES

    EPA Science Inventory

    Microwave-assisted combustion synthesis of porous nanocrystalline titania and carbon coated titania is reported using dextrose as template and the product was compared with the one obtained using conventional heating furnace. Out of three compositions viz., 1:1, 1:3, and 1:5 (met...

  10. Centrifugal effects on combustion synthesis of (Ti-B-C) compound system

    SciTech Connect

    Miyazaki, Eiji; Odawara, Osamu

    2003-07-14

    A centrifugal force plays an important role on the control of combustion synthesis. In the present work, the data of reaction propagation rates obtained by changing the direction of reaction propagation and centrifugal force are evaluated in order to make clear the effect of centrifugal force on reaction propagations and product formation. As a result, the reaction propagation rate in the case of the direction of centrifugal force inverse to reaction propagation is larger than that in the case of the same direction, and product grains become smaller in size. It is confirmed that the centrifugal effect is much larger for the present combustion synthesis process in the case that the reaction propagates inversely to the direction of centrifugal force. Since molten titanium near combustion front tends to coalesce into larger drops in that case, reactants of boron and carbon would diffuse more sufficiently into titanium.

  11. The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.

    1997-01-01

    Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different

  12. Extending the compositional limit of combustion-synthesized B{sub 4}C-TiB{sub 2} composites by field activation

    SciTech Connect

    Xue, H.; Munir, Z.A.

    1996-06-01

    Composites of B{sub 4}C-TiB{sub 2} with molar ratios B{sub 4}C/TiB{sub 2} of up to 8 were synthesized by field activated combustion. The combustion wave velocity depended on this ratio and increased approximately linearly with the applied field. The effect of the field was analyzed and its contribution to the combustion temperature was calculated. X-ray and microscopic analyses showed the synthesis to be a two-step process. Titanium boride forms at or near the leading edge of the combustion zone and B{sub 4}C forms at or near the trailing edge.

  13. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  14. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented. PMID:26457657

  16. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  17. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  18. Synthesis of alumina powders by the glycine-nitrate combustion process

    SciTech Connect

    Toniolo, J.C. . E-mail: jtoniolo@zipmail.com.br; Lima, M.D.; Takimi, A.S.; Bergmann, C.P.

    2005-03-08

    The combustion synthesis technique using glycine as fuel and aluminum nitrate as an oxidizer is able to produce alumina powders. Thermodynamic modeling of the combustion reaction shows that as the fuel-to-oxidant ratio increases, the amount of gases produced and adiabatic flame temperatures also increases. X-ray diffractions showed the amorphous structure for as-synthesized powder and presence of well-crystallized {alpha}-Al{sub 2}O{sub 3} after calcination at 1100 deg. C during soaking time of 1 h. Alumina's largest measured specific surface area was 15 m{sup 2}/g with BET method and 0.51 glycine-to-nitrate ratio.

  19. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    SciTech Connect

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-15

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  20. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    PubMed

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production. PMID:19853434

  1. Chlorinated aromatics from combustion: influence of chlorine, combustion conditions, and catalytic activity.

    PubMed

    Oberg, T; Ohrström, T

    2003-09-01

    Research on the formation of chlorinated aromatics in combustion processes has mainly taken place in the laboratory. Previous attempts to correlate observation data from commercial plants have been inconclusive. This study reports on the outcome of an industrial experiment in a full-scale afterburner. The influence of chlorine input, combustion temperature, and catalytic activity was investigated in a factorial design with two blocks. Polychlorinated benzenes, dibenzo-p-dioxins, and dibenzofurans were formed both at combustion temperatures and below 400 degrees C. The results show that all three experimental factors have statistically significant impact on the formation and release of these toxic byproducts. The quantitative dependence between chlorine input and the occurrence of chlorinated aromatics is of particular interest due to previous controversy. The purpose with this study was to ensure that the installation of a boiler for energy recovery would not cause elevated emissions of chlorinated aromatics. The experiment demonstrated that this risk is probably low, since the presence of catalytic material or an increase in chlorine input is required for this to happen. A general conclusion was that industrial experimentation employing the principles of statistical design could improve the validity in recommendations regarding commercial plant operation. PMID:12967125

  2. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  3. Magnetic iron nanoparticles prepared by solution combustion synthesis and hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Huang, Min; Qin, Mingli; Cao, Zhiqin; Jia, Baorui; Chen, Pengqi; Wu, Haoyang; Wang, Xuanli; Wan, Qi; Qu, Xuanhui

    2016-07-01

    A facile and efficient method has been proposed to prepare iron nanoparticles by combining solution combustion synthesis and hydrogen reduction for the first time. A porous α-Fe2O3 precursor with high specific surface area of 75 m2/g was fabricated by solution combustion synthesis, and then iron nanoparticles with high saturation magnetization of 196.3 emu/g were successfully obtained by hydrogen reduction of the as-synthesized precursor. With the reduction temperature rising from 275 °C to 600 °C, the saturation magnetization of the products increases from 196.3 emu/g to 209.7 emu/g, whilst the coercivity decreases from 611.4 Oe to 98.8 Oe.

  4. Lightweight Mg-based composites with thermodynamically stable interfaces by in-situ combustion synthesis

    NASA Astrophysics Data System (ADS)

    Jo, Ilguk

    Lightweight Mg-based composites have been produced by in-situ combustion synthesis of the Al-Ti-C reaction system. The characteristics of the in-situ composites were investigated in terms of phase evolution and interfacial stability using various analysis techniques. The structural analysis results showed that full conversion of the Al-Ti-C reactants into spherical TiC reinforcements with sizes around 1mum was achieved by the combustion reaction. In-situ formed TiC had less oxygen and higher Al contents at the interface than ex-situ formed TiC; these clean interfaces with an Al layer on the reinforcements were shown to yield interfacial stability. For these reasons, the in-situ composites exhibited higher theoretical densities and also good mechanical properties compared with ex-situ produced composites. The interfacial characteristics of molten Mg with the Al-Ti-C reactants and the commercial TiC+Al substrates were evaluated using an infiltration technique under an argon atmosphere. Infiltration length increased with time at temperature, yielding activation energies (Ea) for each system. The value of Ea for the Al-Ti-C system (307.31kJ/mol) is lower than that for the other system (350.84kJ/mol); the high Ea value indicates that the infiltration is not a simple viscosity-controlled phenomenon but involves a chemical reaction. Formation of the Al3Ti phase was observed from the crystal structural analysis of the infiltrated area; thus, existence of reaction promoting the wetting of Mg. The phase evolution, reaction mechanism and kinetics of the Al-Ti-C reaction were studied using DSC and HT-XRD. It was confirmed that, along with the melting of Al, there was formation of Al3Ti by reaction between Al and Ti. A detailed structural analysis indicates that, the reaction mechanism involves melting of Al followed by formation and growth of Al 3Ti, which then contacts the graphite powder and initiates the combustion reaction. The effect of important process parameters, such

  5. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing

    PubMed Central

    Su, Xianli; Fu, Fan; Yan, Yonggao; Zheng, Gang; Liang, Tao; Zhang, Qiang; Cheng, Xin; Yang, Dongwang; Chi, Hang; Tang, Xinfeng; Zhang, Qingjie; Uher, Ctirad

    2014-01-01

    The existing methods of synthesis of thermoelectric (TE) materials remain constrained to multi-step processes that are time and energy intensive. Here we demonstrate that essentially all compound thermoelectrics can be synthesized in a single-phase form at a minimal cost and on the timescale of seconds using a combustion process called self-propagating high-temperature synthesis. We illustrate this method on Cu2Se and summarize key reaction parameters for other materials. We propose a new empirically based criterion for sustainability of the combustion reaction, where the adiabatic temperature that represents the maximum temperature to which the reacting compact is raised as the combustion wave passes through, must be high enough to melt the lower melting point component. Our work opens a new avenue for ultra-fast, low-cost, large-scale production of TE materials, and provides new insights into combustion process, which greatly broaden the scope of materials that can be successfully synthesized by this technique. PMID:25223333

  6. Combustion Synthesis of Ca3(PO4)2 Net-Shape Surgical Implants

    NASA Technical Reports Server (NTRS)

    Ayers, Reed A.; Castillo, Martin; Gottoli, Guglielmo; Moore, John J.; Simske, Steven J.

    2006-01-01

    Self-propagating high-temperature combustion synthesis (SHS) is the basis of a method of making components of porous tricalcium phosphate [Ca3(PO4)2] and related compounds in net sizes and shapes for use as surgical implants that are compatible with bone. The SHS method offers advantages over prior methods of manufacturing Ca3(PO4)2-based surgical implants.

  7. Modified Combustion Synthesis of ZnO Nanoparticles Using Renewable Fuel

    NASA Astrophysics Data System (ADS)

    Shah, N. N. H.; >H Misran, N. A. A.; Salim, M. A.; Othman, S. Z.; >A Manap,

    2013-06-01

    Zinc oxide nanoparticles were successfully synthesized using cost effective modified combustion synthesis route employing zinc nitrate hexahydrate as oxidant and palm oil derived C8 fatty alcohol as fuel in various ratios. The calcined zinc oxide exhibited hexagonal phase with wurtzite structure. The crystallite sizes of the samples were ranging from ca. 28 to 40 nm. Therefore, palm oil derived C8 fatty alcohol successfully played the role as low-cost and renewable fuel to synthesize zinc oxide nanoparticles.

  8. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  9. Synthesis of Li 2MO 3 ( M = Ti or Zr) by the combustion method

    NASA Astrophysics Data System (ADS)

    Cruz, Daniel; Pfeiffer, Heriberto; Bulbulian, Silvia

    2006-05-01

    The advantages and disadvantages of the combustion method to prepare Li 2TiO 3 and Li 2ZrO 3 ceramics were studied. Firstly, the ceramic powders were prepared by the combustion process using LiOH, MO 2 (where M = Ti or Zr) and urea in different molar ratios (from 2:1:3 to 3:1:3) at different temperatures for 5 minutes. Li 2TiO 3 and Li 2ZrO 3 were also obtained by the solid-state method, and the results were compared with those obtained by the combustion process. The powders were characterized by X-ray diffraction and scanning electron microscopy. It was found that the combustion process reduces the synthesis time of Li 2TiO 3 (1 minute at 750 °C), but it does not have any advantage on producing Li 2ZrO 3, due to thermodynamic factors. On the other hand, the combustion process produces carbon contaminants in the solids. It was necessary to add excess of lithium hydroxide, in order to compensate the quantity of Li sublimated during the production of the ceramics. Finally, it seems that both reactions follow the same mechanism, which is determined by the lithium diffusion into the metal oxides.

  10. Large scale combustion synthesis of single-walled carbon nanotubes and their characterization.

    PubMed

    Richter, Henning; Treska, Meri; Howard, Jack B; Wen, John Z; Thomasson, Sebastien B; Reading, Arthur A; Jardim, Paula M; Vander Sande, John B

    2008-11-01

    Since its invention in 1991, premixed combustion synthesis of fullerenic materials has been established as the major industrial process for manufacturing of these materials. Large-scale production of fullerenes such as C60, C70 and C84 has been implemented. More recently, combustion technology has been extended to the targeted synthesis of single-walled carbon nanotubes (SWCNT). Addition of catalyst precursor and operation at well-controlled fuel-rich but non-sooting conditions are required. Extensive parametric studies have allowed for the optimization of the formation of high-quality SWCNT. Purification techniques previously reported in the literature have been adjusted and used successfully for the nearly complete removal of metal and metal oxide. Material has been characterized using Raman spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Correlations between process conditions and nanotube properties such as length have been established. Product reproducibility and process scalability of the combustion process have been demonstrated. Sample preparation was found to affect significantly the apparent characteristics of nanotubes as seen in electron microscopy images. PMID:19198347

  11. Role of fuel/oxidizer ratio on the synthesis conditions of Cu–Al{sub 2}O{sub 3} nanocomposite prepared through solution combustion synthesis

    SciTech Connect

    Nasiri, H.; Bahrami Motlagh, E.; Vahdati Khaki, J.; Zebarjad, S.M.

    2012-11-15

    Highlights: ► With increasing the fuel to oxidizer ratio synthesis products changed from CuO to Cu{sub 2}O. ► With increasing the fuel to oxidizer ratio the combustion temperature decreased. ► Maximum ratio that synthesis could occur was achieved. ► The stoichiometric ratio had the maximum combustion temperature. ► Solution with graphite had lower combustion temperature. -- Abstract: The role of fuel/oxidizer ratio in the synthesis conditions of Cu–Al{sub 2}O{sub 3} nanocomposite, which was prepared through solution combustion synthesis, method was investigated. For this purpose, copper and aluminum nitrates as well as urea were used as oxidizer and fuel, respectively. The fuel/oxidizer (F/O) ratios were selected from the range of 0.9–1.75. The products were analyzed using X-ray diffraction, SEM and TEM techniques. During the process the temperature was recorded as a function of time. The results showed that by increasing the F/O ratio up to the stoichiometric amount, the combustion temperature increases. Further increment of F/O ratio resulted in a decrease in the combustion temperature. Microscopic evaluations, using SEM and TEM, proved feasibility of the production of Cu–Al{sub 2}O{sub 3} through this method.

  12. Active control: an investigation method for combustion instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.

    1992-07-01

    Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of

  13. Development of efficient, small particle size luminescent oxides using combustion synthesis

    NASA Astrophysics Data System (ADS)

    Shea, Lauren Elizabeth

    Luminescent materials (phosphors) find application in cathode-ray tubes (CRTs), medical and industrial equipment monitors, fluorescent lamps, xerography, and many types of flat panel displays. Many commercially available phosphors were optimized in the 1960s for high voltage (>10 kV) CRT applications. Recently, a great deal of emphasis has been placed on the development and improvement of phosphors for flat panel displays that operate at low voltages (<5 kV). In addition to high efficiency at low voltages, these displays demand high resolution phosphor screens which can only be realized using phosphors with smaller particle size (<3 mum). Conventional methods of preparing phosphors (e.g., high temperature solid-state reaction) cannot easily produce a homogeneous product with uniform, small particle size. In this work, a novel ceramic synthesis technique, combustion synthesis, was used for the first time to produce submicron-sized oxide phosphors more efficiently for use in flat panel displays. This technique exploits the exothermic redox reaction of metal nitrates (oxidizers) with an organic fuel (reducing agent). Typical fuels include urea (CHsb4Nsb2O), carbohydrazide (CHsb6Nsb4O), or glycine (Csb2Hsb5NOsb2). Resulting powders were well-crystallized, with a large surface area and small particle size. Phosphor powders were exposed to photoluminescence excitation by high energy (254 nm, E = 4.88 eV) and low energy photons (365 nm, E = 3.4 eV and 435 nm, E = 2.85 eV) and cathodoluminescence excitation by a low-voltage (100-1000 V) electron beam. Photoluminescence (PL) techniques resulted in the measurement of spectral energy distribution and relative intensities. Phosphor efficiencies in lumens per watt (lm/W) were obtained by low-voltage cathodoluminescence measurements. The effects of processing parameters such as type of fuel, fuel to oxidizer ratio, and heating rate were studied. The combustion process was optimized based on these processing parameters in order

  14. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    SciTech Connect

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-03

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out.

  15. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    NASA Astrophysics Data System (ADS)

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh; Boopathi, G.

    2015-06-01

    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometer (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.

  16. Combustion synthesis and effects of processing parameters on physical properties of {alpha}-alumina

    SciTech Connect

    Collins, M.V.; Hirschfeld, D.A.; Shea, L.E.

    2000-01-04

    Fine particle porous {alpha}-alumina has been prepared by a wet chemical method of combustion synthesis using an aqueous precursor containing aluminum nitrate (oxidizer) and carbohydrazide, an organic fuel as starting materials. The aluminum nitrate and carbohydrazide were reacted exothermically at 400--600 C. The synthesis of {alpha}-alumina ({alpha}-Al{sub 2}O{sub 3}) was used as a model for understanding the effects of processing parameters on physical properties such as surface area, average pore size, and residual carbon content. The porous powders were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area analysis and elemental analysis. The decomposition of the starting materials was investigated using differential thermal and thermogravimetric analyses (DTA/TGA). It has been shown that the furnace temperature, fuel/oxidizer ratio, and precursor water content can be tailored to produce powders with different physical properties.

  17. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    SciTech Connect

    Shanmugavel, T. E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul E-mail: shanmugavelnano@gmail.com; Rajarajan, G.; Kumar, G. Ramesh; Boopathi, G.

    2015-06-24

    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometer (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.

  18. Combustion synthesis and thermoluminescence in YAlO3:Dy3+

    NASA Astrophysics Data System (ADS)

    Dhadade, I. H.; Moharil, S. V.; Dhoble, S. J.; Rahangdale, S. R.

    2016-05-01

    In the Y2O3-Al2O3 system, compounds Y3Al5O12 (yttrium aluminum garnet, YAG),YAlO3 (yttrium aluminum perovskite, YAP), and Y4Al2O9(yttrium aluminate monoclinic, YAM) are well known. Though several soft chemical routes have been explored for synthesis of YAG, YAP and YAM, most of these methods are complex. Moreover, phase pure materials are not obtained in one step and prolonged annealing at temperatures around 1000°C is necessary. In this paper, one step combustion synthesis of the compound YAlO3:Dy3+ is reported using a modified procedure and employing mixed (glycine + urea) fuel. Powder X-ray diffraction patterns confirm the pervoskite phase of YAlO3. Thermoluminescence study shows linear response in wide dose range (0.2 - 1 KGy) suggest the possibility of the present phosphor in dosimeter application.

  19. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  20. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-01

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established. PMID:27168054

  1. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Ohmi, Tatsuya; Mizuma, Kiminori; Matsuura, Kiyotaka; Iguchi, Manabu

    2008-02-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  2. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  3. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    PubMed

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  4. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  5. Microstructure and tensile properties of Fe3Al produced by combustion synthesis/hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Rabin, B. H.; Wright, R. N.

    1992-01-01

    Combustion synthesis was carried out in a hot isostatic press (HIP) in order to prepare near-theoretical density Fe3Al and Fe3Al + Cr alloys from elemental powder mixtures. The microstructures and room-temperature tensile properties of these materials were studied in the as-synthesized condition and after heat treatment. As-synthesized materials exhibit a fine, equiaxed grain structure with grain sizes typically less than 10 μm. Yield and ultimate tensile strengths were found to be significantly higher than what has been reported for conventionally processed materials having similar composition. Although lower ductility was generally observed, elongations exceeding 5 pct were obtained in heat-treated Cr-containing alloys. Fracture occurred predominantly by transgranular cleavage. The strengthening of these materials is attributed to the fine grain size resulting from combustion synthesis/HIP processing. Transmission electron microscopy (TEM) revealed the presence of two distinct populations of aluminum oxide particles in the material. Nanometer-sized oxides exist within grains that likely formed at prior iron particle boundaries, and a high density of larger oxides exist along grain boundaries that probably originated from surface oxides on the aluminum powder. The presence of the grain boundary oxides was qualitatively observed to provide resistance to grain growth.

  6. Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

    PubMed Central

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio

    2015-01-01

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  7. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  8. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that...

  9. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion...

  10. High yield combustion synthesis of nanomagnesia and its application for fluoride removal.

    PubMed

    Maliyekkal, Shihabudheen M; Anshup; Antony, K R; Pradeep, T

    2010-04-15

    We describe a novel combustion synthesis for the preparation of Nanomagnesia (NM) and its application in water purification. The synthesis is based on the self-propagated combustion of the magnesium nitrate trapped in cellulose fibers. Various characterization studies confirmed that NM formed is crystalline with high phase purity, and the particle size varied in the range of 3-7nm. The fluoride scavenging potential of this material was tested as a function of pH, contact time and adsorbent dose. The result showed that fluoride adsorption by NM is highly favorable and the capacity does not vary in the pH range usually encountered in groundwater. The effects of various co-existing ions usually found in drinking water, on fluoride removal were also investigated. Phosphate was the greatest competitor for fluoride followed by bicarbonate. The presence of other ions studied did not affect the fluoride adsorption capacity of NM significantly. The adsorption kinetics followed pseudo-second-order equation and the equilibrium data are well predicted by Frendlich equation. Our experimental evidence shows that fluoride removal happened through isomorphic substitution of fluoride in brucite. A batch household defluoridation unit was developed using precipitation-sedimentation-filtration techniques, addressing the problems of high fluoride concentration as well as the problem of alkaline pH of the magnesia treated water. The method of synthesis reported here is advantageous from the perspectives of small size of the nanoparticle, cost-effective recovery of the material and improvement in the fluoride adsorption capacity. PMID:20178886

  11. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates

    PubMed Central

    2015-01-01

    Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200–500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation. PMID:26090513

  12. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  13. Effect Of Gravity On Porous Tricalcium Phosphate And Nonstoichiometric Titanium Carbide Produced Via Combustion Synthesis

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Novel processing techniques, such as self-propagating high temperature synthesis (SHS), have the capability to rapidly produce advanced porous materials that are difficult to fabricate by other methods. This processing technique is also capable of near net shape synthesis, while variable gravity allows the manipulation of the structure and composition of the material. The creation of porous tricalcium phosphate (TCP) is advantageous in the biomaterials field, since it is both a biocompatible material and an osteoconductive material. Porous tricalcium phosphate produced via SHS is an excellent candidate for bone scaffold material in the bone regeneration process. The porosity allows for great vascularization and ingrowth of tissue. Titanium Carbide is a nonstoichiometric biocompatible material that can be incorporated into a TiC-Ti composite system using combustion synthesis. The TiC-Ti composite exhibits a wide range of mechanical and chemical properties. Both of these material systems (TCP and TiC-Ti) can be used to advantage in designing novel bone replacement materials. Gravity plays an important role in both the pore structure and the chemical uniformity of these composite systems and offers considerable potential in advanced bone engineering.

  14. Validation of model based active control of combustion instability

    SciTech Connect

    Fleifil, M.; Ghoneim, Z.; Ghoniem, A.F.

    1998-07-01

    The demand for efficient, company and clean combustion systems have spurred research into the fundamental mechanisms governing their performance and means of interactively changing their performance characteristics. Thermoacoustic instability which is frequently observed in combustion systems with high power density, when burning close to the lean flammability limit, or using exhaust gas recirculation to meet more stringent emissions regulations, etc. Its occurrence and/or means to mitigate them passively lead to performance degradation such as reduced combustion efficiency, high local heat transfer rates, increase in the mixture equivalence ratio or system failure due to structural damage. This paper reports on their study of the origin of thermoacoustic instability, its dependence on system parameters and the means of actively controlling it. The authors have developed an analytical model of thermoacoustic instability in premixed combustors. The model combines a heat release dynamics model constructed using the kinematics of a premixed flame stabilized behind a perforated plate with the linearized conservation equations governing the system acoustics. This formulation allows model based controller design. In order to test the performance of the analytical model, a numerical solution of the partial differential equations governing the system has been carried out using the principle of harmonic separation and focusing on the dominant unstable mode. This leads to a system of ODEs governing the thermofluid variables. Analytical predictions of the frequency and growth ate of the unstable mode are shown to be in good agreement with the numerical simulations as well s with those obtained using experimental identification techniques when applied to a laboratory combustor. The authors use these results to confirm the validity of the assumptions used in formulating the analytical model. A controller based on the minimization of a cost function using the LQR technique has

  15. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    SciTech Connect

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  16. Screen-printing of ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Dannangoda, Chamath; Galstyan, Eduard; Litvinov, Dmitri

    2012-05-01

    The feasibility of screen-printing process of hard ferrite magnetic nanoparticles produced by carbon combustion synthesis of oxides (CCSO) is investigated. In CCSO, the exothermic oxidation of carbon generates a smolder thermal reaction wave that propagates through the solid reactant mixture converting it to the desired oxides. The complete conversion of hexaferrites occurs using reactant mixtures containing 11 wt. % of carbon. The BaFe12O19 and SrFe12O19 hexaferrites had hard magnetic properties with coercivity of 3 and 4.5 kOe, respectively. It was shown that the synthesized nanoparticles could be used to fabricate permanent magnet structures by consolidating them using screen-printing techniques.

  17. Combustion synthesis of γ-lithium aluminate by using various fuels

    NASA Astrophysics Data System (ADS)

    Li, Fei; Hu, Keao; Li, Jianlin; Zhang, Dong; Chen, Gang

    2002-01-01

    Combustion synthesis, which is a quick and straightforward preparation process to produce homogeneous, crystalline and unagglomerated multicomponent oxide ceramic powders without the intermediate decomposition and/or calcining steps, was used to prepare γ-lithium aluminate. Lithium nitrate and aluminium nitrate were used as the starting materials and various organic compounds, such as citric acid, urea, carbohydrazide, glycine and alanine, as the fuels. The mixture of nitrate and fuel could be ignited at 450 °C, but only urea and carbohydrazide could be reacted with the mixed nitrates to result in dry, loose and white γ-LiAlO 2 powders. In this study, the effects of fuel type and ratio of fuel to nitrates on the phase formation of γ-LiAlO 2 powder were investigated and also discussed. Additionally, the phase and morphology of the γ-LiAlO 2 powder synthesized by the combustion reaction were compared with that by the conventional solid state reaction.

  18. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  19. Sol-gel auto-combustion synthesis of totally immiscible NiAg alloy

    SciTech Connect

    Jiang, Yuwen; Yang, Shaoguang; Hua, Zhenghe; Gong, Jiangfeng; Zhao, Xiaoning

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Chemically synthesized immiscible NiAg alloy nanoparticles without protecting matrix. Black-Right-Pointing-Pointer A chemical method providing both a nonequilibrium thermal process and a good mixing of precursors. Black-Right-Pointing-Pointer Observation of extinction planes in NiAg alloy. -- Abstract: Immiscible crystalline NiAg alloy was successfully synthesized by the newly developed sol-gel auto-combustion method. The structure and composition were examined by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). All evidence supports that homogeneous NiAg alloy with FCC structure was synthesized. The differential thermal analysis and thermogravimetry (DTA-TG) measurement shows that the alloy has a good thermal stability until 315 Degree-Sign C. Unusually some extinction planes are observed in the XRD pattern and HRTEM images. The random distribution of atoms and the large difference between Ni and Ag atom form factors should be regarded as the main reasons for the observation of the extinction planes. The quenching like nonequilibrium thermal process in the combustion is taken as the key factor in the synthesis of immiscible alloy. And the addition of ethylene glycol in the precursors is found to benefit the formation of NiAg alloy.

  20. Effect of nanocomposite synthesis on the combustion performance of a ternary thermite.

    PubMed

    Prentice, Daniel; Pantoya, Michelle L; Clapsaddle, Brady J

    2005-11-01

    Nanocomposite thermites are attractive materials for their diverse applications from metallurgy to ordnance technologies. While there are a plethora of combinations of fuel and oxidizers, this work shows that the composite's overall performance is intimately tied to how the fuel and oxidizer are prepared and combined. Comparison of the combustion velocities of two separate ternary mixtures of Al-Fe(2)O(3)-SiO(2), one prepared in situ using sol-gel processing and the other prepared by physically mixing discrete nanoscale particles, demonstrated different burning behaviors as a result of preparation technique. The stoichiometry of the two sets of thermite was varied to examine the influence of SiO(2) on combustion velocity as a means to control the reaction behavior. For pure Fe(2)O(3) + Al reactions, results show that the sol-gel synthesized materials (40 m/s) exhibit increased velocities over the physically mixed materials (9 m/s) by approximately 4 times. This trend is not observed, however, upon addition of SiO(2) to the thermite mixture; ternary thermites with 40 wt % SiO(2) showed decreased burn velocities of 0.02 m/s for sol-gel prepared thermites compared to 0.2 m/s for their physically mixed counterparts. The observed trends are believed to be caused by the unique mixing between the Fe(2)O(3) and SiO(2) phases resulting from the two synthesis techniques. PMID:16853608

  1. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOEpatents

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  2. Different toxic mechanisms are activated by emission PM depending on combustion efficiency

    NASA Astrophysics Data System (ADS)

    Uski, O.; Jalava, P. I.; Happo, M. S.; Leskinen, J.; Sippula, O.; Tissari, J.; Mäki-Paakkanen, J.; Jokiniemi, J.; Hirvonen, M.-R.

    2014-06-01

    Ambient air levels of fine particulate matter (PM ≤ 2.5 μm) are associated with mortality and morbidity. In addition to traffic, large quantities of fine and ultrafine particles (UFPs ≤ 100 nm) are emitted by residential wood combustion. Polycyclic aromatic hydrocarbon (PAH) and soot-rich emissions from small scale heating appliances have been linked with a plethora of toxicological effects. Recently, new technology appliances have been introduced into use although there are several uncertainties related to the toxicological properties of those emissions. In this study, PM1 (PM ≤ 1 μm) emissions from three different biomass combustion situations were compared. PM samples were produced in a novel adjustable biomass combustion reactor to avoid the problems encountered if one uses different appliances to generate the desired combustion conditions. The combustion conditions represented efficient, intermediate and smoldering situations. The concentration related effects of the particles (15, 50,150 and 300 μg ml-1) were investigated in a RAW264.7 macrophage cell line after 24 h' exposure. We analyzed cellular metabolic activity, cell cycle, and indicators of genotoxicty, oxidative stress and proinflammatory responses. Interestingly, the particles collected from smoldering and intermediate combustion conditions decreased cellular metabolic activity less than those from efficient combustion (10-fold difference). However, the samples from intermediate and smoldering combustion evoked greater DNA damage in the comet assay (2.5-fold difference). In contrast, only the particulate samples from efficient combustion triggered G2-cell cycle arrest and oxidative stress in the macrophages. These results indicate that ash rich PM emissions from appliances with almost complete combustion may still exert health impacts. However, particulate emissions from efficient combustion were small when compared to the two other situations. Thus, even with their faults and the obvious

  3. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of...

  4. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of...

  5. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of five items:...

  6. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of five items:...

  7. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or...

  8. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or...

  9. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of five items:...

  10. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of...

  11. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of five items:...

  12. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or mercury emissions, you must keep records of...

  13. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or...

  14. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units that use activated carbon to control dioxins/furans or...

  15. Catalytic combustion of dry carbon monoxide by external power activation

    NASA Astrophysics Data System (ADS)

    Treviño, C.; Prince, J. C.

    2000-03-01

    The catalytic combustion of dry carbon monoxide and air in a planar stagnation-point flow over a platinum foil with external power is studied in this paper. The reduced heterogeneous kinetics are modelled with the dissociative adsorption of the molecular oxygen and the non-dissociative adsorption of CO, together with a surface reaction of the Langmuir-Hinshelwood type and the desorption reaction of the adsorbed product, CO 2(s). The resulting governing equations have been numerically integrated and the whole S-shaped response curve has been obtained as a function of the mixture initial concentration. The critical conditions for the catalytic ignition and extinction are deduced using high activation energy asymptotics of the desorption kinetics of the most efficient adsorbed reactant, CO(s). We obtained a very good agreement between the numerical and asymptotic results for the ignition and extinction conditions. In general, the ignition process can be well modelled without reactant consumption, while extinction occurs in the partial diffusion-controlled regime, with a finite non-zero concentration of carbon monoxide close to the plate.

  16. Effect of calcination time on NiAl-Al2O3 using gel combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Afandi, N. F.; Manap, A.; Yusof, S. N. A.; Salim, M. A.; Azim, M. Al.; Othman, S. Z.; Pauzi, N. I. M.; Omar, Nooririnah; Misran, H.

    2015-07-01

    This study was conducted in order to investigate the effect of calcination time on phase and microstructural characteristics of intermetallic matric composite (IMC), NiAl-Al2O3 powder. This powder was synthesized using gel combustion method with octyl alcohol as fuel. Upon completion of the combustion process, the loose powder was calcined at 1050°C for 1, 2 and 4 hours and characterized using XRD, FESEM and TEM. The crystallite size was calculated to be in the range of 29-30 nm. It was found that NiAl-Al2O3 exhibits high crystalline structure after calcination for 4 hours. Furthermore, longer calcination time also cause growth of the particle size. Findings indicate that high crystalline nanostructured NiAl-Al2O3 powder consisting of submicron particles can be successfully produced using gel combustion synthesis with longer calcination time.

  17. Combustion synthesis of ceramic-metal composite materials - The TiC-Al2O3-Al system

    NASA Technical Reports Server (NTRS)

    Feng, H. J.; Moore, John J.; Wirth, D. G.

    1992-01-01

    Combustion synthesis was applied for producing ceramic-metal composites with reduced levels of porosity, by allowing an excess amount of liquid metal, generated by the exothermic reaction during synthesis, to infiltrate the pores. It is shown that this method, when applied to TiC-Al2O3 system, led to a decreased level of porosity in the resulting TiC-Al2O3-Al product, as compared with that of TiC-Al2O3 system. This in situ procedure is more efficient than the two-stage conventional processes (i.e., sintering followed by liquid metal infiltration), although there are limitations with respect to total penetration of the liquid metal and maintaining a stable propagation of the combustion reaction.

  18. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated...

  19. Synthesis of the Nanocrystalline Nickel Ferrite by a Novel Mechano Sol-Gel Auto-Combustion Method

    NASA Astrophysics Data System (ADS)

    Shahmirzaei, M.; Seyyed Ebrahimi, S. A.; Dehghan, R.

    In this work, a novel method of mechano sol-gel auto-combustion has been developed for production of single phase nickel ferrite nanocrystalline powder, consisting of a sol-gel auto-combustion synthesis followed by a high energy milling process before calcination. Sol-gel auto-combustion was carried out using a gel including citric acid as a reductant and metal nitrates as oxidants. This gel exhibited a self-propagating behavior after ignition in air. The effects of the intermediate high energy milling on the physical properties of the final product after calcination were investigated. The results showed that with a high energy milling of the sol-gel auto-combusted powders with a ball-to-powder mass ratio of 20 for 20 h, the temperature of calcination for synthesis of the single phase ferrite reduced from 1000°C to 700°C and the size of the ferrite crystallites decreased from 72 nm to 15 nm.

  20. Xanthane sesquiterpenoids: structure, synthesis and biological activity.

    PubMed

    Vasas, Andrea; Hohmann, Judit

    2011-04-01

    The aim of this review is to survey the naturally occurring xanthanes and xanthanolides, their structures, biological activities, structure–activity relationships and synthesis. There has been no comprehensive review of this topic previously. On the basis of 126 references, 112 compounds are summarized. PMID:21321751

  1. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM. PMID:27433644

  2. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  3. Red-emitting AlN:Mn2+ phosphors prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongqi; Zou, Yongyong; Jing, Ruifeng; Zhang, Kuo; Qiao, Guanjun; Wang, Hongjie

    2015-12-01

    Red-emitting Mn2+-doped AlN(AlN:Mn2+) phosphors were successfully prepared by a highly effective combustion synthesis method. The phase purity, morphology, element-composition and luminescence properties of the synthesized phosphors were investigated. X-ray diffraction (XRD) results show that the Mn2+-doped into the AlN host did not induce a second phase and distort the structure significantly. Scanning electron microscopy (SEM) images display that the phosphors have an irregular shape with a particle size in the range of 1-5 μm. X-ray photoelectron spectroscopy (XPS) spectrum indicates that Mn ions are divalent state. The synthesized AlN:Mn2+ phosphors exhibit a strong red emission centered at 600 nm, which is ascribe to the 4T1(4G)-6A1(6S) transition of Mn2+ under ultraviolet excitation. The emission intensity reaches its maximum when Mn2+-doped concentration is 3 mol%.

  4. Thermoluminescent dosimetric properties of CaF2:Tm produced by combustion synthesis

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, D. A. A.; Barros, V. S. M.; Khoury, H. J.; Asfora, V. K.; Oliveira, R. A. P.

    2016-04-01

    Calcium Fluoride is one of the oldest known thermoluminescent materials and is considered to be one of the most sensitive. This work presents the dosimetric properties results of CaF2:Tm produced by combustion synthesis. The X-ray diffraction confirmed that CaF2 was successfully produced. TL emission spectra, obtained using a Hammamatsu optical spectrometer, have the same lines of commercial CaF2:Tm, although transitions 3P0→3F4 (455 nm) and 1G4→3H6 (482 nm) are shown to be proportionally more intense. The deconvolution technique was employed and seven glow peaks were found similar to the commercial CaF2:Tm. A linear dose response curve was obtained for the range 0.1 mGy to 100 Gy, with the onset of a supralinear behavior at 50 Gy up to 100 Gy. The minimum measurable dose for gamma was around 100 μGy for a 6.0 mm diameter by 1.0 mm in thickness pellet. No significant fading was observed in 60 days of storage, within experimental uncertainties, showing that the main dosimetric peak is stable.

  5. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    SciTech Connect

    Agrawal, Shraddha Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  6. Modified Combustion Synthesis and Characterization of ZnO Nanoparticles Using Various Dispersants

    NASA Astrophysics Data System (ADS)

    Razak, N. A. A.; >H Misran, N. N. H.; Salim, M. A.; Othman, S. Z.

    2013-06-01

    Zinc oxide (ZnO) nanoparticles with hexagonal wurtize structure were successfully synthesized via simple, cost-effective and environmental friendly modified combustion synthesis route. Three different type of dispersants namely glycerol, palm oil derived fatty alcohol (C8) and fatty ester (C12) were employed to produce the nanoparticles. X-ray diffraction patterns of calcined ZnO nanoparticles indicated the successful formation of ZnO. The crystallite sizes were at ca. 39.42 nm, 27.62 nm and 30.27 nm for ZnO produced using glycerol, fatty alcohol (C8) and fatty ester (C12). The morphology was of spindle-like shape for ZnO produced using glycerol and pseudo-spherical shape for ZnO produced using palm oil derived fatty alcohol (C8) and fatty ester (C12). Energy dispersive X-ray analyses showed the existence of zinc and oxygen peak suggesting successful formation of ZnO using various renewable dispersant.

  7. Optimization of the low temperature combustion synthesis of Er3+ doped lead-natrium-yttrium-fluoride phosphor

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Zhang, Xiyan

    2014-12-01

    The low-temperature combustion synthesis (LCS) method is the most popular method for the synthesis of ultrafine oxides and compound oxides. A kind of Er-Y-Pb-Na quaternary fluoride sensitive to 1.55 μm was synthesized by the LCS method and the synthesis conditions were optimized with orthogonal experiments. Intense upconversion emissions at 522 nm, 541.4 nm and 654.7 nm corresponding to the 2H11/2, 4S3/2 and 4F9/2 transitions to the 4I15/2 ground state were observed when excited by CW laser radiation at 1.55 μm. The effect of the carbamide amount on the phase formation and the luminescence intensity was analyzed. The product is of uniform particle size of ca. 40 nm, which is very outstanding for its reutilization in the infrared detection field.

  8. Preparation and dielectric properties of B-doped SiC powders by combustion synthesis

    SciTech Connect

    Su Xiaolei Zhou Wancheng; Li Zhimin; Luo Fa; Du Hongliang; Zhu Dongmei

    2009-04-02

    The SiC(B) solid solution powders were synthesized via combustion reaction of Si/C system in Ar atmosphere, using boron powder as the dopant and polytetrafluoroethylene as the chemical activator, which were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM) and Raman spectra. Results show that the prepared powders are C-enriched SiC with C antisites and sp{sup 2} carbon defects in which the sp{sup 2} carbon is transformed to the sp{sup 3} carbon due to boron doping. The electric permittivities of the prepared powders were determined in the frequency range of 8.2-12.4 GHz. The dielectric real part {epsilon}' and dielectric loss tan {delta} of undoped powder have maximum values ({epsilon}' = 5.5-5.3, tan {delta} = 0.23-0.20), and decrease with increasing boron content. The mechanism of dielectric loss by doping has been discussed.

  9. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Kumar, Danith; Yadav, L. S. Reddy; Lingaraju, K.; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.; Naika, H. Raja; Chikkahanumantharayappa, Nagaraju, G.

    2015-06-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm-1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV -Vis spectrum was found to be in the range 5.40-5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  10. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    SciTech Connect

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy; Nagaraju, G.; Lingaraju, K.; Naika, H. Raja; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.

    2015-06-24

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  11. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    PubMed

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method. PMID:27433645

  12. Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers

    SciTech Connect

    Hanjing Tian; Karuna Chaudhari; Thomas Simonyi; James Poston; Tengfei Liu; Tom Sanders; Goetz Veser; Ranjani Siriwardane

    2008-11-15

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900{degree}C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO{sub 2} from fuel gas at 800 and 900{degree}C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700{degree}C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900{degree}C. 48 refs., 12 figs., 8 tabs.

  13. Self-propagating high temperature synthesis for compound thermoelectrics and new criterion for applicability of combustion processing

    NASA Astrophysics Data System (ADS)

    Tang, Xinfeng; Su, Xianli; Uher, Ctirad; Tang's Group Team; Uher's Group Team

    2015-03-01

    Here we report compound thermoelectric materials (Bi2Te3, Bi2Se3, Cu2Se,Cu2SnSe3, half-Heusler alloys, lead chalcogenides, skutterudites, and magnesium silicides) with thermoelectric properties comparable with materials prepared by the traditional routes of synthesis can be synthesized at a minimal cost and on the time scale of seconds using the self-propagating high temperature synthesis method. Moreover, we found that the criterion often quoted in the literature as the necessary precondition for combustion synthesis, Tad >= 1800 K, is not universal and certainly not applicable to thermoelectric compound semiconductors. Instead, we offer new empirically-based criterion, Tad /Tm , L >1, i.e., the adiabatic temperature must be high enough to melt the lower melting point component, which covers all materials synthesized by self-propagating high temperature synthesis, including the high temperature refractory compounds for which the Tad >= 1800 K criterion was originally developed. Our work opens a new avenue for ultra-fast, low cost, mass production fabrication of efficient thermoelectric materials and the new criterion greatly broadens the scope of materials that can be successfully synthesized by self-propagating high temperature synthesis. We wish to acknowledge support from the National Basic Research Program of China (973 program) under Project 2013CB632502.

  14. Marine Natural Meroterpenes: Synthesis and Antiproliferative Activity

    PubMed Central

    Simon-Levert, Annabel; Menniti, Christophe; Soulère, Laurent; Genevière, Anne-Marie; Barthomeuf, Chantal; Banaigs, Bernard; Witczak, Anne

    2010-01-01

    Meroterpenes are compounds of mixed biogenesis, isolated from plants, microorganisms and marine invertebrates. We have previously isolated and determined the structure for a series of meroterpenes extracted from the ascidian Aplidium aff. densum. Here, we demonstrate the chemical synthesis of three of them and their derivatives, and evaluate their biological activity on two bacterial strains, on sea urchin eggs, and on cancerous and healthy human cells. PMID:20390109

  15. Synthesis of pharmacologically active indoles.

    PubMed

    Hishmat, O H; Ebeid, M Y; Nakkady, S S; Fathy, M M; Mahmoud, S S

    1999-06-01

    Formylation of 6-methoxy-1-methyl and 5-methyl,2,3-diphenyl-1H-indole (Ib and IX) gave the 5- and 6- carboxaldehyde derivatives (II and X) respectively, which were treated with ethyl cyanoacetate to form the corresponding 2-cyano-3-substituted acrylic acid ethyl ester (III and XI). The latter compounds reacted with hydrazine hydrate, urea and thiourea to form the corresponding 5-amino-4-substituted 2,4,dihydropyrazol-3- one (IV), 6-indolyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile s (V and XII) and 6-indolyl-4-oxo-2-thixo-1,2,3,4-tetrahydropyrimidine-5-ca rbonitriles (VI and XIII). Reaction of the 5- and 6-carboxaldehyde derivatives with malononitrile afforded the 2-substituted malononitrile derivatives (VII and XIV). VII and XIV reacted readilly with aromatic ketones to give the 2-amino4,6-disubstituted nicotinonitriles (VIII a,b and XVa,b). The biological activity of compounds Ia, Ib, II, III, IX and X was tested for antiinflammatory, ulcerogenic and antispasmodic activities. PMID:10464975

  16. Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites

    SciTech Connect

    Doeff, Marca M; Chen, Jiajun; Conry, Thomas E.; Wang, Ruigang; Wilcox, James; Aumentado, Albert

    2009-12-14

    A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1,0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly upon the post-treatment and the Mg content, and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50percent utilization of the theoretical capacity at a C/2 discharge rate.

  17. Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

    PubMed

    Medina, Fernanda G; Marrero, Joaquín G; Macías-Alonso, Mariana; González, Magdalena C; Córdova-Guerrero, Iván; Teissier García, Ariana G; Osegueda-Robles, Soraya

    2015-09-23

    This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity. PMID:26151411

  18. Combustion synthesis, structure and transformation characteristics of titanium carbide-nickel titanium composites

    NASA Astrophysics Data System (ADS)

    Strutt, Elizabeth R.

    An investigation into the production of TiC-NiTi composites by a technique combining self-propagating high temperature synthesis (SHS) of elemental powders with densification by quasi-isostatic pressing (QIP) has been performed. Composites with volume fractions of NiTi between 0.1 and 0.8 were produced and the resulting structures and transformation characteristics were studied. Powder mixtures prepared anticipating the formation of stoichiometric TiC resulted in the formation of composites with a eutectic-based mixture of Ni3Ti and NiTi. This titanium impoverishment of the matrix is consistent with the formation of nonstoichiometric TiCx during the combustion reaction. The Ni3Ti phase was suppressed by anticipating the formation of TiC0.7 and adjusting the chemical content of the reactant mixture to include additional titanium. In order to help optimize densification parameters, the QIP process was modeled by analytical methods. A solution to the problem of uniaxial upsetting of a porous cylinder was developed and combined with indentation experiments on SHS produced TiC0.7-30NiTi to determine constitutive properties. Transmission electron microscopy (TEM) showed that the individual B19' variants were internally twinned by either [011] Type II twinning or (111¯) Type I twinning. Wavy bands of B19' martensite, internally twinned by the (001)B19', compound twinning mode, were also observed in the 40NiTi composite. Occasionally, localized twinning appeared at the interface with the carbide particles. In-situ TEM showed that the parent B2 transformed first to the R-phase during cooling. As the temperature was further reduced, the B19' martensite nucleated at the TiCx interfaces and grew away from the particles. The growth of individual B19' variants was limited by impingement with other martensite variants. Thermal cycling appeared to change the transformation path. After 30 thermal cycles, the cubic B2 phase was observed coexisting with the monoclinic B19' phase

  19. Perylenequinones: Isolation, Synthesis, and Biological Activity

    PubMed Central

    Mulrooey, Carol A.; O'Brien, Erin M.; Morgan, Barbara J.

    2013-01-01

    The perylenequinones are a novel class of natural products characterized by pentacyclic conjugated chromophore giving rise to photoactivity. Potentially useful light-activated biological activity, targeting protein kinase C (PKC), has been identified for several of the natural products. Recently discovered new members of this class of compound, as well as several related phenanthroperylenequinones, are reviewed. Natural product modifications that improve biological profiles, and avenues for the total synthesis of analogs, which are not available from the natural product series, are outlined. An overview of structure/function relationships is provided. PMID:24039544

  20. The feasibility of synthesis of B[sub 4]C fiber-MgO composites by combustion

    SciTech Connect

    Wang, L.L.; Munir, Z.A.; Holt, J.B. . Dept. of Chemical Engineering and Materials Science)

    1994-07-01

    A relatively large number of carbide materials have been prepared by the combustion synthesis method. Interest in these materials is motivated, in part, by their refractory nature, high hardness, and relatively low density. In this method, the typical starting reactants consist of a mixture of metal and a carbon powders. When ignited, many of these reactant systems reach combustion temperatures which are higher than the melting point of the metal but lower than melting point of carbon. These conditions give rise to expectations of control of the size and shape of the final carbide particles by the morphology of the carbon component, as observed by Mullins and Riley. In this study, the effect of carbon fiber morphology on the B[sub 4]C phase formed via the Mg-B[sub 2]O[sub 3] thermite-based reaction was investigated. The overall reaction, 6Mg + 2B[sub 2]O[sub 3] + C [yields] 6MgO + B[sub 4]C, involves two steps, the first is a reaction between Mg and B[sub 2]O[sub 3] to form MgO and B, and the second involves the formation of B[sub 4]C. The calculated adiabatic combustion temperature, assuming an initial temperature of 25 C is 2,467 C which is higher than the melting point of boron.

  1. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    PubMed

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern. PMID:19879690

  2. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels

  3. Synthesis of submicron CaZrO3 in combustion reactions

    NASA Astrophysics Data System (ADS)

    Khaliullin, Sh. M.; Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.

    2015-12-01

    Submicron CaZrO3 powder is obtained in combustion reactions (solution combustion synthesis—SCS) with glycine. It is found that SCS reduces the sintering temperature of CaZrO3 powders. The dielectric properties of calcium zirconate ceramics are studied by the electrochemical impedance method. It is shown that a ceramics of powders obtained by the SCS method has high dielectric characteristics.

  4. Synthesis of submicron CaZrO{sub 3} in combustion reactions

    SciTech Connect

    Khaliullin, Sh. M. Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.

    2015-12-15

    Submicron CaZrO{sub 3} powder is obtained in combustion reactions (solution combustion synthesis—SCS) with glycine. It is found that SCS reduces the sintering temperature of CaZrO{sub 3} powders. The dielectric properties of calcium zirconate ceramics are studied by the electrochemical impedance method. It is shown that a ceramics of powders obtained by the SCS method has high dielectric characteristics.

  5. Combustion synthesis and luminescent properties of metal yttrium borates M3Y2 (BO3)4:Eu3+ (M = Ba, Sr) for PDPs applications

    NASA Astrophysics Data System (ADS)

    Ingle, J. T.; Sonekar, R. P.; Omanwar, S. K.; Wang, Yuhua; Zhao, Lei

    2014-07-01

    The polycrystalline powder samples of Eu3+ activated; mixed metal yttrium borate phosphors M3Y2(BO3)4 (M = Ba, Sr) with improved color purity of red emission for plasma display panels (PDPs) were prepared by solution combustion technique. The synthesis is based up on the exothermic reaction between the fuel (Urea) and oxidizer (Ammonium nitrate) .The heat generated in the reaction is utilized for auto combustion of ingredients. The formation of desired product and crystal structure was confirmed by powder XRD technique; while particle morphology was studied using FE-SEM. Samples under 254 and 147 nm excitation showed intense and pure red emission around 613 nm corresponding to the electric dipole 5D0 → 7F2 transition of Eu3+, CIE chromaticity coordinates of synthesized phosphors was found to be (x = 0.67, y = 0.32) close to National Television Standard Committee (NTSC) for red color; found suitable to employ in plasma display panels (PDPs) applications.

  6. Synthesis and spectroscopic characterization of nanoparticles of TiO2 doped with Pt produced via the self-combustion route

    NASA Astrophysics Data System (ADS)

    Lopera, A. A.; Chavarriaga, E. A.; Estupiñan, H. A.; Valencia, I. C.; Paucar, C.; Garcia, C. P.

    2016-05-01

    Titanium oxide (TiO2) is the most important semiconductor used in photocatalysis. For that reason, most recent scientific studies have focused on improving the absorbance of this material in the visible region. In this paper, we report on the production of nanopowders of TiO2 doped with platinum via the solution combustion synthesis method, using glycine as a fuel at concentrations of 0.3, 0.6, 0.9, and 1.2% w/w of Pt with respect to TiO2 (Pt / TiO2), in order to study the influence of the dopant content on the absorbance spectrum in the visible region. The structure of the samples was characterized using x-ray diffraction and Raman spectroscopy, which confirmed the production of a pure anatase phase. VIS diffuse reflectance spectroscopy confirmed that in the visible region the samples doped with Pt absorb within the range of 400 nm to 800 nm. Field emission scanning electron microscopy and transmission electron microscopy showed the formation of TiO2 nanoparticles with an average size of 13 nm and with spherical morphology. Colorimetry (Commission Internationale de l’Eclairage L *, a *, b *) confirmed photocatalytic activity for the degradation of rhodamine B using visible light. It was concluded that the route of synthesis and the Pt content play important roles in the absorbance spectrum and the activation energy of TiO2.

  7. Magneto-thermal and dielectric properties of biferroic YCrO{sub 3} prepared by combustion synthesis

    SciTech Connect

    Duran, A.; Arevalo-Lopez, A.M.; Castillo-Martinez, E.; Garcia-Guaderrama, M.; Moran, E.; Cruz, M.P.; Fernandez, F.; Alario-Franco, M.A.

    2010-08-15

    Microstructural, magnetothermal and dielectric properties of YCrO{sub 3} powders prepared by combustion and solid state methods have been studied by a combination of XRD, specific heat, magnetization and permittivity measurements. The TEM and XRD characterization confirm that the combustion powders are amorphous plate-like agglomerates of nano-sized crystalline particles. A more uniform grain size along with an increase of the relative density is observed by SEM in the sintered samples prepared by combustion route with respect to those produced by solid state reaction. Similar to the material obtained through solid state synthesis, the material prepared by the combustion method also shows spin canted antiferromagnetic ordering of Cr{sup +3} (S=3/2) at {approx}140 K, which is shown by magnetization as well as {lambda}-type anomaly in the total specific heat. Furthermore, the magnetic contribution to the total specific heat reveals spin fluctuations above T{sub N} and a spin reorientation transition at about 60 K. Both YCrO{sub 3} compounds show a diffuse phase transition at about 450 K, typical of a relaxor ferroelectric, which is characterized by a broad peak in the real part of the dielectric permittivity as a function of temperature, with the peak decreasing in magnitude and shifting to higher temperature as the frequency increases. The relaxor dipoles are due to the local non-centrosymmetric structure. Furthermore, the high loss tangent in a broad range of temperature as well as conductivity analysis indicates a hopping mechanism for the electronic conductivity as we believe it is a consequence of the outer d{sup 3}-shell, which have detrimental effects on the polarization and the pooling process in the YCrO{sub 3} bulk material. The more uniform particle size and higher density material synthesized through the combustion process leads to an improvement in the dielectric Properties. - Graphical abstract: Combustion method: An alternative route for synthesized a

  8. Combustion synthesis, characterization and Raman studies of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Reddy, A. Jagannatha; Kokila, M. K.; Nagabhushana, H.; Rao, J. L.; Shivakumara, C.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2011-10-01

    Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) Å, c = 5.2076(2) Å, unit cell volume ( V) = 47.66(5) (Å) 3 and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at ˜375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm -1 were attributed to the E 2 (high) and E 1 (LO) modes respectively. The broad band at 564 cm -1 is due to disorder-activated Raman scattering for the A 1 mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm -1 are due to small defects.

  9. Synthesis and biological activity of polyprenols.

    PubMed

    Zhang, Qiong; Huang, Lixin; Zhang, Caihong; Xie, Pujun; Zhang, Yaolei; Ding, Shasha; Xu, Feng

    2015-10-01

    The polyprenols and their derivatives are highlighted in this study. These lipid linear polymers of isoprenoid residues are widespread in nature from bacteria to human cells. This review primarily presents the synthesis and biological activities of polyprenyl derivatives. Attention is focused on the synthesis and biological activity of dolichols, polyprenyl ester derivatives and polyprenyl amines. Other polyprenyl derivatives, such as oxides of polyprenols, aromatic polyprenols, polyprenyl bromide and polyprenyl sulphates, are mentioned. It is noted that polyprenyl phosphates and polyprenyl-linked glycosylation have better antibacterial, gene therapy and immunomodulating performance, whereas polyprenyl amines have better for antibacterial and antithrombotic activity. Dolichols, polyprenyl acetic esters, polyprenyl phosphates and polyprenyl-linked glycosylation have pharmacological anti-tumour effects. Finally, the postulated prospect of polyprenols and their derivatives are discussed. Further in vivo studies on the above derivatives are needed. The compatibility of polyprenols and their derivatives with other drugs should be studied, and new preparations of polyprenyl derivatives, such as hydrogel glue and release-controlled drugs, are suggested for future research and development. PMID:26358482

  10. The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method

    NASA Astrophysics Data System (ADS)

    Karcıoğlu Karakaş, Zeynep; Boncukçuoğlu, Recep; Karakaş, İbrahim H.

    2016-04-01

    In this study, it was investigated the effects of the used fuels on structural, morphological and magnetic properties of nanoparticles in nanoparticle synthesis with microwave assisted combustion method with an important method in quick, simple and low cost at synthesis of the nanoparticles. In this aim, glycine, urea and citric acid were used as fuel, respectively. The synthesised nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller surface area (BET), and vibrating sample magnetometry (VSM) techniques. We observed that fuel type is quite effective on magnetic properties and surface properties of the nanoparticles. X-ray difractograms of the obtained nanoparticles were compared with standard powder diffraction cards of NiFe2O4 (JCPDS Card Number 54-0964). The results demonstrated that difractograms are fully compatible with standard reflection peaks. According to the results of the XRD analysis, the highest crystallinity was observed at nanoparticles synthesized with glycine. The results demonstrated that the nanoparticles prepared with urea has the highest surface area. The micrographs of SEM showed that all of the nanoparticles have nano-crystalline behaviour and particles indication cubic shape. VSM analysis demonstrated that the type of fuel used for synthesis is highly effective a parameter on magnetic properties of nanoparticles.

  11. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    SciTech Connect

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  12. Powder synthesis and characterization of nanocrystalline CeO{sub 2} via the combustion processes

    SciTech Connect

    Gu Lina . E-mail: gln@mail.ustc.edu.cn; Meng Guangyao

    2007-07-03

    Nanocrystalline CeO{sub 2} powders were synthesized by the combustion reactions using citric acid and glycol as fuels and nitrate as an oxidant. The adiabatic flame temperatures in the auto ignition processes of the precursors were calculated theoretically. XRD measurements indicated that the powders produced in the combustion processes were cubic fluorite CeO{sub 2} phase. The size and morphology of the particles and extent of agglomeration in the powders were studied using transmission electron microscopy (TEM) and the particle size analyzer respectively. Blue shifts of the absorption peak of the as-prepared powders were observed.

  13. The Effects of Gravity on the Combustion Synthesis of B2O3-Al2O3-MgO Glass Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Manerbino, A. R.; Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Schowengerdt, F. D.

    2000-01-01

    Glass ceramic composites based on B2O3-Al2O3-MgO have been produced by combustion synthesis in a Self-propagating mode. The gravitational effects on the combustion characteristics such as combustion wave velocity (V), and combustion temperature (T(sub c)) were studied. The results showed that the gravitational effects on these parameters were inconclusive. The microstructure of this system has also been analyzed with X-ray Diffraction and light microscopy. These results showed a higher amount of divitrification occurs under both reduced gravity and high gravity conditions. The gravitational effects on formation of pores, overall porosity and apparent porosity for this family of glass-ceramics also shows to be inconclusive. Possible reasons for these results are discussed.

  14. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant

  15. Betulin Phosphonates; Synthesis, Structure, and Cytotoxic Activity.

    PubMed

    Chrobak, Elwira; Bębenek, Ewa; Kadela-Tomanek, Monika; Latocha, Małgorzata; Jelsch, Christian; Wenger, Emmanuel; Boryczka, Stanisław

    2016-01-01

    Betulin derivatives are a widely studied group of compounds of natural origin due to their wide spectrum of biological activities. This paper describes new betulin derivatives, containing a phosphonate group. The allyl-vinyl isomerization and synthesis of acetylenic derivatives have been reported. Structural identification of products as E and Z isomers has been carried out using ¹H-, (13)C-, (31)P-NMR, and crystallographic analysis. The crystal structure in the orthorhombic space group and analysis of crystal packing contacts for 29-diethoxyphosphoryl-28-cyclopropylpropynoyloxy-lup-20E(29)-en-3β-ol 8a are reported. All new compounds were tested in vitro for their antiproliferative activity against human T47D (breast cancer), SNB-19 (glioblastoma), and C32 (melanoma) cell lines. PMID:27571057

  16. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization

    SciTech Connect

    Rongjun Zhang; Jiejie Huang; Jiantao Zhao; Zhiqiang Sun; Yang Wang

    2007-09-15

    Zinc ferrite as a desulfurization sorbent with an average crystallite size of about 36 nm was synthesized by a sol-gel auto-combustion method. The precursor for the sorbent was a gel obtained from metal nitrates and citric acid by a sol process. The nitrate-citrate gel exhibits a self-propagating combustion behavior, and after combustion, it can transform into a nanosized spinel structured zinc ferrite directly. The prepared sorbent has a larger specific surface area and higher reactivity when compared with the sorbent achieved by a solid mixing method, and it could efficiently reduce the H{sub 2}S concentration from 6000 ppm to less than 2 ppm at a moderate temperature range. The sulfur capacity at 400{sup o}C reaches about 38.5 g of sulfur/100 g of sorbent, which corresponds to 96.4% of the theoretical value. The temperature programmed oxidation test for the sulfided sorbent shows that the most sulfur is desorbed before 500{sup o}C. XRD results confirm that the sulfided sample after exposure to a 5% O{sub 2}/N{sub 2} gas mixture at 500{sup o}C can be regenerated completely, which indicates that the regeneration temperature of the sorbent prepared by the sol-gel auto-combustion method could be greatly reduced. 40 refs., 10 figs., 2 tabs.

  17. Blue emission of Eu2+ doped LaMgAl11O19 phosphor prepared by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Pathak, A. A.; Yadav, P. J.; Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Blue-emitting phosphor LaMgAl11O19:Eu2+ has been synthesized successfully at 500 °C by one step combustion synthesis method. The as-synthesized materials were characterized by powder x-ray diffraction (XRD) and photoluminescence (PL) techniques. Upon 365 nm excitation, emission spectra of the LaMgAl11O19:Eu2+ phosphors show a blue band at 450 nm. The excitation spectra corresponding to 4f7-4f65d transition of Eu2+ cover the spectral range of 280-430 nm. The concentration quenching of Eu2+ in the LaMgAl11O19 host was determined to be 3 mol%. The CIE chromaticity of LAM: Eu2+ phosphors was compared with the commercial BAM.

  18. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    SciTech Connect

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.

  19. Study of photoluminescence properties of CaAl2O4: Eu2+ prepared by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Hingwe, V. S.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    Eu2+ doped alkaline earth metals such as strontium aluminate, calcium aluminate and barium aluminate prepared by using modified combustion synthesis method at 600°c with Urea as fuel. Crystal structure is determined by using XRD and the sample confirmation by using the FTIR. The effect of the host material on the photoluminescence (PL) and phosphorescence properties were studied by using the Hitachi F-7000 spectrofluorimeter equipped with a 450W Xenon lamp, in the range 200-650 nm. The emission spectra of Eu2+ range from 450 to 500nm in the Blue to aqua region and the transition 4f7-4f6 5d1. The observed emission in CaAl2O4 is 440nm.

  20. Fast fabrication of W-Cu functionally graded material by high-gravity combustion synthesis and melt-infiltration

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Guo, S. B.; Liu, G. H.; Chen, Y. X.; Li, J. T.

    2014-02-01

    W-Cu functionally graded material (FGM, 75 wt% W + 25 wt% Cu-40 wt% W + 60 wt% Cu) has been prepared by a method of high-gravity combustion synthesis and melt-infiltration in a short time (∼5 min). The infiltration mechanism in the high-gravity field was investigated. The W-Cu FGM showed an overall relative density of ∼97% and gradually-varying properties in terms of density, micro hardness, coefficient of thermal expansion. Especially, the W-Cu FGM exhibited a coefficient of thermal expansion between those of W and Cu, and thus could be used as a transition layer between W and Cu to relax the thermal stresses.

  1. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  2. Synthesis of La{sup 3+} doped nanocrystalline ceria powder by urea-formaldehyde gel combustion route

    SciTech Connect

    Biswas, M.; Bandyopadhyay, S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Nano LC synthesized by gel combustion, using urea-formaldehyde fuel for first time. Black-Right-Pointing-Pointer Largely single crystals were produced in average range of 20-30 nm. Black-Right-Pointing-Pointer La{sup 3+} doping increases cell dimension linearly. Black-Right-Pointing-Pointer La{sup 3+} doping introduces ionic point defects but does not change electronic band gap. Black-Right-Pointing-Pointer Presence of Ce{sup 3+} indicates that this synthesis route produces reactive powders. -- Abstract: Nanocrystalline ceria powders doped with various concentrations of lanthanum oxide have been prepared following gel combustion route using for the first time urea-formaldehyde as fuel. The synthesized products were characterized by XRD, FESEM, TEM, PL and UV-vis spectroscopy. Peak positions of XRD were refined and the lattice parameters were obtained by applying Cohen's method. Unit cell parameter increases with concentration of La{sup 3+} ion and the variation is consistently linear. XRD calculations showed the dependence of crystallite size on dopant concentrations at lower level. TEM observation revealed unagglomerated particles to be single crystals in the average range of 20-30 nm. Band gap of the La{sup 3+} doped ceria materials does not change with doping. Spectroscopic experiments proved the existence of Ce{sup 3+} in the formed powder.

  3. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  4. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    SciTech Connect

    NGUYEN, D.M.

    2000-02-01

    The purpose of this data collection activity is to obtain data for a screening of combustible gases in catch tanks that are currently operated by the River Protection Project (RPP). The results will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the ''Tank Safety Screening Data Quality Objective'' (Dukelow et a1 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, vapor grab samples will be collected for laboratory analysis. In addition, ventilation rates of some catch tanks will be determined using the tracer gas injection method to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the field tests, sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides step by-step direction for field measurement of combustible gas concentrations and determination of ventilation rates.

  5. Reduced-order modeling and active control of dry-low-emission combustion

    NASA Astrophysics Data System (ADS)

    Yi, Tongxun

    This dissertation is a complementary experimental and theoretical investigation of combustion instability and lean blowout (LBO) in dry-low-emission (DLE) gas turbine engines, aiming to understand the fundamental mechanisms and shed light on active combustion control. Combustion instability involves complicated physicochemical processes, and many of the underlying mechanisms remain unknown, despite extensive research in the past several decades. A practical control system must be able to achieve satisfactory control performances in the presence of large uncertainties, large variations, and even unknown system dynamics. Toward this goal, an observer-based controller, capable of attenuating multiple unstable modes with unknown characteristics, is developed. A mechanism suitable for online prediction of the safety margin to the onset of combustion instability is presented, which does not require knowing the unstable frequencies. The shortage of a reliable, high-frequency, proportional fuel actuator is a major technical challenge for active combustion control. A complementary theoretical and experimental study is performed on a pump-style, high-frequency, magnetostrictive fuel actuator. Improvements to the fuel setup have been made according to the model predictions, which have been experimentally shown to be beneficial to combustion instability control. The second part of this dissertation is about modeling, prediction, and control of lean blowout. The experimentally observed, "intensified", low frequency, near-LBO combustion oscillations have been used as incipient LBO precursors, and are characterized as low-dimension chaotic behavior in the present study. The normalized chemiluminescence RMS and the normalized cumulative duration of LBO precursor events are recommended for LBO prediction in generic gas turbine engines. Linear stability analysis shows that, with decreasing equivalence ratios, a complex conjugate pair of eigenvalues emerges from three negative real

  6. Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Cornwell, Michael D.

    Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward

  7. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    SciTech Connect

    Zhang Jianrong; Gao Lian . E-mail: Liangaoc@online.sh.cn

    2004-12-02

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb{sub 2}O{sub 3}. The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m{sup 2}/g when the citric acid to tin ratio was about 6.

  8. : Synthesis, Characterization, and Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Fu, Feng; Li, Wenhong

    2014-12-01

    3D hierarchical microspheres of Cu-loaded Bi2WO6 are successfully prepared by the hydrothermal synthesis method on a large scale. The as-prepared samples are characterized by UV-Vis DRS, BET, XRD, XPS, and SEM. The results reveal that the light absorption of Cu-loaded Bi2WO6 has higher intensity in the visible range and a bathochromic shift of the absorption edge compared to that of pure Bi2WO6. The photocatalytic activity is evaluated by phenol removal from aqueous solution under visible-light irradiation. The results demonstrate that loaded Cu significantly enhances the photocatalytic activity of Bi2WO6, for the loaded Cu acts as the electron receptor on the surface of Bi2WO6, and inhibits the recombination of photogenerated electron-hole. The content of loaded Cu has an impact on the catalytic activity, and the 1.0 wt.% Cu-loaded Bi2WO6 exhibits the best photocatalytic activity in the degradation of phenol. Furthermore, the reaction kinetics of phenol removal from aqueous solution over the Cu-loaded Bi2WO6 is established by the way of the Langmuir-Hinshelwood model. The results indicate that the process of photodegradation of phenol on Cu-loaded Bi2WO6 match the Langmuir-Hinshelwood kinetic model.

  9. Nanoporous Silicon Combustion: Observation of Shock Wave and Flame Synthesis of Nanoparticle Silica.

    PubMed

    Becker, Collin R; Gillen, Greg J; Staymates, Matthew E; Stoldt, Conrad R

    2015-11-18

    The persistent hydrogen termination present in nanoporous silicon (nPS) is unique compared to other forms of nanoscale silicon (Si) which typically readily form a silicon dioxide passivation layer. The hydrogen terminated surface combined with the extremely high surface area of nPS yields a material capable of powerful exothermic reactions when combined with strong oxidizers. Here, a galvanic etching mechanism is used to produce nPS both in bulk Si wafers as well as in patterned regions of Si wafers with microfabricated ignition wires. An explosive composite is generated by filling the pores with sodium perchlorate (NaClO4). Using high-speed video including Schlieren photography, a shock wave is observed to propagate through air at 1127 ± 116 m/s. Additionally, a fireball is observed above the region of nPS combustion which persists for nearly 3× as long when reacted in air compared to N2, indicating that highly reactive species are generated that can further combust with excess oxygen. Finally, reaction products from either nPS-NaClO4 composites or nPS alone combusted with only high pressure O2 (400 psig) gas as an oxidizer are captured in a calorimeter bomb. The products in both cases are similar and verified by transmission electron microscopy (TEM) to include nano- to micrometer scale SiOx particles. This work highlights the complex oxidation mechanism of nPS composites and demonstrates the ability to use a solid state reaction to create a secondary gas phase combustion. PMID:26501940

  10. Synthesis chemistry of ceramics by solid-state combustion processes in micro-gravity

    SciTech Connect

    Valone, S.M.; Behrens, R.G.

    1985-01-01

    The method of solid-state combustion offers a way of producing refractory ceramics from the constituent elements. Since temperatures within the reaction zone are so high (2500 to 4000/sup 0/K), there is probably melting, and surface tension and gravity-induced convection may affect the mixing process. A strongly exothermic reaction can be used to drive a weakly exothermic or endothermic reaction. (DLC)

  11. Combustion synthesis of Ni Zn ferrite powder—influence of oxygen balance value

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Ching; Tsai, Jih-Sheng; Huang, Ting-Han; Peng, Cheng-Hsiung; Chen, San-Yuan

    2005-01-01

    In this study, Ni 0.5Zn 0.5Fe 2O 4 powder was synthesized via an exothermic reaction between nitrates [Ni(NO 3) 2·6H 2O, Zn(NO 3) 2·6H 2O, Fe(NO 3) 3·9H 2O, and NH 4NO 3] and glycine [NH 2CH 2COOH]. By adjusting the glycine-to-nitrates ratio, the oxygen balance (OB) values of the reactant mixtures can be varied in which the combustion phenomena is altered and thereby the as-synthesized products with different characteristics are obtained. An interpretation based on the measurement of maximum combustion temperature ( Tc) and the amounts of gas evolved during reaction for various OB values has been proposed regarding the nature of combustion and its correlation with the characteristics of as-synthesized products. After instrumental analyses, it is shown that the as-synthesized powders are nanoscale crystallites with a large specific surface area and they inherit a superparamagnetic behavior.

  12. Synthesis of La and Nb doped PZT powder by the gel-combustion method.

    PubMed

    Cernea, M; Montanari, G; Galassi, C; Costa, A L

    2006-03-28

    Lanthanum and niobium doped PZT with composition (Pb0.93La0.07)[(Zr0.60Ti0.40)]0.9825Nb0.0175O3 (PZTLN) was prepared by the gel-combustion method. A precursor sol was obtained from lead nitrate, zirconyl nitrate, lanthanum oxide, peroxo-citrato-niobium and a peroxo-citrate complex of titanium isopropoxide as starting precursors. Various molar ratios of citrate/nitrate (CA/NO3(-) = 1.3, 0.36 and 0.09) were used to prepare very fine powders of PZTLN. The gels resulting from these sols were transformed into powders by an auto-combustion process at ≤400 °C. The powders consisted of rhombohedral PZT (PbZr0.60Ti0.40O3), pyrochlore (Pb2Ti2O6) and lead carbonate (Pb2O·CO3) phases. The pure rhombohedral phase is found in PZTLN pellets sintered at 1100 °C for all citrate/nitrate ratios. Titanium and niobium precursors were modified with peroxo radicals. During the gel-combustion reaction, the temperature of the gel increases, leading to lead evaporation. The loss of lead as well as the particle size increases as the CA/NO3(-) ratio decreases. The smallest grained powder (about 50 nm) was obtained with the ratio CA/NO3(-) equal to 0.09. PMID:26558585

  13. Combustion synthesis of CdS/reduced graphene oxide composites and their photocatalytic properties

    SciTech Connect

    Liu, Jianxiu; Pu, Xipeng; Zhang, Dafeng; Seo, Hyo Jin; Du, Kaiping; Cai, Peiqing

    2014-09-15

    Highlights: • CdS/reduced graphene oxide composites were prepared by a combustion method. • The phase changed from hexagonal to cubic phase by increasing the added amount of GO. • The composites showed excellent visible-light photocatalytic properties. • The plausible mechanism of photodegradation was discussed. - Abstract: CdS/reduced graphene oxide composites were synthesized by a simple one-pot combustion method using cadmium nitrate, thiourea and graphite as raw materials. The structure, morphologies, and photocatalytic properties of the as-prepared samples were studied by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. The results show that the structure of CdS in as-prepared samples changes from hexagonal to cubic phase by increasing the added amount of graphene oxide. During combustion reaction, graphene oxide was reduced to reduced graphene oxide. As-obtained CdS/reduced graphene oxide composites show high visible-light photoactivities, attributed to the minimized recombination of photoinduced electrons and holes and the high surface area of reduced graphene oxide sheets.

  14. Effect of variable cerium concentration on photoluminescence behaviour in ZrO2 phosphor synthesized by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Kaur, Jagjeet

    2016-05-01

    Present paper reports synthesis and characterization of trivalent cerium (Ce3+) doped zirconium dioxide (ZrO2) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO3)3 and Ce(NO3)3 and urea used as a fuel. All prepared phosphor with variable concentration of Ce3+ (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce3+ show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce3+ doped phosphor based on near ultraviolet (NUV) excited LED lights.

  15. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  16. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  17. Comparative sinterability of combustion synthesized and commercial titanium carbides

    SciTech Connect

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600/sup 0/C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables.

  18. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion.

    PubMed

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones. PMID:26074206

  19. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion

    NASA Astrophysics Data System (ADS)

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-06-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones.

  20. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion

    PubMed Central

    Wang, Han; Chen, Chunlin; Zhang, Yexin; Peng, Lixia; Ma, Song; Yang, Teng; Guo, Huaihong; Zhang, Zhidong; Su, Dang Sheng; Zhang, Jian

    2015-01-01

    Combustion catalysts have been extensively explored to reduce the emission of hydrocarbons that are capable of triggering photochemical smog and greenhouse effect. Palladium as the most active material is widely applied in exhaust catalytic converter and combustion units, but its high capital cost stimulates the tremendous research on non-noble metal candidates. Here we fabricate highly defective cobalt oxide nanocrystals via a controllable oxidation of carbon-encapsulated cobalt nanoparticles. Strain gradients induced in the nanoconfined carbon shell result in the formation of a large number of active sites featuring a considerable catalytic activity for the combustion of a variety of hydrocarbons (methane, propane and substituted benzenes). For methane combustion, the catalyst displays a unique activity being comparable or even superior to the palladium ones. PMID:26074206

  1. Catalytic activity of lime for N{sub 2}O decomposition under coal combustion conditions

    SciTech Connect

    Sasaoka, Eiji; Sada, Norimasa; Hara, Kenichi; Uddin, M.A.; Sakata, Yusaku

    1999-04-01

    To understand the contribution of lime to the abatement of N{sub 2}O emission from fluidized coal combustor, the catalytic activity of the lime for the decomposition of N{sub 2}O under coal combustion conditions was studied. Lime was active for the catalytic decomposition of N{sub 2}O, and its activity was stable in the simulated coal combustion flue gas in the absence of SO{sub 2} at 800 C. The catalytic activity of lime was depressed by the presence of CO{sub 2}, H{sub 2}O, and SO{sub 2}. The affect of the presence of SO{sub 2} seemed to be most important: the catalytic activity of the lime gradually decreased as the degree of sulfation increased, and the specific surface area decreased with the progression of sulfation. From N{sub 2}O pretreatment and temperature-programmed desorption studies on the used lime, it was found that two oxygen species and one species of No desorbed. A surface character change due to sulfation is expected from these gas desorptions. From the relation of the activity to the surface area or the desorption of the gases or both, it was concluded that a decrease in the surface area contributed to the decay of the activity more effectively than the surface character change caused by the sulfation.

  2. First total synthesis of prasinic acid and its anticancer activity.

    PubMed

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  3. Overlapping of heterogeneous and purely thermally activated solid-state processes in the combustion of a bituminous coal

    SciTech Connect

    Senneca, Osvalda; Salatino, Piero

    2006-02-01

    Mechanistic studies of coal combustion have long highlighted the variety of reaction pathways along which gasification may take place. These involve chemisorption of reactants, formation of surface oxides, surface mobility of chemisorbed species, and product desorption. At the same time, exposure of the solid fuel to high temperatures is associated with solid-state thermally activated processes. Altogether, the course of gasification may be profoundly affected by the overlapping and interplay of heterogeneous oxidation with purely thermally activated solid-state reactions. In the present work the combustion of a South African bituminous coal is analyzed in the framework of a simplified reaction network that embodies heterogeneous oxidative and thermally activated processes (pyrolysis, thermal annealing, coal combustion, char combustion, oxygen chemisorption) active both on the raw coal and on its char. The kinetics of each process of the network is assessed by a combination of thermogravimetric and gas analysis on coal and char samples. The analysis is directed to the determination of the prevailing combustion pathway, established from the interplay of oxidative and solid-state thermally activated processes, as a function of combustion conditions (temperature, heating rate, particle size). (author)

  4. Active control of the acoustic boundary conditions of combustion test rigs

    NASA Astrophysics Data System (ADS)

    Bothien, Mirko R.; Moeck, Jonas P.; Oliver Paschereit, Christian

    2008-12-01

    In the design process of burners for gas turbines, new burner generations are generally tested in single or multi burner combustion test rigs. With these experiments, computational fluid dynamics, and finite element calculations, the burners' performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behaviour and the emission characteristics is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match, or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavourable dynamics at the same conditions in the engine. In this work, a method is proposed which uses an active control scheme to manipulate the acoustic boundary conditions of the test rig. Using this method, the boundary conditions can be continuously modified, ranging from anechoic to fully reflecting in a broad frequency range. The concept is applied to an atmospheric combustion test rig with a swirl-stabilized burner. It is shown that the test rig's properties can be tuned to correspond to those of the full-scale engine. For example, the test rig length can be virtually extended, thereby introducing different resonance frequencies, without having to implement any hardware changes. Furthermore, the acoustic boundary condition can be changed to that of a choked flow without actually needing the flow to be choked.

  5. Combustion synthesis and engineering of nanoparticles for electronic, structural and superconductor applications

    SciTech Connect

    Stangle, G.C.; Amarakoon, V.R.W.; Schulze, W.A.

    1993-05-28

    Fully dense, nanocrystalline ceramic articles were prepared by the new nanofabrication process. The process consists of two steps: synthesis of ceramic nanoparticles and fabrication of dense, nanocrystalline ceramic parts. The synthesis step produced 10-nanometer-diameter crystallites, and is capable of being scaled up to kilogram/hour production rates. The fabrication step produced dense parts at significantly reduced sintering temperatures and times -- representing a factor of 10--100 reduction in process energy requirements. The process was demonstrated by producing ultrafine-grained yttria-stabilized ZrO[sub 2], an important material with a variety of energy-related applications (solid electrolytes, oxygen sensors, electrode materials, thermal barrier coatings, etc.). Results from this period clearly illustrate the capabilities of this energy-efficient and directly commercializable process for producing dense, nanocrystalline, multicomponent oxide ceramics.

  6. Solution Combustion Synthesis of CaZrO3 Using Mixed Fuel

    NASA Astrophysics Data System (ADS)

    Limsay, R. H.; Tayade, R. A.; Talwatkar, C. B.; Yawale, S. P.; Yawale, S. S.; Bhavsar, R. S.

    With the advent of nanotechnology, methods of synthesis have attained immense importance since it governs particle size of the materials. In this paper, we report synthesis of CaZrO3 by simple and energy efficient method that produced ultra fine powder having particle size in the nanometers. Synthesis of CaZrO3 was carried out using corresponding metal nitrates and mixed fuels i.e., glycine and urea at a temperature less than 500°C. The reaction was highly exothermic in nature. The product obtained was voluminous and foamy. The as synthesized CaZrO3 is crystalline in nature. It required no further heating. The compound was indexed using standard indexing procedure and the lattice constants matches completely with those reported in the literature. Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA) results shows that the material is highly stable internally during the whole range of temperature studied i.e., up to 1000°C. The powder density of the material was calculated to be 5.6393 g cm-1. BET surface area was found to be 11.505 m2/g. The particle size was calculated using density and BET surface area values. The particle size of the as synthesized CaZrO3 was found to be 92 nm. The product was further characterized using Scanning Electron Microscope and electrical conductivity.

  7. Structural and optical characterization of DyAlO3 perovskite powders obtained by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Saji S., K.; Raju, K.; Wariar, P. R. S.

    2016-05-01

    Phase pure Dysprosium monoaluminate has been prepared from Dysprosium oxide and Aluminium nitrate by auto-ignition citrate complex combustion process. The phase formation has been investigated using X-ray diffraction analysis (XRD), Thermo-Gravimetric/Differential Thermal Analysis (TGA/DTA) and Fourier Transform Infrared (FT-IR) spectroscopy analysis. X-ray diffraction analysis (XRD) revealed that DyAlO3 has an orthorhombic perovskite structure. From Transmission Electron Microscopy (TEM) studies, average particle-size has been found to be as low as 45 nm. The absorption spectrum of the DyAlO3 nanoparticles shows characteristic absorption bands of Dy atom. The optical band gap of the material was found to be 5.15eV, which corresponds to direct allowed transitions.

  8. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    NASA Astrophysics Data System (ADS)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an "R" value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U-O bond.

  9. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    NASA Astrophysics Data System (ADS)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  10. Tetragonal ZrO2:Nd3+ nanosphere: Combustion synthesis, luminescence and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Chandrasekhar, D.; Kadam, R. M.

    2015-12-01

    Nanocrystalline ZrO2:Nd3+ was synthesised using gel-combustion method and characterized systematically using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Through this route we can stabilize metastable tetragonal phase at 500 °C through addition of 1 mol % Nd3+ which is technologically more important. Optical characterization of the sample was done using photoluminescence (PL) and photoacoustic spectroscopy (PAS). PL studies shows an intense and optimum stimulated emission cross section of 1065 nm peak corresponding to 4F3/2 → 4I11/2 which and thus it can be a probable laser material. PAS is used to investigate electronic absorption of Nd3 in zirconia. Various covalency parameters like nephelauxetic ratio (β), covalency factor (b1/2) and Sinha parameter (δ) were evaluated for pure oxide powder and as well as for Nd3+ doped zirconia.

  11. Green synthesis of magnetic chitosan nanocomposites by a new sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2016-07-01

    The Fe2O3/CuFe2O4/chitosan nanocomposites have been successfully synthesized via a new sol-gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe2O4) and iron (II) oxide (Fe2O3) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated.

  12. Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity

    SciTech Connect

    Jegatha Christy, A.; Umadevi, M.

    2013-10-15

    Graphical abstract: - Highlights: • NiO nanoparticles were synthesized by solution combustion method. • Prepared NiO nanoparticles are fcc structure. • Synthesized NiO nanoparticles are octahedral shape. • Shows good photocatalytic activity. - Abstract: Nickel oxide nanoparticles (NiO NPs) were synthesized by solution combustion method using glycine and citric acid as fuels. The X-ray diffraction (XRD) result confirms the face centered cubic (fcc) structure of NiO. The octahedral shape of NiO NPs was confirmed by field emission scanning electron microscope (FESEM) and high resolution transmission electron microscopy (HRTEM). It is possible to suggest that the organic fuel (citric acid/glycine) is responsible for the formation of the octahedral shape due to the easier complex formation. Photocatalytic activity of NiO NPs also evaluated and found that the prepared NiO NPs have high photocatalytic degradation. In the present study, the crystalline nature and shape of the NiO nanoparticles plays a vital role in determining the photocatalytic activity.

  13. Microwave assisted combustion synthesis of nanocrystalline CoFe2O4 for LPG sensing

    NASA Astrophysics Data System (ADS)

    Chaudhari, Prashant; Acharya, S. A.; Darunkar, S. S.; Gaikwad, V. M.

    2015-08-01

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe2O4. The process takes only a few minutes to obtain as-synthesized CoFe2O4. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe2O4 prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe2O4 thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  14. Photoluminescent properties of Tb3+ doped GdSrAl3O7 nanophosphor using solution combustions synthesis

    NASA Astrophysics Data System (ADS)

    Khatkar, Satyender Pal; Singh, Sonika; Lohra, Sheetal; Khatkar, Avni; Taxak, Vinod

    2015-05-01

    A color tunable terbium doped GdSrAl3O7 nanophosphor has been synthesized at low temperature using solution combustion synthesis. The photoluminescent properties of nanophosphors have been explored by analyzing their excitation and emission spectra alongwith their decay curves. The emission spectra exhibit dominating green light at 544 nm due to 5D4→7F5 transition of Tb3+ ions in GdSrAl3O7 on excitation by UV light of 239 nm. Furthermore, the luminescence in Gd( 1- x)SrAl3O7: xTb3+nanophosphors shifted from blue to green color by properly tuning the concentration of terbium ions. Decay curves indicate that non-radiative cross-relaxation is primarily responsible for concentration quenching phenomenon in the GdSrAl3O7 host. X-ray diffraction (XRD) analysis confirmed that single tetragonal phased nanophosphor could be readily obtained at low temperature 550°C. The smooth surfaced nanocrystals with particle size of 45 - 50 nm have also been examined by transmission electron microscopy (TEM). All these features augmented the probability of GdSrAl3O7: Tb3+ nanophosphor for potential applications in optical devices. [Figure not available: see fulltext.

  15. EPR investigation on synthesis of Lithium zinc vanadate using sol-gel-combustion route and its optical properties

    NASA Astrophysics Data System (ADS)

    Pathak, Nimai; Gupta, Santosh K.; Prince, Angelina; Kadam, R. M.; Natarajan, V.

    2014-01-01

    The present work describes the synthesis of Lithium zinc vanadate (LiZnVO4) nanophosphor prepared by sol-gel-combustion method and its optical properties. The prepared sample was characterized by X-ray diffraction, SEM, electron paramagnetic resonance and photoluminescence spectroscopy. X-ray diffraction study showed the formation of pure LiZnVO4 at 600 °C with distorted phenacite structure. SEM investigation revealed that the phosphor powder has spherical morphology with particle size of about 100-200 nm. EPR study showed the change of coordination sphere around vanadium from axially distorted octahedral symmetry to tetrahedral geometry along with the change in oxidation state of vanadium ion from +4 to +5. The emission spectrum showed a broad emission at 543 nm with λex = 375 nm. The decay time obtained on mono-exponential fitting was 8.3 μs. The colour coordinates of the system were evaluated using CIE index diagram to be 0.31 and 0.41, which suggest that the prepared material is a potential green emitting phosphor. A bright green colour emission was also observed directly from this phosphor upon excitation with an UV source.

  16. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs.

    PubMed

    Branquinho, Rita; Salgueiro, Daniela; Santos, Lídia; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2014-11-26

    Solution processing has been recently considered as an option when trying to reduce the costs associated with deposition under vacuum. In this context, most of the research efforts have been centered in the development of the semiconductors processes nevertheless the development of the most suitable dielectrics for oxide based transistors is as relevant as the semiconductor layer itself. In this work we explore the solution combustion synthesis and report on a completely new and green route for the preparation of amorphous aluminum oxide thin films; introducing water as solvent. Optimized dielectric layers were obtained for a water based precursor solution with 0.1 M concentration and demonstrated high capacitance, 625 nF cm(-2) at 10 kHz, and a permittivity of 7.1. These thin films were successfully applied as gate dielectric in solution processed gallium-zinc-tin oxide (GZTO) thin film transistors (TFTs) yielding good electrical performance such as subthreshold slope of about 0.3 V dec(-1) and mobility above 1.3 cm2 V(-1) s(-1). PMID:25354332

  17. Solution-combustion synthesis and photoluminescence properties of YBO3:Tb3+ phosphor powders

    NASA Astrophysics Data System (ADS)

    Onani, Martin O.; Okil, Joseph O.; Dejene, Francis B.

    2014-04-01

    YBO3:Tb3+ nanocrystalline phosphors were successfully deposited by a solution-combustion method, using rare-earth nitrates, urea and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence properties of the films were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results of SEM and XRD revealed that the powders were composed of spherical YBO3:Tb3+ nanocrystals with average grain size of between 50 and 100 nm. The electron diffraction spectroscopy (EDS) confirmed the presence of the Y, B, O, and C. The XRD measurements revealed YBO3:Tb3+ (JCPDS:83-1205) structure when annealed at 1000 °C for 2 h. The YBO3:Tb3+ powders exhibited emissions at 490, 545 and 585 nm, which were assigned to the 5D4-7F6, 5D4-7F5 and 5D4-7F4 transitions of Tb3+, respectively. Among them, the green emission at 545 nm (5D4-7F5) was dominant.

  18. Synthesis and Characterization of Cobalt Substituted Zinc Ferrite Nanoparticles by Microwave Combustion Method.

    PubMed

    Sundararajan, M; Kennedy, L John; Vijaya, J Judith

    2015-09-01

    Pure and cobalt doped zinc ferrites were prepared by microwave combustion method using L-arginine as a fuel. The prepared samples were characterized by various instrumental techniques such as X-ray powder diffractometry, high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, Fourier transformed infrared (FT-IR) spectroscopy, photoluminescence spectroscopy and UV-Visible diffuse reflectance spectroscopy. Vibrating sample magnetometry at room temperature was recorded to study the magnetic behavior of the samples. X-ray analysis confirmed the formation of zinc ferrites normal spinel-type structure with an average crystallite sizes in the range, 25.69 nm to 35.68 nm. The lattice parameters decreased as cobalt fraction was increased. The HR-SEM images showed nanoparticles are agglomerated. The estimated band gap energy value was found to decrease with an increase in cobalt content (1.87 to 1.62 eV). Broad visible emissions are observed in the photoluminescence spectra. A gradual increase in the coercivity and saturation magnetization (M(s)) were noted at relatively higher cobalt doping fractions. PMID:26716235

  19. Mechanoluminescence properties of SrAl2 O4 :Eu(2+) phosphor by combustion synthesis.

    PubMed

    Bisen, D P; Sharma, R

    2016-03-01

    In this paper, europium-doped strontium aluminate (SrAl2 O4 :Eu(2+) ) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X-ray diffractometry (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2 O4 :Eu(2+) phosphor. The optical properties of SrAl2 O4 :Eu(2+) phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2 O4 :Eu(2+) phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2 O4 :Eu(2+) phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198971

  20. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  1. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    NASA Astrophysics Data System (ADS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-12-01

    Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.

  2. Turbulent combustion

    SciTech Connect

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  3. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.

    PubMed

    McCollum, Jena; Pantoya, Michelle L; Iacono, Scott T

    2015-08-26

    Aluminum (Al) particles are passivated by an aluminum oxide (Al2O3) shell. Energetic blends of nanometer-sized Al particles with liquid perfluorocarbon-based oxidizers such as perfluoropolyethers (PFPE) excite surface exothermic reaction between fluorine and the Al2O3 shell. The surface reaction promotes Al particle reactivity. Many Al-fueled composites use solid oxidizers that induce no Al2O3 surface exothermicity, such as molybdenum trioxide (MoO3) or copper oxide (CuO). This study investigates a perfluorinated polymer additive, PFPE, incorporated to activate Al reactivity in Al-CuO and Al-MoO3. Flame speeds, differential scanning calorimetry (DSC), and quadrupole mass spectrometry (QMS) were performed for varying percentages of PFPE blended with Al/MoO3 or Al/CuO to examine reaction kinetics and combustion performance. X-ray photoelectron spectroscopy (XPS) was performed to identify product species. Results show that the performance of the thermite-PFPE blends is highly dependent on the bond dissociation energy of the metal oxide. Fluorine-Al-based surface reaction with MoO3 produces an increase in reactivity, whereas the blends with CuO show a decline when the PFPE concentration is increased. These results provide new evidence that optimizing Al combustion can be achieved through activating exothermic Al surface reactions. PMID:26263844

  4. Model-Based, Multiscale Self-Tuning Controller Developed for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.

    2005-01-01

    New challenges concerning system health-monitoring and life-extending robust controls for the Ultra-Efficient Engine Technology Project, as well as other advanced engine and power system concepts at NASA and elsewhere, have renewed the control community s interest in smart, model-based methods. In particular, these challenges have further motivated efforts at the NASA Glenn Research Center to exploit the versatility and superiority of the dynamic features extraction of multiscale analysis for controls--such as with "wavelets" and "wavelet filter-banks.' The accomplishments reported herein pertain to the active suppression of combustion instabilities in liquid-fuel combustors via fuel modulation. The fundamentals and initial success of this innovation were reported for a unique demonstration of active combustion control (a research collaboration of NASA Glenn with Pratt & Whitney and the United Technologies Research Center, UTRC). This demonstration, conducted in 2002 at UTRC on the NASA single nozzle rig (SNR) combustor, was the first known suppression of high-frequency instability with a liquid-fueled combustor. The SNR is based on a high-powered military engine combustor that exhibited well-known instabilities.

  5. Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Krsmanović, R.; Morozov, V. A.; Lebedev, O. I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G.

    2007-08-01

    Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)-doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia\\bar {3}d ) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd3-xLnxGa5O12, xap0.3 (Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+-doped nanocrystalline GGG samples were measured and analysed.

  6. Effect of KCl, NaCl and CaCl{sub 2} mixture on volume combustion synthesis of TiB{sub 2} nanoparticles

    SciTech Connect

    Nekahi, Atiye; Firoozi, Sadegh

    2011-09-15

    Highlights: {yields} A low melting diluent lowers the ignition temperature in combustion synthesis. {yields} Deagglomerated synthesized products are formed as the result of diluent addition. {yields} Addition of 45% salt mixture resulted in formation of 70 nm TiB{sub 2} nanoparticles. {yields} Thermodynamically unstable Mg{sub 2}TiO{sub 4} and Mg{sub 3}B{sub 2}O{sub 6} by-products were formed. {yields} Small change in particle size was observed with addition of salt mixture. -- Abstract: Preparation of titanium diboride (TiB{sub 2}) nanoparticles was carried out by volume combustion synthesis. TiO{sub 2}, B{sub 2}O{sub 3} and elemental Mg were mixed with 0-60% salt mixture of KCl, NaCl and CaCl{sub 2} with increment of 15% as a low melting temperature diluent. Compressed samples were synthesized in a tubular furnace at a constant heating rate under argon atmosphere. Thermal analysis of the process showed that the addition of the low melting temperature salts mixture led to a significant decrease in ignition and combustion temperatures. Synthesized samples were then leached by nitric and hydrochloric acids to remove impurities. The samples were examined by XRD, SEM and DLS analysis. The results showed the formation of fine deagglomerated particles with the addition of the salts mixture. The results revealed that 45% salts mixture had the smallest average particle size of about 90 nm.

  7. A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture

    SciTech Connect

    Agarwal, A.; Biegler, L.; Zitney, S.

    2010-07-01

    Recent developments have shown pressure/vacuum swing adsorption (PSA/VSA) to be a promising option to effectively capture CO2 from flue gas streams. In most commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product, and enriching the strongly adsorbed CO2 is not a concern. On the other hand, it is necessary to concentrate CO2 to high purity to reduce CO2 sequestration costs and minimize safety and environmental risks. Thus, it is necessary to develop PSA processes specifically targeted to obtain pure strongly adsorbed component. A multitude of PSA/VSA cycles have been developed in the literature for CO2 capture from feedstocks low in CO2 concentration. However, no systematic methodology has been suggested to develop, evaluate, and optimize PSA cycles for high purity CO2 capture. This study presents a systematic optimization-based formulation to synthesize novel PSA cycles for a given application. In particular, a novel PSA superstructure is presented to design optimal PSA cycle configurations and evaluate CO2 capture strategies. The superstructure is rich enough to predict a number of different PSA operating steps. The bed connections in the superstructure are governed by time-dependent control variables, which can be varied to realize most PSA operating steps. An optimal sequence of operating steps is achieved through the formulation of an optimal control problem with the partial differential and algebraic equations of the PSA system and the cyclic steady state condition. Large-scale optimization capabilities have enabled us to adopt a complete discretization methodology to solve the optimal control problem as a largescale nonlinear program, using the nonlinear optimization solver IPOPT. The superstructure approach is demonstrated for case studies related to post-combustion CO2 capture. In particular, optimal PSA cycles were synthesized, which maximize CO2 recovery for a given purity, and minimize overall power consumption. The

  8. In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances

    NASA Astrophysics Data System (ADS)

    Tapanainen, Maija; Jalava, Pasi I.; Mäki-Paakkanen, Jorma; Hakulinen, Pasi; Happo, Mikko S.; Lamberg, Heikki; Ruusunen, Jarno; Tissari, Jarkko; Nuutinen, Kati; Yli-Pirilä, Pasi; Hillamo, Risto; Salonen, Raimo O.; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2011-12-01

    Residential wood combustion appliances emit large quantities of fine particles which are suspected to cause a substantial health burden worldwide. Wood combustion particles contain several potential health-damaging metals and carbon compounds such as polycyclic aromatic hydrocarbons (PAH), which may determine the toxic properties of the emitted particles. The aim of the present study was to characterize in vitro immunotoxicological and chemical properties of PM 1 ( Dp ≤ 1 μm) emitted from a pellet boiler and a conventional masonry heater. Mouse RAW264.7 macrophages were exposed for 24 h to different doses of the emission particles. Cytotoxicity, production of the proinflammatory cytokine TNF-α and the chemokine MIP-2, apoptosis and phases of the cell cycle as well as genotoxic activity were measured after the exposure. The type of wood combustion appliance had a significant effect on emissions and chemical composition of the particles. All the studied PM 1 samples induced cytotoxic, genotoxic and inflammatory responses in a dose-dependent manner. The particles emitted from the conventional masonry heater were 3-fold more potent inducers of programmed cell death and DNA damage than those emitted from the pellet boiler. Furthermore, the particulate samples that induced extensive DNA damage contained also large amounts of PAH compounds. Instead, significant differences between the studied appliances were not detected in measurements of inflammatory mediators, although the chemical composition of the combustion particles differed considerably from each other. In conclusion, the present results show that appliances representing different combustion technology have remarkable effects on physicochemical and associated toxicological and properties of wood combustion particles. The present data indicate that the particles emitted from incomplete combustion are toxicologically more potent than those emitted from more complete combustion processes.

  9. The Combustion Synthesis Zns Doped Materials to Create Ultra-Electroluminscent Materials in Microgravity

    NASA Astrophysics Data System (ADS)

    Castillo, Martin; Steinberg, Theodore

    2012-07-01

    Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there have been no advancements in refining this structure to create ultra-electroluminescent materials. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the SHS of ZnS and will re-examine the work performed in both normal gravity and in reduced gravity within the Queensland University of Technology Drop Tower Facility. Quantifications in the lattice parameters, crystal structures, and phases produced are presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.

  10. Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.